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Abstract 

The coronavirus disease 2019 (COVID-19) has impacted healthcare systems and economies 

worldwide. Diabetes mellitus (DM) is another disease with global implications. Continuous 

glucose monitoring (CGM) systems have become a valuable tool for monitoring glucose levels 

and trends around the clock. This study sought to demonstrate that COVID-19 and diabetic 

patients with CGM are linked to better outcomes than those without CGM. The University of 

California, Davis Health System’s (UCDHS) electronic health record (EHR) data and the analytical 

platform ATLAS were used. The following outcomes were defined: visits to the emergency room 

(ER), hospital stays, mechanical ventilation (MV), deaths, and glycated hemoglobin (A1c). ATLAS 

found 8,576 (11.51%) patients confirmed to have a positive COVID-19 result. Of them, 1,514 

(17.65%) had a diagnosis of diabetes. 24 (1.59%) of them had a CGM, and 1,490 (98.41%) did 

not have a CGM. The ATLAS results support that COVID-19 and diabetic patients with CGM had 

better outcomes than those without CGM. 
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Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has impacted healthcare systems and 

economies around the globe. It is a severe public health burden. COVID-19 has affected more 

than 450 million people, and more than 60 million individuals have died worldwide as of March 

2022 [1]. Diabetes mellitus (DM) is another primary medical concern on a global scale, and its 

severity has increased over the past 20 years. Diabetes afflicted 30 million people in 1985 and 

463 million people in 2019. By 2045, 700 million individuals worldwide are expected to have 

diabetes [2]. In 2017, it was thought that the estimated annual economic burden of diabetes in 

the United States was $327 billion, an upswing of 60% from 2007 [3]. 

Type 1(T1D) or type 2 diabetes (T2D) is a significant risk factor for COVID-19 [4]. Diabetes has 

been estimated as the second most prevalent comorbidity in patients with serious COVID-19 

caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [5]. The 

pathophysiological mechanism is linked to short-term hyperglycemia caused by SARS-CoV-2, 

which suppresses the immune system, boosts coagulation activity, and directly damages the 

pancreatic islet cells responsible for insulin production [6]. Most existing research suggests that 

people with comorbidities, particularly diabetes, have a 2.3 times higher risk of severe COVID-

19 infection and are at a 2.5 times higher risk of mortality [4], [6]. This is especially true when 

there is poor glycemic control. Patients with severe COVID-19 are also more likely to need 

mechanical ventilation and be sent to intensive care units (ICU) [4], [8]. 

In prior viral pandemics, an increase in morbidity and mortality rates in patients with T2D has 

also been observed. During the 2002–2003 SARS-CoV-1 outbreak, T2D was an independent risk 

factor for acute complications and death. During the Middle East respiratory syndrome 
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coronavirus (MERS-CoV) epidemic in 2012, people with T2D had a 35% higher chance of dying 

and a significantly higher odds ratio (7.2–15.7) for acute infection [7]. 

Personalized glycemic control is vital to effectively managing one’s diabetes. This 

recommendation is especially crucial since it has been demonstrated to be highly connected to 

the mortality risk associated with COVID-19 [9]. Continuous glucose monitoring (CGM) systems 

have become a valuable tool for monitoring glucose levels and trends around the clock. The 

technology of CGM has been available to aid with diabetic self-management for nearly two 

decades [10]. The patient wears an adhesive sensor on their arm or stomach with a glucose-

sensing electrode placed subcutaneously under the skin to measure the amount of glucose in 

the interstitial fluid (ISF). CGM sensors can be worn for up to 14 days [11]. 

The CGM devices have many appealing features. The sensors come with factory calibration and 

accuracy close to most blood glucose monitors [12]. The CGM alarms warn the patient of high, 

low, or rapid fluctuations in blood glucose levels, allowing for early intervention, thus improving 

glycemic control and preventing complications. CGM shows the user’s current glucose and 

trends in glucose levels. Fingerstick self-monitoring of blood glucose (SMBG) gives you 2-4 data 

points. CGMs give you 288 data points in 24 hours, which is a much more thorough and 

complete glucose profile [11]. 

Real-time (rtCGM) and intermittently scanned CGM (isCGM), often known as flash glucose 

monitoring (FGM), are two different types of CGM devices that measure glucose in the 

interstitial fluid. IsCGM systems (which capture glucose every 15 minutes) only transfer data 

when the user scans their sensor with a dedicated reader or smartphone app. RtCGM systems 

capture glucose every five minutes and actively transmit data wirelessly from the sensor to a 
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dedicated reader, smartphone app, or integrated insulin pump. The captured data is then 

communicated to the “cloud.” These cloud-based platforms that make it easy to share diabetic 

data have made it possible for clinicians to remotely check their patients’ glucose levels and 

make treatment suggestions, especially during the COVID-19 pandemic shutdown [11], [13], 

[14]. 

Since the onset of COVID-19, various studies have been conducted to add value to diabetic 

care. Still, it is essential to note that most research examining the relationship between 

diabetes and COVID-19 used traditional point-of-care testing (POCTs) of blood glucose for 

glucose monitoring [15]. Of the current studies using the CGM device, some authors have 

evaluated the relationship between measurements of glycemic control, such as time-in-range 

(TIR), time-above-range (TAR), and time-below-range (TBR) and COVID-19 [16]. In contrast, 

others have investigated the threshold of glycemic control and its relationship to the outcomes 

of COVID-19 [9]. A few studies demonstrated the ongoing challenges faced by people with 

diabetes during the COVID-19 lockdown (LD) and the availability of services to manage 

diabetes, from education to technology [10], [17]. Finally, various researchers have explored 

the safety and accuracy of CGM technology use in a hospital during the pandemic. These 

studies also looked into reducing the number of POCTs, the risk of exposure to staff, and the 

use of personal protective equipment (PPE) in a hospital setting [18]–[20]. 

Although the subject of CGM and COVID-19 infection in diabetics has been receiving attention 

during the pandemic, opportunities exist for further research and clinical data to be extracted 

and evaluated to supplement the current evidence. This study sought to demonstrate that 

COVID-19 and diabetic patients with CGM are associated with better outcomes than those 



 

4 

 

without CGM using the analytical platform ATLAS. ATLAS (version 2.7) is an open-source, web-

based software platform that generates reliable evidence from patient-level observational data 

[21]. ATLAS executed analyses on the data sourced from DataPATH, a de-identified database at 

the University of California, Davis Health System (UCDHS). The ATLAS data was used to test the 

hypothesis and provide additional information about the patients with and without CGM. The 

findings of this study may add value to the available research and emphasize the significance of 

CGM use in people with diabetes in the presence of COVID-19. Ultimately, this study offers an 

opportunity to use advanced informatics tools such as ATLAS to conduct research and generate 

knowledge.  

Methods 

Study design and Participants 

The present study was conceived as a retrospective observational design. Two groups were 

defined in ATLAS for comparison from the DataPATH database: patients with COVID-19 disease 

and diabetes with CGM (Group 1 or G1) and patients with COVID-19 disease and diabetes 

without CGM (Group 2 or G2). The database’s observation period must have occurred from 

2020-01-01 to the present. Individuals must also be at least 18 years old. Each group was 

evaluated and described using the following variables: emergency room (ER) visits, inpatient 

visits, mechanical ventilation (MV), deaths, and glycated hemoglobin (A1c). Additional 

descriptive statistics were obtained using the following features: The demographic 

characteristics included ethnicity, gender, and age. The Diabetes Comorbidity Severity Index 

(DCSI) is a scale that ranks the severity of diabetic complications [22]. The Charlson Comorbidity 

Index (CCI) assists in predicting the risk of mortality due to comorbid diseases [23]. Finally, 
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Condition Group Era Long Term is defined as “one covariate per condition era rolled up to 

groups in the condition_era table overlapping with any part of the long-term window.” [21] 

Data Sources and Analytical Platforms 

The Observational Health Data Sciences and Informatics (OHDSI) is a multi-stakeholder, multi-

disciplinary collaboration aimed at maximizing the value of health data through large-scale 

analytics and data standardization. The global OHDSI community creates and disseminates a 

standard data model known as the Observational Medical Outcomes Partnership (OMOP) 

Common Data Model (CDM) CDM v5.4 [24]. The OHDSI community has made the analytical 

platform ATLAS [21] so that studies can be done across observational databases that have been 

standardized to the OMOP CDM. 

 

 

Figure 1 illustrates how data is converted at UCDHS from EHR databases into OMOP CDM and 

then consumed by OHDSI’s ATLAS for analyses. Patient data from Epic, an EHR, is stored in 

hierarchical databases called Chronicles. The data is then extracted into a relational database 

called Clarity. Clinical data from Clarity is further transformed into specific domains (e.g., 

procedure, visit, measurement) and standard vocabularies (e.g., CPT, SNOMED, LOINC) in the 

UCDHS Identified OMOP database. Lastly, the standardized data is extracted as de-identified 

data, stored in UCDHS DataPATH, and connected to the ATLAS instance [25]. Permission was 

obtained to access the ATLAS platform at UCDHS for analysis. 

http://ohdsi.github.io/CommonDataModel/index.html
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Figure 1: Data conversion from Epic to OMOP CDM for ATAS 

 

ATLAS includes numerous critical features that aid in the search for concepts, creating concept 

sets, and using these concept sets to form cohorts. Moreover, using the person-level data from 

these cohorts, the cohort(s) of interest may be characterized to produce descriptive summary 

statistics. A cohort must be defined to perform analyses within ATLAS. The Book of OHDSI 

defines a cohort as a group of people who meet one or more inclusion criteria for a given 

period [21]. The following parts of the paper will discuss how cohorts were generated for this 

study. 

ATLAS’ Search Tool 

The search function in ATLAS enables users to explore OMOP standardized vocabulary and find 

the set of concepts to build cohorts. Athena is another tool within OHDSI that affords users the 

same ability to search for concepts (21). The set of concepts and codes that define a cohort 

were found using both tools for this study. 

ATLAS’ Concept Set Tool 

Concept sets are another prominent feature of the ATLAS instance. A concept set is an 

expression that represents a list of concepts that can be reused in various cohort definitions. A 

concept set comprises of multiple words from the standardized vocabulary and logical 

indicators that let the user choose whether to include or exclude similar words from the 
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vocabulary hierarchy. Each concept set has a unique concept ID and a code accompanying that 

specific concept name. In addition, every concept set belongs to a domain in the CDM table 

mapped to a medical vocabulary [21]. All the generated concept sets for this study were saved 

in ATLAS to be used later to build cohort definitions ( 

Table 1). 

Table 1: Concept sets created in ATLAS 

 

ATLAS’ Cohort Definition Tool 

ID Concept Set 

Name 

Concept 

Set 

Expression 

Included 

Concepts 

Domain Vocabulary Standard Descendants 

77 Diabetes 

Mellitus 

(DM) 

1 127 Condition SNOMED Yes Yes 

102 CGM 5 7 Measurement 

Procedure 

SNOMED 

CPT4 

Yes Yes 

109 COVID-19 12 45 Measurement LOINC Yes Yes 

113 ER Visit 1 3 Visit Visit Yes Yes 

79 Inpatient 

Visit 

1 29 Visit Visit Yes Yes 

105 Mechanical 

Ventilation 

11 12 Observation 

Measurement 

Procedure 

SNOMED 

LOINC 

ICD9Proc 

Yes Yes 

112 A1c 2 2 Measurement LOINC Yes Yes 
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The cohort definition function in ATLAS uses the previously created concept sets while applying 

a rule-based approach to build cohorts and identify the groups of patients for the present 

study. The results from cohort definitions allows researchers to draw conclusions based on HER 

data. A cohort definition specifies when a person qualifies (or does not qualify) for a cohort 

throughout the clinical observation period. OHDSI employs three building blocks for a cohort 

definition: cohort entry event, inclusion criteria, and cohort exit. A cohort entry event occurs at 

a specific time to qualify an individual for cohort entry. Inclusion criteria search for observations 

that qualify or disqualify someone from continuing in the cohort by using the cohort entry 

event as an anchor in time to construct temporal logic. Cohort exit is the point in time when an 

individual no longer qualifies for a cohort and exits [21]. 

Table 2 and Table 3 illustrate the cohort definitions and the three building blocks for G1 and G2, 

respectively. The COVID-19 concept set was imported and used as the initial event establishing 

entry for both groups. In addition, the measurement concept values (positive, detected, and 

reactive) that describe a COVID-19 test were added to limit the entry to only patients with 

positive COVID-19 test results. The cohort entry date must have occurred on or after 2020-01-

01. The patients also must be age 18 or older. Lastly, these patients must have a diagnosis of 

diabetes. Since there were limited observations before the cohort entry date, which would 

have reduced the number of patients, this data was not included. Inclusion criteria were 

applied to further constrain the patients from entering the cohort based on initial entry. 

Previously created concept sets were imported into the inclusion criteria specific to each cohort 

definition, as depicted in the tables. The patients exited the cohort when the continuous 

observation concluded. 
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Table 2: Cohort Definitions constructed for G1 

Cohort Definitions Cohort Entry Event Inclusion Criteria Cohort Exit 

COVID-19 and Diabetes with 

CGM (initial) 

→ COVID-19 Test 

→ Values as: Positive, 

Detected, and 

Reactive 

→ On/after 2020-01-01 

→ Age  18 

→ Diabetes 

→ Continuous 

observation of at 

least 0 days before 

and 0 days after 

→ All events per 

person 

 

 CGM The event 

will persist 

until the end 

of 

continuous 

observation. 

COVID-19 and Diabetes with 

CGM: ER Visits 

 CGM 

 ER Visits 

COVID-19 and Diabetes with 

CGM: Inpatient Visits 

 CGM 

 Inpatient Visits 

COVID-19 and Diabetes with 

CGM: MV 

 CGM 

 Mechanical Ventilation 

COVID-19 and Diabetes with 

CGM: Deaths 

 CGM 

 Deaths 

COVID-19 and Diabetes with 

CGM: A1c  9% 

 CGM 

 A1c value 

COVID-19 and Diabetes with 

CGM: A1c  8% after 6-12 

months later 

 CGM 

 A1c value  8% after 6-

12 months 
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Table 3: Cohort Definitions constructed for G2 

Cohort Definitions Cohort Entry Event Inclusion Criteria Cohort Exit 

COVID-19 and Diabetes 

without CGM (initial) 

→ COVID-19 Test 

→ Values as: Positive, 

Detected, and 

Reactive 

→ On/after 2020-01-

01 

→ Age  18 

→ Diabetes 

→ Continuous 

observation of at 

least 0 days before 

and 0 days after 

→ All events per 

person 

 

 CGM The event will 

persist until 

the end of 

continuous 

observation. 

COVID-19 and Diabetes 

without CGM: ER Visits 

 CGM 

 ER Visits 

COVID-19 and Diabetes 

without CGM: Inpatient Visits 

 CGM 

 Inpatient Visits 

COVID-19 and Diabetes 

without CGM: MV 

 CGM 

 Mechanical Ventilation 

COVID-19 and Diabetes 

without CGM: Deaths 

 CGM 

 Deaths 

COVID-19 and Diabetes with 

CGM: A1c  9% 

 CGM 

 A1c value  9% 

COVID-19 and Diabetes with 

CGM: A1c  8% after 6-12 

months later 

 CGM 

 A1c value  8% after 6-

12 months 

 

 

ATLAS’ Cohort Characterization Tool 

Lastly, the characterization tool in ATLAS describes the pre- and post-index traits of the patients 

in the cohort. OHDSI characterizes clinical observations in an individual’s history using 

descriptive statistics, essentially providing an enhanced summary of the group(s) of interest 
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being studied [21]. The cohort definitions of the two interest groups were imported into the 

characterization tool for analyses with the following features: DCSI, Charlson Index, Condition 

Group Era Long Term, ethnicity, gender, and age Figure 2 

 

Figure 2: Cohort characterization tool displaying the cohorts of interest  

 
Results 

Each cohort definition was executed for G1 and G2; the output is summarized in the table 

below. ATLAS found 74,517 patients with a COVID-19 test, 33,628 patients with diabetes, and 

350 patients with CGM in the DataPATH database. It is also important to note that only one 

percent of the total diabetic population in DataPATH had a prescription for a CGM. Among the 

COVID-tested patients, 8,576 (11.51%) patients were confirmed to have a positive COVID-19 

result. Of the COVID-19-positive patients, 1,514 (17.65%) of them had a diagnosis of diabetes. 

Finally, 24 (1.59%) of the COVID-19-positive and DM patients had a CGM, and 1,490 (98.41%) 

did not have a CGM. The characterization tool also contributed person-level summary statistics 

of the selected covariates described later in this section. 

Execution of Cohort Definitions 
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The ATLAS-generated results of each cohort definition for G1 are listed in Table 4.  Only 24 

(1.59%) patients with COVID-19 infection and diabetes had a CGM device. The data showed 

that roughly one percent (n=6) of the group had an ER visit, and only two had an inpatient 

record. ATLAS did not find any patients on the ventilator that met the specific cohort definition 

for that variable. Two deaths were found among this group. Approximately one percent (n=16) 

of the 1,514-person population met the cohort definition for an A1c   of 9%. 5 (31.25%) 

patients showed an improved A1c of  8% after six to twelve months. 

Table 4 also summarizes the output for G2. ATLAS identified 1,490 (98.41%) patients with 

COVID-19 infection and diabetes without a CGM device. The findings showed that 308 (20.34%) 

had ER visits, and 467 (55.75%) had inpatient visits. The data also showed 7 (0.46%) of the 

patients were on the ventilator. ATLAS reported 107 (7.07%) deaths in the G2 population. 

Approximately 494 (32.63%) of the 1,514-person population met the cohort definition for an 

A1c   of 9%. 101 (20.45%) patients showed an improved A1c of  8% after six to twelve 

months. 

Table 4: The output of each cohort definition for GI and G2  
Count (N and %) is out of 1,514 

Cohort Definitions G1 G2 

N (%) N (%) 

COVID-19 and DM with CGM 24 (1.59) 1,490 (98.41) 

COVID-19 and DM without CGM  

COVID-19 and DM with CGM- ER Visits 6 (0.99) 308 (20.34) 
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COVID-19 and DM without CGM- ER Visits  

COVID-19 and DM with CGM- Inpatient Visits 2 (0.13) 467 (55.75) 

COVID-19 and DM without CGM- Inpatient Visits  

COVID-19 and DM with CGM- MV 0 7 (0.47) 

COVID-19 and DM without CGM- MV  

COVID-19 and DM with CGM- Deaths 2 (0.13) 107 (7.07) 

COVID-19 and DM without CGM- Deaths  

COVID-19 and DM with CGM- A1c  9 % 16 (1.06) 494 (32.63) 

COVID-19 and DM without CGM- A1c  9%  

COVID-19 and DM with CGM- A1c < 8% after 6-12 months (N is out of 

16) 

5 (31.25) 101 (20.45) 

COVID-19 and DM without CGM- A1c  8% after 6-12 months (N is out 

of 494) 

 

 

 

Execution of Cohort Characterization 

Table 5 summarizes the descriptive statistics produced by the characterization tool. G1 had 19 

(79.17%) individuals non-Hispanic or Latino and 5 (20.83%) Hispanic or Latino. Moreover, 11 

(46.00%) were females, and 13 (54.00%) were males in this group. The mean age of the group 

was 50.08 (range 18-78). The mean CCI was 5.33, and the mean DSCI was 5.79. In G2, the 

characterization tool revealed that 1,106 (74.23%) of patients were non-Hispanic or Latino, 

while 329 (22.08%) were Hispanic or Latino. In addition, the tool characterized 758 (51.00%) 
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females and 732 (49.00%) males with a mean age of 60.45 (range 18-90). The CCI mean was 

5.00, and the DSCI mean was 3.66. 

Table 5: Summary statistics of selected covariates: demographics, CCI, and DSCI 

Covariate COVID-19 and Diabetes with CGM (G1) COVID-19 and Diabetes without CGM (G2) 

Not Hispanic or 

Latino 

19 (79.17%) 1,106 (74.23%) 

Hispanic or Latino 5 (20.83%) 329 (22.08%) 

Female 11 (46.00%) 758 (51.00%) 

Male 13 (54.00%) 732 (49.00%) 

Mean Age 50.08 (range: 18-78) 60.45 (range: 18-90) 

CCI Mean 5.33 (min: 1.00, max: 18:00) 5.00 (min:0, max:21.00) 

DSCI Mean 5.79 (min: 0, max: 10.00) 3.66 (min:0, max:13.00) 

 

Table 6 displays the baseline prevalence of the selected conditions using the characterization 

tool. The findings indicated that the baseline prevalence of diabetes was higher in G1 

(95.83%) than in G2 (77.99%) before the cohort entry date. The baseline prevalence of 

hypertensive disorders was the highest after conditions related to diabetes and pain. The 

difference (G1- 54.17% and G2- 55.97%) in prevalence between both groups was 

insignificant. A higher prevalence of diabetes-related complications such as CKD (25.00% vs. 

21.28%), neuropathy (29.17% vs. 10.67%), retinopathy (33.33% vs. 7.38%), and PVD (8.33% 
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vs. 4.63%), was observed in G1. Conditions such as Cerebrovascular disease (8.33% vs. 4.70%) 

also prevailed in this group prior to the cohort entry. The occurrence of heart disease 

(36.64% vs. 25.00%) was higher in the G2 population, while the occurrence of CHF in both 

groups was 12%. Malignant neoplastic diseases (15.10% vs. 8.33%) and obesity (23.76% vs. 

12.50%) prevailed in G2. While COPD (7.32% vs. 4.17%) was predominating in G2, PHTN 

(12.50% vs. 2.62%) was more dominant in G1. 

Table 6: Prevalence of selected covariate: Conditions 

Covariate COVID-19 and Diabetes with CGM 

(G1) 

COVID-19 and Diabetes without 

CGM (G2) 

DM 23 (95.83%) 1,162 (77.99%) 

T1D 12 (50.00%) 55 (3.69%) 

T2D 16 (66.67%) 1,106 (74.23%) 

Hypertensive disorder 54.17% 55.97% 

Chronic kidney disease (CKD) 25.00% 21.28% 

Neuropathy due to DM 29.17% 10.67% 

Retinopathy due to DM 33.33% 7.38% 

Obesity 12.50% 23.76% 

Congestive heart failure (CHF)  

Heart disease 

12.50% 

25.00% 

12.62% 

36.64% 

Malignant neoplastic disease 8.33% 15.10% 
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Cerebrovascular disease 8.33% 4.70% 

Chronic obstructive pulmonary 

disease (COPD) 

Pulmonary hypertension (PHTN) 

4.17% 

 

12.50% 

7.32%, 

 

2.62% 

Peripheral Vascular Disease (PVD) 

due to DM 

8.33% 4.63% 

Immunodeficiency disorders 0 3.29% 

 

 

Discussion 

In this observational study, the ATLAS results supported that COVID-19 and diabetic patients 

with CGM (G1) had better outcomes than those without CGM (G2). Patients with COVID-19 and 

diabetes using a CGM (G1) were linked to having fewer hospital stays, trips to the ER, 

mechanical ventilation, and deaths despite having a significantly high baseline prevalence of 

neuropathy, CKD, retinopathy, CVD, PHTN, and PVD. In addition, the findings showed a lower 

occurrence of an A1c of  9% in the G1 group (16 (1%) vs. 494 (33%)). A more significant 

improvement in A1c of < 8% after six to twelve months was seen in this CGM population (5 

(31%) vs. 101 (20%)). ATLAS’ characterization tool also summarized that in the G2 population, 

only 1,162 (78%) of the patients had a baseline prevalence of DM prior to cohort entry.  

During the pandemic, more attention was paid to CGM systems to manage diabetes remotely 

and lower the risk of COVID-19 transmission [1]. The ability of CGM sensors to provide access to 

detailed glucose data makes it easier for healthcare professionals (HCPs) to use real-time data 
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to make informed decisions about patient care. The detailed information lets HCPs figure out 

how well the treatments work, change the dosages of medications, and have enlightening 

conversations about how diet, exercise, stress, and illness affect glycemic control. Patients can 

also use glucose data to learn how their actions affect their blood sugar levels and change their 

behavior to improve glycemic control [11], [17]. 

Patients with COVID-19 and diabetes using a CGM (G1) were associated with fewer hospital 

stays, trips to the ER, mechanical ventilation, and deaths despite having a significantly high 

baseline prevalence of several diabetic-related complications. One possible explanation is that 

because G1 patients had these complications, a CGM was prescribed to prevent life-threatening 

illnesses.  Miller noted in a study that candidates for CGM are individuals with comorbidities, 

poorly managed diabetes, and are at risk for hospitalization for complications related to 

uncontrolled glucose [26]. However, due to the CGM’s ability to measure TIR, TBR, and TAR, the 

device indirectly benefited the G1 population during the COVID-19 pandemic.  

Researchers have found that people with COVID-19 and diabetes who have dysglycemia, when 

their blood sugar levels are low, high, or fluctuating, are more likely to have complications and 

adverse outcomes [18]. This study suggests that having access to detailed glucose data from the 

CGM may have made it possible to treat dysglycemia early, thus reducing the risk of adverse 

outcomes in the G1 population. The technology of CGM is the best way to measure exposure to 

high, low, and fluctuations in blood sugar levels. In a cross-sectional study, researchers found 

that people with more fluctuations in their blood sugar levels had a higher risk of composite 

(ICU admission, need for mechanical ventilation, or morbidity with critical illness) adverse 

COVID-19 outcomes and more extended hospital stays. Furthermore, patients who had the 
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composite adverse outcomes had significantly higher TBR (4.43 ± 11.4% vs. 0.54 ± 0.65%) [P < 

0.01] than patients without the composite adverse outcomes. Another retrospective analysis 

reported that ICU patients with more significant fluctuations in their blood sugar levels were 

more likely to die [18]. Lastly, Longo et al. [27] found that people with diabetes who used a 

CGM had stable or even better glucose control during the pandemic, even though their 

lifestyles had changed and they had limited mobility. 

The findings showed fewer patients in the G1 group with an A1c of 9% or more than in the G2 

group. Moreover, more patients had an A1c reduction of less than 8% in the G1 group than in 

the G2 group after 6-12 months. A1c has been used a lot as a measure of glycemic management 

because it is very good at predicting complications from diabetes. Fingerstick SMBG only 

measures the blood glucose level at the testing time. Also, SMBG needs to give a complete 

picture of how glucose levels change or how they are managed [26]. We only found evidence of 

improved A1c in patients with diabetes and CGM before the COVID-19 pandemic. One such 

example was seen in a study by Wright et al. [28] that included 1,034 participants with T2D 

receiving non-insulin treatments and basal insulin therapy with a prescription for flash CGM. 

The proportion of patients with an A1c of 12.0% at baseline dropped by more than half (a 

reduction of 3.7%). There was also a significant rise in the number of people who achieved A1c 

levels of less than 8 or 7%. In another study, Gilbert et al. [29] found similar results with 248 

diabetic patients with CGM whose A1c went from 8.2% at baseline to 7.1%, which is a 

significant change. This study of diabetes with CGM in people with SARS-CoV-2 showed similar 

results for A1c levels, which is in line with what other studies have found prior to the pandemic.  
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The characterization summary from ATLAS also showed that in the G2 population, 1,162 (78%) 

of the patients had a prevalence of diabetes. The question is, what happened to 328 (22%) of 

the individuals? One reason could be that some cohort participants were not observed in the 

database before entering the cohort. Another reason could be that some may have acquired 

diabetes after contracting COVID-19 infections. The most recent cohort study found that 

veterans with COVID-19 were around 40% more likely than veterans in the control groups to 

develop diabetes up to a year later. Also, almost three times as many people got diabetes if the 

COVID-19 infection was severe enough to require hospitalization or the ICU [30]. A new study 

says that SARS-CoV-2 may also directly hurt the pancreas, worsening hyperglycemia and 

causing people who did not have diabetes before to get it [2]. 

There were several limitations to this study. A major limitation was the observational design. It 

is also important to note the unevenness of the sample sizes of the groups and the small 

sample size for the CGM group. Another limitation of this study was the use of a single 

database from one hospital. Another point to be noted is that much like clinical databases at 

other hospitals, UCDHS does not successfully capture deaths outside of the hospital after 

discharge to home or residential homes. 

Because of the limited accessibility, we did not use programming languages in the data-

gathering process. In the future, ATLAS and using a programming language in combination 

would significantly benefit the study. While ATLAS provides the original programming, it can be 

customized and run-on database servers to extract additional information on the individuals 

within the cohort of interest. For example, we could further investigate using programming 

language to determine if 22% of the people were diagnosed with DM after getting COVID-19 or 
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if some were out of the database before the entry date. Lastly, another limitation is that we did 

not have the glucose metrics from the CGM. This information would serve as a major strength. 

Conclusion  

Diabetes and COVID-19 are two diseases that have global implications. Personalized glycemic 

control is essential for diabetes management. CGM's ability to measure TIR, TAR, and TBR is 

critical for preventing short-term and long-term complications of diabetes. Despite several 

study limitations, ATLAS results support that COVID-19 and diabetic patients with CGM had 

better outcomes than those without CGM. Though a high prevalence of diabetes-associated 

complications (kidney damage, heart and blood vessel disease, blindness, nerve damage, and 

abnormalities of the lower limbs) in G1 were seen, COVID-19-related outcomes such as 

inpatient visits, ER visits, MV, and deaths were seen less. Reductions in the A1c values were 

noted in this population as well. The results of this study emphasize the significance of CGM use 

in people with diabetes in the presence of COVID-19. The preliminary findings obtained from 

OHDSI's ATLAS create an opportunity to explore the research question further using a larger 

sample size, multiple hospitals for the data source, and data gathering using advanced 

informatics tools combined with a programming language. 
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