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Some Nonregular Designs From the Nordstrom and Robinson

Code and Their Statistical Properties

HONGQUAN XU

Department of Statistics, University of California, Los Angeles, CA 90095-1554, U.S.A.

(hqxu@stat.ucla.edu)

Summary

The Nordstrom and Robinson code is a well-known nonlinear code in coding theory. This paper

explores the statistical properties of this nonlinear code. Many nonregular designs with 32, 64,

128 and 256 runs and 7–16 factors are derived from it. It is shown that these nonregular designs

are better than regular designs of the same size in terms of resolution, aberration and projectivity.

Furthermore, many of these nonregular designs are shown to have generalized minimum aberration

among all possible designs. Seven orthogonal arrays are shown to have unique wordlength pattern

and four of them are shown to be unique up to isomorphism.

Some key words: Generalized minimum aberration; Generalized resolution; Generalized wordlength

pattern; Linear programming; MacWilliams identity; Orthogonal array; Projectivity.

1 Introduction

Fractional factorial designs with factors at two levels are among the most widely used experimental

designs. Regular fractional factorial designs are specified by some defining relations among the

factors. They are typically chosen by the minimum aberration criterion (Fries & Hunter, 1980),

which includes the maximum resolution criterion (Box & Hunter, 1961) as a special case. There

are many recent results on the construction and properties of minimum aberration designs; see Wu

& Hamada (2000, Ch. 4) for details and references.

There has been increasing interest in the study of nonregular designs because they enjoy some

good projection properties; see Lin & Draper (1992), Wang & Wu (1995), Cheng (1995, 1998)

and Box & Tyssedal (1996). The concepts of resolution and aberration have been extended to

nonregular designs; see Deng & Tang (1999), Tang & Deng (1999), Ma & Fang (2001), Xu &

Wu (2001) and Xu (2003). Nonregular designs from Hadamard matrices of order 16, 20 and 24

have been cataloged by Deng & Tang (2002) with a computer search. The construction of good

nonregular designs remains challenging especially when the size is large.
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This paper studies some nonregular designs derived from a well-known code in coding theory.

A regular design is known as a linear code and a nonregular design is simply a nonlinear code.

The connection between codes in coding theory and designs in statistics was first observed by Bose

(1961). The Nordstrom and Robinson (NR) code, a well-known nonlinear code, was originally

constructed by Nordstrom and Robinson (1967) and has been studied extensively in coding theory;

see MacWilliams & Sloane (1977, Ch. 2 and 15). On the statistical side, the NR code is a nonlinear

orthogonal array with 256 runs, 16 factors, two levels and strength 5 while a linear orthogonal array

of the same size has strength at most 4 (Hedayat, Sloane & Stufken, 1999, Ch. 5 § 10). However,

the statistical properties of the NR code have not been fully explored.

The NR code, as well as some background information on notation and definitions, is described

in § 2. Many nonregular designs with 32, 64, 128 and 256 runs and 7–16 factors are derived from

it and their statistical properties are studied in § 3. It is shown that these nonregular designs are

better than regular designs of the same size in terms of resolution, aberration and projectivity.

Some associated theoretic questions are addressed in § 4. With MacWilliams identities and linear

programming, many of these nonregular designs are shown to have generalized minimum aberra-

tion among all possible designs. Furthermore, seven orthogonal arrays are shown to have unique

wordlength pattern and four of them are shown to be unique up to isomorphism.

2 Background

2.1 Notation and definitions

A design D of N runs and n factors is represented by an N ×n matrix where each row corresponds

to a run and each column a factor. A two-level design takes on only two symbols, say −1 or +1.

For s = {c1, . . . , ck}, a subset of k columns of D, define

Jk(s) =

∣∣∣∣∣
N∑

i=1

ci1 · · · cik

∣∣∣∣∣ , (1)

where cij is the ith component of column cj . When D is a regular design, Jk(s) takes on only two

values: 0 or N . In general, 0 ≤ Jk(s) ≤ N . If Jk(s) = N , these k columns in s form a word of

length k.

Suppose that r is the smallest integer such that max|s|=r Jr(s) > 0, where the maximization is

over all subsets of r columns of D. The generalized resolution (Deng & Tang, 1999) of D is defined
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as R(D) = r + [1−max|s|=r Jr(s)/N ]. Let

Ak(D) = N−2
∑
|s|=k

[Jk(s)]2. (2)

The vector (A1(D), . . . , An(D)) is the generalized wordlength pattern. The generalized minimum

aberration criterion, called minimum G2-aberration by Tang & Deng (1999), is to sequentially

minimize A1(D), A2(D), . . . , An(D). When restricted to regular designs, generalized resolution,

generalized wordlength pattern and generalized minimum aberration reduce to the traditional res-

olution, wordlength pattern and minimum aberration, respectively. In the rest of the paper, we

simply use resolution and wordlength pattern for both regular and nonregular designs, but use

GMA for generalized minimum aberration and MA for minimum aberration.

A two-level design D of N runs and n factors is an orthogonal array (OA) of strength t, denoted

by OA(N,n, 2, t), if all possible 2t level combinations for any t factors appear equally often. Deng

& Tang (1999) showed that a design has resolution r ≤ R < r + 1 if and only if it is an OA of

strength t = r − 1.

A two-level design is said to have projectivity p (Box & Tyssedal, 1996) if any p-factor projection

contains a complete 2p factorial design, possibly with some points replicated. A regular design with

resolution R = r is an OA of strength r− 1 and hence has projectivity r− 1. Deng & Tang (1999)

showed that a design with resolution R > r has projectivity p ≥ r.

A two-level design is also called a binary code in coding theory. For two row vectors a and b,

the Hamming distance dH(a, b) is the number of places where they differ. Let

Bj(D) = N−1 |{(a, b) : a, b are row vectors of D, and dH(a, b) = j}| .

The vector (B0(D), B1(D), . . . , Bn(D)) is called the distance distribution of D. The minimum

distance d is the smallest integer k ≥ 0 such that Bk(D) > 0. A design D of N runs, n factors and

minimum distance d is called an (n, N, d) code in coding theory. See Hedayat et al. (1999, Ch. 4)

for an introduction to coding theory and applications on OAs.

Xu and Wu (2001) showed that the wordlength pattern is the MacWilliams transform of the

distance distribution, i.e.,

Aj(D) = N−1
n∑

i=0

Pj(i;n)Bi(D) for j = 0, . . . , n, (3)

where Pj(x;n) =
∑j

i=0(−1)i
(x

i

)(n−x
j−i

)
are the Krawtchouk polynomials and A0(D) = 1. By the
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orthogonality of the Krawtchouk polynomials, it is easy to show that

Bj(D) = N 2−n
n∑

i=0

Pj(i;n)Ai(D) for j = 0, . . . , n. (4)

The equations (3) and (4) are known as the generalized MacWilliams identities.

2.2 Nordstrom and Robinson code

The original NR code (Nordstrom & Robinson, 1967) has 15 columns, labeled as

X0, X1, . . . , X7, Y0, Y1, . . . , Y6,

where X0, . . . , X7 are information bits (or independent columns) and Y0, . . . , Y6 are redundant bits

(or dependent columns). Each Y is a Boolean function of the X’s. Y0 is defined as follows:

Y0 = X7 ⊕X6 ⊕X0 ⊕X1 ⊕X3 ⊕ (X0 ⊕X4)(X1 ⊕X2 ⊕X3 ⊕X5)⊕ (X1 ⊕X2)(X3 ⊕X5), (5)

where ⊕ denotes modulo 2 addition. Note that the X’s and Y ’s take on value 0 or 1 here. The

remaining Y ’s are found by cyclically shifting X0 through X6; i.e., for Yj substitute Xi+j (mod 7)

for Xi in (5) where i = 0, 1, . . . , 6 for each j = 0, 1, . . . , 6.

The extended NR code has an additional column, labeled as Y7, where

Y7 = X0 ⊕X1 ⊕ · · · ⊕X7 ⊕ Y0 ⊕ Y1 ⊕ · · · ⊕ Y6.

The extended NR code is a design of 256 runs and 16 factors when X0, . . . , X7 are evaluated at

28 possible level combinations. It is well known in coding theory that the distance distribution

coincides with the MacWilliams transform of the distance distribution, and they are:

i : 0 6 8 10 16

Ai = Bi : 1 112 30 112 1

The extended NR code is a (16, 256, 6) code and an OA(256, 16, 2, 5).

There are several different constructions for the NR code; see MacWilliams & Sloane (1977,

Ch. 2) and Hedayat et al. (1999, Ch. 5 § 10). Nevertheless, it is known that a (16, 256, 6) code is

unique up to isomorphism (MacWilliams & Sloane, 1977, p. 74–75). Two designs (or codes) are

said to be isomorphic if one can be obtained from the other by permuting the rows, the columns

and the symbols of each column.
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3 Nonregular designs from the Nordstrom and Robinson code

3.1 Designs of 256 runs

First we study the projection property of the extended NR code in term of the Jk(s) values defined

in (1). The Jk’s are zero except (possibly) for J6, J8, J10 and J16 because the Ak’s are zero except

for A6, A8, A10 and A16. With a computer, it is straightforward to verify that there are 448 six-

factor projections with J6 = 128, 30 words of length 8 (i.e., J8 = 256), 448 ten-factor projections

with J10 = 128, one word of length 16 (i.e., J16 = 256), and all other Jk(s) = 0. Therefore, the

frequencies of the nonzero Jk values are

J6 : 128 J8 : 256 J10 : 128 J16 : 256

448 30 448 1

The extended NR code has resolution 6.5 and hence has projectivity at least 6. Indeed, it can

be verified that it has projectivity 7. For comparison, a regular MA design of the same size has

resolution 5 and projectivity 4.

Note that a regular MA design of 256 runs has resolution 5 for 13–16 factors and resolution

6 for 10–12 factors (Draper & Lin, 1990). An immediate conclusion is that any projection design

with 10–16 columns from the extended NR code has higher resolution and better projectivity than

any regular design of the same size.

Next we study the projection designs (or subdesigns). It is evident that any subdesign of

15 factors is an OA(256, 15, 2, 5) and a (15, 256, 5) code. The wordlength pattern is uniquely

determined by the MacWilliams identities because the only nonzero Ai values are A0 = 1, A6, A8

and A10, and B0 = 1, Bi = 0 for i = 1, 2, 3, 4. Indeed, the first three identities of (4) are

2−7[1 + A6 + A8 + A10] = B0 = 1,

2−7[15 + 3A6 −A8 − 5A10] = B1 = 0,

2−7[105− 3A6 − 7A8 + 5A10] = B2 = 0.

There is a unique solution: A6 = 70, A8 = 15, A10 = 42 and all other Ai = 0.

Similarly, any subdesign of 14 factors is an OA(256, 14, 2, 5) and a (14, 256, 4) code. Again, the

wordlength pattern is uniquely determined by the MacWilliams identities: A6 = 42, A8 = 7, A10 =

14 and all other Ai = 0. Any subdesign of 13 factors is an OA(256, 13, 2, 5) and a (13, 256, 3)

code. Again, the wordlength pattern is uniquely determined by the MacWilliams identities: A6 =
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Table 1: GMA designs of 256 runs from the NR code

n Columns R (A6, . . . , An)

9 1–8, 16 8 (0,0,1,0)
10 1–9, 16 6.5 (2,0,1,0,0)
11 1–10, 16 6.5 (6,0,1,0,0,0)
12 1–10, 14, 16 6.5 (12,0,3,0,0,0,0)
13 any 13 columns 6.5 (24,0,3,0,4,0,0,0)
14 any 14 columns 6.5 (42,0,7,0,14,0,0,0,0)
15 any 15 columns 6.5 (70,0,15,0,42,0,0,0,0,0)
16 1–16 6.5 (112,0,30,0,112,0,0,0,0,0,1)

24, A8 = 3, A10 = 4 and all other Ai = 0. The wordlength patterns are not unique for subdesigns

of 6–12 factors.

Table 1 shows GMA subdesigns for 9–16 factors from the extended NR code, their resolutions

and wordlength patterns (A1 = · · · = A5 = 0 are omitted). Corresponding regular MA designs can

be found in Chen & Wu (1991) for 9–12 factors, Chen (1992) for 13 factors, and Franklin (1984) for

14–16 factors. Whether Franklin’s designs have MA needs to be verified, though. Compared with

the regular MA design, the GMA design given in Table 1 has more aberration for 9–10 factors, the

same aberration for 11–12 factors and less aberration for 13–16 factors. The GMA design for 9

factors is a regular design.

3.2 Designs of 128 runs

From the extended NR code, one gets a design of 128 runs and 15 factors by taking the runs that

begin with X0 = 0 and omitting the column X0. This technique is known as shortening in coding

theory and the resulting design is known as the shortened NR code. It is evident that the shortened

NR code is an OA(128, 15, 2, 4) and a (15, 128, 6) code. It is known that a (15, 128, 6) code is unique

(MacWilliams & Sloane, 1977, p. 75).

The wordlength pattern of the shortened NR code is again uniquely determined by the MacWilliams

identities. The only nonzero Bi values are B0 = 1, B6, B8 and B10; and A0 = 1, Ai = 0 for

i = 1, 2, 3, 4. Indeed, the first three identities of (3) are

2−7[1 + B6 + B8 + B10] = A0 = 1,
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Table 2: GMA designs of 128 runs from the NR code

n Columns R (A5, . . . , An)

8 1–3, 5, 7–9, 13 8 (0,0,0,1)
9 1–8, 15 5.5 (1,1,1,0,0)
10 1–9,15 5.5 (3,3,1,0,0,0)
11 1–9, 13, 15 5.5 (6,6,2,1,0,0,0)
12 1–12 5.5 (11,13,2,1,3,1,0,0)
13 any 13 columns 5.5 (18,24,4,3,10,4,0,0,0)
14 any 14 columns 5.5 (28,42,8,7,28,14,0,0,0,0)
15 1–15 5.5 (42,70,15,15,70,42,0,0,0,0,1)

2−7[15 + 3B6 −B8 − 5B10] = A1 = 0,

2−7[105− 3B6 − 7B8 + 5B10] = A2 = 0.

There is a unique solution: B6 = 70, B8 = 15, B10 = 42. By the MacWilliams identities (3), one

gets A0 = 1, A5 = 42, A6 = 70, A7 = 15, A8 = 15, A9 = 70, A10 = 42, A15 = 1 and all other

Ai = 0. It is interesting to note that the wordlength pattern is the MacWilliams transform of the

wordlength pattern of the OA(256, 15, 2, 5) described in § 3.1.

The frequencies of the nonzero Jk values are

J5 : 64 J6 : 64 J7 : 128 J8 : 128 J9 : 64 J10 : 64 J15 : 128

168 280 15 15 280 168 1

The shortened NR code has resolution 5.5 and projectivity 6 (not 5). For comparison, a regular

MA design of the same size has resolution 4 and projectivity 3.

Note that a regular MA design of 128 runs has resolution 4 for 12–15 factors and resolution

5 for 10–11 factors (Draper & Lin, 1990). An immediate conclusion is that any projection design

with 10–15 columns from the shortened NR code has higher resolution and better projectivity than

any regular design of the same size.

Table 2 shows GMA subdesigns for 8–15 factors from the shortened NR code, their resolutions

and wordlength patterns. Corresponding regular MA designs can be found in Chen & Wu (1991)

for 8–11 factors, Chen (1992) for 12 factors, Chen (1998) for 13–14 factors, and Franklin (1984)

for 15 factors. Again, whether the Franklin’s design has MA needs to be verified. Compared with

the regular MA design, the GMA design given in Table 2 has more aberration for 9 factors, the
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Table 3: GMA designs of 64 runs from the NR code

n Columns R (A4, . . . , An)

7 1,2,4,6–8,12 7 (0,0,0,1)
8 1–6,13,14 5.5 (0,2,1,0,0)
9 1–7,11,13 4.5 (1,4,2,0,0,0)
10 1–7,11,13,14 4.5 (2,8,4,0,1,0,0)
11 1–9,11,13 4.5 (4,14,8,0,3,2,0,0)
12 1–9,11,13,14 4.5 (6,24,16,0,9,8,0,0,0)
13 any 13 columns 4.5 (10,36,28,8,21,20,4,0,0,0)
14 1–14 4.5 (14,56,49,16,49,56,14,0,0,0,1)

same aberration for 8, 10–11 factors and less aberration for 12–15 factors. The GMA design for 9

factors is of interest because it has projectivity 6 while a regular MA design of the same size has

projectivity 5. The GMA design for 8 factors is a regular MA design.

3.3 Designs of 64 runs

From the shortened NR code, one gets a design of 64 runs and 14 factors by taking the runs

that begin with X1 = 0 and omitting the column X1. It is evident that the resulting design

is an OA(64, 14, 2, 3) and a (14, 64, 6) code. It is again known that a (14, 64, 6) code is unique

(MacWilliams & Sloane, 1977, p. 75).

The wordlength pattern of the OA(64, 14, 2, 3) is determined by the MacWilliams identities and

is the MacWilliams transform of the wordlength pattern of the OA(256, 14, 2, 5) described in § 3.1.

The frequencies of the nonzero Jk values are

J4 : 32 J5 : 32 J6 : (64, 32) J7 : 64 J8 : (64, 32) J9 : 32 J10 : 32 J14 : 64

56 224 (7, 168) 16 (7, 168) 224 56 1

The OA(64, 14, 2, 3) has resolution 4.5 and projectivity 5 (not 4). For comparison, a regular MA

design of the same size has resolution 4 and projectivity 3.

Note that a regular MA design of 64 runs and 9–14 factors has resolution 4 (Draper & Lin, 1990).

An immediate conclusion is that any projection design with 9–14 columns from the OA(64, 14, 2, 3)

has higher resolution and better projectivity than any regular design of the same size.

Cheng (1998) showed that as long as an OA of strength three has no defining word of length

four, its projection onto any five factors allows the estimation of all the main effects and two-
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factor interactions when the higher-order interactions are negligible. It can be verified that the

OA(64, 14, 2, 3) has the stronger property that its projection onto any seven factors allows the

estimation of all the main effects and two-factor interactions.

Table 3 shows GMA subdesigns for 7–14 factors, their resolutions and wordlength patterns.

Compared with the corresponding regular MA design (see Chen, Sun & Wu, 1993), the GMA

design given in Table 3 has the same aberration for 7–12 factors and less aberration for 13–14

factors. The GMA design for 8 factors has resolution 5.5 while the regular MA 28−2 design has

resolution 5 although they have the same wordlength pattern. The GMA design for 7 factors is a

regular MA design.

3.4 Designs of 32 runs

From the (14, 64, 6) code, one gets a design of 32 runs and 13 factors by taking the runs that

begin with X2 = 0 and omitting the column X2. It is evident that the resulting design is

an OA(32, 13, 2, 2) and a (13, 32, 6) code. It is again known that a (13, 32, 6) code is unique

(MacWilliams & Sloane, 1977, p. 75).

The wordlength pattern of the OA(32, 13, 2, 2) is determined by the MacWilliams identities and

is the MacWilliams transform of the wordlength pattern of the OA(256, 13, 2, 5) described in § 3.1.

The frequencies of the nonzero Jk values are

J3 : 16 J4 : 16 J5 : (32, 16) J6 : (32, 16) J7 : (32, 16) J8 : (32, 16) J9 : 16 J10 : 16 J13 : 32

16 120 (3, 216) (12, 96) (12, 96) (3, 216) 120 16 1

The OA(32, 13, 2, 2) has resolution 3.5 and projectivity 4 (not 3). Note that a regular MA design

of 32 runs and 7–13 factors has resolution 4 and projectivity 3. An immediate conclusion is that

any projection design with 7–13 columns from the OA(32, 13, 2, 2) has better projectivity than any

regular design of the same size.

Cheng (1995) showed that as long as an OA of strength two has no defining word of length

three or four, its projection onto any four factors allows the estimation of all the main effects and

two-factor interactions when the higher-order interactions are negligible. It can be verified that

the OA(32, 13, 2, 2) has the stronger property that its projection onto any five factors allows the

estimation of all the main effects and two-factor interactions.

Table 4 shows GMA subdesigns for 6–13 factors, their resolutions and wordlength patterns.

Compared with the corresponding regular MA design (see Chen et al., 1993), the GMA design

9



Table 4: GMA designs of 32 runs from the NR code

n Columns R (A3, . . . , An)

6 1,3,5–7, 11 6 (0,0,0,1)
7 1–6, 13 4.5 (0,1,2,0,0)
8 1–6, 10, 12 4.5 (0,3,4,0,0,0)
9 1–6, 10, 12, 13 4.5 (0,6,8,0,0,1,0)
10 1–7, 10, 12, 13 3.5 (1,9,14,2,1,4,0,0)
11 1–9, 11, 13 3.5 (2,14,22,8,6,9,2,0,0)
12 1–12 3.5 (3,21,35,19,17,22,9,1,0,0)
13 1–13 3.5 (4,30,57,36,36,57,30,4,0,0,1)

given in Table 4 has the same aberration for 6–9 factors and more aberration for 10–13 factors.

The GMA design for 7-9 factors has resolution 4.5 while the corresponding regular MA design has

resolution 4 although they have the same wordlength pattern. The GMA design for 6 factors is a

regular MA design.

4 Some theoretical results

The MacWilliams identities provide a powerful tool in the study of coding theory and factorial

design. Based on the MacWilliams identities and the fact that the wordlength pattern Ai and

the distance distribution Bi are always nonnegative, linear programming technique can be used to

establish bounds on the maximum size of a code for given length and distance and bounds on the

minimum size of an OA for given number of constraints and strength; see MacWilliams and Sloane

(1977, Ch. 17 § 4) and Hedayat et al. (1999, Ch. 4 § 5). Here we use MacWilliams identities and

linear programming to show that many nonregular designs derived from the NR code indeed have

GMA among all possible designs.

From the definition (2), it is easy to see that 0 ≤ Ak ≤
(n
k

)
< 2n for all k. Because N2Ak is an

integer, sequentially minimizing A1, A2, . . . , An is equivalent to minimizing
∑n

j=1 λn−jAj , where λ

is any number that is larger than or equal to N22n.

Suppose an OA(N,n, 2, t) exists. Then a GMA design of N runs and n factors must satisfy

A1 = . . . = At = 0 and sequentially minimizes At+1, At+2, . . . , An. So we consider the following

10



linear programming problem:

minimize
n∑

j=t+1

(N22n)n−jAj (6)

subject to

n∑
j=t+1

Aj ≥ (N−12n)− 1, (7)

n∑
j=t+1

Pi(j;n)Aj ≥ −Pi(0;n) for i = 1, . . . , n, (8)

Aj ≥ 0 for j = t + 1, . . . , n. (9)

where inequality (7) corresponds to B0 ≥ 1 and (8) corresponds to Bi ≥ 0.

An optimal solution to (6) gives a feasible GMA wordlength pattern. If the wordlength pattern

of a design coincides with the optimal solution, then the design must have GMA among all possible

designs.

As an example, consider the case of N = 32 and n = 7 where an OA(32, 7, 2, 3) exists. The

constraints (7)–(9) are

A4 + A5 + A6 + A7 ≥ 3, (10)

−A4 − 3A5 − 5A6 − 7A7 ≥ −7, (11)

−3A4 + A5 + 9A6 + 21A7 ≥ −21,

3A4 + 5A5 − 5A6 − 35A7 ≥ −35,

3A4 − 5A5 − 5A6 + 35A7 ≥ −35,

−3A4 −A5 + 9A6 − 21A7 ≥ −21,

−A4 + 3A5 − 5A6 + 7A7 ≥ −7,

A4 −A5 + A6 −A7 ≥ −1,

A4 ≥ 0, A5 ≥ 0, A6 ≥ 0, A7 ≥ 0. (12)

Adding 3× (10) to (11) yields 2A4 − 2A6 − 4A7 ≥ 2 or A4 ≥ A6 + 2A7 + 1 ≥ 1 due to (12). When

A4 = 1, A6 and A7 must be zero, and hence A5 ≥ 2 from (10). Therefore, an optimal solution is

A4 = 1, A5 = 2, A6 = 0, A7 = 0, which satisfies all constraints. Recall that the GMA design for 7

factors given in Table 4 has this wordlength pattern. Therefore, it has GMA among all possible

designs.
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Table 5: Optimal solutions to the linear programming problem (6)

N n (A4, . . . , An) Design

32 6 (0, 0, 1) MA
32 7 (1, 2, 0, 0) MA or NR
32 8 (3, 4, 0, 0, 0) MA or NR
32 9 (6, 15

2 , 1, 0, 0, 1
2)

32 10 (10, 16, 0, 0, 5, 0, 0) MA
32 11 (20, 18, 4, 12, 7, 2, 0, 0)
32 12 (125

4 , 26, 14, 28, 35
2 , 10, 0, 0, 1

4)
32 13 (93

2 , 363
10 , 174

5 , 286
5 , 216

5 , 33, 6
5 , 6

5 , 13
10 , 3

10)

64 7 (0, 0, 0, 1) MA
64 8 (0, 2, 1, 0, 0) MA or NR
64 9 (1, 4, 2, 0, 0, 0) MA or NR
64 10 (5

3 , 8, 5, 0, 0, 0, 1
3)

64 11 (3, 14, 11, 0, 0, 2, 1, 0)
64 12 (6, 24, 16, 0, 9, 8, 0, 0, 0) MA or NR
64 13 (10, 36, 28, 8, 21, 20, 4, 0, 0, 0) NR
64 14 (14, 56, 49, 16, 49, 56, 14, 0, 0, 0, 1) NR

128 8 (0, 0, 0, 0, 1) MA
128 9 (0, 0, 3, 0, 0, 0) MA
128 10 (0, 2, 5, 0, 0, 0, 0)
128 11 (0, 11

3 , 11, 0, 0, 0, 0, 1
3)

128 12 (0, 15
2 , 79

4 , 0, 0, 5
2 , 3

4 , 0, 1
2)

128 13 (0, 18, 24, 4, 3, 10, 4, 0, 0, 0) NR
128 14 (0, 28, 42, 8, 7, 28, 14, 0, 0, 0, 0) NR
128 15 (0, 42, 70, 15, 15, 70, 42, 0, 0, 0, 0, 1) NR

256 9 (0, 0, 0, 0, 0, 1) MA
256 10 (0, 0, 1, 2, 0, 0, 0) MA
256 11 (0, 0, 5, 2, 0, 0, 0, 0)
256 12 (0, 0, 10, 24

5 , 0, 0, 0, 0, 1
5)

256 13 (0, 0, 94
5 , 10, 0, 0, 0, 6

5 , 1, 0)
256 14 (0, 0, 42, 0, 7, 0, 14, 0, 0, 0, 0) NR
256 15 (0, 0, 70, 0, 15, 0, 42, 0, 0, 0, 0, 0) NR
256 16 (0, 0, 112, 0, 30, 0, 112, 0, 0, 0, 0, 0, 1) NR
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The coefficients of constraints are large and complicated in general, so a computer software

is used to solve the linear programming problem. We use Mathematica (a software of Wolfram

Research, Inc.) in this task because it gives exact solutions.

Table 5 lists optimal solutions to the linear programming problem (6) for various parameters

(A1 = A2 = A3 = 0 are omitted). It is obvious that a solution cannot be the wordlength pattern

of a design whenever N2Ai is not an integer for some i. Nevertheless, there are 20 cases where the

wordlength pattern of a design coincides with the optimal solution. The last column of Table 5

indicates such a design where MA refers to a regular MA design and NR refers to a GMA design

derived from the NR code. In summary, we have the following result.

Theorem 1. The nonregular GMA designs given in Tables 1–4 have GMA among all possible

designs for the following 13 cases: 256 runs and 14–16 factors, 128 runs and 13–15 factors, 64

runs and 8–9, 12–14 factors, and 32 runs and 7–8 factors.

From Table 5, we observe that a regular MA 2n−1 design has GMA for n=6–9. This is true in

general because an OA(2n−1, n, 2, n− 1) is unique up to isomorphism.

We also observe that a regular MA 2n−2 design has GMA for n=7–10 (although there also exist

nonregular GMA designs). The following theorem shows that this is also true in general.

Theorem 2. For n factors and N = 2n−2 runs, a regular MA 2n−2 design has GMA among

all possible designs.

Proof. Chen & Wu (1991) showed that a regular MA 2n−2 design has resolution R = b2n/3c, where

bxc is the largest integer that is less than or equal to x. They also showed that the MA wordlength

pattern is AR = 3R− 2n + 3, AR+1 = 2n− 3R and other Ai = 0. We show that this is the optimal

solution to the linear programming problem (6).

The first two inequalities of (7) and (8) are

n∑
j=R

Aj ≥ (N−12n)− 1 = 3, (13)

n∑
j=R

(n− 2j)Aj ≥ −n. (14)

Multiplying (13) by 2R + 2− n and adding it to (14), one gets

2AR +
n∑

j=R+1

(2R − 2j + 2)Aj ≥ 3(2R + 2− n)− n.
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Since 2R−2j +2 ≤ 0 for j ≥ R+1 and Aj ≥ 0, one gets AR ≥ 3R−2n+3. Therefore, the smallest

AR value is 3R − 2n + 3. Next multiplying (13) by 2R + 4− n and adding it to (14), one gets

4AR + 2AR+1 +
n∑

j=R+2

(2R − 2j + 4)Aj ≥ 3(2R + 4− n)− n.

Since 2R − 2j + 4 ≤ 0 for j ≥ R + 2 and Aj ≥ 0, one gets AR+1 ≥ 3R − 2n + 6 − 2AR. When

AR = 3R − 2n + 3, the smallest AR+1 value is 2n − 3R. Therefore, the optimal solution is

AR = 3R − 2n + 3, AR+1 = 2n− 3R and other Ai = 0.

We do not know whether Theorem 2 can be extended to N = 2n−3. From Table 5, a regular

MA 2n−3 design has GMA for n = 8, 9. However, the optimal solutions are different from the

MA wordlength patterns for n = 10, 11. For example, Table 5 shows that the optimal solution

is (0, 0, 0, 0, 2, 5, 0, 0, 0, 0) for n = 10, whereas a regular MA 210−3 design has wordlength pattern

(0, 0, 0, 0, 3, 3, 1, 0, 0, 0). Note that the nonregular GMA design from the NR code has the same

wordlength pattern as the regular MA design. It is of interest to investigate whether there exists a

nonregular design of 128 runs and 10 factors having wordlength pattern (0, 0, 0, 0, 2, 5, 0, 0, 0, 0).

The linear programming technique can also be used to determine whether an OA has a unique

wordlength pattern in some cases. Consider the following linear programming problem:

maximize
n∑

j=t+1

(N22n)n−jAj (15)

subject to the constraints (7)–(9). The optimal solution to (15) sequentially maximizes At+1, At+2,

. . . , An while the optimal solution to (6) sequentially maximizes them. When the two solutions are

the same, the wordlength pattern of all OA(N,n, 2, t)’s must be unique.

Using Mathematica, we have proved the following result.

Theorem 3. The following seven OAs have unique wordlength pattern: OA(256, n, 2, 5) for

n = 14, 15, 16; OA(128, n, 2, 4) for n = 13, 14, 15; and OA(64, 8, 2, 4).

From Theorem 3, an OA(256, 16, 2, 5) must have the same wordlength pattern and distance

distribution as the extended NR code. Therefore, it has minimum distance 6. In other words, an

OA(256, 16, 2, 5) is a (16, 256, 6) code. The same argument shows that an OA(256, 15, 2, 5) is a

(15, 256, 5) code, an OA(128, 15, 2, 4) is a (15, 128, 6) code and an OA(128, 14, 2, 4) is a (14, 128, 5)

code. It is known that the (16, 256, 6), (15, 256, 5), (15, 128, 6) and (14, 128, 5) codes are unique up

to isomorphism (MacWilliams & Sloane, 1977, p. 74–75). Therefore, we have the following result.
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Theorem 4. The OA(256, 16, 2, 5), OA(256, 15, 2, 5), OA(128, 15, 2, 4) and OA(128, 14, 2, 4)

are unique up to isomorphism.

Hedayat et al. (1999, p. 109) wrote that the OA(256, 16, 2, 5) is unique up to isomorphism

known from coding theory; however, they did not provide the detail. It is interesting to note that

the (14, 64, 6) and (13, 32, 6) codes are unique but the OA(64, 14, 2, 3) and OA(32, 13, 2, 2) are not.

The OA(64, 8, 2, 4) is not unique although it has a unique wordlength pattern.
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