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Abstract

BACKGROUND—Oxidation-specific epitopes (OSEs) are proinflammatory, and elevated levels 

in plasma predict cardiovascular events.

OBJECTIVES—The purpose of this study was to develop novel positron emission tomography 

(PET) probes to noninvasively image OSE-rich lesions.

METHODS—An antigen-binding fragment (Fab) antibody library was constructed from human 

fetal cord blood. After multiple rounds of screening against malondialdehyde-acetaldehyde 

(MAA) epitopes, the Fab LA25 containing minimal nontemplated insertions in the CDR3 region 

was identified and characterized. In mice, pharmacokinetics, biodistribution, and plaque specificity 

studies were performed with Zirconium-89 (89Zr)-labeled LA25. In rabbits, 89Zr-LA25 was used 

in combination with an integrated clinical PET/magnetic resonance (MR) system. 18F-

fluorodeoxyglucose PET and dynamic contrast-enhanced MR imaging were used to evaluate 

vessel wall inflammation and plaque neovascularization, respectively. Extensive ex vivo validation 
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was carried out through a combination of gamma counting, near infrared fluorescence, 

autoradiography, immunohistochemistry, and immunofluorescence.

RESULTS—LA25 bound specifically to MAA epitopes in advanced and ruptured human 

atherosclerotic plaques with accompanying thrombi and in debris from distal protection devices. 

PET/MR imaging 24 h after injection of 89Zr-LA25 showed increased uptake in the abdominal 

aorta of atherosclerotic rabbits compared with nonatherosclerotic control rabbits, confirmed by ex 

vivo gamma counting and autoradiography. 18F-fluorodeoxyglucose PET, dynamic contrast-

enhanced MR imaging, and near-infrared fluorescence signals were also significantly higher in 

atherosclerotic rabbit aortas compared with control aortas. Enhanced liver uptake was also noted in 

atherosclerotic animals, confirmed by the presence of MAA epitopes by immunostaining.

CONCLUSIONS—89Zr-LA25 is a novel PET radiotracer that may allow noninvasive 

phenotyping of high-risk OSE-rich lesions.

Keywords

atherosclerosis; natural antibodies; oxidation-specific epitopes; PET/MR imaging

Atherosclerosis is a chronic, multifocal inflammatory disease of medium and large arteries 

and is the major underlying cause of cardiovascular disease (CVD). Despite a decline in 

mortality in the Western world, the prevalence of CVD has not decreased and remains the 

leading global cause of death (1). Progression of atherosclerosis is driven by the 

accumulation, modification, and oxidation of circulating lipids, which drives the influx of 

immune cells in the vessel wall, leading to chronic inflammation and the development of 

advanced atherosclerotic plaques. Progressing plaques are prone to develop erosion and/or 

rupture, resulting in the release of thrombotic material into the circulation that may lead to 

luminal occlusion and acute cardiovascular events (e.g., myocardial infarction and stroke) 

(2). A large subset of such plaques continues to grow until they cause myocardial ischemia, 

leading to angina pectoris. Moreover, an emerging paradigm focusing on superficial plaque 

erosion, departing from the classical thrombotic rupture has been suggested (3–5). Clinical 

practice relies on detecting ischemia of obstructive lesions to diagnose risk, leaving features 

like plaque burden and outward remodeling underappreciated (6). There is a need for 

accurate imaging methods to assess the extent of disease burden and to identify high-risk 

lesions, including those with superficial plaque erosion (7,8).

Oxidized low-density lipoprotein (OxLDL) and oxidized phospholipids (OxPL) have been 

identified as hallmarks of high cardiovascular risk (9–13). When low-density lipoprotein 

(LDL) undergoes oxidation, the byproducts of lipid peroxidation generate many 

proinflammatory chemical modifications of both the lipid and protein moieties, collectively 

termed oxidation-specific epitopes (OSEs). Several of these OSEs, such as OxPL and 

malondialdehyde (MDA) epitopes, are well defined chemically and immunologically. They 

represent danger-associated molecular patterns and induce a proinflammatory response 

(14,15). Additionally, prior work has shown that OSEs can be imaged in zebrafish, mice, and 

rabbit lipid/atherosclerosis models with murine or human OSE-targeted antibodies using 

nuclear and magnetic resonance (MR) imaging techniques (16–22). However, the potential 

immunogenicity of these approaches may limit clinical application (23,24).
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Here, we report a multimodal positron emission tomography (PET)/MR evaluation using the 

human antibody Fab fragment LA25 binding to advanced MDA epitopes, namely 

malondialdehyde-acetaldehyde (MAA) adducts, which are OSEs found in human 

atherothrombotic lesions that may serve as a noninvasive imaging biomarker of 

atherosclerotic burden and plaque vulnerability.

METHODS

POSITRON EMISSION TOMOGRAPHY/MAGNETIC RESONANCE IMAGING

Rabbits (n = 12; mean weight: 3.4 ± 0.9 kg for rabbits with atherosclerosis, and 3.2 ± 0.1 kg 

for healthy control rabbits) (Online Figure 1). A 24-G catheter was introduced in the 

marginal ear vein for injection with either 89Zr-LA25 or 89Zr-LA24 (0.94 ± 0.22 mCi; 0.3 to 

0.4 mg). In the contralateral ear, a 22-G catheter was used for the administration of the 

gadolinium-based contrast agent: gadopentetate dimeglumine (Magnevist, Bayer Healthcare, 

Shawnee Mission, Kansas, Missouri). Anesthesia was induced by intramuscular injection of 

Ketamine (20 mg/kg) (Fort Dodge Animal Health, Overland Park, Kansas, Missouri), 

together with Xylazine (0.5 mg/kg) (Bayer). Prior to 18F-fluorodeoxyglucose (18F-FDG) 

injections, rabbits were fasted for ≥4 h. All rabbits received a urine catheter to prevent any 

disruptions from signal in the bladder.

Rabbits were placed in a body matrix coil, received isoflurane anesthesia at 1.5% by 

inhalation, and were oxygenated for the remaining of the PET/MR imaging experiment 

while vital parameters were monitored. Shortly after injection, images were acquired in a 

dynamic fashion for 1 h using a clinical 3-T PET/MR Biograph mMR (Siemens, Munchen, 

Germany). After scout scans, the PET scan was initiated and coacquired with bright-blood 

time-of-flight (TOF) noncontrast enhanced angiography for localization of arterial 

anatomical landmarks (renal arteries and iliac bifurcation). Imaging parameters were: 

repetition time (TR), 23 ms; echo time (TE), 2.8 ms; flip angle, 20°; spatial resolution, 0.35 

× 0.35 mm2 (interpolated); slice thickness, 1 mm. Attenuation correction of PET images was 

done using the built-in MR-based attenuation correction map and segmenting it into 2 tissue 

compartments (soft tissue and air), and images reconstructed using the 3D ordinary Poisson 

ordered subsets expectation maximization (OP-OSEM) algorithm with point-spread-function 

(PSF) resolution modeling, using 3 iterations and 21 subsets. In addition, a black blood 3D 

T2 weighted SPACE (Sampling Perfection with Application optimized Contrasts using 

different flip angle Evolution) sequence was used for vessel wall delineation. Imaging 

parameters were: TR, 1600 ms; TE, 115 ms; flip angle, 120°; echo train length (ETL), 81; 

spatial resolution, 0.63 × 0.63 mm2; slice thickness, 0.63 mm; fat saturation, on.

A dynamic contrast-enhanced (DCE) MR scan was performed. Black blood was obtained 

using a double inversion recovery technique. A 3-dimensional turbo-field echo sequence 

with motion-sensitized driven equilibrium preparation for black blood imaging was used to 

quantify the uptake of a Food and Drug Administration–approved gadolinium-based contrast 

agent (CA), gadopentetate dimeglumine (Magnevist), from the right renal artery to the iliac 

bifurcation. This protocol of black blood DCE-MR is explained in more detail by Calcagno 

et al. (25). Imaging parameters were: TR, 491 ms; TE, 5.3 ms; flip angle, 20°; spatial 

resolution, 0.63 × 0.63 mm2; slice thickness, 0.63 mm; fat saturation, on; orientation, 
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sagittal. This sequence was used before and 10 min after CA injection to quantify the CA 

accumulation in the vessel wall and, thus, to measure the permeability of the vessel wall. 

Before and during CA injection, the same sequence was used with 3 signal averages (time 

resolution 32 s) to perform 3-dimensional DCE-MRI and to quantify the rate of uptake of 

CA in the vessel wall. The next day, 24 ± 1.5 h after injection, all rabbits received a 20-min 

static PET scan, again using a time-of-flight and MR-based attenuation correction.

PHARMACOKINETICS AND BIODISTRIBUTION OF 89ZR-LA25 AND 89ZR-LA24 IN RABBITS

Radioactivity half-lives were determined by drawing blood from the ear arteries at 1 and 30 

min; at 1, 2, 4, 20, and 24 h; and at sacrifice after 28 h. All rabbits were sacrificed by an 

intravenously injected overdose of 100 mg/kg sodium pentobarbital and were subsequently 

perfused with 500 ml saline. After sacrifice, all animals were perfused to make sure no 

blood or blood clots remained in the aorta and other organs before excision. Aortas were 

excised and divided into thoracic aorta (from the aortic root to the diaphragm) and 

abdominal aorta (from the diaphragm to the iliac bifurcation), the latter with celiac trunk and 

renal arteries attached, serving as landmarks. The following organs were harvested: heart, 

lungs, liver, spleen, kidneys, 1 adrenal gland, muscle, and bone marrow. All tissues were 

weighed before counting with a Wizard2 2480 (Perkin Elmer, Waltham, Massachusetts) 

automatic gamma counter. Radioactivity concentration in tissues was calculated as the 

percentage of injected dose (ID) per gram.

NEAR-INFRARED FLUORESCENCE IMAGING

At 24 h before sacrifice, all rabbits received fluorescently labeled (DiD) high-density 

lipoprotein (HDL) (~1 mg dye/rabbit) in 5-ml phosphate-buffered saline solution via the 

marginal ear vein. After sacrifice, all aortas, both thoracic and abdominal, were placed on 

thick black paper and imaged with a Xenogen IVIS-200 optical imaging system (Perkin 

Elmer, Waltham, Massachusetts). Fluorescence images were acquired with excitation and 

emission wavelengths of 680 and 720 nm and a field of view of 6.5 and 22.8 cm using 

different exposure times.

IMAGE ANALYSIS

Image analysis for PET imaging was performed after all data were processed and divided in 

different time frames using a custom-made program written in Matlab (Mathworks, Natick, 

Massachusetts). All data was subsequently processed using OsiriX Imaging Software 

(OsiriX Foundation, Geneva, Switzerland) by drawing regions of interest (ROIs) on the 

infrarenal abdominal aorta and major organs (liver, spleen, and kidneys). By averaging all 

acquired ROIs per organ (≥10 per organ), mean maximum standardized uptake values 

(SUVs) in each tissue were obtained. All images acquired with DCE-MR were reformatted 

in the axial plane for tracing. The vessel wall tracing was made on the average image of the 

dynamic series of DCE-MR using Osirix software (OsiriX Foundation, Geneva, 

Switzerland). By drawing an inner and an outer vessel wall contour and computing the 

difference between them, the vessel wall area or ROI was measured.
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STATISTICAL ANALYSIS

Statistical analysis was conducted using nonparametric Mann-Whitney tests. Spearman’s r 

coefficients were calculated to determine the degree of correlation. Data are reported as 

mean ± SD. All p values <0.05 were considered statistically significant. Prism software 

version 6.0 (GraphPad Software, La Jolla, California) was used to calculate the different 

statistical parameters.

The complete detailed methods section is provided in the Online Appendix.

RESULTS

CLONING AND CHARACTERIZATION OF LA25

LDL was modified with MAA, MDA, or CuSO4 to generate MAA-LDL (Figure 1A) (26), 

MDA-LDL, and copper (Cu)-OxLDL, respectively. MAA is an advanced MDA-derived 

adduct that we and others have shown is an immunodominant MDA epitope (26–28). MAA 

is an adduct between a protein lysine residue, 2 MDAs, and 1 acetaldehyde molecule to 

generate a cyclic, fluorescent dihydropyridine product (such as the 4-methyl-1,4-

dihydropyridine-3,5-dicarbonyl adduct) (Figure 1A). MAA is dissimilar to a simple linear 

MDA-lysine adduct and, therefore, would not be expected to be recognized by antibodies to 

MDA.

Lymphocytes were isolated from the umbilical cord blood of 7 newborns at birth, prior to 

any environmental exposure, to specifically enrich for germline sequences with minimal 

nontemplated insertions in the CDR3 region consistent with evolutionary conservation. κ 
and λ libraries containing 107–108 Fabs were then constructed, consisting of the LacZ 

promoter, the light chain, the heavy chain, and polyhistidine and hemagglutinin tags (Figure 

1B). The libraries were screened against MAA-BSA, using methods previously described 

(29). After 4 rounds of panning with each κ and λ library, we identified an enrichment of 

Fabs that were cloned into the phagemid pComb3X. LA25 was identified as an optimal 

candidate due to its specificity for MAA epitopes and optimal expression characteristics. 

LA24, identified from the same library, did not bind any relevant OSE present in vivo and 

was subsequently used as a control in experiments. LA25 and LA24 plasmids from selected 

Fab phage clones were codon optimized and transformed into E. coli C41 (DE3) for 

production of soluble Fabs.

Binding and competition assays were then carried out to assess specificity for MAA 

epitopes. LA25 bound to MAA-LDL, but not to LDL, Cu-OxLDL or MDA-LDL (Figure 

1C). LA24 did not detect any of these epitopes. To assess specificity of LA25 to bind to 

MAA epitopes, competition experiments were performed of LA25 binding to MAA-LDL 

(Figure 1D) and MAA-BSA (Figure 1E). These experiments demonstrated that a variety of 

MAA epitopes, in a hapten-specific manner, nearly completely inhibited the binding LA25 

to its antigens. In contrast, MDA-BSA, MDA-LDL, Cu-OxLDL, and LDL did not compete 

for LA25 binding. To further assess in vivo specificity and also to gain insights into potential 

therapeutic applications of LA25, experiments were performed to assess whether LA25 

inhibited binding of MAA-LDL to elicited peritoneal macrophages. Increasing doses of 
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LA25 almost completely inhibited binding of MAA-LDL to macrophages (Figure 1F), a 

property that is expected to be atheroprotective (15,26,29,30).

IMMUNOSTAINING OF HUMAN PATHOLOGIC SPECIMENS WITH LA25

Immunostaining of early human coronary lesions from patients with sudden death with 

LA25 showed minimal staining in pathological intimal thickening (PIT) samples, but 

significant staining in advanced fibroatheromas and ruptured plaques (Figure 2). 

Interestingly, LA25 also stained the thrombus adjacent to the plaque rupture. Thrombi are 

known to contain MDA/MAA epitopes, likely through secretion by activated platelets (31). 

Debris from distal protection devices also stained strongly with LA25, as well as for MDA 

and OxPL epitopes with specific antibodies (Figure 3). MAA epitopes did not colocalize 

with OxPL epitopes in these specimens, but MDA epitopes colocalized partially with both 

MAA and OxPL epitopes. LA24 did not stain coronary lesions or debris from distal 

protection devices.

PHARMACOKINETICS, BIODISTRIBUTION, AND PLAQUE SPECIFICITY OF 89ZR-LA25 IN 
APOE−/− MICE

Initially, the 89Zr-labeled Fabs (Online Figure 2A) were tested in Apoe−/−mice to investigate 

their in vivo behavior and specificity for MAA epitopes in atherosclerotic plaques. Mice 

were intravenously injected with either 89Zr-LA25 or -LA24 control Fab. The blood 

radioactivity half-lives were 29 and 13 min for LA25 and LA24, respectively, and blood 

radioactivity concentrations differed significantly starting at 30 min after injection (Figure 

4A).

Radioactivity distribution in selected tissues was determined by gamma counting at 4 h post-

injection (p.i.) (Online Figure 2B). Aortic uptake was significantly higher in mice injected 

with 89Zr-LA25 compared with 89Zr-LA24 (1.56 ± 0.35% vs. 0.41 ± 0.13 %ID/g; p = 

0.001) (Figure 4B). Representative autoradiography of mouse aortas showed homogenous 

radioactivity distribution in those injected with 89Zr-LA24, whereas 89Zr-LA25 showed a 

heterogeneous pattern of uptake with more intense depositions at the level of typical lesion 

sites, such as the aortic root and the abdominal aorta (arrows in Figure 4C).

A high kidney accumulation was found in all mice, which is indicative of renal clearance. 

Uptake in liver and spleen was significantly lower in mice injected with 89Zr-LA24 

compared with 89Zr-LA25 (0.53 ± 0.12% vs. 3.50 ± 1.67 %ID/g; p = 0.001; and 0.63 

± 0.16% vs. 2.69 ± 1.03 %ID/g; p = 0.005, respectively) (Figure 4D).

Additionally, analysis by autoradiography and immunofluorescence of aortic root sections 

from mice injected with 89Zr-LA25 revealed a high degree of colocalization between 

radioactivity and macrophages (CD68, red) (Figure 4E).

To investigate whether the difference in hepatic uptake was due to the presence of MAA, 

Apoe−/− mouse livers were stained with LA24 and LA25 (Figure 4F). While LA25 stained 

liver samples, no staining was observed in sections treated with LA24. This suggests that the 

presence of MAA may account for the difference in liver uptake between 89Zr-LA25 and -
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LA24, although the longer circulation half-life of 89Zr-LA25 may also contribute to a higher 

nonspecific binding.

PET/MR IMAGING IN RABBITS

Atherosclerotic rabbits were dynamically scanned for 1 h immediately after intravenous 

injection of either 89Zr-LA25 or -LA24 (Figure 5A), and statically at 24 h p.i. (timeline in 

Online Figure 3A). SUV were measured in kidney, liver, and spleen, showing an increase in 

kidney uptake and a slight decrease in liver and spleen uptake for both Fabs over the course 

of 24 h (Figure 5B). Liver uptake was significantly higher in rabbits injected with 89Zr-

LA25 compared with 89Zr-LA24. Concordant with mouse immunostaining results (Figure 

4F), rabbit liver sections demonstrated specific staining with LA25 in areas of steatosis, with 

both intracellular and extracellular staining, whereas no staining was noted with LA24 

(Online Figure 3B). Splenic uptake was also higher in rabbits injected with 89Zr-LA25. 

Kidney uptake, however, was significantly higher for 89Zr-LA24 during the first hour and 24 

h post-injection. For an extensive biodistribution of the radiolabeled Fabs by PET in both 

healthy control and atherosclerotic rabbits, please see Online Figure 3C. Blood radioactivity 

half-life was longer for 89Zr-LA25 than 89Zr-LA24 (2.2 h vs. 1.1 h) (Figure 5C). Thus, as 

seen in mice (Figure 4A), the blood time-activity curve for 89Zr-LA25 in rabbits also 

showed relatively delayed clearance, although clearance was fairly fast (<30 min) for both 

Fabs. Importantly, PET/MR quantification results were corroborated by ex vivo gamma 

counting. All rabbits were sacrificed at 28 h post-injection and tissues harvested after 

thorough perfusion. Radioactivity counting revealed a significantly higher aortic uptake for 

89Zr-LA25 compared with 89Zr-LA24 in rabbits with atherosclerosis (0.022 ± 0.003% vs. 

0.006 ± 0.001 %ID/g; p = 0.02) (Figure 5D).

Autoradiography corroborated earlier results in mice: a heterogeneous radioactivity 

distribution pattern was found in the 89Zr-LA25 group in contrast with a homogenous 

distribution found for 89Zr-LA24 (Figure 5E). Extended ex vivo biodistribution data are 

provided in Online Figure 4A.

PHENOTYPING OF RABBIT ATHEROSCLEROTIC PLAQUES

To noninvasively assess disease burden in healthy New Zealand White rabbits versus New 

Zealand White rabbits with atherosclerosis, we combined 89Zr-LA25-PET with previously 

validated PET/MR imaging protocols. We simultaneously evaluated different hallmarks of 

advanced atherosclerotic plaques (i.e., OSEs, plaque area, and neo-vascularization), and 

assessed inflammation in an earlier session by 18F-FDG-PET (Online Figure 3A).

89Zr-LA25 uptake was evaluated in vivo by PET/MR 24 h after injection, when blood signal 

was low based on pharmacokinetic data (Online Figure 4B). Representative aortic coronal 

fused PET/MR images are shown in Figure 6A, in nonatherosclerotic and atherosclerotic 

rabbits injected with 89Zr-LA25. Uptake in the vessel wall was quantified by drawing ROIs 

on the aorta from the left renal artery to the iliac bifurcation. Radioactivity uptake was 

higher for 89Zr-LA25 in rabbits with atherosclerosis compared with healthy control rabbits, 

0.33 ± 0.09 g/ml vs. 0.25 ± 0.05 g/ml (Figure 6A, right). The PET/MR findings were 

confirmed by autoradiography, showing a heterogeneous deposition pattern in 
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atherosclerotic aortas compared with the homogenous lower uptake found in control aortas 

(Figure 6B, left), and ex vivo gamma counting (28 h post-injection) revealed a significantly 

higher uptake for 89Zr-LA25 in athero-sclerotic aortas (0.022 ± 0.003% vs. 0.005 

± 0.001 %ID/g; p = 0.02) (Figure 6B, right). Moreover, correlations between the target-to-

blood ratio of aortas as determined by PET (as ratio to withdrawn blood) and gamma 

counting showed a significant positive correlation (r = 0.97; p < 0.0001) (Online Figure 4C).

A significantly larger vessel wall area was measured for rabbits with atherosclerosis 

compared with their healthy control counterparts (0.29 ± 0.06 mm2 vs. 0.11 ± 0.03 mm2; p = 

0.03) (Figure 6C). At 48 h prior to 89Zr-LA25 injection, inflammation was assessed by 18F-

FDG-PET. Uptake in the abdominal aorta was significantly higher in atherosclerotic rabbits 

compared with healthy control rabbits (1.95 ± 0.19 g/ml vs. 0.36 ± 0.02 g/ml; p = 0.02) 

(Figure 6D). DCE-MR imaging was used to evaluate vascular permeability, which was 

numerically higher in atherosclerotic rabbits compared with control rabbits (4.29 ± 1.61 vs. 

1.82 ± 1.33; p = 0.11) (Figure 6E). We also used a fluorescently labeled reconstituted high-

density lipoprotein (rHDL) nanoparticle as a macrophage mapping agent that was injected 

24 h before sacrifice, as previously described (32). After euthanasia, all aortas were imaged 

by near infrared fluorescence (NIRF), which revealed approximately 100-fold higher 

fluorescence intensity in atherosclerotic aortas compared with control aortas (98 ± 16 × 109 

vs. 1.14 ± 0.18 × 109 μW/cm2; p = 0.03) (Figure 6F). In addition, NIRF imaging showed a 

heterogeneous fluorescence signal distribution in aortas from diseased rabbits, indicative of 

accumulation in atherosclerotic lesions.

Of note, we found a strong correlation between 89Zr-LA25 radioactivity and rHDL NIRF 

intensity in aortas (r = 0.83; p = 0.02), possibly suggesting a certain degree of macrophage 

uptake of 89Zr-LA25 (Online Figure 5). Strong correlations were found between rHDL 

fluorescence intensity and PET-derived FDG uptake (r = 0.67; p < 0.0001) (Online Figure 

6A), and ex vivo–quantified 89Zr-LA25 uptake and PET-derived FDG uptake (r = 0.79; p = 

0.03) (Online Figure 6B). Moreover, a significant correlation between 89Zr-LA25 

radioactivity and plaque area was found by T2-weighted MR (r = 0.83; p = 0.02) (Online 

Figure 6C). However, uptake of 89Zr-LA25 in the aorta showed no correlation with 

permeability as determined by DCE-MR (r = 0.57; p = 0.15) (Online Figure 6D).

Finally, to assess the feasibility of coronary imaging, we measured heart uptake by PET and 

calculated aorta-to-heart ratios for both 89Zr-LA25 and 18F-FDG. After a 4-h fast before 

injection, high myocardial uptake was observed for 18F-FDG as expected, while 

radioactivity accumulation for 89Zr-LA25 in the heart was low (Online Figure 7A). As a 

result, the aorta-to-heart ratio was 2.5-fold higher for 89Zr-LA25 compared with 18F-FDG 

(0.96 ± 0.13 vs. 0.38 ± 0.19; p = 0.06) (Online Figure 7B). This favorable ratio was also 

measured ex vivo for 89Zr-LA25 (2.10 ± 0.23).

EX VIVO PLAQUE CHARACTERIZATION

After rabbits were sacrificed for ex vivo validation, 1 abdominal aorta was divided into 

several different pieces and processed for histology. The first section in a set of slides was 

used for autoradiography and adjacent sections were stained with hematoxylin and eosin: 

RAM-11 for macrophages and Oil Red O for lipid content; representative images are shown 
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in Figure 7. Significant positive correlations were found between 89Zr-LA25 

autoradiography integrated density (mean gray value) and vessel wall area in pixels (r = 

0.90; p < 0.0001), macrophage area in pixels (r = 0.72; p = 0.0008), and lipid content (r = 

0.75; p = 0.0002) (Figure 7).

DISCUSSION

This study demonstrates for the first time the noninvasive PET/MR imaging of 

proinflammatory MAA epitopes in the context of atherosclerosis in mice and rabbits using a 

radiolabeled human antibody fragment (Central Illustration). High and specific uptake in 

atherosclerotic lesions and liver tissue was demonstrated in 2 animal models of 

atherosclerosis. The evidence for detecting clinically relevant atherosclerotic lesions is 

reflected by the histological evaluation that showed intensely stained advanced human 

fibroatheromas, ruptured plaques and their accompanying thrombi, as well as debris from 

distal protection devices. Additionally, we observed enhanced hepatic uptake and 

immunohistological evidence of MAA epitopes in the liver, suggesting that this may be a 

viable imaging biomarker to assess OSE accumulation in liver diseases.

Initial nuclear in vivo imaging studies targeting OSEs using the murine radiolabeled 

monoclonal antibody MDA2 showed specific uptake in mouse and rabbit atherosclerotic 

aortas (17,33,34). More recently, gadolinium (18), manganese (21), and ultrasmall 

superparamagnetic iron oxide (20) nanoparticles decorated with 3 different OSE-targeted 

antibodies or antibody fragments confirmed their utility as MR imaging contrast agents in 

mice. However, despite the proven feasibility of these imaging approaches as proof-of-

concept in targeting OSE, potential toxicity of paramagnetic metals (35), long circulation 

times, relative lack of sensitivity, and potential immunogenicity of such antibodies are major 

obstacles for clinical translation. In contrast, LA25 represents a human Fab antibody that 

was derived from newborns with minimal nontemplated insertions in the CDR3 region 

typical of natural antibodies. It therefore represents a class of antibodies that will be 

theoretically safer to translate clinically because they are fully human, require no structural 

manipulation for human use, and are also evolutionarily selected to have putative beneficial 

functions, such as clearing apoptotic cells containing OSEs or protecting against bacterial 

infections (15). In addition, the small size of the LA25 Fab fragment facilitates rapid renal 

excretion, resulting in short circulating half-lives and allowing optimal plaque-to-blood 

ratios for noninvasive imaging.

Interestingly, blood circulating times were longer for 89Zr-LA25 compared with 89Zr-LA24 

in atherosclerotic mice and rabbits, an observation consistent with prior studies using similar 

radiolabeled and OSE-targeted antibodies in nanoparticle formulations (17,18,20,21). The 

presence of circulating carriers of OSEs has been reported in the past, not only on 

circulating oxidized lipoproteins (34,36), but also on dying cells and microvesicles (37,38). 

All of these circulating MAA-bearing species serve as potential binding targets for 89Zr-

LA25 and may thus extend its half-life compared with 89Zr-LA24. However, a limitation of 

this study is that the mechanism for this difference was not fully elucidated and needs to be 

evaluated in future investigations.
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Increased uptake in the liver was also noted with 89Zr-LA25, along with immunohistological 

evidence of the presence of MAA epitopes. Indeed, MAA and oxidized phospholipid 

epitopes are enriched in nonalcoholic fatty liver disease and both alcoholic and nonalcoholic 

steatohepatitis (39–42). In that regard, the high and specific liver uptake of 89Zr-LA25 may 

also allow imaging of the presence of OSEs in humans with these conditions. With a global 

prevalence of liver steatosis around 25%, future research to further exploit the diagnostic 

capabilities of LA25-based radiotracers as imaging tools to noninvasively appraise fatty liver 

diseases might be warranted.

PET imaging showed increased radioactivity uptake for 89Zr-LA25 in atherosclerotic aortas 

compared with both healthy control aortas and to the control antibody LA24 in 

atherosclerotic aortas. In addition, fluorescent rHDL and 89Zr-LA25 showed similar 

distribution patterns in atherosclerotic aortas, as established by NIRF imaging and 

autoradiography. These findings suggest preferential accumulation of 89Zr-LA25 in 

atherosclerotic lesions throughout the aorta. Strong correlations between 89Zr-LA25 

radioactivity uptake measured by gamma counting and previously validated imaging 

methods to measure atherosclerosis burden were found, further substantiating the notion of a 

specific accumulation in atherosclerotic lesions. As both 18F-FDG and rHDL serve as 

markers for macrophage accumulation and activity, the strong observed correlations suggest 

a high degree of colocalization of 89Zr-LA25 with macrophages, as observed in mice by 

immunofluorescence. Because OxLDL with concomitant OSEs is engulfed by macrophages, 

these findings further strengthen our hypothesis that 89Zr-LA25-bound OxLDL is taken up 

by macrophages in atherosclerotic lesions. Macrophages undergoing apoptosis and/or 

necrosis, as well as microvesicles, which bear OSEs, would also similarly bind LA25 and 

may account for the strong LA25 staining of necrotic areas noted in the human tissues.

Through development of different tracers and contrast agents targeting different hallmarks of 

plaque progression, molecular imaging has provided new insight into the pathophysiology of 

atherosclerosis (7,43). As a result, plaque inflammation has been widely studied in several 

animal models as well as in humans using 18F-FDG (44), and hypoxia-induced 

neovascularization in the plaque has been imaged by DCE-MR imaging (45). Moreover, 

recent studies have reported the use of radiotracers to evaluate a variety of processes 

involved in plaque progression, such as microcalcification (46), angiogenesis (47), and 

macrophage proliferation (48). Indeed, 89Zr-LA25 shows promise as a coronary 

atherosclerosis PET imaging agent given its ~2.5-fold higher aorta/myocardial uptake ratio 

in diseased animals than the currently approved 18F-FDG. Although this would potentially 

allow for better identification of lesions in these arteries, further optimization is needed 

because both the absolute uptake and the ratio itself were low at the selected imaging time 

point.

In a quest to predict future events, imaging studies have primarily focused on these well-

known characteristics in individual plaques. However, focusing on culprit lesions has 

resulted in poor predictive value, and recent insights suggest that our attention should rather 

be on the total atherosclerotic disease burden (3). In this setting, radiotracers might be 

attractive candidates to assess the degree and extent of atherosclerosis as a systemic disease 

and eventually monitor therapeutic response. Recent data from the SPARCL (Lipitor in the 
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Prevention of Stroke, for Patients Who Have Had a Previous Stroke) trial show that 

apolipoprotein B-100–bound oxidized phospholipids are an excellent predictor of recurrent 

stroke and first major coronary events in patients with prior stroke or transient ischemic 

attack, despite treatment with high-dose atorvastatin (13). Therefore, OSE-targeted radio-

labeled LA25 may aid disease management in patients who are at high risk of developing 

cardiovascular events (e.g., best medical treatment vs. preventive interventions, as in 

[a]symptomatic carotid disease). Moreover, to prove statistical differences, randomized 

controlled trials often require large subsets of patients that need to be followed up until 

reaching endpoints, typically mortality; this leads to a long and costly process. In this 

setting, imaging can assist in the development of new cardiovascular therapies by evaluating 

atherosclerosis burden, serving as a reliable readout in the assessment of treatment response 

(49).

STUDY LIMITATIONS

In this study, LA25 was labeled with the long-lived 89Zr to facilitate extensive ex vivo 

characterization. For clinical application, the use of a shorter-lived radioisotope whose 

physical half-life matches the biological half-life of the Fab such as 64Cu is preferable. In 

addition, and based on pharmacokinetic data, imaging at an earlier time after injection of the 

radiotracer would be desirable. Partial volume effects might have influenced the values in 

the aortic vessel wall, although maximum SUV is a well-established parameter in nuclear 

imaging (50). In a clinical scenario, however, target-to-blood ratios could compensate for 

these effects, which is not possible in rabbits. Although currently limited to research 

purposes, PET/MR imaging use for evaluating atherosclerosis is superior to PET/CT without 

compromising accuracy as we have shown with a significant positive correlation between ex 

vivo and in vivo uptake of 89Zr-LA25 in rabbit aortas, and previously for other agents 

(32,51).

CONCLUSIONS

LA25 detects MAA epitopes, immunostains advanced human atherosclerotic lesions and 

may facilitate noninvasive imaging of atherosclerosis using PET imaging. This radiotracer 

could further help characterize the disease process and ultimately serve as a marker in a 

clinical setting to evaluate and inform therapeutic interventions.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS AND ACRONYMS

DCE dynamic contrast enhanced

Fab antigen-binding fragment

ID injected dose

MAA malondialdehyde-acetaldehyde

MR magnetic resonance

NIRF near infrared fluorescence

OSE oxidation-specific epitope

OxLDL oxidized low-density lipoprotein

PET positron emission tomography

SUV standardized uptake value
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE

Proinflammatory, oxidation-specific epitopes are present in atherosclerotic lesions and 

steatotic livers, and elevated plasma levels predict cardiovascular events. Radiolabeled 

human antibody fragments such as 89Zr-LA25 allow PET imaging of these epitopes.

TRANSLATIONAL OUTLOOK

Further research with 89Zr-LA25–based imaging could facilitate disease localization and 

risk prediction and guide therapeutic interventions.
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FIGURE 1. Cloning and Characterization of the MAA-Targeted LA25 Antibody Fragment
(A) Schematic depiction of malondialdehyde-acetaldehyde (MAA) low-density lipoprotein 

(LDL). (B) The configuration of soluble LA25 Fab antibody fragment. The LA25 lambda 

light-chain and heavy-chain with a hexa-histidine and the influenza hemagglutinin (HA) 

epitope tag for detection and purification were expressed under the direction of lacZ 

promoter for phage display or Fab production in E. coli. Proteolysis of the ompA and pelB 

signal peptides in the periplasm generated the native amino terminus of Fab and facilitated 

the joining of heavy and light chains together by disulfide bonds as bioactive soluble Fab. 

(C) Binding of LA25 to a variety of oxidation-specific epitopes. Competition assays for the 

specificity of LA25 binding to MAA-LDL (D) and MAA-BSA (E). LA25 was incubated in 

the absence and presence of increasing amounts of indicated competitors, and the extent of 

binding to plated MAA-BSA and MAA-LDL was determined. Inhibition of MAA-LDL 

binding to macrophage scavenger receptors by LA25 (F). Data are expressed as a ratio of 

binding in the presence of competitor (B) divided by absence of competitor (B0). BSA = 

bovine serum albumin; Cu-OxLDL = copper-oxidized low-density lipoprotein; MDA = 

malondialdehyde; MSA = mouse serum albumin.

Senders et al. Page 17

J Am Coll Cardiol. Author manuscript; available in PMC 2018 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. Immunostaining of Human Pathological Specimens With LA25
Immunostaining with LA25 and control antibody LA24 of coronary artery specimens 

representing pathological intimal thickening (top row), thick cap fibroatheroma with 

multiple ruptures and healing phases (middle row) and a ruptured plaque containing 

thrombus (bottom row), stained with hematoxylin and eosin (H&E), Movat pentachrome, 

LA25, and LA24 Fab control. Note the presence of thrombus in this section, which also 

stains with LA25.
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FIGURE 3. Immunostaining of Sections From Embolized Plaque Debris With LA25
Captured plaque debris from 2 distal protection devices following percutaneous coronary 

intervention. The material was stained with LA25 for malondialdehyde-acetaldehyde 

(MAA) epitopes, MDA3 antibody for MDA epitopes, and E06 antibody for OxPL epitopes. 

No-antibody (control) and LA24 control sections are also shown. MDA = malondialdehyde; 

OxPL = Oxidized phospholipids.

Senders et al. Page 19

J Am Coll Cardiol. Author manuscript; available in PMC 2018 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 89Zr-LA25 Evaluation in Apoe−/− Mice
(A) Blood time-activity curve for 89Zr-LA25 and -LA24. Gamma counting (B) and 

autoradiography (C) of aortas from Apoe−/− mice injected with 89Zr-LA24 (blue) and 89Zr-

LA25 (red). (D) Radioactivity distribution in selected tissues in Apoe−/− mice 4 h post-

injection. (E) From left to right, top row: aortic root sections from an Apoe−/− mouse 

stained for cell nuclei (DAPI, blue) and macrophages (CD68, red), and autoradiography of 

an adjacent section after 89Zr-LA25 injection; below: same aortic root section stained for 

endothelial cells (CD31, green), a merged image (middle), and a 40× magnification (right). 
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(F) Atherosclerotic mouse livers stained with LA24, LA25 (including 40× magnification), 

and no-antibody control section are shown. *p < 0.05.
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FIGURE 5. 89Zr-LA25 PET/MR Imaging in Rabbits
(A) Representative coronal fused positron emission tomography (PET)/magnetic resonance 

(MR) images at 20, 40, and 60 min post-injection (p.i.) of 89Zr-LA25 (top) and 89Zr-LA24 

(bottom). (B) Radioactivity quantification in major organs in atherosclerotic rabbits based 

on PET/MR imaging (10 to 60 min), and 24 h p.i. (C) Pharmacokinetics in atherosclerotic 

rabbits for 89Zr-LA24 and -LA25, with half-lives of 1.1 and 2.2 h, respectively. Ex vivo 

radioactivity concentration (D) and autoradiography (E) for 89Zr-LA24 and -LA25 in aortas 

from rabbits with atherosclerosis 28 h p.i. *p < 0.05. SUV = standardized uptake value.
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FIGURE 6. Phenotyping of Rabbit Atherosclerotic Plaques by PET/MR Imaging
(A) Representative coronal aortic fused PET/MR imaging 24 h p.i. of 89Zr-LA25, (B) 
autoradiographs and gamma counting (whole aortas) 28 h p.i. of 89Zr-LA25, (C) MR T2-

weighted imaging, (D) 18F-fluorodeoxyglucose (18F-FDG) PET/MR imaging, (E) dynamic 

contrast enhanced (DCE)-MR imaging, and (F) fluorescently labeled (DiD)-rHDL near 

infrared fluorescence imaging, of healthy control (white) and atherosclerotic abdominal 

aortas (black). *p < 0.05. IAUC = area under the normalized signal intensity curve; MWA = 

mean wall area; SUV = standardized uptake value.
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FIGURE 7. Ex Vivo Plaque Characterization
Digital autoradiography of atherosclerotic rabbit aorta sections with adjacent slides stained 

for hematoxylin and eosin, RAM-11, and Oil Red O, with corresponding masks and merged 

images with autoradiography. On the right, correlations are shown between autoradiography 

and vessel wall area, RAM-11, and Oil Red O.
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CENTRAL ILLUSTRATION. Targeting Atherothrombosis With 89Zr-LA25
Atherosclerotic lesions are initiated by accumulation of lipoproteins. The modification of 

lipoproteins generates pro-inflammatory oxidation-specific epitopes, such as 

malondialdehyde-acetaldehyde (MAA) adducts, which lead to immune cell recruitment to 

the subintimal space. Accumulation of oxidized lipids results in foam cell formation and, 

ultimately, complex atherothrombotic lesions. LA25 is a human Fab antibody fragment 

discovered in the deoxyribonucleic acid (rather than plasma) of newborn babies prior to 

environmental exposure, consistent with evolutionary conservation. LA25 was found to 

specifically bind MAA epitopes and engineered to carry the positron emission tomography 

(PET) isotope 89Zr. Using an integrated PET/magnetic resonance imaging (MRI) system, 
89Zr-LA25 was shown to noninvasively image mouse and rabbit atherosclerotic lesions, as 

well as MAA-rich steatotic livers. Fab = antigen-binding fragment; LDL = low-density 

lipoprotein; MAb = monclonal antibody; ROS = reactive oxygen species.
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