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Abstract 

We show how Higgs mechanism for non-abelian N = 2 gauge theories in four di­
mensions is geometrically realized in the context of type II strings as transitions among 
compactifications of Calabi-Yau threefolds. We use this result and T-duality of a further 
compacitification on a circle to derive N = 4, d = 3 dual field theories. This reduces 
dualities for N = 4 gauge systems in three dimensions to perturbative symmetries of 
string theory. Moreover we find that the dual of a gauge system always exists but may 
or may not correspond to a lagrangian system. In particular we verify a conjecture of 
Intriligator and Seiberg that an ordinary gauge system is dual to compacitification of 
Exceptional tensionless string theory down to three dimensions. 



1 Introduction 

One of the most important lessons we have learned recently in string theory is the fact that 

interesting field theories can be realized by considering singular compactifications of string 

theory with or without D-branes present. In this setup one can translate aspects of field 

theories in question to facts about the geometry of the manifold. This general idea is known 

as geometric engineering. 

One of the main powers of geometric engineering is the flexibility in constructing any field 

theories we wish to construct. This is perhaps the most important aspect of this method (for 

example the construction of exceptional gauge groups has not been done in a geometrically 

faithful way in any other approach). But in addition, and what seems to be very surprising at 

first sight, is that in this setup the non-trivial field theory dualities can in one way or another 

be reduced to classical symmetries of string theory. This seems quite surprising. This can 

be done in particular for N = 4 theories in d = 4 by considering type IIA on ALE space 

of ADE type times T2, where T-duality of T2 is a geometric realization of Olive-Montonen 

S-duality for the ADE group [1, 2]. Similarly exact results for N = 2 gauge systems can be 

obtained by geometric engineering of type II strings on Calabi-Yau threefolds [3, 4], and by 

using mirror symmetry which is a classical symmetry of type II strings. This approach has 

been extended to N = 1 theories in d = 4 in [5, 6, 7, 8, 9] in which the dualities are realized as 

classical symmetries of strings. Similarly higher dimensional critical theories (with tensionless 

strings) have also been constructed from this viewpoint and in particular N = 1 theories in 

five dimensions [10, 11, 12] and N = 1 theories in six dimensions [13, 14, 15, 16] have been 

engineered. In certain cases constructions can also be done using D-branes in the presence of 

NS 5-branes [17, 18, 19,20,21, 22, 23, 24, 25, 26, 27], and often there is aT-duality [28] which 

connects the two pictures (see in particular [7]). 

An interesting duality was proposed for three dimensional theories with N = 4 in [29]. 

This was further extended to a large number of non-abelian gauge theories in [30, 31]. So far, 

the only approach from string theory involving a derivation of N = 4 dualities in d = 3 with 

non-abelian gauge groups involves the use of non-perturbative string dualities [17, 18]. One of 

our aims in this paper is to show how duality of N = 4 theories in d = 3 can also be reduced 

to classical symmetries of type II strings. This is done by constructing local models of N = 4 

gauge systems involving a non-compact Calabi-Yau threefold times a circle and using the T-
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duality of the circle to exchange type IIA and type lIB strings. The main ingredient needed 

in this description is a precise understanding of how the Coulomb/Higgs phases of the gauge 

system are realized geometrically. Realization of Coulomb branches have been understood in 

the type IIA [32, 33, 34, 35, 36], and the type lIB setup [37, 38, 3, 4]. However -much less is 

known about the Higgs branch. In this paper we will develop techniques to describe the Higgs 

branch in a geometrical way. 

This construction not only allows us to rederive the N = 4 dualities in d = 3 from pertur­

bative symmetries of strings, but it also allows us to see why in some cases the dual of a gauge 

system is not a lagrangian quantum field theory. A special case of this was already conjectured 

in [29], which we shall verify in this paper. We believe this is actually an important lesson, 

far more general than the example being studied here. In particular if we wish to find dual 

pairs for all field -theories we should broaden the class of field theories under study to include 

non-lagrangian quantum field theories, which have been encountered in string theory (and 

the higher dimensional versions of which are distinguished by the appearance of tensionles~ 

strings). This may also explain why the search for dual pairs of gauge theories in four dimen­

sion~ have been incomplete so far. In fact based on the three dimensional theories we study 

in this paper it is natural to conjecture that for every quantum field theory in any dimension 

there are dual descriptions, which mayor may not involve lagrangian systems. We can verify 

this conjecture for the N = 4 theories in d = 3 which can be geometrically engineered. In this 

case the existence of a dual description is an automatic consequence of our setup. 

The organization of this paper is as follows: In section 2 we introduce the basic idea and 

review some facts about N = 4 dualities in d = 3. In section 3, in anticipation of applications 

in section 4, we review the resolution of ADE singularities of ALE spaces in detail (which is 

self-contained and we hope is accessible to the reader). In section 4 we show how N = 2 Higgs 

mechanism in four dimensions is related to the resolution of certain singularities in type lIB 

string context and use this result to derive N = 4, d = 3 dual pairs. Also in this section we 

discuss the dual of toroidal compactifications of Exceptional tensionless strings down to three 

dimensions. 

2 



2 Basic Idea 

We consider compactifications of type IIA and IIB strings on Calabi-Yau 3-folds. In such a 

compactification we generically obtain an effective N = 2, d = 4 theory with some number 

of U(1)'s, in ",:hich the vector multiplet moduli space (Coulomb branch) of the theory gets 

identified with the complex/Kahler moduli of Calabi-Yau and the hypermultiplet moduli space 

(Higgs branch) gets identified with the Jacobian variety over Kahler/complex moduli of Calabi­

Yau in the type IIB/ A respectively. In the latter case, we consider the Jacobian in order to 

take into account the RR field configurations on the Calabi-Yau. 1 

Depending on whether we put type IIA or IIB on a fixed 3-fold, in general we get inequiv­

alent theories in 4 dimensions. However upon further compactification on 51, they become 

equivalent by T-duality on 51. The effective N = 4, d = 3 theories are therefore also equiv­

alent, but their Coulomb and Higgs branches are exchanged. In fact, such an exchange sym­

metry in N = 4, d = 3 gauge theories were found in [29] and was called the mirror symmetry 

in3 dimensions. That it should be a consequence of the T-duality of the type II~ and IIB 

theories was suggested in [39]. In principle, this should explain all the mirror symmetries of 

N = 4, d = 3 gauge theories which arise from type II theory on a Calabi-Yau 3-fold. In fact, 

in [30, 18], it was shown in detail how it works when the gauge group is a product of U(I)'s. 

In practice, however, it is difficult to apply this idea directly in non-abelian cases. This is 

because, as we will see below, we would need to find non-abelian generalization of the coni­

fold transition [40], [41]. It turns out that the task is significantly simplified if we use mirror 

symmetry for Calabi-Yau threefolds. Let us describe our strategy to analyze the non-abelian 

case by first reviewing the abelian case. 

2.1 Duality in the Abelian Case 

As is well known, D-branes wrapped around cycles of Calabi-Yau give rise to solitons in this 

geometry. In particular if one considers type IIB with an 53 inside a Calabi-Yau threefold W, 

by wrapping a D3 brane around 53 we obtain a charged hypermultiplet [40] (charged under 

the U(I) obtained by decomposition of the 4-form RR gauge potential as the volume form on 

1 In four dimensions the vector multiplets do not receive any quantum string corrections whereas the hy­
permultiplet moduli do. However if we go down to three dimensions on a further circle Coulomb branch also 
receives quantum corrections. 
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53 times a gauge field in space time). Moreover the mass of the hypermultiplet is proportional 

to the volume of 53, which thus vanishes in the limit 53 vanishes. This vanishing can be 

accomplished by changing the complex structure of Calabi-Yau. If we have more vanishing 

53 's than the number of U(l)'s then we can consider higgsing the U(1)'s. In particular it was 

shown in [41] (see also [49]) that this leads to a transition to a new Calabi-Y<vu in which we 

blow up some 5 2 's, as anticipated in [50]. Let us denote the Calabi-Yau we started with by 

Wand the one we obtain after transition by W t . In geometrical terms, we have tuned the 

complex moduli of W to get a singular Calabi-Yau and then changed the Kahler structure of 

the singular space to obtain W t after transition to the Higgs branch. To be concrete let us 

assume that we Higgs a U(l)k system with N > k hypermultiplets. Let hP,q denote the Hodge 

number of Calabi-Yau. Then we have 

h2,I(W) - k = h2,I(Wt) 

hl ,I(W) = hl ,I(Wt) - (N - k) 

(1) 

(2) 

If we consider type IIA instead of type lIB, we have an interpretation of the same transition 

in terms of a (generically) inequivalent theory in 4 dimensions. In particular the inverse of 

the transition, namely W t -+ W will have the interpretation of the Higgsing of U(l)N-k with 

N flavors. Note in particular that what appears in the type lIB as the Higgs branch is now 

related to the Coulomb branch of a type IIA theory. 

In 4 dimensions these two theories are inequivalent. However if we compactify the theories 

on an extra circle the story changes. This is because T -duality on the circle relates type IIA 

on W x 51 to type lIB on W x 51. Thus when we take the circles to be of the order of the 

string scale, after decoupling the excited modes of string, we obtain two effective 3-dimensional 

theories which should be equivalent. This duality of field theories in 3d is known as mirror 

symmetry [29], and the connection to the above transition in Calabi-Yau was noted in [30]. 

This duality symmetry, which we discussed in the abelian case above, has been extended 

to non-abelian gauge groups [30, 17, 18]. We would like to find the non-abelian realization 

of these transitions in Calabi-Yau compactifications in the same way we did for the abelian 

case above, and thus reduce the N = 4, d = 3 dualities to a perturbative symmetry of string 

theory. 
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2.2 Generalization to Non-Abelian Case 

It is natural to expect that the derivation of the abelian duality symmetry in three dimen­

sions involving the transition of Calabi-Yau will have non-abelian generalization. Finding this 

generalization will be useful as will reduce 3d duality symmetry of N = 4 theories to the 

knowledge available from string perturbation theory, plus physical interpretation of extremal 

transitions among Calabi-Yau in terms of Higgs/Coulomb branch transitions, which is more 

or less understood in terms of the D-brane solitons. 

Mirror symmetry of Calabi-Yau is very important in understanding the non-abelian case. 

Let M denote a Calabi-Yau threefold and W be its mirror. By definition, this means that 

type IIA/B on M gives the same theory as type IIB/ A on W, where the role of complex 

deformations and Kahler deformations get exchanged. By now there is a lot of evidence for 

this symmetry [42] and some of it has been rigorized [43, 44]. Moreover there are hints that 

this symmetry is related to the more familiar T-duality (R -+ 1/ R) symmetry of toroidal 

compactification where one views the threefold as a T3 fibered over S3 [45, 46, 47] (see also 

[48].) We will consider type IIA on a local model of Calabi-Yau 3-fold, MK whose Kahler 

deformations give the Coulomb branch of an N = 2 theory in d = 4 (the subscript f{ is there 

to remind us that we are considering varying the Kahler structure). We also consider the 

completely Higgsed branch which corresponds to an extremal transition of MK -+ Mb. The 

subscript C on Mb is to remind us that the complex structure variation corresponds to the 

Higgs branch of the theory. We thus consider 

(3) 

as a local model for the Coulomb and Higgs branch of an N = 2 theory in d = 4 in the context 

of type IIA strings. Using mirror symmetry the same theory can be described equivalently as 

IIA(MK,Mb) = IIB(We, Wk) (4) 

Now we consider compactifying on the circle to get an N = 4 theory in d = 3. We thus have 

where 51 denotes the T -dual circle. We thus conclude two type IIA models with (Coulomb,Higgs) 

branches given by the local model (MK' Mb) and (Wk, We) which are inequivalent theories in 
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4 dimensions, will become equivalent in 3 dimensions, where the role of Kahler and complex 

deformations are exchanged. 

This is a general correspondence between two theories in 3d and it holds whether or not 

the local model of Calabi- Yau 's correspond to any gauge systems. In case that both the M and 

W lead to identifiable gauge systems we can then deduce dual gauge systems in 3d. If one of 

them is a gauge system and the other is not we learn that a 3d N = 4 field theory may have 

a dual which is not a gauge system. Some cases of this type were conjectured in [29] and we 

will actually verify their conjecture. There are in principle also cases where neither side is a 

gauge system, and we would have a 3d field theory duality not involving gauge systems. We 

shall not consider this last case in this paper (but it may very well be the generic case). 

For the purpose of identifying the 3d mirror for a gauge system we would need to know 

the local model for the Calabi-Yau 3-fold corresponding to a given group and matter. This 

can be done by geometric engineering of quantum field theory [3]. In particular if we are 

interested in pure N = 2 gauge system, in type IIA compactification we need to fiber an 

A-D-E singularity over pl. The Kahler parameters corresponding to the blowing up of A-D­

E singularity will correspond to Coulomb moduli of the corresponding gauge system. If we 

wish to get matter we will obtain it by "colliding singularities" which means that we consider 

intersecting pI'S over which we have A-D-E singularities. Depending on what singularity is 

on top of intersecting pI'S we will get matter in various representations [34, 35]2. For example 

if we wish to get U( n) x U( m) with matter in bi-fundamental (n, m) we consider a type IIA 

geometry with two intersecting pI'S over one having an An - l singularity and over the other 

an Am - l singularity and at the intersection point an An+m - l singularity. The bi-fundamental 

(n, m) can be interpreted as part of the decomposition of the adjoint matter of U(n + m) 

and thus the corresponding bi-fundamental matter is localized near the intersection point 

[34, 35, 52]. In general if we have enough matter we can also Higgs the system and consider 

the complex deformations of the manifold which correspond to the Higgs branch. This in 

particular means that we go (classically) to the origin of Coulomb branch, i.e. blow down 

the A-D-E fibers and then deform the singularity of the manifold by changing the complex 

structure. For simple gauge systems such as U(n) with fundamentals such a description is 

possible and is known [34], [35], but for more complicated systems it has not been worked out 

2Not all intersecting singularities will give rise to matter, for example two D-type singularities intersecting 
gives rise to a superconformal N = 2 system which has no matter interpretation[51]. 
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(our results below will amount to a description of this for a large number of cases). However 

what is known, in some simple cases [3] and in much greater generality in [4], is how to describe 

the exact Coulomb branch of gauge systems which are geometrically constructed in type IIA 

setup by applying local mirror symmetry and converting it to a type IIB compactification. 

So our basic strategy is to start with a group G (not necessarily simple) and representation 

R and consider the local 3-fold MK which in type IIA gives rise to it. Then use the results [4] 

to construct the mirror manifold in type IIB, which we denote by We. Then we will explicitly 

construct what complete Higgsing means in this setup by finding Wi< and then consider what 

matter structure Wi< would correspond to if it were viewed in type IIA context. As a passing 

remark note that this also gives the Mb manifold by applying mirror symmetry to Wi< (using 

the results in [4]), i.e. we will be able to write down the geometry corresponding to the 

non-abelian Higgs phenomenon. 

2.3 Examples of Dual Pairs 

Let us review some of the known examples of dual pairs of N = 4 gauge theories in three 

dimensions. Examples with U(l) and 5U(2) = 5p(1) gauge groups were studied in [29], 

and they w~re generalized cases with higher rank gauge groups in [30, 31]. In these models, 

hypermultiplet moduli spaces do not receive any quantum corrections and can be read off 

directly from their classical Lagrangians by the hyperkahler quotient construction. On the 

other hand, their vector multiplet moduli spaces may be deformed by quantum effects. 

Example 1 

A-model: U(k) gauge group with 1 adjoint and n-fundamental matters 

B-model: TIi=l U(k)i gauge group with a fundamental matter in U(kh. The is also a bi­

fundamental for each U(k)i x U(k)i+l where i = 1, ... , nand U(k)n+l = U(kh, 

The maximum Higgs branch of the A-model is the moduli space of 5U(n) instantons of 

degree k, and the maximum Higgs branch of the B-model is the Hilbert scheme (resolved 

symmetric product) of k-points on the An-type ALE space. There are also various mixed 

branches of these models. In [30], it is shown how these branches transform into each other 

under the duality, by taking into account quantum corrections to the vector multiplet moduli 

spaces. The duality transformation, which exchanges the mass and the FI parameters of the 
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two models, was also found. 

Example l' 

It is possible to eliminate the adjoint matter in the A-model by adding its mass term. 

According to the mirror map, this corresponds to turning on the FI parameter for the diagonal 

U(1) of U(k)n . . We then obtain 

A-model: U(k) gauge group with n-flavors. J 

B-model~ TI?::} U(li) gauge group with 

(it, 12 , ••. , In) = (1,2, ... (k - 1), k, k, ... , k, (k - 1), ... ,2,1) (6) 

(li = k for i = k, ... , (n - k)). There is a fundamental for U(lk) and U(ln-k), and a bi­

fundamental for each U(li) x U(li+d. 

These models can be generalized to include arbitrary linear chain of U(ki) groups with 

bifundamental matter as well as possible extra fundamental matter and their dual turns ou.t 

also to be of the same type (and it is easily derivable from case 4 below). Hanany and Witten 

[17] pointed out that these models can be constructed by using webs of NS 5-branes and 

D3 and D5-branes in type IIB string theory, and suggested that the duality in this case is a 

consequence of the S L(2, Z) S-duality of the type IIB theory. 

In the Abelian (k = 1) case, this example reduces to the An type dual pairs of [29]. In this 

case, it was pointed out in [30] that the mirror symmetry is a consequence of the T-duality of 

the type IIA and IIB theories. In the following, we will see how this observation is generalized 

to the non-Abelian (k > 1) case. 

Example 2 

A-model: Sp(k) gauge group with one antisymmetric representation and and n-fundamental 

matters. 

B-model: TI~t U(2k)i x TIt=l U(kk There is a fundamental for U(kh. There is also a 

bi-fundamental for each U(2k)i x U(2k)i+l (i = 1, ... , n - 4) and also for U(2k)r x U(k)r, 

U(2k)r x U(kh, U(2k)n_3 x U(kh and U(2k)n-3 x U(kk 
/ 

In this case, the maximum Higgs branch of the A-model is the moduli space of SO( n) 

instantons of degree k, and the one for the B-model is the Hilbert scheme of k points on the 

Dn-type ALE space. 
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Example 2' 

As in the case of example 1', we can turn on the mass parameter for the matter in the 

anti symmetric representation in the A-model and the corresponding FI parameter for the 

B-model. The resulting mirror pair is: 

A-model: Sp(k) gauge group with n-fundamentals. 

B-model: [I1i';12 U(li)] x U(kh x U(kh gauge group with 

(til "" In-2) = (1,2, , .. , (2k - 1), 2k, .... , 2k) (7) 

(ti = 2k for i = 2k, , .. , n - 2). There is a fundamental in U(l2k)' there is also a bi-fundamental 

for each U(li) x U(li+l), (i = 1, .. " n - 3), and also for U(ln-2) x U(kh and U(tn-2) x U(k)2' 

The Abelian case (k = 1) corresponds to the Dn-type dual pair in [29]. We will verify this 

duality for general k in this paper. 

Example 3 

In [29], it was conjectured that if we consider a model whose gauge group is a product of 

U(li)'S arranged on nodes of the affine En (n = 6,7,8) Dynkin diagram with li being equal 

to the Dynkin index of each node, its Coulomb branch is the moduli space of En instantons 

of degree 1, and that it is dual to the compactification of tensionless En string theories to 

three dimensions. We will verify this conjecture in this paper. In [4] the Coulomb branch 

for product of U(kli) gauge groups arranged on nodes of the affine En Dynkin diagram has 

been found, where k is an arbitrary integer and li is the Dynkin index of the corresponding 

node. It is shown there, using this result, that this system is dual to k small En instantons 

compactified to d = 3, as conjectured in [29], thus extending what we have found here for 

k = 1 to higher k's. 

Example 4 

The example 1 can be further generalized [30] as 

A-model: I1i=l U(k)i with Vi fundamental matters in U(k)i and a bi-fundamental for U(k)i x 

U(k)i+l (i = 1, , .. , n). 

B-model: I1~1 U(k)i with Wi fundamental matters in U(k)i and a bi-fundamental for U(k)i x 

U(k)i+l (i = 1, ... , w), 
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They make a mirror pair if a Young diagram with rows of lengths VI, •.• , Vn is related to a 

diagram with rows of lengths WI, ... , Wm by transposition. This, in particular, means n = I:i Wi 

and m = I:i Vi. It was pointed out in [18] that one can construct these models as webs of 

NS 5-branes, D3 and D5-branes, as in [17], and that the mirror sym~etry follows from the 

S-duality of the type lIB theory. We expect that the methods of this paper (and [4]) can 

be generalized to also include this case as well as the example 1, thus covering all the cases 

conjectured. 

3 Resolution of ADE Singularity 

As discussed in the previous section we need to develop what Higgsing means geometrically and 

in particular in the context of type lIB compactifications on Calabi-Yau threefolds. Already 

in the abelian case, it is clear that one needs to go to a point on the complex moduli of type 

lIB side where there is a singularity (where some 3-cycles shrink) and blowup instead some 

2-cycles at these points. It is thus not surprising that the non-abelian generalization would 

in particular involve understanding blowups and as it turns out of the singularities of A-D-E 

type for ALE spaces. In this section, we thus give a systematic description of the resolution 

of the A-D-E singularities that will be used in the next section. The equations 

A n- i 

Dn 

E6 

E7 

E8 

xy = zn 

x 2 + y2z = zn-i 

x
2 + y3 + Z4 = 0 

x
2 + y3 + y Z3 = 0 

x 2 + y3 + Z5 = 0 

(8) 

(9) 

(10) 

(11) 

(12) 

describe complex surfaces embedded in the affine space C 3 with coordinates x, y, z. Each of 

them has a singularity at x = y = z = 0 (we assume that n 2: 2 for An - i and n 2: 3 for 

Dn) and its resolution means a smooth surface which is mapped to it in such a way that the 

map is an isomorphism except at the inverse image of the singular point x = y = z = O. The 

resolution we are going to describe is the so called minimal resolution and it turns out that 

the inverse image of the point x = y = z = 0 consists of rational curves (i.e. pi'S) whose 
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intersection matrix is the same as the Cartan matrix of the Lie algebra indicated by the name 

of its singularity type. 

The resolution is carried out by sequential blow-ups of the ambient space C 3 at the singular 

points of the surface. For A n- l and Dn cases, this can be done more easily by sequential blow­

ups of planes transversal to lines passing through the singular points. 

3.1 Resolution of An - 1 singularity 

We can resolve the An- l singularity xy = zn by a sequence of blow-ups of complex planes. We 

first resolve the simplest Al singularity. Let us blow up the x-y-z space at x = z = o. Namely, 

we replace the x-y-z space by a union of two spaces - coordinatized by (x, y, z) and (x, y, z) 

- which are mapped to the x-y-z space by (x,y,z) = (x,y,xZ) = (zx,y,z). The x-y-'i and 

the x-y-z spaces are glued by zx = 1 and z = xz. The equation xy = z2 of the Al singularity 

looks as x(y - xz2) = 0 in the x-y-z space and z(xy - z) = 0 in the x-y-z space. If we ignore 

the piece described by x = 0 and z = 0 which is mapped to the y-axis x = z = 0, we obtain a 

union of two smooth surfaces - UI = {y = xz2} in the x-y-z space and U2 = {xy = z} in the 

x-y-z space. The surfaces UI and U2 are coordinatized by (x, z) and (x, y) respectively and 

are glued together by zx = 1 and xz = xy. Thus, we obtain a smooth surface. This is the 

resolution of the Al singularity. This surface is mapped subjectively onto the original singular 

Al surface xy = Z2: (x, y, z) = (x, xz2, xz) on UI and (x, y, z) = (x2y, y, xy) on U2. The inverse 

image of the singular point x = y = z = 0 is described by x = 0 in UI and by y = 0 in U2 • It 

is coordinatized by z and x which are related by zx = 1, and thus is a projective line pl. 

If we started with higher An- l singularity, the equation xy = zn looks as y = xn- l zn in the 

x-y-z space and xy = zn-l in the x-y-z space (ignoring the trivial piece x = 0 and z = 0). It is 

smooth in the x-y-z plane but the part is the x-y-z has the An- 2 'singularity at x = y = z = o. 
Thus, the surface is not yet resolved but it has become less singular: n has decreased by one. 

We can further decrease n - 1 by one by blowing up the x-z plane at x = z = O. Iterating 

this process, we can finally resolve the singular An - l surface. It is straightforward to see that 

the resolved space is covered by n planes UI , U2 , U3 , ••• , Un with coordinates (Xl, zd = (x, z), 
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c 

(X2 = x, Z2), (X3' Z3), ... , (Xn' Zn = y) which are mapped to the singular An - I surface by 

u. :CI (x. z.) I---T { Xy = ::~;~~+l-; 
t":;J t, t t t 

Z = XiZi 

(13) 

The planes Ui are glued together by ZiXi+1 = 1 and XiZi = Xi+!Zi+I' The map onto the singular 

A n - I surface is isomorphic except at the inverse image of the singular point x = y = Z = O. 

The inverse image consists of n - 1 pIS Cll C2 , ... , Cn - I where Ci is the locus of Xi = 0 in Ui 

and Zi+! = 0 in U i+!, and is coordinatized by Zi and Xi+1 that are related by ZiXi+! = 1. Ci and 

Cj do not intersect unless j = i ± 1, and Ci - I and Ci intersect transversely at Xi = Zi = O. It is 

also possible to show that the self-intersection of Ci is -2. Thus, we see that the intersection 

matrix of the components Cl, ... , Cn - I is the same as the An - I Cartan matrix. 

x 

Figure 1: resolution of An - I singularity 

3.2 Resolution of Dn singularity 

Resolution of Dn singularity (n ~ 3) is similar. Let us first blow up x = Z = 0 and look 

at the equation X2 + y2 Z = zn-l in the x-y-z space and in the x-y-z space. Ignoring the 

trivial piece given by x = 0 and Z = 0 in the first and second patches respectively, we see 

X2 + y2 z = x n - 2zn-l in the x-y-z space and 

-2 + 2 n-2 ZX y = Z (14) 

in the x-y-z. Let us assume n > 3 for the moment. Then, the surface is smooth in the x-y-z 

space, but the part in the x-y-z space (14) has a Dn - I singularity at the origin x = y = Z = O. 

12 



We can make it less singular by blowing up the y-z plane at y = Z = O. Iterating this process, 

we finally obtain a D3 singularity. Now let us consider the n = 3 case. After blowing up 

x = Z = 0, we see x + y2z = xz2 in the x-y-z space and zx2 + y2 = z in the x-y-z. Then, we see 

that there are two Al singularities at x = y = z 1= 1 = 0 (or equivalently x 1= 1 = y = z = 0). 

Blowing up again at x = y = 0, we can resolve these Al singularities at the same time. In this 

way, we can resolve the singular Dn surface. 

For later use, we give an explicit description of the resolved surface. After the sequence 

of blow-ups, we obtain a 3-fold covered by n open subsets Ul , U2 , ••• , Un with coordinates 

(Sl' tll Zl) = (x, y, z), (S2 = y, t2 = x, Z2), ••. , (Sn' tn, zn). These open sets are glued together 

by certain transition relations.3 The projection to the x-y-z space is given by 

{ 
x 

j j-l j t j 
S2j_l Z2j-l S2j 2j Z2j 

j-l j-l j j-l 
Y S2j_l t 2j-lZ2j_l S2j Z2j 

Z S2j-lZ2j-l S2j Z2j 

(15) 

onUl , ... ,Un- 3 ,Un- l • The expressions on Un- 2 and Un are somewhat irregular. For later use 

it is enough to write the expressions of y and z: 

n : even 

n: odd 

The resolved Dn surface is given by 

(i#n-2,n) 

and 

(16) 

(17) 

(18) 

(19) 

(20) 

This is mapped onto the singular Dn surface by (15), and the map is an isomorphism except at 

the inverse image of the singular point x = y = Z = O. The inverse image consists of n rational 

curves CI, ... , Cn where Ci (i = 1, ... , n - 2) is the zi-axis in Ui (i.e. Si = ti = 0), and also the 

ti+l-axis in Ui+l (i.e. Si+l -:- Zi+l = 0). Cn - l and Cn are the loci t n - 2 = zn-21= 1 = 0 parallel to 

3For reference, we record the relations: (Sj,tj,Zj) = (Sj+ltj+lZj+l,Sj+l,tj~l) for j = 1, . .. ,n - 4, 

(Sn-3, tn-3, Zn-3) = (Sn-2t;_2Zn-2, Sn-2tn-2, t;;:':'2) , and (Sn-2, tn-2, Zn-2) = (Zn-ltn-l, Sn-l, t;;:':'l) = 
(t;;l, sntn, zn). 
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the sn_2-axis in Un - 2 • Ci- 1 and Ci (i = 2, ... , n - 2) intersects transversely at Si = fi = Zi = 0, 

while Cn- 2 intersects also with Cn- 1 and Cn at Sn-2 = t n- 2 = Zn-2 =F 1 = o. There is no other 

intersection of distinct Ci's. The self-intersection of Ci in the resolved surface can be shown 

to be -2. 

s n-2 

x 

• • • 

y 

Figure 2: resolution of Dn singularity 

• 
3.3 Resolution of E6,7,8 singularities 

Resolution of E6 ,7,8 singularity is carried out by a sequence of blow-ups of C3 . The blow up of 

x-y-z space at the origin is a union of three spaces - coordinatized by (X,YI,Zl), (X2,y,Z2), 

and (X3, Y3, z) - which are glued together so that the map to the x-y-z space can be defined 

by (x,y,z) = (X,XYl,XZl) = (YX2,y,YZ2) = (ZX3,ZY3'Z). In particular, there are relations 

YIX2 = 1, Z2Y3 = 1, and X3Z1 = 1. The inverse image of the origin x = Y = Z = 0 is a P2. This 

blow-up is shown in Figure 3. 

x 

, , 

z 

, , 

y 

z 

-----> 

x 

Figure 3: blow up of the X-Y-Z space 
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Let us blow up the x-y-z space at the origin. The E6 equation X2 + y3 + z4 = 0 looks as 

1 + xyr + x2zt = 0, x~ + y + y2zi = 0, and x§ + zy~ + Z2 = 0 in the three patches where we 

ignore the p2 described by x = 0, y = 0, and z = 0 respectively. This surface is smooth in 

the first two patches, but has a singularity at the origin X3 = Y3 = Z = 0 of the third patch. 

In fact this is a A5 type singularity as can be seen by completing the square of z. The inverse 

image of the singular point x = y = z = 0 in this surface is a line pI defined by X2 = Y = 0 

in the second patch and X3 = Z = 0 in the third patch. 

Next we blow up the X3-Y3-Z space at the origin. It turns out that the surface has an A3 

type singularity at one point. Continuing such process, we can finally resolve the singularity. 

The process is depicted in Figure 4. The bold lines or curves stands for the inverse image of 

the singular point x = y = z = o. 

Figure 4: the process of resolution of E6 singularity 

The resolved surface is defined as a hypersurface in a 3-fold covered with five open subsets 

which we denote by UI , ... , U5 and coordinatize by (Xl, Yh zd, . .. , (X5, Y5, Z5) respectively (here 

we have renamed the coordinates). These patches are glued together so that the projection to 

the x-y-z space is defined in the following way: 

= X2Y~Z2 = x3yjzg 

= yi Z2 - y3z4 
- 3 3 

= y~Z2 - y2z3 
- 3 3 

The surface is defined by 

2 2 4 0 Xl + Yl + YI Zl = 

2 2 0 X2 + Z2 + Z2 = 

X~ + Y3 + 1 = 0 

X~ + Z4yi + 1 = 0 

2 2 3 1 0 X5 + Z5Y5 + = 

15 

- 2 4 = X4Y4 Z4 

- y2z3 
- 4 4 

= Y4 zl 

III UI, 

III U2, 

III U3, 

III U4, 

III U5. 

= Z5 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 



The inverse image of the singular point x = y = z = 0 is a union of six rational curves 

Cl , C2 , C3+, C3-, C4+, C4 - which are defined in the following. Cl is the locus Xl = Yl = 0 in 

Ul and X2 = Z2 = 0 in U2. C2 is the locus Y2 = x~ + Z2 + z~ = 0 in U2 and Z3 = x5 + Y3 + 1 = 0 

in U3. C3± is the locus Y3 = X3 =F i = 0 in U3 and Z4 = X4 =F i = 0 in U4. C4± is the locus 

Y4 = X4 =F i = 0 in U4 and Z5 = X5 =F i = 0 in U5. These are depicted in the Figure 5. One 

can show that any of these rational curves has self-intersection -2 in the surface. Thus, the 

intersection matrix is the same as the E6 Cartan matrix. 

y 

x 

Figure 5: resolution of E6 singularity 

For E7 we first blow up the x-y plane at X = Y = o. Namely, we replace the x-y-z space by 

a union of x-y-z and x-y-z space that are mapped to the x-y-z space by (x,y, z) = (x, xy, z) = 

(yx, y, z). The equation x 2 + y3+ yz3 = 0 looks as x + X2y3 + yz3 = 0, and yx2 + y2 + z3 = 0 in 

the two patches. The surface is smooth in the x-y-z space but has a singularity at the origin 

x = y = z = 0 of the second patch. Completing the square of y, we have 

( 

-2\ 2 -4 
x I x 3 y+ 2 - 4"+z = o. 

. I 

(27) 

By putting, X6 = Y + x 2/2, Y6 = Z, Z6 = x /.,j2{, we see that the singularity is of the E~ type 

x~ + y~ + z: = o. Now, we only have to resolve this E6 singularity as done above. 
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The resolved E7 surface is a hypersurface in a 3-fold covered by six open subsets Ul , ... ,Us, U7 

with coordinates (XI, YI, zd, ... ,(xs, Ys, zs), (X7, Y7, Z7). These are glued so that the projection 

to the x-y-z space is defined by 

{ ~ 
= y'2Izs( Xs - iz~) 

. 2 = X6 - zZs 

= Ys 
(28) 

where Xs, Ys, Zs are expressed in UI, ... ,Us as in (21) under the replacement X ~ Xs, Y ~ 

Ys, z ~ Zs· We note that the coordinates of U7 and Us are related by X7 = y'2Iz~(xs - i), Y7 = 

1/( V2Zzs) and Z7 = yszg. 

The surface is defined by 

(29) 

and by (22)-(26) in UI, . .. ,Us. The inverse image of the singular point x = y = z = 0 is 

the union of seven rational curves Cl , C2 , C3±, C4±, C7 where the first six are as given in the 

description of Es surface and the last one C7 is defined by X7 = Z7 = 0 in U7 and Xs - i = Ys = 0 

in Us. C7 intersects only with C4+ at one point (xs - i = Ys = Zs = 0) and the intersection 

matrix of these curves is the same as the E7 Cartan matrix. 

Figure 6: resolution of E7 singularity 

For E8, we first blow up the x-y-z space at the origin. The equation x 2 + y3 + ZS = 0 looks 

as 1 + xyr + x3zf = 0, x~ + y + y3z~ = 0 and x~ + zy~ + Z3 = 0 in the three patches. The surface 

is smooth in the first two patches but has the E7 singularity at the origin X3 = Y3 = Z = 0 of 

the third patch. Then, we just have to resolve this E7 singularity. 
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The resolved E8 surface is a hypersurface in a 3-fold covered by seven patches U1 , •• . ,U5 ,U7 ,U8 

with coordinates (Xl, Yb ZI),"" (X8, Y8, Z8) (here we renamed the coordinates). The 3-fold has 

a projection to the X-Y-Z space defined by 

{

X = X8Y8 = X?Y7 

Y = Y8 = X7Y7 Z7 

Z = Y8Z8 = X7Y7 

= V2ZZ6( X6 - iz~? 

= Y6(X6 - izi) 
. 2 

= X6 - ZZ6 

(30) 

where X6, Y6, Z6 are expressed in Ub ... ,U5 as in (21) under the replacement x ---+ X6, Y ---+ 

Y6, Z ---+ Z6· We note that the coordinates of U7 and U5 are related as in the E7 case, and the 

coordinates of U8 and U7 are related by X8 = xd Z7, Y8 = X7Y7Z7 and Z8 = 1/ Z7· 

The surface is defined by 

2 3 5 0 
X8 + Y8 + Y8 Z8 = (31) 

while it is defined in Ub ... ,U5 , U7 as in the E7 surface. The i.nverse image of the singular point 

x = Y = Z = 0 is the union the eight rational curves C1 , C2 , C3±, C4±, C7 and C8 where C1-C7 

are as given above in the description of the E7 surface, and C8 is defined by X8 = Y8 = 0 in U8 

and X7 = Y7 = 0 in U7 . The curve C8 intersects only with C7 at one point (X7 = Y7 = Z7 = 0). 

The intersection matrix of these curves is the same as the E8 Cartan matrix. 

Figure 7: resolution of E8 singularity 
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4 Geometry of Higgs Mechanism and N 
in 3 Dimensions 

4 Dualities 

In this section we find dual pairs of three-dimensional N = 4 supersymmetric field theories 

obtained by Type II string compactifications on Calabi-Yau 3-fold times a circle, following the 

approach outlined in section 2. We find the duals of 

1'. TIi=1 U(ki ) gauge theory with ni-fundamentals for U(ki ) and bi-fundamentals (ki , ki+d 

2'. Sp(k) gauge theory with n-fundamentals. 

We also find duals of 

3. Theories arising from toroidal compactification down to three dimensions of one small 

E6 ,7,8 instanton. The four dimensional versions of these theories has been considered in [53, 

54, 55]. In particular we prove the conjecture of [29] for the dual of these theories. 

The basic logic is as explained in Section 2. We start with Type IIA string theory com­

pactified on M x S1 which gives the Coulomb branch of the (gauge) theory of interest where 

the Kahler moduli of the Calabi-Yau 3-fold M corresponds to the vector moduli of the gauge 

theory. We perform the local mirror transform, obtaining a Type lIB string theory compacti­

fied on W x S1 where the vector moduli is now represented by the complex structure moduli 

of the mirror Calabi-Yau 3-fold W. Next, we consider transition to the Higgs branch corre­

sponding to W t through the point where the 3-fold W becomes singular. T -dualizing on the 

extra circle, we can equivalently view it as a Type IIA theory on W t X S1 . Then, we can 

read the gauge symmetry and matter content by just looking at the geometry of the singular 

3-fold, identifying the dual theory. 

In this paper we skip the first process of local mirror transformation and refer the reader 

to the new paper [4]. Namely, we start with the Type lIB on W x S1 where we use th~ result 

of [4] to identify the geometry W corresponding to the original gauge system (1' ,2',3 above). 

For the cases treated in this paper, there is a simplification [38] which is also useful. In the 

cases we study here W can be defined by an equation of the form \ . 

F=uv (32) 

where F is a holomorphic function (or a section of a line bundle) of some complex surface 

S, and u and v are complex coordinates of another flat plane C 2 ; the equation defines a 
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hypersurface (3-fold) in the 4-fold S x C 2
• This 3-fold can be considered as an elliptic (or 

C*) fibration over S where the fibre acquires Ae-1 type singularity at the zero locus of F. 

Now, we use the correspondence of Type IIB on Ae-1 type singularity with Type IIA with £ 

NS fivebranes [28]. Then we can identify the Type IIB on W x Sl as the theory on the NS 

fivebrane with worldvolume {F = O} x Sl X R3 where we note that {F = O} is a Riemann 

surface embedded in the surface S. This is the compactification on Sl of the d = 4 N = 2 

supersymmetric gauge theory with the Seiberg-Witten curve {F = O} [56, 38]. The results, 

of [38] relating the non-compact N = 2 curve to the worldvolume theory of the type IIA 

(or equivalently M-theory) 5-brane has been recently interpreted in [57] as arising from the 

embedding of type IIA in M-theory. This has also been extended i~ [57] to the curves for 

the class of theories of the type l' above where the M-theory fivebrane (or equivalently type 

IIA fivebrane) is embedded in some complex surface associated with the flavor symmetry. In 

other words, we could start with the theory on such Type IIA fivebrane4 and obtain the Type 

IIB geometry W through the correspondence of [28]. However, we stress that our main ai~ 

in this paper is to reduce non-trivial field theory dualities to classical symmetries of string 

theory. In particular the Type IIB geometry W can be obtained only by knowledge of classical 

symmetries of string theory [4] (T-dualities), without making use of non-perturbative aspects 

of strings, for example how the branes of Type IIA arise from M-theory perspective. 

The starting Calabi-Yau 3-fold on which we put Type IIB string theory to obtain the 

original gauge theories l' ,2',3 are given by F = uv where a special case of l' we consider 

separately as 1 'a: 

l'a. U(k) with n-fundamentals5 

F = x + zk + y in the An - 1 surface xy = zn (33) 

(34) 

4Note that the strategy we are following in the Calabi-Yau language can be rephrased in this case by stating 
that in the type lIA context compactifying the NS 5-brane worldvolume theory on a circle and applying T­
duality on the circle we obtain NS 5-brane of type lIB, from which we can also read off the mirror theory in 
3 dimensions by using [28] or S-duality of type lIB viewing it as D5 branes. 

5Note that if we take k = 1 this reduces to the abelian conifold transitions. 
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. th A f nl+··+nr In e nl + ... +nr-I sur ace xy = z 

2'. Sp(k) with n-fundamentals 

3. Critical E6 ,7,S tensionless string theories compactified to 4 dimensions 

F=z 

F=z 

F=z 

Some remarks are now in order. 

in the E6 surface x 2 + y3 + Z4 = 0 

in the E7 surface x 2 + y3 + yz3 = 0 

in the Es surface x 2 + y3 + Z5 = 0 

• By ADE surfaces, we mean the resolved surfaces described in the previous section. 

(35) 

(36) 

(37) 

(38) 

• If we consider F = 0 as a Riemann surface factor of a lIA theory (or equivalently M-theory) 

fivebrane, the expressions (33) were derived in [38, 3] and the expressions (34) were obtained 

in [57]. This latter case has also been recently derived using just local mirror symmetry [4] 

extending the earlier work of [3]. In this case, we actually need to use r different functions on 

r different patches of the resolved surface, each proportional to the function F in (34), which 

also arises naturally in [4]. (See Section 4.2 for detail) 

• The description (35) for Sp(k) gauge theory can be generalized to the case where the bare 

mass mi and adjoint vev CPa are turned on: 

k 

F = y - II (z - cp~) (39) 
a=I 

in the deformed Dn surface (in the convention of [58]) 

( 40) 

The curve F = 0 is exactly the same as the 'Seiberg-Witten curve for Sp( k) gauge theory found 

in [59]. It should be a straightforward application of the local mirror transform to obtain the 

Calabi-Yau 3-fold F = uv as the Type lIB geometry for this gauge theory. Also, we note that 

this curve F = 0 in the Dn surface can be obtained as a factor of an M-theory fivebrane by 

generalizing the argument of [57] to the case where there is an orientifold six-plane parallel 
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to the D sixbranes. Note that orientifolding converts the A-singularity associated to the D6 

branes to D-singularity as is appearing in the above equation. 

We consider the case where there is a complete Higgs phase. Specifically, in the class 1 'a, 

n 2: 2k, in the calss l' ni + ki - I + ki +I 2: 2ki for any i, in the class 2'. n 2:2k + 2. This 
~ , 

condition is equivalent to non-asymptotic free condition of the corresponding four dimensional 

gauge theory. 6 

• The class 3 has been considered in [53, 54, 55] and in particular local mirror symmetry 

applied to this problem results in the description of the curve given above. 

, 4.1 U(k) gauge theory with n-fundamentals 

We are interested in the locus of F = 0 in the surface, where the Calabi-Yau 3-fold W described 

by F = uv acquires A-type singularity. Suppose F has zero of order /! along a rational curve 

(""' PI) described by z = 0: F ""' ze. Then, W has Ae-I-type singularity ze = uv along the 

rational curve and leads to the U(/!) gauge symmetry in the Type IIA side (i.e. after T-duality 

on 51). When the curve z = 0 is not a finite pI but has an infinitely large volume with 

respect to the scale of interest, the gauge coupling (proportional to the inverse of the volume) 

is infinitesimally small compared to other couplings, and the U(/!) should be considered as a 

flavor symmetry. 

Let us look at F = x + zk + y in the i-thpatch Ui of the resolved An - 1 surface which is 

coordinatized by (Xi, Zi)' Since (x, y, z) is expressed as (13), F is given by 

F = X~Z~-I + x~ z~ + x,,!-i z~+1-i 
t t t t t t • ( 42) 

6The N = 2 results for Coulomb branch which we are using also make sense in the non-asymptotically 
free region. However there is another way to use the N = 2 results by embedding the non-asymptotically 
free theories in asymptotically free theories in four dimensions. For example, if we consider an SU(k') gauge 
theory with flavor n where k' is chosen large enough 2k' > n, there is a non-Baryonic branch of dimension 
k(n - k) and at a generic point of the root of that branch the theory is identified as U(k) gauge theory with 
n-flavors tensored with free U(l)k'-k-l Maxwell theory [60]. The curve at such a point is given by 

k' k' 2 k 
X + z + U2Z - + ... + Uk'-kZ + Y = 0 in the An - 1 surface. ( 41) 

Away from the A n - 1 singularity x = y = Z = 0 the curve has genus k' - k - 1 and this is responsible for the 
free Maxwell theory part. Thus, the behavior of the curve near x = y = Z = 0 is relevant for the U (k) gauge 
theory with n-flavors. In such a region, the higher power zk+j in (41) is negligible compared to zk. Thus, we 
may well start with (33). The same can be said about other cases. 
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The locus F = 0 looks differently depending on i. We recall now that we are considering 

the case n 2: 2k. For 1 ::; i ::; k, the first term is of lowest order both in Xi and Zi. For 

k + 1 ::; i ::; n - k the lowest order is the second term, and for n - k + 1 ::; i ::; n it is the last 

term. Thus, F factorizes as 

F = x~z~-l(l + xk-iz~+l-i + X,,!-2i z,,!-2i+2) 
tt t t t t i = 1, ... , k, 

i=k+1, ... ,n-k, 

(43) 

(44) 

F - n-i n+l-i( 2i-n 2i-n-2 + i-n+k i-n+k-l + 1) - xi Zi Xi Zi Xi Zi i = n - k + 1, ... ,n. (45) 

Recall that Xi = 0 in Ui and Zi+! = 0 in Ui+! defines a rational curve Ci. The curves Ci - 1 and 

Ci intersect transversely at one point Xi = Zi = O. We note that the zero of the last factor in 

(43) - (45) defines a smooth curve C which extends to infinity. It intersects only with Ck and 

Cn- k. This can be seen by looking at the equation for i = k, k + 1 and for i = n - k, n ..:.. k + 1. 

For example, in Uk, Ck is given by Xk = 0 while C is given by 1 + Zk + X~-2k Z;:-2k+2 = 0, 

and they intersect at one point Xk = 0, Zk = -1 (if n > 2k; If n = 2k where Ck = Cn- k, 

they intersect at two points Xk = 0, zf + Zk + 1 = 0). Likewise, it is easy to see that C and 

Cn - k intersect at one point transversely. From the above equations we see that F has zeros 

at Ci of order i for i = 1, ... , k - 1, of order k for i = k, ... , n - k, and of order n - i for 

i = n - k + 1, ... , n - 1, and also a single zero at C. This is depicted in Figure 8. 

---------

1 2 ... 2 1 

~ ... .. ~ 

Figure 8: the zero and the order of F 

Now, if we look at this geometry in the Type IIA side, we see that there is a gauge 

group U(1)· U(2).·· U(k -1)· U(k)n-2k+l . U(k -1)··· U(2)· U(l) coming from the A-type 

singularities along the rational curves Ct, ... , Cn-I. Note that C, having infinite volume 

compared to others, does not lead. to the gauge group. From the intersection of C and Ci+! 

we obtain the bi-fundamental of the neighboring gauge group, and from the intersection of C 

with Ck and Cn - k , we obtain fundamentals for the first and the last U(k)'s. In this way, we 
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1 1 

o-o-----o--L----o--L---~ 
1 2 k-l ~ __ k~V~-k--~ k-l 

n-2k+l 

2 1 

Figure 9: the mirror of U(k) gauge theory with n flavors 

have identified the mirror gauge theory. Figure 9 depicts the quiver diagram describing the 

gauge and matter content of the mirror. To each node with index f is associated a gauge (bold 

node) or flavor (normal node) group U(f) and each edge connecting two nodes with indices f1 

and f2 represents a hypermultiplet transforming as (f1,f2) under U(f1) x U(f2). 

4.2 Linear chain of U(ki) gauge groups 

Next, we consider a theory with gauge group II=l U(ki ) with ni-fundamentals for U(ki) and 

bi-fundamentals (k1' k2), (k2' k3 ), .•• , (kr-1' kr). We assume the condition 

( 46) 

for the existence of a complete Higgs phase. Before considering the mirror symmetry, we 

digress for a moment to provide the precise definition of the Calabi-Yau 3-fold W, or the 

"function" F. It turns out that we need different functions on different patches of the resolved 

A n l+ ... +nr - 1 surface. This is derived in the new paper [4]. Here we see how this is required 

if we consider the gauge theory as coming from the world volume dynamics of a fivebrane in 

Type IIA or M-theory. 

Precise Definition of The Curve 

Let us consider an N = 2 gauge theory in four dimensions with gauge group U(kd X U(k2) 

with ni massless fundamentals for U(ki ) and a bi-fundamental (k1' k2).7 In the paper [57] 

7We require asymptotic freedom nl + k2 < 2kll n2 + kl < 2k2 for this part of the subsection. 
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using properties of M-theory fivebranes, it is shown that this theory can be described by a 

curve8 

( 47) 

where 91(Z) and 92(Z) are polynomials in z of degree kl and k2 respectively. However, we must 

be careful about the precise definition of the curve if we consider it as embedded in the resolved 

Ani +n2-l surface. At a generic point in the Coulomb branch, we .expect that the theory flows 

in the IR limit to a free Maxwell theory. This means that for generic 91 (z) and 92 (z) the curve 

should be smooth and irreducible. However, the curve (47) is not. F is divisible by x 2 in the 

first nl patches U1, ... , Uni and by Zni x in the last n2 patches Uni +b ... , Uni +n2 . In order to 

see this, we introduce variables y' = y/zn2 and x'= x/zni .. By using the formula (13) for 

the projection, we see that y' = X~i-i Zfi +1-i and x' = x~-ni z;-ni-l on Ui , and thus that y' is 

well-defined on the first nl patches while x' is defined on the last n2. By noting that xy' = zni 

and x = x' zni , x'y = zn2, we see that F is divisible by x2 in the first nl patches while it is 

divisible by Zni X in the last n2 where 

F/x2 = X + 91(Z) + 92(Z)Y' + zn2 y'2 III Ub ··., Uni (48) 

F/(znix ) = zni x'2 + 91(Z)X' + 92(Z) + y in Uni +1 , ... , Uni +n2 (49) 

Thus, the precise definition of the curve is F/x2 = 0 in the first nl patches and F/(zni x ) = 0 

in the last n2. This makes sense since the two functions are related by (1/y')F/x2 = F/(znix ) 

where y' =1= 0 in the intersection region because y'x' = 1. 

For the group I1~=1 U(ki) with general r, the function F is given by 

+ () (r-l)ni+··+nr_i + rni+···+nr ... 9r z z x z (50) 

where 9i(Z) is a polynomial of degree ki. In the resolved Ani+ .. +nr-l surface, the curve is 

defined by F / xr = 0 in the first nl patches, F / (zni x r- 1) = 0 in the next n2 patches, ... , 

F / (z(i-l)n i + .. ·+ni-i xr+1-i) = 0 in the next ni patches, ... etc. 

Dual Gauge Theory 

8Note that the U(l)'s have charged matter and thus infrared trivial, and thus do not affect the infrared 
dynamics of the non-abelian part in four dimensions. 
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We now identify the dual gauge theory. We present the detail for the case r = 2. The 

general case is treated in the same way. 

As in the previous subsection, it is straightforward to determine the zero and the order of 

the function F (34), or more precisely, of F / X2 (48) in the first nl patches and of F / (znl x) (49) 

in the remaining n2 patches, where gl(Z) = zk1 and g2(Z) = Zk2. Without loss of generality, 

we may assume kl ~ k2 • 

Using the expression (15), we see that the function looks as 

(51) 

(52) 

in the first nl and the last n2 patches respectively. As we will see below, for every i there is 

one term xfi Z;i-l among the four of lowest order both in Xi and Zi. Therefore, in each patch 

Ui, it factorizes as 

(53) 

where !i(O, 0) = 1. The curves !i(Xi, Zi) = 0, i = 1, ... , nl + n2 glue up into one smooth curve 

C that extends to infinity.9 Thus, in each Ui the function takes zero at Gi, C-l and at G of 

order ii, ii-l and 1. 

Next, we identify the lowest order term and determine .ei . For both of the expressions 

(51) and (52), the following holds: For i ::S kl the first term is lower than the second, for 

i S nl + k2 - kl the second term is lower than the third, for i ::S nl + n2 - k2 the third term is 

lower than the last. The complete Higgs condition (46) yields kl ::S nl + k2 - kl ::S nl + n2 - k2. 

Thus, the lowest order term is the first term for 1 ::S i ::S kl' the second term for kl + 1 ::S i ::S 

nl + k2 - kl' the third term for nl + k2 - kl + 1 ::S i ::S nl + n2 - k2, and the last term for 

nl + n2 - k2 + 1 ::S i ::S nl + n2· Note that nl + k2 - kl ::S nl by the assumption kl ~ k2. Thus, 

9In the special case nl + k2 = 2k1 , n2 + kl = 2k2, J;(Xi' z;) factorizes into two, but the intersection takes 
place at a point away from x = y = z = 0 and is irrelevant for the dynamics of interest. 
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we have 

i = 1, ... ,kl 

i = kl + 1, ... , nl + k2 - kl 

i = nl + k2 - kl + 1, ... , min{nl' nl + n2 - k 2} 

i = nl + 1, ... ,nl + n2 - k2 if nl :::; nl + n2 - k2 

i = nl + n2 - k2 + 1, ... , nl if nl > nl + n2 - k2 

i = max{nt,nl + n2 - kd + 1, ... ,nl + n2· 

The function !i(Xi, Zi) is of the following form 

!i(Xi, Zi) = 1 + Zi + O(XiZi), 

fi(Xi, Zi) = 1 + Xi + O(XiZi), 

!i(Xi, Zi) = 1 + O(XiZi), otherwise. 

(54) 

(55) 

(56) 

(57) 

(Here we assume that the three values of i in (55) are well-separated. Other case can also be 

treated.) Thus, the curve C intersects with C k1 , Cn1+kZ- kl and Cnl+n2-kz transversely. 

In summary, the function (51)-(52) has zero at C of order one and at CI , C 2, ... , Cnl+nz-l 

of order 

1,2, ... ,kl - 1, kl , ... , kl ,kl - 1, ... ,k2 + 1, k 2, . .. , k2' k2 - 1, ... ,2,1 or 
'-....-' '-....-' 

nl+kz-2k1+1 nz-kz+l 
1,2, ... , kl , ... , kl ,kl -1, ... , 2k2-n2+1, 2k2-n2, 2k2-n2-2, ... , n2+2, n2, n2-1, ... , 2,1 

'-....-' 
nl+kz-2k1+1 

if n2 ~ k2' or n2 < k2 respectively. Thus, we have identified the mirror gauge theory. The 

gauge group and the matter content are described by the quiver diagram in Figure 10. Here 

~---~---~----<>--<>----L---~ 
1 2 k2+1~ k2-1 

n
2
-k

2
+1 

Figure 10: the mirror in the case n2 ~ k2 

2 1 

we present the mirror for the case n2 ~ k 2. The mirror for the other case is obtained by an 

obvious replacement of the chain of ranks. 
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4.3 Sp( k) gauge theory with n-fundamentals 

In this subsection, we find the mirror of Sp(k) gauge theory with n-fundamental hypermulti­

plets. We assume n 2: 2k + 2. 

It is straightforward to determine the zero and the order of F = y - zk in the resolved Dn 

surface. Recall that the resolved Dn surface is defined as a hypersurface (18)-(20) in a 3-fold 

covered by n patches U1 , ..• ,Un. Recall also that y and z are expressed in the patch Ui by 

(15) and (16)-(17). Let us look at the function F in the 2j-th patch U2j, 2j :S n - 3. From 

the expression (15), we see that 

j = 1, ... ,k -1, 

j = k, 

j = k + 1, ... , [(n ~ 3)/2] 

(58) 

(59) 

(60) 

The last factor has a single zero at a curve C which extends to infinity. F also has zeros at 

S2j = 0 and Z2j = o. We now recall the defining equation of the surface 

We see that there are two branches of zeros of F for each j: S2j = Z2j = 0 and S2j = t 2j = 0 

which corresponds to the rational curves C2j - 1 and C2j respectively. Near the first branch 

S2j = Z2j = 0, (t 2j, Z2j) is a good coordinate, i.e. S2j can be uniquely expressed in terms of 

t 2j and Z2j by the defining equation. Since t 2j =1= 0 generically, S2j rv Z2j near C2j- 1 • Hence 

F rv Z~jZ~jl = Z~1-1 for j ::; k while F rv z~j for j > k. Thus, the zero of F at C2j - 1 is 

of order 2j - 1 for j :S k and order 2k for j > k. Near the second branch S2j = t 2j = 0, 

(t 2j, Z2j) is again a good coordinate, and S2j rv t~j for Z2j =1= o. Thus, F rv t;~ for j :S k and 

F rv t~j for j > k near C 2j . Namely, F has a zero at C 2j of order 2j for j :S k and 2k for 
'-

j > k. By looking at the equation for j = k, we see that the infinite curve C and the rational 

curve C 2k meet at the point S2k = t2k = 0, Z2k = 1. For U2j - 1 the analysis is similar (although 

we need some care for the factorization of F). In summary, in the part of the surface in the 

patches U1 , ••. ,Un - 3 , F has zeros at Cl,C2, ... ,C2k-l,C2k,C2k+l, ... ,Cn-3 and C of order 

1,2, ... ,2k - 1, 2k, 2k, . .. ,2k and 1 respectively. 

Let us now look at the function Fin Un - 2 • By looking at the expressions (16)-(17) carefully, 

we see that y is di visi ble by zk, and y / zk - 1 of F = zk (y / zk - 1) has a single zero at C. 
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Now, we consider the zero of zk = (Sn_2tn_2Zn_2)k. By looking at the defining equation of the 

surface 

we see that there are four branches of zero: Sn-2 = Zn-2 = 0, Sn-2 = t n - 2 = 0, t n - 2 = 

Zn-2 - 1 = ° and t n - 2 = Zn-2 + 1 = 0, which corresponds to Cn - 3 , Cn - 2 , Cn - I and Cn 

respectively. Near Cn - 3 where Sn-2 = Zn-2 = ° and t n - 2 #- 0, the surface is coordinatized by 

(tn-2, Zn-2) and F rv S~_2Z~_2 rv Z~~2 has zero at Cn - 3 of order 2k, as we have seen. Near Cn - 2 

where Sn-2 = t n - 2 = ° and Zn-2 #- 0, the surface is again coordinatized by (tn-2' Zn-2) and 

F rv S~_2t~_2 rv t!~2 has zero at Cn - 2 od order 2k. Near Cn - I or Cn where t n - 2 = Zn-2 =F 1 = ° 
and Sn-2 #- 0, the surface is coordinatized by (Sn-2, Zn-2), and F f"V t~_2 f"V (Zn-2 =F l)k has 

zero at Cn - I and Cn of order k. The zero of F in the part in Un- I and Un can be seen in the 

same way, but it turns out that there is no additional zero than what we have found. 

k 

~ ... 
-~~ 

Figure 11: the zero and the order of F 

In summary, F has zeros at CI , C2 , ... , C2k- h C2k , C2k+l , ... , Cn - 3 , Cn - 2 , Cn - I , Cn and C 

of order 1,2, ... , 2k - 1, 2k, 2k, ... , 2k, 2k, k, k and 1 respectively. The curves C I , ... , Cn are 

rational curves of finite volume whose intersection is dictated by the Dn Dynkin diagram, 

while C extends to infinity. The curves C and C2k intersects transversely. Thus, we have 

identified the mirror gauge theory. It is given by the quiver diagram in Figure 12. 

4.4 Compactifications of Exceptional Tensionless String Theories 

In this subsection, we find mirrors of theories with global E6 ,7,8 symmetry corresponding to 

compactification of theories with small E6 ,7,8 instantons down to three dimensions and show 

29 



1 

I 
0--0- - - - -0--0---0-- - - - --£:J----o 

1 2 2k 2k-l 2k 
~---V----

n-2k-l 

k 

k 

Figure 12: the mirror of the Sp(k) gauge theory with n fundamentals 

that they are ordinary gauge systems, as anticipated in [29]. As noted before this is a rather 

interesting example in that it dualizes a gauge system to another quantum field theory which 

is expected not to have an ordinary lagrangian description. lo As in the previous cases, we only 

have to determine the zero and the order of the function F = Z in the resolved En surfaces 

described in Section 3.3. Thus, we follow the notation of the suitable part in that section.· 

E6 Theory 

It is a straightforward matter to see the zero and the order of F = Z if we look at the 

expression (21) for z. For example, z = YlZl in Ul , and thus it has zero at Zl = 0 and 

Yl = O. By the defining equation of the surface (22), the zero locus consists of the curve 

Zl = xi + Yl = 0 which we denote by C, and the locus Cl of Xl = Yl = O. Note that the 

curve C extends to infinity while C l is a rational curve with finite volume. They intersect at 

one point Xl = Yl = Zl = O. Near C where generically Yl i= 0, the surface is coordinatized 

by (XI, Zl) and Z I"V Zl has zero at C of order 1. Near Cl where Xl = Yl = 0 and Zl i= 0, 

the surface is coordinatized again by (Xl, zt) and Z /"'oJ Yl I"V xi has zero at Cl of order 2. The 

zero and the order of Z in other patches U2 , •.• ,U5 can be determined in the same way. In 

summary, F = Z has zeros at C l , C2 , C3+, C3-, C4+, C4- and C of order 2,3,2,2,1,1 and.l 

respectively (see Figure 13 (a)). The curve C intersects with C l at one point and extends to 

infinity. The way these curves intersect is dictated by the affine E6 Dynkin diagram, where 

the affine node corresponds to the infinite curv~ C. Thus, the mirror theory is a gauge theory 

whose gauge and matter content is as given by the quiver diagram in Figure 13. 

lOThat the critical E-theories do not have a lagrangian description (with finite parameters) is strictly speaking 
not proven. One can at least rule that out as far as ordinary gauge systems with matter are concerned. 
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Figure 13: (a) depicts the zero and the order of F for the E6 theory. (b) is the quiver diagram 
showing the mirror gauge theory. 

E7 Theory 

The zero and the order of F = Z can be seen by looking at the expression for Z in (28). 

In U7 , Z = Z7 and it has zero at Z7 = O. By looking at the defining equation of the surface 

(29), we see that there are two components: X7 = Z7 = 0 which is the rational curve C7 , and 

th~ curve 1 + X7Y~ = Z7 = 0 which we denote by C. The latter curve C extends to infinity 

and does not intersect with C7 • Since dZl =f 0 in the surface near both C and C7 , Z = Zl has 

, single zeros at C and C7 . In the part of the surface in the patches Ull .•. ,U5 , we must look 

at Y6 which is equal to "y" in the formulae (21) for E6 case. For example in U5 , F = Z is 

given by Y6 = Y5Z~. Thus, it has zero at Z5 = 0 or Y5 = O. By the defining equation (26), the 

zero locus is C4± given by Z5 = X5 =t= i = 0 in the former case, while it is the curves defined 

by Y5 = x5 =t= i = 0 in the latter case. One of the latter curves Y5 = X5 - i = 0 is the rational 

curve C7 . The other one Y5 = X5 + i = 0 is actually the infinite curve C, as can be seen 

by looking at the relations X7 = ..J2ZZ~(X5 - i), Y7 = 1/( ..J2Z). The ratio"nal curves C7 and 

C4+ intersect at one point as we have seen in Section 3.3, while the curve C intersects only 

with C4 - at one point X5 + i = Y5 = Z5 = O. Near C4± where Z5 = X5 =t= i = 0 and Y5 =I- 0 

generically, the surface is coordinatized by (Y5, Z5) and Y6 = Y5Z~ f"V z~ has zero at C4± of order 

2. The zero and the order of Z = Y6 in other patches can be determined in the same way; In 

summary, F = Z has zeros at Cll C2 , C3+, C3-, C4+, C4-, C7 and C of order 2,4,3,3,2,2,1 and 

1 respectively (see Figure 14 (a)). The curve C intersects with C4 - at one point and extends 

to infinity. The intersection of these curves is dictated by the affine E7 Dynkin diagram where 

the infinite curve C corresponds to the affine node. Thus, the mirror theory is a gauge theory 

whose gauge and matter content is as given by the quiver diagram in Figure 14. 
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Figure 14: (a) depicts the zero and the order of F for the E7 theory. (b) is the quiver diagram 
showing the mirror gauge theory. 

E8 Theory 

For E8 theory, we must look at the expression of Z in (30). In the patch U8 , F = Y8Z8 has 

a single zero at the curve C defined by Z8 = x~ + Y8 = 0, and also a double zero at the rational 

curve C8 . The curve C extends to infinity and intersects with C8 at one point X8 = Y8 = Z8 = o. 
The zero and the order of F = X7Y7 = X6 - iz~ in other patches can be determined in the 

same way without much effort (for the expression of X6 and Z6, use the formulae for x and Z 

in C?I)). In summary, F = z has zeros at CI , C2 , C3+, C3-, C4+, C4-, C7 , C8 and C of order 

3,6,5,4,4,2,3,2 and 1 respectively (see Figure 15 (a)). The intersection of these curves is 

given by the affine E8 Dynkin diagram where the affine node corresponds to the infinite curve 

. C. Thus, the mirror theory is a gauge theory whose gauge and matter content is as given by 

the quiver diagram in Figure 15. 

3 

3 

2 

123 4 5 6 4 2 

(a) (b) 

Figure 15: (a) depicts the zero and the order of F for the E8 theory. (b) is the quiver diagram 
showing the mirror gauge theory. 
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