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VLASOV FLUID STABILITY OF A 2-D PLASMA 
WITH A LINEAR MAGNETIC FIELD NULL 

Jin-Soo Kim 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

ABSTRACT 

Vlasov Fluid stability of a 2-dimensional plasma near an '0' type 

magnetic null is investigated. Specifically, an elongated Z-pinch is 

considered, and applied to Field Reversed Configurations at Los Alamos 

National Laboratory by making a cylindrical approximation of the com-

pact torus. The orbits near an elliptical '0' type null are found to 

be very complicated; the orbits are large and some are stochastic. 

The kirietic corrections to magnetohydrodynamics (MHO) are inv~stigated 

by evaluating the expectation values of the growth rates of a Vlasov 

Fluid dispersion functional by using a set of trial functions based on 

ideal MHO. The dispersion functional involves fluid parts and orbit 

dependent parts. The latter involves phase integral of two time cor-

relations. The phase integral is replaced by the time integral both 

. for the regular and for the stochastic orbits. Two trial functions 

are used; one has a large displacement near the null and the other 

away from the null. For a chosen trial function, scaling of the 

variables makes the growth rates depend on only two parameters: 

T = (rL/a) 2, where rL gyroradius, and a is the size of the plasma in 
-

the smaller dimension; and k, the toroidal mode number if the cylinder 

were bent to a compact torus of major radius a. Calculations are done 
- - -3 5 -for k = 1, 10 and 100, and T = 10, 0.1, 10 and 10- • For k = 10 and 
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100, very reduced growth rates (more for the big displacement near the 

null) are obtained for large T while they approach those of MHO for 
-small T values. However, for k = 1, the growth rates are of the same 

order as those of MHO. Comparison is made between those results and 

the Field Reversed Experiments. 

• 
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I. INTRODUCTION 

The concept of magnetic fusion energy is to confine plasma magnet

ically long enough until significant fusion reactions occur. There

fore, to obtain fusion energy, not only the equilibrium but also the 

stability should be obtained. Because of the second requirement the 

required applied magnetic field is normally a lot stronger than what 

is needed to balance the plasma pressure. Consequently s, the ratio 

of plasma pressure to applied magnetic field pressure, is very low in 

most cases. To enhance s and thus Q, the ratio of output power to 

input power, field~reversed geometries have been proposed, where the 

~agnetic field configuration is generated by the self-field. 

Starting as early as the 1950 1 s relativistic beams.were used to 

obtain field reversal in Astron at Livermore. 1 However, the radia-

tion from the relativistic electrons is too strong, and ion beams are 

now being used at Cornell. 2 A field reversed system, called the 

Field Reversed Mirror (FRM), has been obtained3 by using a coaxial 

plasma gun injecting the coaxial plasma through a cusp field and even

tually trapping it in a mirror well. The magnetic flux is captured as 

it passes through the cusp field. The field reversal has been obtained 

by this means in the Beta-II device at Livermore. 

A similar, but very elongated field reversed system, called Field 

Reversed Configuration (FRC), can be created quite differently. 4 A 

negative axial bias field is applied to a pre-ionized gas (cold plas

ma) in a cylinder, followed by an abrupt strong theta coil current 

from the main bank discharge imploding the plasma radially. The 
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oppositely directed bias field is trapped inside the plasma and com

pressed. At the end of compression the magnetic field lines at the 

plasma ends break and reconnect forming closed peloidal field loops 

around the plasma. All of these systems have unique advantages as 

fusion reactors due to the high a. Besides, they are compact and 

relatively simple, compared to Tokamaks, from the engineering point 

of view. Furthermore, the plasma of FRC can be translated along the 

axis giving more flexibility to the system. 

All of the field reversed systems described above are charac

terized by 2-D plasma with peloidal magnetic field only. Therefore 

these systems have a field null line which is a circle. Because of 

the presence of the null, simple MHO theories are not enough to study 

the stability of the system. As an example, the plasmas of FRC are 

found, experimentally, to be stable for a long time compared to the 

MHO predictions. A simple present guiding center kinetic calculation 

also runs into difficulty near the null since the magnetic moment is 

not a good invariant near the null. Therefore we set ourselves the 

goal of explaining the long life time (compared to MHO scaling) of 

present FRC experiments against the MHO unstable modes. 

Some of the stability, and orbits, in the 2-0 plasma with magnetic 

null have already been examined in astrophysics. The null appears as 

a sheet in geomagnetic tai1 5, interplanetary medium6 and so on. 

Most of the work [see, for example, Ref. 7] was on the tearing insta

bility; that is, whether and how the null sheet breaks up into many 

null lines with •o• type and •x• type nulls consecutively. (The •o• 

type and •x• type nulls are named after the field line configuration 
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near the null.) Biskamp and Schindler8 examined the stability of a 

2~0 plasma with '0' and 'X' type nulls alternating consecutively on a 

plane. For modes with no variation along the null axis,!_= 0, the az 
energy variation shows that only modes that vanish at the '0' point 

and maximize at the 'X' point are unstable. Unfortunately, similar 

arguments cannot be made in general for the modes where !_ ~ 0 at az 
this point. Therefore the stability of a FRC cannot be deduced from 

Schindler's work for non zero toroidal modes. 

We assume the equilibrium of FRC is a Hill's vortex9 type. This 

configuration has been intensively studied in hydrodynamics {for ex

ample, Ref. 10) ever since Hill introduced the toroidal vortex. It 

was first introduced to plasma by Shafranov. 11 The equilibria have 

toroidal symmetriwith closed peloidal field lines around the toroidal 

null. Of course, these satisfy the ideal MHO force balance equation, 

or the Grad-Shafranov equation. Yet there is, in fact, a question 

concerning the closed nature of the field lines. 12 It has been shown 

that closed field lines are apt to be destroyed by an infinitesimally 

small perturbation especially in high-s regions, certainly near the '0' 

point. This could lead the configuration to be very complicated. To-

roidal systems when the perturbation removes all symmetry directions, 

would have field lines which are stochastic. In the presence of a 

strong toroidal field, a is low, the extreme sensitivity of geometry 

is eliminated but the stochastic phenomena can be seen also. 13 We 

will not consider this aspect of the subject in this work. 



4 

The motion of a particle is limited to a region in phase space if 

the particle has constants of motion. If the invariants limit the 

particles to a finite region in a configuration space, the particle 

can be confined in a device. Suppose the Hamiltonian of a particle is 

the only invariant. Then an energetic particle can be confined only 

if the potential barrier is high enough around the region. Particles 

with higher energy values than the potential barrier will escape. 

With an additional invariant, for example angular momentum in a to

roidal system with axial-symmetry, an energetic particle with higher 

energy values than the potential barrier can be confined for a range 

of second invariant since the particle motion is not only constrained 

by conservation of energy but also by the conservati6n of the second 

invariant. 14 Therefore, for an ensemble of particles with rather 

random initial conditions, some are absolutely confined depending on 

their values of invariants. If an adiabatic invariant is found, the 

motion can be contained in a device for a reasonably long time. 

Absolute confinement of individual particles in a device does not 

imply plasma confinement. Collective phenomena, an instability, may 

cause the system to be unstable. Therefore stability has been an im-

portant issue in the study of plasma. In a collision-free limit, the 

study of the linear kinetic stability requires knowledge of the orbits. ~ 

When the orbits are integrable (all the orbits are regular with the 

same number of invariants as the dimension of the system) the kinetic 

treatment of orbits are simple in concept15 but complexity usually 

follows upon implementation. Simple expressions of orbits could re-

duce the complexity in the kinetic calculation by a great deal. When 
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the orbits are stochastic then the plasma stability is extremely dif

ficult.16 There is no way of expressing the orbits analytically in 

any manner. Orbits in field reversed systems are very complicated due 

to the magnetic null surrounded by strong field gradient and curvature. 

Conservation of magnetic moment breaks down and the guiding center the-

ory does not apply. A significant portion of the orbits are stochas-

tic. Even the regular orbits do not have a simple expression which 

describes the motion. As a result the understanding of the stability 

of such a system is still in a primitive stage. To analyze the sta

bility of this system, new techniques taking into account the stochas-

tic orbits as well as large orbits have to be developed. 

For this purpose, we first investigated the orbits of particles 

near a one-dimensional m~gnetic null, sp~cifically near a straight '0' 

type field null axis. A linear geometry is chosen since it is simple 

and can be applicable to a toroidal null if the region of interest is 

small enough that the lowest-order, linear terms in the Taylor expan

sion of the field near the null is valid. If we further assume that 

the electric field is negligible, the Hamiltonian can be reduced by 

scalings to a two-dimensional Hamiltonian in an effective potential. 

Depending on the sign of Pz/e~ of the original Hamiltonian, where Pz 
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is the canonical momentum in the axial direction, e is the charge and 

~ is the flux function, the effective potential is either a quartic 

well (a= -1 where a is the sign of (P2 /e~)) or a quartic well with 

a local maximum at the null. (a= +1). 

Adiabatic invariance analysis and numerical surface of section 

analysis are used to study the behavior of particles in this system. 

The behavior of orbits are examined first analytically, based on adi-
' 

abatic invariance theory, and then refined by numerical study. The 

method used in the numerical analysis is mainly the surface of section 

plots. This technique is used in nonlinear studies [see, for example, 

Ref. 17]. 

The results of this study are conveniently expressed in terms of 

the two parameters for a given a: t parameterizes the elongation of 

the ellipse of a flux surface ranging from e = 0 of a slab geometry to 

t = 1 of a circular flux surface and H : (1/2)(2mh/P;) which is twice 

the particle Hamiltonian, 2h, measured by the local potential at the 

null P;/2m. (1) For a = -1, H > 0.5 should be satisfied. For all pa

rameters of H and e the observed motion is regular. When e = 1, P
9 

is 

the additional invariant. When £ << 1, the adiabatic invariant is Jy, 

the action in the minor radial direction. An apparent wx/wy = 2 res

onance appears only with little ergodic behavidr. (2) For a= +1, 

particles with H > 0 are allowed. Roughly e - H space is divided into 

three regimes. (2a) For H >> 0.5 the orbit behavior is qualitatively 

the same as those of a = -1. This is expected since the effect of a 

is negligible for particles with high H, although the resonance around 

£ = 0.5 brings apparent ergodic behavior. (2b) For intermediate 
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values, t
3 < H < 0.5, nearly all orbits are stochastic. The stochas

tic behavior occurs due to the random jumps of the invariant values at 

the magnetic well. (2c) For very small values, H << t
3, particles are 

regular with the magnetic moment (~) as the third invariant. Guiding 

center theory is valid in this regime. 

Applying our results to the plasma of FRC experiments at LANL4' 5 we 

find that ions near the magnetic null are mostly regular, ions near the 

plasma edge are mostly stochastic. As the size of plasma increases 

from FRX-B to FRX-C the portion of stochastic orbits increase. As the 

temperature increases more particles become regular. At any event the 

~-conserving orbits are negligible. 

The results of this study are consistent with and complement prev

ious work on particle orbits. Larabee and LoveTace18 studied ibn 

motion in a more realistic geometry and found primarily regular orbit 

behavior, agreeing with our result. On the other hand Finn19 found 

stochasticity with a = -1 ions. However, notice that his field does 

not reduce to our geometry near the null. (The previously mentioned 

Taylor expansion does not apply in his field). Orbits of extreme val

ues of t have also been investigated. Wang and Miley20 studied ion 

orbit behavior in FRM where the geometry is characterized by t = 1. 

Sonnerup21 studied the property of Jy invariance of particles near 

a null sheet where t = 0. The present study agrees with these results 

but goes further by discussing other regions of parameter space as 

well. Mynick•s22- 24 work on adiabatic invariant theory is extended 

by studying in a wider parameter range and finding the onset of sto

chasticity. 
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With enough knowledge of the single particle orbits, we are ready 

to examine the collective phenomena of the system. We are now con

vinced that the collective phenomena, stability, near the null cannot 

be explained adequately by simple MHO analyses. As an example the 

plasmas of a field reversed configuration are found to be stable for 

many Alfven transit times, the characteristic time for an Alfven wave 

to travel once around flux surface. On the contrary all the present 

MHO type simple calculations predict linear exponential growth time as 

an order of one Alfven transit time. The calculations include ideal 

linear [see, for example. Ref. 25] and nonlinear26 MHO energy varia-

tional analysis, resistive ideal MH027 and double adiabatic28 calcula-

tions. Ion orbit effect on the stability has been attempted by making 

a small-gyroradius expansion. However, this theory breaks down near 

the null, since the magnetic moment is not a constant of motion. 29 

Here, we present a method of treating the large orbits, both regular 

and stochastic, in stability analysis. 

Our kinetic analysis is based on the Vlasov Fluid (VF) mode1. 30 

It is a low frequency model of a fully ionized plasma in which elec-

trans are treated as a massless, pressureless fluid and ions are 

treated as collisionless. This choice is made since the present FRC 

experiments are operated in a regime where electron collision time is 

very short and that of ions is more or less longer than the MHO time 

scaling, the Alfven transit time. Furthermore the model gives the 

same force balance equation as that of ideal MHO for a class of ion 

equilibrium distributions. This property is useful if one is inter-

ested in studying the orbit effects on MHO. In fact, whether one 
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chooses the Vlasov Fluid model or some other kinetic model such as two-

-Vlasov analysis is of secondary importance; the primary problem is the 

treatment of complicated orbit effects. 

No matter which model one chooses, the kinetic calcuation requires 

a time integral over the unperturbed orbits. If there are some seal-

ings, such as fast time or short length scalings, one may be able to 

carry out the time integral by making appropriate approximations. How-

ever, we are interested in a regime where no scalings exist. Futher-

more, some of the orbits are stochastic. 

In order to treat those orbits, we first describe a VF dispersion 

functional. It is obtained by the following procedure: (1) Linear

ize the force balance eqtiation. Let the perturbed quantity be ~. 

(2) Then apply a scalar product with ~* and integrate over the config

uration space to form a VF dispersion functional which is a function of 

~* and ~with w as a parameter. Such a functional always reduces to the 

original eigenvalue problems by varying ~ treating it independently 

with respect to ~. If we do the same thing by expressing ~* and ~ in 

terms of n basis functions, we have n homogeneous equations instead. If 

the n basis functions form a complete set, the solution of the n equa

tions would be the solution of the original eigenvalue problem. The 

dispersion ·relation is obtained by setting the determinant of the matirx 

obtained from the n-homogeneous equations to zero. It is the dispersion 

matrix31 , 32 and the (i,j) element has the same form of a dispersion func

tional but with ~* and ~replaced by the ith and jth basis functions of 

the corresponding vectors. In principle we obtain an exact dispersion 

relation by this procedure if we take enough basis functions. There 
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are two steps involved. First step: Evaluate each element of the ma

trix. If we realize that each element requires detailed orbit infor

mation, this is the major step. Second step: Solve the matrix: In a 

practical calculation, one may truncate the number of basis functions 

and approximated dispersion functions can be obtained. Then the ques

tion is how many basis functions are needed and whether it is practi

cal. The question can be answered only after the first step. This 

work is devoted to the first step to find out whether our method is 

practical in solving a big matrix problem. 

The first step itself has some physical meaning. Suppose we know 

the eigenvector on some physical grounds, we obtain the corresponding 

eigenvalue without solving the whole matrix problem. Also, if we are 

interested in the expectation eigenvalues for some specific form of 

vectors, or trial functions, step 1 is enough. Furthermore the VF 

model has the same equilibrium condition and the same marginal sta

bility condition as MHO for a class of ion distributions. In this 

case, if we use eigenvectors of ideal MHO as trial functions, the ex

pectation values give the same marginal condition and give corrections 

away from the marginal point. 

We study the VF stability from two different expressions (Refer 

Chap. IV. See Eqs. (4.29) and (4.31)). The VF dispersion functional 

(I) is composed of three terms, the ideal MHO energy variational of 

incompressible displacements, the orbit integral term and the left-over 

fluid term. The ideal MHO term and the left-over fluid term can be 

evaluated without any difficulties. The second expression has MHO 

plus the orbit corrections, thus the kinetic effect is more explicit. 
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Whatever the formalism is, the orbit term involves a six-dimensional 

phase space integral and the time integral over the unperturbed ion 

trajectories. Time and the phase variables are independent, thus 

interchanging the order of integration the orbit term becomes a time 

integral of a two time correlation function. Since particles obey 

autonomous dynamics the correlation function is independent of the 

initial time but only depends on the time difference of the functions 

defined. 33 Therefore it is suggestive to do the time-Fourier trans

formation with respect to the time difference, the lag time. Then the 

time integral becomes trivial. Thus the orbit integral term is trans-

f d t . t 1 f d . 1 t 1 d •t• 19 orme o an 1n egra o ynam1ca power spec ra ens1 1es. 

The dynamical spectral densities are obtained by choosing some 

number of initial conditions and following them-for some time to pick 

up all the interesting spectra. The initial conditions are chosen 

regularly in H and Pz space and randomly in the remaining 4-D space. 

Stochastic orbits are efficiently treated, but regular orbits are al

so treated this way assuming that the correlation function is a weak 

function with respect to the third invariant. This could be a strong 

assumption but numerical tests indicate that our correlation function 

does satisfy the assumption approximately. Numerically, spectral den-

sities are evaluated at discrete values of frequencies, a dummy vari-

able to be summed over. Because of the presence of the dummy variable 

appearing in the denominator, the discreteness brings extra non-physi

cal roots to the dispersion relation. This problem can be removed by 

the use of the Nyquist Diagram. 34 By plotting Nyquist Diagrams for 
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many different frequencies, a good guess at the physical solution is 

obt~ined to be used as an input for a root solver. 

This method is applied to study the stability of a FRC at LANL 

by approximating it as an elongated Z-pinch. The linear geometry is 

simple, yet it contains the main character of the FRC such as closed 

field lines, MHO instabilities, large orbits and particle stochastic-

ity. Of course, exact comparisons cannot be made since the toroidal 

effect could be important for kinetic stability of a compact toroidal 

system. Nevertheless, the effect due to the large orbits and stochas

ticity can be studied. We investigate the kinetic corrections to MHO 

due to the large orbits and stochasticity by evaluating the expecta

tion values of the growth rates of a VF dispersion functional of a set 

of trial functions based on ideal MHO. In particular, we choose two 

trial functions, one localized near the null (trial function I) and 

the other localized away from the null (trial function II). 

For a chosen trial function, the expectation value of the growth 

rate depends on only two parameters, if we scale the variables to 

eliminate all the unnecessary parameters. The two parameters are 
r 2 

T = <al) , where rl is the gyro-radius and a is the size of the 

plasma in a smaller dimension; and k, which is the toroidal mode num-

ber if the cylinder were bent to a compact torus of major radius a. 

Growth rates are evaluated fork = 1, 10 and 100 and T = 10, 0.1, 

10-3 and 10-5• The plasmas of FRX-B at LANL correspond toT= 0.1. 

When the first formalism Eq. (4.29) is used by following each orbit 

only up to an MHO growth time, the growth rates remain of the same 
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order as those of MHO for almost all the parameters we tested. The 

reason is that the real frequency of the solution is smaller than the 

smallest frequency that is accurately obtained by following the orbits 

for about MHO growth time (TMHO) which is 1/YMHO" (Notice that 

for VF model, the real part of w approach to zero as the growth rate 

does.) 

Instead of trying to get better spectral densities near zero fre-

quency which can be done by tracing the orbits for a longer time, we 

prefer studying the second formalism Eq. (4.31) since it gives the 

kinetic correction explicitly, and thus high accuracy may not neces

sary. When the second expression is used, very reduced growth rates 

are obtained for ~ = 10 and 100 for f = 0.1 and 10. And the growth 

rates approach those of MHO values as T decreases (1o-3 and 10-5). In 

fact, we traced orbits for about 10 times of TMHO to obtain better re

sults fork = 10. Fork = 1, the growth rates are the same order as 

those of MHO for all T values tested even when we followed each orbit 

10 times longer than TMHO" 

Simil~r phenomena are observed throughout the parameters for the 

second trial function II. The only difference is that the growth 

rates are somewhat less reduced for high T values than those of trial 

function I. 

The reduced growth rates for low k values may be obtained by one 

or some of the following; (1) Follow the particles much longer to get 

accurate spectrial densities near zero frequency. (2) Include the 

terms neglected in the second dispersion expression. (3) Take into 

account the toroidal effect. 
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The outline of the thesis is as follows: In Chap. II, we study 

MHO and kinetic equilibrium configurations of a 2-0 plasma in general. 

In Chap. III, the motions of charged particles in 2-0 near a linear 

magnetic field nu11 35 are studied in detail. We first analyze the 

motion by invariant theory to predict some types of regular orbits and 

to estimate the onset of stochasticity. This prediction is supported 

and refined by numerical observations. The results are applied to 

characteriz~ the ion orbits of a plasma in FRC. In Chap. IV we dis

cuss the Vlasov Fluid model. A VF dispersion functional and the dis-

persian matrix are described. Also correlation and dynamical spectral 

densities are introduced to re-formulate the robit dependent term in 

the VF dispersion functional~ We briefly mention the basic framework 

of Symon, Seyler and Lewis31 ;32 on the VF model as a comparison in 

Appendix A. Chapter V summarizes the present non-kinetic stability 

calculations on FRC. A brief summary of the experiment is presented 

in Appendix B. In Chap. VI, the method is applied to study the sta-

bility of a FRC at LANL by approximating it as an elongated Z-pinch. 

Finally the results and the numerical checks along the way are pre

sented in Chap. VII. Future work is also discussed. 

My main contributions are described in Chapters III, VI, and VII. 

Part of Chap. IV is original. I have made a clear distinction between 

my work and that of others at the end of the Introduction to Chap. IV. 

Each chapter is organized to be independent except Chaps. VI and VII 

which depend upon all of the previous chapters. References and figures 

for each chapter are at the end of each chapter. 

• 
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CHAPTER II 

2-0 EQUILIBRIUM CONFIGURATIONS 

Many plasmas of interest, from fusion energy experiments to solar 

systems, have a symmetry such as translational, toroidal or helical. 

Such systems are described by 2-0imensional configurations, since a 

coordinate and its associated momentum can be transformed away, or 

held constant, because of the symmetry. In this chapter we will dis

cuss the equilibria of such systems first by ideal MHO theory and then 

by Vlasov Theory. The equilibria of the VF model will be discussed in 

Chap. IV. 

A. 2-D Ideal MHO Equilibria 

The basic ideal MHO equilibrium equations for a static plasma are 

v p = lJ X B ' c- .... 

J c v X B (2.1) = 4n ' 

v . B = 0 

From the first equation of Eq. (2.1), it is clear that the magnetic 

field lines lie on a constant pressure surface since~. v P = 0. To 

help our understanding first consider a constant pressure surface of a 

torus. We now know that the magnetic field lines should be on this 

torus. They either cover the torus ergodically or close themselves 

after a finite number of toroidal circuits. The latter happens when 
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the ratio of the toroidal angular velocity to the peloidal angular 

velocity is a rational number, in which case it is called a rational 

surface. All toroidal systems in general have rational surfaces, but 

the number of such surfaces is of measure zero compared to the ergodic 

surfaces. 

When a magnetic field line covers a torus ergodically, there is a 

well defined surface, which is called a magnetic surface. A magnetic 

surface is a surface formed by a single magnetic field line. The flux 

through any cross sections of a magnetic surface is constant because 

all the magnetic field lines inside of the surface must remain inside 

the surface since the field is tangential to the surface. Hence all 

magnetic surfaces are flux surfaces. 

For closed field line systems (e.g. Z-pinch, FRC ••• ) or systems 

characterized by field lines extended to infinity (e.g. mirror machine) 

we cannot talk about magnetic surfaces in general. Also, there is no 

natural way of uniquely determining flux surfaces. However, using the 

fact that a constant pressure surface is also a flux surface (due to 

~ · 1 P = 0) we can conveniently specify a flux surface as a surface 

of constant pressure. When we say flux surfaces of such systems, it 

will usually mean the surfaces of constant pressure unless specified 

otherwise. 

When there is a symmetry in the system, it is possible to reduce 

the equilibrium equations to a single partial differential equation 

with one unknown by introducing a stream function ~. (The stream 

function is related to the component of a vector potential in the 
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ignorable coordinate.) First we will present the reduction scheme of 

an axi-symmetric toroidal system. Choose a cylindrical coordinate 

(R, Z, ~) as shown in Fig. 2.1. Because of the toroidal symmetry, 

~ = 0, and the potential magnetic field may be expressed in terms 

of toroidal component of the vector potential A~ or equivalently the 

stream function ~ alone. 

"' "' 
B = 'l X (A~~ ) + B~~ 

1 "' "' 
= - 'l~ x ~ + B ~~ {2.2) R-

1!,1£ "' 1 ~"' "' 
= R az R - R aR Z + B~~ 

where ~ = RA~. 

It is easily seen that the stream function ~is directly related 

to the peloidal flux ~p : ~p = 2n~. c From l = 4n 'l x B, the current 

density lis readily expressed in terms of ~. 

(2.3) 

where ~* is the elliptic operator defined by: 

(2.4) 

Now we work on the force balance equation component by component. 

The~ component of the equation is ~·VP = f ~-~ x ~ = 0. From the 

explicit expression of~ (Eq. 2.2) and~ (Eq. 2.3) the condition 

.. 

j 
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B·J x B = 0 becomes ~-v~ x VP = 0 which indicates that P is a function 

of ~ only: 

p = P(~) • (2.5) 

Likewise the~ component of the force balance equation is 

~·VP = t ~-~ x! = 0 which yields ~·1 x v{RB~) = o. Hence RB~ is 

also a function of ~only. 

RB~ = I(~) (2.6) 

It turns out that I(~) is proportional to Ip where Ip is the peloidal 

current passing through the surface bounded by R = constant and Z = 0. 

Eventually, the force balance equation is reduced to 

(2.7) 

where the prime indicates the derivative with respect to the argument 

~. This is called the Grad-Shafranov equation. It is a second order 

nonlinear partial differential equation describing axisymmetric 

toroidal equilibria. The term on the left hand side of Eq. (2.7) 

represents~ x ~while II'(~) on the right hand side of Eq. (2.7) 

represents ~ x B~ where subscript ~ indicates the toroidal component 

of the quantity and the subscript P indicates the peloidal component 

of the quantity. 

The equilibrium of an axisymmetric toroidal system is determined 

by (1) specifing the two free functions P(~) and I(~) with boundary 

conditions or externally imposed constraints on and (2) inverting 

the elliptical operator ~*~to determine ~ = ~(R,Z). 
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For straight cylindrical systems there is also at least one ignor

able coordinate :z = 0 due to the translational symmetry (say in z). 

In using Cartesian coordinates (x,y,z) 

B = ~x-~y+B z ay ax z (2.8) 

where ~ = Az which is the axial component of the vector potential. 

Then following the steps used previously we can conclude easily 

p = P(~) , 

Bz = Bz(~) , 

and obtain 

(2.9) 

(2.10) 

The MHO equilibria of plasmas with helical symmetry also have the 

properties that we have discussed. The expression equivalent to the 

Grad-Shafranov equation is available in Bateman2 on Page 70. 

B. 2-D Vlasov Equilibria 

To study the character of plasmas more accurately, and in detail, 

we have to go back to kinetic theory. On a time scale shorter than 

the collision time, the properties of collective phenomena of plasmas 

are well described by the collisionless Boltzmann or Vlasov equation. 

In that description, the interaction between the particles is only 

through the averaged electric and magnetic fields produced at a point 

11 
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~by the particles. These fields must be computed self-consistently 

through Maxwell's equations. 

A steady state solution of the Vlasov equation is not unique. One 

procedure for generating a solution of time independent form of the 

Vlasov equation is by finding time independent constants of motion of 

the particles. 

The constants of motion describing the motions of particles are 

functions of the variables~'! and possibly t. Let Ci(~,!,t) be a 

constant of motion. Then by definition ~(~,~,t) = 0 and thus any 

function F{~,~,t) which is a function of constants of motion only is a 

solution of Vlasov equation since 

df{x,v,t) 
dx -- = (2.11) 

If the Ci's are time independent constants of motion, we have a steady 

state solution of the Vlasov equation. 

Consider a 2-0 plasma with translational symmetry in the z direc-

tion. Two constants of motion are easily found. They are the energy 

and the z-component canonical momentum of the particles. Hence, a 

class of the Vlasov equilibria can be expressed symbolically as 

(2.12) 

where we introduced f
0 

and F
0 

to indicate the dependence of the argu

ments. The assumption behind the choice of the equilibrium distribu-

tions as functions of H and Pz only is that the orbits are ergodic. 
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If not, non-overlapping regions of orbits in a phase volume of con-

stant H and Pz are treated with equal weight statistically. 

To find an equilibrium configuration we have to employ Maxwell's 

equations. By choosing a Lorentz gauge, V·A = 0, the steady state 

Maxwell's equations are: 

- v2A = ~(A,, <Po), 
~ 

(2.13) 
- V2<P = Pa(A,,<I>o)' 0 

with Po = L: e f F
0
d!, 

and ~ = L: e f vF dv . -a-

Notice that~ and p
0 

depend on~ only through A,(~) and <1>0 (~), which 

is obvious from the fact that f0 (~,!) = F
0

(H,Pz) where 

and the summation is over different species. For a 2-D plasma only 

the component along the ignorable coordinate of A, is necessary, 

namely~ = A
0
z. 

A class of equilibrium configurations is obtained by inverting the 

Laplacian to determine 
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With an imposed boundary condition on the boundary aD of a domain D in 

the x,y plane this is a well defined problem. One convenient choice 

could be A
0 

and ¢
0 

constant on aD. 

Once A0 (~) is determined ¢0 (~) is obtained by the quasi-neutrality 

assumption • 

By choosing a specific form of F
0

(H,Pz), the charge densities of 

the electrons and ions can be evaluated explicitly as functions of A
0 

and ¢
0

• Hence the quasi-neutrality condition 

determines ¢
0 

as a function of A
0

• Thus, we have found a Vl asov 

equil i bri urn. 
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FIGURE CAPTION 

Fig. 2.1 A cylindrical coordinate of a toroidal sys~em • 

.. 
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CHAPTER III 

CHARGED PARTICLE MOTION NEAR A LINEAR MAGNETIC NULL 

A. Introduction 

Systems with field nulls have drawn special attention recently. 

One main reason is that the field reversed systems have unique ad

vantages as feasible fusion reactors. Nevertheless the stability of 

those systems is poorly understood. 

For example, experiments on Field Reversed Configurations (FRC) 

indicate that these systems are stable for many Alfven transit 

times, 1- 3 the characteristic time for an Alfven signal to travel once 

around the flux contour. This contradicts the present fluid calcula

tions (see Chap. V and its references) which indicate the exponential 

growth time on the order of one Alfven transit time. Kinetic calcula

tion seems to be necessary to resolve the contradiction. 

Kinetic analysis depends heavily on the detailed motion of parti

cles. Thus as a preliminary to the kinetic stability analysis we set 

the goal of this chapter to characterize the orbits of particles in a 

system with a magnetic null. For simplicity, we study the orbits near 

a linear magnetic null. The orbits near a toroidal null are also de

duced from the study of the linear null since the linear null retains 

the toroidal systems• essential properties: the null, the closed field 

lines and particle stochasticity. 

The main advantage of choosing the linear system is that the 

canonical momentum in the axial direction Pz can be transformed away 
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but there are two situations corresponding to the sign of the Pz/e~ 

where ~is the flux function. The effective potential of the reduced 

Hamiltonian is either a simple quartic well (we introduce a symbol a 

to distinguish the sign of Pz and let a= -1 for this case) or a 

quartic well with a local maximum at the null (a = +1). 

The motion of particles is first analyzed analytically in terms of 

adiabatic invariants and then tested numerically mostly by surface of 

section plots. We characterize the motion in terms of H and £ where H 

is half the energy of a particle measured by the local potential at 

the null and £ parameterizes the elongation of flux surfaces. In 

general there are three types of motion (refer Fig. 3.15). (1) For 

H >> 0.5 the orbits are regular (H = 0.5 is the local maximum poten

tial energy at the null for a= 1 and is the lower bound of the energy 

for a= -1). When £ is close to unity (circular flux surfaces), the 

adiabatic invariant is the canonical angular momentum associated with 

the azimuthal symmetry, and when £ << 1, it is the action in the minor 

axial direction (Jy) due to the frequency disparity between the oscil

lations in the minor and the major directions. This JY conserving 

orbits are either figure eight type {a = +1) or betatron type (a = -1). 

Significant resonance structure appears only at £ = 0.5 but even in 

this case very little ergodic behavior is observed. (2) For very low 

3 energy values, H << £ , guiding-center motion conserving magnetic 

moment (~) is observed. (3) For intermediate values £
3 << H < 0.5 

nearly all orbits are stochastic. The stochastic behavior occurs by 

the random jumps in values of Jy or ~ whichever is more appropriate 
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when the particle passes the weak magnetic field region around the 

tips of the elliptical flux surface. 

Applying the result to the FRC experiments at LANL, 2, 3 we find 

that the ion orbits near the null are regular, JY conserving, and 

most ion orbits near the edge are stochastic. As the temperature of 

ions increases, more orbits are regular and as the size of the plasma 

increases (from FRX-B to FRX-C) more orbits are stochastic. The ~ 

conserving orbits are negligible in any case. 

The results of this study are consistent with and complement pre

vious discussions of particle orbits. Finn4 observed stochasticity 

for particles with a= -1. However, his equilibrium does not reduce 

to ours near the null. Later, Larrabee and Lovelace5 examined orbits 

for particles with a = -1 in actual equilibrium fields and observed 

primarily regular orbits. Orbits of extreme values of have also 

been investigated. Wang and Miley6 studied orbit behavior in FRM 

where the geometry is characterized by £ = 1. Sonnerup7 studied the 

property of JY invariance of particles near a null sheet where £ = 0. 

The present study agrees with these results but goes further by dis

cussing other regions of parameter space as well. Mynick•s8- 10 work 

on the adiabatic invariance theory for some classes of these particles 

is extended by discussing other regions of parameter space and by 

determining the breakdown of adiabatic theory. 

The outline of this chapter is as follows. First analytical study 

based on adiabatic invariant theory is made in Sec. B. We predict some 

types of regular orbits associated with the invariants and estimate 
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the onset of stochasticity. The predictions are supported and refined 

by numerical observation in Sec. C. The results are summarized in 

Sec. D. Finally in Sec. E, the result is applied to plasmas of FRC 

experiments at LANL and the character of ion orbits of the plasma is 

estimated qualitatively. 

B. General Aspects of Particle Motion 

We wish to analyze the motion of charged particles near the null 

of a two dimensional magnetic field. Specifically, we consider the 

magnetic field obtained from the vector potential A =~ {x,y)i, with 

the flux function ~given by 

where Ba is the magnetic field strength at x = 0 and y = a. The mag

netic field lines described by the flux function are closed and tan-

gent to the concentric elliptical flux contours shown in Fig. 3.1. On 

a flux contour, the strength of the magnetic field changes along the 

ellipse with maximum value at the minor axis and the minimum value at 

the major axis. For the flux contours away from the null, the mag

netic field increases linearly. Such a field represents the magnetic 

field near the null of a current sheet such as exists in the geomag

netic tail, ribbon-pinch, or a field reversed toroidal system in the 

limit of large aspect ratio. 
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The Lagrangian of a charged particle in such systems is 

Since the coordinat~ z is ignorable in this Lagrangian, we irrmediately 

deduce that the canonical momentum 

is a constant of the motion. Use of this invariant allows us to find 

the effective Lagrangian (or Routhian11 ) for the reduced motion: 

This Lagrangian describes two-dimensional motion in an effective 

potential 

U(x,y) = 5 (w(x,y) - c:z )~ 
2mc 

(3.2) 

which depends on the value of the invariant Pz. Notice that the 

effective potential in xy plane is essentially the kinetic energy of 

the z-motion. 

We further simplify the expression by a scale change. We intra-

duce new variables X, Y and T whose relation to the old is x = ~X, 
y = ~Y and t ·= T/n where ~ and n are constants. With the definition 

of dots on the new variables as the derivative with respect toT, 
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2 2[1 "2 1"2 1 eBaA ( 2x2 + y2) __ Pz 
2

] R = m). n -2x + -2v - 2 2amcn £ m).Q • 

Since the equation~ of motion do not depend on the overall constant of 

R we obtain the equivalent Lagrangian L 

L -
R 

7 
1x"2 + 1y"2 1( 2x2 + y2 )2 = z 2 -z€ -a (3.3} 

by choosing 

and 

(
2acPz )

1
'
2 

A = eBa 

( 
P eB )1/2 1 z a 

n = m 2ac 

(3.4) 

(3.5} 

where a is the sign of Pz/e~. 

The length is scaled such that the local potential minimum for 

a = 1 occurs on the contour of £
2x2 + v2 = 1 and n is the local gyro 

frequency at X = 0 and Y = 1. The scaling breaks down for special 

particles with Pz = 0, in which case a = 0 should be taken. However, 

the motion is obtained as a limit of H ~ oo in our scaling since the 

effect of a is negligible in the limit. Therefore we will not study 

the case of a = 0 separately. 

The motion of a particle can be best analyzed by the constants of 

motion. The obvious constant of motion of a particle in the time 



35 

independent Hamiltonian system is the Hamiltonian h of the old 

variable or H of the new variable: 

H mh 
= p2 

z 

1n2 + ,!p2 + 11 2x2 + y2 ) 2 = Y X ~· y '2' e: - a (3.6) 

. . 
where Px = X and Py = Y. One more constant of motion will lead the 

particles to have regular motion, since we already have two exact con

stants of motion H and Pz in three-dimensional system. 

The system is integrable (completely regular) for the two extreme 

values of e:. For the case of e: = 1, azimuthal symmetry gives the . . 
third invariant P8 = XY-YX, and for the case of e: = 0 translational 

symmetry brings the third invariant Px. 

The motion for arbitrary e: values requires detailed study. The 

effective potential has two different shapes depending on the values 

of a. The effective potential in new variables is 

1 2 2 2 2 
U = 2( a - e: X - Y ) • (3. 7) 

It is a simple quartic well for a= -1 while the quartic potential has 

a local maximum of value 0.5 at the null for a = +1. The range of H 

is H > 0 for a = 1 and H > 0.5 for a = -1. Low energy particles with 

H < 0.5 which occurs only for a= 1 are confined on an elliptical annu-

lar ring surrounded by 

(3.8) 
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due to the conservation of H. A guiding center motion is expected for 

the particle~ whose energy is low enough to be confined in a narrow 

region around the energy minimum which is ~lso the magnetic field line 

contour in our case (see plots (a) and (b) in Fig. 3.6). If H > 0.5, 

particles are energetically allowed to cross the null (see plots (c) 

and (d) in Fig. 3.6). The left inequality of Eq. (3.8) is simply 

neglected and the XY motion is restricted on a disk. The direction of 

the magnetic field is opposite across the null. Thus the motion can

not be circularly oscillating but sinusoidal. For very large H values 

the motion of a particle with a = 1 would not be too different from · 

that with a= -1 since the effect of a is negligible for high H. 

8.1 Guiding-center Motion 

When the motion of a particle involves two different time scales, 

it is possible to simplify the motion by averaging the fast motion. 

The averaging yields an adiabatic invariant associated with it. In 

guiding center theory12 (g.c. theory) the fast time scale is the gyro-

oscillation time and the slow time scale is the time scale of our 

interest or other slow motions involved in the motion. It is well 

known that the invariant associated with the averaging over the gyro

Wl oscillation is the magnetic moment defined by ~ =~where w1 is the 

kinetic energy perpendicular to the magnetic field. 

Ordering the Hamiltonian with the adiabaticity parameter, the ratio 

of the two time scales mentioned earlier, one obtains the Hamiltonian 

of the guiding center. To the lowest order 
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H = 21mp2 + uB{s) 'g .c. .. (3.9) 

where P and s are the momentum and the distance along the field line 

and they are canonically conjugate to each other. 

We would like to estimate the region in the parameter space of £ 

and H in which the g.c. theory is valid. The g.c. theory is likely to 

be applicable for particles with H << 0.5 since their motion is con-

fined to a narrow region between the two ellipses as shown in Eq. 

{3.7). For £ * 1, the particles experience weaker magnetic field near 

the tips of the flux contours. Hence some are trapped at one of the 

tips magnetically as is the case of particles in mirror machines. For 

those trapped orbits, the two scalings are the rapid gyro-frequency 

across the field line and the guiding center bounce frequency w8 

along the field line. If w
8

/ s-2« 1, the g.c. theory is applicable. 

The magnitude of the magnetic field at the energy minimum contour, 

£2x2 + v2 = 1, is 2(£4x2 + v2) and so smallest at X = £-1 and Y = 0. 

The value is 2£. 

The bounce frequency of the guiding centers can be best obtained 

by expanding Eq. (3.9) around s = 0 where s is measured from the major 

axis. The g.c. Hamiltonian is now 

H :: L 2 
+ IJB(O) + ~B"(O)s2 , g.c. 2m· c.. 

from which we easily obtain the bounce frequency: 

W B"(O) 
lO 

B(o) 

1/2 
(3.10) 
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where w10 is the perpendicular kinetic energy at s = 0. The condi

tion w8 << n is 

(3.11} 

This criterion is expected to be useful for those particles circulating 

all around the flux contour since they have to experience the magnetic 

field variation described in Eq. (3.10) every time they pass the mag

netic well. Equation (3.11) is a very restrictive condition for small 

£ values. The criterion of small gyro-radius compared to the system 

size is w1 << 1, which is much less restrictive. The criterion of 

having well-defined guiding centers, 13 j rBV'~I « 1, is still 

w1 << £
2• Nevertheless, as we will show later, the numerical· study 

shows that the criterion for a g.c. theory to be valid is close to our 

estimation of H << £
3 • 

Consider a ~ conserving orbit which satisfies the inequality 

(3.11). From the conservation of H and ~' particles are trapped in 

one of the magnetic wells if 

( -1 ) B X=£ , V=O > B(X=O,V=l) 
H (3.12) 

With the relation B(X=£-1,V=0) = £B(X=0,V=1) and the basic restriction 

0 ~ W10 ~ H, the inequality (3.12) becomes 

2 £ 

vlo > T"l---£ (3.1Ja) 
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where V
10 

and v
110 

are the velocities perpendicular and parallel to the 

magnetic field on Y = 0 plane. The condition for a pa-rticle to be 

circulating all around the flux contour is 

or (3.13b) 

Now we wish to estimate the region of each type of motion on X-P 
X 

plane of an energy surface with Y = 0. (This is the plane that we 

will use later to obtain surface of section plots numerically). Fig. 

3.3(a) shows a potential U(X,Y=O) vs. EX. Since the potential energy 

is in fact the kinetic energy in Z, U(X,Y=O) = }vio where Vzo is the 

velocity in Z on Y = 0 plane. For a given H, the allowable region on 

X-Pz _plane is bounded by the outer contou~ shown in Fig. 3.3(b). The 

range on the X axis of Fig. 3.3(b) is obtained from the inequality 

(3.8) by setting Y = 0: 

(3.14) 

The magnetic field is in Y direction on Y = 0 plane and so 

W10 = }vio + }v~0 • Furthermore on the X axis of Fig. 3.3(b) 
1 2 W10 = rVzo since Px = 0. Therefore the range of X on Px = 0 axis for 

a particle to be circulating all around a flux contour is estimated 
1 2 from the inequality (3.13a) by using a relation W10 (Px=0) = rVzo = 

U(X,Y=O): 

(3.15) 
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The differences between the ranges in (3.15) and (3.14) is the range 

of X for trapped orbits. The range of X for trapped orbits .is 

increasing as £ decreases. 

B.2 JY Conserving Particles 

A generalized constant of motion that is the generalized magnetic 

moment to the magnetic moment is §f_ • d_g_14 • When£<< 1, most par

ticles have much faster Y oscillation than that in X, yielding a dis

parity in wX and wy (for example, see Fig. 3.6(c)). In this case 

(3.16) 

Therefore the action in Y is expected to be an adiabatic invariant. 

To illustrate the frequency disparity we compare two special motions, 

one oscillating in X and the other in Y. The equation of motion from 

Eq. (3.6) for the motion along X-axis is 

(3.17a) 

and for the motion along y-axis is 

•• 3 
Y = 2Y • (3.17b) 

Therefore the frequency in X is £ times slower than that in Y; 

wx = Ewy. If£ is small, a large frequency disparity is expected. 
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For such a motion, X and Px can be considered as fixed for a 

fast oscillation. The adiabatic invariance Jy to the lowest order 

is then from Eq. {3.16). 

(3.18) 

Also, the motion in Y is governed by the Hamiltonian 

(3.19) 

This Hamiltonian describes oscillations in a one-dimensional effective 

potential U(Y) = }(£2x2 +v2 -a) 2 at a fixed value X. The potential 

increases either montonically withY if £
2x2 >a or has a local maxi-

. 1 2 2. ·2 2 2 
mum of value U

0 
= 2(£ X - a) at Y = 0 if £ X < a. Therefore we 

define two types of particles. Non-crossing particles are those that 

cannot energetically cross the X-axis with Hy < U
0 

and crossing par

ticles are those that cross the X-axis with Hy > U
0

• From the defini

tion of Eq. (3.18) 

1 
{ 2 2 2 } 

1
'
2 

dY 2Hy - (£ X + Y - a) = 

Y1(X,Hy) (3.20) 

where the turning points v1 and v2 are obtained from Eq. (3.19) by 

setting Py = 0. For axis crossing particles, we simply replace v1 = 0 

in the definition of Eq. (3.20}. The definition of JY for axis cross

ing particles differs by a factor of two from the definition (3.18}, 
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which would have the domain of integration be [-Y2,v2]. The reason is 

that we want the value JY to be a continuous function of Hy at Hy = U
0

• 

With an adiabatic invariant JY on hand, the motion of particles 

is understood much better by expressing the motion in terms of the 

invariant. Then the conjugate coordinate ~Y of Jy is ignorable, we 

obtain the reduced Hamiltonian: 

(3.21) 

The Hamilton•s equations of Eq. (3.21) are 

JY = 0 and ~Y = 

(3.22) 

These equations describe the X-motion averaged with respect to Y in an 

effective potential Hy· The contours of Jy are plotted with the Hy-X 

plane in Fig. 3.4(a) for a = -1 and in Fig. 3.4(b) for a = +1. 

It is important to know whether the particle stays to one type of 

motion or not. At the transition point, the frequency, 

"[f.y2 { t 1/2]-1/2 = w dY 2Hy- (t2X2 + v2 - a) 2,-

y (3.23) 
1 

vanishes. Hence, adiabatic invariance theory, which is based on 

wy >> wx' cannot be correct near the transition point. Instead we 

expect JY to change each time a particle passes through the transition 
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point, which causes the particle motion to be stochastic. From the 

effective potential Hy(X,Y) for a given X it is clear that particles 

with a = -1 or particles with H > 0.5 for a = +1 are axis-crossing. 

For those with a = +1 and H < 0.5 may experience transition at Xc 

where 

(3.24) 

The locus of the transition is shown in X-Hy plane in Fig. 3.4{b). 

Notice that the curve is below Hy < 0.5 • A particle with JY whose 

contour crosses with the transition curve will change its motion from 

one type to the other at the X values of intersection Xc. Fig. 3.4{b) 

also shows that no crossing exists if 

Those with JY < JYc can change the type of motion depending on whether 

H allows crossing or not. To illustrate the transition clearly, we 

show an energy diagram for two different values of JY with Jy1 > Jy2• 

For a given value of Jy1 the particle with energy at level b does not 

experience the transition while the particle with energy level a does. 

For a given energy value, for example H = .25, the particle with 

action of Jy1 does not experience the transition while the particle 

with action of Jy2 does. The transition particles are the candidates 

for the stochastic motion. Since the X coordinate of the potential 

minimum is always greater than Xc, non-crossing particles always 

experience transition, thus are stochastic. Only axis crossing 
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p-conserving regular orbits are expected. These cases are tested 

numerically in Sec. C. (See Fig. 3.10.) 

B.3 Summary of Expected Types of Motion 

The expected types of motion for £ << 1 are shown in Fig. 3.6-3.8. 

Fig. 3.6 shows the projected regular motion on X-Y plane. p-conserv

ing regular orbits are shown in Fig. 3.6(a) and (b), where (a) is the 

circulating orbit with w10 < £H and (b) is a trapped orbit with 

£H < W10 < H where H << 0.5. Fig. 3.6 (c) and (d) show the JY con

serving orbits, both axis crossing. The action values are such that 

JY > JYc for plot (c) and JY < Hvc for plot (d).· 

The corresponding YZ motion is summarized in Fig. 3.7 for regular 

orbits. The YZ motion is easily deduced from the two dimensional 

effective potential since it is the kinetic energy in Z where 
• 2 2 2 
Z = a - £ X - Y • 

Therefore it is clear that Z < 0 always for a = -1 which is shown 
. 

in plot (b). When a= 1, Z changes sign whenever the particle crosses 

the flux contour of £2x2 + v2 = 1 which is the potential minimum con

tour, thus indicates the figure 8 type motion for H > 0.5 [plot (c) 
. 

and (d)] and gyro-motion for H < 0.5 [plot (a)]. If <Z> =a-

<£2x2 + v2> is positive the Z motion is plot (d) otherwise plot (c). 

Here the angled bracket is the time average over one period of the 

fast oscillation. For large H values we expect the motion to be simi-

lar to that of a = -1 since the effect of a is negligible for large H. 

Therefore, we expect the YZ motion of large H values to be plot (c). 
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When the particle changes its motion from one type to the other, 

its motion tends to be stochastic. An example of a stochastic motion 

·is shown in Fig. 3.8(a). Also a fixed point orbit and a resonance 

orbit are shown in Fig. 3.8{b} and (c) respectively. 

C. Numerical Analysis 

In this section we present numerical observations to verify and 

sharpen the inequalities of the last section and to certify that no 

other types of motion exist. The surface of section plots15 are used 

to determine the existence of an invariant. Actual motions projected 

onto the XY plane along with the adiabatic invariant vs. time are also 

illustrated for typical types of orbits. 

C.l Variation with H at E = 0.2 

A series of surface of section (SOS) plots are shown in Fig. 3.9 

each corresponding to different H values at fixed E = 0.2. The SOS 

plots are obtained in the usual way. The initial conditions can be 

chosen arbitrarily on an energy surface. We chose Y(o) = 0, P = 0 
X 

and X(o) in the allowable region ~£2x2 - a) 2 ~ H, and Py(o) = 

[2H- (E 2(x(o)) 2 - a) 2]112• Then we follow each particle by integrat-

ing the equations of motion. Every time the particle passes through 

the Y = 0 plane with Py > 0, the value of X and PX are plotted. We 

follow the particle for an arbitrary long time until we have enough 

dots on the X-Px plane. The solid line on the figures is the energy 

boundary. Only the region X > 0 is plotted since it is symmetric in X. 
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The first two plots of Fig. 3.9 are the case of a = -1. Plot (a) 

is for H = 0.5 and plot (b) is for H = .55. Six initial conditions 

are taken for plot (a) and five for plot (b). The 505 plot of each 

initial condition lies on smooth curves indicating their regular 

behavior. As will be shown later, the third invariant in the case of 

€ << 1 is Jy· 

The remaining six SOS plots Fig. 3.9(c)-(h) are for a = +1. In 

this case the SOS plot is similar to that of a= ~1, which is expected, 

since the effect of a is negligible for large H. As H is reduced to 1 

(near 0.5) as in Fig. 3.9(d), some stochastic behavior appears in the 

outer region of the energy surface. In addition, a small island is 

observed at Px = 0. The motion corresponding to that island is shown 
. . 

in Fig. 3.10(b), the end trapped JY conserving orbit. The reason that 

a particle is trapped, and not covering the whole energy-allowable re-

gion, is due to the invariance of JY just as the ~-conservation does 

to particles in a magnetic mirror. 

As H decreases to 0.5 more particles are stochastic except only a 

small portion of end trapped Jy conserving orbits. It is an interest

ing phenomenon that the centers of the Jy invariant curves of plots (d) 

and (e) do not match to the energy minimum position. Furthermore the 

center of the invariant curves are close to the X = 0 plane for high H 

values as in plot (d). This phenomenon is easily understood from Fig. 

3.5. From the figure we know that the minimum of the one-dimensional 

potential is always nearer to the X = 0 plane than that of the twa-· 

dimensional case. The X-position of the one-dimensional potential 

minimum is closer to the X = 0 plane as JY (or H) increases. 
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When H = 0.05, as in Fig. 3.9 (f), nearly all of the phase space 

region is stochastic. This persists down to very low H values as 

shown in Fig. 3.9(g). For H values as low as 1.2 x ~o-4 , p-conserving 

g.c. motion appears. Outer invariant curve of plot (g) is the mag

netic trapped orbit. The circulating regular orbit has not appeared 

yet. Finally, at very small values of the energy (see plot (h)) for 

H = 5 x 10-5 primarily regular behavior is again seen throughout 

phase space. Outer invariant curves are from the magnetically trapped 

orbits and the inner curves are from the circulating orbits. The sto-

chastic region between the two regular regions is not noticeable. The 

region of each regular motion is obtained from Fig. 3.3. The transi-

tion between plots (f) and (h) allows us to refine the inequality 

(3.11) to 

H < -
3 .04£ 

for guiding-center motion to be applicable. 

C.2 Observed Trajectories for £ = 0.2 

(3.25) 

Sample trajectories of the types of motion in the surface of 

sections of Fig. 3.9 along with the values of pr6posed 1nvariants are 

shown in Fig. 3.10-12. 

Fig. 3.10(a) shows the trajectory of a particle with a = 1 and 

H = 5, corresponding to Fig. 3.9(c). The right half of the XV trajec

tory, shown in Fig. 3.10(a), illustrates the frequency disparity in X 

andY oscillations. Thus, Fig. 3.10(b), which shows good conservation 
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of the action JY calculated from Eq. (3.20) should not be too surpris

ing. If one evaluates JY exactly using exact X and Px values, the 

fluctuations of JY are reduced. Notice that the action quantity of 

plot {b) satisfies the inequality JY > JYC and the motion is axis

crossing all the time. For a= -1, the same behavior is observed as 

far as JY conservation and the XY projected motion go. The only dif

ference is the Z-motion. The Z-motion of a = -1 is betatron while 

that of a = +1 is figure 8 type. 

Fig. 3.10(b) shows the trajectory of a Jy trapped particle for 

the case a = 1 and H = 0.25. The XY trajectory [Fig. 10(a)] again 

illustrates the fact that the Y-frequency is much greater than the 

X-frequency, which leads JY to be a good invariant [plot(d)]. The 

JY value of plot (d) is -0.2 which is less than the critical value 

Jyc· To see whether our analysis did predict a regular motion for 

Jy = 0.2 with H = .25 we go back to Fig. 3.5. The curve Jy = 0.2 cor

responds to the upper curve of the figure and H = .25 is the level b. 

It shows that the particle is not transitioning but remains to be axis 

crossing, thus showing the regular behavior consistent with the numer

ically observed motion. 

Fig. 3.11 shows the motion of ~-conserving orbits. Two trajecto

ries of H = 5 x 10-5 are considered; one for a magnetically trapped 

[plots (a)(b) and (c)] and the other circulating regular motion [plots 

(d)(e) and (f)]. The peak of the fluctuation in~ of plots (b) and 

(e) occurs when particles pass through the magnetic well. This phe-

nomenon is common for a trajectory in a magnetic mirror. We computed 
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~ by using the local magnetic field. The fluctuation of ~ between the 

peaks is reduced if one adds the higher order corrections to ~· The 

small magnetic jumps in plot (e) do not imply the lack of an invari-

ant, and so~ can be still considered as a good adiabatic invariant. 

Plots (c) and (f) show the periodic motion. They also show whether 

the motion is confined to one end of flux contours or circulating. It 

is interesting that the X-motion shown in plot (f) is like a free par

ticle motion bouncing back and forth at some X. 

Finally we show a stochastic motion in Fig. 3.12. To show where 

the jumps in ~ and JY occur, we evaluated the values with respect to X 

[plots (b) and (c)]. The jump values occur at-the magnetic we11. 15 

Especially the jumps in Jy occur when the motion changes from axis

crossing to non-axis crossing or vice versa. Plot (d) shows the aperi-

odic motion and plot (e) and (f) show how wildly the values change in 

time, indicating the lack of the third invariant. 

C.3 Scaling with £ at fixed H 

To illustrate how the orbit behavior changes as £ varies, we 

present one more series of SOS plots in Figs. 3.13 and 3.14. Fig. 

3.13 shows the SOS plots for H = 5, a = 1 in decreasing order of £. 

The£ values are 1.0, 0.9, 0.5 and 0.2 from plot (a) to (d). The best 

way to understand the figure is to compare the two limiting cases of£ 

values Fig. 3.13(a) and (d). Both show very smooth invariant contours 

but no contours cross the X = 0 axis in Fig. 3.13(a) while all the 

contours cross the X= 0 axis in Fig. 3.13(d). It is because PQ is 
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a constant of motion when £ = 1 and thus the centrifugal potential 

P~/2r2 do not allow part~cles to pass through the origin except very 

special particles with P
9 

= 0. It is JY that is conserved for£<< 1 

and not P
9

• 

The transition between these & values is shown in plots (b) and 

(c). In plot (b) (& = .9) half the trajectories are similar to the 

P
9
-conserving trajectories of the case £ = 1. The other half are 

similar to the Jy-conserving trajectories of the case £ = 0.2. At 

& = 0.5 the P
9
-conserving trajectories are destroyed. A large sto

chastic region is observed. At £ = 0.5 a large resonance structure of 

wylwx = 2 is usually seen for H > 0.5. 

We do not present the SOS plots for a = -1 for various £ values. 

The plots are qualitatively the same as Fig. 3.13 that we have just 

studied. The only difference is that the resonance structure of 

£ = 0.5 does not bring apparent ergodic behavior. 

Fig. 3.14 shows the SOS plots for H = .005 again with the same 

sequence of & values as in Fig. 3.13. When £ ~ 0.5 the inequality 

(3.25) is satisfied and orbits are observed to be integrable with g.c. 

motion. For £ = 0.5 there appear two types of p-conserving orbits, 

one is ~he trapping orbit shown as an invariant curve near the energy 

boundary in Fig. 3.14(c) and the other is the circulating orbit shown 

as invariant curves near the center in the same SOS plot. Orbits that 

experience both trapping and circulating motions are stochastic. They 

fill up the energy surface between the two regular regimes of trapping 

and circulating. Here the values of p of the stochastic motion 
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diffuses slowly, filling up the energy surface rather slowly. When 

3 = 0.2, the inequality {3.25) is violated and thus shows stochasticity 

of the orbits. 

D. Summary of Orbit Analysis 

The analytical methods of Sec. B and the numerical methods of Sec. 

C allow us to present a broad overview of particle motion near a linear 

magnetic null. These results are conveniently expressed in terms of 

£ and H for a given sign of a. (1) For a = -1, most orbits are regu

lar with betatron type motion, i.e. the velocity in the axial direction 

does not change. When £ = 1, the canonical angular momentum associated 

to the azimuthal symmetry is an invariant. When £ << 1, the action in 

the minor radius dimension a~sociated with the disparity of the fre-

quencies in the major and the minor dimension is a constant of motion. 

(2) For a = +1, a rich behavior of orbits is observed, which can be 

categorized roughly into three groups. The results are shown in Fig. 

3.15. The dots are drawn where the SOS plots are obtained. (a) For 

H >> 0.5 the behavior of orbits are similar to that of a = -1 except 

the axial motion is figure eight type rather than betatron. This is 

because the effect of a is negligible for high H values. The motion 

is smoothly changing from a= +1 to that of a = -1 in the limit of 

H ~ {b) For very small energy values H < .04 £
3 the orbits are 

regular with the third invariant being the magnetic moment of guiding

center theory. (c) For the intermediate regime .04 £
3 < H < 0.5 most 

orbits are stochastic. The stochasticity comes from the random jumps 
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in values of ~ or JY whenever the particles pass the weak magnetic 

field region around the tip of the flux surface. 

E. Application to Experiments 

We apply our results to characterize the ion (more precisely 

deuteron) motion in FRC experiments at LANL. In fact, no exact com-

parison can be made since the experiments are toroidal systems. Two 

examples will be considered for comparison: FRX-B and FRX-C, in which 

the major difference is the size of the plasma. As a typical experi-

mental parameter, we choose for a FRX-B the minor separatrix radius 

a= 2 em, e = 0.1 and Ti = 200 eV. The magnetic field at x = 0 and 

y = a which is denoted as Ba, in the text, is 6 KG. For a FRX-C we 

choose a = 4 em and keep the rest of the parameters the same as those 

of FRX-B. 

In order to study the character of orbits of a given spatial 

position, we need to express t~e result in terms of Pz explicitly. 

This can be done easily since the sign of a can be defined to be the 

sign of Pz and H = mh/Pi where h is the Hamiltonian or the energy of 
2 a particle. For the particles with Pz < 0, 2mh > Pz should hold and 

the orbits are regular, JY conserving. For the particles with Pz > 0, 

the motion is regular JY conserving motion for 2mh >> P~, regular 

g.c. motion for 2mh < .04 e
3 P~ and otherwise stochastic. These re

gimes are plotted in Fig. 3.16(a) in the parameter space of l2ffih and 

Pz. The slope of transition lines are 1 and 0.2 e
312• Particles 

with many different h and Pz values can pass through a given point 

(x,y). Depending on the particle position, only certain regions of h 
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and Pz are accessible. The restriction comes from the fact that the 

kinetic energy of a particle should not be negative at any position; 
1 e 2 i.e., h ~ 2m(Pz- c) . Furthermore if we assume that the velocity 

distribution is roughly Maxwellian with temperature T, most particles 

satisfy h ~ ~T. The accessible region of h-Pz space for a particle 

to appear at a given position {x,y) is shown in Fig. 3.16{b). The 

allowable region is bounded by a triangle with the bottom vertex at 

(3.26) 

The triangle moves to the right from the origin as the position of our 

interest moves away from the null. 

To characterize the orbits that pass through a given configuration 

space x andy, we simply overlap Fig. 3.16{b) to (a). By overlapping 

the plot {b) to (a) we see that all particles are regular, Jy - con

serving at the null. A little away from the null stochastic orbits 

appear. 

If the plot {b) is moved to the right so that the bottom vertex of 

the accessible region passes Pz = 1jffif most orbits are stochastic. 

To see mostly ~-conserving orbits, plot {b) should be moved to the 

right until the inequality Pz > 3mT/2£312 is satisfied. With Eq. 

(3.26) the conditions are 

YJy _ (2ci3mf)
1
'
2 = 1 a (IT(100 ev) )

1
'
2 

a - aeBa • ac(m)Ba(KG) 
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for the transition from Jy conserving to stochastic motion, and 

Yg.c. = 
a 

3/2 -l/2 y JY 
(0.2 £ ) a 

for the transition from stochastic to p-conserving where yJY and 

Y are the transitioning y values. If we take FRX-B parameters, g.c. 

.6 and Yg.c. 
a = 7.2 

For FRX-C, both values are reduced by l:2 due to the size difference. 

Therefore ions of the FRX experiments at LANL are mostly regular near 

the null and mostly stochastic near the boundary. Essentially no 

orbits obey g.c. dynamics. 

If we consider a confined plasma in which no bounce orbits at the 

plasma edge are allowed, an additional restriction is 

where ~B is the flux quantity at the plasma edge. The overall behav

ior of orbits of a confined plasma can be seen from Fig. 3.16(c), from 

which we see that as the temperature of particles increases more orbits 

are regular {both for FRX-B and FRX-C) and as the size of the plasma 

increases more orbits are stochastic {from FRX-B to FRX-C). 
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FIGURE CAPTIONS 

Fig. 3.1 Contours of the flux function and the magnetic field lines 

for arbitrary £. 

Fig. 3.2 Effective potential U(X,Y) for a= *1. 

Fig. 3.3 An effective potential U(X,Y=O) and a diagram showing the· 

regions in X-Px space of circulating orbits and trapped 

orbits. Drawn in plot (a) is a diagram of an effective 

potential U(X,Yz
0

). U(X,Y=O) is in fact the kinetic 

energy of a particle with Px = 0 on Y = 0 plane perpen

dicular to the magnetic field, w10 (Px = 0). Plot (b) 

shows the regions of X-P space of Y = 0, the circulating . X. . 

and the magnetically trapped particles of energy H. ·From 

inequality (3.13), inside of the inner curve is for circu

lating orbits and the annular region is for trapped parti

cles of energy H. 

Fig. 3.4 The effective potentials Hy(X,Jy) for various Jy. Plot (a) 

is for a = -1 and plot (b) is for a = 1. Values of Hy and 

X below the bottom solid line are unphysical in both cases. 

The locus of transition points discussed in the text is 

shown in plot (b). JYc is the critical value of JY. 

Fig. 3.5 Energy diagram of Jy < Jvc· Solid curves are effective 

potentials Hy(X,Jy) for two different Jy values with 

Jy2 < Jy1• The dashed curve is the locus of transition 

points. 
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Fig. 3.6 XY trajectories of regular motion. p-conserving orbits are 

in (a) and (b) and Jy-conserving orbits are in (c) and (d). 

Fig. 3.7 YZ trajectories of regular motion. 

Fig. 3.8 XY trajectories of stochastic and resonance motion. Shown 

are the XY trajectories of a stochastic orbit (a), a fixed 

point orbit of wx/wy = 5(b) and a resonance orbit of 

wx/wy = 5(c). 

Fig. 3.9 Surface of section plots of t = .1. Plots (a) and (b) are 

for a= -1. H = 5 in (a) and H = .55 in (b). Plots 

(c)-(h) are for a = 1 in decreasing order in H. H = 5(c), 

H = 1(d), H = .5(e), H = 5 X 10-3(f), H = 1.2 x 10-4(g) 

and H ~ 5 .x 10-5(h). 

Fig. 3.10 Trajectories for Jy-conserving motion for the case ·t = .2 

and a = 1. Plots (a) and (b) are for Y-axis-crossing 

particle of H = 5. Initial conditions are X(O) = 5.0, 

Y(O) = Px(O) = 0 an~. Py(O) calculated from H. Plots 

(c) and (d) are for non-Y-axis-crossing particle of 

H = .25. Initial conditions are X(O) = 3.14 Y(O) = 

Px(O) = 0 and Py(O) calculated from H. The JY values 

in (c) and (d) are evaluated by using Eq. (3.20). 

Fig. 3.11 Trajectories for p-conserving motion for the case t = 0.2, 

a= 1 and H = 5 x 10-5• A magnetically trapped motion is 

shown in (a), (b) and (c) and a circulating motion is in 

(d), (e) and (f). The initial conditions of the trapped 

orbit are X(O) = 5.01, Y(O) = Px(O) = 0 and Py(O) is 

calculated from H. The initial conditions of the 
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circulating orbit are chosen similarly with X(O) = 4.98. 

The magnetic moments shown in {b) and (e) are evaluated by 

using local magnetic fields. 

Fig~ 3.12 Trajectories of a stochastic motion for the case of 

e = 0.2, a= 1 and H = 5 x 10-3• Initial conditions are 

X(O) = 4.87, Y{O) = Px(O) = 0, and Py(O) is calculated 

from H. Shown are the XV trajectory (a), Jy vs X {b), ~ 

vs X(c), X vs T{d), Jy is evaluated by Eq. {3.20) and ~ 

is evaluated by using local magnetic fields. 

Fig. 3.13 Surface of section plots for H = 5 and a = 1: in (a) e = 1; 

in {b) e = 0.9; in (c)e = 0.5; in {d) e = 0.2. 

Fig. 3.14 Surface of section plots fat H = 5 x 10-3 and a = 1: in 

(a)" e = 1 ; in {b) e = 0.9; in (c) £ = 0.5; in {d) e = 0.2. 

Fig. 3.15 Diagram outlining stochastic and regular regions of 

parameter space for a = +1. Surface of section analyses 

were done at the parameter values of the dots. 

Fig. 3.16 Regions of parameter space and the allowable regions of 

parameter space of confined plasmas. Plot (a) shows the 

types of motion occurring in various regions of parameter 

space. The slope of solid lines are =1 and the slope of 

the dashed line is e 312• Plot {b) shows the allowed 

range of parameters for a Maxwellian of temperature T at a 
eB 

position (x
0

,y
0

) where Pzo = 2c: ¢
0 

with ¢
0 

being the value 

2 2 2 of ¢ = e x + y at x = x
0 

and y = y
0

• Plot (c) 

shows the allowable regions in the parameter space of 

plasmas in FRX-B and FRX-C at LANL. 
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CHAPTER IV 

THE VLASOV FLUID (VF) MODEL 

A. Introduction 

The VF Model is a low frequency model of a fully ionized plasma in 

which ions (or the heavier species) are treated as collisionless and 

electrons (the lighter species) are treated as a massless, pressure

less fluid. 

It is obvious that the model is most suitable for a system with 

hot ions and rather cold electrons. In fact many experiments for 

fusion energy such as FRC are well approximated by such a model. The 

model provides a more realistic description of the gross stability 

propeities of high s, non-uniform plasma than that of ideal MHO. 

Inclusion of electron pressure is also possible, although only a 

limited number of papers1' 2 on this subject are available at the 

moment. 

The hybrid model of kinetics and hydromagnetic properties was 

first suggested by Freidberg in 1972.3 He applied the model to a 

theta pinch with a sharp boundary and found that the growth rate of 

the m = 2 mode, where m is the peloidal mode number, can be exponen

tially small, but not zero due to the resonant ion orbits, while ideal 

MHO theory predicts a high growth rate. This may explain why the 

m = 2 mode was not seen in the Scyllac experiment. 

Several years later, Lewis and Symon4 developed a general frame

work of analyzing the linear stability of an inhomogeneous plasma in 

.. 

• 
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-
which there is a collisionless species. They expanded the perturbed 

quantities in terms of eigenfunctions of the equilibrium Liouville 

operators. They also introduced a dispersion matrix whose analytic 

properties determine the nature of the solutions of the initial value 

problem. 

Solving such a dispersion matrix of a VF model, Seyler5 examined 

the stability of a rigidly rotating theta pinch in a one-dimensional 

model. In particular he compared the growth rates of an asymptotic 

finite Larmer radius (FLR) theory and those of an original VF expres

sion without making any approximations. Study of the growth rates as 

a function of krl, where k is the axial wave number and rL is the gyro 

radius, shows that the two theories agree very w~ll for k = 0. How

ever fork ~ 0 the destabilizing effect of resonant ions becomes im-

portant. Hence, the plot of the growth rates of VF model v.s. krL 

has a long tail beyond the threshold values of krL of the FLR theory. 

This phenomenon is a consequence of the fact that the VF model indi

cates the same stability condition as that of ideal MHO if the equi-

librium ion distribution function is a function of energy only and 

monotonically decreasing with respect to energy, while FLR theory 

predicts a more favorable stability ~riterion than that of ideal MHO. 

An extensive study is made of the VF stability in a series of 

papers. 6 Also recently, Seyler and Barns7 made a small gyro orbit 

expansion of the VF dispersion .functional, taking into account the 

strong curvature of the magnetic field, and found a stabilizing mech

anism to the tilting mode of a FRC. Of course the expansion is not 
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valid near the null. They also showed that in the limit of zero gyro-

radius, their result is in complete agreement with those of Kruskal 

and Oberman8 and Kulsrud9• 

The dispersion operator O(w) appearing in the VF dispersion func--
tional has an interesting feature. 4 As in Ref. 4 [Lewis and Symon], 

if one defines the adjoint of the operator D(w) in the usual way but -
treat w as if it were real for its conjugation, Dt(w) = [D(w*)]t. - -
(This is the only way to define an adjoint matrix which is an analytic 

function of w, [D(w)]+ is not an analytic function of w.) Then the -
matrix elements Qij t(w) of the adjoint matrix are Qij t(w) = Q.;i(w). 

Since the dispersion function of the VF Model has the property that 

* t t o .. (w) = 0 .. (w), we have 0 .. (w) =D .. (w) or .D (w) = D{w). Because 
-Jl -lJ -lJ . -lJ . - -

of this Hermitian property of the operator in the sense as described 

above, the VF disperson functional has a variational nature13 of 

eigenvalue problems. Some of the other interesting properties of the 

operator are discussed recently by Symon14 • 

In Sec. B, we describe the physical concepts and the approximation 

made in the model. In Sec. C and 0 we investigate the equilibrium and 

the stability properties of the model respectively. Finally, in Sec. 

E, a dispersion matrix is introduced to find the growth rates and the 

eigenvectors of the VF model. The properties of the matrix are also 

investigated. As a simple matrix problem, a one by one matrix is con-

sidered. In this case, we have to guess an eigenvector, which is a 

trial function. In the appendix, we mention briefly the basic frame

work of Symon, Seyler and Lewis4' 6 as a comparison. 
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The VF model and its properties are mostly based on the work of 

others; the references are noted in the text. My contribution is 

applying Finn•s way of treating stochastic orbits as in Ref. 10 to the 

VF model, including extension of the method to the treatment of both 

the regular and the stochastic orbits [part of Sec. 0.2] My contri

bution is, also, in Sec. E.3 which discusses properties of some types 

of trial functions and the Nyquist diagram approach to select physical 

growth rates. 

B. The Model 

The model applies to a class of fusion experiments that are oper

ated in a regime where ions are collisionless and are well described 

by the Vlasov equation and yet the collisions among electrons are suf

ficiently frequent so that the electrons can be described as a fluid 

on an MHD time scale. 

To study plasma stability on the MHD time scale, or longer, and 

over spatial scales much larger than the Debye length, it is possible 

to consistently neglect space charge (quasi-neutrality approximation) 

and the displacement current in Maxwell•s equations. The quasi

neutrality character yields not only the macroscopic ion quantities, 

but also the electron density as calculated from the appropriate 

moments of the ion distribution. 

Electrons, due to their small mass, are well described by the 

small and fast gyro-orbits whose guiding centers are tied to the field 

lines, shorting out any parallel electric fields which tend to arise. 
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If we further assume that the electrons are cold and ignore the drag 

force on electrons due to ions, electrons are governed by the follow-

ing equation; 

E + l u x B = 0 - c ~ (4.1) 

where~ is the macroscopic electron velocity. Eq. (4.1) describes 

the electron motion perpendicular to~· The motion parallel to~ is 

determined from B • E = 0 which comes directly from the electron equa-

tion of motion. 

With these assumptions, after eliminating some unknowns, the basic 

equations of the VF model are given by 

'iJ X E = 
1 a~ 

-car , 

!f. + v • 'iJ f = • !( E + l v x B ) • 'iJ f , at M- c- - -v 

(4.2) 

(4.3) 

(4.4) 

where f is the ion distribution function and e is the charge of an 

ion. It is worth noting that E • B = 0 is automatically satisfied in 

Eq. (4.4). 

Now, we show that the total energy of the system is conserved by 

this model. The energy of the system (Htotal) consists of three 
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parts: field energy, the kinetic energy of ions and the kinetic energy · 

of electrons. 

Htotal = k J dx (E2 + B2) +} J dxd! Mv2f + ~ J dx neu~ 

(4.5) 

where m is the electron mass, ne is the number of electrons in unit 

volume and e is the charge of an ion. 

By ignoring the displacement current, the time derivative of the 

total energy of the system, in the limit of m going to 0, reduces to 

dHtotal 
dt = (4.6) 

The last equality holds since £. • ,!!e = 0 which comes from ~he electron 

equation of motion described by Eq. (4.1). Hence, the total energy is 

conserved by the model. 

c. Equilibrium 

First we describe the properties of Vlasov Fluid equilibria in 

general and then find a specific equilibrium of interest. We restrict 

ourselves to equilibrium ion distribution functions of the form 

( 4. 7) 

where H =} Mv 2 + e¢0 (_~) and ¢0 (.~) is the equilibrium electrostatic 

potential. The assumption behind the choice of an equilibrium as a 

function of energy only is that ion orbits ergodically cover the energy 
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surface. If not, each ion orbit separated on the energy surface is 

assumed to be equally weighted statistically. 

For our equilibrium the ion distribution is isotropic, and hence 

the macroscopic ion velocity is zero; that is, the equilibrium is 

static with the ions confined electrostatically and all current car

ried by electrons. 

Defining the number density and ion pressure as 

{4.8) 

and P ("' ) = J 1Mif
0

d_v , o ~a ::s·· 

.. 

it follows that 

1 dP 
0 

no = - e d<Po {4.9) 

The force balance equation is obtained from Eq. {4.4) 

1 
4; ( 'i7 x ~) x ~ = eno£o ' (4.10) 

' 

( 4.11) 

Eq. {4.11) indicates that the VF equilibrium is identical to that of 

ideal MHO for the class of ion equilibrium distributions described 
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above. This is because ideal MHO is exact if the pressure is iso-

tropic, as in our equilibrium distribution. 

The electrostatic potential can be obtained from the force balance 

equation. For instance, if we assume that the ion temperature(T) is 

uniform throughout the plasma, then 

no(~) 
= - T ln no{o) 

or taking <P
0

(o) = 0: 

0. Stability 

0.1 Gauge Condition and the Variables 

' {4.12) 

{4.13) 

The linearized stability analysis involves the scalar potential 

<P1 and the vector potentials A1• We are able to eliminate some of the 

variables by choice of gauge condition and other properties of the VF 

model. 

We define s such that 

{4.14) 

A 

_______ w_h_e_re_,§._·_~ = 0 and b = ~/80 • 
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By the definition of Eq. (4.14), the vector 1 is the field line 

displacement. 

In most cases a convenient gauge choice is All = 0. This gauge 

condition cannot be chosen if it is not possible to find a scalar X 

such that 

or ~ Ai = ~ • 'VX , (4.15) 

for any vector Ai· The two notable cases in which this gauge is not 

allowed are (1) when ~·'V is singular and (2) when there is a periodic 

constraint on the field line~ The former occurs, for example~ for the 

m = 0 mode in a pure Z-pinch, and the latter when ~ has a closed 

field line configuration. 

The condition I1·~ + £o·~1 = 0 can be expressed as 

B •'V [- <P1 + .!_ u •A1] - .!_ u • v (A .• B ) + B •Al [- iw - .!_ 'V•U ] = 0 
~ - c ...;...o - c 0 - -1 ~ ~ - c - 0 

(4.16) 

2 
where~= cia x ~/B0 • Consequently, <P1 = ~·A1 for the choice of 

gauge condition All = 0. Here an arbitrary function of 1jJ
0

, the equi

librium flux, could be added to <P1 but 1jJ
0 

doesn•t have the dependency 

of normal mode. Therefore it must be set to zero. 

Finally we are left with two variables which are the two compo

nents of i
1

. The relationship between 1
1 

and the VF variables are 
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All = 0, A 1 = ~ x !!a and ~ = g 1 • fo . (4.17) 

For a closed magnetic field configuration, the ga_uge choice A
11 

= 0 

is not allowed. In this case we choose a gauge by ~1 = ~1·fo· This 

gauge is always allowed for a description of unstable modes. Then 

A
11 

= 0 is a restriction of the modes that we are studying. Hence the 

contribution of All has to be examined. The condition on A
11 

= 0 ap

pears exactly the same way as the condition on 'il•!;_ = 0. Hence, it is 

suggestive that for the modes which are well approximated by incom

pressible displacements then the contribution of A
11 

would be small. 

In any case, the relationship between ~ 1 and the VF variables 

shown in Eq. (4.17) will be used throughout the thesis. 

0.2 The VF Dispersion Functional 

Now we are ready to express the linearized force balance Eq. (4.4) 

in terms of £
1 

only. 

- F(~) + 
--1 

+ iwi J d~_(E.o +~_!X !!a) d~~ Jdt 11• (E.o +~~X i!o) = 0 

(4.18) 

and ~1 = 'i/ x ( ~:L x !!a) ( 4. 20) 
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To obtain a dispersion functional we form a dot product of Eq. 

(4.18) with ~* and integrate over space, which gives 

2~W(_~*1,_~1 ) + ill)e Jdxn ~* ·~ x B + ill)e2 Jdxdv~*·(E + lv x B ) ~ c - ~ 1 ..:...L .;;.a - -- .;:o c- .;;.a uH 

X J dt I ~* . ( E + ~ X B ) = 0 - ~ c- .;;.o (4.21) 

(4.22) 

The quantity ~W(~!• f
1

) is identical to the potential energy vari

ation of ideal MHO for incompressible displacements. It is well known 

that ideal MHO ~W can be written as the sum of two terms: 

(4.23) 

where y is the ratio of specific heat capacity at constant pressure to 

that at constant volume. Notice that ~II appears only through l~·_fl 2 

which is a stabilizing term. Hence ~W is minimized by ~·l = 0. How

ever V·~ is not a physical quantity but ~II is. Therefore y·~ can be 

made zero as long as one can find a single valued solution for ~II of 

V·~ = 0 for any given ~ • That is ~ is given by the solution of 
-1 II I 

~·V(~ /8
0

) = -V·~ which is the form of Eq. (4.15). Hence, if the 
....... - II - ~1 . 

gauge choice is allowed then the most unstable displacements of ideal 

MHO are guaranteed to be incompressible and 6W(~*,I) = 5W1(~1·I1). 

Now we express the third term of Eq. (4.21) (we denote this term as 

I
0
b where the subscript "ob" stands for "orbit" so that Mlob stands for 

orbit integral) in terms of dynamical spectral densities in analogy with 
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the approach of FinnlO,ll and Sudan11 used in studying the stability 

of a plasma with an energetic ion beam. 

First we introduce K{.!,{t)) as follows where, ,t{t) = (~(t), !:_(t)), 

e'" • (E + lv x B ) = K(z(t)) e-iwt 
~1 -=o c- ~ - (4.25) 

so that K(z(t)) is independent of w. Then -
(4.26) 

-co 

where -r = t•- t andCZJ((z(t),-r) = K*(z(t))K(z(t + -r)). - - -
Notice that a phase variable of a Hamiltonian system at time t + -r is 

determined by the initial phase variable at time t and the time 

difference -r. 
.. 

Suppose we have m independent constants of motion, say l = (11, 

12, .Im)' where m is less than or equal to the dimension of the 

system. It is convenient to transform the 6-dimensional phase vari

ables into land I where I is the 6-m variables; i.e. d£ = Jdld[ where 

J is the Jacobian. The transformation from z(t~ to (l, I (t)) is sim

ply a change of variable. It need not be a canonical transformation. 

I
0
b now reads as 

0 

;., J Jd~: o '11(1-)-<--irt f-d!9{{-l-,'f;(-t) ,-'t-)e-iwT >-
-co 
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where CV (l) is the 6-m dimensional volume in the phase space accessi

ble to a particle with constants of motion I and the angled bracket 

< >denotes the average over the 6-m dimensional volume, i.e. 

< • > = J d r ., J d r = J d r ., cv (l) 

Since ! and T are independent variables, we can interchange the 

order of integration to obtain 

If the Jacobian of the transformation is a function of the variable 

£(t), then the Jacobian should be kept inside of the bracket. The 

factor e2yt appears in each term of the dispersion functional and 

can be cancelled out. 

It is important to realize that the quantity ~(,~(t), T )>is 

independent of t whether the motion is ergodic or not as long as the 

particles are described by a Hamiltonian sy~tem. 12 This is because 

the volume in the phase space of a Hamiltonian system is invariant by 

Liouville's Theorem. Since I's are constants of motion, each sub vol-

ume in the phase space of given values of I's is invariant, i.e. inde-

pendent of initial condition. Hence the quantity <~(z,{t),T)> is 

independent of t. 

Because ~> is independent of t, we can expand it in terms of 

Fourier integral of T: 

(4.27) 
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Now the T-integral in I
0
b is carried out easily. Ignoring the initial 

term of the integral, under the assumption that the imaginary part of 

w is positive, we obtain 

lob = we2ytfdr de dFO CV(I) P(e; 1) 
- CIFf - 6-w 

= Jde S(e) 
w 6-w ' (4.28) 

where J dF 
S(e) = e2yt Jdl ~ CV (l) q> (e) 

S(e) here is equivalent to the dynamical spectral densities found by 

Symon, Seyler and Lewis6 where they expressed S(e) in terms of eigen

values and eigenvectors of the unp~rturbed Liouville operator. As a 

comparison, their basic framework and the expression of S(e) is brief-

ly discussed in the Appendix. 

Finally the VF dispersion functional can be represented in the 

simple form: 

Equation (4.29) has a neat form but it does not show clearly how 

the kinetic correction appears to MHO, since S(e) involves the fluid 

inertia (the second term of Eq. (4.31)) and the kinetic effects. Be

cause S(e) is the mixture of MHO and the kinetic effects, S(e) may 

have to be evaluated more accurately than otherwise necessary to see 

kinetic corrections to MHO. 
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For this reason and to understand the kinetic effects more physi

cally we transform Eq. (4.29) to separate MHD from kinetic. By using 

the identity 

1 dv 
f_• e(fo + 0v X ~) = ~." £. = ~·dt 

d(£_·~) dL 
= M dt - ~ • Cit ) 

the orbit term, the third term of Eq. (4.21), can be transformed as 

follows; 

f d * dt;* f -iw d! F~(H) df(~:.Y) - Y.•dt ) dt 1 (~:~- w~·~) 1 
~~--------------~-------------------------/ { (4.30) 

-iw J dz F ' d (~~ v) J dt 1 (~:~- iw~·~) 
\. - 0 dt -

+iwJdzF 1 (H) 
- 0 

(~:YS_ - iw~·~>* J dt 1 (~:YS_ - iw~·~) 

; . 

- iw J dz F' ~ ~~v J dt 1 (~:~- iw~·£.) 
\... - 0 -- / 

<D 
+ iw J d~ F~ §_~~ (~:~- iw~·£.) 

® Q) 
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The term CD transforms further as 

-iw JdH dP
2 
F~Jd~&Udt•r*:! (~:~- iw!·~)]. The integration 

1 imits o_f £ are only functions of H and P z• Therefore f d.[ can be 

moved to the right of&· Also since ['s are independent to t•, the 

I integral can be moved to the right side of J dt' yielding the term 

(!) as 

for particles governed by Hamiltonian dynamics. The term 1 after the 

integral is only a function of the time difference of the two time 

correction. The ref ore the term CD becomes 

0 

-i~ JdHdP2 F~~ L dT'<J((H,P 2 ,T) 

which is clearly a constant, independent ofT, after the T-integral 

and thus vanishes upon the derivative with respect to t. 

The term@also vanishes because of the odd parity in velocity. 

The third term becomes the inertia term; 

-iw J d:: ~ 5_*•! (- iw y:f) = - •{ Jd=. Fal~·~l2 

= - ~.~~2jl~12no(~)d~ 
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Collecting all the terms together, we obtain 

The new form of the dispersion functional is then 

2oW- cijl.~_1 2 n0 (x)dx + iwjd!F~(~:Y.[- iw~.:S.)* Jdt'(~:ll~- iw~:S.) = 0 

(4.3la) 
or 

(4.3lb) 

where s1 and s3 are the two time correlation of ~:21 and !•1 respec

tively, and 52 is the cross correlation of (~:21)* and ~.:1· 

0.3 Stability Theorems 

Even though the detailed expression of the dynamical spectral 

density S(s) is different, the di~persion function is exactly the same 

as that of Seyler and Lewis6• Therefore, the sufficient and necessary 

conditions for stability can be investigated in the same way as they 

did. 

First we set the real and the imaginary part of Eq. (4.29) to zero 

respectively to obtain 
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2 2 J 2oW - (a + y ) de ·S(e) · 
-2 2 = 0 

(e - a) + y 
{ 4. 32a) 

i~ Jd~ n~*·£ x ~ + Jde e S(~) 2 = 0 , 
(e - a) + y 

(4.32b) 

where a is the real part and y is the imaginary part of w. We have 

used the fact that oW is real and the integral term J d~*·£_ x~ 

is purely imaginary. 

Sufficient Condition for Stability: From Eq. {4.32a), it is 

apparent that there is no solution for y if oW > 0. Recalling that 

the expression (4.32) is valid only for y > 0, we conclude that oW > 0 

implies y < 0. 

Necessary Condition .fo~ Stability: First we study the behavior of 

Eq. {4.32) in the limit y ~ 0. Using an identity 

lim l Y = o(c), 
y~ 11' c 2 + i 

for any real c, we obtain an expression from Eq. (4.32a) by taking the 

limit of y ~ 0, 

2 2 
2oW - 'll'(a + Y ) S{a) = 0; as y ~ 0. 

y 
{4.33) 

Here, we assume that S(a) does not vanish, which in general is a weak 
2 

assumption. With this assumption Eq. (4.33) requires that lim~ 
y~O y 

should be finite since oW is finite. Therefore a should approach zero 
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as y does. This means that the marginal stability corresponds to 

w = 0. Furthermore, it also implies that y = 0 only at w = 0. Hence, 

it is only necessary to consider the sign of ~W near w = 0 in order to 

establish a necessary condition on the sign of ~W which will also be 

valid arbitrarily far from the marginal point. Therefore again from 

the near marginal expression Eq. (4.33), it is apparent that if there 

is a solution y < 0 then ~W > 0. 

E. Calculation of Growth Rates 

So far we have discussed the stability only qualitatively. Our _ 

next task is to find the growth rates of the unstable modes, if any. 

From Eqs. (4.32a and b) there seems to be an w that satisfies those 

equations for almost any r since there are two unknowns a and y 

(w = a + iy) and there are two equations (4.32a) and {4.32b). What do 

w and r mean in this case? We will answer the question in the follow

ing sections. 

E.l The Dispersion Matrix 

Let us express the linearized force equation in terms of a 

dispersion operator D{w) as 

£{w) ·..S, = 0 

Then the VF dispersion functional of Eq. {4.29) has a form of 

{4.34) 

(4.35) 
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where the bracket is a short notation of the integration over various 

variables as shown in Eq. (4.29). Treating~* and f. as independent 

variables, we recover Eq. {4.34) as a stationary condition of the dis

persion functional with respect to the variation of f.*. The station

ary condition with respect to the variation of~* requires that 

(6~*, ~) = 0 for any 6~*, (4.36) 

which is possible only when £{w)·~ = 0. 

With the above basic knowledge, let us expand f in terms of a 

complete but not necessarily orthogonal set of basis functions n : 

f = L: a.e.n.e. 
.e. 

Likewise~* = L: * * then a .e., n.e., ' 
.e.• 

(.~*' £·g) = ( L a l' n l' • £ ( w ) • L a .e. n .e.) = 0 (4.37) 

.e. .e. 

and 

= D(w) = 0 (4.38) 

If we demand that Eq. (4.38) is satisfied for any basis function 

of n.e. then we recover the force Eq. (4.34), since the n.e.'s form a 

complete set. 

More explicitly Eq. (4.38) is 

(4.38) 
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where t• = 1 , 2, 3, ••• , where the vectors t and t• are represented 

by an indecies t and t• for simplicity, which corresponds to a case 

where the trial function is represented by a one component vector. 

Eq. (4.38} or (4.38} is simply a set of homogeneous equations. The 

problem is then reduced to an eigenvalue problem of a matrix whose 

element is 

£e. I,! = (4.40} 

Notice that each element of the VF dispersion matrix requires the 

detailed information of the equilibrium ion orbits. 

In an approximate treatment, or a numerical calculation, complete-

ness means that there must be enough basis functions so that the true 

eigenfunctions can be adequately represented by a linear combination 

of basis functions chosen. By solving the dispersion matrix, we 

obtain the dispersion relation of the system with the errors which 

arise due to the number of basis functions. 

E.2 The Properties of VF Dispersion Operator 

Before one undertakes a complicated computation, it is extremely 

useful to know the properties of the matrix. First we define an 

adjoint operator 

(4.41} 

That is, the complex conjugation of ]{w} is obtained, treating w as if 

it were real. By this definition O(w} is analytically continuous on .... 
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the real axis. [See Ref. 4.] From Eq. (4.29) and the definition of 

S(s) in Eq. (4.28), and Eq. (4.41), it is clear that the VF dispersion 

matrix functions satisfy Q+(w) = Q(w). Therefore the VF dispersion 

operator is Hermitian with the definition of Hermitian matrix function 
+ as Q (w) = Q(w). The normal mode frequencies w are the roots of the 

dispersion relation 

det Q(w) = 0. (4.42) 

From the Hermitian property of D(w} and the definition (4.40), the 

component of the matrix 

D . . ( w} = D t . ( w) = D~ . ( w) = [ D .. ( w * ) ] t 
-1 J. -1 J -J 1 -J 1 

(4.43) 

Therefore, interchanging the rows and columns and taking the complex 

conjugate, we obtain 

det Q(w*) = 0. (4.44) 

This shows that w* is also a root of the dispersion relation if w is. 

Suppose the system has translational symmetry in z. Then the 

dispersion matrix are diagonalized with respect to k where 

'""" :t:ikz - iwt g_ -L.ie 
+,-

(4.45) 

Thus the dispersion matrix is decomposed into two parts: one with 

eigenvectors with +k and the other with -k. 
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The relation of the normal mode eigenfrequencies between the two 

decomposed dispersion matrices is obtained by following our definition 

of the conjugate of a function: 

~ (- (I) ' -k ) = ~ * ((I) ' k ) ' (4.46) 

The adjoint equation of .Q(w, k)·~(w, k) = 0 is [Q(w, k)t·~(w, k) = 0. 

By the Hermitian property of D and the relation (4.46), 

.Q{w*, k)·r {-w, -k) = 0, or Q(-w*, k)·~(w, -k) = 0. (4.47) 

This shows that if w = a = iy are the eigenfreqencies of the eigen~ 

vector with k, then w = -a = i6 are the eigenfrequenctes of the eigen

vector with -k or vice versa~· Thi~ is physically understandable since 

the stability does not depend on the direction of the propagation of 

the perturbation; i.e., only the real frequency has the opposite sign. 

Therefore, if the system has ignorable coordinates, we only have to 

evaluate using eigenvectors with +k. The eigenfrequencies of -k can 

be deduced by analogy. Also, a straightforward calculation shows a 

nice symmetric property: 

S*{s, k) = -S(-s, -k) (4.48) 

and 

Q*(w, k) = Q(-w, -k) • 

The symmetric property can be extended trivially for a system with 

many ignorable coordinates. Furthermore the property that not only w* 
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but also -w* is a solution of the dispersion relation if w is a solu-

tion, is true in general regardless of whether the system has ignor

able coordinates or not. 

Since a physical system is described by real functions of 1, 

consider~ whose spatial dependent part of ~ is real, more precisely 

f(~, w) = ~(~)e-iwt where~(~) is real. Then from the dispersion 

functional relation [Q(w)]t·~* = 0. Following our definition of com

plex conjugate, namely treating w as if it were real in the process, 

the last equality leads to Q(-w*)•l(~,w} = 0 since ~*(~,w} = ~(~, -w) 

and [Q(w)]t = Q(w*). Therefore -w* is also the solution of the diper

sion relation (4.42) if w is so. Combining with the previous results 

we conclude that the eigenfrequency w of the dispersion relation 

(4.42) appear in the following forms: 

w = ziy, w = =a or w = =a = iy, 

where a and y are real representing the real frequency and the growth 

rates (or the damping rates) of the eigenvectors. Remember that the 

damping modes are not physical since the relation (4.42) is obtained 

under the assumption that the mode is growing. 

E.3 Trial Function Approach 

Evaluating exact growth rates from a VF dispersion matrix requires 

in general, enormous numerical work except in a very special or trivial 

case. This is because each element of the matrix needs the detailed 

information of the orbits. Hence it is suggestive to make the matrix 

as small as possible as a start. 
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Especially if we are interested in finding some kinetic corrections 

to ideal MHO for some particular modes, it is reasonable to use the MHO 

eigenvectors as trial functions and find the expectation values of the 

growth rates of the VF dispersion functional. This corresponds to a 

one by one matrix. The trial function approach of a set of ideal MHO 

eigenvectors will predict the correct transition near w = 0 since the 

two models have the same stability criterion. 

The justification of a trial function approach is based on the fact 

that the errors of the expectation values of w to the actual eigenvalue 

w of the VF model are less sensitive than the errors in trial functions 

to VF eigenvectors. 12 It is in general not at all clear whether the 

above idea is applicable if the operator is not Hermitian. Fortunately 

our dispersion operator is Hermitian in the sense of Lewis and Symon 

and has a variational nature as discussed in the previous section. 

However, our problem is in fact that we do not know what the zeroth 

order eigenvectors are until we solve an exact matrix problem. 

In short, for a chosen trial function whose value of oW is negative 

there always exists a solution, with growth rates, corresponding to the 

function from Eqs. (4.32a) and (4.32b). If the function is close to 

the true eigenvectors of the VF model the growth rates are reliable and 

show the orbit effect correctly. If the trial function is way off the 

true modes, then the growth rates found by the procedure are not phys

ical. Hence for a trial function approach, it is crucial to find a 

good trial function on physical grounds. 

Since the structure of the modes depend on the detailed configura

tion of the system: we will simply consider two general categories of 
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trial functions; standing wave displacements and the travelling wave 

displacements. 

(1) Travelling Wave Trial Functions: 1 = 1(A)e-iwt where ~(~ is 

complex. This set of trial functions describes perturbations propagat-

ing in some spatial directions. 
"k . t For example, iff= ~(x,y)e 1 Z-lw , 

then the displacement has nodes in x and y but propagates in z (trav

elling wave). This choice is most appropriate when there is a spatial 

symmetry. For a travelling wave trial function, we have to solve Eqs. 

{4.32a) and (4.32b) simultaneously for a and y since S(a) is no longer 

symmetric in a. 

In order to understand the properties of the dispersion functional, 

. we draw Nyquist diagrams. First define a complex function G(w) as 

and 

Real[G(w)] 

Imag[G(w)] = fda aS(a) 
(a- a) 2 

+ i 

so that Eq. (4.32) becomes 

26W + Real [G(w)] = 0, 

I + Imag [G(w)] = 0, 
c 

where I = i~Jdxn ~~ x B which is real. c c -~- .;;.a 

' (4.49a) 

(4.49b) 

(4.50) 

For a given y, we plot Imag[G(w)] on the vertical axis and Real 

[G(w)] on-the horizontal axis by changing a from -oo to +oo. Notice 
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that y appears in Eq. (4.32) only as y
2• Of course negative values 

of y are meaningless since the Eq. (4.32) holds only for positive y. 

For example, suppose that the spectral density S(B) is obtained as in 

Fig. 4.l(a). From the spectral density, the Nyquist diagrams of three 

different y
2 values are drawn in Fig. 4.l(b) where the dotted lines 

are for the positive a values and the solid lines are for negative a 

values. 

As a ~ :oo, Imag[G(w)] ~ 0 and Real [G(w)] approaches to a fixed 

value- JdsS(s) for any y
2• Therefore all the Nyquist diagrams merge 

2 to a point as a ~ :oo. The diagram becomes large as y decreases. 

When y
2 approaches zero, the ratio of Imag[G(w)] to Real[G(w)] goes 

to either +oo or - 00 depending on the sign of a as· a approaches zero. 

As a ~ ±oo, the ratio becomes zero. Therefore, the Nyquist diagram of 

y
2 ~ 0 starts from somewhere on the imaginary axis (the value on the 

imaginary axis depends on the structure of S(e)) and follows minus 

imaginary axis as a increases from zero. The diagram encircles the 

fourth quadrant of G(w) and approaches to the fixed point (0, - ~dsS(s)) 

following the real axis from infinity. Similarly the curve of a< 0 

encircles the first quandrant of G(w) and makes a closed contour with 

that of a > 0. This diagram is sketched in Fig. 4.l(b). If we con

sider Nyquist diagrams of all different values of y
2, it will cover 

the whole right half plane of G(w). The solution of Eq. (4.32) is the 

value of a and y at the point of (-2oW, -Ic) on G(w) plane. There

fore, if there is a ~which makes oW < 0, then a solution for y
2 

exists in general which shows the instability. This is consistent with 

the stability theorem discussed in Sec. 0.3. 
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(2) Standing Wave Trial Functions: ~ = 1(x)e-iwt where ~(x) is 

real. This set of trial functions describes displacements whose fluid 

element oscillates with fixed nodes. 

For a standing wave trial function~ the first term of Eq. {4.32b) 

vanishes and so we deduce a = 0 from the fact that S(a) < 0 (not zero) 

and symmetric in s. The growth rates are then simply the solution of 

the following equation: 

= 0 • {4.51) 

Notice that the second term of Eq. {4.51) is monotonically increasing 

with respect to r2 from 0 to -JfdaS(a). Therefore if 

Jf daS(a) < ·~w < o~ then there is always an unstable mode and only 

one. Otherwise the displacement is not unstable. 

The Nyquist diagram in this case is symmetric with respect to the 

real axis since the spectrum S(a) is symmetric in a. So the domain of 

G{w) is [0~ - j{daS(s)] on the real axis. This is of measure zero com

pared to that of a travelling wave trial function case. 

Since the domain of G{w) for a standing wave trial function does 

not cover the whole positive real axis, the existence of a standing 

wave trial function which makes ~W negative does not imply a solution 

for r2 of the VF dispersion functional. In other. words a standing 

wave displacement which is unstable with respect to ideal MHO can be 

stable in VF picture. Nevertheless, this is not contradictory to the 

stability theorem of Sec. 03~ since the system is still unstable, 
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which can be easily seen by simply using a travelling wave form of the 

same displacement. The behavior of a standing wave displacement is 

rather singular in the VF picture. 



103 

APPENDIX A 

The same VF model has been studied by Symon, Seyler and Lewis4' 6 

by expanding the perturbed distribution function f1 in terms of eigen

values (i~r) and eigenvectors (Wr) of the equilibrium Liouville's 

operator (~). We will illustrate the major scheme of their work just 

for a comparison with our work. 

Since 52
0 

is an anti-Hermitian operator the eigenvalues of the 

operator are purely imaginary. We write the eigenvalues as i~r so 

that ~r is real. Then 

(Al) 

The index r stands for a list of indices needed to specify a unique 

eigenfunction. In terms of the eigenvectors (Wr) of the unperturbed 

Liouville's operator ~), one can write 

-· 

f 1 (_g_, £_, t) = :Z:::r r ( t )Wr (_g_, £.)' (A2) 

r 

where ~,.9. are phase space variables and yr(t) is the coefficient of 

each component and real. One can also make Laplace transformations to 

all functions of time as follows: 

(A3) 
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The basic idea of using the expression of (A3) is essentially the 

same as the normal mode representation used in the main text where 

1 = 1(~)e-iwt. The only difference of these two notations is the 

factor e2Yt. The factor appears in every term in the dispersion 

functional derived in the text and thus cancels out at the end, while 

the factor never appears if one uses the expression of (A3). 

where 
S(s) 2 . _ dF (H) 

= e L o ( llr - ll ) -d .... ~;,.--
r 

The meaning of each term is exactly the.~~me as in the text. If one 
A 

assumes that ~ and w correspond to an unstable mode the terms involv-

ing initial conditions vanish, which yields (;~D;) = 0. Finally, the 
--= 

dispersion functional reads as 

(AS) 
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FIGURE CAPTIONS 

Fig. 4.1 Dynamical spectral densities and the Nyquist diagrams. 

Plot (a) is a dynamical spectral density of a travelling 

wave trial function. 

Plot {b) shows three Nyquist diagrams for r2 = 1.0, 

r2 = .36 and r2 = 0.0 respectively. All the diagrams 

merge at a point on the real axis as a ~ = oo. 

• 



.. 

CJ) 
I ...._. 

-
o=O 

0.0 

-~-

y2 ~ 1 
(b) .. ······ 

.··· 

/o < 0 

... ····· .. 
.· .. .· .· . . .. 

. . . 
. · .·· 

Figure 4.l 

107 

15.7 

: ..· : 
. .. 

XBL 8311·7346 



108 

CHAPTER V 

THE STABILITY OF FIELD REVERSED CONFIGURATIONS (FRC) 

A. Introduction 

The field reversed configuration (FRC) is an axisymmetric compact 

toroid characterized by the peloidal magnetic field only. 

The FRC has some major advantages for a potential application to 

magnetic fusion; (1) It has high volume-averaged s (.5 < s < 1.0), 

inside the separatrix (where a is the ratio of local plasma pressure 

to external field pressure), since the plasma contained within the FRC 

separatrix is confined by closed magnetic field lines generated by 

toroidal plasma currents. (2) It has less engineering complexity than 

systems with toroidal symmetry due to magnetic coils, vacuum chamber 

and blanket. (3) Furthermore the field geometry possesses intrinsic 

divertor action and allows the plasma toroid to be translated along a 

guide field, which allows greater flexibility in reactor design. 

Experimentally the plasmas of FRCs at LANL are found to be stable 

up to 40 ~sec for FRX-B1 and -100 ~sec for FRX-C2 where they are 

terminated due to the rotational instability (n = 2 mode where n is 

the toroidal mode number). (With a quadrupole field the n = 2 rota

tional instability is suppressed3 and the plasmas last longer). On 

the other hand, ideal MHO and other present fluid calculations predict 

4-10 ( a set of very unstable modes m = 1 shifting modes where m is the 

peloidal mode number). 

Study of ideal MHO 6W in the neighborhood of the null line of a 

Hill•s vortex indicates that m = 1 modes are unstable for n > 1 and 



.. 

109 

becomes more unstable as n increases. 4 In the limit of large n the 

modes are localized on a flux surface and simple analytic form of a 

dispersion relation can be obtained, which shows that the exponential 

growth time is the Alfven transit time around a closed field line. If 

we take the parameters of FRCs at LANL, the growth times are around 

one psec. Even for lower n modes, the growth rates are found to be of 

the same order. 5 

Various other MHO equilibria6 (e.g., recetrack shape) have been 

considered but the result is no better. 5 It is worth noting that a 

necessary condition for ideal MHO stability of a closed field line 

configuration is that the average of KrB on the field line is posi

tive where K is the curvature of the magnetic field. 7 Hence, shap

ing a closed line configuration will not convert the unstable modes 

to stable ones. However, it may affect the growth rates. 

Many other MHO calculations have been attempted. Resistive 

effects8 have been added to ideal MHO, but the effect turned out to 

be negligible on an Alfven time scale. The possibility of nonlinear 

saturation9' 10 has also been investigated. Both the nonlinear energy 

variational calculation9 and the simulation result of the 3-D Malice 

code10 show that the amplitude of fast growing modes do not saturate 

at a low level. 

Thus a kinetic treatment seems to be necessary for the FRC stabil

ity against n > 1 shifting (m = 1) modes. Especially since most ion 

orbits are big (-1/3 of the size of the plasma) kinetic effects are 

very important even for global modes (low n modes), which we will dis-

cuss in later chapters. 
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In this chapter, we first investigate the linearized ideal MHO 

results and then other fluid calculations. The FRC experiments at 

LANL are briefly summarized in Appendix B to this chapter. 

B. Linearized Ideal MHO Theory 

B.l Near the Hill's Vortex 

The curvature driven ideal MHO instability in the neighborhood of 

the Hill's vortex of a FRC was studied by Newcomb4 for arbitrary elon-

gated flux surfaces. The word 'neighborhood' means the region where 

the Taylor expansion of the flux function is valid. Near the magnetic 

field null ('0' point) the local a, ratin of plasma pressure to mag

netic field pressure, becomes very large. If we restrict frequency 

ranges to the order of nA, where nA is the angular Alfven velocity 

(i.e. 2~/nA is the time required for one complete transversal of a 

closed magnetic flux line by an Alfven-wave signal), ~-~ = 0 is a good 

approximation in the high a limit since ~·f is order of a-1• 

In general the potential energy variation can be expressed in 

terms of three terms; surface term, vacuum term and fluid term. Since 

the displacements near the null are internal, the surface term van-

ishes. Also, the internal modes do not affect the vacuum fields, thus 

the vacuum term vanishes. For an incompressible displacement, the 

fluid part of the potential energy variation is from Ref. 4 [Newcomb]. 
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(5.1) 

where B
0 

and P
0 

are the equilibrium magnetic field and the pressure • 

The first term is the pressure driven destabilizing term and- the second 

is the stabilizing magnetic bending energy • 

For an axis symmetric toroidal system it is suggestive to do the 

Fourier transformation of a displacement vector~ with respect to the 

toroidal angle e. Upon integrating over e, a reduced energy varia

tional is obtained. In terms of the flux coordinates ~ and x where ~ 

is the flux function and x is the coordinate along the magnetic field, 

the energy variationl can be expressed as 

oW(~n:~n)· -Jd~dx -(~x2 + ~ 2) + b f~ · ~ ·+ C + .L ~2 )j (5.2) y \x,x y,x n2 z,x 

where ~- means the derivative of ~,· with respect to x and b is a 
1, X 

constant. Since the integrand of expression (5.2) does not involve 
.. 

any derivatives with respect to ~, oW can be minimized on each flux 

surface (~ = constant). Notice that the mode number n appears in only 

one positive term as l/n2• Therefore oW is minimized by taking n ~ oo 

and it is sufficient to show oW < 0 for n ~ oo to prove instability. 

To estimate the growth rates of a mode, a variational formulation 

is useful. Minimizing the potential energy variation, with respect to 

a normalization K(.1_*,g) = }jpg;_*·g;_d~, which is always positive, we 

have from the self adjointness of the operator in oW, 

w2 :: oW/K (f* ,f) (5.3) 
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For unstable modes 6W is more negative as n increases, minimizing the 

stabilizing magnetic bending energy, and K becomes small. Therefore, 

it is clear that the mode becomes more unstable as n increases. So we 

want to evaluate the growth rates in the limit of n ~ oo. In this 

limit, modes are highly localized and so each flux surface can be 

treated independently. Furthermore, the Euler-Lagrange equations for 

radial and axial displacements obtained from the Lagrangian 
·* . L = 6W- K(1 ,1) are decoupled and identical, thus yielding the same 

spectrum of eigenfunctions. 

The unstable axial mode is a rigid shift displacement in the axial 

direction (each flux surface moves rigidly in the axial direction), 

and the same for the radial mode in the radial direction. For both 

modes the growth rates ·are nA' or the e-foldin·g growth time is the 

Alfven transit time around the closed magnetic flux lines. 

Since the axial and radial modes are degenerate they are equally 

unstable for any elongated flux surfaces in the neighborhood of the 

null where the density is approximated to be uniform. This is no 

longer true if the mode is localized away from the null where the den-

sity gradient should be taken into account as one might expect since 

the radial displacement requires more magnetic field compression than 

that of the axial mode. If we use cylindrical coordinates rather than 

Cartesian coordinates the above mentioned rigid shift modes correspond 

to the m = 1 peloidal mode. Now the degeneracy is in the sign of m. 

The case of m = -1 is equivalent to that of m = 1. The modes corre

sponding tom= 0 and 2 are marginally stable and those corresponding 

to m > 2 are stable. 

.. 
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It is worth mentioning that the most unstable mode is not the 

interchange mode (m = 0) but the rigid shifting mode (m = 1). This is 

because there is no magnetic bending in the rigid shifting case. 

Hence the most unstable MHO mode is m = 1 (no magnetic bending energy) 

and n ~ oo (smallest magnetic compression). Detailed discussion on the 

interchange mode is given in a later section. 

8.2 Stability of a Hill's Vortex 

Now we study more general cases, dropping the incompressibility 

assumption, thus the calculation is valid somewhat away from the null. 

All the rest of the conditions are considered to be the same as before. 

Therefore following the same argument described earlier, we only have 

to consider the ~imiting case of n ~ oo. In this limit 6W can be mini-

mized with respect to ~e and ~X = 1·~ and the variation involves only 

~~ where ~ is ·the flux function. The final expression of 6W does not 

involve derivatives with respect to ~' 6W can be minimized on each 

flux surface (localization of the mode) which leads to an integral 

differential equation for ~~with respect to x [see Ref. 11 and 12]. 

By solving the equation numerically for various elorigation of the flux 

surfaces, Finn has found three unstable modes in general of a Hill's 

vortex equilibrium in the limit of large aspect ratio. They are low

est even mode (interchange), second even mode and the first odd mode 

(Ballooning mode) with respect to 6 where the poloidal angle 6 is 

measured from the minor axis of an elliptical flux. Of course, for 

circular flux surfaces (b/a = 1 where b and a are the major and the 
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minor radius of the flux surface) the second even and the ballooning 

modes are degenerate. 

If one chooses a pressure profile directly proportional to the 

flux functio~, the interchange mode becomes more unstable as the flux 

surface becomes more elongated up to b/a- 2, but then it is stabil

ized if the elongation is strong (b/a > 3). The stability of an 

interchange mode is rather sensitive to the pressure profile and will 

be discussed later in detail. However, it is worth pointing out that 

the mode can be stabilized by tailoring the pressure profile. 

The second even mode and the ballooning mode are unstable for any 

elliptical or circular flux surfaces. As the elongation increases, 

the second even mode becomes less unstable and approaches to marginal 

stability in the limit of a slab geometry, but the ballooning mode 

becomes more unstable. Due to the normalization condition, Finn•s 

work11 doesn•t show the growth rates quantitatively but it shows 

clearly that the most dangerous mode is the ballooning mode for an 

elongated flux surface. 

6.3 Interchange mode (m = 0) 

The plasmas confined by the closed-line configuration have 

unfavorable curvature to interchange modes. On the other hand the 

magnetic gradient drift (i.e., the gradient of the magnetic field) is 

favorable everywhere along the closed lines in field reversed sys

tems. It is found that flutetype perturbations in a low B plasma 

confined by closed field lines are unstable unless the current pro

file is hollow. 13 
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Sparks, Finn and Sudan14 have studied the interchange stability 

of high B plasma of an axis-symmetric field reversed equilibrium by 

solving the Grad-Shafranov equation for the equilibrium and varying 

the pressure on the magnetic axis and the pressure on the separatrix 

independently. The stability criterion against the interchange is 

that V"/V' + (P'/yP > 0 or (PV')' > 0 where v• = 2w; %1 and the 

prime indicates the derivative with respect to the flux function ~. 

It is not too difficult to obtain a reasonable pressure profile to 

meet the stability condition inside the separatrix. Outside the 

separatrix the curvature itself is favorable to stability and so the 

field lines in the region are stable. The field lines near the sep-

aratrix can be made stable when the pressure at the separatrix is 

finite. The requirement of finiteness of the pressure at the separa

trix could be satisfied by making the pressure essentially zero for 

some equilibria. For example if v• - ~ln 1~1, then the pressure at the 

separatrix (~ = 0) could be made as small as (-lnJ~I)-y where y is 

the ratio of specific heat capacity of constant pressure to that of 

constant volume. 

8.4 Rigid Axial Displacement Modes (m = 1; n = 0, 1, ••• 

B.4a. Roman Candle Mode (n = 0) 

n = 0 mode is an axial displacement of the.entire flux tubes. 

Without strong mirrors at the ends this mode can be dangerous: The 

so-called "roman candle" mode, results in an ejection15 , of the 
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entire plasma out the ends of the device. It has been shown by using 

the full 6W expression for then = 0 mode that P11 (W) < 0 is sufficient 

for stabilizing the mode. 16 Therefore, like the interchange mode, a 

proper pressure profile makes the plasma stable with respect to the 

"roman candle 11 mode. 

B.4b. Tilting Mode (n = 1) 

The tilting mode has been one of the most important modes for many 

years in a compact toroidal system such as spheromak, FRM and FRC. 

The reason is that the mode is a global mode and predicted to be very 

dangerous. 

The tilting mode is predicted17 and observed18 in a spheromak 

but can be stabilized ~y the wall. However the mode has never been 

observed in FRC•s. 

The general fluid properties of the tilting mode in FRC•s has been 

already discussed in the previous sections. Therefore we focus here 

on a detailed structure of the mode. Schwarzmeier et al. 5 have exam-

ined the MHO tilting instability both by an initial value code and by 

a 11 semi 11-trial function (explained below) approach for various FRC 

configurations ranging from elliptical to highly racetrack shaped 

equilibria. 

The time dependent equations are obtained by linearizing the 

resistive MHO equations about an equilibrium. The perturbations are 

assumed to vary as f 1(r,z,t)eine where e is the toroidal angle. The 

unstable equilibria result in exponentially growing solutions. The 

result of the initial value code runs can be summarized as follows: 
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(1) For elliptical equilibria, each flux surface has a rigid axial 

displacement i.e., £(~,x) where is the coordinate along the magnetic 

field line with maximum displacement near the null. (2) As the equi-

libria become more flattened like a racetrack, the displacements are 

more localized near the tips of the flux surfaces, indicating a strong 

dependence upon x. (3) The growth rates are insensitive to the flat-

ness of the equilibria. The growth times of the four different equi

libria are about one ~sec for the parameters of a FRX-B. 

The growth rates of the modes are also investigated by a semi-

trial function approach. The word 'semi' is used because the form of 

a trial function is chosen and then the detailed structure of the mode 

and the growth rates are evaluated by solving a dispersion matrix 

introduced in Chap. IV. Specifically, the trial function is chos~n 

such that it is incompressible (~·I= 0) and is a rigid motion 

(~(IJ!,x) = ~(IJ!)c where c is a constant vector in the (r,z) plane). 

Now ~(~) is expanded in terms of basis functions n as 

~(IJ!;w) = L a9.(w) n9.(1JJ) 
9, 

By this procedure, Schwarzmeier et al. found a very good agreement, 

within 10%, on the growth rates with the initial value code result for 

an elliptical flux surface. However, the growth rates are very much 

reduced (growth time -20 ~sec) for highly racetrack shaped equilibria, 

showing a big discrepancy with the inital value code result. The x 

reason is that the basis functions chosen do not allqw x dependence of 
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the mode. The work indicates that (1) the trial functions should be 

taken carefully and (2) the rigid displacement assumption is good for 

an elliptical equilibria. 

B.4c. Ballooning Modes (m = 1, n ~ oo) 

The curvature of the magnetic field in a FRC is bad everywhere 

within the separatrix with strong curvature near the tips of the flux 

surfaces. Hence a perturbation which is not constant but varies slow-

ly along the field line (k
11 

<< k
1

) can develop in such a way that the 

mode is concentrated in the most unfavorable region, which results in 

a stronger pressure-driven destabilizing effect than that of a simple 

interchange mode; If the concentration is not too severe, the in

crease of stabilizing force from the line bending cannot overcome the 

pressure-driven destabilizing effect. 

In general ballooning modes are difficult to solve because of the 

inherent multidimensional property. However in the limit of large n, 

modes are localized on each flux surfaces (k
1

L >> 1), in which case 

the stability problem reduces to a 1-D differential equation on the 

surface. When such a calculation is applied to a FRC configuration, 

ballooning modes are found to be the most unstable. 

However, they are presumably stabilized easily by finite orbit 

effects, since the modes are localized. 



.. 

119 

C. Other Non-kinetic Theories 

C.l Double Adiabatic 

A more realistic model than ideal MHO is the double adiabatic 

theory. This model assumes that the magnetic field is strong enough 

for particles to gyrate about the lines (no heat flow across the 

field) and while the temperature is uniform along the line of force 

where heat can flow easily. This assumption leads to two adiabatic 

equations of state 

and 

Where P1 and P
11 

are the pressure perpendicular and the pressure par

allel to the magnetic field lines respectively. The second equation 

of state is equivalent to the adiabaticity of magnetic moment. These 

equations of state form a closed set of equations with the continuity 

equation, the momentum equation, I+~ x ~ = 0 and Maxwe11•s equations 

and are known as the CGL equations or double adiabatic equations. 

First we assume that the unperturbed pressure is isotropic i.e., 
0 0 0 19 P1 = P

11 
= P • Somewhat tedious but straightforward calculation 

shows that the normal mode frequencies of a circular flux surface near 

the null in the limit of n + oo are 

p 
2 5 ( 2 + 1) ~ w = 2 m c. 

par 
and 
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where P
0 

is the equilibrium density on the flux surface and r is the 

radius of the surface. The first dispersion relation corresponds to 

sound waves which are stable for all peloidal mode numbers. The sec

ond dispersion relation indicates the instability of them= 1 mode 

with exactly the same growth rate as that of ideal MHO. The reason 

that we have the same growth rate as ideal MHO for the m = 1 mode is 

that the mode is essentially a rigid displacement of a single flux 

surface (the mode is localizerl as n • ~ and the role of double adia

baticity is minimized. 

Grossmann, Hameiri and Weitzner20 investigated the double adia

batic stability of Compact Torus plasmas without the isotropic re

striction on P
0 

for variously elongated flux profiles. They found 

some evidence of the stabilizing effect near the null due to the pres

sure anisotropy for somewhat large m transversal modes (perpendicular 

to the toroidal axis and the axial direction). The transversal mode· 

is often called a radial mode. However, it is still premature to make 

a general conclusion. Furthermore the most unstable MHO modes of an 

elongated plasma are longitudinal (axial) not transversal. 

C.2 Resistive MHO 

Resistive effect to the shifting modes have been investigated.8 

However for the fast growing modes, whose growth times are of the 

order of Alfven transit times, the dispersion relations are found to 

be unaffected by the inclusion of the plasma resistivity. 
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C.3 Nonlinear Ideal MHD 

Nonlinear effect on stability have also been studied to see 

whether the amplitude of the linearly unstable displacements saturate 

at a low level. A study9 has been made by finding a nonlinear energy 

variational of an adiabatic flow with infinity conductivity, which is 

the exact difference et ee the potential energies of the final and 

the initial configurations governed by ideal MHD for an arbitrary 

finite displacement. The result is that for an entire class of com

pact toroidal systems with no toroidal magnetic field deformation, 

corresponding to a tilting mode, there is growth even in the nonlinear 

regime (after having gone through the linear regime with a high growth 

rate). 

C.4 Racetrack Shaped Equilibria 

The experiments of FRC at LANL indicates that the equilibria are 

not exactly elliptical but somewhat flatened. Many possible equili-
.. 

brium Field Reversed configurations are numerically obtained by solv-

ing the Grad-Shafranov equation. 6 We know that choosing a different 

equilibrium of a closed field line system does not change the stabil-

ity, because a necessary condition for stability is that the average 

of KrB on a closed field line be positive where K is the curvature 

of the magnetic field line. 7 For closed field line systems of con

fined plasmas the condition is never satisfied. The necessary stabil-

ity condition is obtained from the condition that the sign of energy 

variational should be positive for a rigid displacement in the elon

gated direction. 
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Even though· the racetrack equilibria do not cause the stability of 

the plasma it is interesting to know how sensitively the eigenmodes 

and the growth rates depend on the detailed shape of the equilibria. 

For interchange modes, the growth rates are sensitive to the pres-

sure profile, in contrast to tilting modes which are insensitive to 

the equilibrium configuration. The eigenmodes vary from rigid shift 

of a flux surface for an elliptical equilibria to a highly localized 

mode near the tips of the equilibria for a racetrack-shaped equili-

bria. The growth rates are rather insensitive to the equilibrium 

configuration, all showing high growth rates. 5 



... 

123 

APPENDIX B 

FIELD REVERSED EXPERIMENTS (FRX) ON COMPACT TOROIDS21 

The field-reversed configuration (FRC) is an axis symmetric highly 

prolate compact toroid formed with no toroidal magnetic field as shown 

in Fig. 6.1. 

The formation of FRC is best described by the following four steps. 

(1) Preionization: an initial bias field is frozen into a cold pre

ionized plasma in a cylindrical conducting wall. (The ratio of length 

to radius is about 8.) (2) Implosion: then the direction of the cur

rent in the coil surrounding the cylinder (the theta pinch coil) is 

quickly revers~d by the main bank discharge. (3) The resu}ting oppo

sitely directed fields tear and reconnect at the ends, generating a 

closed field line structure. (4) With a damped radial-oscillation the 

plasma contracts axially to form a well defined and quiescent FRC as 

shown in Fig. 6.1. 

There are three FRX's at LANL; FRX-A, FRX-B and FRX-C. FRX-A is 

a low energy device which is only capable of operating over a narrow 

range of initial deuterium filling pressure (P0) while FRX-B is more 

energetic device than FRX-A so that it can be operated over a wide 

range of P 
0

• The main difference between the two facilities is in 

the capacitor banks, especially in the main bank energies. FRX-C 

differs from FRX-B in its physical dimensions. It is about twice as 

1 arge as FRX-B r ad i a 11 y and a xi a 11 y and a 11 the other parameters are 

almost the same as those of FRX-B. 
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The magnitude of axial magnetic field is obtained from external 

magnetic probes located just outside the quartz tube on the axial mid 

plane. The main bank discharge creates a field, in the opposite 

direction with respect to the bias field, which rises up to 8 KG and 

decays slowly to 5 KG at the termination of the FRC pulse. 

The plasma density and the temperature of electrons (Te) can be 

deduced from Thomson scattering data. Figure 6.2 shows a typical den

sity and Te profile of a FRX-B at t = 10 ~-sec after the main bank 

discharge. The plasma density is maximum at the magnetic null and the 

density is still significant at the separatrix. The electron tempera

ture is found to be uniform spatially up to the separatrix and con-

stant in time. The single measurement outside of the separatrix at 

r - 6 em is less definite ·due to lower signal level and the greater 

shot to shot plasma fluctuations. Once we know Te, the total plasma 

temperature, and thus T~, can be estimated from pressure balance, 

Te + Ti = <B> B2/8wn, where <B~ is the volume averaged s within the 

spearatrix and B is the measured external magnetic field. Ion temper

ature and ion rotational velocity are measured by the Doppler profile 

of the 2271 A line of carbon V. These measurements provide a good 
. + est1mate of Ti for the D plasma but provides a poor estimate of the 

rotational velocity. Flux loops and field probe arrays are used to 

measure the excluded flux vs. axial position. 

The typical experimental parameters of FRX-B and FRX-C are 

illustrated in Table I. The confinement time There is measured 

without the quadrupole field which removes the n = 2 rotational 

instability. 
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Table 1. Experimental parameters of Field Reversed Experiments at 

LANL. 

Parameters FRX-B FRX-C 

Le (em) 100 200 

rw (em) 12.5 25 

rs (em) 5 10 

= a/b -.1 -.1 

n ( em-3) (1-4) x 1015 (1-4) x 1o15 

Te (eV) 100 - 200 100 - 200 

T· 1 ( eV) 100 - 1000 100 - 1000 

Bext 6 - 8 6 - 8 

T(IJsec) 40 100 
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FIGURE CAPTIONS 

Fig. 5.1 Field Reversed Configurations. The characteristic dimen

sions of FRC's at LANL are a/b- .1 and r - 12 R. All s 
parameters are shown in Table I. 

Fig. 5.2 Typical density and electron temperature profile of a FRX-B 

at LANL at about 10 ~sec after the main bank discharge. The 

data are taken from Ref. 1. 

.. 
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CHAPTER VI 

VLASOV FLUID (VF) STABILITY1 ANALYSIS OF AN ELONGATED Z-PINCH 

A. Introduction 

As is described in previous sections, the stability of axial

shifting modes of a Field Reversed Configuration (FRC) requires more 

sophisticated analysis than MHO. In this work we investigate the 

kinetic effects on these displacements by approximating a FRC by an 

elongated Z-pinch. 

The cylindrical approximation of a Compact Torus sounds like a bad 

approximation because of the small aspect ratio. Nevertheless, MHO 

theories predict the same instabilities of shifting modes in an elon

gated Z-pinch as in FRC~ This is because there is no magnetic bending 

involved in making a toroidal configuration from a cylindrical shape 

since there is no toroidal field in a FRC. Furthermore the elongated 

Z-pinch has other essential properties of a FRC such as a field null, 

closed field lines, large particle orbits and particle stochasticity. 

The centrifugal force of a toroidal system may play an important role, 

but our concern for the moment is to find the major kinetic correc-

tions to MHO stability. 

We investigate the kinetic effects by adopting a VF model. 1 The 

electrons in the FRC experiments at LANL2' 3 are collisional while 

ions are somewhat collisionless in an MHO time scaling. The tempera

ture of the electrons is usually lower than that of ions. We approx-

imate the electrons as a cold pressureless fluid and the ions as 

collisionless. 
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A VF equilibrium is found following the procedure described in 

Chap. IV. As a VF equilibrium the magnetic field configuration of the 

Z-pinch is exactly the same as the one used in the orbit study in 

Chap. III. However, in general an electric field is present. 

The orbits in this VF equilibrium can be understood by simply 

studying the effects of the electric field. The main effects are that 

(1) ions are confined electrostatically and (2) measure of stochastic 

orbits in the system with ~ = 0 is significantly reduced. Other 

than these factors, the character of the orbits is essentially the 

same. As is the case when ~ = 0, if we take the FRX parameters at 

LANL we find that more particles are stochastic as the size of the 

plasma becomes large and more particles are regular as the temperature 

of ions increases. At any everit the ~-conse~ving orbits are negligible 

where ~ is the magnetic moment. If we apply our orbit results to the 

experimental parameters, we find that the ion orbit system ranges from 

very stochastic to very regular. This suggests that the stochasticity 

is not so important as the stabilizing effect of the shifting modes as 

much as large orbits are, even though the stochasticity plays a crucial 

role in some modes. 

Treatment of large orbits, not to mention the stochastic ones, is 

in an extremely primitive stage. To explain the stability of FRC we 

need to employ a method which deals with both the regular and the sto

chastic orbits. The term which needs the orbit information in the VF 

dispersion functional can be evaluated both for regular and stochastic 

orbits by evaluating correlations and the dynamical spectral densities 

numerically for a chosen trial function. 
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The exact dispersion relation of the VF model can be obtained by 

solving a matrix which is obtained by evaluating the spectral densi-

ties for a set of basis functions. However, our tentative purpose is 

to develop a method of treating the large orbits including both the 

regular and the stochastic and test the feasibility of using the tech

nique with a matrix problem. By choosing a set of ideal MHO eigen

vectors as the trial functions, we find the primary effect of VF 

corrections to MHO. 

Analytical formulae of the trial functions are used rather than 

the exact eigenmodes of ideal MHO in order to reduce the computational 

work. Due to the peculiarity of the standing wave trial functions we 

.express the displacements in the form of a traveling wave in z. To 

study the ·null effect two types of radial deperidehcies are considered: 

one has large displacement near the null and the other has large dis-

placement away from the null. 

B. A VF Equilibrium in a Z-pinch 

Taking the parameters of the FRC at LANL, we obtain the electron 

collision time as -lo-8 sec and ion collision time as lo-5 sec. 

Therefore on an MHO time scale (-lo-6 sec) electrons can be considered 

as collisional while ions are treated as collisionless. For simplic-

ity, we neglect the electron pressure, in which case the VF model is 

suitable to investigate the kinetic stability of FRC's at LANL. In 

this model electrons are governed by E +! u x B = 0 and ions by the 
- c ---e 

Vlasov equation. Since the detailed picture of the model is described 
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in Chap. IV, we proceed to find a VF equilibrium of an elongated 

Z-pinch. 

If we further assume that the equilibrium ion distribution is a 

function of energy only, 

{6.1) 

where H = ki + e<I> (x) and ,.. 0-

Here~ is the equilibrium vector potential and~= A
0
z. As is shown 

in Chap. IV, the force balance equation of a VF mode~ for a class of 

ion distributions of Eq. (6.1) is 

1 
-c ~ x -oB = n eE = V'P ( 6.2) -.. o~ -o 

which is the same as that of ideal MHO. Thus the equilibrium flux 

configurations can be obtained by inverting the operator 

to find ~. The stream function ~ is exactly A
0 

in a cylindrical 

system and so 

a1:1"' ~"' B=..:;..:z;..X- y - ay ax 

(6.3} 

(6.4} 
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The pressure P(~) of Eq. (6.3) is a free function, which should of 

course satisfy the boundary conditions, and can be specified as close 

as possible to the experiment. 

The density profile of FRC is maximum at the null and decreases 

monotonically away from the null (see Fig. 5.2). The density at the 

separatrix is rather significant. We approximate the density profile 

as a quadratic function in x and y: 

(6.5) 

where 6 = t 2x2 + y2 and td parametrizes the relative pressure at the 

"pseudo'' separatrix to that at the null. The word "pseudo" is used 

since in our Z-pinch model th~re is no actual separatrix. Neverthe

less since our model is intended to describe the toroidal FRC, it is 

convenient to use the word separatrix for the flux surface correspond

ing to the real separatrix of a FRC. From now on we drop the word 

pseudo. The ions are confined electrostatically in the region of 

0 < 6 < td-1 The density profile of Eq. (6.5) does not vanish 

smoothly at the edge of the plasma and so the potential approaches 

infinity as 6 ~ td-1 Therefore, the equilibrium configuration of 

our Z-pinch is not realistic near the plasma boundary. However, we 

are interested in the internal modes which vanish at the separatrix; 

the configuration outside of the separatrix is presumably not impor

tant. The experiments show that the temperature of electrons and ions 

are fairly uniform throughout the plasma. Thus 
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IV P = T IV n 
- 0 - 0 

(6.6) 

From Eqs. (6.3) and (6.6) we obtain a class of equilibria which is 

similar to the Hill's vortex of a torus 

where 2 2 2 
tJ = £ X + y ' ( 6. 7) 

which describes an elliptical Z-pinch. Here a is the minor radius of 

the separatrix, Ba is the magnetic field strength at x = 0 and y = a 

~nd e parameterizes the elongation of the flux contours. 

Once we obtain the equilibrium flux contours, all the other equi-

librium quantities are obtained easily. From Eq. (6.4) the magnetic 

field is 

6a A 2 A 

~ = a (yx - £ xy) (6.8) 

and from Eq. {6.2) the electric field is 

2 A A) 2T £d {e XX + yy 

e (1 - ed i>) 
(6.9) 

The relation between the density gradient and the magnetic field 

gradient is 

(6.10) 
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The electrostatic potential is easily evaluated from the expression of 

Eq. (6.9) 

T n (f>) 
¢
0

(6) ln ° · = - T ln (1 - £dfl) = -e- n
0

(0) e (6.11) 

where we have chosen ¢
0

(0) = 0. 

Some of the properties of the equilibria are as follows: (1) ~ 

is tangent to the flux surfaces and ~ is perpendicular to them. 

(2) On a single elliptical flux surface,~ is weak at the tips of the 

ellipses and so is -oE • (3) B increases linearly with the distance . -o 

of the flux surfaces from the null, but~ increases faster than 
-1 linearly and eventually diverges at f> = £d where the density 

vanishes. 

C. Character of Ion Orbits in the Z-pinch 

In Chap. III, we have thoroughly studied the ion orbits in an 

elongated Z-pinch whose flux function is the same as Eq. (6.7) with no 

equilibrium electric field. 4 There remains the task of studying the 

orbits in the VF equilibrium with an electric field present. We need 

to determine the behavior of orbits and how much the population of 

each type of orbit of a confined plasma will be affected. 

First let us summarize the results of Chap. III. Roughly speaking, 

there are three types of motion near a linear magnetic field null when 

there is no electric field: (1) JY-conserving regular orbits (2) 

stochastic orbits and (3) ~-conserving regular orbits, where JY is 

the action in y which is the coordinate in the minor axis of the flux 
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surface and ~ is the magnetic moment. The Jy conserving orbits are 

composed of two.types of motion; the figure eight type and the betatron 

type. Let z be the axial direction. Orbits with Pz < 0 are mostly 

regular with JY as an invariant. They are all betatron type. Orbits 

with Pz > 0 show complicated behavior. The behavior of orbits can be 

best characterized by the ratio of energy of the 

peak potential energy at the field null, Pz2/2M. 

orbits are figure 8 type JY-conserving and if H < 

particle to the 

If H > P/!2M, 

.04 e:3(P/!2M) 

1 oca 1 

orbits are ~-conserving otherwise stochastic. If we take the param-

eter of e: = 0.1 from the FRX at LANL, the ~ conserving orbits occur 

only when H < 4 x 10-5(Pz2/2M). 

To study the electric field effect, we write down the Hamiltonian 

H of an ion 

(6.12) 

where 

and where the effective potential U in xy plane is 

(6.13) 

The additional term, the second term of Eq. (6.13), due to the electric 

field is,zero at the null and increases gradually near the null, but 

approaches infinity as 6 ~ e:d-1• The effective potentials of the two 
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1 cases are very much the same for small values of Pz. (a- £dPz << 1) 

which suggests that the criterion of regular and stochastic orbits is 

approximately the same as in the case of no electric field, namely 

H > Pz2/2M for regular orbits. The numerical surface of section 

plots agree with the predicted criterion. 

There are two major effects of the electric field on orbits. 

(1) All particles are confined in a spatial region of 6 ~ £d-1 elec

trostatically. Particles with H > Pz2/2M still behave very regularly. 

(2) Since the energy of a particle should be greater than or equal to 

the minimum value of the potential energy H*, 

where 

(6.14) 

Therefore the presence of E
0 

eliminates the particles of energy 

values between 0 and H*. Since this is the regime where most orbits 

behave stochastically, it is equivalent to eliminating some of the 

stochastic orbits. 

To illustrate the population of each type of motion in the two 

different equilibria more clearly, the allowable region of each equi-

librium in (H,Pz) space is plotted in Fig. 6.1 along with the divid

ing curves of each type of motion. 
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The allowable region in (H,Pz) space of a confined plasma is 

determined by the following conditions: . (1) The energy of a particle 

should be greater than or equal to the minimum potential energy in the 

system. (2) The energy of a particle should be less than the paten-

tial energy at the plasma boundary to be confined. We consider only 

the absolutely confined orbits, in other words no 11 bounce 11 particles 

that are reflected at the plasma boundary are included. 

If we apply the two conditions to the equilibrium with no electric 

field (studied in Chap. III), the allowable region is 

and 

where 

for P < 0 z-

for P > 0 z-

(6.15) 

with ~B being the value of 6 at the plasma boundary. The region is 

shown in Fig. 6.1(a) with boundary curves of (a), (b) and (e) in the 

figure. 

For our VF equilibrium, all particles are confined energetically. 

Therefore only the first constraint remains. The allowable region is 

p 2 
z 
2M~ H for p < 0 z-
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and 

for P > 0 z- (6.16) 

( -1) Where Cmn Q < 0mn < Ed iS the ValUe Of C at WhiCh the minimum Of 

the effective potential of Eq. (6.13) occurs. The boundary curves are 

shown as curves (a) and (c) in Fig. 6.1(a). The dividing curve of J -y 

conserving orbits to stochastic orbits, H = P 212M, is shown as curve z 
(d) of Fig. 6.1, which is valid for all Pz values for the equilibria 

with~= 0 and valid for the VF equilibria as long as EdPz/a << 1. 

The dividing curve of stochastic orbit to ~-conserving orbits, H = 

4 x 10-5Pz2/2M, is essentially H = 0 in the allowable region of both 

equilibria. Comparing the two allowable regions it is clear that the 

VF equilibrium has more regular orbits than th~ other. 

If we take FRX-B or C pa,rameters at LANL, more orbits are stochas

tic if the size of the plasma increases and more orbits are regular if 

the temperature of the ions increases for both equilibria. Here regu-

lar means JY-conserving only. 

D. The Trial Function 

Our goal is to explain the long lifetime of a plasma in FRC in 

spite of the fact that the MHO theories predict fast growing modes. 

Therefore, our interest is in the most unstable MHO modes in the 

system. In particular, we will investigate the axial shifting (m = 1) 

displacements focussing on the modes corresponding to lower toroidal 

mode numbers (low n). 
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To reduce the computational work, we will find an analytic form of 

a displacement vector close to the shifting modes from the known prop

erties of the modes instead of solving the eigenvectors of ideal MHO 

equations exactly computationally. 

If we summarize the properties of those modes described in Chap. 

V, they are (1) incompressible (V·~ = 0). (2) For elliptical flux 

surfaces t,; is rigid axial (~Y = 0 and§_ (x,y,z,t) = §_ (6,z,t) where 

6 = £ 2x2 + y2), and (3) primarily internal i.e. the axial dis

placement ~ vanishes at the separatrix. From the fact that the dis

placemnt vector §_ depends on x and y only through 6 the surface term 

of MHO oW is guaranteed to vanish. From 'V•§_ = 0 and ~Y = 0, ;z is 

determined from ~ which leads to - X 

z] ei(kz- wt) (6.17) 

for k ~ 0. Notice that ;x is the only function to be chosen and must 

be a differentiable function of 6 so that ~z does not diverge. 

In determining the structure of ~x{t>) the oscillation theorem is 

useful. The theorem shows that the most unstable MHO mode in a circu-

lar Z-pinch is the lowest radial mode. Hence it is suggestive to look 

for only the lowest radial mode structures. In particular, we will be 

interested in two different radial structures, one with a maximum dis-

placement at the null (type I) and the other with zero displacement at 

th·e null (type II).In both cases, the displace_ment vanishes at the 

separatrix. Simple analytic forms of the radial structures of t,;x(t>) 

are 
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for type I, (6.18a) 

and 
•, 

for type II, (6.18b) 

where cs is the value of 6 at the separatrix as shown in Fig. 6.2. 

The full expression of the trial functions is then for type I 

(6.19a) 

and for type II 

2 
l(C,z;t) = [6(0- 0s) 2 X- 2 ~ X (0- 0s)(36- 6s)z] ei(kz- wt) 

(6.19b) 

Traveling Waves vs. Standing Waves 

The first question might b~ "Do they make any difference to the 

dispersion relation? .. If yes, then, "How much?" The answer is, "Yes, 

very much in general." 

As far as ideal MHO theory goes, eigenvectors can be expressed in 

either a standing wave form or a traveling wave form and the eigen-

values do not depend on the form of the eigenvectors. However when 

we take into account the gyro orbits, the eigenvalues are of course 

dependent on the choice of the form of eigenvectors. 
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The domain of the VF dispersion function space is the right half 

plane of the complex dispersion functional space. The domain corre

sponding to the standing waves are the positive real axis which is of 

measure zero to that corresponding to traveling waves. Also the 

property of the expectation values of the standing waves is singular 

in the sense that we discussed in Chapter IV. 

For these reasons we have chosen the trial functions in the form 

of a traveling wave in z. 

E. Evaluation of Growth Rates (I) 

Because of the complexity of the problem, we are not solving a 

dispersion matrix. Instead we will simply estimate the growth rates 

(r) by evaluating the expectation value of w of the VF dispersion 

functional by employing the trial functions described in the previous 

section. The error in r obtained by the chosen trial functions to the 

exact values has not been investigated yet, but is hoped to be small. 

We evaluate the three terms of the VF dispersion functional one by 

one: the first two terms can be evaluated analytically due to our 

analytic form of the trial functions and the third term is evaluated 

numerically. 

E.l Evaluation of oW 

In general oW has three parts; vacuum, surface and fluid terms. 

The surface and the vacuum·terms do not contribute to our calculation 



144 

of oW since we restrict Qurselves to internal modes. The oW in the 

VF dispersion functional is the ideal MHD energy variational for 

incompressible displacements. Denoting the fluid part of oW as oWF 

we obtain a simple expression for oW: 

(6.20) 

where P 
0 
(~) = n0{~J T. 

For trial function I of Eq. (6.19a) we obtain 

and finally 

oW = e:
2 

(
8
a)

2 J dtldedz [-t.: 2 + 2e:
2 

6 ( , )2] z; 2a 2e: x T C.:x (6.21) 

where the variables 6 and e are transformed from Cartesian coordinates 

as x = ~ cose and y = 16 sin e and so dx = 4- d6dedz. In evaluat-e: - {;£ 

2 2 . 1 
ing Eq. (6.21) we average sin e and cos e each to!" 

The first term of Eq. (6.21) is the pressure driven destabilizing 

term while the second term is the magnetic compression energy associ-

ated with the field line compression in z, thus makes a stabilizing 
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effect for all k values. From the incompressibility condition, ~z 

is small when k is large and vice versa. Therefore, the compression 

becomes less severe as k increases, and vanishes in the limit of 

k ~ oo, which means that the most dangerous situation is for large k. 

If k is small enough, the compression energy may take over the desta

bilizing effect, showing stability against the chosen displacement. 

It is worth evaluating the transition values of k, kc, for each 

of our trial functions so that we can work on only unstable k values. 

The values of oW and kc for the trial function I are: 

( B )2 6 3 ~ 2 ) oW = - e:n a s 1 - 10 e: . 
IT ra T 3kz 6 s 

and 

kc = e:~ =.09 for e: = 0.1 and 6s = 4 (6.22) 

which are the parameters of FRX-B at Los Alamos National Laboratory. 

Likewise, for type II the threshold value of kc is =.13 for the same 

values of e: and 6s' oW > 0 for the displacements with k < kc. This 

does not necessarily mean that the system is MHD stable but simply 

means that the chosen displacements with k < kc are stable. 

The relation between the wave vector k of a cylindrical geometry 

and the toroidal mode number n of a toroidal system is obtained as 

k = n/R where R is the distance between the null and the axis by 

equating the wavelength A of the two configurations: A = 2n/k in a 

cylindrical system and A= 2nR/n in a toroidal system. If we take 

R = 2 em of a FRC-B, k = n/2 where n is a nonzero integer. So ik I > kc 
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for all nonzero integer n. This indicates that the MHO shifting un

stable modes of a FRC-B are also unstable in a cylindrical Z-pinch, 

which gives us more confidence in the choice of our trial functions 

and also in making a cylindrical approximation of a compact torus in 

the absence of the toridal field. The above argument applies also to 

the case of FRC-C where R = 5 em. If we take standing wave trial 

functions, one obtains exactly the same oW as in Eq. (6.22) except a 

factor 1/2 which comes from the normalization factor. Thus, as far as 

MHO oW goes, there is no difference whether one chooses traveling 

waves or standing waves as trial functions. The argument given above 

applies directly to the case of standing wave trial functions without 

any modifications. 

E.2. Evaluation of the Cross Term (I ) 

Above a 11, it is not hard to see that I = i~}dx n ~ *·~ x B has c c - o- - -o 
* the property that Ic = Ic • Therefore if the spatial dependence of 

the displacement vector is real, Ic vanishes identically. Otherwise 

Ic is real. Since we have assumed the time dependence of the dis

placement as e-iwt, the spatial part of the displacement is real for 

a standing wave form and complex for a traveling wave form. If we 

express our trial functions in traveling wave form in z 

Transforming d~ to ~¢dedz, as before, and integrating by parts we 

obtain 
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(6.23) 

Since the integrand 1 - 2£d0 changes sign at 0 = l/2£d which is within 

the pseudo separatrix; the 2nd term of the VF dispersion functional is 

either positive or negative depending on the structure of~ (6). 
X 

Roughly speaking, for k > 0, the 2nd term is positive for displacement 

localized in the outer region (6 > l/2Ed) of the plasma, and is nega

tive for displacement localized near the null. Fork< 0, the situa-

tion is just the opposite to that of k > 0. 

E.3 Evaluation of the Orbit Integral Term (! 0~ 

The expression of the orbit integral terms (I
0
b) of the VF 

dispersion functional is transformed to Eq. (6.25) from Eq. (6.24) 

below, by introducing dynamical spectral densities. 5 First we sum

marize down the tranformation of the formalism by numbering each step 

for the elongated Z-pinch and then the numerical method corresponding 

to each step is discussed. For convenience, we write down the defini-

tion of the orbit term 

(6.24) 

For an elongated Z-pinch, H and P are constants of motion (denoted z 
by lin Chap. IV), therefore we transform~ to (H,Pz,~) where 

r _ (x,y,z,e) and 0=tan-1(PY/Px). Then, from Eq. (4.26) 
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step 1. ·.... j 
K(H,P ,z(t),T) z ....... 

; 

(6.25) 

f 1 J dF o f = ~ de e-w dH Cifr dP z 

step 5 step 4 

and 

* ~(z(t) ) = K (z(t)) K(z(t+T)) - -
Initial Conditions (Step O) 

H and Pz values are given at regular grid points in the allowable 

region shown in Fig. 6.3. Since f
0 

decays exponentially with respect 

to energy (notice that ~~0 - F
0

) and also there are some algebraic 
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dependences of energy in the integrand of the f-phase integral the -
maximum value of H is chosen -ST. The rest of the initial conditions 

in (e,e,z,~) space are chosen randomly. For given values of H and 

Pz, a definite range of ~ is determined and ~ is randomly chosen in 

the allowable range. The region ~(x,y) are plotted qualitatively in 

Figure 6.3. e, e and z are also chosen randomly: the range of e and 

e are [0,2n] and the range of z is [O,A = 2n/k] where k is the wave 

vector in z of the trial function. 

The relation between the variables (H,Pz,e,e,z,~) and the cartesian 

variables (x,y,z Px,Py,Pz) are as follows: 

x = 16 case, y = ~ sine, P = P case and P = P sine 
£ X y 

where 

2 2 2 2 2 
P = Px + Py = M (H- T ln (1- Ed~)) - (Pz- a~) 

z and Pz are the same in both coordinates. 

Step 1 

(6.26) 

Once the inital conditions I(t) are assigned, we make a record of 

K(r(t+T)) as a function ofT by numerically integrating the unperturbed 

equations of motion. 

Step 2 

Our main problem in dealing with orbit effects is how to evaluate 

Jdr<J((z(t),T) efficiently including all kinds of orbit behavior where - -
we have used the definition of K in Eq. (6.25). The integral over r 

can be obtained in principle by choosing a large enough number of 
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particles to represent the four-dimensional r space reasonably well. 

To obtain the correlation as a function of T one should follow the 

particles at least for a timeT. This would take incredibly long com-

puter time. Here we will introduce a very efficient way of evaluating 

the E._ space averaged correlation function <ffi>I (H,Pz,T) regardless of 

the behavio~ of orbits. 

First from the fact that /di ~(z(t),T) is independent of t, we 

write 

T 

Jctr_ 'tl{(z(t
0
),,) = t J dt Jctr'tl<(.~(t0 ),,) 

ai(to) o a.[(to) 

T 

= Jctr ~ J ctt '<J<(z(t),,J 
a.[( T) o 

= J d I <~( z ( t ) ' T) > t 
a r( T) -

(6.27)' 

If the dynamical system possesses mixing properties, one initial 

condition is good enough to evaluate Eq. (6.27) and 

J d[<V<{z(t),T) = (\I(H,PZ) <~(z(t),T)>t 
a£_( t) 

(6.28) 

If the orbits are regular, then each orbit stays on an invariant torus. 

Therefore we need many initial conditions to describe the phase inte-

gral reasonably well. Let z.(t) be the initial conditions then the _, 
subscript i not only labels the particle but also labels the invariant 
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torus. Suppose we have N initial conditions, then the last expression 

of Eq. (6.27) can be approximated in most cases as 

N 

I: cvi ( H, p z) <ffi( z i ( t) , T) > t 
i=l 

(6.29) 

where CVi(H,Pz) is the volume between the invariant tori represented 

by the ith particle or ith invariant torus. In the continuous limit 

N ~ oo, CVi(H,Pz) is equivalent. to CV(H,Pz,I3) where I3 denotes the 

third invariant. If the orbit behaves ergodically (more precisely, 

mixing) in the subdomain denoted by CVi, (6.29) equals (6.27) if we 

adopt the ergodic assumption that the phase average is the same as the 

time average in the limit T ~ oo. When the orbits are_regular, the 

quantity~ averaged over the invariant torus is assumed to represent 

the average in a volume around the torus. This assumption is not bad 

as long as the quantity of interest does not change dramatically with 

respect to the third invariant. 

To explain the properties visually, in Fig. 6.4 we show a phase 

space, more precisely a [space. The figure can be used as the total 

phase space (H,Pz,!J with N initial conditions and its evolution in 

time. In particular we show two volume elements CV
1
(t

0
) and CV2(t

0
) 

where CV1(t
0

) is represented by an ergodic orbit and CV2(t
0

) by a regu

lar orbit. For the ergodic case, the relative position of the boundary 

of CV1(t) and the position !l changes in time thus covering the volume 

CV1(t) everywhere. On the other hand for a regular orbit the relative 

position is fixed. Regardless of the orbit behavior, in order that the 
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expression (6.29) be a valid approximation of (6.27) the time averaged 

quantity ~>t should be averaged over a sufficiently long time so 

that the time averaged quantity is independent of the amount of time 

we averaged over. Now we assume that the initial conditions are dis-

tributed such that each initial condition represents the phase volume 

element of CV(H,Pz)/N. Then, CV;(H,Pz) of expression (6.29), which is 

from the ;th volume element described by the ith initial condition 

~;(t0 ) at t = t
0 

is also CV(H,Pz)/N since each volume element is con

served by Hamiltonian flow. Thus 

N 

f d L tl<(!_( to)' ·r) = ~ L <tJ<(ri ( t), ·r) >t (6.30) 

ar(to) i 

As is mentioned earlier, the time integral should be performed 

over a sufficiently long time that the time average is independent of 

T. The cutoff time is normally the correlation time beyond which the 

contribution is exponentially ~mall. If the orbits are ergodic the 

correlation time is short but the regular orbits usually have long 

correlation times (the correlation tends to decay algebraically rather 

than exponentially). Sometimes the correlation never decays (e.g. in 

a 1-D simple harmonic oscillator). 

However, with the help of the convolution property, 5 the time 

integral of the correlation is replaced by the frequency integral of 

a function of the spectrum of the K(~(t)). Introducing a time Fourier 

transformation 
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.. 

K(~(t)) 
.s.t 

= L <:p( s i) e 1 1 

i 

l1S. 
1 
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we transform the time integral as follows: 

T . t 
1 J * 1 J * -1Si f K Kdt =r dt L cp (si)e l1Si 

0 

= L I cp ( s i ) 12 e is iT ( l1S) 2 

i 

(6.31) 

is'· ( t+-r) 
" <:p( s ~) e J l1S ~ 
~ J J 

(6.32) 

Notice that the last equality holds only when K(~(t)) is periodic 

with period T, which will be assumed in the numerical analysis. The 

correlation is now replaced by the spectrum sum of K(~(t)). If we 

follow the orbit long enough to pick up all the interesting frequen-

cies such as gyrofrequencies and bounce frequency the correlation is 

well approximated. Consequently the correlation has all the interest-

ing frequencies which gives correct dynamical spectral densities. 

In any event, we have finite data say from time 0 to T. Then to 

obtain the spectrum of the data, periodicity of the data is assumed. 

In general the amplitude at t = T is not the same as that of t = 0 • 

This will bring in non-physical high frequency spectrum components, 

i.e. so-called "noise". A data window is introduced to get rid of the 

noise. A smooth symmetrical function with respect to t = T/2 and zero 
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amplitude at t = 0 and T is multiplied to K(z(t)). The high frequency -
noise is then reduced but because of this artificial function, the 

correlation function always decays (including the case of a 1-D simple 

harmonic oscillator). But the spectrum of the correlation is not 

affected too much (ref~r Fig. 7.2). Therefore time average of each 

orbit, <tK>t' is evaluated by the following steps 

(1) Apply data window to K(z(t)) -
(2) Make a Fourier transformation of the data-windowed record 

K(z(t)) to make ~(B) -
(3) Evaluate 'P(a) 2 

(4) Do an inverse Fourier Transformation 

Thus, 

Step 3 

Make a Fourier Transformation of the correlation to get power 

spectral'densities of 'P(s;H,Pz). 

Step 4 

(6.33) 

The Pz-integral is easily evaluated by summing the spectral den

sities of 'P(a;H,Pz) over all grid points of Pz values of the same H. 

Np 
z 

'P(s,H) = L CV(H,Pz;) cp(e;H,Pzi)t.Pz 
i=l 

(6.34) 
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where ~Pz is the interval of the grid points in Pz. The range of 

P z, [P zmn' Pzmx], is determined as a function of H. 

P = -/2H zmn 

Pzmx = 1- £d-1 exp (-eH/T) (6.35) 

The accessible phase volume in I space by particles of H and Pz is 

C\}(H,P z.) = f dxd0 = 
1 

where tlmx and 6mn are the upper and lower bounds of 

and Pzi· 

SteE 5 

Adding the spectral densities 

ues of H. 
1 

with a proper weighting 

density 

NH 

s (a ) - L cp( a; Hi ) L Hi 

i=l 

where 

t;H. 
1 

H. -H. 1 1 1-

= 2:: e-H/T dH = T e T 

H. 1 1-

(a;H) over all 

factor we obtain 

(6.36) 

¢for a given· H 

different grid val-

the total spectral 

(6.37) 
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Due to the exponential cutoff and the algebraic dependence in energy, 

the range of H is truncated at -ST. 

Now we have obtained S(a) at discrete values of a, ai = (.~a). i 

where i is integer of [-Na,N
6
], which gives the orbit integral term of 

the VF dispersion functional in the following form: 

Na 
S( a i) 

1ob = w I: a.-w 
i=-N 1 

a 

E.4 Finding the Roots of a Dispersion Relation 

Eventually our dispersion relation looks as follows 

Na 

2oW + wlc + w ~ 

i=-N a 

S(a;)-;,.
0 a.-w 

1 

where oW and Ic are some numbers. 

(6.38) 

(6.39) 

There arise two difficulties in finding the roots of Eq. (6.39). 

The first is that it has 2Na+l poles. Whenever y is small and a= ai' 

the orbit term diverges. This problem can be eliminated by evaluating 

the orbit integral as follows for small values of y. 

/
oo S(a) da = /oo S(a) da + i1rS(a) 

a-w a-a (6.40) 

-oo -oo 



157 

where the principal part can be transformed as 

/
oo S(a) da = /oo S(a+a) da = /oo S(-a+a) 

a-a I> B· p a da 
-oo -oo -oo 

= } /oo S ( a+a) ; S ( -a+a) da 

-oo 

Then, when the denominator vanishes the numerate also vanishes and when 

the denominator is small the numerator is small for a smooth function 

of S(a). 

Now we have 

S(e.+a) - S(-e.+a) 
2oW + wiC +i L 1 e. 

1 
66 + wi1TS(a_) = 0 

i 1 

(6.41) . 

The second difficulty is that the exact dispersion relation (6.39) 

is essentially a 2N
6
+2 order polynomial and yields 2N

6
+2 roots most 

of which are not physical. In order to obtain the right roots, the 

Nyquist Diagram method described in Chap. IV can be used to check 

whether the solution is physical. 

A very simple approximated VF dispersion functional can be 

obtained from the fact that the VF model has small values of a when y 

is small. Therefore it is suggestive to do the Taylor expansion of 

Eq. (6.41) around a=O. Keeping only up to the second order in w, we 

obtain 
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( 
1 ~ s (a i ) - s (-a i) \ 

26W + w Ic + 2 ~ a. + inS(a~ 
. 1 
1 

(6.42) 

where the prime denotes the derivative with respect to a. 

F. Evaluation of Growth Rates (II) 

For the reasons described in Sec. 0.2 of Chap. IV, we discuss here 

the evaluation of the growth rates by using the second form of the 

dispersion functional of Eq. (4.3la). 

. · · dF . 
iw J dz(~:\lt,;-iw~ •E,;) dH 0 jdf' (~:\lt,;-iw~·_f) = 0. 

(6.43) 

The first two terms are trivially evaluated. 

The MHO growth rates are 

(6.44) 

where oW is explicitly shown in Sec. E.l in this chapter. 

The new orbit term involves the correlation of vv:\lt,;-iwv·t,; which -- --
'has essentially three different correlations; two of them are the auto-

correlations of ~:\lt,; and ~·S. respectively and the third is the cross 

correlation of (~:\lt,;)* with ~·S. as shown in Eq. (4.3lb). 
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It seems that more computation is involved for this dispersion 

formula than before but this gives better insight and may not require 

too much accuracy to see the kinetic effects. Furthermore, since we 

are interested in the low frequencies, the major correlation to MHO is 

obtained by simply evaluating the correlation of ~:~only. 

The rest of finding the growth rates is exactly the same as the 

previous case. 
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FIGURE CAPTIONS 

Fig. 6.1 Character of orbits in FRX-B at LANL. Plot (a) shows the 

character of orbits in FRX-B in two different equilibria. 

For the VF equilibrium, the allowable region in (H,Pz) 

space for a particle to be confined within the plasma 

boundary of FRX-B at LANL is the upper region of curves (a) 

and (c). For the equilibria with no electric field, men

tioned in the text, the region is above the lines (a) and 

(e) and below the line (b). Roughly the region of JY

conserving orbits and the region of stochastic orbits are 

divided by the curve (d) for both equilibria •. The region 

of ~-tonserving orbits is negligible ~nd not shown. The 

value PzB is obtained by PzB = 2 a~~B where ~B is the 

value of 6 = £ 2x2+y2 at the plasma boundary of FRX-B. Plot 

(b) shows the size dependence of the orbits in a VF equi

librium. The upper region of curves (a) and (b) is the 

allowable region of FRX-B and the upper region of curves 

(a) and (c) is the allowable region of FRX-C. Curve (d) 

divides the J -conserving orbits from the stochastic ones y 

approximately. The ~-conserving region is also not shown 

since it is negligible. PzB is the same as in plot (a). 

Pzc is obtained by replacing 68 by 6c where 6c is the value 

of 6 at the plasma boundary of FRX-C. Since 6 is propor-

tional to length squared and there is a coefficient of 1/a, 

Pzc = 2PzB if Ba is the same. 
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Fig. 6.2 Two types of trial functions. Trial function I with a 

large displacement near the null is shown in plot (a). 

Trial function II which describes a displacement at some 

distance from the null is shown in plot (b). Both are 

plotted with arbitrary amplitudes. 

Fig. 6.3 A choice of (H, Pz) values and the allowable region in 

x-y space. In the allowable region, the values of H and 

Pz are chosen regulary shown as dots in the figure. The 

range of x-y is we 11 defined once H and P z are chosen. 

For a given H, the allowable region in the x-y plane be-

comes large as Pz increases from the minimum value of 

Pz (Plot (a) to (c)). If Pz is large enough to satisfy 

P~ > 2mH, particles cannot pass the axis. Then the x-y 

range is confined to an annular ring as shown in plot (d). 

As the value Pz increases further it approaches to a max

imum value, the annular ring becomes narrpwer and narrower 

(plot (e)). 

Fig. 6.4 Hamiltonian Flow. Three snapshots of the Hamiltonian flow 

of regular and stochastic orbits are shown. At each time, 

a particle represents the I phase-space volume of~ if N 

particles are chosen, where CV is the I phase-space volume 

accessible by the particles. It shows how the phase average 

and the time average are related for regular and stochastic 

orbits. 
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CHAPTER VII 

RESULTS, DISCUSSIONS AND FUTURE WORK 

To eliminate all the unnecessary parameters, we do a scaling of 

the variables. This scaling reduces the stability problem so that it 

depends only on two parameters T and k, where T = (rl/a) 2 parameterizes 

the temperature as a ratio of the gyro-radius to the size of the plas-

-rna and k is equivalent to the toroidal mode number if the cylinder were 

bent into a compact torus with major radius of a. 

The main numerical work is to evaluate the dynamical spectral den

sities S(a) which involves the phase average. The assumption that the 

phase average can be replaced by the time average if one choose many 

initial conditions both fa~ stocha~tic and regular orbits, is tested 

and found to be approximately valid. The saving in computation time, 

by replacing the phase average by the time average, is enormous. It 

turns out that only a few (~10) particles produce very typical 

spectral densities at a large scale for a given Hand Pz in most 

cases. 

Growth rates are evaluated first by using the VF dispersion func-

tional I (refer Eq. {4.29) or Eq. (7.23)) by following each orbit for 

about an MHO growth time. The results show almost the same growth 

rates as those of MHO. The reason is that the real part of w is near 

zero where the accuracy of our spectral densities is in question. 

Therefore, before making definite remarks, one should follow each 

particle a lot longer. 



168 

Instead of following the orbits for a longer time, we use the sec

ond formalism of the VF dispersion functional (refer Eq. (4.31) or Eq. 

(7.26)) since it gives kinetic corrections more directly, although the 

accuracy of the spectral densities near zero frequency still could be 

a problem. The kinetic corrections to MHO are studied by evaluating 

-s1 of Eq. {4.31b) only. For k = 10 and 100 the growth rates are very 

- -much reduced for high T, and approach to that of MHO values as T de-

creases. We followed each orbit about 10 times longer to get a better 
-consistent results for k = 10. However, growth rates remain of the 

same order as those of MHO for k = 1 even when the orbits were traced 

up to about 10 times longer than MHO growth time. The reason that we 

do not obtain reduced growth rates may be one or some of the follow

ing: (1) We still have not obtained the corrected spectrum near zero 

frequency. (2) The terms neglected in the second dispersion formalism 

-are important. (This is very likely for low k values). (3) It could 

be that the toroidal effect, whjch is absent, of course, in our work, 

is important for the stability of low k. 

The scalings of the variables are carefully described in Sec. A. 

The stability mechanism and a crude estimate of threshold values of k 

are evaluated in Sec. B. Intermediate steps of finding spectral den-

sities along with many numerical checks are illustratd in Sec. C. Fin-

ally the growth rates are presentd in Sec. 0; in Sec. 0.1 by using the 

dispersion functional I, and by using the second formalism in Sec. 0.2. 

Future work is mentioned in Sec. E. 
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A. Scalings of Variables for Numerical Purposes 

For the sake of computation, we express the equations of motion as 

simply as possible by eliminating as many coefficients of the terms in 

the equations as we can. To obtain a consistent transformation of var-

iables we start with a Lagrangian L of a charged particle in our VF 

equilibria. 

In CGS units, 

L 1 mx;2 + l my"2 + 1 mz"2 +! A z" e~ = 2 2 2 c o - '*'o (7.1) 

where the dots indicate the derivatives with respect to time t, 

e¢
0 

= -T ln (1 - £d~) where ~ = £2x2 + y2 (7.2) 

. Ba 
and the vector potential ~ = A

0
z w1th A

0 
= 2a ~. Here Ba is the 

magnetic field strength at x = 0 and y = a. 

This Lagrangian does not allow us to transform Pz away as opposed 

to the case in Chap. III, because the electrostatic potential does not 

scale with Pz. Yet, the parameter study on the size of plasma can 

be eliminated by scaling the length in terms of the plasma size. We 

choose the scaling so that the minor radius of the separatrix is 1. 

Consequently the major radius is £-1• That is (x,y,z) = a(x,y,z), 

where a is the minor radius of the separatrix and the tildes denote 

the new variables. Hereafter all the new variables will be denoted 

with tildes unless otherwise noted. The scaling on £d then can be 
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-read off from the argument of the logarithm of Eq. (7.2) as ed = 
2 . 2- 1 
~ ed s1nce ~ = a ~. Now let n~ be the time scaling parameter and n 

be the average kinetic energy (temperature) scaling parameter so that 

and T = nT 

Since the equations of motion are independent of a constant factor 
2 2 -of L, dividing the Lagrangian by rna n

0
, we obtain a new Lagrangian L. 

(7.3) 

-where 0 denotes the derivative with respect to the new time variable t. 

-L can be further simplified by choosing 

and (7.4) 

to obtain 

(7.5) 
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The scalings (7.4) show that 

T = min2T 
0 

and (7.6) 

Notice that all the new quantities are dimensionless: time is measured 

in terms of twice the local gyro time, the kinetic energy (temperature) 

and the Lagrangian are measured in terms of twice the local gyro kinet

ic energy at x = 0 and y = a. 

-Now, the Euler-Lagrange equation with respect to x gives the equa-

tion of motion in x in the new coordinates. 

, ( 7. 7) 

and the cannonical momentum is defined to be 

Other components of the equations of motion are obtained similarly. 

Since force is the time derivative of momentum, it is clear that 

the right hand side of Eq. (7.7) is the force in the new coordinate 

Fx. Equating the RHS of Eq. (7.7) withE+ v x B so that F = E + v x B 
- - -(f and~ are dimensionless by this definition since F is dimensionless) 

we obtain 



E = -2 X 
1 - e:d¢1 

and 
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- 2-By = 2e: X ' 

which can be co~pared with the old expression of E and B to obtain 

and (7.8) 

mc2 -From the force balance equation, and by chossing n = ~ n, the re-
e a 

lation between the pressure gradient and the magnetic field gradient 

is; 

(7.9) 

The new Hamiltonian H corresponding to L is 

(7.10) 

and thus scales the same way as L: 

(7.11) 

Finally, we have to scale the ion distribution function. We de-

mand f
0 

to be 

.. 



.. 
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/ f dv = ~ (~) 
0- 0-

(7.12) 

while keeping the same functional dependence of f
0

• Then 

f = ;:;- (o) ( 1-)3/2 e-H/f 
o o 211'T 

(7.13) 

and so 

(7.14) 

If we summarize the transformation between the old and the new 

variables, they are 

(x,y,z) = a{x,y,z) 

-t = t/ n
0 

, 

2 2-
L = rna n

0
L , 

m.~ia 
0 -E=--E, 

- e -

k = k/a 

(7.15) cont. 
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-f. = man
0
P 

y_ =a~ ' (7.15) 

mc2 - and fo 
mc2 -n =-:Tin = 2 5 3 fo e a e a n

0 

-The equilibrium condition gives a relation between n0 (~) and T. 

In our case it is 

for e:«1)· (7.16) 

Therefore the dispersion functional is parameterized byk and T only. 

In other words the expectation value of; depends only on k and T. 

This scaling clearly saves us a lot of computational work in the pa

rameter study. For example, evaluation of; for one value ofT allows 

-us to estimate ;•s of physical systems with different values of a, T, 

Ba and m as long as their combination gives the same value f by the 

following scaling: 

T(200 eV) m(2Mp) 
[a(cm)J2[Ba(4KG)]2 ' 

(7 .17) 

eBa . 
where a is the minor radius of the separatrix, 0

0 
= 2mc 1s half the 

local gyro-frequency at x = o and y = a and Mp is the proton mass. 
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In terms of the new variables the VF dispersion functional is 

-
26W + ;;; /f..*·!,_ x !;ii0dX + ;;; J dXlV :; 0 

[· F j&• [· F = 0 (7.18) 

where 

For our equilibrium 

-T 

(7.19) 

and - - - -F = E + v X B 

Now we evaluate each of the terms of the dispersion functional for 

our trial functions. 

(7.20) 

(7.21) 
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and 

(7.22) 

whereqp(e;H,Pz) is the dynamical spectral densities of ~·F at Hand 
-Pz. Finally, the dispersion functional in our dimensionless units 

is the following dropping the tilde notation, 

[ 
1 ] J S(a) + w - 2 7/2 da a - w = 0 

2y'T,f e: e: d T 
(7.23) 

where 

t>mx 
S(a) =/dHdP e-H/T { d¢> K*(z(t)) K(~(t')) 

z ]¢> - -
mn 

and 



... 
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From Eq. (7.23) we see that there are only two parameters T and k 

which determines w for a chosen trial function. T is the squared 

quantity of the ratio of gyro-radius to the size of the plasma and k 

is equal to the toroidal mode number if the cylinder were "rolled-up" 

into a compact torus of major radius a. The inertia term is evaluated 

by 

(7.24) 

and so the MHO growth rates are 

(7.25) 

The dispersion functional of the second expression is from Eq. (4.3lb) 

(7.26) 

where s
1 

and s3 are obtained exactly the same way as S in Eq. (6.25) 

by simply replacing ~·I by~=~ and !·~ and the conjugates respec

tively. s2 is obtained by replacing (~·f)* by (~:~~)* and I·I by 

:!_·S.· 
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B. STABILITY MECHANISMS 

The source of MHO instability is the bad curvature of the magnetic 

field lines with respect to the pressure gradient. The VB relative to 

the pressure gradient is in fact favorable in this geometry, but the 

net effect of VB and the curvature is unfavorable for stability. This 

kind of instability can be understood as Rayleigh-Taylor instability 

by taking the combined effect of VB and curvature as an effective 

gravity acting on the plasma. 

The Rayleigh-Taylor instability arises when the gravity and the 

density gradient are such that, once there appears a charge separation 

by a perturbation, then the charge separation develops more and more. 

These instabilities can not exist if the separated charges are swept 

out by some mechanism faster than the predicted MHO growth time. 

Figure 7.1 shows the MHO m = 1 modes. These modes can not exist if 

opposi-tely charged regions smear out either along the cylindrical axis 

or across the major axis of the ellipses of the flux contours. The 

minor radius is excluded since the instability can still develop at 

the tips of the ellipses even if the charge separation across the 

minor axis is smeared out (ballooning modes). Since twice the ma-

jor radius is 2/& and the wave length in the axial direction is ~/k 

the distance of charge separation is approximately ~/k for all k 

(k = 1,2,3, ••• ). (Notice that k here is the new variable where 

the tilde on top is suppressed, while the k of Fig. 7.1 is an old 

variable.) 
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If the orbits are big (bigger than the length of the charge separa

tion), the communication time (time for smearing the charge separation) 

is the length of the charge separation devided by the thermal velocity • 

This happens approximately when T = n2 = 10. If the orbits are small 

then the thermal velocity should be replaced by the drift velocity. 

Notice that there is no fluid drift in our model, but the individual 

particles drift along the cylindrical axis. In our dimensionless un

its, the exponentiation MHO growth time is 1/yMHO = 1/(0.1IT) for tri

al function I, and the connection time is n/(kvth) = n/(klf) for the 

large orbits, and n/(kvd) = n/(kT) for small orbits. Therefore, we 

expect that the instability does not exist if k ~ 0.3 for large orbits 

(T ~ 10), and k ~.0.3/YT for small orbits (T ~ 10). 

The orbit effects can be seen from the VF dispersion functional. 
. J s1 The orbit correction to MHO is w e-w de from the second formalism 

of the dispersion functional where s1 is the two ~ime correlation of 

'!::!_:'Vt,. It is easy to see that .the coefficient of w in the low fre

quency limit is increasing as kT or T/a does. 

Stochastic Effect 

Implementation of finite orbit brings resonance effect of parti-

cles with the wave. It can either make the wave grow or damp away. 

Stochastic orbits can not remain in resonance with the wave, and some 

of the possible resonance modes may be suppressed in the presence of 

stochastic particles. 
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C. Numerical Checks and Some Intermediate Steps 

We present in this section some of the numerical checks that are 

made to test the computer code and some numerical tests made to see 

whether our assumptions valid. Also, the intermediate steps of finding 

the spectral densities are presented since there are many steps 

involved. 

C.l Transformation of Variables 

In x and v variables 

( 7 .27) 

In terms of ( H, P, 0, tJ, e, z) 

J d~d~ f 0 (~,~) ~ I dtJdedz 100 dHdP z dee-HIT o (H 
v2 e¢(~)) o(P z - a~) - r-

-oo 

~mx ---1 dHd~ I dtJ 
-HIT (7.28) e 

a tJmn 

where the subscript a of the integral sign denotes that the integral 

is over only for the allowable region shown in Fig. 6.2. Evaluation 

of the last term of Eq. (7.28) numerically on a 5 x 5 grid values in 

H-Pz space shows the dependence on T very accurately. 



.. 

181 

C.2 Two Time Correlation of vy 

Figure 7.2 shows correlation functions and spectrum of a regular 

orb it. 

Plot (a) is a two time correlation of v • In fact, if there y 

were no windows applied, the amplitude would not be decreasing. 

Nevertheless, the spectrum in plot (b) which is the time Fourier 

transformation of plot (a) has a form of modulation of frequencies 

w1 and w2 with a window function wf(-r): wf(-r) cosw1 cosw2 with 

w1 = 10 w2• A window function is a function of to be multiplied 

by another function of to select only the frequencies of interest 

upon time Fourier transformation or to eliminate the numerical errors. 

We use window functions to eliminate unphysical high frequencies. The 

spectrum in (b) has peaks at (l/2)•(w1 * w2) properly. Only the posi

tive frequencies are shown since the spectrum obtained from the corre-

lation of a real function is symmetric in frequency. The role of win-

dows is to force the records to be periodic, to get rid of the un-

physical high frequency spectra which arise when the records are not 

periodic. The artificially added windows do not change the spectral 

frequencies but only their width. The width can be adjusted as we want 

by giving proper windows and by obtaining correlations for a longer 

time interval. 

Plot (c) is the average correlation of 50 particles. Due to the 

initial phase average, the correlation naturally decays (almost expo

nentially) and the spectrum shown in (d) fills up certain range of 

frequencies, thus the spectrum becomes fatter. 
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Figure 7.3 shows the case of stochastic orbits. Plot (a) is the 

xy trajectory where (b) and (c) are the two time correlation of vy 

and the spectral densities of the motion (a) respectively. One more 

example of stochastic motion is shown from (d) to (f) with the same 

sequence as in (a) to (c). It is not easy to tell whether the motion 

(d) is stochastic or not, but the surface of section plot shows that 

the motion is stochastic. Both (b) and (e) show almost exponentially 

decaying correlation. Both (c) and (f) show the stochastic broadening 

of the spectral densities. Therefore, the spectral conditions can be 

treated similarly both for regular and stochastic orbits. 

C.3 Is Phase Average the Same as Time-Average for Stochastic Orbits 

From Eq. (6.30) tne question is equivalent to whether the follow~ 

ing equality holds when many initial conditions are used: 

(7.29) 

The above equation involves three averaging procedures: If we 

devide the equation by CV(H,Pz), the left hand side is the average 

of ~over the I-space and the right hand side is the average of N 

initial conditions of the time-averaged~-

To answer the question we evaluate both sides of the above equation 

numerically. The results are illustrated in Fig. 7.4. The left hand 

side of the Eq. (7.29) is evaluated by taking 100 initial points 

randomly in space and is shown in plot (a), while the right hand 
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side of the Eq. (7.29) is obtained for 20 particles and shown in plot 

(c). When we choose more particles for the straight-forward phase 

integral the amplitude of the correlation decays to a smaller value, 

which is reasonable since the fluctuation of the correlation at large 

T becomes small by averaging over more particles. This produces a 

better spectrum near zero frequency and the negative spectral densi

ties (which are purely numerical errors) are reduced. 

The amplitudes of the correlations of plot (a) and (c) are not the 

same, but similar. Furthermore the spectral densities shown in plot 

(b) and (d), which are the time Fourier transformation of plot (a) and 

(c) respectively, are very much the same. Both of the spectral densi

ties are obt~ined by applying log windows to elliminate the unphysi~al 

high frequency noise. 

C.4 Is the Dependence of the Third Invariant of our Correlation Weak 

for Regular Orbits 

To make the orbit calculation practical for regular orbits, we 

made the strong assumption that the correlation function is weakly 

depend on the third invariant. Since H and Pz are the exact in

variants in our geometry, the third invariant, whatever it is, will 

make the orbits regular. 

The question is 

(7.30) 
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Thus, if the equality 

(7.31) 

holds approximately, the assumpton is valid, which is the same condi-

tion as Eq. (7.29). Therefore, to test the validity of the assumption 

we evaluate exactly the same quantities of Fig. 7.4 for regular orbits. 

The results shown in Fig. 7.5 are qualitatively the same as the sto-

chastic case. Thus, the assumption that our correlation depends on 

the third invariant weakly for regular orbits is valid. Therefore we 

can treat the phase integral by time integral for all kinds of orbits, 

both regular and stochastic. The saving in computation time by trans-

forming the phase average to the time average is enormous. 

C.5 Dynamical Spectral Densitiesqp(a:H,P ) . z-
The dynamical spectral densities S(s) of a system are evaluated 

by summing the spectral densities ofqp(s:H,Pz) over H and Pz with 

an appropriate weighting (Refer Eq. (6.25)). Therefore we first 

investigateqp(a:H,Pz) for given Hand Pz values. 

We choose a system of £ = 0.1 and T = 0.1, and study the case 

of k = 10. Figure 7.6 shows five spectral densities ofqp(a:H,Pz)) 

whose H and Pz values correspond to those of five in Fig. 6.2 from 

(a) through (e) respectively. The peaks of the plots occur approxi

mately at vd where vd = p- <~>. vd changes sign from (a) to (e), 
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thus the sign of the peaks also change. The width of the spectrum de

pends on three different effects; thermal spread (randomness in initial 

velocity), stochasticity of the orbits and the harmonics of the oscil

lation frequencies. Particles of plot (a) are JY-conserving regular, 

thus the width in this case is not due to the stochasticity. Whether 

the width attributed to the randomeness in velocity and/or the natural 

frequencies of the motion can be tested in comparing the spectrum of a 

single orbit and that of many orbits. The plot (a) is the spectrum 

for 10 particles which shows a very good ensemble average (taking many 

more particles makes little change to the spectral densities). When 

only one particle is used, the spectral densities are not that dif-

ferent at a large scale. This indicates that it is the particle fre

quencies that is mainly responsible for the width of the spectrum. 

This are one of the reasons that using only a few particles is suf

ficient to obtain a good picture of the spectrum. What effects are 

more important for the width of the spectrum depends on H and Pz. 

Particles shown in (d) are mostly stochastic. Here we see wider spec-

tral spread mainly due to the stochasticity. Sum of the five spectral 

densities from (a) to (e) are shown in plot (f). Summing over values 

corresponds to the randomness in vz. 

For different H values, the dependence of Pz is qualitatively 

the same except that the frequencies appear at higher values for higher 

values of H due to the fast particle motion. 

Finally, the spectral densities S(s) is obtained after summing over 

five different H values (randomness in magnitude of velocity) with 

proper weighting, and this is shown in Fig. 7.7(a). 
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D. RESULT AND DISCUSSION 

0.1 By Using the 1st VF Dispersion Functional 

From S(a) of Fig. 7.7(a) the expectation value of w of Eq. (6.43) 

is evaluated first by making a Taylor expansion around w = 0. After 

evaluating all the coefficients as explained in Sec. E.4 of Chap. VI, 

we obtained the following forT= 0.1 and k = 10. 

-0.195 - 3.09 X 10-2 w2 - 0.258 w- iwS(a) = 0 (7.32) 

which is to be compared with 

2 -0.195 - 113 w = 0 (7.33) 

of MHO dispersion relation. Comparing the coefficients of w2 of the 

above two dispersion relations we see that the spectral densities 

of Fig. 7.7(a) are not accurate enough to give the proper inertia term. 

There are two possibilities for that matter: one is that we did not 

follow the orbits long enough to get accurate spectral densities near 

zero frequency. The other is that higher order of w's are important. 

The latter possibility is tested by drawing Nyquist Diagram explained 

in Sec. E.3 in Chap. IV. 

Shown in Fig. 7.7(b) is a large scale diagram and an enlarged dia

gram around the crossing point is shown in (c). The diagrams of larger 

growth rates encircle the diagrams of the smaller values of the growth 

rates. The inner curve of plot (c) is for r 2 = 10-3 and the outer is 
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for r2 = 10-4• Therefore the crossing (-2oW = 0.195,- Ic = 0.193) oc-

curs for 10- 3 < v
2 < 10-4• Th f • , ere ore the growth rate 1s not much re-

duced. Exact calculation evaluated without making Talor expansion and 

a good initial guess w value indicates that the growth rate is reduced 

only a factor of two or three. 

This phenomenon appears for almost all parameter values that 

we tested. The reason is that the real part of the frequency is 

always smaller than the smallest frequency that is accurately ob

tained by following the orbits for about MHO growth time (TMHD) 

which is 1/TMHD). (Notice that in the VF model a~ 0 when y ~ 0.) 

This indicates that we have to obtain spectral densities more accu-

. rate]y near zero frequency by following each orbit longer, which we 

believes resolve the problem. 

0.2 By Using the 2nd Formalism of the VF Dispersion Functional 

Since the 2nd formalism gives the kinetic correction more explic-

itly, first we investigate the stability by following the orbits only 

up to the order of MHO growth time as in Sec. A. 

We use the same procedure as in Sec. A for the spectrum of ~=21· 

Qualitatively the same comments can be made for the dependences of 

H and Pz. Therefore we show only the final spectral densities in 

Fig. 7.8(a) for the case of£= 0.1, T = 0.1 and k = 10, which are 

the same values as in Sec. A. 

As before, first we make a Taylor expansion in w of the 2nd for-

malism to get an approximated expectation values of w. For the spec-

tral densities of Fig. 7.8(a) we have 



188 

-0.195 - (113 + 123) w2 - 24.0 w- inS(a) = 0 (7.34) 

which is to be compared with the MHD dispersion relation Eq. (7.33). 

The solution of Eq. (7.34) is w = (-8.9 x 10-3, 5.2 x 10-4) and 

w = (-9.2 x 10-2, -5.4 x 10-3) which show a very reduced growth 

rate ( 0.01 yMHD). The solution which gives damping rates, of 

course, is not physical since the dispersion functional is valid only 

for growing modes. When a full expression is used without making the 

. ( -3 -4) ( -2 Taylor expans1on w = -8.9 x 10 , 5.3 x 10 and w = -9.2 x 10 , 

-8.3 x 10-3) which are almost the same as the values evaluated by using 

the Taylor expanded form. This approximation is found to be very good 

for all the cases we tested. 

Setting the real part and the imaginary part of the second expres

sion of the dispersion functional (see Eq. 7.26), we obtain a similar 

expression as Eq. (4.49). 

2 2 2 J 5
1 -2ow - 2(a + y ) K

0 
+ (a + y ) ds 2 2 = 0 

(s - a) + y 

2K 1J ____ s_s~1--~ 
o -20 (s a)2 + 

1
2 = 0 

Now we define 
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and 

1 J es1 Imag [G2(w)] = ~ 2 c.cr ( e - cr) + l 

Here we ignored the terms involving s2 and s3 in the dispersion 

functional I. 

A Nyquist Diagram is obtained by plotting the Image [G1(w)] on 

the vertical axis and Real [G1(w)] on the horizontal axis by changing 

cr from - 00 to +oo. We call this the Nyquist Diagram II Since it is for 

the dispersion functional II. 

The expectation value of w can be obtained by observing the value 

of w when the Diagram passes the point (2oW,2K
0

) in G1(w) plane. 

The Nyquist Diagram II are plotted in Fig. 7.9(b) for y
2 

= 10-2 

and 10-4 by taking the spetral densities of Fig. 7.9(a). It indi

cates that the growth rate is much smaller than 10-2 which is con-

sistent with the solution of Eq. (7.34). 

To show how the spectral densities change with respect toT, we 

present a series of the spectral densities of s1(e) in Fig. 7.9 from 

plot (a) to (d) for the trial function I. The values of T are 10, 0.1, 

10-3 and 10-5 respectively. As we expected, the spectral frequencies 

are higher for higher T. The peaks of the spectra appear around =kif 

except T = 10-5• For this low T, the gyro-frequencies are more 

responsible for the spectral structure. For k = 1, the T dependence 

on the spectral frequencies holds for large T but the values are not 

kvT. When T is small the spectral frequencies ranges are about the 

same for all the k values chosen, which is because the thermal effect 
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is negligible compared to the gyro-frequencies for particle dynamics 

for low T. 

Shown in (e)-(h) are exactly the same quantities for the trial 

function II. The T dependence is the same as that of the trial func

tion I. Comparing the spectral densities of the two different trial 

functions, we notice that the spectrum of the second trial function 

persist to higher frequencies than those of the first, which is be-

cause the second trial function has shorter length scaling than that 

of the first. 

The k dependence on s1(a) are shown in Fig. 7.10. Shown is the 

case of € = 0.1 and T = 0.1. The values of k are 1 for plot (a), 10 

for plot (b) and 100 for plot (c). For large k,.the spectral frequen-

cies are proportional to k but not for small k values. In short, if 

the oscillation frequencies of particles are larger than the value of 

kif, the spectral frequencies do not scale as kiT, which occurs at low 

T or low k. 

Growth rates are obtained for k = 1, 10 and 100 each for T = 10, 

0 1 10- 3 10-5 . . 1 f . I F 1 1 f • , and by us1ng the tr1a unct1on • or arge va ues o 

k (k = 100) the growth rates are reduced very much (to -10-3 yHMO) for 

large T and approaches to that of MHO for small T. Fork about 10, 

the growth rates are reduced by factor of 100 or 10 for T around 0.1 

and for low T (T = 10-5) they approach to that of MHO. However, the 

growth rates are reduced only by a factor of 10 for T as large as 10. 

Threfore we follow the particles about 10 times longer than before 

for this case (-10 TMHO). Then the growth rates are very much reduced 
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(10 times or even smal·ler than that of MHD). Fork= 1 none of them 

show reduced growth rates. Following the particles 10 times longer 

did not improve the stability for low k values. 

The growth rates are also evaluated by using the trial function II 

which is localized away from the null. Similar phenomena appear except 

that the magnitudes of the growth rats are somewhat different. For 

k = 10, factor of 10 for T = 0.1 and remains the same order as that of 

MHD for T = 10- 3 and T = 10-5• Th h e growt rates are the same order 

as those of MHD for all T values tested as for the case of trial 

function I. The summary of the growth rates of different k and T 

values are shown in Fig. 7.11. 

If we take the experiments of FRC at Los Alamos National Labora-

tory, we obtain T - 0.1 for FRX-B and T = .025 for FRX-C from Eq. 

(7.17). The results summarized in Fig. 7.11 indicate that, although a 

direct comparison cannot be made since our geometry is linear, the 

plasma is essentially stable against the m = 1 axial shifting modes 

for large toroidal mode numbers but not for low toroidal mode numbers. 

(Again, notice that the tildes for the new variables are suppressed 

here in the text but not in the figure.) 

One may be able to see reduced growth rates for low k values by 

taking into account one or some of the following factors: (1) We 

should follow particles a lot longer for these parameters. (2) The 

term that we neglected become more important for small k values. 

(3) The toroidal effect should be taken into account. 
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E. Future Work 

Some short-term future work is to (1) follow the orbits longer for 

the dispersion function I for all parameters, and for low k values for 

the dispersion function II. (2) Study the effects of the ignored terms 

in the second dispersion functional for low k. 

An intermediate-term work might be to study the toridal effect on 

the stability. A long-term work is to solve the full dispersion 

matrix. 
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Fig. 7 .1. 

Fig. 7.2. 

Fig. 7.3. 

Fig. 7.4. 
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FIGURE CAPTIONS 

MHO internal m = 1 modes in an elongated Z-pinch. Shown 

are the two flux tubes; the inner curved one is the per-

turbed flux surface and the outer one is the separatrix. 

Correlation functions and the spectral densities for regu-

lar orbits. Plot (a) is the correlation of vy of a regular 

orbit. The dynamical spectral densities are shown in (b). 

Plot (c) is the average correlation of 50 randomly chosen 

particles in the allowable region in r space. The averaged 

spectral densities are shown in (d). 

A stochastic orbit, the correlation of vy and the spectrum. 

xy trajectory of a stochastic particle is plotted in (a). 

The correlation of vy is shown in (b) and the spectral densi-

ties are in (c). 

Correlations and the spectral densities of stochastic or-

bits. Plot (a) is the phase-averaged correlation over 100 

initial points. Plot (c) is the time-averaged correla-

tion--shown is the average of 20 time-averaged correlations. 

The spectral densities of correlations (a) and (c) are shown 

in (b) and (d) respectively. 

Fig. 7.5. Correlations and the spectral densities of JY-conserving 

orbits. Plot (a) is the phase average over 200 initial 

points. Plot (c) is the average of 20 time-averaged cor

relations. Plot (b) and (d) are the spectral densities of 

the correlations of (a) and (c) respectively. 



193 

Fig. 7.6. Dynamical spectra densities for£= 0.1, T = 0.1 and 

k = 10. From plot (a) to (e) are the dynamical spectral 

densities of the five different Pz values of a given H. 

Each plot is the averaged spectrum over 10 different init

ial conditions. The five values of (H,Pz) are shown in 

Fig. 6.3 labeled (a) through (e). The plots from (a) to 

(e) correspond to the spectrum P (e;H,Pz) of step 3 

shown in Eq. (6.25). Plot (f) is the some of the five 

spectral densities with proper weighting functions 

(Step 4 of Eq. (6.25). 

Fig. 7.7. Spectral densities and the Nyquist Diagram (I). Plot (a) 

is the final dynamical spectral densities S(e) after sum

ming over all energy values (Step 5 of Eq. (6.25)) for 

£ = 0.1, T = 0.1 and k = 10. Plot (b) is the Nyq~ist 

Diagram as a large scale (for 1
2 = 10., 1. and 1o-3) and 

the enlarged diagram around the crossing (-26w = 0.195, 

-Ic = 0.193) is shown in plot (c). The dotted lines are 

for a < 0 and the solid lines are for a > 0. 

Fig. 7.8. Spectral densities and the Nyquist Diagram (II). 

Plot (a) is the final dynamical spectral densities s1(a) 

which is the correlation of ~=~ for £ = 0.1, T = 0.1 and 

k = 10. Plot (b) is the Nyquist Diagram. The dotted lines 

are for negative a values and the solid lines are for posi-

tive a values. 
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Fig. 7.9. Dynamical spectral densities forE= 0.1 and k = 10. 

Plot (a) through (d) are the spectral densities for the 

trial function I for T = 10, 0.1, 10-3 and 10-5 respec

tively. Plot (e) through (h) are the spectral densities of 

the trial function II forT= 10, 0.1, 10-3 and 10-5• 

Fig. 7.10. Dynamical spectral densities ofT= 0.1 for the trial func

tion I. The spectral densities of k = 1, 10 and 100 are 

shown in from plot (a) to (c) respectively. 

Fig. 7.11. Growth rates vs. T fork= 1, 10 and 100. For trial func-

tion I, cross marks are used fork= 100, solid circles for 

k = 10 and solid triangles are used fork= 1. For trial 

function II, open circles are used for k = 10 and open tri

angles are used for k ~ 1. · 
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