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ABSTRACT OF THE DISSERTATION

Flexure Design for Eight-Bar Rectilinear Motion Mechanism

By

Yang Liu

Master of Science in Mechanical and Aerospace Engineering

University of California, Irvine, 2015

Professor J. Michael McCarthy, Chair

This thesis replaces the hinged pivots of an eight-bar linkage with flexure joints in order

to achieve a flexure-connected linkage system that guides rectilinear movement of its end-

e↵ector. The goal is a linkage design that can be reduced in size to provide a suspension

for the proof masses of a MEMS gyroscope. The symmetric design of the linkage and its

long travel relative to other MEMS suspensions has the potential to provide a number of

advantages, such as the reduction of quadrature error. The design presented yields 0.1%

deviation over its range of movement. An example also presents the driving linkage of the

MEMS gyroscope, which is also designed as flexure connected linkage.

x



Chapter 1

Introduction

1.1 Rectilinear Eight-bar Compliant Mechanism

This thesis presents an eight-bar linkage in which the hinged pivots have been replaced by

flexures in order to guide the rectilinear movement of a MEMS gyroscope. The flexure-

connected eight-bar linkage provides a long-travel rectilinear suspension for the proof masses

in the MEMS gyroscope, which reduces quadrature error.

Existing rectilinear motion linkages have 10 bars, see Kempe (1877)[6]. Our goal is an eight-

bar linkage that guides rectilinear movement with low error and with no link overlap so the

hinged joints can be replaced with flexures. A flexure allows movement through bending of

its elements. An example of application of flexure pivots can be seen from a 2-DOF flexure

parallel mechanism [10].

The resulting flexure-connected eight-bar linkage has dimensions of approximately 200mm⇥

150mm and provides 33mm rectilinear movement with a maximum deviation of 0.1%.
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1.2 Literature Review

Suspensions for MEMS gyroscope are usually formed from springs, such as the Crab-leg

spring, U-spring, Serpentine spring and Folded-flexure spring (2006)[11]. These suspensions

are asymmetric, which introduces in quadrature error. Shi et al. (2006)[11] provide design

principles to reduce quadrature error.

Our research provides another approach by designing a symmetric eight-bar and introducing

flexures as the pivots, in order to obtain a compliant mechanism that provides a rectilin-

ear movement. The symmetric structure of this suspension results in high-rate sensitivity

and low temperature dependent drift [1]. In addition, it provides a long travel rectilinear

movement of the proof mass.

The synthesis of an eight-bar linkage to reach five task positions has been presented by Soh

and McCarthy (2007)[12] and Sonawale and McCarthy (2014)[13]. This method starts from

two 3R chain robots and by adding two RR constraints to get one degree-of-freedom eight-

bar linkage. In this research, we follow this procedure and obtain a number of eight-bar

linkages from which we chose the designs with non-overlapping links. This provides a simple

way to introduce flexures into the linkage.

Eight-bar linkages that have pivots replaced by flexures are examples of compliant mech-

anisms. Compliant mechanisms have proven to have a wide range of applications both in

MEMS devices and larger scale systems, [2] [7]. Howell [4, 5] presents the design rules for

the introduction of flexures in traditional pivoted linkage systems. The analysis of beam

flexure performance had been presented by Awtar and Slocum (2007)[3]. In this paper, we

replace the hinges in our eight-bar linkage design with long-thin beam flexures, analyze the

resulting system, and adjust the flexure dimensions to ensure performance.
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Chapter 2

Straight-Line Mechanism

An important part of traditional mechanism design is to generate straight-line motion. Mc-

Carthy [9] and Kempe [6] have talked about some existing straight-line mechanisms. These

straight-line motion mechanisms are summarized in the following sections.

2.1 Watt’s Linkage

Figure 2.1: SOLIDWORKS MODEL OF WATT’S LINKAGE.

3



Figure 2.2: WATT’S LINKAGE USED AS THE AUTOMOBILE’S REAR WHEEL SUS-
PENSION 1.

Figure 2.3: WATT’S LINKAGE USED AS THE AUTOMOBILE’S REAR WHEEL SUS-
PENSION 2.

The best known straight-line linkage is the watt parallel linkage. James Watt developed this

approximate straight-line linkage in 1784 to guide the piston of the early engines. It is also

used on the automobile suspensions to allow the axle moving in vertical direction while at

the same time preventing the sideway movement. The SolidWorks model of Watt’s linkage

can be seen in Fig2.1 and an application of Watt linkage as a suspension on the rear axle of

4



a car can be seen in Fig.2.2 and Fig.2.3.

a

a

h

AO

B C

h/2

P

Figure 2.4: THE DIMENSIONS OF WATT’S LINKAGE.

Watt linkage is consisting of four links if the ground link is counted. So it is basically a

four-bar linkage. The tracing point P is on the coupler link. It has a distance x measured

from point A. Let us label the link length as |OA| = a, |BC| = b, |AB| = h and |OC| = g.

The tracing point P follow an approximate straight line along a part of its path if the link

length OA and BC satisfy the relationship that x/(h � x) = a/b and the ground link has

length g2 = h2 + (a+ b)2. The drawing of Watt’s linkage can be seen in Fig.2.4.
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Figure 2.5: SOLIDWORKS MODEL OF ROBERT’S LINKAGE.

2.2 Robert’s Linkage

The straight line described by Watt’s linkage is su�ciently accurate but it is still not a

perfect straight line. The Robert’s linkage is a closer approximation of straight line than

Watt’s linkage. The SolidWorks model of Robert’s linkage can be seen in Fig.2.5

The link lengths of Robert’s linkage satisfy the relationship that a = b and g = 2h. The

tracing point P is at the position making a isosceles triangle structure and with the length

|AP | = |AO| = a and |BP | = |BC| = b. The result is the tracing point P can move in a

nearly straight line. The configuration of Robert’s linkage can be seen in Fig.2.6.

6
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O

A B

C

hh

a a

Figure 2.6: THE DIMENSIONS OF ROBERT’S LINKAGE.

2.3 Chebyshev’s Linkage

Another straight-line mechanism was invented by the 19th mathematician Pafnuty Cheby-

shev. It is called the Chebyshev’s linkage which can convert the rotational motion to ap-

proximate straight line motion. The SolidWorks model of Chebyshev’s linkage is in Fig.2.7.

The Chebyshev’s linkage has a specific dimension to make the tracing point P move in a

straight line. The ground link |OC| = 2h, the coupler link length is |AB| = h and the input

link and output link have the same length |OA| = |BC| = 2.5h. The tracing point P is set

at the middle of the coupler link. The configuration of the CHebyshev’s linkage can be seen

in Fig.2.8.

7



Figure 2.7: SOLIDWORKS MODEL OF CHYBYSHEV’S LINKAGE.
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2h
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2.5h

O

B A

C

P

Figure 2.8: THE DIMENSIONS OF CHEBYSHEVE’S LINKAGE.
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2.4 Peaucellier–Lipkin Linkage

Figure 2.9: SOLIDWORKS MODEL OF PEAUCELLIER’S LINKAGE.

The four-bar linkage can not achieve a perfect straight-line motion. If we want to describe a

definite motion curve, we have to use more links. M. Peaucellier firstly invented a mechanism

that can achieve strict straight line in 1864 which is eighty years after Watt’s linkage. The

SolidWorks model of Peaucellier–Lipkin linkage can be seen in Fig.2.9. It is actually an

eight-bar linkage if the ground link is counted.

The dimensions of Peaucellier–Lipkin linkage can be seen in Fig.2.10. The link dimensions of

the Peaucellier–Lipkin linkage have the relationship that |OA| = |OD| = a, |AB| = |BD| =

|DC| = |CA| = b and |OQ| = |QC| = c. The two long links OA and OD are pivoted at a

same fixed point O. The four short links AB, BD, DC and CA formulate a rhombus. The

other end of the long link is pivoted to a di↵erent vertex of the rhombus as you can see from

the figure. These six links formulate a “Peaucellier cell”. Then we need an additional link

to make the whole mechanism fixed. One end of the additional link is fixed on ground and

10
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bc

c

Figure 2.10: THE DIMENSIONS OF PEAUCELLIER’S LINKAGE.

P'

M'
O Q

C

R

P

M

Figure 2.11: THE GEOMETRY OF PEAUCELLIER’S LINKAGE.
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the other end is attached to the third vertex of the rhombus. The first ground point and

the second ground point are placed on a horizontal line. And the distance of the two ground

pivots is equal to the length of the extra link. Then the other free vertex of the rhombus

will go through an accurate straight line.

Now let us look at the geometry of the Peaucellier–Lipkin linkage so we can understand the

principle of this mechanism. In Fig.2.11, we denote the ground pivot as O and Q which are

the same as in Fig.2.10. Here QC is the extra link. Because the ground pivot distance is

equal to the extra link’s length, so we can draw a circle go through O and C with the center

at Q. Points M , M 0, O and Q are in a same horizontal line. And P , P 0, O, and C are

in a same straight line. We have another relation that P 0M 0 and PM are both orthogonal

to the horizontal line M 0OQM . The triangle OCR is located in a circle so that OCR is a

rectangle. From the above, we know the triangle OCR is similar to the triangle OMP . And

we have the relation between the sides of the two similar triangle which is as following:

OC : OM = OR : OP (2.1)

Therefore,

OC ·OP = OM ·OR (2.2)

As long as C moves on a circle, OCR will be a rectangle. In addition, the triangle OCR and

OMP are sharing a same angle COR or MOP , so the two rectangle triangles will always be

similar. Since OR and OM are constants, their multiplication will be a constant. From 2.2,

we know OC · OP will be a constant. So when C is moving along the circle, P will always

move on a perfect straight line PM which is perpendicular to OQ.

We can also find that if we take the point P to the other side of O. We denote it as P 0. In

12



this case, the triangle OCR and OMP are similar. We can get the same conclusion that:

OC : OM 0 = OR : OP 0 (2.3)

Similar, we get

OC ·OP 0 = OM 0 ·OR (2.4)

So we get the same conclusion that, for the other side, we have P 0 move along a vertical

straight line.

O

A

C P

B

n

Figure 2.12: THE STRUCTURE OF PEAUCELLIER CELL.

From geometric view, we have proved that if OC · OP is a constant and point O, C and P

are on a straight line then P can move in a vertical straight line which is perpendicular to

OQ. Also we need constraint C to let it move along a circle. So now our task is to find a

mechanism that can make sure O, C and P in a straight line and the relationship of these

three points always satisfies OC ·OP is a constant. Let us verify whether the Peaucellier cell

satisfy our requirements. We draw the structure of a Peaucellier cell in Fig2.12. We already

know ACBP is a rhombus and OA and OB are equal length. From the symmetry of the

Peaucellier cell, we can know the point O, C and P will always lie on a straight line. So the

13



first condition is satisfied. Now let us verify if the second condition is satisfied. We draw a

imaginary line An that is perpendicular to CP . We know from the property of the rhombus

that the length of Cn is equal to Pn. So we have

OA2 = On2 + An2 (2.5)

and

AP 2 = Pn2 + An2 (2.6)

Subtract equation (2.7) from equation (2.8), we get

OA2 � AP 2 = On2 � Pn2

= [On� Pn] · [On+ Pn]

= OC ·OP

Since OA and AP are both constants leading to OC · OP is always a constant. We have

proved that the second condition is satisfied. There are two elements to compose a Peaucellier

linkage: the Peaucellier cell and the extra link. If we make the point O, C in Fig.2.12 coincide

with the points in Fig.2.11 and an extra link constraint point C to move on a circle, the

point P will go through a perfect straight line.

2.5 Modified Peaucellier–Lipkin Linkage

Once we know the principle of designing a Peaucellier linkage, we can design another form

of Peaucellier linkage which can make the point P 0 move in a straight line on the other side

of fixed ground pivot in Fig.2.11. If we take the farthest and nearest two neighboring sides

14



of the rhombus in the Peaucellier link away respectively, we get two four-bar mechanisms.

The one named “kite” is showing in Fig.2.13, and the other named “spear head” is showing

in Fig.2.14.

Because the kite and spear head mechanisms are both part of the same Peaucellier linkage,

so the long links and short links in the kite and spear head mechanism are equal length.

If we place one on the top of the other and make the long links coincide, we get exactly

the Peaucellier cell showing in Fig.2.12. If we keep the angles between the long links and

the short links the same for both kite and spear head mechanism and make the short links

Figure 2.13: THE STRUCTURE OF KITE MECHANISM.

15



Figure 2.14: THE STRUCTURE OF SPEAR HEAD MECHANISM.

Figure 2.15: THE MODIFIED PEAUCELLIER LINKAGE.

coincide, we get the modified Peaucellier linkage. This is showing in Fig.2.15.

The symmetric structure of the modified Peaucellier linkage makes the three pivots in the

middle always lie in a straight line. So the first condition is satisfied. The second condition

still need to be proved. We already proved the multiplication of the height of kite and spear

16



P'

A

B

O Cn

Figure 2.16: THE STRUCTURE OF THE PEAUCELLIER LINKAGE.

head mechanism is a constant. We use the similar method showing in Fig.2.12 to prove the

second condition for the modified peaucellier mechanism. We also draw an imaginary line

An which is perpendicular to P 0C. The drawing is showing in Fig2.16. We find the similar

relationship between the link lengths as following:

OA2 = On2 + An2 (2.7)

and

AP 02 = P 0n2 + An2 (2.8)

Subtract equation (2.7) from equation (2.8), we get

OA2 � AP 02 = On2 � P 0n2

= [On� P 0n] · [On+ P 0n]

= OC ·OP 0

Because the length of link OA and AP 0 are constants, so we have the conclusion that OC ·OP 0

is a constant. The second condition has been proved. If we place the modified Peaucellier

linkage on the top of the linkage in Fig.2.11, making point O coincide, and using an extra

17



link to constraint the movement of point C on a circle, the point P 0 will move along the

perfect vertical straight line P 0M 0 in Fig.2.11. The modified Peaucellier linkage is in a very

compact form. This design was applied in the air engines which are employed to ventilate

the House of Parliament.

18



Chapter 3

Linkage Synthesis Theory

In this chapter, some basic kinematics and linkage synthesis theories will be introduced.

McCarthy has already presented these theories in [9] [8]. We summarize these theories in this

chapter. We will start with the definition of coordinates transformation and homogeneous

transformation. Since only planar linkages can be used in our MEMS suspension, here we

focus more on the planar linkages. The motion of RR chain and 3R chain will be analyzed

and the four-bar linkage synthesis theory will be introduced in this chapter.

3.1 Displacement

We will firstly focus on the coordinates transformation. If we want to know the relative

position of two rigid bodies in space, we need to attach two coordinate frames to them.

One of the frame is set as the ground frame F , the other will be set as the moving frame

M . We denote the coordinates transformation as D : F ! M , which transform coordinates

19



measured in M to the frame in F . The transformation is denoted as:

X = [A]x+ d (3.1)

where x is the coordinates measured in the moving frame M while X is the coordinates

measured in the fixed frame F . If the rigid body is moving in a n dimensional space, then

[A] is a n⇥n matrix and d is a n dimensional vector. Specially, in planar cases n = 2, which

makes [A] a 2⇥ 2 matrix and d a 2 dimensional vector.

For the rigid body, the distance of any two di↵erent points on it should keep the same no

matter in what reference frame. This is called the rigid body motion. Now let us derive the

distance formula both in the moving fame and the fixed frame for two di↵erent points on

the rigid body to get some insight for the matrix [A].

Let us denote the coordinates of the two points in the fixed frame as P and Q. The distance

for these two points is defined by the Euclidean distance formula which is as the following:

|P �Q| =
p

(P �Q)T (P �Q) (3.2)

Now let us denote the coordinates of the two points in the moving frame as p and q. From

equation(3.1), we get

|P �Q| = |([A]p+ d)� ([A]q + d)| = |[A](p� q)| (3.3)

Using equation(3.2), we have

|P �Q| =
p

(p� q)T [A]T [A](p� q) (3.4)

20



If we directly measure the distance in the moving frame M , we get

|p� q| =
p

(p� q)T (p� q) (3.5)

The distance is the same in both reference frame, so we have equation(3.4) equals to equa-

tion(3.7), from which we can get

[A]T [A] = [I] (3.6)

The square matrix satisfies equation(3.6) is called orthogonal matrix. And we can also get

the determinant of [A] as following:

det([I]) = det([A]T [A]) = (det[A])2 = 1 (3.7)

So we have det([A]) = 1 or det([A]) = �1. Specially, when the determinant is equals to

positive one, the matrix [A] is called rotation matrix. In rigid body transformation, we focus

on the matrices have positive one determinant.

A displacement in n dimensional space can be defined by n ⇥ n rotation matrix [A] and n

dimensional translation vector d. If d is zero, it is a pure rotation motion and if [A] is zero,

it is pure translation.

The displacement is not a linear transformation. We show it in the following. For pure

translation, the translation of the sum of two vectors, x and y, by distance d is defined as

the following:

T (x+ y) = x+ y + d (3.8)
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while the sum of the translation of each vector separately is defined as:

T (x) + T (y) = x+ d+ y + d = x+ y + 2d (3.9)

We have noticed, equation(3.8) is not equals to equation(3.9). The homogeneous transfor-

mation is defined as

8
><

>:

X

1

9
>=

>;
=

2

64
A d

0 1

3

75

8
><

>:

x

1

9
>=

>;
(3.10)

The (n+ 1)⇥ (n+ 1) matrix [T ] = [A, d] is called homogeneous transformation matrix.

If the coordinates of a point P measured in the moving frame M is denoted as x = (x, y),

then the coordinates of P measured in the fixed frame F by the definition of displacement

can be obtained from equation(3.1). We denote [A] and d as the following:

[A] =

2

64
cos✓ �sin✓

sin✓ cos✓

3

75, d =

8
><

>:

d1

d2

9
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>;

So we have
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(3.11)

If we write it as the homogeneous form, we get
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>>>>=
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(3.12)
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3.2 Analysis of RR Chain

The homogeneous transformation works very well for two coordinates system transformation.

When it comes to robotic arm analysis, we usually decompose the motion to pure rotation

and pure translation. We will use the Denavit-Hartenberg method to analyze the robotic

manipulators here. The Denavit-Hartenberg method has the following format:

[T ] = [Z1][X1][Z2][X2]...[Xn�1][Zn] (3.13)

where the Z matrix represents the rotation about the pivot and the X matrix represents the

translation along the robot arm or the link. The RR robot is showing in Fig.3.1. The planar

a
θ1

O

A

θ2

Figure 3.1: THE RR ROBOT.

RR chain robot has a fixed ground pivot O that connects a rotating link, or crank, to the

ground link. The second revolute joint is A which connects the crank to the floating link.
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We build the fixed frame, or world frame, with origin at point O. And the x axis of the fixed

frame is along the zero position of link OA. The zero position of link OA is the case when

the angle ✓1 is zero. The origin of moving frame is set at the second revolute joint A. The

x axis direction of the moving frame is set initially along the direction of link OA. Then

the coordinates of any point measured in the moving frame can be represented in the fixed

frame by using the Denavit-Hartenberg method as following:

X = [Z(✓1)][X(a)][Z(✓2)] (3.14)

where a is the length of link OA. Write equation(3.14) in matrix form, we get

8
>>>><

>>>>:

X

Y

1

9
>>>>=

>>>>;

=

2

66664

cos✓1 �sin✓1 0

sin✓1 cos✓1 0

0 0 1

3

77775

2

66664

1 0 a

0 1 0

0 0 1

3

77775

2

66664

cos✓2 �sin✓2 0

sin✓2 cos✓2 0

0 0 1

3

77775

8
>>>><

>>>>:

x

y

1

9
>>>>=

>>>>;

(3.15)

We expand the equation(3.15) and make a simplification, we get the following:
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=
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0 0 1
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>>>><
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x
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>>>>=
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(3.16)

Notice that the position of the end-e↵ector is equivalent to the combination of a translation

by vector d = (acos✓1, asin✓1) and a rotation by the angle ' = ✓1 + ✓2.

3.3 Analysis of 3R Chain

For the 3R chain, we have one more elbow revolute joint E between joint O and A. The

link length OE is denoted as a1 and the link length EA is denoted as a2. The rotation angle
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a1
a2

θ1

θ2

O

A

θ3

E

Figure 3.2: THE RRR ROBOT.

of the elbow joint E is measured from the link OA to the link EA. The rotation angle of

the end-e↵ector around A is now ✓3 instead of ✓2 in the RR chain case. So we have the

kinematics equation for the RRR chain as following:

X = [Z(✓1)][X(a1)][Z(✓2)][X(a2)][Z(✓3)] (3.17)
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Similarly, write equation(3.17) in matrix form, we get
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Expanding and simplifying equation(3.18) give us
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(3.19)

Notice that the position of the end-e↵ector is equivalent to the combination of a translation by

vector d = (a1cos✓1+a2cos✓2, a1sin✓1+a2sin✓2) and a rotation by the angle ' = ✓1+✓2+✓3.

3.4 Synthesis of Four-bar Linkage

The method of synthesis of four-bar linkage is starting from synthesis of a RR chain which

can go through five task positions we specified. We first set up a fixed frame. Each of the

five task positions is denoted by a rotation angle and a translation vector in the fixed frame.

The homogeneous transformation matrix is defined as [T (�i, di)], i = 1, ..., 5, where �i is the

rotation angle and di is the translation vector. Let us denote the ground pivot as G and

the joint on the other side of the crank as W . The coordinates of the ground pivot in the

fixed frame is G = (u, v) while the coordinates of the floating pivot in the moving frame is

w = (x, y). The w is a fixed point in the moving frame. From the knowledge of the previous
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sections, we know the coordinates of the floating pivot in the fixed frame is

W i = [T (�i, di)]w (3.20)

The synthesis problem is finding the point w in the end-e↵ector, such that its fixed frame

coordinates in each task position, W i, i = 1, ..., 5 is around a fixed point G. The condition

that the pivot W lie on a circle about G yields the equation that

(W �G) · (W �G) = R2 (3.21)

where R is the distance between W and G. Using equation(3.20) we get

([T (�i, di)]w �G) · ([T (�i, di)]w �G) = R2, i = 1, ..., 5 (3.22)

To simplify these equations, we use W 1 = [T (�1, d1)]w as our design variables, instead of w,

and make the substitution w = [T (�1, d1)]�1W 1. We define the relative displacement as

[D1j] = [T (�i, di)][T (�1, d1)]
�1 i = 1, ..., 5 j = 1, ..., 5 (3.23)

Notice that [D11] = [I]. We have a set of equations

(W 1 �G) · (W 1 �G) = R2 (3.24)

([D12]W
1 �G) · ([D12]W

1 �G) = R2 (3.25)

([D13]W
1 �G) · ([D13]W

1 �G) = R2 (3.26)

([D14]W
1 �G) · ([D14]W

1 �G) = R2 (3.27)

([D15]W
1 �G) · ([D15]W

1 �G) = R2 (3.28)
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The constraint equation are five equations with five unknowns W 1 = (x, y), G = (u, v) and

R. So we can solve these five equations to determine the five unknowns. We can have at

most four solutions by solving these equations. By picking any two sets of them, we have

one design of four-bar linkage. Totally, we can have at most six four-bar linkage designs.
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Chapter 4

Rectilinear Eight-bar Linkage

The method of synthesis of eight-bar linkages start from defining two 3R chain firstly and

adding a RR chain constraint after, has already been presented by Soh and McCarthy

(2007)[12]. Continuing research on finding all possible ways of applying the RR constraint

was presented by Sonawale and McCarthy (2014)[13]. In our research, we specified the five

task positions on a straight line. We followed the same procedure to get a number of eight-bar

linkages.

Firstly we need to derive the kinematic equations of the planar 3R chain. Let [D] denote

the homogeneous transformation from task frame to fixed frame. [G] is the transformation

matrix from the 3R chain base to fixed frame. We define [H] as the transformation matrix

from task frame to end-e↵ector frame. The length of the 3 moving links were represented as

a1, a2 and a3 respectively. ✓1, ✓2 and ✓3 are relative rotation angles of each moving frame. Let

Z denote the homogeneous transformation matrix of the moving frame. The homogeneous

transformation matrix [D] can be denoted as

[D] = [G]Z(✓1, 0)Z(✓2, a1)Z(✓3, a2)[H]. (4.1)
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Five task positions have already been specified on a straight line so we can solve (✓1j, ✓2j, ✓3j), j =

1, ..., 5 for each of the five task positions using

[Dj] = [G]Z(✓1j, 0)Z(✓2j, a1)Z(✓3j, a2)[H], j = 1, ..., 5. (4.2)

The next step is defining two RR constraints between any two of the moving link. Let’s

define [Blj] to be the homogeneous transformation matrix of the lth moving link to the fixed

frame and [Bkj] to be the homogeneous transformation matrix of the kth moving link to the

fixed frame. The lth moving link and the kth moving link are connected by a RR constraint

link. The joint position, g, is where the RR constraint link connected the lth link measured

in moving frame [Blj] and w is the joint position where RR constraint link connected the

kth link measured in moving frame [Bkj] . In the process of the task frame moving through

all the five task positions, the coordinates of two ends of the RR constraint link, measured

in the fixed frame, are given by

Gj = [Blj]g and W j = [Bkj]w. (4.3)

Relative displacement is introduced for convenient calculation

[R1j] = [Blj][Bl1]
�1 and [S1j] = [Bkj][Bk1]

�1. (4.4)

Substitute equation (4.4) into equation (4.3) we get

Gj = [R1j]G
1 and W j = [S1j]W

1. (4.5)

Note that [R11] = [S11] = [I] are identity matrix. The two ends of the RR constraint link

were defined by Gj and W j. Assuming the length of the RR constraint link is R so we can
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get constraint equations for five take positions

([R1j]G
1 � [S1j]W

1]) · ([R1j]G
1 � [S1j]W

1]) = R2, j = 1, ..., 5. (4.6)

Here we get five constraint equations and five variables. We can solve for G1 = (u, v, 1)T ,

W 1 = (x, y, 1)T and R using the five task positions which have been specified on a straight

line. The method of solving RR constraint equations of a four-bar linkage has been presented

by McCarthy[9]. We used the same method here, subtracting the first of the five equations

from the remaining four to reduce the total variables to four. By using Mathematica’s Nsolve

function, we can get all the possible eight-bar linkage designs satisfying our task position

requirements.
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Chapter 5

MEMS Implementation

MEMS fabrication requires single layer design. First, we need to find non-overlap eight-bar

linkages from the numerous solutions we obtained from the above synthesis process. This

requires all links of the eight-bar linkage must not overlap each other when the end-e↵ector

moves through all the five task positions. Here are two examples of overlap and non-overlap

eight-bar linkages. The eight-bar linkage shown in Fig.5.1 is in overlap form. It can provide

rectilinear motion but several links have to be placed on di↵erent layers to make the whole

mechanism work. The one shown in Fig.5.2 is an example of non-overlap linkage.

The ones we obtained from the synthesis of eight-bar linkages are all in asymmetric shape.

We redesigned the eight-bar linkage and made it perfectly symmetric due to the powerful

advantages o↵ered by symmetric shape in MEMS gyroscope application. The redesigned

eight-bar linkage is shown in Fig.5.2.

After redesigning, the end e↵ector still showed very good rectilinear property. After evalu-

ating the rectilinear performance of the symmetric eight-bar linkage, we traced the motion

path of the end-e↵ector. The path can be seen in Fig.5.3, which is a perfect straight line

just from observation. We extracted 253 points from the straight line and got the exact
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Figure 5.1: AN EXAMPLE OF A RECTILINEAR EIGHT-BAR LINKAGE WITH OVER-
LAPPING LINKS.

Figure 5.2: A SYMMETRIC RECTILINEAR EIGHT-BAR LINKAGE WITH NON-
OVERLAPPING LINKS.
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Figure 5.3: TRACING THE END-EFFECTOR PATH OF SYMMETRIC EIGHT-BAR
LINKAGE.

Table 5.1: COORDINATES OF TRACING POINTS.
X(mm) Y(mm) Z(mm)

34.93411 -70.0572 21.11394
34.94115 -70.0572 21.11394
34.96226 -70.0572 21.11394
34.9974 -70.0571 21.11394
35.04651 -70.057 21.11394
35.10951 -70.0569 21.11394
35.18629 -70.0567 21.11394
35.27672 -70.0566 21.11394
35.38065 -70.0563 21.11394
35.4979 -70.0561 21.11394
35.62828 -70.0558 21.11394
35.77158 -70.0556 21.11394
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Figure 5.4: THE VERTICAL DEVIATION IS 0.03MM FOR A TRAVEL OF 30MM,
WHICH IS 0.1% DEVIATION.

coordinates for each point. Part of the points coordinates are shown in Table.5.1 as an ex-

ample. A curve shown in Fig.5.4 was created to show the 253 points. The X-axis and Y-axis

represented the X coordinates and Y coordinates of each point. The total displacement in

X-direction for the end-e↵ector moved from the first task position to the fifth task position

is 33.1 millimeters. During this process, the maximum and minimum Y coordinates of the

tracing point were -70.042 millimeters and -70.069 millimeters respectively. The maximum

deviation in the Y-direction of the end e↵ector was only 0.027 millimeter while it went hor-

izontally 33.1 millimeters. Here we analyzed the performance of the symmetric eight-bar

linkage using millimeter units. We need to scale it to micron units during fabrication. We

can see the redesigned symmetric eight-bar linkage manifested perfectly rectilinear motion

property.

The next step was replacing all the rigid-body joints with flexure pivots. We used Finite-

Element-Analysis method to evaluate the performance of the eight-bar flexure suspension
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Figure 5.5: THE SYMMETRIC RECTILINEAR EIGHT-BAR LINKAGE WITH HINGES
REPLACED WITH BEAM FLEXURES (FLEXURE SUSPENSION).

designed before. It turned out that the beam flexure at the joint position achieved the

best result. From the Finite-Element-Analysis result, we refined the flexure suspension by

changing the dimension of the flexure pivots. The base flexure pivots were made relatively

thicker and shorter while the remaining joints used long thin beam flexure pivots. Finally,

we obtained an eight-bar flexure suspension shown in Fig.5.5.

In Finite-Element-Analysis, we applied aluminum as the material of the eight-bar flexure

suspension. The base link of the whole flexure suspension was fixed and horizontal force was

applied at the end-e↵ector. We used a curvature based mesh. The stress result is shown in

Fig.5.6. The highest stress was observed at the two flexure pivots besides the base link. The

displacement result is shown in Fig.5.7. The motion of the eight-bar flexure suspension was

very close to the rigid-body solution. From the Finite-Element-Analysis result we can see

the eight-bar flexure suspension has well-performed rectilinear motion property.
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Figure 5.6: FINITE ELEMENT ANALYSIS SHOWING STRESSES IN THE EIGHT-BAR
FLEXURE SUSPENSION.

Figure 5.7: FINITE ELEMENT ANALYSIS SHOWING DISPLACEMENTS IN THE
EIGHT-BAR FELXURE SUSPENSION.
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Chapter 6

MEMS Gyroscope

The technology we used in MEMS gyroscope fabrication required the minimum beam width

to be 3 microns and the gap width is between 0.7 micron and 50 microns. We need to

scale our design to fit the fabrication rules in order to manufacture it. Di↵erent fabrication

technology has di↵erent constraints. One example can been seen from[1, 15].

A driving linkage was designed to connect two sets of MEMS gyroscopes. Trusov et al.

(2011)[14] has presented the conventional coupling mechanism used in MEMS gyroscope.

The driving linkage in our research was constructed from two Chebyshevs Lambda linkages.

The end-e↵ector of Chebyshevs Lambda mechanism can go through straight line within a

specific range. Part of one bar from eight-bar linkage was used as one link of the Chebyshevs

Lambda linkage. We connect the end-e↵ector of the two Chebyshevs Lambda linkages to-

gether to get our driving linkage. The model of the driving linkage connecting two eight-bar

linkages is shown in Fig.6.1. The input was applied at the end-e↵ector of the Chebyshevs

Lambda linkage. Because of the rectilinear motion of the Chebyshevs Lambda linkages, the

two eight-bar linkages can be driven to move in opposite directions, at the same time. An

important MEMS gyroscope design rule is for small input to result in a large output so
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Figure 6.1: DESIGN OF A DRIVING LINKAGE FOR TWO EIGHT-BAR RECTILINEAR
MOTION LINKAGES.

the driving linkage has to be made with high precision to achieve this goal. We transferred

the rigid-body driving linkage to flexure pivots version as shown in Fig.6.2. Finite-Element-

Analysis was conducted on evaluating the performance of the driving linkage. The displace-

ment result is shown in Fig.6.3. We can see the two eight-bar flexure suspension moved in

straight line validating the flexure pivots driving linkage performance.
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Figure 6.2: DESIGN OF THE DRIVING LINKAGE WITH HINGES REPLACED BY
BEAM FLEXURES.

Figure 6.3: FINITE ELEMENT ANALYSIS SHOWING DISPLACEMENT OF THE DRIV-
ING LINKAGE AND EIGHT-BAR FLEXURE SUSPENSION.
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Chapter 7

Current Design

The long thin beam flexure pivots worked e↵ectively in our current research. The whole

MEMS gyroscope package included two sets of suspension connected by the driving linkage.

Two examples of our current package design are shown in Fig.7.1 and Fig.7.2.
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Figure 7.1: LAYOUT FOR A MEMS GYROSCOPE PROVIDING FLEXURES SUSPEN-
SIONS OF THE PROOF MASS IN TWO DIMENSIONS.
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Figure 7.2: REVISED LAYOUT FOR A MEMS GYROSCOPE WITH A NEW DRIVING
LINKAGE.
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Chapter 8

Conclusion

In this paper, we present a symmetric flexure-connected eight-bar linkage designed to be a

rectilinear suspension for the proof mass of a MEMS gyroscope. This rectilinear eight-bar

linkage was designed with hinged pivots and then flexures were introduced and sized using

Finite Element Analysis. The result is an eight-bar flexure suspension that provides 33

micrometers of travel end-to-end with a maximum 0.1% deviation of the end-e↵ector path

from a straight line.

Additional work will be to adjust the symmetric eight-bar flexure suspension to meet fabrica-

tion rules and verifying that the finished product achieves the predicted rectilinear properties.

Fabrication of prototypes will verify the motion of this flexure-connected eight-bar linkage

under the action of external forces. Further research and experimentation will be conducted

to refine the design of this rectilinear MEMS suspension.
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Appendices

A Tracing Points Data

Table A.1: Tracing Points Data

X(mm) Y(mm) Z(mm)

34.93411 -70.0572 21.11394

34.94115 -70.0572 21.11394

34.96226 -70.0572 21.11394

34.9974 -70.0571 21.11394

35.04651 -70.057 21.11394

35.10951 -70.0569 21.11394

35.18629 -70.0567 21.11394

35.27672 -70.0566 21.11394

35.38065 -70.0563 21.11394

35.4979 -70.0561 21.11394

35.62828 -70.0558 21.11394

35.77158 -70.0556 21.11394

47



35.92758 -70.0552 21.11394

36.09603 -70.0549 21.11394

36.27668 -70.0545 21.11394

36.46925 -70.0542 21.11394

36.67346 -70.0538 21.11394

36.88902 -70.0534 21.11394

37.11562 -70.0529 21.11394

37.35296 -70.0525 21.11394

37.60072 -70.052 21.11394

37.85858 -70.0516 21.11394

38.12621 -70.0511 21.11394

38.40329 -70.0506 21.11394

38.68947 -70.0501 21.11394

38.98443 -70.0497 21.11394

39.28783 -70.0492 21.11394

39.59933 -70.0487 21.11394

39.91861 -70.0483 21.11394

40.24533 -70.0478 21.11394

40.57916 -70.0474 21.11394

40.91977 -70.0469 21.11394

41.26684 -70.0465 21.11394

41.62005 -70.0461 21.11394
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41.97907 -70.0457 21.11394

42.3436 -70.0453 21.11394

42.71331 -70.045 21.11394

43.08791 -70.0446 21.11394

43.4671 -70.0443 21.11394

43.85056 -70.044 21.11394

44.23802 -70.0438 21.11394

44.62919 -70.0435 21.11394

45.02377 -70.0433 21.11394

45.42149 -70.0431 21.11394

45.82208 -70.0429 21.11394

46.22526 -70.0427 21.11394

46.63077 -70.0425 21.11394

47.03834 -70.0424 21.11394

47.44772 -70.0423 21.11394

47.85866 -70.0422 21.11394

48.2709 -70.0421 21.11394

48.68421 -70.0421 21.11394

49.09833 -70.0421 21.11394

49.51303 -70.042 21.11394

49.92808 -70.0421 21.11394

50.34325 -70.0421 21.11394
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50.7583 -70.0421 21.11394

51.17301 -70.0422 21.11394

51.58717 -70.0423 21.11394

52.00054 -70.0424 21.11394

52.41293 -70.0426 21.11394

52.8241 -70.0428 21.11394

53.23386 -70.0429 21.11394

53.642 -70.0432 21.11394

54.0483 -70.0434 21.11394

54.45257 -70.0437 21.11394

54.8546 -70.044 21.11394

55.2542 -70.0443 21.11394

55.65116 -70.0446 21.11394

56.04531 -70.045 21.11394

56.43643 -70.0454 21.11394

56.82434 -70.0458 21.11394

57.20886 -70.0463 21.11394

57.5898 -70.0468 21.11394

57.96696 -70.0473 21.11394

58.34018 -70.0478 21.11394

58.70926 -70.0484 21.11394

59.07404 -70.049 21.11394
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59.43433 -70.0496 21.11394

59.78996 -70.0502 21.11394

60.14076 -70.0508 21.11394

60.48656 -70.0515 21.11394

60.82719 -70.0522 21.11394

61.16249 -70.0528 21.11394

61.49229 -70.0535 21.11394

61.81644 -70.0542 21.11394

62.13477 -70.055 21.11394

62.44713 -70.0557 21.11394

62.75337 -70.0564 21.11394

63.05334 -70.0571 21.11394

63.3469 -70.0578 21.11394

63.63389 -70.0585 21.11394

63.91418 -70.0592 21.11394

64.18763 -70.0599 21.11394

64.45411 -70.0605 21.11394

64.71349 -70.0612 21.11394

64.96563 -70.0618 21.11394

65.21042 -70.0624 21.11394

65.44774 -70.063 21.11394

65.67746 -70.0635 21.11394
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65.89947 -70.064 21.11394

66.11367 -70.0645 21.11394

66.31995 -70.065 21.11394

66.51821 -70.0654 21.11394

66.70835 -70.0658 21.11394

66.89028 -70.0662 21.11394

67.0639 -70.0666 21.11394

67.22914 -70.0669 21.11394

67.38591 -70.0672 21.11394

67.53413 -70.0674 21.11394

67.67374 -70.0677 21.11394

67.80466 -70.0679 21.11394

67.92683 -70.0681 21.11394

68.04019 -70.0682 21.11394

68.14469 -70.0684 21.11394

68.24027 -70.0685 21.11394

68.32688 -70.0686 21.11394

68.4045 -70.0687 21.11394

68.47307 -70.0688 21.11394

68.53256 -70.0689 21.11394

68.58295 -70.0689 21.11394

68.62422 -70.0689 21.11394
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68.65633 -70.069 21.11394

68.67928 -70.069 21.11394

68.69305 -70.069 21.11394

68.69765 -70.069 21.11394

68.69305 -70.069 21.11394

68.67928 -70.069 21.11394

68.65633 -70.069 21.11394

68.62422 -70.0689 21.11394

68.58295 -70.0689 21.11394

68.53256 -70.0689 21.11394

68.47307 -70.0688 21.11394

68.4045 -70.0687 21.11394

68.32688 -70.0686 21.11394

68.24027 -70.0685 21.11394

68.14469 -70.0684 21.11394

68.04019 -70.0682 21.11394

67.92683 -70.0681 21.11394

67.80466 -70.0679 21.11394

67.67374 -70.0677 21.11394

67.53413 -70.0674 21.11394

67.38591 -70.0672 21.11394

67.22914 -70.0669 21.11394
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67.0639 -70.0666 21.11394

66.89028 -70.0662 21.11394

66.70835 -70.0658 21.11394

66.51821 -70.0654 21.11394

66.31995 -70.065 21.11394

66.11367 -70.0645 21.11394

65.89947 -70.064 21.11394

65.67746 -70.0635 21.11394

65.44774 -70.063 21.11394

65.21042 -70.0624 21.11394

64.96563 -70.0618 21.11394

64.71349 -70.0612 21.11394

64.45411 -70.0605 21.11394

64.18763 -70.0599 21.11394

63.91418 -70.0592 21.11394

63.63389 -70.0585 21.11394

63.3469 -70.0578 21.11394

63.05334 -70.0571 21.11394

62.75337 -70.0564 21.11394

62.44713 -70.0557 21.11394

62.13477 -70.055 21.11394

61.81644 -70.0542 21.11394
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61.49229 -70.0535 21.11394

61.16249 -70.0528 21.11394

60.82719 -70.0522 21.11394

60.48656 -70.0515 21.11394

60.14076 -70.0508 21.11394

59.78996 -70.0502 21.11394

59.43433 -70.0496 21.11394

59.07404 -70.049 21.11394

58.70926 -70.0484 21.11394

58.34018 -70.0478 21.11394

57.96696 -70.0473 21.11394

57.5898 -70.0468 21.11394

57.20886 -70.0463 21.11394

56.82434 -70.0458 21.11394

56.43643 -70.0454 21.11394

56.04531 -70.045 21.11394

55.65116 -70.0446 21.11394

55.2542 -70.0443 21.11394

54.8546 -70.044 21.11394

54.45257 -70.0437 21.11394

54.0483 -70.0434 21.11394

53.642 -70.0432 21.11394
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53.23386 -70.0429 21.11394

52.8241 -70.0428 21.11394

52.41293 -70.0426 21.11394

52.00054 -70.0424 21.11394

51.58717 -70.0423 21.11394

51.17301 -70.0422 21.11394

50.7583 -70.0421 21.11394

50.34325 -70.0421 21.11394

49.92808 -70.0421 21.11394

49.51303 -70.042 21.11394

49.09833 -70.0421 21.11394

48.68421 -70.0421 21.11394

48.2709 -70.0421 21.11394

47.85866 -70.0422 21.11394

47.44772 -70.0423 21.11394

47.03834 -70.0424 21.11394

46.63077 -70.0425 21.11394

46.22526 -70.0427 21.11394

45.82208 -70.0429 21.11394

45.42149 -70.0431 21.11394

45.02377 -70.0433 21.11394

44.62919 -70.0435 21.11394
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44.23802 -70.0438 21.11394

43.85056 -70.044 21.11394

43.4671 -70.0443 21.11394

43.08791 -70.0446 21.11394

42.71331 -70.045 21.11394

42.3436 -70.0453 21.11394

41.97907 -70.0457 21.11394

41.62005 -70.0461 21.11394

41.26684 -70.0465 21.11394

40.91977 -70.0469 21.11394

40.57916 -70.0474 21.11394

40.24533 -70.0478 21.11394

39.91861 -70.0483 21.11394

39.59933 -70.0487 21.11394

39.28783 -70.0492 21.11394

38.98443 -70.0497 21.11394

38.68947 -70.0501 21.11394

38.40329 -70.0506 21.11394

38.12621 -70.0511 21.11394

37.85858 -70.0516 21.11394

37.60072 -70.052 21.11394

37.35296 -70.0525 21.11394
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37.11562 -70.0529 21.11394

36.88902 -70.0534 21.11394

36.67346 -70.0538 21.11394

36.46925 -70.0542 21.11394

36.27668 -70.0545 21.11394

36.09603 -70.0549 21.11394

35.92758 -70.0552 21.11394

35.77158 -70.0556 21.11394

35.62828 -70.0558 21.11394

35.4979 -70.0561 21.11394

35.38065 -70.0563 21.11394

35.27672 -70.0566 21.11394

35.18629 -70.0567 21.11394

35.10951 -70.0569 21.11394

35.04651 -70.057 21.11394

34.9974 -70.0571 21.11394

34.96226 -70.0572 21.11394

34.94115 -70.0572 21.11394

34.93411 -70.0572 21.11394
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