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ABSTRACT OF THE DISSERTATION

Statistical Inference of Change Points and Its Applications in Neuroscience Research

By

Tong Shen

Doctor of Philosophy in Statistics

University of California, Irvine, 2021

Professor Zhaoxia Yu, Chair

Change point detection is a critical analysis in various scientific fields such as finance, medicine,

and climatology. Despite the recent developments in methods and algorithms, it remains

challenging in many problems. In this dissertation, we address and apply the detection of

change points in two research problems. The first problem was motivated by identifying the

epileptic seizure onset time using multi-channel EEG data and detecting abrupt changes in

stocks that might characterize major events in the financial market. We propose a change

point method using spectral principal component analysis on multivariate time series. By

combining multiple time series and allowing for lead-lag relationships, our method achieves

not only improved detectability but also more precise estimate of the locations of change

points. In the second problem, the goal was to detect the exact time points at which a

neuron fires using observed noisy calcium fluorescence recordings. We solve this problem by

developing a time-varying `0 penalized approach to jointly detect spikes using a dynamic

change point detection algorithm and estimate firing rates using a Gaussian-boxcar smoother.

Our simulated and real studies demonstrate that improved accuracy can be achieved by

robustly integrating the evolving neural dynamics within and across recording sessions in a

longitudinal setting.
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Chapter 1

Introduction

“The only constant in life is change.” – Heraclitus.

“Change alone is eternal, perpetual, immortal.” – Arthur Schopenhauer

Changes happen everywhere in our daily life. Being able to detect abrupt and significant

changes is an important first step toward understanding the mechanisms of various scientific

processes. The earliest work, which introduced a cumulative sum method, in change point

detection was proposed in the 1950’s (Page, 1954). In the following decades, methods of

change point detection have been adopted and further developed in many scientific disciplines.

Here we present three motivating examples in which the detection of change points is of high

relevance in their specific scientific settings.

In the first example, electroencephalogram (EEG) data from a subject with epileptic seizure

were recorded for 500 seconds. The signal was acquired through electrodes on the patient’s

scalp at 100 Hz. Presented in Figure 1.1 is the recording of an example channel among other

30 recorded channels. Visual inspection shows increased fluctuations of EEG values between

1



300-400s. Accurate detection of seizure-associated changes in brain activity helps us better

understand the neurological mechanism and provide early warnings for both patients and

caregivers.

Figure 1.1: EEG recording of a single channel (Fp1, located above the left eye) before
and during a spontaneous epileptic seizure of a subject monitored at the epilepsy center of
University of Michigan. There are 31 channels in total. The data was sampled at 100 Hz and
lasted for 500 seconds.

One difficulty in this problem is how to analyze all the 31 channels jointly to increase statistical

efficiency in detecting the onset of epileptic seizure. The problem is further complicated by

potential lead-lag relationships between channels. A similar setting is the stock data in the

financial market. The stocks in S&P 100 are the most established companies in the S&P

500 index, which measures the stock performance of 500 large companies listed on stock

exchanges in USA. This index has often been used to forecast the direction of the economy.

Figure 1.2 shows the log returns of Bank of America in the past two decades. It is clear that

the time series is not stationary. For example, the time series showed abnormal fluctuations

at several periods such as the financial crisis around 2008. A highly relevant question is to

use multiple stocks to identify these changes.
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Figure 1.2: Log return of the daily closing values of Bank of America between January 2000
and August 2016.

In imaging analysis, deconvolution methods are often applied to extract useful information

from the noisy observed data. The deconvolution problem in estimating the times of action

potentials from calcium fluorescence traces can be treated as a special change point problem

due to the almost instantaneous rise and slow decay of a calcium transient in the presence

of a neural spike. Figure 1.3 shows 21 observed calcium fluorescence traces, recorded at

15 Hz for 2 minutes, of an example neuron from a mouse during a fear conditioning task

designed to study the neuron ensembles associated with contextual discrimination. In this

figure, 11 traces were obtained during the learning stage (red) and 10 were recorded during

the relearning stage (blue). Identifying the neural spike times is a critical but still challenging

problem and existing spike detection methods analyze one trace at a time, which ignores the

information shared between a trace and those from other sessions.
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Figure 1.3: Calcium traces of an example neuron in mouse foot shock data. Recorded at
15 Hz for 2 minutes. The red and blue traces were obtained during the learning (first 11
sessions) and relearning stages (last 10 sessions), respectively. The long dashed vertical line
denotes the time when a foot shock was applied.

Motivated by the difficulties in change point detection problems and the limitation in current

solutions, we develop novel statistical methods to address the above mentioned change point

detection problems. The remaining of this dissertation is organized as follows. Chapter 2

introduces the problem of change point detection and provides a review of general solutions.

Chapter 3 presents a new spectral principal component method for detecting change points

using multivariate time series. Chapter 4 proposes a multi-trial time-varying `0 penalized

algorithm to iteratively detect spikes using a dynamic change point detection algorithm and

estimate firing rates using a Gaussian-boxcar kernel. Chapter 5 is a follow up of Chapter 4.

This chapter assesses, in problems where calcium traces are often analyzed directly (such as

clustering, PCA, and population decoding), the necessity of estimating the underlying spike

trains.
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Chapter 2

Background on Change Point

Detection

2.1 Change Point Problem

The change point problem is often defined as follows. Suppose we have a data series

x(1), x(2), . . . , x(T ) with distributions F1, F2, . . . , FT . Then the change point problem can

be viewed as testing the null hypothesis H0 : F1 = F2 = · · · = FT against the alternative.

The simplest case is the single change point problem, with the corresponding alternative

hypothesis as H1 : F1 = · · · = Fτ1 6= Fτ1+1 = · · · = FT where τ1 is the change point. Another

useful definition of change points is called epidemic change which can be expressed using the

following alternative hypothesis

H1 : F1 = · · · = Fτ1 = α 6= Fτ1+1 = · · · = Fτ2 = β 6= Fτ2+1 = · · · = FT = α

where τ1, τ2 are the two change points. In this situation, the distribution of the sequence

deviates from baseline and goes back to the initial state. It has been applied in qualify control
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and medical applications (Chen and Gupta, 2011; Kirch et al., 2015; Levin and Kline, 1985;

Yao, 1993). The more general case is the multiple change point problem which can be defined

as:

H1 : F1 = · · · = Fτ1 6= Fτ1+1 = · · · = Fτ2 6= Fτ2+1

= · · ·Fτm 6= Fτm+1 · · · = FT

where τ1, τ2, . . . , τm are unknown change points to be estimated. In the remaining of this

section, we will discuss the application of change point detection, main categories of the

approaches and change point detection in multivariate time series in this chapter.

2.1.1 Online and Offline Approaches in Change Point Detection

There are two general categories of change point detection: online change point detection

and offline change point detection. In online detection, the approach is sequential as new

data points are becoming available. The goal is to identify change point right after it occurs.

Literature reviews, including methodological developments and applications in different fields

such as biomedicine, economics, and human activity, can be found in Basseville et al. (1993),

Chakraborti et al. (2001), Lai (2001). As a comparison, in an office analysis, the entire data

is available and the goal is to identifies change points that have already occurred.

In this dissertation we focus on offline change point detection. Next, we review commonly

used methods.

2.2 Detection of A Single Change Point

In change point detection, the most basic case is detecting a single change point. Two

common types of methods are cumulative sum (CUSUM) and likelihood-ratio based methods.
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2.2.1 CUSUM

Cumulative sum (CUSUM) test statistic was first introduced to detect a change in mean in a

sequential setting (Page, 1954). The data point where the CUSUM statistic is maximized

and exceeds a certain threshold is considered as a candidate change point. The CUSUM

statistic for change in mean of time series data, x(1), . . . , x(T ), is defined as

C(x) =

(√
T − b
Tb

b∑
t=1

x(t)−

√
b

T (T − b)

T∑
t=b+1

x(t)

)

where b ∈ {1, . . . , T} are the candidate change points.

CUSUM has also been extended to different cases. Inclan and Tiao (1994) discussed the

change point detection problem in the variance. CUSUM test in auto-regressive model has

also been developed: Bai (1994) discussed the change in ARMA model, Kokoszka and Leipus

(1999) develops change point detection in the parameters of an autoregressive conditional

heteroscedasticity (ARCH) process. We introduce the frequency-specific CUSUM statistic for

spectrum in Chapter 3.

2.2.2 Likelihood-Ratio Based Detection

The likelihood-ratio test for change point models was first proposed in Hinkley (1970). In

single change point detection, we can define a hypothesis test problem: the null hypothesis of

no change point vs the alternative of a single change point. The log likelihood ratio can be
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calculated as follows:

Λ = −2 log
LH0(θ̂)

max
τ

LH1

(
θ̂1, θ̂2

)
= −2 log

L
(
y1:n | θ̂

)
max
τ

L
(
y1:τ | θ̂1

)
L
(
yτ+1:n | θ̂2

)
where θ̂ is the maximum likelihood estimator for the parameters under the null hypothesis,

θ̂1 and θ̂2 are for the data before and after the change point τ . The null hypothesis is rejected

if Λ > c for a threshold value c. Under some regularity conditions, Λ follows asymptotic

chi-squared distribution when the null hypothesis is true (Wilks, 1938). However in this

setting the change point τ is discrete, which violates the assumptions in Wilk’s theorem.

Alternatively, Yao and Davis (1986) proposed a more accurate approximation procedure to

the null distribution.

The likelihood ratio test has been applied to detect change points in data under different

situations. For example, Hinkley (1970) applied this method to normally distributed data.

Haccou et al. (1987) applied the test to exponentially distributed data to detect the change

in the rate parameter. Kim and Siegmund (1989) considered the test in linear regression and

detect changes in the intercept and slope. The likelihood ratio test has also been used in

other conditions as binomial and exponential processes (Worsley, 1983, 1986), autoregressive

moving-average (ARMA) models (Robbins et al., 2016).

2.3 Multiple Change Point Detection

In this section we extend discussion from single change point detection to multiple change

points detection. Ideally we have to consider all combinations of the number and locations

of change points. However this problem is very computationally challenging. Computation-
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ally efficient approaches have been developed, which include two main algorithms: binary

segmentation and dynamic programming. Next, we provide the two algorithms in details.

2.3.1 Binary Segmentation

The Binary Segmentation (BS) algorithm was first introduced in Scott and Knott (1974) and

Vostrikova (1981). It has been used in many works to detect multiple change points. (Cho

and Fryzlewicz, 2012; Fryzlewicz and Rao, 2014; Venkatraman, 1993). The general binary

segmentation algorithm is initiated by setting the interval boundaries to s = 1 and e = T

with a threshold w0 and a test statistic W τ
s,e based on the time series x(s), ...x(e) where τ is

change point candidate. The optimal threshold depends on the specific change point test

statistic and the length of the time series. We will defer the discussion on how to choose it

to Chapter 3. The change point test is applied to the subseries before and after the change

point. This process is repeated until no more change points are detected. The computation

complexity of the algorithm is O(T log T ). The general algorithm is described below:

Algorithm 1 Binary segmentation

function Binary segmentation(s,e,w0)
if e− s ≥ 2 then

τ ∗ = arg maxτ W
τ
s,e

if W τ∗
s,e > w0 then

Add τ ∗ to the set of estimated change points.
Binary segmentation(s,τ ∗,w0).
Binary segmentation(τ ∗ + 1,e,w0).

end if
end if

end function

BS conducts change point detection sequentially, which significantly reduces computational

complexity. However, because it tests for a change point at a time, small changes in large

segments are often undetectable. In the following, we introduce two extensions, namely the

circular Binary Segmentation (CBS) and the wild Binary Segmentation (WBS).
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The Circular Binary Segmentation was proposed by Olshen et al. (2004). CBS considers

connecting the segments at the two ends to form a circle and searches for two change points at

a time in an epidemic change. The computational cost of the method is O(T 2). Venkatraman

and Olshen (2007) proposed a faster CBS algorithm with a hybrid approach which calculates

the p-values of the test statistic in linear time using a tail probability approximation.

The wild Binary Segmentation (WBS) was proposed by Fryzlewicz et al. (2014). WBS runs

their test on multiple subsamples as x(s), . . . , x(e) where 1 ≤ s < e ≤ T, and identify a change

point on each subsample. Then the change point with the largest test statistic is chosen as

the change point candidate and tested against a threshold value. The process is repeated

recursively to the left and right side of the first change point. There is a trade-off between

the detecting accuracy and computational efficiency which is also discussed in Fryzlewicz

et al. (2014) on how to choose the number of subsamples.

2.3.2 Dynamic Programming

Dynamic programming is another commonly used approach in multiple change point detection.

The idea is to solve an optimization problem for segments based on a chosen cost function

to each segment and minimizing the total cost. Common choices of cost functions include

negative log likelihood, cumulative sums (Page, 1954), residual sum of squares (Inclan and

Tiao, 1994; Rigaill, 2015) and minimum description length (Davis et al., 2006; Rissanen,

1989).

There are two ways to formulate the optimization problem. The first is the constrained

minimization problem for a fixed number of change points K:

min
τ1,...,τK

[
K∑
j=0

C
(
x(τj+1):τj+1

)]
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where C(·). is the cost function, τ1, ..., τK are the K change points to be determined. An

alternative is to solve a penalized minimization problem where a penalty term is added to

each new segment:

min
k,τ1,...,τk

{
k∑
j=0

(
C
(
x(τj+1):τj+1

)
+ λ
)}

where λ is the penalty value. Since both minimization problems are computationally expensive,

several algorithms have been proposed. Auger and Lawrence (1989) developed the Segment

Neighbourhood (SN) search algorithm to solve the constrained minimization problem. The

computational cost is O(KT 2). Jackson et al. (2005) developed the Optimal Partitioning

(OP) method to solve the penalized minimization problem in a recursive way. The cost

function at each time point t is calculated as:

F (t) = min
0≤τ<t

{
F (τ) + C

(
x(τ+1):t

)
+ λ
}

The details of the derivation is included in Chapter 4. The computational cost of the

recursions is O (T 2). To further improve the efficiency, Killick et al. (2012) proposed Pruned

Exact Linear Time (PELT) which is a pruned version of OP. The computational cost can be

near O (T ) under mild conditions. Rigaill (2015) proposed a pruned algorithm based on SN

and has linear cost in the single parameter case.

2.4 Change Point Detection in Multivariate Time Se-

ries

In real world, multivariate time series is frequently encountered in change point analysis (Aue

et al., 2009a; Chen and Gupta, 2011; Cho and Fryzlewicz, 2015; Horváth and Hušková, 2012;

Ombao et al., 2005). Change point detection in multivariate time series is very important as

the real data are often correlated. By jointly analyzing them, we are able to make full use of
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the information in the time series. On the other hand, the analysis in multivariate time series

faces many challenges. For example, the computational cost for multivariate time series is

much higher than that for univariate time series. This motivated us to develop computation

efficient methods, which is presented in Chapter 3.
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Chapter 3

Change-point Detection Using

Spectral PCA for Multivariate Time

Series

3.1 Introduction

Detecting change point in time series is an important goal in many scientific disciplines such

as medicine, financial markets, and climate (Scheffer et al., 2009). For instance, much effort

has been dedicated to capture the sudden changes in brain due to epilepsy. The analysis

of epilepsy helps people understand disruptions in normal brain functioning and develop

more precise diagnosis, improve therapy, and develop effective early-warning systems for

onset of seizure activity (Schröder and Ombao, 2019). Epileptic seizure prediction has been a

notably challenging problem (Mormann et al., 2006). Recent studies showed that prediction

might be feasible by analyzing ectroencephalography (EEG) time series (Chisci et al., 2010).

These automatic algorithms for seizure detection aim to provide real-time detection and onset
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warnings, which may greatly improve clinical and monitoring diagnosis.

In the financial field, Aue et al. (2009a,b) developed rigorous change-point detection methods.

They introduced an asymptotic test procedure to assess the stability of volatilities and

cross-volatilites. It is of prime importance to detect the potential change in stock market

and during financial crisis, which enables people to better understand the relationship

between financial events and stocks. (Choudhry, 1996) studied the 1987 financial crisis.

Generalized autoregressive conditional heteroskedasticity-in-mean (GARCH-M) model was

used to investigate the volatility and changes in volatility for emerging markets before and

after the crisis. In Dooley and Hutchison (2009), the subprime crisis circa 2008 was analyzed.

A long decline was observed in U.S. equities at the start of subprime crisis in mid-2007 through

September 2008. There was also a dramatic change in U.S. stock market in September 2008

with increased volatility after the crisis.

In the literature, both parametric and nonparametric methods have been proposed to detect

change points using either univariate or multivariate time series (Chen and Gupta, 2011; Chen

et al., 2010; Davis et al., 2006). Parametric models are efficient if the model assumptions are

correct. Kirch et al. (2015) developed an approach where a score type of test statistic based

on vector autoregressive (VAR) models was used for identifying change points. Nonparametric

change points are also used for detecting changes in the spectral characteristics of the time

series such as those based on cumulative sum-type tests (Adak, 1998; Ombao et al., 2005;

Terrien et al., 2013). For example, Ombao et al. (2005) developed a procedure for segmentation

of a non-stationary time series via model selection using the SLEX library which is a collection

of orthonormal time-localized Fourier waveforms. One limitation of these methods is they

lack the interpretability for frequency as we expect to detect change points for EEG seizure

on frequency bands as well. Frequency-specific change point detection can help people gain

more insights in brain activity at different frequencies (Alarcon et al., 1995; Blondin and

Greer, 2011; Schmitt et al., 2012). Moreover, when we extend methods from univariate to
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multivariate time series case, existing methods can be computationally inefficient.

In practice, multivariate time series are often correlated. Analyzing or modeling them jointly,

rather than individually or pairwisely, allows us to take the full multivariate information

into consideration (Ombao et al., 2005); as a result, multivariate approaches are often more

efficient. Besides, in many time series data, spectral analysis is often able to extract critical

spectral characteristics of the data by examining different frequency bands (Kaplan et al.,

2001). Motivated by these previous work, we develop a two-stage detection method for

multivariate time series which we call the Spectral PCA change point (Spec PC-CP) method.

The main advantage of our method is that it reduces computational complexity and is more

likely to give lower reconstruction error (Wang et al., 2019) especially when there is lead-lag

relationship between components of the time series.

The rest of the chapter is organized as follows. In section 3.2 we propose a two-stage Spec

PC-CP method and describe three competing methods: Contemporaneous Mixture Method

mentioned in Wang et al. (2019), Structural Break Detection (Safikhani and Shojaie, 2017)

and Sparsified Binary Segmentation (Cho and Fryzlewicz, 2015). In section 3.3 we conduct

simulation studies to evaluate the performance of Spec PC-CP under several simulation

settings. In section 3.4, we analyze epileptic seizure EEG data and stock data and show that

our method can efficiently detect change points corresponding to the onset of seizure in EEG

data and financial issues in stock data. In section 3.5 we conclude this chapter to discuss the

potential future directions.

3.2 The Spec PC-CP method

In multivariate analysis, PCA is one of the mostly used techniques to extract linear combi-

nations that provide low dimensional summaries of multivariate data. The first principal
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component is given by the linear combination with the largest variance among all possible

linear combinations. Each following component has the largest variance under the constraint

that it is orthogonal to the preceding components. By extracting a few leading components

that account for a desired proportion of the total variance, PCA is often used for visualization

and dimension reduction.

Contemporaneous Mixture Method. Consider a zero-mean p-dimensional process X(t).

In classical PCA, the PCs as mentioned in Wang et al. (2019) can be represented as an

instantaneous linear mixture of the original p-dimensional time series X(t). The calculating

procedure is as follows:

• For X(t), compute the eigenvalues-eigenvector pairs of Σx as {(λ`, e`)}q`=1, where

λ1 > λ2 >, ..., > λq and ‖e`‖ = 1. When Σx is not known, we estimate Σx by

Σ̂x = 1
T

∑T
t=1X(t)X(t)T , where T is the length of the series

• The `-th component can be calculated by

u`(t) = eT` X(t)

Although widely used in dimension reduction, classical PCA may not be optimal when there

is lead-lag relationships between multiple time series. Spectral PCA, which was originally

introduced in Brillinger (1964), aims to find components that explain the variance in the

spectral density matrix at all frequencies rather than the contemporaneous covariance matrix.

Because of the 1-1 relationship between the sequence of auto-covariance matrix at all lags

and the spectral density matrix at all frequencies, Spectral PCA is able to capture lead-lag

dependence at various lags between the different time series. We will show an example in the

simulation section where Spectral PCA gives a better summary of the latent source (Figure

3.3). An additional advantage of the Spectral PCA approach is that it allows us to examine

the roles of different frequency bands. Because Spectral PCA has the advantages of both
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spectral analysis and PCA, it has been used to analyze multivariate time series data (Ombao

and Ho, 2006; Ombao et al., 2005; Stoffer et al., 2002; Wang et al., 2019). In spectral PCA,

we summarize a p-dimensional time series X(t) = (X1(t), . . . , Xp(t))
′, by q(≤ p) univariate

time series, each of which is a linear combination of all past, present and future observed

time series, i.e, a linear filtered version of X(t):

u(t) =
∞∑

h=−∞
A(h)X(t− h)

Based on u(t), one can construct X(t) by X(t) =
∞∑

h=−∞
B(h)u(t− h). Here A(h) and B(h)

are absolutely filters with dimensions q × p and p× q respectively. The filters are chosen to

minimize the eigenvalues of the approximation error matrix E[(X(t)− X̂(t))∗(X(t)− X̂(t))].

Similar to classical PCA, there are up to p components. We use u`(t) to denote the `-th

spectral PC. We apply the following algorithm to extract the first q spectral PCs.
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Algorithm 2 Spectral PCA Method for Extracting Summaries

1: function Spectral PCA for data matrix X(t)
2: for j = 0, 1, ..., T − 1 do

3: d(ωj) = T−1/2
T∑
t=1

X(t) exp(−2πiωjt) (Compute Fourier coefficients(FFT)), where

ωj = j/T
4: Compute periodogram matrix I(ωj) = d(ωj) · d∗(ωj)
5: Estimate the spectral density matrix f̂(ωj) = smoothrI(ωj+r) (use Daniel kernel

with window size of length 5)

6: Compute the q largest eigenvalues of f̂(ωj) denoted

0 < λq(ωj) < . . . , λ1(ωj)

7: Extract the eigenvectors V`(ωj) that correspond to the `-th largest eigenvalues,
` = 1, . . . , q

8: end for
9: Compute the filter b`(h) =

∑
j

V ∗` (ωj)∗exp(2πiωjh) (compute the filter that correspond

to th `-th largest eigenvalue) for ` = 1, ..., q

10: Obtain the first q spectral PCs u`(t) =
R∑

h=−R
b`(h) ∗X(t− h) for ` = 1, ..., q

11: return u(t) = u1(t), ..., uq(t)
12: end function

In the algorithm of Spectral PCA, we first compute the eigenvectors of the smoothed

periodogram (an estimation of spectrum) for each frequency. After that we calculate time-

varying filter based on the eigenvectors. Finally by applying the filter to the original data,

we are able to get the first q Spectral PCs, which are low dimensional summaries. The low

dimensional summaries u`(t) can be thought as the frequency domain analog of the `-th

principal component in classical PCA. In this article, we calculate the first three spectral

PCs (` = 1, 2, 3) in the algorithm to conduct change point analysis.
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3.2.1 Stage II: Identifying change-points from a Spectral PC using

the binary segmentation algorithm

Spectral PCA was proposed to conduct dimension reduction for stationary time series

(Brillinger, 1981; Shumway and Stoffer, 2017). Time series with potential change points, such

as EEG and stock data collected over a long period time, are naturally non-stationary. Thus,

it is necessary to consider segmentation methods when identifying change points. For example,

the SLEX library proposed by Ombao et al. (2005) consists of localized waveform where

localization is achieved by binary segmentation so that each time block is approximately

stationary.

When combined with binary segmentation, the CUSUM statistics can consistently detect

multiple change-points in a recursive manner (Cho and Fryzlewicz, 2012). In this chapter,

the CUSUM statistic is applied to the spectrum of the time blocks. For each time block,

we first compute the smoothed periodogram of the `-th spectral PC u`(t) (See algorithm

2(4,5,6)) Similar to Schröder and Ombao (2019), we let f̂(t̃, ωj) denote the estimate of the

spectrum of u`(t) within the t̃-th block at frequency ωj. Figure 3.1 shows an example of a

multivariate time series (T = 1, 000 and p = 20 channels) with two change points at t = 400

and 700. The time series is a mixture of AR(2) latent sources with different frequency bands.

Between the two change points, the weight of the alpha band (8-12 Hz) is lower while the

weights of delta (0-4 Hz) and gamma (30-45 Hz) band remain constant across all time blocks.

The estimated spectrum of the first spectral PC is calculated at each time block with length

of 100. It is clear that the estimates agree with the latent source. Two change points are

detected using the first spectral PC, which agrees with the truth.
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Figure 3.1: Topleft: Time series with T = 1, 000 and p = 20 channels, two change points at
t = 400 and 700. Topright: The time-frequency plot. Presented are estimated spectrum of
the first spectral PC at each time block (blocklength = 100). Bottomleft: The first spectral
PC and estimated change points. Bottomright: CUSUM statistics using binary segmentation
(Red line: first change point. Blue line: second change point.)

Suppose that the entire time has been split into T̃ blocks. The CUSUM statistic on the t̃-th

block is defined as

Ct̃ =
∑
ωj

Ct̃(ωj) ∗ I(Ct̃(ωj) > ζT ) (3.1)

where

Ct̃(ωj) = |

√
T̃ − t̃
T̃ t̃

t̃∑
i=1

f̂(i, ωj)−

√
t̃

T̃ (T̃ − t̃)

T̃∑
i=t̃+1

f̂(i, ωj)|/σ̂(f̂(ωj)) (3.2)

is the CUSUM statistic at frequency ωj. Here, ζT = 0.8 log1.1(T ) is a threshold, whose

the theoretical justification has been provided by Schröder and Ombao (2019). σ̂(ωj) =
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1
T̃

∑T̃
l=1 f̂(l, ωj) is a scaling factor.

In the binary segmentation CUSUM algorithm, for each time block we calculate the peri-

odogram series f̂(t̃, ωj) at all frequency ωj based on a spectral PC u`(t). Then we identify

the first candidate change-point that gives the largest discrepancy of CUSUM statistics.

Once a change point is detected at time block t0 (1 < t0 < T̃ ), we repeat our procedure on

sub-intervals split by t0. The following table provides the pseudo code of our algorithm:

Algorithm 3 Binary segmentation CUSUM

Input: Periodogram series f̂(ωj) = (f̂(1, ωj), ..., f̂(T̃ , ωj)), start and end point of the series,
threshold ζT .

1: function Binary-CUSUM(f̂(ωj),start,end,ζT )
2: if end− start ≥ 2 then
3: for Block t̃ = 1, 2, ..., T̃ do
4: Calculate Ct̃ based on f̂(start, ωj), ..., f̂(end, ωj) using (1), (2)
5: end for
6: t0 = arg maxt̃∈[start,end] Ct̃
7: if Ct0 > ζT then
8: Add t0 to the set of estimated change points.
9: Binary-CUSUM(f̂(ωj),start,t0,ζT ).

10: Binary-CUSUM(f̂(ωj),t0 + 1,end,ζT ).
11: else
12: Break.
13: end if
14: end if
15: end function

Our two-stage Spec PC-CP method is summarized in Figure 3.1. In the first stage, we

partition the whole time series into time blocks of length 100 and compute the first spectral

PC at each time interval. In the second stage we compute the periodogram at each time block

using the PCs and conduct change point detection using the binary segmentation CUSUM

procedure.
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3.2.2 Other methods for comparison

Besides Contemporaneous Mixture Method, we also compared our method with two other

existing methods, namely Structural Break Detection (Safikhani and Shojaie, 2017) and

Sparsified Binary Segmentation (Cho and Fryzlewicz, 2015). Both of the methods aim to

detect change points in multivariate time series. The Structural Break Detection method is a

parametric method based on a piecewise vector autoregressive model (VAR) with a regularized

estimation using the total variation LASSO penalty. The Sparsified Binary Segmentation

method is a non-parametric method that aggregates the CUSUM statistics with a sparsifying

step that reduces the effect of noisy contributions. To reduce the impact of the channels

with no changes, it applies a threshold to the CUSUM statistics for each single channel and

aggregates only the CUSUMs that exceeds the threshold.

3.3 Simulation Studies

3.3.1 Generate the latent sources

In this section, we present simulation studies to examine the performance of our proposed

Spec PC-CP method and three existing methods. We consider several methods for generating

latent source. To obtain realistic signals, we follow the approach in Gao et al. (2016) to

generate latent sources using the AR(2) model. As demonstrated in Gao et al. (2016), the

AR(2) model is able to produce signals with the desired oscillatory properties. Following the

convention for analyzing electroencephalograms (EEGs), we generated sources with localized

power in the following frequency bands: delta (0-4) Hz, theta (4-8) Hz, alpha (8-12) Hz, beta

(12-30) Hz, gamma (30-45) Hz. The synthetic signals are generated as follows:

• We first generate multivariate AR(2) latent sources using S(t) = Φ1S(t− 1)+Φ2S(t−2)+
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η(t), where Φ1,Φ2 ∈ Rk×k are diagonal matrices and noise η(t) is independent Gaussian

to guarantee independence of the sources, η(t) are Gaussian noise and each column

follows N(0k×1, Ik). Note that we consider five (k = 5) different latent AR(2) processes

that represent different EEG oscillations at the five frequency bands respectively. The

coefficients for each of the AR(2) component are listed in table 1.

Table 3.1: AR(2) Coefficients for each frequency band

Frequency band Diagonal value of Φ1 Diagonal value of Φ2

Delta 1.998 -0.998

Theta 1.9 -0.998

Alpha 1.616 -0.998

Beta -0.617 -0.998

Gamma -1.616 -0.998

• We then generate the p-dimensional signals from k latent sources as follows:

X(t) = MS(t) + ε(t)

Each column of the noise term ε(t) follows N(0p×1, Ip). In the simulation study, we are

interested in multiple factors that might affect the results, such as different fractions of

channels with changes, the number of change points, different types of latent source,

the change point locations and different block lengths. Figure 3.2 shows the latent

source in theta band and alpha band. The sampling rate is 100 Hz. By using AR(2)

model, we can constrain the power of sources to center at given frequency bands.
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Figure 3.2: The series and spectra of the process in theta band and alpha band. Sampling
rate: 100 Hz. (Top: series, bottom: spectra)

Summary of Simulation Settings

To provide sensitivity analysis on our simulation, we used a variaty of simulations settings,

which are summarized as follows:

• The length of time series is T = 1, 000 with 1 change point(at t = 550) or T = 4, 000

with 3 change points(at t = 980; 2, 120; 3, 050).

• The number of channels with change points (out of total of p=128) is 16, 32, 64.

• The type of latent source is AR(2) or a mixed source of ARMA(1,1), MA(1) and AR(2).

• The first three spectral principal components that correspond to the first three largest

eigenvalues from Spectral PCA.

24



3.3.2 Scenario I: Proportions of channels with a change point

First we evaluate the case where we have AR(2) latent source, 1 change point at t = 550 and

T = 1, 000. We assume that changes mainly in the gamma band (the 5-th column of the

weight matrix) and add time lag with length 10 or 15 on X(t) to create lead-lag relationship.

Under such settings we expect the Spectral PCA method could better summarize the time

series because of its ability to extract the latent source and capture the dynamics of the

source with time lag. A total of p = 128 channels will be generated. The following numbers

of channels with change points are considered: 16, 32, 64.

M
(1)
10 =



0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1

...

0.1 0.1 0.1 0.1 0.1


M

(1)
15 =



0.2 0.1 0.1 0.1 0.1

0.2 0.1 0.1 0.1 0.1

...

0.2 0.1 0.1 0.1 0.1



M
(2)
10 =


0.1 0.1 0.1 0.1 0.9

0.1 0.1 0.1 0.1 0.9

...

 M
(2)
15 =


0.3 0.1 0.1 0.1 0.9

0.3 0.1 0.1 0.1 0.9

...



X(t) =

 M
(1)
10 S(t− 10) +M

(1)
15 S(t− 15) + ε(t) (0 < t <= 550)

M
(2)
10 S(t− 10) +M

(2)
15 S(t− 15) + ε(t) (550 < t <= 1, 000)

where each column of ε(t) follows N(0k×1, Ik).
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Figure 3.3: The Time-Frequency plots of the summarization series (top left: the first Spectral
PC, top right: the first component of Contemporaneous Mixture, bottom: the latent source.
Total time points T = 1, 000, 16/128 channels with change point)

As the Time-Frequency plots shown in figure 3.3, Spectral PCA has higher weights in

high frequencies after the change point and lower weights in other frequency bands. As a

comparison, the contemporaneous method has higher weights in lower frequencies. This

indicates that Spectral PCA gives a better summary than Contemporaneous Method.

Table 3.4 gives the simulation results. Among the three leading spectral PCs, the first PC

performs the best. As the number of channels with change increases, the detection rate

increases in all methods. Spec PC-CP and Contemporaneous Method have comparable

performance when there are a large number of channels with change points. The advantage

of our Spec PC-CP method is particularly substantial when the fraction of channels with

change points is small (16 channels). Besides the detection rate, our method is more accurate

in locating the change point, as qualified in mean absolute difference (MAD) between the

estimated change points and true ones (Figure 3.4 and Table 3.4). The change points detected
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by Spec PC-CP are closer to the true change points (t = 550) than contemporaneous method,

especially when there is a small proportion of channels with change points. To confirm

the robustness of our method against simulation methods, we also run simulations under

Structural Break and Binary Segmentation settings. Table 3.2 and 3.3 show the results. In

these settings there is one change point and the Spec PC-CP method gives comparable results

in terms of detection rate and slightly higher mean absolute difference.

• Structural Break setting: We have a piecewise stationary time series model with a single

change point at t = 500. At each time point t, X(t) is a k×1 vector. ε(t) ∼ N(0, 0.01Ik).

We have p = 10 in this case.

X(t) =

 0.9X(t− 1) + ε(t) (0 < t <= 500)

−0.9X(t− 1) + ε(t) (500 < t <= 1, 000)

Table 3.2: Summary of simulation results using Structural Break setting. The length of time
series lengths is chosen as T = 1, 000. There is one change point at t = 500.

Detection rate MAD
Spec PC CP 0.97 20.1

Contemporaneous Method 0.96 18.6
Structural Break 1 1.14

Cho’s Method 0.93 2.05

• Binary Segmentation setting: We have a piecewise stationary time series model

with a single change point at t = 500 with α ∼ Uniform(0.5, 0.59) and β ∼

Uniform(−0.79,−0.5). At each time point t, X(t) is a k × 1 vector. ε(t) ∼ N(0, 4Ik).

We have k = 100 in this case.

X(t) =

 αX(t− 1) + ε(t) (0 < t <= 500)

βX(t− 1) + ε(t) (500 < t <= 1, 000)
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Table 3.3: Summary of simulation results under Cho’s setting. The length of time series
lengths is chosen as T = 1, 000. There is one change point at t = 500.

Detection rate MAD
Spec PC CP 0.99 21.2

Contemporaneous Method 0.98 22.3
Structural Break 0.34 442.0

Cho’s Method 0.91 51.5

3.3.3 Scenario II: Multiple Change Points

Next we conduct simulations with multiple change points. The length of time series lengths

are chosen as T = 4, 000, and the three change points are at t = 980; 2, 150; 3, 020.

X(t) =



M
(1)
10 S(t− 10) +M

(1)
15 S(t− 15) + ε(t) (0 < t <= 980)

M
(2)
10 S(t− 10) +M

(2)
15 S(t− 15) + ε(t) (981 < t <= 2, 150)

M
(1)
10 S(t− 10) +M

(1)
15 S(t− 15) + ε(t) (2, 151 < t <= 3, 020)

M
(2)
10 S(t− 10) +M

(2)
15 S(t− 15) + ε(t) (3, 021 < t <= 4, 000)

where each column of ε(t) follows N(0k×1, Ik).

The performance of the four methods are summarized in Table 3.5. Again, the Spec PC-CP

method performs the best. In particular, our method outperforms the other methods when

there are low or moderate number of channels (16 and 32). When the true number of

change point is one, we used detection rate as one metric to compare the performance of

different methods. Since there are multiple change points in this setting, it is more reasonable

to compare the detection proportion, which is the number of detected change points over

total number of change points. The Structural Break Method has about 0.33 detection

proportion and only detects 1 change point at the very end of the series in most cases. The

Sparsified Binary Segmentation gives lower detection proportion around 0.4 with higher bias.

Figure 3.5 shows the estimated locations for Spec PC-CP and contemporaneous method.

Change points detected by our Spec PC-CP are closer to the true change points. Moreover,
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most of the estimated change points are in a small neighborhood of the true locations

(t = 1, 000; 2, 100; 3, 100).

3.3.4 Scenario III: Mixed sources

In this setting, we considered mixed latent sources with ARMA(1,1), MA(1) and AR(2)

sources.

X(t) =

 M
(1)
10 S(t− 10) +M

(1)
15 S(t− 15) + ε(t) (0 < t <= 550)

M
(2)
10 S(t− 10) +M

(2)
15 S(t− 15) + ε(t) (550 < t <= 1, 000)

where each column of ε(t) follows N(0k×1, Ik). Here S(t) is a mixed latent source with

ARMA(1,1), MA(1) and AR(2). The series lengths are T = 1, 000 and there is one change

point at t = 550.

The results are summarized in Table 3.6 and Figure 3.6. The spec PC-CP method using

the first or second spectral PC outperform contemporaneous and structural break method

when there are less channels (16) with change points and gives comparable results when

mthe number of channels with change points is moderate or large. Our method has detection

rates mostly from 0.6 to 0.9 in this case. Although structural break method has moderate

detection rates as well, it tends to overestimate the number of change points and has inferior

performance in terms of the estimated locations. The Sparsified Binary Segmentation has

inferior performance with around 0.3 detection rate. Besides, The locations of change point

detected in Figure 3.6 of our method are mostly near the truth, which shows that Spec

PC-CP also outperforms contemporaneous method under this setting. The results indicates

that our method is robust with different type of sources.
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3.4 Data Analysis

3.4.1 EEG Data

We applied our two-stage change point detection method to two data sets. The first is

a seizure recording which captured brain activity of a subject monitored at the epilepsy

center at the University of Michigan. The EEG data was sampled at 100 Hz and lasted for

about 500 seconds with a total length of 50,000 (Schröder and Ombao, 2019). The data was

recorded at 31 channels. The placement of the scalp electrodes is illustrated in Figure 3.7.

The abbreviation correspond to different locations on the scalp. For example, Fp means

frontal polar and C means central. Figure 3.8 shows the time series for six channels where

the seizure happening time are similar among different channels.

Figure 3.7: EEG scalp topography. According to the 10-20 system and two sphenoidal
electrodes placed at the base of the temporal lobe.
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Figure 3.8: Six channels of the EEG seizure data (channel Fp1, Fp2, F3, F4, C3, C4). The
data was sampled at 100 Hz and lasted for 500 seconds.

We first examine the time-frequency plots of the first three spectral PCs (Figure 3.9) where

darker color indicates higher weights at certain frequency and time points. It has been known

that the low-frequency energy is more varying during epileptic seizure (Schröder and Ombao,

2019). Therefore, it is of interest to use delta band to detect change points.

Figure 3.10 shows the detected change points using the first three spectral PCs. The red

dotted lines denote the location of estimated change points in delta band. We have detected

a few pre-ictal change points in all three components at the beginning of the recording. The

first component captures multiple change points while the second and third component each

detects one change point before seizure took place. The result suggests that it might be

possible to build early warning systems on seizure. The other group of change points is

identified right before and during seizure onset. All of the three components capture several

changes around t = 40, 000, which agree with visual inspection on the frequency-time plot

and the findings of neurologists. This demonstrates that our method can detect epileptic
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seizure well on this data.

To understand how many spectral PCs should be analyzed, we plotted the variance proportion

plot (Figure 3.10), which shows that the first two components explain over 90% of the total

variance. Thus, analyzing the first three principal component is adequate for this particular

dataset.

We also conduct analysis using the other comparison methods. Figure 3.11 shows the results

using Contemperaneous Method and it did not detect the pre-ictal change points using the

first two components. In Figure 3.12 it can be seen that the Structural Break Method can

only detect a change point at the end of the series and the Sparsified Binary Segmentation

cannot detect the pre-ictal change point either.

Figure 3.9: The time-frequency plot of the first three spectral PCs. The x-axis denotes the
time; the y-axis denoted the frequency from 0 to 50 Hz.
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Figure 3.10: The estimated change point using the first, second or third spectral PC. The
red dotted lines denote the locations of estimated change points. Bottom right: The variance
explained by the first component only and first and second components together.

Figure 3.11: The estimated change point using the first, second or third component of
Contemperaneous Method. The red dotted lines denote the location of estimated change
points.
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Figure 3.12: The mean EEG values across all the channels and estimated change point using
Structural Break Method and Sparsified Binary Segmentation (Downsampling is performed
by keeping only every 50th sample to apply the Structural Break Method). The red dotted
lines denote the location of estimated change points.

3.4.2 Stock Data

We also applied our Spec PC-CP method to the log returns of the daily closing values of 9

representative S&P 100 stocks which has been analyzed in previous work (Barigozzi et al.,

2018). The stock data was observed between 4 January 2000 and 10 August 2016 from Yahoo

finance. The total length is 4,177 days. We analyzed the following 9 stocks: AXP (American

Express), BAC (Bank of America), BK (The Bank of New York Mellon), C (Citigroup), COF

(Capital One Financial), GS (Goldman Sachs), JPM (JPMorgan), MS (Morgan Stanley),

WFC (Wells Fargo). Figure 3.13 shows the stock prices of Bank of America and JP Morgan.
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Figure 3.13: Daily log return values of the daily closing values of Bank of America and
JPMorgan between January 2000 and August 2016.

We used the first two spectral principal components for change point detection. Figure 3.14

gives the frequency-time plots of two stocks and the first two spectral PCs. Changes appear

in multiple frequency bands in this case. The detected change points are shown in Figure

3.15. Most of the change points are around events that might have impact on the financial

market. For example, the financial crisis around 2008, the Greek and EU sovereign debt crisis

in 2011 and 2015. Both the first and second spectral principal components are able to detect

the change points in a neighbourhood of the above events. These results demonstrates that

our method also work well for stock data. Figure 3.16 shows the results using the comparison

methods. The Contemperaneous Method has comparable estimates while the other two

methods fail to detect events such as the financial crisis in 2008 and the debt crisis in 2015.
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Figure 3.14: Time-frequency plots. Top: Bank of America and JP Morgan. Bottom: The
first and second spectral PCs. The x-axis denotes the time; the y-axis denotes the frequency
from 0 to 50 Hz.

42



Figure 3.15: Top: The daily log returns of Bank of America and JP Morgan. Bottom: The
first and second spectral PCs estimated from all the 9 stocks in dataset. The dotted lines
denote the locations of estimated change points

43



Figure 3.16: Top: The estimated change point using the first or second component of
Contemperaneous Method. Bottom: The estimated change point using Structural Break
Method and Sparsified Binary Segmentation. The red dotted lines denote the location of
estimated change points.
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Chapter 4

Time-varying `0 optimization for

Spike Inference from Multi-Trial

Calcium Recordings

4.1 Introduction

The problems presented in Chapter 3 are concerned with the changes of multivariate time

series in the spectral domain. In this chapter, we will focus on a deconvolution problem in

imaging analysis. Seemingly unrelated to change point detection, the deconvolution problem

in estimating the times of action potentials from calcium fluorescence traces can be treated

as a special change point problem due to the almost instantaneous rise and slow decay of a

calcium transient in the presence of a neural spike. We first provide some background about

using calcium recordings for neural activities.

In the past few years, calcium imaging has been increasingly adopted in neuroscience research

since it allows simultaneous measurement of the activity of a large population of neurons
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at the single-neuron resolution over weeks using optical imaging of living animals. For

example, we recently conducted a longitudinal investigation of the neural ensemble dynamics

of contextual discrimination by recording mice’s calcium imaging in the hippocampus for about

60 days (Johnston et al., 2020) using appropriate genetically encoded calcium indicators

(Tian et al., 2009) and miniature fluorescence miscroscopes (Ghosh et al., 2011). The

technical advancements bring great flexibility to neuroscience research; they also create

significant challenges to every aspect of data analysis - from storing the large amount of

video recordings to downstream statistical modeling and inference (Pnevmatikakis, 2019). In

longitudinal recordings of freely behaving animals, after motion correction and registration

of detected neurons across multiple sessions (Giovannucci et al., 2019), fluorescence traces

of individual neurons can be extracted, for example using independent component analysis

(Mukamel et al., 2009) or nonnegative matrix factorization methods (Maruyama et al., 2014;

Pnevmatikakis et al., 2016; Zhou et al., 2018). Strategies to reduce false positive rates of

neuron detection have also been proposed, such as our recent work on imposing spatial

constraints on footprints of neurons (Johnston et al., 2020). The extracted fluorescence

traces of individual neurons allow for the statistical analysis of complex neural interactions at

the single cell level. Fluorescence traces are often used for visualization, clustering neurons

based on similar neural activity profiles, comparing neural activity levels between various

experimental conditions, and studying neural encoding and decoding.

However, calcium fluorescence data provide a noisy proxy, rather than direct observations of

neural activity. For many important questions, such as those involving the analysis of the

precise timing of neural activity in response to stimuli, it is essential to estimate the underlying

spike train from a noisy fluorescence trace. Several approaches have been developed including

linear deconvolution (Yaksi and Friedrich, 2006) or nonnegative convolutions (Vogelstein et al.,

2010). Fully Bayesian methods have also been developed to obtain posterior distributions of

spike trains, thus allowing uncertainty quantification of spikes’ estimates (Pnevmatikakis et al.,

2013). Theis et al. (2016) proposed a supervised learning approach based on a probabilistic
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relationship between fluorescence and spikes. This algorithm is trained on data where spike

times are known. Research has shown that nonnegative deconvolution outperforms supervised

algorithms and is more robust to the shape of calcium fluorescence responses (Pachitariu et al.,

2018). One limitation of these methods is that these spike detection methods analyze only one

trial at time; thus, shared information across trials is largely ignored. In a longitudinal study,

neural activities are measured in multiple trials or sessions. In these settings, aggregating

information across trials could increase the accuracy of spike detection.

There has been limited work on how to utilize the information from multiple trials to improve

accuracy in spike detection. Among the few multi-trial methods we identified, Picardo

et al. (2016) assumed that repeated trials share the same burst time but have trial-specific

magnitude, baseline fluorescence, and noise level. Conceptually, integrating multiple trials

should be beneficial if the trial-to-trial variation is mainly due to randomness. In reality,

however, as pointed out in Deneux et al. (2016), the gain by naively combining trials may

be limited - it is likely to bring improvement for some trials but might perform worse in

others when the neural activity in some trials does not follow the marginal pattern across all

trials. During a learning process or when adjusting to a new environment, neurons constantly

reorganize and show plasticity, which leads to varying neural dynamics across trials.

In this paper, we develop a robust multi-trial spike inference method to address the challenges

from longitudinal calcium imaging data. Our approach both integrates the commonality and

accounts for evolving neural dynamics across trials. Efficiency is achieved by aggregating

information from temporally adjacent trials whereas robustness is guaranteed by incorporating

a time-varying firing rate function into a dynamic `0 penalization framework, rather than

forcing shared parameters across trials.
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4.2 Methods

In this section, we first propose a time-varying `0 penalized framework to analyze multi-trial

calcium trace data. We then present details on how to implement it by alternating a firing

rate estimation step and a spike detection step.

4.2.1 Multi-Trial time-varying `0 penalized auto-regressive model

(MTV-PAR)

Let yr(t) be the fluorescence recorded at time point t of trial r, where t = 1, ...T , r = 1, · · · , R.

In practice, multiple pre-processing steps, including normalization, (Vogelstein et al., 2010),

are typically implemented to obtain yr(t). The calcium fluorescence trace yt(t), t = 1, · · · , T

is often modeled using the following first-order auto-regressive model

yr(t) = cr(t) + εr(t), εr(t) ∼ N(0, σ2
r),

cr(t) = γrcr(t− 1) + sr(t), s.b.t. sr(t) ≥ 0

(4.1)

where cr(t) and εr(t) denote the underlying calcium concentration and noise at time t in the

rth trial, respectively; 0 < γr(t) < 1 is the decay parameter for a calcium transient, which

depends on multiple factors such as sampling frame, cell types, and the kinetics of genetically

encoded indicators. In this model, sr(t) denotes the change in calcium concentration between

time t− 1 and time t with sr(t) > 0 indicates a spike occurs at time t and 0 means no spike.

The main goal of spike detection to locate the time points with a positive sr(t).

Here, we propose to regularize the inference on spike detection by introducing a time-varying

penalty function λr(t) on the number of spikes, as the spikes tend to be sparse but not evenly
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distributed over time:

min
cr(1),...,cr(T )

{
1

2

T∑
t=1

(yr(t)− cr(t))2 +
T∑
t=2

λr(t)1sr(t)>0

}
. (4.2)

We further assume that λr(t) is a decreasing function of the instantaneous firing rate fr(t),

which is assumed to be smooth over time t within trials and change slowly over trials r.

Because the parameters in the AR(1) model are trial-specific but the firing rate functions

across trials are assumed to change slowly to capture the evolving neural dynamics, efficiency

and robustness are well balanced. In addition, our modeling approach allows the simultaneous

estimation of spike trains and firing rate functions.

In the rest of this subsection, we present an iterative approach that (1) estimates the firing

rate function, given the spike trains derived in the previous iterations, by using a local

nonparametric method; (2) detects spike trains, given the current estimate of the firing rate

function, by using a time-varying `0 penalization.

4.2.2 Firing rate estimation and time-varying penalty

Estimating the firing rate function is a crucial task in the analysis of spike train data

(Cunningham et al., 2009). One commonly used descriptive approach involves building the

peristimulus time histogram (PSTH) where the spike counts are averaged from multiple trials

within each time bin (Gerstein and Kiang, 1960). Kernel methods are often applied to achieve

smoothness (Cunningham et al., 2008). Bayesian methods have also been considered, e.g. by

proposing Gaussian processes (Cunningham et al., 2008; Shahbaba et al., 2015) and Bayesian

Adaptive Regression Splines (Behseta and Kass, 2005; DiMatteo et al., 2001; Kass et al.,

2003, 2005; Olson et al., 2000).

The PSTH approach and the other smoothing methods assume that the underlying firing rate
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function does not change over trials. The estimated firing rates are then compared between

different groups to capture the association between firing rate and animal behavior (Jog

et al., 1999; Wirth et al., 2003; Wise and Murray, 1999). However, recent evidence suggests

to move beyond the independent and identically distributed trial assumption and regard

both neural and behavioral dynamics as smooth and continuous (Huk et al., 2018; Ombao

et al., 2018). Thus, it is essential to model the between-trial dynamics. To account for the

between-trial dynamics, some authors have proposed a state-space framework (Czanner et al.,

2008; Paninski et al., 2010). In the state-space framework, the spike train is characterized by

a point process model (Brown, 2005; Brown et al., 2003; Daley and Vere-Jones, 2007; Kass

et al., 2005) for the underlying fire rate. In this paper, to make it feasible to jointly estimate

the spike trains and the firing rate function from the observed multi-trial fluorescence data,

we consider instead a computationally less demanding two-dimensional Gaussian-boxcar

kernel smoothing function G(r, t), which is formulated as follows

G(r, t) =
1√
2πσ

exp

(
− t2

2σ2

)
I(|r| < B/2) (4.3)

where σ denotes the within-trial kernel bandwidth in the Gaussian kernel, I(·) is the indicator

function, and B is a bandwidth for the between-trial sliding windows in the boxcar kernel.

Thus, our estimate of fr(t) is given by

f̂r(t) ∝
∑
r′,t′

G(r − r′, t− t′)pr′(t′),

where pr′(t
′) is the estimated number of spikes per second in a small time bin centered at

time t′ in trial r′.

For PSTH based on spike train data, common choices of the Gaussian bandwidth are around

50-150 ms (Cunningham et al., 2009). When choosing the optimal bandwidth to smooth

a spike train estimated from calcium fluorescnce trace data, one should also consider the
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fluorescence transient kinetics. Ali and Kwan (2019) reviewed the kinetics of calcium transients

with several fluorescent indicators. For example, they reported that GCaMP6f has a rise time

of 42 ms and decay time of 142 ms while GCaMP6s has a rise time of 179 ms and decay time

of 550 ms; a time-bin of 200 ms is suggested in one of their analyses. In our analysis, σ is

chosen between 200ms and 400ms. For the box-car bandwidth to allow borrowing information

across trials, we use a pre-selected window size B, which is mainly determined by to the

number of available trials. As discussed in the Discussion section, data driven methods, such

as the one used in (Fiecas and Ombao, 2016; Ombao et al., 2018), will be considered in future

work.

In spike detection, sparsity has been enforced via penalization or introducing appropriate

prior distributions. Existing approaches usually adopt a tuning parameter uniformly for

the whole time series of a fluorescence trace. Within a trial, the firing rate right after each

stimulus are expected to be higher than baseline. Thus, using a constant penalty may not be

optimal. Our proposed non-constant penalization is inspired by prior work in the literature.

For example, time-varying penalization was used for analyzing multivariate time series data

(Fan et al., 2013; Yu et al., 2017). Zbonakova et al. (2016) studied the dynamics of the

penalty term in a Lasso framework for the analysis of interdependences in the stock markets.

Monti et al. (2017) used varying regularization for different edges in a Gaussian graphical

model to study brain connectivity in fMRI data.

Here, we expand on those approaches and consider a decreasing function of the firing rate

function for the time-varying penalty, motivated by the fact that spikes are expected to be

less frequent in regions with low firing rates than in regions with high firing rates. Ideally, the

penalty should be small in the locations with higher firing rates. Hence, we use a negative

exponential function (Tang et al., 2010) to achieve adaptive regularization. Specifically, the
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time-varying function is chosen as

λr(t) ∝ e−af̂r(t)

where f̂r(t) is the estimated firing rate (See Algorithm 2). Here the value a controls how much

the penalty function should depend on the firing rate function. In particular, a = 0 reverts to

a constant penalty. To avoid extremely large or small penalties, we scale the estimated firing

rate function of each trial by dividing by its maximum value, so that it ranges between 0

and 1. This implies that the default value a = 1 in our analysis leads to mildly time-varying

penalties - within a trial, the penalty at the highest firing rate is about 37% of the penalty at

a firing rate of 0. In addition, to facilitate comparison with the case of a constant penalty,

the following formula is used in each trial to scale the penalty function λr(t) to have mean λ,

λr(t) = λT ×
exp

{
−a f̂r(t)

max(f̂r(t))

}
∑T

t′=1 exp
{
−a f̂r(t′)

max(f̂r(t′))

} . (4.4)

4.2.3 Time-varying penalized `0 AR(1) model

In our proposed multi-trial time-varying `0 penalized auto-regressive model (MTV-PAR),

a calcium fluorescence trace at the rth trial yr(t), t = 1, · · · , T , is modeled by a first-order

auto-regressive model, as given in Equation (4.1). As previously stated, cr(t) denotes the

underlying calcium concentration and a positive value of sr(t) implies that a spike occurs at

time t.

Because spikes tend to be sparse, ideally, one should penalize the number of spikes by

introducing an `0 penalty. However, `0 penalization is computationally intractable; therefore,

existing methods often impose an `1 penalization (Friedrich and Paninski, 2016; Friedrich

et al., 2017; Vogelstein et al., 2010). Recently, Jewell and Witten (2018) found that, for
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spike detection, the use of an `0 penalty brings substantial improvements over an `1 penalty.

They also showed that relaxing the nonnegative constraint of sr(t) has a negligible effect on

the results but the corresponding `0 optimization problem is equivalent to a change point

detection problem whose solution can be obtained efficiently using a dynamic programming

algorithm. Use a similar strategy, we prove that the following time-varying penalization

problem can also be solved by a dynamic programming algorithm:

min
cr(1),...,cr(T )

{
1

2

T∑
t=1

(yr(t)− cr(t))2 +
T∑
t=2

λr(t)1sr(t) 6=0

}
. (4.5)

Specifically, we find that the time-varying `0 optimization problem is equivalent to the

following change point problem whose solution can be efficiently identified using a dynamic

programming algorithm. For the ease of presentation, we drop the trial index r and focus on

the fluorescence trace of a cell at a given trial. The equivalent change point problem can be

shown as:

min
c(1),...,c(T )

{
1

2

T∑
t=1

(y(t)− c(t))2 +
T∑
t=2

λ(t)1(c(t)−γc(t−1)6=0)

}

⇔ min
0=τ0<τ1<...<τk<τk+1=T,k

c(1),...,c(T )


k∑
j=0

1

2

τj+1∑
t=τj+1

(y(t)− c(t))2 +
T∑
t=2

λ(t)1c(t)−γc(t−1)6=0


⇔ min

0=τ0<τ1<...<τk<τk+1=T,k
c(1),...,c(T )


k∑
j=0

1

2

τj+1∑
t=τj+1

(y(t)− c(t))2 +
k∑
j=0

λ(τj)

− λ(0)

⇔ min
0=τ0<τ1<...<τk<τk+1=T,k


k∑
j=0

1

2

∑
t=τj+1...τj+1

(c(t)=γc(t−1))

(y(t)− c(t))2 +
k∑
j=0

λ(τj)


⇔ min

0=τ0<τ1<...<τk<τk+1=T,k

{
k∑
j=0

[
D
(
y(τj+1):τj+1

)
+ λ(τj)

]}
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where τ1, ...τk are k change points, i.e., the points satisfying c(t)− γc(t− 1) 6= 0 and

D(ya:b) = min
c(a),c(t)=γc(t−1)

t=a+1,...,b

{
1

2

b∑
t=a

(y(t)− c(t))2
}
, (4.6)

which has the following closed-form solution:

D(ya:b) =
1

2

b∑
t=a

(
y(t)− γt−a

∑b
t=a y(t)γt−a∑b
t=a γ

2(t−a)

)2

. (4.7)

Note that the parameter γ, which measures the speed at which the calcium concentration

decays, is not estimated. The value of γ is usually close to 1 (Vogelstein et al., 2010; Yaksi

and Friedrich, 2006), as a somatic calcium transient caused by an action potential is often

characterized by an almost instantaneous rise but a slow decay. For computational feasibility,

rather than estimating γ iteratively, similar to (Friedrich et al., 2017; Pnevmatikakis et al.,

2016), we estimate it using the auto-correlation at lag 1.

Finally, as shown below, the optimization problem (4.5) can be simplified as follows:

min
0=τ0<τ1<···<τk<τk+1=t,k

{
k∑
j=0

[
D
(
y(τj+1):τj+1

)
+ λ(τj)

]}

⇔ min
0=τ0<τ1<···<τk<τk+1=t,k

{
k−1∑
j=0

[
D
(
y(τj+1):τj+1

)
+ λ(τj)

]
+D

(
y(τk+1):τk+1

)
+ λ(τk)

}

⇔ min
0<τk<τk+1=t

{ min
0=τ0<τ1<···<τk′<τk′+1=τk,k

′

{
k′∑
j=0

[
D
(
y(τj+1):τj+1

)
+ λ(τj)

]}

+D
(
y(τk+1):τk+1

)
+ λ(τk)}

⇔ min
0≤τ<t

{
F (τ) +D

(
y(τ+1):t

)
+ λ(τ)

}
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Therefore, we can solve the problem by computing F (t) recursively:

F (t) = min
0≤τ<t

{
F (τ) +D

(
y(τ+1):t

)
+ λ(τ)

}
, for t = 1, 2, · · · , T. (4.8)

The resulting algorithm has a time complexity O(n2). This optimization problem can be

solved in O(n) time (Algorithm 4) with a dynamic programming algorithm (Auger and

Lawrence, 1989; Jackson et al., 2005; Jewell and Witten, 2018; Killick et al., 2012) .

Algorithm 4 Dynamic programming algorithm to detect spikes with a time-varying penal-
ization function

1: Input: Time-varying penalty function λ(t), single-trial fluorescence y(t) with T time
points.

2: Initialize: F (0) = −λ, spikeset = ∅, E1 = {0}
3: for t = 1, 2, ...T do
4: Calculate F (t) = min

τ∈Et

{
F (τ) +D

(
y(τ+1):t

)
+ λ(τ)

}
5: Find t∗ = argmin

τ∈Es
{F (τ) +D

(
y(τ+1):t

)
+ λ(τ)}

6: Let Et+1 =
{
τ ∈ {Et ∪ t} : F (τ) +D

(
y(τ+1):t

)
< F (t)

}
7: if t∗ /∈ spikeset then
8: Add t∗ to spikeset
9: end if

10: end for
11: Return Spikeset

4.2.4 Algorithms

Thus far, we have presented our solutions to two problems separately. The first problem is

to use multi-trial spike data to estimate the firing rate function fr(t) for r = 1, · · · , R and

t = 1, · · · , T using a Gaussian-boxcar smoothing method. The second problem is to detect

spikes from a single calcium fluorescence trace using a time-varying `0 penalized approach

under the assumption that the time-varying penalty function λr(t) is already known. In

practice, neither firing rate functions nor spike locations are known. We therefore propose

an Expectation-Maximization-type algorithm to jointly estimate firing rate and detect spike
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locations. As shown in Algorithm 5, we alternate between the spike detection and firing rate

estimation steps until the spike indicator function does not change anymore.

Algorithm 5 Simultaneous spike detection and firing rate estimation

1: Input: Multi-trial fluorescence data y(t)R×T with R trials and T time points. Penalty
term λ.

2: Initialize: Penalty function λr(t) = λ.
3: Set the binary spike indicator x(r, t)R×T = 0.
4: while the indicator matrix x(r, t)R×T changes do
5: for r = 1, 2, ...R do
6: Apply Algorithm 4 to detect spikes and let spikeset denote the times at which

spikes were detected.
7: Set x(r, spikeset) = 1.
8: end for
9: Estimate the firing rate f̂r(t), for r = 1, · · · , R and t = 1, · · · , T using Gaussian-

Sliding-Window kernel smoothing.
10: Calculate the weight function

wr(t) = e
−a f̂r(t)

max(f̂r(t))

11: Update the time-varying penalty function λr(t) = λ ∗ T ∗ wr(t)/
∑

t′ wr(t
′)

12: end while

4.3 Simulation

4.3.1 Metrics for quantifying accuracy

We conducted a set of simulation studies to evaluate the performance of our MTV-PAR

method. Among the many competing methods, we choose the `0 approach in Jewell and

Witten (2018) because its performance has been shown better than competing methods

using both simulated and benchmark data. When comparing estimated spike trains with the

ground truth, we use the Victor-Purpura (VP) distance (Victor and Purpura, 1996, 1997),

which has been commonly used for comparing spike trains. It is defined as the minimum

total cost required to transform one spike train into another using the following three basic
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operations:

• Insert a spike into a spike train. (Cost = 1)

• Delete a spike. (Cost = 1)

• Shift a spike by an interval ∆t. (Cost = q∆t) A large q makes the distance more

sensitive to fine timing differences. We use the default value q = 1.

Because MTV-PAR estimates the firing rate function together with the spikes, we also evaluate

its performance on firing rate estimation. The approach in Jewell and Witten (2018) does

not estimate firing rates; hence, for a fair comparison, we apply the same Gaussian-boxcar

kernel smoothing in (4.3) to the spikes estimated using Jewell and Witten (2018) in order to

estimate the firing rates. The accuracy of firing rate estimation is calibrated by the `2 norm

(Adams et al., 2009) of the difference between an estimated firing rate function and the true

function:

‖f(t)− f̂(t)‖2 =

(
1∫

m(t)dt

∫
|f(t)− f̂(t)|2m(t)dt

)1/2

where m(t) is the weight at t and its default value is a constant.

4.3.2 Simulation of spike trains from inhomogeneous Poisson pro-

cesses

In this simulation setting, the trials are treated as repeated trials. In other words, the trials

share the same underlying firing rate function and each trial is an independent realization

of an inhomogeneous Poisson process. Several forms of firing rate functions have been

considered in previous work. For example, Behseta and Kass (2005); Kass et al. (2003)

assumed bell-shaped firing rate functions. Pachitariu et al. (2018) used a piecewise constant
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stimulus rate. Firing rate functions with multiple peaks from exponential stimuli functions

have also been considered (Reynaud-Bouret et al., 2014). In our simulation, we chose the

following bi-modal firing rate function

f(t) = 0.01 + 0.19 ∗
∑
t0

exp(−(t− t0)2/d2) (t = 1, 2, ...1000) (4.9)

where d = 150 and the stimuli peaks are at t0 = 300 and 700. Thus, f(t) reaches its maximum

value 0.2 (equivalent to 10 spikes per second) at time 300 and 700.

To generate spike trains for multiple trials under an inhomogeneous Poisson process with the

firing rate function in 4.9, we followed the idea of Adams et al. (2009) (Algorithm 6). In each

trial, the spikes were first randomly drawn from a homogeneous Poisson process. A thinning

process was then applied to create a realization from the desired inhomogeneous Poisson

process. After obtaining the simulated spike trains, we generated calcium fluorescence traces

Algorithm 6 Simulate Spike Trains from an Inhomogeneous Poisson Process (Modified from
Algorithm 1 of Adams et al. (2009))

1: Input Length of data n, upper bound of rate intensity f ∗, firing rate function f(t)
2: Draw the number of spikes: S ∼ Poisson(nf ∗)
3: Uniformly distribute the spikes: ES = {si}Si=1 ∼ Uniform (n)
4: for i = 1, 2, ...S do
5: if uniform(0, 1) ≥ σ (f(si)) then
6: exclude si from ES
7: end if
8: end for
9: Return the set of spikes ES

using the auto-regressive model (4.1). The following parameters were used in the simulations:

T = 1000, γ = 0.96, σ = 0.15 and R = 50 trials in total. According to Vogelstein et al.

(2010), the parameters above correspond to a sampling rate of 50 Hz and a length of 20

seconds per trial. For each simulation setting, 100 data sets were generated.

We implemented our MTV-PAR using Algorithm 2. When estimating λ(t), we chose the

Gaussian kernel bandwidth equal to 200 ms. Because the trials are assumed to have the
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same underlying firing rate function, B=50 is used, which is equivalent to averaging the spike

counts across trials to estimate the firing rate f(t). As shown in the top panel of Figure

4.1, the firing rate functions estimated from MTV-PAR are closer to the true underlying

function. Thus, adopting the proposed time-varying penalty led to an improvement in both

spike detection (measured by mean VP distance, the lower panel of Figure 4.1) and firing rate

estimation (measured by the `2 norm, the upper panel of Figure 4.1) across all the λ values

considered. For the optimal λ based on VP, the reductions brought by the time-varying

penalty in VP and `2 norm are 17.3% and 76.3%, respectively.

We also simulated data with a larger noise level (σ = 0.3), longer series (T = 2, 000) and

higher decay rate (γ = 0.98). In all scenarios, we observed improved accuracy from using the

proposed MTV-PAR.

Figure 4.1: Top: firing rate estimates using MTV-PAR (time-varying) and constant penalty.
Bottom: VP distance of spike trains and `2 norm of firing rates between the truth and
estimators.
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Figure 4.2: Top: firing rate estimates using MTV-PAR (time-varying) and constant penalty.
Bottom: VP distance of spike trains and `2 norm of firing rates between the truth and
estimators. (Series length n = 2, 000)
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Figure 4.3: Top: firing rate estimates using MTV-PAR (time-varying) and constant penalty.
Bottom: VP distance of spike trains and `2 norm of firing rates between the truth and
estimators. (Standard deviation of noise: 0.3)
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Figure 4.4: Top: firing rate estimates using MTV-PAR (time-varying) and constant penalty.
Bottom: VP distance of spike trains and `2 norm of firing rates between the truth and
estimators. (Decay rate: 0.98)

4.3.3 Simulation under a dynamic firing rate function

We also simulated data under dynamic firing rate functions across trials. Figure 4.5 (the

upper left panel) shows a dynamic firing rate function with two peaks within each trial; across

trials, the peak values first increase then decrease. The two-dimensional firing rate function

at time point t and trial r is as follows:

fr(t) = 0.01 + 0.19

(
exp

{
−(t− 300)2

1502

}
+ exp

{
−(t− 700)2

1502

})
∗ exp

{
−(r −R/2)2

1000

}
(4.10)

where t = 1, 2, ..., T and r = 1, 2, ..., R.

Figure 4.5 summarizes the simulation results with T = 1, 000, γ = 0.96, σ = 0.15 and R = 50.
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The sampling rate is 50 Hz and the length is 20 seconds per trial. The maximum of the firing

rate is 0.2 (equivalent to 10 spikes per second). The results are based on 100 simulations. In

firing rate estimation, Gaussian kernel smoothing is applied with a kernel bandwidth of 200

ms within trials and a window length of 10 across trials. Similar to the simulation in Section

3.2, MTV-PAR performs much better than using a constant penalty in estimating spikes

and firing rate. Specifically, at the optimal λ (based on minimal VP distance), the reduction

brought by MTV-PAR in VP distance for spike detection is 11.5% and the reduction of `2

error of firing rate estimation is 42.1%.

Figure 4.5: Top Left: True firing rates; Top Middle: Estimated firing rates using MTV-PAR;
Top Right: Estimated firing rates using constant penalty. Bottom: VP distance of spike
trains and L2 norm of firing rates between the truth and estimators.
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Figure 4.6: Top: firing rate estimates using MTV-PAR (time-varying) and constant penalty.
Bottom: VP distance of spike trains and `2 norm of firing rates between the truth and
estimators. (Series length n = 2, 000)

Figure 4.7: Top: firing rate estimates using MTV-PAR (time-varying) and constant penalty.
Bottom: VP distance of spike trains and `2 norm of firing rates between the truth and
estimators. (Standard deviation of noise: 0.3)
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Figure 4.8: Top: firing rate estimates using MTV-PAR (time-varying) and constant penalty.
Bottom: VP distance of spike trains and `2 norm of firing rates between the truth and
estimators. (Decay rate: 0.98)

4.4 Application to Calcium Imaging Data

We now pursue the scientific investigations on the neural activities in two longitudinal mice

studies in which both calcium imaging data and behavioral data were recorded. In this

first data set, calcium imaging data were collected within a few days after the participating

mice had been trained for a discrimination task; thus, it is reasonable to treat trials with

same behavior outcome as repeated trials. As a comparison, in the second study, calcium

recording started in the first learning trial and lasted for a few weeks; therefore, neural

dynamics are expected as a result of the learning process and neural plasticity. For this

reason, incorporating neuronal dynamics in firing rate estimation is likely to improve spike

detection and firing rate estimation.

4.4.1 Mouse task data I

The activity of neurons (labelled with GCaMP6s) from the mouse’s anterior lateral motor

cortex (ALM) was recorded with two-photon calcium imaging during a head-fixed whisker-

based discrimination task (Li et al., 2015). In the experiment, mice were supposed to

discriminate the pole locations using their whiskers and report the perceived pole position by
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licking. Each trial is composed of three epochs: sample epoch (mice presented with a vertical

pole), delay epoch (the pole was removed), response epoch (mice cued to give a response). If

a mouse licked the correct lick port, it was rewarded with liquid.

The data we present here is from one mouse with 73 trials from multiple days. Each trial

contained more than 100 data points at 15 Hz. The fluorescence data were obtained after

typical pre-processing procedures such as correction for neuropil contamination and ∆F/F0

transformation where F0 is the baseline averaged fluorescence within a 0.5s period right

before the start of each trial. There were four possible behavioral outcomes in the experiment:

correct/incorrect lick left/right. Because most of the trials were either “correct lick left” or

“correct lick right”, we combined the two incorrect groups as a single group. Figure 4.9 shows

the calcium fluorescence traces of a pyramidal tract neuron in 73 trials, including 31 trials of

“correct lick left”, 21 trials of “correct lick right”, and 21 trials of “incorrect lick” .

One interesting question is whether the neuron responded differently for different outcomes.

Therefore, we conducted a stratified analysis for each outcome. In the firing rate estimation,

we use a Gaussian kernel smoothing with bandwidth 200 ms within trials. Since the mouse

has been well trained before calcium imaging recording, firing rates across trials under the

same outcome group are relatively stable, which was confirmed by available 2D visualization

(data not shown). Thus, it is sensible to combine all the trials within an outcome type when

estimating firing rate.

As indicated in Figure 4.9, in “correct lick left” trials, the neuron fired right after the cue time

(when the mouse was cued to make decision); however, there was almost no neural activity

under the other two outcome groups. The estimated firing rate function also confirmed this

difference. It is known that the ALM brain region of mice is involved in planning directed

licking (Guo et al., 2014). The estimated spikes and firing rate functions provide convincing

evidences that this neuron is likely to show neural selectivity and play a critical role in the

cognitive process of making the correct decision of licking the left pole.
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Figure 4.9: An example cell from the water lick experiment (Li et al., 2015). Top Left: The
calcium fluorescence trace under correctly lick left outcome (black dots: estimated spikes).
Top Right: The calcium fluorescence trace under correctly lick right outcome. Bottom Left:
The calcium fluorescence trace under incorrect lick outcomes. Bottom Right: Estimated
firing rate functions of under different conditions. Vertical dashed line: the start of response
epoch.

4.4.2 Mouse task data II

The second data set is from our study of long-term contextual discrimination experiment, in

which mice were trained to recognize two contexts via fear conditioning (foot shock) (Johnston

et al., 2020). The research goal was to understand the behavior-associated hippocampal

neural ensemble dynamics at single-cell resolution. Viral injections were administered into

mice brain to introduce a genetically encoded calcium indicator (GCaMP6f). Fluorescence

signals from hippocampal CA1 excitatory neurons were then optically recorded using one

photon head-mounted miniscopes from freely moving mice (Figure 4.10, upper left). There

were four stages in the experiment: habituation (mice freely exploring environment), learning
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(learning to freeze in a stimulus context with foot shock), extinction (no foot shock), and

relearning (stimulus reinstated).

In the mouse we analyzed, the activity of 141 neurons were recorded for several weeks.

We chose the 21 foot shock sessions with the first 11 sessions in the learning stage and

the remaining 10 sessions in the relearning stage. In each shock session, a foot shock was

administered and the fluorescence trace was recorded at 15 Hz for 2 minutes. Figure 4.10

(upper right panel) shows an example neuron. The calcium fluorescence traces from different

trials were temporally aligned by the start of shock time. For the firing rate estimation, we

apply the Gaussian-boxcar kernel smoothing with a bandwidth of 400 ms for within trials and

a window length of 5 for across trials. The estimated spikes (Figure 4.10, upper right) and

firing rate functions (Figure 4.10, lower left) suggest that the neuron is more synchronous to

the stimulus in the relearning stage than in the learning stage, which may reflect the evolving

learning-related neuronal dynamics.

It is worth noting that treating the trials as independent realizations of the same underlying

process will lead to undesired results. As shown in Figure 4.10 (lower right panel), when

assuming the trials as samples from the same underlying distribution, the estimated peak

firing time is misleading. Although the stratified estimates from the two stages showed that

neuronal firing took place sooner and was more frequent in the relearning stage than in the

learning stage in response to the foot shock stimulus, the results based on stratified analysis

were not able to completely characterize the intrinsic evolution of neural firing during the

cognitive learning process.
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Figure 4.10: An example neuron from the foot shock study. Top Left: Calcium imaging
of mouse hippocampus using a miniaturized scope and the four stages of the experimental
design: habituation, learning, extinction, and relearning (Johnston et al., 2020). Top Right:
Calcium fluorescence traces and estimated spikes of a sample neuron. The red and blue
traces were obtained during the learning and relearning stages, respectively. The long dashed
vertical line denotes the time when a foot shock was applied and the short black vertical lines
are the time locations at which spikes were detected. Bottom Left: the estimated firing rate
function using MTV-PAR. Bottom Right: the estimated firing rate function using stratified
analysis. Vertical dashed line: the start time of foot shock.
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Chapter 5

To Deconvolve, or Not to Deconvolve:

Inferences of Neuronal Activities

using Calcium Imaging Data

5.1 Introduction

In Chapter 4, we focus on spike deconvolution problem. In this Chapter we will follow up this

topic and the goal is to assess the performance of using calcium trace and estimated spikes

for common analyses: clustering, PCA and decoding. We start with providing background on

using calcium trace and the comparison to electrophysiology data, which leads us to better

understand calcium trace results and compare with estimated spikes.

With the technical advances in multiple fields (Chen et al., 2013; Dombeck et al., 2010; Ghosh

et al., 2011; Grienberger and Konnerth, 2012; Yang and Yuste, 2017), calcium imaging has

been increasingly adopted as a supplement or substitute to the traditional electrophysiological

methods for measuring neuronal firing activities. Compared to electrophysiological methods,
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imaging methods offer flexibility in a number of ways such as better spatial resolutions, longer

follow up time, ability to study not only awake but also freely moving animals, and the

larger number of neurons that can be simultaneously measured. One trade-off for the greater

flexibility is the requirement of more sophisticated pre-possessing, as the measurement of

neuronal activities from calcium imaging is indirect, and its estimate of calcium concentration

is complicated by several factors such as measurement noises and contamination of signals

from non-neuronal cells Johnston et al. (2020). As a consequence, each calcium trace is

only a proxy of the underlying spiking activities with a reduced signal-to-noise ratio and

temporal resolution. Thus, recent comparisons of electrophysiology and calcium imaging

data are timely to guide us on how to interpret the results obtained from calcium imaging

data. Using matched neuron populations and experimental conditions, Wei et al. (2020)

reported both consistent and divergent results between electrophysiology and calcium data

on temporal dynamics (within each trial), trial-type selectivity, sources of variances, and

population decoding.

Despite the continued improvement in the quality of calcium imaging due to state of the

art optical imaging devices and techniques, sensitive genetically encoded indicators, and

pre-processing methods, extracting the underlying spike activities that would otherwise

be accurately measured by electrophysiology data is still one major challenge in analyzing

calcium imaging data in neuroscience research. The measured fluorescence intensity of

calcium concentration is characterized by a rapid rise but slow decay after the occurrence of

an action potential. As a result, numerous spike deconvolution methods have been proposed,

from the simple thresholding with 2-3 standard deviations away from the calcium trace

baseline to formal and fully Bayesian models (Jewell and Witten, 2018; Pachitariu et al., 2018;

Pnevmatikakis, 2019; Pnevmatikakis et al., 2016; Vogelstein et al., 2010; Yaksi and Friedrich,

2006), including two of our recent work on multi-trial data (Johnston et al., 2020; Shen et al.,

2021). Comparisons between estimated spike data and the true spike data from simulations or

benchmark data usually showed that deconvolution leads to satisfactory results; on the other
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hand, the estimated spikes might be inconsistent across methods, which produces different

estimates of firing rate, number of tuned neurons, and distribution of estimated firing rates

(Evans et al., 2019).

Some research problems, such as investigating temporal coding (Abbott, 1994; Abeles et al.,

1993; Theunissen and Miller, 1995) and the estimation of instantaneous firing rates, requires

the precise timing of action potentials. In addressing many other scientific questions, however,

either calcium traces or estimated spike data can be used. For visualization purposes, both

heat maps of calcium traces and raster plots of estimated spike trains are commonly presented.

Cluster analysis is another example. It has been conducted to group neurons or trials with

similar temporal patterns using spike train data (Adler et al., 2012; Humphries, 2011). Due

to the increased availability of calcium recordings, in recent work, calcium trace data have

also been directly used for clustering (Barbera et al., 2016; Dombeck et al., 2009; Ozden

et al., 2008). Cluster analysis based on imaging data suggest that spatially compact neural

clusters exist in awake mouse motor cortex at not only macrocircuitry but also microcircuitry

levels (Dombeck et al., 2009). These clusters may represent cell assemblies that are stable

over days; their dynamics often represent unique behavioral states and carry useful encoding

information for behaviors (Barbera et al., 2016). When calcium imaging data are recorded,

one can conduct cluster analysis using either calcium traces or the Deconvolved spike data

(Romano et al., 2017). In this situation, one natural question is should one conduct cluster

analysis on calcium traces or the Deconvolved data?

A related analysis is principal component analysis (PCA). Compared to cluster analysis, which

groups observations to homogeneous clusters, PCA aims to extract component (features)

that can keep as much as possible the variation in the original data. In neuroscience, PCA

is frequently performed for dimension reduction and data visualization. Quantifying the

dimensionality defined based on the corresponding eigenvalues may also shed light on the

dynamics of the underlying neural circuits of various tasks and stimuli (Gao et al., 2017). PCA
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analysis can be conducted to both electrically recorded spikes trains and optimally recorded

calcium imaging data (Cunningham and Byron, 2014). One advantage of calcium recording

over electrophysiology recording is that calcium imaging allows a large number of neurons to

be recorded simultaneously. A popular method to compactly visualize the neuronal dynamics

is to plot PCA trajectories over time using the first two or three components (Churchland

et al., 2012; Cunningham and Byron, 2014). PCA is more straightforward for calcium traces,

which are continuous values. Methods aiming to identify components using spike train data

often filtered such as Gaussian kernel (Churchland et al., 2012) and other choices (Paiva et al.,

2010). When the components of the true spike activities are of interest, PCA using calcium

trace data might not be desirable, as a substantial source of the variation might be from the

noises, rather than the signals, in the calcium trace data. In this situation, deconvolution

might be helpful to recover the true underlying components.

Another important analysis in neuroscience is decoding, which refers to finding the mapping

from neural activities to either external stimuli such as presented images and experimental

types or animal behavioral outcomes such as movements, speed, and positions, and decision

making. An interesting question is whether and how information is represented in an ensemble

of neurons. Thus, population decoding methods have been widely adopted to investigate of

the joint activities of a group of neurons using multiple spike trains (Brown et al., 2004). For

example, Yang and Masmanidis (2020) analyzed simultaneously measured spike train data

from two brain regions to compare their population decoding of choices in a two-alternative

choice task. With the increased popularity of using calcium imaging to measure a large

population of neurons, more and more population decoding analyses are conducted using

calcium trace data. In most published work, the calcium trace data were first Deconvolved

to spike train data before they were used to population decoding. A recent study (Wei

et al., 2020) found that, as expected, the decoding accuracy of the Deconvolved spike data

from calcium traces was much lower than the eletrophysiology data; but counter-intuitively,

calcium trace data have higher predictability than their Deconvolved spike train data and
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the less noisy eletrophysiology data. A possible explanation suggested by Wei et al. (2020) is,

due to the slow decay rate of the observed calcium transients, the calcium trace data provides

prediction based on integrating effects rather than instantaneous decoding. This is evidenced

by the improved predictability of the electrophysiology data when a filter of 1 second was

applied. It is unknown whether it is beneficial to conduct deconvolution when “integrating

effects” are taken consideration to make a fair comparison between calcium traces and their

Deconvolved spike trains.

In this paper, our goal is to examine the necessity of spike estimation for calcium trace data

in three widely used methods, which are cluster analysis, PCA analysis, and population

decoding.

5.2 Cluster Analysis

K-means is perhaps the easiest to understand but also the most widely used clustering method.

The idea is to allocate a neuron to the cluster with the nearest centroid. Its improved versions

have also been used in clustering either neurons or trials. For example, the meta k-means,

which is a consensus clustering methods that aggregates clustering results from multiple runs

of k-means, has been developed to increase the clustering stability of neurons (Ozden et al.,

2008). To account for clustering uncertainty when clustering trials, Bezdek (2013); Dunn

(1973) introduced fuzzy k-means, a method that produces probabilities of cluster assignments

to each trial. When comparing the impact of calcium trace and estimated spike data on

cluster analysis, we choose the fuzzy k-means to take the inherent uncertainty in clustering

into consideration.
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5.2.1 Fuzzy k-means

In the standard K-means algorithm, each data point is assigned to one cluster. The fuzzy

k-means algorithm (FKM) was first developed in Dunn (1973) and improved in (Bezdek, 2013;

Bezdek et al., 1984). It assigns each data point a probability of belonging to each cluster

instead. Suppose we have the data Y = {y1, y2, . . . , yN} ⊂ Rp. FKM is based on minimizing

the objective function:

Jf (U,C) =
N∑
i=1

K∑
j=1

ufij ‖yi − cj‖
2

where U is a fuzzy partition of the N data points yi with K cluster centers C = {c1, ...ck} ⊂ Rp.

The numbers uij are the degree of membership of data point i to cluster j (the fuzzy partition)

and f > 1 is the fuzziness factor. For most data, 1.5 ≤ f < 3 gives good results (Bezdek

et al., 1984). In the simulation data used in Fellous et al. (2004), f is chosen as 2 and it

gives robust results. The membership matrix satisfies
K∑
j=1

uij = 1. The fuzzy partition and

the cluster centers were computed iteratively. At each iteration, the membership matrix and

cluster centers were updated as:

uij =
1∑K

k=1

(
dij
dik

) 2
f−1

and

cj =

∑N
i=1 u

f
ijyi∑N

i=1 u
f
ij

where

d2ij = ‖yi − cj‖2

The iteration stopped when the norm of two consecutive membership matrix
∥∥Unew − U old

∥∥2
was smaller than a termination criterion ε.
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5.2.2 Results based on simulated data

We first compare the clustering accuracy based on calcium trace and the Deconvolved spike

data using a simulation study, where the true underlying cluster structure of the neurons are

unknown. The spike train data we analyze here is a subset of the spike trains simulated by

Fellous et al. (2004). Each simulated data set consists of three clusters, which are treated

as three neuron clusters here. The 35 neurons (spike trains) within each cluster share 4-6

spikes with the spike times uniformly distributed between the time interval (0-1 second). The

following three ways are used to add noises at various levels.

• 15% spike events are dropped randomly.

• X extra random spikes are added to each train.

• All the spike times were jittered by a value drawn from a normal distribution with

mean 0 and standard deviation J million second (ms).

We consider the following seven noise levels, from well separated clusters to very “fuzzy”

cluster memberships.

noise level 2 3 4 5 6 7 8

X 2 3 4 8 11 15 20
G 1 3 5 10 15 20 30

Table 5.1: The noise levels in the simulated spike trains from Fellous et al. (2004). X is the
extra number spikes added per spike train; G is the standard deviation when jittering the
spike times. The labels of the noise levels from Fellous et al. (2004) are used.

The raster plots for Figure 5.1 shows a set of spikes trains with low noise (left panel: level

2) and a set with high noise (right panel: level 8), respectively. In Fellous et al. (2004), 30

data sets were generated for each of the seven noise levels to account for variations in data

simulations. For each of the 30 × 7 = 210 data sets, we generate 100 sets of fluorescence

traces, where each fluorescence trace is generated for a given spike train using an AR(1)
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model (Vogelstein et al., 2010). In the AR(1) model, the calcium fluorescence for a neuron at

a single trial y(t), t = 1, · · · , T is modeled using the first-order auto-regressive model

y(t) = c(t) + ε(t), ε(t) ∼ N(0, σ2),

c(t) = γc(t− 1) + s(t),

where c(t) denotes the underlying true calcium concentration, s(t) represents the change in

calcium concentration between time points t − 1 and t with s(t) > 0 indicates a spike at

time t and s(t) = 0 otherwise, γ is the decay rate of calcium transients, and σ2 denote the

variance of the noise in measuring calcium concentration. In our simulations, the parameters

we choose are as follows: the rate of decay γ = 0.96, the magnitude of each spike s(t) = 1 for

any s(t) > 0, and two levels of Gaussian noise σ = 0.1 or σ = 0.3. To estimate spikes from

simulated calcium data, we use the `0 penalized approach of Jewell and Witten (2018) for

each calcium trace.

We perform cluster analysis using the fuzzy k-means (Fellous et al., 2004) with the assumption

of three clusters to all the three types of data, namely, the calcium traces, the estimated

spike trains from calcium traces, and the true spike trains. Their clustering accuracy is

then quantified using two metrics - the rand index (Rand, 1971) and the normalized mutual

information I(A,B) (Danon et al., 2005) between the estimated and true cluster memberships.

Both metrics measure the consistency between two categorical variables, with the maximum

1 indicating perfect agreement. Not surprising, as presented in Figure 5.2, the true spike

data have the best clustering performance at all noise levels. Importantly, estimated spikes

perform better than calcium trace at all noise levels.

In practice, the true number of clusters is unknown. To assess whether the results are sensitive

to the choice of number of clusters, we also calculate the rand indices and mutual information

for four and five clusters (Fig 5.3, 5.4). The results lead to the same conclusion, i.e., estimate

spike data perform uniformly better than calcium trace on clustering.
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Figure 5.1: Rasterplot of a simulated spike data with G = 3 groups (separated by red lines)
and 35 spike trains in each cluster. Left: with noise X = 3 extra spikes and J = 3 ms jitter.
Right: with noise X = 11 extra spikes and J = 20 ms jitter.

Figure 5.2: Clustering results for simulated data over seven noise levels (using three clusters).
Presented are means and 95% confidence intervals over 30 data sets in each simulation setting.
For the true spike data, each data point is averaged over 30 data sets; for data involving
simulated calcium traces, at each noise level, clustering results from the 100 simulations for
each of the 30 data sets are averaged first, and the results of the 30 data sets are then used
to compute means and standard errors. Left: rand index. Right: mutual index.
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Figure 5.3: Clustering results for simulated data over seven noise levels (using four clusters).
Presented are means and 95% confidence intervals over 30 data sets in each simulation setting.
For the true spike data, each data point is averaged over 30 data sets; for data involving
simulated calcium traces, at each noise level, clustering results from the 100 simulations for
each of the 30 data sets are averaged first, and the results of the 30 data sets are then used
to compute means and standard errors. Left: rand index. Right: mutual index.
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Figure 5.4: Clustering results for simulated data over seven noise levels (using five clusters).
Presented are means and 95% confidence intervals over 30 data sets in each simulation setting.
For the true spike data, each data point is averaged over 30 data sets; for data involving
simulated calcium traces, at each noise level, clustering results from the 100 simulations for
each of the 30 data sets are averaged first, and the results of the 30 data sets are then used
to compute means and standard errors. Left: rand index. Right: mutual index.

5.2.3 A delayed response task

Next, we compare calcium traces and estimated spikes on clustering using calcium imaging

data from two mice task studies. This application falls into the situation of no ground truth,

as neither the true number of clusters nor the clustering membership is unknown a priori.

This is a common situation, as benchmark data is not always available. Similar to Pachitariu

et al. (2018), who used concordance of between repeated trials estimation as a metric for

spike detection, we will use rand index to examine the between-trial consistency for estimated

clusters.

In this multi-trial experiment, mice were first trained to discriminate pole location using their

whiskers and reported the perceived pole position by licking (Li et al., 2015). Their neuronal

activities in the left anterolateral motor cortex region were then measured using two-photon

calcium imaging using GCaMP6s. Each trial consisted of three epochs: sample epoch (mice

presented with a vertical pole), delay epoch (the pole was removed), and response epoch
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(mice cued to give a response). Here we clustered the 67 neurons of a mouse that made

31 “correct lick left” trials and 21 “correct lick right” trials. Specifically, for each trial, we

clustered the 67 calcium traces or the estimated spike trains into four clusters using the fuzzy

k-means (Bezdek et al., 1984; Fellous et al., 2004). The rand index between every pair of two

trials was calculated to assess the trial-to-trial consistencies.

Figure 5.5 shows that clusters based on estimated spike data are more consistent between

trials than clusters based on calcium trace data. Similar conclusions are obtained when the

neurons are clustered to three or five clusters (Figure 5.6, 5.7). Because the mouse was

trained before the calcium recording, individual neurons were likely have been tuned and this

type of consistency across trials is expected. Therefore, the higher rand index using spike

data over calcium data might indicate better performance in cluster analysis.

Figure 5.5: Rand index in water lick data of a mouse in one session (using four clusters)
(Left: using calcium trace. Right: using estimated spike data). Each element in the matrix is
the Rand index for the 2 trials of the corresponding row and column. First 31 trials: correct
left trial. Last 21 trials: correct right trial.
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Figure 5.6: Rand index in water lick data of a mouse in one session (using three clusters)
(Left: using calcium trace. Right: using estimated spike data). Each element in the matrix is
the Rand index for the 2 trials of the corresponding row and column. First 31 trials: correct
left trial. Last 21 trials: correct right trial.

Figure 5.7: Rand index in water lick data of a mouse in one session (using five clusters) (Left:
using calcium trace. Right: using estimated spike data). Each element in the matrix is the
Rand index for the 2 trials of the corresponding row and column. First 31 trials: correct left
trial. Last 21 trials: correct right trial.
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5.2.4 A Fear-based contextual discrimination experiment

In one of our previous studies (Johnston et al., 2020), mice were trained to recognize two

contexts via fear conditioning (foot shock). Meanwhile, fluorescent miniature microscopes

(Ghosh et al., 2011) were used to track cell populations in contextual discrimination experi-

ments in mice’s hippocampus using a genetically encoded calcium indicator (GCaMP6f) for

up to 60 days. The whole experiment included four stages: habituation (mice freely exploring

environment), learning (learning to freeze in a stimulus context with foot shock), extinction

(no foot shock), and relearning (stimulus reinstated).

We analyze a mouse whose 141 neurons were measured in 21 trials, with the first 11 trials in

the learning stage and the last 10 trials in the relearning stage. For each trial, we clustered

the neurons into four clusters using the fuzzy k-means (Fellous et al., 2004) using the calcium

traces or deconvolved spike trains. The rand index based on the clustering results were

computed for each pair of trials. The comparison between calcium traces and estimated

spike data showed again that estimated spike trains leads to more trial-to-trial agreement in

neuron clusters (Figure 5.8).

The conclusion is similar when the neurons were clustered to three clusters (Figure 5.9) and

five clusters (Figure 5.10). Due to the lack of ground truth in neuron clusters, cautions should

be taken when relating results to potential misspecifications of cluster numbers. We leave

further investigations to future research.
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Figure 5.8: Rand index in fear conditioning data of a mouse in one shock session (using four
clusters). (Left: using calcium trace. Right: using estimated spike data). Each element in
the matrix is the Rand index for the 2 trials of the corresponding row and column. First 11
sessions: learning session. Last 10 sessions: relearning session.

Figure 5.9: Rand index in fear conditioning data of a mouse in one shock session (using three
clusters). (Left: using calcium trace. Right: using estimated spike data). Each element in
the matrix is the Rand index for the 2 trials of the corresponding row and column. First 11
sessions: learning session. Last 10 sessions: relearning session.
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Figure 5.10: Rand index in fear conditioning data of a mouse in one shock session (using five
clusters). (Left: using calcium trace. Right: using estimated spike data). Each element in
the matrix is the Rand index for the 2 trials of the corresponding row and column. First 11
sessions: learning session. Last 10 sessions: relearning session.

5.3 Principal Component Analysis (PCA)

PCA is one of the most common methods in analyzing large scale neuron data (Chapin and

Nicolelis, 1999; Churchland et al., 2012; Cunningham and Byron, 2014; Harvey et al., 2012;

Kobak et al., 2016). In PCA analysis of neuron data, PCA extracts principal components that

are linear combinations of individual neurons. For example, in Bekolay et al. (2014), PCA

was used to capture major patterns of firing within the neuronal populations in prefrontal

cortex. They looked in to the first two principal components to analyze the firing patterns in

motor cortex by looking at example neurons and the histogram of the loadings of neurons

onto the PCs.

Because the baseline firing rate is usually less than 1 spike/s, spike train data for most

neurons are sparse. Thus, the conventional PCA method is not reliable. One way to handle

sparsity is to consider kernels that are appropriate for sparse data. In the following section

we introduce the Spike train PCA method.
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5.3.1 Spike train PCA

Since spike trains are binary time series and the information is also often represented using

the ordered spike times, the kernel function between two spike trains should applicable to

two sets, rather than two vectors. (Carnell and Richardson, 2005) suggested compare all the

spike times of one spike train to all the spike times of the other spike train, i.e.,

K (si, sj) =

Ni∑
m=1

Nj∑
n=1

κ
(
tim, t

j
n

)
where κ is a symmetric, shift-invariant, and positive definite kernel. In this article, we use

the Gaussian kernel κ(tim, t
j
n) = exp{−(tim − tjn)2/τ}.

The above spike train inner product has been adopted by other researchers (Carnell and

Richardson, 2005; Paiva et al., 2009; Schrauwen and Van Campenhout, 2007). Recall that

the components in the conventional PCA are based on the sample variance-covariance or

correlation matrix, which is computed using centered data. To conduct kernel PCA using

the spike train inner product, one also needs a similar centering process (Paiva et al., 2010),

which can be shown equivalent to conduct the double-centering. Specifically, let P denote the

inner product matrix of the spike trains, where Pij = K(si, sj). Then the double centered

inner product is P̃ is

P̃ = (I − 1N1TN
N

)P(I − 1N1TN
N

)

where 1N is the N × 1 vector with all ones. After obtaining the centered inner product

matrix, eigen decomposition is performed on P̃ to compute the eigenvectors and corresponding

eigenvalues.
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5.3.2 Results based on simulated Data

We generate spike trains using the method described in Paiva et al. (2010) where the spike

trains are 1s long and have mean spike rate 20 spikes per second. The inter-spike interval

was gamma distributed with shape parameter θ = 0.5 and 3 (See Figure 5.11). For each

generated spike train, a calcium fluorescence trace is simulated from an auto-regressive model

(Vogelstein et al., 2010) with decay rate γ = 0.96, the magnitude of each spike s(t) = 1 and

the standard deviation of noise σ = 0.1 and 0.5.

We first compare the estimated components in explaining the variances of the true spike trains

of neurons. The simulation result is averaged over 100 simulated data sets. The cumulative

proportions of explained variances are shown in the upper panel of Figure 5.12. Note that the

curves based on the true spike trains (red) are very similar to those based on the estimated

spike trains (blue) are quite different from those based on the calcium traces (black). The

results are not surprising, as calcium traces are the noisy and integrated measurements of

the true underlying spike activities. The PCA analysis using calcium traces also indicates

that it requires a much large number of components to reach a certain percentage of variance.

For example, when σ = 0.1, it requires less than five components for the true or estimate

spike train but over 15 components for the calcium traces.

A summary metric based on the eigenvalues is the effective dimension of an embedding defined

in Victor and Purpura (1997), which is also noted as the dimensionality (Gao et al., 2017).

The effective dimension index E is defined as E = (
∑
λi)

2∑
λ2i

where λi is the i-th eigenvalue of

the covariance matrix of calcium traces/true spike trains/estimated spike trains between

neurons. The result in the lower panel of Figure 5.12 agrees with the explained variance and

shows that the dimensionality calculated from calcium traces can be quite different from

those the true and estimated spike trains.
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Figure 5.11: The raster plot of 50 simulated spike trains (1 second with rate 20 spikes/second).
Top half: 25 spike trains with shape parameter of inter-spike interval θ = 0.5. Bottom half:
25 spike trains with shape parameter of inter-spike interval θ = 3.
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Figure 5.12: Cumulative variance explained by different methods: true spike trains (red),
estimated spike trains (blue), and calcium traces (black), . Each curve is averaged over
100 simulated data sets. Left: noise of calcium trace σ = 0.1. Right: noise of calcium
trace σ = 0.5. Bottom left: Boxplot of the effective dimensions of calcium trace/true spike
data/estimated spike data, noise of calcium trace σ = 0.1. Each plot contains the result for
100 simulated data sets. Bottom right: effective dimension of the calcium trace/true spike
data/estimated spike data, noise of calcium trace σ = 0.5. Each plot contains the result for
100 simulated data sets.
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5.4 Population Decoding Analysis

Our goal in this section is to investigate whether deconvolution is helpful in population

decoding. We follow a common practice that builds a predictive model using the neural

activities at each time bin to predict an variable of interest (Berens et al., 2012; Meyers, 2013;

Wei et al., 2020).

5.4.1 Data “pre-processing”

As reported in Wei et al. (2020), electrophysiology and estimated spike data are less informative

in population decoding at each time bin. This is somewhat surprising but not totally

unexpected. Two possible explanations are the integration effect of the calcium trace data

(Wei et al., 2020) and the sparsity of spike data in each time window. One support of

these explanations is that the one-second filtered electrophysiology data reached higher peak

decoding accuracy than the original analysis of electrophysiology data with a bin size 67ms.

In fact, temporal filtering is a common practice in population decoding and choosing the

appropriate filtering encourages data integration temporally, which might lead to improved

decoding accuracy Yates et al. (2020). Here we consider two strategies to take neural firing

history into consideration by applying “pre-processing” to the sparse count data. The first

method is to use cumulative counts, which is defined as the total number of spikes up to a

time t. The second method, which is labeled with “spike history”, uses the matrix of the

time series (up to time t) from a neuron population as input in decoding.

5.4.2 Data types

Note that the spike detection framework based on AR(1) model in 4.1 not only produces

estimated timestamps of spike events but also provides estimates of spike magnitudes, denoted
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by s(t). The spike magnitude s(t) was originally motivated by the number of spikes in a small

time bin Vogelstein et al. (2010). Although the interpretation of a positive s(t) is not clear, it

might still provide useful quantitative information related to spike counts and firing rates and

therefore useful for population decoding. Another quantity estimated by the AR(1) model is

the calcium concentration c(t) in the AR(1) model. The estimated c(t) can be considered as

a denoised version of the observed noisy calcium trace. Interestingly, c(t) can also be viewed

as a filtered version of the underlying spike train. As spike train filters are often applied in

various spike train analysis in neuroscience research, it is reasonable to use the estimated c(t)

as a candidate for population decoding. Thus, we will focus on the following four types of

data: the raw calcium traces, the estimated spike trains, the estimated changes s(t), and the

estimated/denoised trace c(t).

5.4.3 Prediction methods

Taken together, the data types and ways of pre-processing create various combinations of

decoding, as shown in Table 5.2. Note that in simulated data the “spike train” category

includes true and estimated spike data whereas in a real study it includes spike train data

from electrophysiology measurements and estimated spike train from calcium trace data.

calcium trace estimated trace c(t) spike train s(t)

original X X X X
cumulative X X

history X X

Table 5.2: Population decoding methods. The “cumulative” and “history” method for trace
data are excluded due to lack of justification.

In decoding with trace and cumulative count, we apply linear support vector machine (SVM)

(Cortes and Vapnik, 1995) with 5-fold cross validation on the training data. To assess the

dependency of results on predictive models, we also used Fisher’s linear discrimant analysis.

Because they give similar results in the scenarios we consider, only results from SVM will
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be reported. In decoding with spike history, the input predictor is a matrix with time and

neuron dimension. Traditional method such as SVM reshapes the matrices into vectors,

causing a loss of structural information. Here we apply a sparse support matrix machine

method (SSMM) (Zheng et al., 2018), which is a regularized binary matrix classifier that

uses a `1 penalty to ensure sparsity and a nuclear norm penalty to encourage low rank of the

coefficient matrix. Given a set of samples {Xi, yi}ni=1 ,Xi ∈ Rp×q is the ith predictor matrix

and yi ∈ {1,−1} is its corresponding label. The proposed SSMM (Zheng et al., 2018) is

based on support vector machine (Cortes and Vapnik, 1995) and it combines a hinge loss

with a new regularization on the regression matrix W. The objective function of SSMM

method is presented as:

arg min
W,b

{
λ‖W‖1 + τ‖W‖∗ +

n∑
i=1

{
1− yi

[
tr
(
WTXi

)
+ b
]}

+

}

where Xi,W ∈ Rp×q. It incorporates the hinge loss, `1 norm ‖W‖1 and nuclear norm

‖W‖∗ on regression matrix W for matrix classification. The `1 norm controls the sparsity

of W and the nuclear norm encourages W to be low-rank. An efficient algorithm to solve

the optimization problem is presented in Zheng et al. (2018), where they smooth the loss

function by using generalized smooth hinge loss with Lipschitz-continuous gradient. The

computational cost is O (n2pq).

For the tuning parameters τ and λ, it has been reported that non-zero values often give

better results than zero (Zheng et al., 2018). We tried different combinations of the two

parameters and compare the decoding accuracy on simulated and real data with all time

points (results omitted).
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5.4.4 Decoding accuracy for the water lick data

We evaluate the usefulness of deconvolution on population coding using a subset of the data

published in Wei et al. (2020). Their primary goal was to compare spike and imaging data

for measuring neuronal activities. They recorded neural activities in anterior lateral motor

cortex using electrophysiology signals and calcium imaging. Although the electrophysiology

and calcium imaging recordings were separate, neuron populations of matched depth were

measured from the same delayed response task. Each 5 second long recording was composed

of three epochs: sample epoch (mice presented with a vertical pole), delay epoch (the pole

was removed), response epoch (mice cued to give a response). The duration of sample and

delay epoch was 2.6 s. In electrophysiology, the sample epoch was 1.3 s while in calcium

imaging was 1.2 s. Here we analyzed the calcium imaging data for 1,493 neurons from 4

mice with adeno-associated virus expressing GCaMP6s and electrophysiology data of 720

neurons from 19 mice. To match the temporal resolution of calcium trace data, the spike train

data from electrophysiology recordings were temporally subsampled. Note that the data we

downloaded from https://doi.org/10.6084/m9.figshare.12786296.v1 has been pre-processed.

We also followed several other strategies used in Wei et al. (2020), such as resampling trials

to cope with the limited number of trials, resampling the same number of neurons when

comparing different data types, using cross validation to choose tuning parameters (60% data

for training and 40% data for testing). The full description of the experiments and data

processing is available from Wei et al. (2020) and further backgrounds about the experimental

design can be found in other articles of the group (Li et al., 2015; Wei et al., 2019).

Figure 5.13 visualizes the accuracy, which is defined as the proportion of correct predictions in

testing data, of the prediction methods in Table 5.2. The top panels replicated the difference

between the decodability of the calcium trace and the electrophysiology recordings in Wei

et al. (2020). Although electrophysiology data showed earlier latency (defined as the time

reaching %70 decoding accuracy), surprisingly, it had lower decoding accuracy than calcium
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trace data, which are a noisy measurement of neural activities. This difference might be due

to the integration effect of the calcium trace data, as a calcium transient is characterized by a

rapid rise but slow decay. This hypothesis is supported by the improved decoding accuracy of

the 1-second filtered electrophysiology data in most time bins. However, the 1-second filtered

electrophysiology data lost the early latency. As a comparison, electrophysiology history,

a new method considered here, outperforms the calcium trace data in all time bins. Thus,

when used appropriately, the less noisy spike train data from electrophysiology recordings do

have higher population decodability.

The lower panel of Figure 5.13 focused on the effects of deconvoluting calcium traces.

Consistent with Wei et al. (2020), the estimated spike data has lower decodability than

both calcium traces and electrophysiology data. The magnitude of changes, i.e., s(t) has a

similar accuracy rate. However, their cumulative and history have much higher accuracy,

with their cumulative outperforming the calcium trace data. It is worthy pointing out that

the estimated calcium concentrations (“estimated calcium trace”), which is a denoised version

of the calcium traces, also demonstrates higher decoding accuracy than the original calcium

traces. These results indicate that the decodability of a neuron population can be improved

by appropriate analysis of the Deconvolved data.
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Figure 5.13: Decoding results in water lick data. Top: decoding accuracy using electro-
physiology and calcium imaging data. Black lines: electrophysiology. Green lines: calcium
trace. vertical dashed lines from left to right: the start time of sample epoch, delay epoch
of calcium imaging data, delay epoch of electrophysiology, and response epoch. Bottom:
decoding accuracy using calcium imaging data and spikes. Green lines: calcium trace. Red
lines: Estimated spikes from calcium trace. Blue lines: Estimated spike magnitude from
calcium trace. Decoding results are averaged over 100 subsamples. In each subsample, 50
neurons are randomly selected and 500 trials are sampled from each neuron. vertical dashed
lines from left to right: the start time of sample epoch, delay epoch and response epoch.
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Chapter 6

Conclusions and Future Directions

In this dissertation, we discuss on change point detection and its applications in neuroscience

research.

In Chapter 3, we proposed the Spec PC-CP (Spectral Principal Component Change Point

detection) method, a new change-point detection approach on multivariate time series. The

approach consists of two stages: using Spectral PCA to obtain a low-dimensional time series

(stage 1) and then applying a binary segmentation algorithm to detect change points (stage 2).

The simulation results show that our method outperforms competing methods in capturing

the lead-lag relationship between time series. We applied the method to the EEG seizure

data. Change points were identified at the beginning and around seizure onset. It suggests

possibility to build early warning systems of seizure and gives more precise diagnosis, as

changes are often not obvious to be observed through visual inspection. We also analyzed the

stock data with daily log returns of nine representative stocks in S&P 100. Change points

were detected around events that have impact on the financial market. It demonstrates

that our method is efficient in analyzing financial data, which could lead to insights in

understanding the fluctuation of financial market.
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There are several potential future directions. First, in offline detection, we detect the changes

that have already occurred. It would be helpful to consider forecasting time series to further

improve our analysis. For example, Fryzlewicz (2005) modeled and forecast financial log-return

series in the Locally Stationary Wavelet (LSW) framework. Other forecasting methods such as

Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM)

also have been adopted in modern time series analysis (Siami-Namini et al., 2018). We could

combine Spectral PCA and forecasting methods to predict future events such as seizure and

financial crisis. Besides, in current detection method, we only got the point estimates of

change points. It lacks the ability to quantify the uncertainty. We could consider Bayesian

methods. For example, Nam et al. (2015) used locally stationary wavelet (LSW) framework

combined with hidden Markov model to quantify the uncertainty of auto-covariance changes.

Moreover, bootstrap can also be used to make inference on change point estimates. However,

naive bootstrap does not take the order and structure of time series into consideration. People

have developed block bootstrap methods (Carlstein et al., 1986; Kunsch, 1989) to keep the

structure within each block. Hušková and Kirch (2008) has further discussed constructing

confidence intervals based on the resampled time series.

In Chapter 4, we switched to another field: an imaging analysis where spike deconvolution

can also be treated as a change point problem. We proposed MTV-PAR, a time-varying `0

penalized method to simultaneously conduct spike detection and firing rate estimation from

longitudinal calcium fluorescence trace data. In MTV-PAR, each iteration consists of two

steps: the spike detection step using time-varying `0 regularization based on current estimate

of firing rate functions and the firing rate estimation step based on currently detected spikes.

Efficiency is achieved by aggregating information from temporally adjacent trials whereas

robustness is guaranteed by incorporating a time-varying firing rate function into a dynamic

`0 penalization framework, rather than forcing shared parameters across trials.

In our local nonparametric estimation for firing rate functions, for computational ease, we
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chose the window size based on experience and the total number of available trials. The

window size and other tuning parameters are best calibrated using benchmark data. In the

absence of benchmark data, data driven methods might be helpful. Cunningham et al. (2007)

proposed to use a Gaussian process prior and an iterative gradient optimization algorithm to

optimally choose hyperparameters. Fiecas and Ombao (2016) proposed to use the window size

that minimizes the generalized cross-validated deviance when investigating the evolution of

dynamic interactions (coherence) between brain regions. Adopting similar strategies is likely

to gain further insights and efficiency when analyzing calcium imaging data. Besides, in our

current work, we focus on single neuron firing rate estimation. As many behaviors are driven

by multiple neurons, incorporating dependency and analyze synchrony between neurons is

also sensible. We could follow the Bayesian framework in Shahbaba et al. (2014) to model

the neuron dependencies. Moreover, modeling the neural dynamics still remains challenges.

In the current analysis, we did not take inference of firing rate across trials into account.

Other directions also can be considered as correlating neural dynamics with behavioral data.

Like other existing methods, we aim to estimate the time of a neural spike or a burst of spike

events. Bounded by the temporal resolution of calcium imaging data, when there are multiple

spikes within the same time frame, we are not able to zoom in to estimate the times of

individual spikes. In several work, the change in fluorescence intensities due to spike events at

time t, i.e., s(t), was initially motivated to model spike counts (Friedrich and Paninski, 2016;

Friedrich et al., 2017; Vogelstein et al., 2010); following this line of thought, it is reasonable

to assume that s(t) is positively correlated with spike counts for re-scaled fluorescence trace.

In other work (Jewell and Witten, 2018; Pnevmatikakis et al., 2013), the sign of s(t) was

the focus. The unknown and nonlinear relationship between spike counts and fluorescence

transient measured based upon genetically encoded indicators (Lütcke et al., 2013; Rose

et al., 2014; Vogelstein et al., 2010) complicates the accurate interpretation and modeling

of fluorescence transient data. We could also consider Bayesian methods to quantify the

uncertainty of the magnitude of s(t). In D’Angelo et al. (2021), a Bayesian mixture model is
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developed to estimate spike activity under different experiment conditions. We could extend

our analysis by setting a spike-and-slab prior on the magnitude.

Finally, in Chapter 5 we discuss a question following Chapter 4. We compared calcium

traces and the estimated spike data in three analyses: cluster analysis, PCA, and decoding.

Using simulated data, we showed that deconvolution leads to better estimates of neural

clusters and principal components than do calcium traces. In our analysis of a real study,

the estimated spike trains produced neural clusters with higher trial-to-trial concordance

and, when analyzed in appropriate ways, they also give more accurate results in population

decoding.

For computational efficiency, we chose a recently published `0 penalized method (Jewell and

Witten, 2018) to estimate spike trains from calcium traces. Because different deconvolution

methods have varying accuracy in spike estimation it is expected that our comparison depends

on the choice of the choice of deconvolution method, as reported in (Evans et al., 2019). On

the other hand, given the consistent observations in our study and previous studies (Evans

et al., 2019; Wei et al., 2020), it is reasonable to assume that the difference between choosing

calcium trace and estimated spike data is mainly due to the nature of the data, such as

quantitative vs binary, continuous vs sparse, and delayed/integrated vs instantaneous.

The results also likely vary from the specific analysis methods chosen, such as choice of

clustering methods, choice of kernel in the kernel PCA for spike data, and decoding methods.

For example, when using the cumulative spike data for population decoding, we use the

whole time course no later than the current time window. In a recent work Yates et al.

(2020) showed that population accuracy varied across window size. In Park et al. (2014);

Tu et al. (2020), a temporal filter is applied to a calcium transient feature to encourage

integrating neuronal activities to improve decoding accuracy. While adopting sophisticated

decoding algorithms might improve the prediction accuracy for both calcium traces and the

deconvolved spike data, we expect that the main conclusion remains.
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I. Vanzetta. Accurate spike estimation from noisy calcium signals for ultrafast three-
dimensional imaging of large neuronal populations in vivo. Nature communications, 7(1):
1–17, 2016.

I. DiMatteo, C. R. Genovese, and R. E. Kass. Bayesian curve-fitting with free-knot splines.
Biometrika, 88(4):1055–1071, 2001.

D. A. Dombeck, M. S. Graziano, and D. W. Tank. Functional clustering of neurons in motor
cortex determined by cellular resolution imaging in awake behaving mice. Journal of
Neuroscience, 29(44):13751–13760, 2009.

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank. Functional imaging of
hippocampal place cells at cellular resolution during virtual navigation. Nature neuroscience,
13(11):1433–1440, 2010.

M. Dooley and M. Hutchison. Transmission of the us subprime crisis to emerging markets:
Evidence on the decoupling–recoupling hypothesis. Journal of International Money and
Finance, 28(8):1331–1349, 2009.

J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. 1973.

M. Evans, R. D. Petersen, and M. D. Humphries. On the use of calcium deconvolution
algorithms in practical contexts. bioRxiv, page 871137, 2019.

103
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A. Kaplan, J. Röschke, B. Darkhovsky, and J. Fell. Macrostructural eeg characterization
based on nonparametric change point segmentation: application to sleep analysis. Journal
of neuroscience methods, 106(1):81–90, 2001.

R. E. Kass, V. Ventura, and C. Cai. Statistical smoothing of neuronal data. Network-
Computation in Neural Systems, 14(1):5–16, 2003.

R. E. Kass, V. Ventura, and E. N. Brown. Statistical issues in the analysis of neuronal data.
Journal of neurophysiology, 94(1):8–25, 2005.

105



R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association, 107(500):1590–1598,
2012.

H.-J. Kim and D. Siegmund. The likelihood ratio test for a change-point in simple linear
regression. Biometrika, 76(3):409–423, 1989.

C. Kirch, B. Muhsal, and H. Ombao. Detection of changes in multivariate time series
with application to eeg data. Journal of the American Statistical Association, 110(511):
1197–1216, 2015.

D. Kobak, W. Brendel, C. Constantinidis, C. E. Feierstein, A. Kepecs, Z. F. Mainen, X.-L.
Qi, R. Romo, N. Uchida, and C. K. Machens. Demixed principal component analysis of
neural population data. Elife, 5:e10989, 2016.

P. Kokoszka and R. Leipus. Testing for parameter changes in arch models. Lithuanian
Mathematical Journal, 39(2):182–195, 1999.

H. R. Kunsch. The jackknife and the bootstrap for general stationary observations. The
annals of Statistics, pages 1217–1241, 1989.

T. L. Lai. Sequential analysis: some classical problems and new challenges. Statistica Sinica,
pages 303–351, 2001.

B. Levin and J. Kline. The cusum test of homogeneity with an application in spontaneous
abortion epidemiology. Statistics in Medicine, 4(4):469–488, 1985.

N. Li, T.-W. Chen, Z. V. Guo, C. R. Gerfen, and K. Svoboda. A motor cortex circuit for
motor planning and movement. Nature, 519(7541):51–56, 2015.
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