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ABSTRACT: Protein−protein interactions (PPIs) are at the heart of the molecular landscape
permeating life. Proteomics studies can explore this protein interaction landscape using mass
spectrometry (MS). Thanks to their high sensitivity, mass spectrometers can easily identify
thousands of proteins within a single sample, but that same sensitivity generates tangled
spiderwebs of data that hide biologically relevant findings. So, what does a researcher do when
she finds herself walking into spiderwebs? In a field focused on discovery, MS data require rigor
in their analysis, experimental validation, or a combination of both. In this Review, we provide a
brief primer on MS-based experimental methods to identify PPIs. We discuss approaches to
analyze the resulting data and remove the proteomic background. We consider the advantages
between comprehensive and targeted studies. We also discuss how scoring might be improved
through AI-based protein structure information. Women have been essential to the
development of proteomics, so we will specifically highlight work by women that has made
this field thrive in recent years.
KEYWORDS: protein−protein interactions, mass spectrometry, proteomic scoring

■ INTRODUCTION
Coordinated interactions between proteins mediate a myriad
of cellular functions throughout life. These protein−protein
interactions (PPIs) can occur directly between two proteins,
but many comprise multiple proteins that work together as a
complex to execute specific functions. Protein complexes form
as quaternary structures from the non-covalent interactions of
multiple proteins via hydrogen bonds and van der Waals
forces. Studying PPIs can reveal mechanisms of cellular
homeostasis,1,2 dynamic cellular processes (e.g., cell signaling,
division, or differentiation),3 and disease.4,5 Here, we review
how PPIs can be identified using mass spectrometry (MS)-
based approaches, the caveats associated with analyzing such
data rigorously, and the opportunities for future innovation in
the field. Instead of providing a comprehensive review of such
a broad field for this special issue focused on women in
proteomics, we highlight work by women when possible (see
notes).

■ MS-BASED APPROACHES IN PPI IDENTIFICATION
MS identifies proteins using unique mass spectra, or mass-to-
charge ratio fingerprints. This can be done using a “bottom-up”
or “top-down” method. Bottom-up proteomics requires
enzymatic digestion of a protein sample into peptide
fragments, while top-down proteomics will use whole proteins
or large fragments. In both cases, peptides (for bottom-up) or
intact proteins (for top-down) are separated by liquid
chromatography (LC) prior to ionization and fragmentation

for MS analysis. For top-down proteomics, intact proteins can
undergo size separation prior to LC-MS, which helps the mass
spectrometer to identify proteins or proteoforms in each
sample. Many groups have recently published reviews on these
topics, including a bottom-up review by Plubell et al.,6 a top-
down review by Po and Eyers,7 and a general mass
spectrometry review by Shuken.8 Data-dependent acquisition
(DDA) is often the focus of reviews because of its simplicity
and wide use as an MS data acquisition technique. However,
data-independent acquisition (DIA) has gained popularity due
to its increased sensitivity in detecting lower-abundance
peptides. This is possible because of computational advance-
ments that identify peptides from complex mixtures containing
multiple precursor ions. DIA MS was recently reviewed by
Ludwig et al.9 and Zhang et al.10

Regardless of the method selected, once mass spectra are
acquired, they are mapped back to proteins based on a peptide
search against the organism of study. To perform the mapping
process, computational analysis software, such as DIA-NN,11

MSFragger,12 Skyline,13 MaxQuant,14 Protein Prospector,15

Spectronaut,16 and many more, will map the spectra to
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peptides that theoretically match based on known amino acid
sequences. The software then maps the peptides to proteins.
Since spectra mapping to peptides can give false positives,
decoy peptides, created through a variety of computational
techniques, can be used to estimate the false discovery rate
(FDR) and ensure it is acceptably low.
Variations on LC-MS provide varying degrees of resolution

in PPI identification, depending on the study’s goals. Methods
available include classic affinity purification−mass spectrome-
try (AP-MS), cofractionation mass spectrometry (CF-MS),
thermal proximity coaggregation (TPCA), and cross-linking
mass spectrometry (XL-MS). Here, we provide brief
explanations of these four approaches while discussing the
advantages and caveats of each (Table 1).
As the name implies, AP-MS experiments rely on affinity

purification of a protein of interest or “bait”. Purification can
involve immunoprecipitation using antibodies against the
native protein or expressing bait fusions with an affinity tag
(e.g., FLAG, HA, His, Strep, etc.). While purifying native
proteins using specific antibodies preserves relevant biology
(e.g., expression patterns), affinity tagging provides an
attractive level of modularity for large-scale studies. Regardless
of approach, the bait protein is purified from cell lysates using
antibody-binding or affinity-tag-binding beads. LC-MS then
identifies the interacting proteins, or “prey”. The flexibility and
modularity of AP-MS make it a valuable approach, and many
groups have applied AP-MS to make major PPI discoveries
across a broad range of biology, including ion channel function
in the mammalian brain,17 chromatin remodeling in plants,18

and influenza A virus replication.19 When conducted on a large
scale, they can be used to map PPIs across an entire
proteome20 and infer stoichiometries of protein complexes.21

Despite the advantages of AP-MS, there are several caveats to
the approach. The sample lysis and purification can introduce
background protein binding through the mixing of cellular
compartments that are usually isolated in space and/or time.
Detergents in lysis buffers can also disrupt transient and/or
weakly binding proteins and protein complexes and may bias
the data to PPIs with higher binding affinities.
One extension of the AP-MS approach that deals with many

caveats of classic AP-MS is proximity labeling. This approach
takes advantage of bait fusion with an enzyme that can label
neighboring proteins with biotin moieties in situ. Subsequent
AP-MS of the biotinylated proteins can define protein
neighborhoods or complexes. Proximity labeling can help
maintain low-affinity or transient interactions that would be
lost by AP-MS alone. By purification of proteins labeled in situ
instead of from lysates, proximity labeling avoids mixing
proteins from different compartments or cell states that could
give rise to spurious interactions. However, proximity labeling

is also subject to off-target background labeling, and careful
controls must be included to account for this.22,23

While many proximity labeling tools have been developed,
we highlight technologies developed by Alice Ting’s group and
applied to identify PPIs and their dynamics.23−27 APEX23

(ascorbic acid peroxidase) and the related APEX225 catalyze
the formation of biotin phenoxyl-radicals that spontaneously
react with (primarily) tyrosine residues on timescales that limit
diffusion to less than 20 nm. TurboID catalyzes direct
biotinylation of target proteins through its biotin ligase
activity.24 Compared to its BioID precursor,28 the engineered
TurboID reaction kinetics are improved by orders of
magnitude and are much closer to APEX2 labeling kinetics.
Ting and collaborators have also created variations on these
tools, including split versions to directly assay PPI-dependent
labeling,26 and smaller enzymes that may be better tolerated as
fusions.24 Though not as mature as traditional AP-MS,
proximity labeling combined with AP-MS has already been
used for large-scale PPI mapping efforts.29 Taken together, AP-
MS is a powerful MS-based technique to identify PPIs because
it is straightforward, accessible, and modular, although
technological innovations continue.
In CF-MS, samples undergo separation using size exclusion

chromatography or other techniques.30−32 CF-MS identifies
proteins in each discrete fraction and links them together as
members of a larger complex. Proteins can often take part in
multiple complexes, or a complex can have different modifying
members to give it unique functions. CF-MS enables efficient
identification of these ensembles compared to AP-MS.
However, samples are still lysed in solution prior to
fractionation, which can bias detection toward complexes
stable under specific lysis conditions. Multiple complexes may
also cofractionate together, making data validation important.
AP can also be added as an intermediate step to further reduce
complexity or identify complexes with specific members.31

Andrea Fossati and colleagues recently applied CF-MS to
identify jumbophage-bacteria PPIs.33 Jumbophages encode
more than 300 proteins, and identifying PPIs using AP-MS is
not necessarily practical. By using CF-MS, the authors were
able to compare jumbophage-bacteria PPIs across two
jumbophages and found evidence of shared phage predation
mechanisms between the two viruses. While CF-MS is still
relatively new, it holds promise for many systems.
TPCA was developed by Chris Tan and colleagues as a high-

throughput method to separate interacting proteins based on
denaturation temperature.34 This technique is a unique
application stemming from the cellular thermal shift assay
(CETSA) developed in 2013 by Martinez Molina et al.35 and
thermal proteome profiling (TPP) developed in 2014 by
Savitski et al.,36 originally used to characterize melting point

Table 1. Summary of Mass Spectrometry Approaches With Associated Benefits and Limitations of Each Approach

approach benefits limitations

AP-MS modular and scalable for use with multiple baits, can be
used with proximity labeling for spatially and
temporally resolved PPIs

protein interactions that are not biologically relevant may occur after cell lysis during standard AP-MS,
unstable interactions may not be detected, direct vs indirect interactions and specific protein
complexes cannot be distinguished

CF-MS can identify proteins participating in multiple complexes,
can be combined with AP approaches to increase
resolution

protein interactions that are not biologically relevant may occur after cell lysis, protein complexes can
be obscured by the co-fractionation of different complexes at the same time

TPCA directly identifies protein complex members, compatible
with multiplexed labeling to increase throughput

experimental conditions may alter melt temperatures, extensive pre-work may be required to generate
melt curves

XL-MS proteins and interactions are fixed in situ prior to lysis,
improved protein complex identification over
traditional AP-MS

crosslinked peptides require specialized analysis and FDR management
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shifts in proteins and protein complexes during ligand or drug
binding.37 TPCA uses MS and multiplexed quantification of
the CETSA to generate melt curves for protein complexes.
Since protein complexes will denature at a similar temperature
and coaggregate, TPCA can identify proteins with similar melt
curves and solubility behaviors to assign them to protein

complexes. In an elegant application of TPCA, Joshua Justice
and colleagues identify global changes in PPIs caused by
herpesvirus infection.38 The authors show that DNA sensor
IFI16 (interferon gamma inducible protein 16) recruits DNA-
PK (DNA-dependent protein kinase) early during infection.
DNA-PK phosphorylates IFI16 on tyrosine 149 to initiate a

Figure 1. Brief explanations of four methods used when evaluating affinity purification−mass spectrometry (AP-MS) datasets. (A) A general
experimental AP-MS workflow. Two conditions (C1 and C2) each with three replicates (R1, R2, and R3) are depicted. Samples undergo
purification and mass spectrometry, where the peptide data are recorded and mapped to known proteins. (B) An example of MSstats outputs for an
AP-MS dataset. MSstats can provide relative statistical quantitation for data in the form of a box plot showing data distribution across all conditions
and replicates and a volcano plot showing fold change for proteins among the two conditions. Blue dots indicate proteins with a positive log-2 fold
change and a p-value below 0.05 as an example of a high-confidence PPI. (C) Example of the SAINT and SAINTexpress output. Parameters for
abundance and reproducibility are weighed against the dataset to provide a score associated with the presence of prey proteins in each replicate.
(D) Example of the CompPASS output. The algorithm evaluates prey abundance, reproducibility, and uniqueness through all replicates and
calculates a D score for each prey based on these criteria. A normalized D score plot is shown. (E) Example of MiST output for virus−host PPI
data. MiST generates scores using the same three criteria as CompPASS, but the weighting for each criterion is set by the user.
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cytokine response. Although TPCA can be a powerful tool, cell
lysis and other manipulations of the sample can change the
proteins’ environments and alter their thermal stabilities. Each
system of interest may require new calibrated melt curves
based on the experimental conditions. The computational
analysis is also not trivial. Consequently, this method has not
been applied as broadly as the others. Nonetheless, TPCA is
far more scalable in identifying PPIs across the entire proteome
and for many different conditions.39

XL-MS40 uses a crosslinking reagent to create a covalent
bond between adjacent peptides and can be combined with
AP-MS (XL-AP-MS) to identify PPIs. When crosslinking
occurs between neighboring proteins within a complex, this
can stabilize protein complexes and even provide structural
information about points of contact between the proteins.
Reversible crosslinking mainly serves to stabilize transient
interactions. Irreversible crosslinking will alter the spectra
produced since the peptides remain covalently bonded for LC-
MS analysis and can be used to identify which peptides are in
contact. However, spectra derived from samples without
reverse crosslinking must be mapped using specialized
databases and algorithms, and the FDR calculation is not as
straightforward. A recent large-scale study by Swantje Lenz and
colleagues applied XL-MS to Escherichia coli lysates to recover
590 PPIs. The authors also demonstrated the power for
structural discovery by successfully mapping the interaction
domain between an uncharacterized protein YacL and RNA
polymerase using the crosslinking data.41 A more focused study
by Sara Ayala Mariscal and colleagues used XL-MS to study
the huntingtin protein (HTT), whose expanded polyglutamine
(polyQ) tracts cause the neurodegenerative Huntington’s
Disease through HTT aggregation. The authors mapped a
specific binding motif between HTT and chaperone DNAJB1
(DnaJ heat shock protein family member B1) using XL-MS.
These results were used to target mutations to this binding
motif and disrupt the interaction.42 Given the advances in
protein structure prediction and cryo-electron microscopy, XL-
MS is an incredibly promising method to rapidly go from large-
scale datasets down to amino acid resolution of PPIs.43

■ YOU’VE GOT ME FOR YOUR PREY: PPI DATA
CURATION AND SCORING TOOLS

After completion of the peptide mapping process (Figure 1A),
the output dataset may contain tens or thousands of prey, not
all of which indicate real or biologically relevant interactions
with the bait(s). Combine this with the background
contaminants that find their way into samples (e.g., hair
keratins and bacterial proteins), and it becomes obvious that
researchers could easily be stuck in a PPI web that mass
spectrometry is spinning. Consequently, they need an unbiased
method to remove these extraneous or irrelevant prey from
their datasets. Some groups keep personal databases of known
background and contaminant proteins while others use freely
available tools such as CRAPome (Contaminant Repository
for Affinity Purification).44 Either way, elimination of
extraneous proteins can reduce a dataset’s size and provide a
starting point for confident PPI identification. This helps to
make both data analysis and complex inferences more
tractable.
High-confidence interactions do not stem from a single

datapoint, but instead arise from holistic analysis of the entire
dataset using an unbiased and systematic scoring method.
These scoring methods can be used to derive a threshold or

minimum performance value that a protein must reach to be
considered an interactor for a certain bait. Enrichment of
specific proteins under multiple conditions can be established
with statistical quantification tools such as MSstats,45−47 a
package created by Meena Choi and Olga Vitek (Figure 1B).
MSstats normalizes data across runs to account for differences
in total protein content and then performs direct comparisons
between each condition and replicate to calculate enrichment
(fold changes) and significance (p-values) for each protein.
Statistical tools such as MSstats can perform direct
comparisons and impute protein intensity or spectral counts
for missing values. The user must define cutoffs for enrichment
and significance to threshold their data.
Since AP-MS is still the most broadly used approach to

identify PPIs, many data analysis tools have been developed to
handle these datasets specifically. Algorithms and tools such as
SAINT (Significance Analysis of INTeractome)48 or SAIN-
Texpress,49 CompPASS (Comparative Proteomic Analysis
Software Suite),50 and MiST (Mass Spectrometry Interaction
STatistics)51 can take an AP-MS dataset and provide a
numerical score for each PPI. These tools take a given dataset
and review it for two or three criteria: the abundance of the
protein, the reproducibility or presence of a PPI across
multiple replicates, and the specificity or uniqueness of an
interaction (for MiST and CompPASS only).
The SAINT/SAINTexpress48,49 algorithms perform quanti-

tative data analysis and probabilistic scoring of a proteomic
dataset as a means of evaluating the likelihood of a bait−prey
pair interaction (Figure 1C). In its original form, SAINT used
only the quantitative data associated with each prey’s total
spectral counts recorded in a bait condition and compared
them against all baits and their replicates. Negative controls
were not required if sufficient independent bait conditions
were profiled together, permitting analysis of both small and
large datasets. Using statistical modeling, a prey’s counts in a
single bait are modeled from a Poisson distribution
representing either a true interaction or a false interaction.
Distributions are calculated for each bait−prey pair throughout
the dataset in a matrix, resulting in a probability associated
with each PPI. The probabilities help to determine a Bayesian
FDR and a threshold probability needed to achieve it.
SAINTexpress expanded upon SAINT with the ability to
perform calculations using protein intensity values in addition
to spectral counts. It also contains information on existing PPI
data, allowing it to supplement the main score with a separate
topology-based score, the topology-aware average probability
score (TopoAvgP), which can improve the identification of
copurifying prey−prey protein complexes.
CompPASS50 operates similarly to SAINT and SAINTex-

press in that both will automatically output PPI probability
values for each bait−prey pair in a dataset (Figure 1D). The
CompPASS algorithm calculates two scores for the bait−prey
pairs: a Z score to normalize and center the data and a D score
based on the adjustment of total spectral counts (TSCs) across
all bait conditions and replicates. The D score incorporates
prey uniqueness under bait conditions, protein abundance (as
TSC), and reproducibility across replicates to create a
representative score for the three attributes. CompPASS then
calculates a threshold D score (DT) to ensure 95% (or other
configurable amount) of the data falls below this threshold.
Raw D (DR) scores are normalized against DT, producing
normalized D scores (DN) that can be plotted. Preys with a DN

≥ 1.0 are considered high-confidence PPIs. If preservation of a
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low-scoring PPI is desired, the Z score can provide evidence
for further validation.
MiST51 uses the mapped proteomic data to generate scores

for specificity, reproducibility, and abundance (Figure 1E).
Each of these scores is then combined in a linear combination
to produce an overall MiST score. The weighting parameters
for each of the three components sum to 1.0 and are typically
weighted more toward specificity and reproducibility (specific-
ity ∼65%, reproducibility ∼25%, abundance ∼10%). The
emphasis on specificity emerges from the fact that MiST was
originally developed to score virus−host PPIs for RNA viruses.
RNA viruses have some of the smallest genomes (typically 10
kilobases or less). Evolving redundant interactions, in which
multiple viral proteins interact with the same host protein, is
inefficient. Consequently, the creators of MiST theorized that
specificity of protein interactions would help recover gold
standard virus−host PPIs.51 However, scoring weights can be
tailored to a user’s dataset, provided there is a mechanism to
evaluate the precision and recall of the tailored weights.51,52

Regardless of the scoring approach used, the end result will
require some decision on a threshold above which PPIs are
considered “high-confidence”. This will vary depending on the
dataset and scoring approach but is typically set to capture the
top ∼5% of scored data or optimized based on precision and
recall against a gold standard dataset. A dataset originally
containing thousands of potential PPIs will retain only a few
(tens to hundreds) high-confidence interactors. The reality of
the experiment has finally shown itself: many PPIs identified
through MS do not reflect actual biological relevance due to
their promiscuity or chance contact that resulted in
purification. If a PPI of particular interest is known to interact
with a bait and complex member but does not make it through
a strict scoring threshold, systematic approaches to rescuing
low-scoring interactions have been established.53 It is
important to recognize that these scoring algorithms, while
powerful in untangling spiderwebs, can evaluate only the data
provided. Ultimately, refined high-confidence PPI networks are
a starting point to generate hypotheses and require further
testing. Next, we highlight studies that span this spectrum of
hypothesis generation and testing.

■ BREADTH OR DEPTH? ADVANTAGES OF
COMPREHENSIVE AND FOCUSED PPI STUDIES

Comprehensive studies of PPIs require large investments of
resources, but their size can provide advantages in internal
validation. For example, a recent study by Andre ́ Michaelis and
colleagues provided a more complete view of the Saccha-
romyces cerevisiae protein−protein interactome.20 The authors
performed systematic purifications of nearly 4,000 green
fluorescent protein (GFP)-tagged S. cerevisiae proteins to
identify over 31,000 PPIs. This doubled the number of
proteins and tripled the number of high-confidence inter-
actions previously identified by other large-scale efforts.54−56

Reverse or reciprocal purifications are often used to validate
specific PPIs, as Edward Huttlin and colleagues did on a large
scale for BioPlex, a similar effort to map the human protein−
protein interactome.57−59 The near complete nature of the
study in S. cerevisiae by Michaelis and colleagues meant that
almost all of these reverse purifications were already part of the
dataset and could be incorporated into the approach as one of
three criteria used for scoring. While not all proteins encoded
by S. cerevisiae could be successfully tagged with GFP for
purification in this study, the authors leveraged their success

with other proteins to fill in the gaps presented by
biochemically challenging proteins. For example, proteins
from the chaperonin-containing T-complex (CCT) cannot
be tagged because the tag will interfere with complex formation
and function. However, the authors were able to infer CCT
interactions between the eight subunits and identify novel
interactions through purification of proteins that interact with
one or more subunits of CCT.
As the study by Michaelis and colleagues demonstrates, the

data generated by large-scale studies often drive innovation in
proteomic analysis. Many of the MS scoring algorithms
discussed earlier were in fact developed to systematically deal
with the large PPI datasets generated for first-of-their-kind
comprehensive studies. SAINT was originally designed to
score yeast kinase protein interactions48 and has been broadly
applied to PPI studies. CompPASS was originally developed to
score human PPI data for a comprehensive ubiquitin ligase
interaction network50 and has since been applied to numerous
PPI studies, including virus−host PPIs. MiST was created to
score virus−host PPI data for human immunodeficiency virus
151 and has been applied to many other virus−host studies
since.60−63

Other more recent studies have developed novel compara-
tive scoring methods to identify disease-related PPIs, since the
simple overlap of networks may not be sufficient to establish
the presence or absence of a PPI in a specific disease-related
condition. We used holistic enrichment scoring at the pathway
and complex level to identify similarities and differences across
flavivirus−host PPI networks.52 This approach highlighted a
protein interaction between viral protein NS4A and the Sec61
translocon conserved across two flaviviruses and two hosts and
mediated fundamental aspects of virus replication. David
Gordon and colleagues developed a differential interaction
score to compare three coronavirus−host PPI networks at the
protein level.53 This approach benefits from capturing
differences that fall below a strict cutoff. Another study by
Danielle Swaney and colleagues took comparative protein
interaction mapping even further by identifying interactions for
proteins implicated in head and neck squamous cell
carcinoma.64 In total, the authors identified protein inter-
actions for 31 wild type and 23 mutant proteins in two head
and neck cancer cell lines and one non-tumor esophageal cell
line. By including a non-cancer cell line derived from a similar
tissue and applying differential interaction scoring, the authors
identified interactions relevant to cancer biology. For example,
an interaction between Cyclin D1 (CCND1) and members of
the PI3K complex was lost in cancer cells, while an interaction
between fibroblast growth factor receptor 3 (FGFR3) and
Daple (CCDC88C) was gained in cancer cells and activated
cell migratory proteins.
Focused studies on single proteins and their interaction

networks can take advantage of more complex and elegant
experimental systems and proteomic analyses. Todd Greco and
colleagues performed one such study on the HTT protein.5

The authors expressed HTT with a normal (20) or highly
expanded (140) polyQ tract in mice and affinity purified the
protein from young (2 months old) and aged (10 months old)
brains. In this way, the authors identified 278 HTT-interacting
proteins, including some that were dependent on age or polyQ
expansions. They analyzed the stability of 72% of PPIs using an
isotope labeling approach in tissues and found that interactions
became more stable with aging. Thus, in addition to increases
or decreases of specific interactions driving disease, interaction
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dynamics likely contribute to the dysfunction of HTT during
aging. They validated 22 of these interactions by a luciferase
two-hybrid, though some may interact indirectly. Finally, an
elegant functional assay in a fruit fly model of Huntington’s
Disease demonstrated that many of these HTT-interacting
proteins modulate HTT-induced neuronal dysfunction.
While both are impressive in their own ways, the goals of a

resource creation study are fundamentally different from that
of a more focused mechanistic study. The scoring and follow-
up validation will also differ based on these goals. In creating a
comprehensive dataset that spans an entire set of proteins from
a specific biological process, disease, or proteome, authors can
take advantage of this scale in their validation. As stated earlier,
reciprocal purifications are often built in and can even be
incorporated into novel scoring methods. Additionally, scoring
cutoffs for larger studies can be optimized through precision
and recall analysis of validated, gold standard interac-
tions.51,52,65 This approach can better identify and eliminate
the proteomic background. On the other hand, smaller studies
focused on a single protein can more easily sample PPIs in
biologically relevant systems. However, they will have a limited
ability to identify and remove proteomic background, and
validation of specific interactions becomes much more
important as a result.

■ YOU THINK THAT WE CONNECT: USING PROTEIN
STRUCTURE AND INTERACTION PREDICTIONS TO
SCORE PPI DATA

With the emergence of AI-based structural prediction systems
like AlphaFold 2 (AlphaFold)66 and RoseTTAFold,67 we can
now predict protein structures and interactions with more
accuracy and speed than ever before.68 Another algorithm,
Protein Structure Transformer (PeSTo),69 predicts protein
binding interfaces. Requiring only the protein’s structure from
either experimental or predicted sources, PeSTo has shown
marked accuracy when tested on a benchmark dataset. While
many groups have used AlphaFold to identify potential binding
sites and drive more mechanistic studies,20,65 there is a
potential to reverse the workflow. Instead, protein interaction
and binding interface scores from tools like AlphaFold,
RoseTTAFold, or PeSTo could be used as an input for AP-
MS scoring. For example, structure prediction could be used to
refine scoring thresholds or rescue specific interactions that fall
below a high-confidence threshold.
More generally, the protein structure predictions themselves

could be valuable for PPI scoring. Until recently, it was
computationally limiting to quickly perform structural align-
ment on multiple proteins. Previous sequence and structural
alignment methods such as Dali,70 FATCAT,71 and TM-align
(now US-align)72,73 performed with reliable sensitivity and
accuracy but could not scale to many comparisons, limiting
their application in a larger workflow. Protein structural
alignment tools now incorporate neural network models to
perform searches against entire structural databases or
proteomes at speeds faster than ever before. In 2023, van
Kempen et al. released Foldseek, which performs structural
alignment for a protein against any combination of protein
structures with high accuracy.74 Foldseek achieves this speed
and accuracy in part by converting a protein’s tertiary structure
into a simplified character sequence from Foldseek’s 3D
interaction (3Di) alphabet. Each pair of residues closest to one
another is described by one of 20 characters in this 3Di
alphabet. This simplifies the alignment from a full structural

alignment while adding rigor when compared with backbone-
based structural alphabets or amino acid sequence alignments.
When combined with the predictive power of AlphaFold and
its protein structure prediction databases, Foldseek can search
a query against entire proteomes and identify possible
structurally homologous proteins. This could be especially
valuable for PPI studies in non-model organisms, for which
databases compiling experimentally resolved structures and
validated protein complexes are limited. In this case, protein
structure homology could be used to efficiently identify
conserved protein complexes and add confidence to PPI
scores when the gold standard reference interactions are
unavailable.

■ CONCLUSIONS
MS-based identification of PPIs is an exciting area of discovery
science, but it can often feel like walking into spiderwebs.
These webs can be unraveled into tractable threads using a
variety of scoring approaches. Studies focused on large
interactomes with many bait proteins can leverage existing
PPI databases and built-in internal validation to guide scoring
and thresholding. Targeted studies can employ complex
experimental systems and involve more follow-up validation
and mechanistic studies. Regardless of study size, new
innovations in analyzing PPI datasets will be possible through
incorporation of protein structure and interaction prediction
tools.
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