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Impact of age-related changes in buccal
epithelial cells on pediatric epigenetic
biomarker research

Sarah M. Merrill1,2,22, Chaini Konwar2,3,4,22, Fizza Fatima2,3,4, Kristy Dever2,3,4,
Julia L. MacIsaac2,3,4, Nicole Letourneau5,6, Gerald F. Giesbrecht6,7,8,
Deborah Dewey 5,7,8, Gillian England-Mason6,7, Candace R. Lewis9,
Dennis Wang 10,11,12, Ai Ling Teh10,11, Michael J. Meaney 10,13,14,
Andrea Gonzalez15, Jennie G. Noll16, Carolina De Weerth17, Nicole R. Bush 18,
Kieran J. O’Donnell19, S. Evelyn Stewart2,20 & Michael S. Kobor 2,3,4,14,21

Cheek swabs, heterogeneous samples consisting primarily of buccal epithelial
cells, are widely used in pediatric DNA methylation studies and biomarker
creation. However, the decrease in buccal proportion with age in adults
remains unexamined in childhood. We analyzed cheek swabs from 4626
typically developing children 2-months to 20-years-old. Estimated buccal
proportiondeclined throughout childhoodwith both increasing chronological
and predicted epigenetic age. However, buccal proportion did not associate
with age throughout adolescence. Variability in buccal proportion increased
with age through the entire developmental range. These trends held inversely
true for neutrophil proportions. Correcting for buccal proportion attenuated
the weak association with PedBE age acceleration to non-significance during
initial estimation. Notably, correcting for buccal proportion attenuated the
association of PedBE age acceleration with obsessive-compulsive disorder and
strengthened the association with diurnal cortisol slope. Thus, the age-related
change in children’s oral cells is a crucial consideration for cell type-sensitive
research.

There is increasing awareness of the importance of tissue heterogeneity
and differences in cell-type proportions in the field of epigenetics. The
flourishing field of human population epigenetics research in particular
has almost exclusively utilized samples composed of multiple cell types.
Each of these cell-type identities exhibits diverse phenotypic properties
and associates with dynamic biological functions. DNA methylation, the
most commonly investigated epigeneticmark in humans, plays a pivotal
role in the establishment and maintenance of these distinct cell-type
identities. With this biological feature of DNA methylation, cellular pro-
portions can be estimated reliably by reference-based bioinformatics
methods, as often cell counts cannot be directly measured due to fea-
sibility and cost issues. Thus, accounting for heterogeneity in cell-type

proportions across individuals in mixed tissues has become critical in
DNA methylation studies1,2. This is of particular importance in current
pediatric DNA methylation research, as this is predominated by hetero-
geneous peripheral tissue studies. For example, the most commonly
usedcheek swabsareprimarily comprisedof a single cell type, i.e., buccal
epithelial cells (BECs)3,4, but they also include amixture of immune cells,
mainly neutrophils and lymphocytes3,5. As cheek swabs are obtained
painlessly and noninvasively, they are an attractive source of tissue for
safely collecting high-quality DNA from children and often employed to
study pediatric DNA methylation-based biomarkers. However, there is
little consistency in how and whether cell-type proportions are con-
sidered in modeling and interpreting these epigenetic tools.
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Cellular composition has been previously associated with aging,
mortality, and DNA methylation tools1. One study, using microscopic
examination, found higher BEC proportions in samples from children
compared to adults3. A follow-up study found a negative association
between estimated BEC in a combination of cheek swabs and saliva
samples with chronological age across the lifespan4. This decrease in
estimated BEC proportion was especially pronounced in elderly
populations. However, it remains unclear whether such correlations
exist within pediatric populations, specifically from infancy to mid-
childhood to adolescence—sensitive developmental periods for epi-
genetics research. The cellular proportions in pediatric cheek swab
samples may be influenced by an array of complex factors over the
course of normal pediatric maturation, which may be either absent or
exacerbated in samples from older populations, including but not
limited to primary tooth loss and permanent tooth eruption2; oral
inflammatory conditions, such as gingivitis6 and periodontitis3,7; and
orthodontic appliances such as braces and retainers8,9. Of concern in
the interest of scientific inquiry, these oral events may also associate
with researchers’ variables of interest, such as development or socio-
economic status, simultaneously with changes in cell-type hetero-
geneity—potentially permitting false associations with children’s
environment and DNA methylation.

In extant DNA methylation literature, early life is associated with
greater variability in DNA methylation than the period of adulthood,
and epigenetic tools developed in adults are also less precise and have
greater variability in pediatric populations than those developed
uniquely for children10–12. Thus, the increasing quantity of available
pediatric cheek swabs, and subsequently the creation and application
of tools for these samples such as the Pediatric-Buccal-Epigenetic
(PedBE) clock13, necessitates exploration of the influence of BEC het-
erogeneity on epigenetic age estimation. Epigenetic clocks are tools
trained in specific tissues and populations to estimate biological age
based on DNA methylation14. In general, biological aging can be con-
cordant (approximately equivalent), faster (biologically older), or
slower (biologically younger) than chronological age15. These devia-
tions between biological and chronological age, known as epigenetic
age acceleration (EAA), can serve as biomarkers of both exposures and
health outcomes throughout life, appear to be sensitive to interven-
tion in children16,17, and provide potentially powerful means of inves-
tigating molecular maturation18,19. A number of epigenetic clocks have
been designed for use in multiple tissues, including cheek swabs, such
as the Horvath pan-tissue clock14 and the skin-blood clock20; however,
PedBE provides the most accurate estimation of chronological age in
pediatric (0–20 years old) cheek swab and saliva samples10.

Thus, in the current study, we characterized the change of DNA
methylation-estimated BECproportionmeasured in cheek swabs from
4626 typically developing children over this developmental period.

Specifically, we investigated the association between estimated BEC
proportion and chronological age, both cross-sectionally and long-
itudinally, in buccal samples from a large pediatric population collated
from multiple independent cohorts throughout childhood and into
adolescence. We also explored the association of predicted epigenetic
age, namely PedBE, with pediatric BEC proportion, as cell-type het-
erogeneity is known to influence epigenetic age estimation in other
tissues. Finally, we demonstrated the significance of accounting for
estimatedBECproportionwhen employing pediatric epigenetic clocks
with two exemplars relevant to child health. Overall, this study pro-
vides insight into the relations between estimated BEC proportion and
children’s age, as well as critical considerations for the application of
bioinformatics tools to this issue that may improve precision in asso-
ciations with childhood health phenotypes.

Results
Twelve cohorts of typically developing childrenwere assembled
with BEC samples from across pediatric development
Buccal DNA methylation profiles of 4626 (2154 M/2472 F) typically
developing individuals ranging in age from 2 months to 20 years old
were assembled in silico from 12 independent cohorts (Table 1). The
majority of the cohorts (7/12) included in this study were described
previously in the initial report of the PedBE clock13, and data were
deposited in the publicly available Gene Expression Omnibus (GEO)
SuperSeries data repository (accession: GSE137503). Data from
another pediatric cohort were also downloaded from GEO (accession:
GSE147058)21. The remaining four cohorts (APrON Neurotox, BEPAC,
SEED, and Cohort 1222) are described in the Supplementary Methods.
The cohort of childhood-onset OCD patients, also described in the
Supplementary Methods, was not included in the initial investigation
of typically developing children and was only employed to examine
EAA associations. Approaches implemented in the EpiDISH R package,
specifically robust partial correlation (RPC)-based, were used to report
estimated BEC proportion as it has been previously shown to correlate
with actual cell counts and consistently predicted higher BEC pro-
portions compared to CIBERSORT (CBS) and constrained projection
(CP) based estimations across all cohorts (Supplementary Fig. 1)4.

EstimatedBECproportion declinedwith chronological age from
infancy to the end of childhoodbut have no associationwith age
during adolescence
To test whether inferred BEC proportion was associated with chron-
ological age in pediatric samples, we examined the magnitude and
direction of correlations between Box-Cox transformed RPC-
estimated BEC proportion (as predicted with EpiDISH23) and chron-
ological age (reported in months) using Pearson’s correlation coeffi-
cient (r). A negative linear relation was observed between RPC-

Table 1 | Descriptive cohort characteristics of the pediatric populations who provided cheek swab samples

Cohorts n % Female Estimated buccal epithelial proportions range (mean) Reported age range (months) (mean) Illumina platform

APrON FetalPro 142 47.89% 0.84–0.99 (0.97) 0.92–3.71 (2.89) 450K

APrON Neurotox 278 46.76% 0.90–0.99 (0.98) 1.90–8.50 (3.267) 850K

BEPAC 662 46.22% 0.50–1 (0.94) 1.81–29.91 (12.50) 850K

GECKO 289 50.87% 0.50–0.97 (0.82) 83.76–155.59 (112.90) 450K

GSE147058 42 47.61% 0.51–0.97 (0.78) 91–116 (103.57) 850K

NDN 96 59.37% 0.64–0.98 (0.50) 60–216 (135.37) 450K

PAWS 191 53.4% 0.59–0.99 (0.88) 56.96–72.28 (64.00) 450K

SEED 316 53.16% 0.53–0.99 (0.88) 36.06–82.19 (55.01) 850K

WISC 174 55.75% 0.60–1 (0.90) 208.33–225.47 (216.90) 450K

GUSTO 1609 49.44% 0.50–0.99 (0.88) 2.77–78.00 (47.37) 850K

BIBO 438 46.80% 0.53–0.98 (0.86) 70.43–181.13 (121.09) 850K

Cohort 12 389 100% 0.50–0.98 (0.78) 138.02–220.41 (181.56) 850K
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predicted BEC proportion and chronological age (Pearson’s on Box-
Cox transformed values r (4624) = −0.43, p < 2.2 × 10−16) (Fig. 1A). We
also observed the same negative relation between chronological age
and BEC proportions estimated by the other two algorithms embed-
ded in the EpiDISH R package (CBS and CP) (Supplementary Fig. 2).

However, upon visual inspection we observed the subset of the
pediatric samples during adolescence did not conform well to the
linear regression line. Thus, we conducted a spline regression analysis
to assess if overall themodel fit was improved by allowing for different
slopes during childhood and adolescence for the regression between
chronological age and estimated BEC proportion. The model fit was
markedly improved by adding one knot at age 10, the developmentally
relevant age of transition from childhood to adolescence (from
adjusted R2 = 0.17 with no knot to adjusted R2 = 0.25 with one knot at
age 10) (Supplementary Fig. 3)24,25. Because the transition from child-
hood to adolescence is not at one age, per se, but defined as a devel-
opmental period that is generally understood in development to
encompass the ages around 10 aswell, we testedwhether themodel fit
was equally or more improved by including a knot at age 9, 10, or 11
years24,25. We found no difference inmodel fit with the exact age of the
spline regression knotwithin this period of transition at age 9, 10, or 11

years (adjustedR2 = 0.25), and as suchwe selected themidpoint age, 10
years (120 months) as the transition to separate our pediatric samples
into twodevelopmentally relevant timepoints: (i) infancy to childhood
(0–9 years) and (ii) adolescence, including preadolescence through
the end of adolescence (10–20 years). The resulting model indicated
an even stronger negative linear relationship between chronological
age and estimated BEC proportion throughout infancy to the end of
childhood (Pearson’s on Box-Cox transformed values r (3666) = −0.54,
p < 2.2 × 10−16) (Fig. 1B), a pattern which was consistent in the majority
of the datasets (Supplementary Fig. 4). However, this plateaued into a
lack of an association between age and estimated BEC proportion
throughout adolescence (Pearson’s on Box-Cox transformed values r
(953) = −0.03, p =0.36) (Fig. 1C).

In contrast, the estimated neutrophil proportion linearly
increased with chronological age in children, and therefore exhibited
an inverse association with the observed correlation of estimated BEC
proportion and chronological age (Pearson’s on Box-Cox transformed
values r (4624) = 0.23, p < 2.2 × 10−16) (Supplementary Fig. 5). As with
estimated BEC proportion, a better model fit was obtained by includ-
ing a knot at age 10 (from adjusted R2 = 0.11 with no knots to adjusted
R2 = 0.18 with one knot at age 10), with a strong positive association in

r = −0.43, p < 2.2e−16
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Fig. 1 | Age-related decline in estimated buccal epithelial cell proportions
observed in childhood but not adolescence. Significant association of estimated
buccal epithelial cell (BEC) proportion with reported chronological age in the
pediatric window, using Pearson correlation on Box-Cox transformed estimated
BEC proportion. A In the scatter plot, estimated BEC proportion estimated by the
EpiDISH-RPCmethodwas plotted on the y-axis against chronological age inmonths
on the x-axis. A significant decrease in estimated BEC proportion with reported
chronological age was observed in pediatric buccal swabs (n = 4626). B Pediatric

samples from infancy to childhood, using a cut-off of <120 months (10 years),
showed a stronger negative linear relationship between estimated BEC proportion
and chronological age (reported in months, n = 3668). C Pediatric samples in
adolescence (>120 months/10 years) exhibited no association between estimated
BEC proportion and chronological age (reported in months, n = 955). Correlations
are significant at multiple-test corrected p value < 0.05. “Source data are provided
as a Source Data file”.
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childhood and a lack of association during adolescence. Additionally,
there were no associations between reported chronological age and
estimated cell-type proportions for the other estimated cell types,
including eosinophils, monocytes, CD4 T cells, CD8 T cells, B cells,
natural killer cells, and fibroblasts (Supplementary Fig. 6).

Estimated BEC proportion was not influenced by DNA methy-
lation platforms or biological factors: sex, breastfeeding status,
and mode of delivery
Given that the EpiFiBIC reference (716 CpGs) embedded in the EpiDISHR
package was created on data measured on the Illumina Infinium
HumanMethylation450 (450K) BeadChip array, application of this refer-
ence todatasets processedon the InfiniumMethylationEPIC (850K) array
warrants investigation, as 36 CpGs from the EpiFiBIC reference panel are
missing on the 850K. To explore this, we used the strength of a small, but
matched subset of samples (24matched pairs) from the APrON FetalPro
and APrON Neurotox cohorts for which we had obtained DNA methyla-
tion measurements using both 450K and 850K arrays. Specifically, we
estimated the buccal cell-type proportions, adopting the EpiFiBIC refer-
ence but with different sets of reference CpGs:
i. Using the EpiFibIC reference with 716 CpGs on 450K datasets and

the sameEpiFibIC reference excluding the 36missingCpGs on the
850K datasets

ii. Restricting the EpiFibIC reference to the common/shared CpGs
(680 CpGs) between the arrays and using this set of CpGs on both
450K and 850K datasets

Estimated proportions of BEC by EpiDISH-RPC did not differ
based on differing number of CpGs employed in the deconvolution
EpiFiBIC reference panel, for (i) (t (23) = 1.1, padj > 0.05) and for (ii) (t
(23) = −0.16, padj > 0.05)). Overall, EpiDISH-RPC method consistently
predicted higher BEC proportions compared to the other methods
(Supplementary Fig. 7). Further, CBS estimated BEC proportion
showed no significant differences based on the array type, only when
the cell-type estimates were calculated by limiting the EpiFibIC refer-
ence to the common/shared CpGs between the arrays. In contrast, in
the context of CP-based cell-type algorithm, employing either equality
or inequality constraint, we noted significant differences between
450K and 850K calculated BEC proportions, with a large Cohens’s d
effect size (>1), in both the scenarios of using all the CpGs in the Epi-
FibIC reference versus restricting the EpiFibIC reference to the com-
mon/shared CpGs between the arrays. However, the magnitude of
difference between the arrays based on CP estimated BEC proportion
was relatively larger when differing numbers of CpGs on the EpiFibIC
reference were used to calculate the estimates.

As changes in cell-type proportions are often associated with sex
in adult blood samples26,27 and potentially with oral-microbiome-
relevant early-life variables, such as mode of delivery (C-section/Vagi-
nal) and breastfeeding status (Yes/No)15–17, we explored whether the
estimated BEC proportion differed according to these variables.
However, no significant associations with sex (H (1) = 3.38, p = 0.06),
mode of delivery (H (1) = 0.21, p =0.64), or breastfeeding status (H
(1) = 0.04, p =0.83) were found (Supplementary Fig. 8).

Estimated BEC proportion was associated with yearly dentist
visits, but not daily tooth brushing in 48 months old
To explore the possible association between estimated BEC propor-
tion from cheek swabs and oral health in children, we employed the
available parent-reported dental information from the GUSTO cohort
when the children were 48months old. While there was no association
with parent-reported daily tooth brushing (F(2,296) = 0.16, p =0.690)
(Supplementary Fig. 9), there was a small effect size association with
yearly dental visits and estimated BEC proportion (F(2,293) = 4.84,
p =0.024, Cohen’s d =0.357). Children who visited the dentist yearly
had a higher estimated BEC proportion than children who did not

(Fig. 2). Those parentswho reported fear of the dentist as their primary
reason and lack of financial resources as a secondary reason for not
maintaining yearly dental visits exhibited the lowest average BEC
proportion, however we note that the sample sizes were small in these
categories (Supplementary Fig. 10).

EstimatedBECproportion exhibitedmore variability with age in
pediatric populations
In addition to the decrease in the predicted BEC proportion of
pediatric cheek swabs, we found an increase in the range of estimated
BEC proportion with increasing age among the youngest children in
our sample. Therefore, we hypothesized that the variability of these
BECproportions increases over time in young children, and to test this,
we estimated BEC proportion with age using data from three long-
itudinal pediatric cohortswith repeated samplingof the samechildren.
As the time points were distinct between the cohorts (BEPAC: 2 and 24
months, n = 244; SEED: 48, 60, and 72months, n = 64, GUSTO: 3, 9, and
48 months, n = 114, BIBO: 72 months, 120 months, and 168 months,
n = 121), theywere analyzed independently. For BEPAC, varianceof BEC
proportion was significantly higher at 24 months (0.0057) than at
2 months (0.0003) (med χ2 (1) = 132.99, p < 2.2 × 10−16) (Fig. 3A). For
SEED, variance was significantly higher at 72 months (0.0128) than
60 months (0.0051) (med χ2 (1) = 15.61, p = 7.77 × 10−5) and 48 months
(0.0055) (med χ2 (1) = 18.92, p = 1.35 × 10−5) (Fig. 3B). For GUSTO, var-
iance of estimated BEC proportion was significantly higher at
48 months (0.0119) than at 9 months (0.0018) (med χ2 (1) = 72.42,
p < 2.2e−16) and 3 months (0.0006) (med χ2 (1) = 94.61, p < 2.2e−16)
(Fig. 3C). For BIBO, variance of estimated BEC proportion were higher
at 168 months (0.009) compared to 72 months (0.004) (med χ2

(1) = 9.92, p =0.001) and 120 months (0.005) (med χ2 (1) = 15.74,
p = 7.264 × 10−5) (Fig. 3D). Given the differing associations found for
estimated BEC proportion and chronological age in childhood and
adolescence, we also assessed if the variability of estimated BEC pro-
portion differed between the two developmental stages. Indeed,

p=0.02, Cohen's d=0.357
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Fig. 2 | Regular dental visits associatedwith higher estimated buccal epithelial
cell proportion in toddlers. Higher estimated buccal epithelial cell (BEC) pro-
portion in children at 48months (n = 300)whose parents reportedvisiting a dentist
at least once in a year (0.84 ± 0.10, minima =0.59, maxima =0.98, 1st Quantile =
0.78, 3rd Quantile = 0.91) compared to children who did not (0.80±0.12,
minima=0.50, maxima =0.98, 1st Quantile = 0.72, 3rd Quantile = 0.90). Box plots
of estimated BEC proportion by EpiDISH-RPC method were plotted on the y-axis
against the categorical Yes/No response of yearly dental visits showed significantly
higher BEC proportions, using Kruskal–Wallis test, in children who visited the
dentist at least once a year. This difference was robust to differences in exact age at
sample collection, sex, and maternally reported racial identity. “Source data are
provided as a Source Data file”.
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mirroring the longitudinal analysis, children exhibited less variability
(0.009) in their estimated BECproportion overall than adolescents did
(0.02) (med χ2 (1) = 90.038, p < 2.2e−16).

With this overall increase in estimated BEC variability across
individuals with increasing age, we next explored whether the same
individuals could be estimated reliably to have the highest and lowest
BEC proportions over time utilizing data from the SEED, GUSTO, and
BIBO cohorts available at three time points. Although within a rela-
tively small temporal window, there was no consistent pattern of
relative BEC proportion prediction within the sample. That is, the
individuals with the lowest or highest estimated BEC proportion in
SEED, GUSTO, and BIBO were not the same across the investigated
timepoints. Further, the correlations in SEEDquantifiedbyKendall’s τb
(τb (62) = 0.09, p = 0.29), in GUSTO quantified by Kendall’s τb (τb

(112) = 0.01, p = 0.9) and in BIBO quantified by Kendall’s τb (τb
(119) = 0.09, p =0.14) were the lowest when comparing the estimated
BEC proportion for the same individual at the earliest and latest time
pointsmeasured (i.e., in SEED 48 and 72months, respectively (Fig. 4A),
in GUSTO 3 and 48 months, respectively (Fig. 4B) and in BIBO 72 and
168 months, respectively (Fig. 4C)). Overall, these findings illustrate
increasing variability in estimated BEC proportion with increasing age
and the dynamism BEC composition during early development.

Estimated BEC proportion declined with increasing predicted
epigenetic age in the period from infancy to childhood
Given that estimated BEC proportion declined with chronological age,
specifically from infancy to the endof childhood,wehypothesized that
this association may be reflected in epigenetic ages calculated using
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Fig. 3 | Variability of estimated buccal epithelial cell proportion increased
across pediatric development in longitudinal cohorts. Increased variability of
the estimated buccal epithelial cell (BEC) proportionover time across individuals in
four longitudinal pediatric cohorts, as indicated by the different colors. A In the
boxplots, estimatedBECproportionby EpiDISH-RPCmethodwereplottedon the y-
axis against the BEPAC cohort samples (n = 488) corresponding to the two time
points (2 months, 0.97 ± 0.02, minima =0.82, maxima = 1.00, 1st Quantile = 0.96,
3rd Quantile = 0.98; 24 months, 0.92 ± 0.08, minima=0.50, maxima =0.99, 1st
Quantile = 0.90, 3rd Quantile = 0.96). Variance of BEC proportion was significantly
higher at 24months compared to samples at 2months.B In the boxplots, estimated
BEC proportion by EpiDISH-RPC method were plotted on the y-axis against the
SEED cohort samples (n = 192) corresponding to the three time points (48 months,
0.91 ± 0.07, minima=0.53, maxima =0.99, 1st Quantile = 0.89, 3rd Quantile = 0.95;
60 months, 0.90 ±0.07; minima =0.63, maxima =0.97, 1st Quantile = 0.89, 3rd
Quantile = 0.95; and 72 months, 0.85 ± 0.11, minima =0.53, maxima=0.97, 1st
Quantile = 0.79, 3rd Quantile = 0.93). Variance of estimated BEC proportion was
significantly highest at 72 months compared to 60 months and at 48 months. C In

the boxplots, estimated BEC proportion by EpiDISH-RPC method were plotted on
the y-axis against the GUSTO cohort samples (n = 342) corresponding to the three
time points (3 months, 0.96 ± 0.03, minima =0.80, maxima =0.99, 1st Quantile =
0.95, 3rdQuantile = 0.97; 9months, 0.95 ± 0.04,minima =0.66,maxima =0.99, 1st
Quantile = 0.94, 3rd Quantile = 0.97; and 48 months, 0.79 ± 0.11, minima=0.53,
maxima =0.97, 1st Quantile = 0.73, 3rd Quantile = 0.88). Variance of estimated BEC
proportion was significantly highest at 48 months compared to 3 months and
9 months. D In the boxplots, estimated BEC proportion by EpiDISH-RPC method
were plottedon the y-axis against the BIBOcohort samples (n = 363) corresponding
to the three time points (72months, 0.88 ±0.07, minima =0.65,maxima =0.98, 1st
Quantile = 0.83, 3rd Quantile = 0.93; 120 months, 0.89± 0.07, minima=0.63,
maxima =0.98, 1st Quantile = 0.86, 3rd Quantile = 0.94; and 168 months,
0.82 ± 0.10,minima =0.52,maxima =0.97, 1st Quantile = 0.75, 3rdQuantile = 0.90).
Variance of estimated BEC proportion was significantly highest at 168 months
compared to 72 months and 120 months. Fligner–Killeen test of homogeneity of
variance was used to compare variability. “Source data are provided as a Source
Data file”.
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tools such as the PedBE clock13, Horvath pan-tissue clock14, and skin-
blood clock20. For this analysis, we included only cohorts (n = 3587)
that were not used in training the PedBE clock13 to avoid potentially
biasing the results. As expected, we observed the same negative
association of reference-estimated BEC proportion with PedBE-
estimated age over time in children (Pearson’s on Box-Cox trans-
formed values r (3585) = −0.53, p < 2.2 × 10−16) (Fig. 5A); the association
was stronger in the pediatric samples in the childhood period (<120

months /10 years) (Pearson’s on Box-Cox transformed values r
(2942) = −0.61, p < 2.2 × 10−16) compared to the samples in the adoles-
cence period (>120 months/10 years), which showed no association
between estimated BEC proportion and estimated pediatric age
(Pearson’s on Box-Cox transformed values r (641) = −0.03, p =0.41)
(Supplementary Fig. 11). Although PedBE is the only epigenetic clock
designed specifically for pediatric cheek swabs, we also tested and
observed the same negative association in two other relevant and
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Fig. 4 | Estimatedbuccal epithelial cell proportionswere inconsistentover time
within the same children. Relative buccal epithelial cell (BEC) proportion lacked
consistency over time within the same individuals compared across three time
points (48 months, 0.90 ±0.08; 60 months, 0.90 ±0.07; and 72 months,
0.84 ± 0.11; n = 64 × 3) in the SEED cohort (A), in GUSTO cohort (3 months,
0.96 ± 0.03; 9months, 0.95 ± 0.04;, and 48months, 0.80±0.10;n = 114 × 3) (B) and
in BIBO cohort (72 months, 0.88 ± 0.07; 120 months, 0.89± 0.06; and 168 months,
0.82 ± 0.10; n = 121 × 3) (C). For example, a child with the highest predicted BEC
proportion at 48months was notmore likely than another child to have the highest

predicted BEC proportion at 72 months. To observe the intra-individual variability
in estimated BEC proportion over time, scatter plots of estimated BEC proportion
by EpiDISH-RPC method for the same samples were graphed across time points.
Correlations were determined using Kendall’s tau, and this correlation, while not
significant, also decreased over time, with the correlation between estimated BEC
proportion for the same individuals being the least correlated between 48 and
72 months for SEED cohort, between 9 and 48 months for GUSTO cohort, and
between 72 and 168 months for BIBO cohort. Estimated BEC proportions are pre-
sented as mean± SD. “Source data are provided as a Source Data file”.
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tissue-appropriate epigenetic clocks, i.e., the Horvath pan-tissue
(Pearson’s on Box-Cox transformed values r (3585) = −0.30,
p < 2.2 × 10−16) (Fig. 5B) and skin-blood epigenetic clocks (Pearson’s on
Box-Cox transformed values r (3585) = −0.33, p < 2.2 × 10−16) (Fig. 5C).
In both childhood and adolescence samples, the epigenetic ages esti-
mated from either Horvath’s pan-tissue (childhood: r (2942) = −0.54,
p < 2.2 × 10−16; adolescence: r (641) = −0.47, p < 2.2 × 10−16) or skin-
blood clock (childhood: r (2942) = −0.52, p < 2.2 × 10−16; adolescence: r
(641) = −0.0.22, p < 2.2 × 10−16) revealed a negative association with
estimated BEC proportion; however, the strength of this association
was stronger in childhood.

Developmental period-specific statistical suppression effects of
estimated BEC proportion were observed on the chronological
age prediction of PedBE age
To investigate the contribution of estimated BEC proportion to PedBE
age prediction by chronological age in childhood and adolescence, we
examined models with and without the inclusion of estimated BEC
proportion as a covariate. In childhood samples (<120 months/10
years), we fit the regressionmodel of chronological age and estimated
BEC proportion on PedBE age, which was statistically significant,
F(2,640) = 54,350,p < 2.2 × 10−16, adjustedR2 = 0.97. Next, removing the
estimated BEC proportion from the regression model to leave chron-
ological age as the sole predictor of PedBE age, the model was still
statistically significant, F(1,641) = 91,110, p < 2.2 × 10−16, though with a
slightly lower adjusted R2 = 0.96. We also fit these two regression
models on the adolescent samples (>120 months/10 years). While the
regression model of chronological age and estimated BEC proportion
predicting PedBE age was statistically significant, F(2,640) = 813.4,

p < 2.2 × 10−16, R2 = 0.71, removing the estimated BEC proportion from
themodel and leaving chronological age as the sole predictor of PedBE
age, while still statistically significant, F(1,641) = 1097, p < 2.2 × 10−16

yielded a substantially lower adjusted R2 = 0.63.
When examining the model β coefficients, as expected, the

coefficient for chronological age was ~1, and this held true both in the
sole predictor models and the models with estimated BEC propor-
tion as a covariate, as well as in both developmental periods. This
model coefficient indicates that for every unit of chronological age,
there was a unit increase for PedBE age across all models. However,
for samples in the infancy to childhood period, the model β coeffi-
cient of estimated BEC proportion as the sole predictor of PedBE age
was −220.14, significantlymore negative than when in themodel with
chronological age (Table 2). Similarly, for the adolescence period
samples, the model β coefficient when BEC proportion was the sole
predictor of PedBE age was 4.58, much smaller than when in the
model with chronological age (Table 2). These substantial differ-
ences inmodel β coefficients for estimated BEC proportion indicated
the possibility of statistical suppressor effects in the more complex
regression models28,29. Statistical suppression occurs when the
addition of a variable (estimated BEC proportion) to a regression
model reveals a stronger relationship between the other variable
(chronological age) and the outcome (PedBE age) than was evident
without the suppressor, despite the suppressor having a negative or
non-significant relationship with the outcome28,29. Therefore, we
examined the model β coefficients, structure coefficients, and com-
monality analysis results with the inclusion of estimated BEC pro-
portion for the chronological age prediction of PedBE age in
childhood and adolescence (Table 2).
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Fig. 5 | Estimated buccal epithelial cell proportions decreased with increased
epigenetic age across pediatric samples. A strong significant decrease in esti-
mated buccal epithelial cell (BEC) proportion with epigenetic age was observed in
pediatric buccal samples (n = 3587), using Pearson correlation on Box-Cox trans-
formed estimated BEC proportion. A Scatter plot of estimated BEC proportion
(0.88 ± 0.10) estimated by EpiDISH-RPC method was plotted on the y-axis and
showed a strong significant decline with PedBE clock predicted age (x-axis) in

pediatric buccal samples. B Scatter plot of estimated BEC proportion (0.88 ± 0.10)
by EpiDISH-RPC method on the y-axis exhibited a significant decline with Horvath
clock predicted age (x-axis) in pediatric buccal samples.C Scatter plot of estimated
BEC proportion (0.88 ± 0.10) by EpiDISH-RPC method was represented on the
y-axis and displayed a significant decrease with Horvath skin-blood predicted
age (x-axis) in pediatric buccal samples. “Source data are provided as a Source
Data file”.
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Estimated BEC proportion was not associated with DNA
methylation age residuals corrected for chronological age and
BEC proportion
We next examined whether the association of the residuals of DNA
methylation age regressed onto chronological age correlated with
estimated BEC proportion. These residuals are commonly used in
applications of epigenetic clocks and are referred to as EAA, repre-
senting the predicted concordance between estimated epigenetic age
and chronological age per individual15,30. Therefore, residuals were
obtained from two linear models:

• pediatric epigenetic age regressed only onto chronological age
(beta coefficient for age, b = 1.02, p < 2.2 × 10−16)

• pediatric epigenetic age regressed onto both chronological age
and estimated BECproportion (beta coefficient for estimated BEC
proportion, b = −14.6, p < 2.2 × 10−16)

As expected, residuals from the first model, epigenetic age
regressedontoonly chronological age, showed amoderate correlation
with estimated BEC proportion (Pearson’s on Box-Cox transformed
values r (3585) = −0.20, p < 2.2 × 10−16) (Fig. 6A). However, residuals
from the second model, epigenetic age regressed onto both chron-
ological age and estimated BEC proportion, exhibited no association
with the estimatedBECproportion (Pearson’s onBox-Cox transformed
values r (3585) = −0.00, p = 1) (Fig. 6B).

Further, we also conducted this analysis using age 10 years/120
months as the developmentally relevant age of transition from child-
hood to adolescence. Residuals were separately calculated for samples
in eachof the twodevelopmental periods: childhood and adolescence.
As expected, residuals extracted from the model when epigenetic age
was regressed onto both chronological age and estimated RPC pro-
portions showed no association with estimated BEC proportion, spe-
cifically at both developmental periods (childhood, r (2942) = −0.00,
p = 1; adolescence, r(641) = 0.00, p = 1).

Including DNA methylation-estimated cell-type proportions in
PedBE EAA calculation either strengthened or attenuated asso-
ciations with childhood health-related variables
Accounting for estimated BEC proportion when calculating PedBE
EAA strengthened the association with daily cortisol slope in
monozygotic twins. As a proof-of-concept, we leveraged a unique
publicly available cohort (GES147058), which although small with 22
monozygotic twin pairs (n=44 children), had measured daily salivary
cortisol concurrently with buccal DNAmethylation samples, enabling us
to examine the potential importance of accounting for estimated BEC
proportionwhenpredictingPedBEEAA in the associationwith a relevant
biological variable. Again, residuals were obtained from the two linear
models described above to calculate PedBE EAA; one with and the other
without accounting for estimated BEC proportion (Table 3).

While both calculations of PedBE EAA were positively associated
with daily cortisol slope steepness, an indicator of HPA axis function

and a potential, albeit nuanced, biomarker for physical and mental
health conditions31–33, the model with PedBE EAA accounting for esti-
mated BEC proportion was more appropriate, as indicated by lower
information criterion measures (Table 3). In addition, there was a
stronger correlation, as evidenced by a larger R2, between PedBE EAA
and daily cortisol slope when accounting for estimated BEC variability,
even in monozygotic twins. There was a lower correlation between
model residuals and estimated BEC proportion when PedBE was cal-
culated with versus without accounting for estimated BEC proportion
(Pearson’s on Box-Cox transformed values r (39) = 0.03, p = 0.82 vs. r
(39) = 0.14, p =0.37, respectively) (Supplementary Fig. 12).

Accounting for estimated BEC proportion when calculating PedBE
EAA attenuated the association with OCD diagnosis. We performed
a second proof-of-concept analysis utilizing a cohort including indivi-
duals diagnosed with childhood-onset OCD (n = 28) and controls
(n = 31) to test if estimated BEC proportion influences the association
of PedBE EAA with a child health condition. As described above, we
calculated PedBE EAA from residuals extracted from two linearmodels
and, as expected, epigenetic age regressed onto both chronological
age and estimated BEC proportion showed no correlation with the
estimated BEC proportion (Pearson’s on Box-Cox transformed values r
(57) = 0, p =0.99) (Supplementary Fig. 13). We also confirmed no sig-
nificant association (r (57) = 0.02, p = 0.54) of chronological age on the
residuals of the model fitted on PedBE EAA regressed only onto
chronological age. We compared and fitted two ANCOVA models on
PedBE EAA from residuals accounting for chronological age and for
both chronological age and estimated BEC proportion. Although the
OCD group showed increased PedBE EAA compared to the controls in
both models (Fig. 7), the model fitted on PedBE EAA accounting for
both chronological age and estimated BEC proportion showed an
attenuated association, as demonstrated by the higher although still
significantp value (F(1,37) = 12.59,p =0.001 vs.F(1,37) = 6.29,p =0.016,
respectively). In addition, the model employing PedBE EAA regressed
onto age and BEC proportion was slightly more appropriate (AIC =
241.01) than the model with PedBE EAA regressed only onto age
(AIC = 245.91).

Discussion
A comprehensive understanding of changes in estimated BEC pro-
portion and its variability over pediatric development is critical for the
accurate utilization of DNA methylation and DNA methylation-based
tools in pediatric populations. Taking advantage of a large cohort of
samples from across the pediatric age range, we observed significant
changes with age in BEC and neutrophil proportions, estimated using
robust Epi-RPC estimation, specifically within the developmental per-
iod of infancy through the end of childhood, which is operationally
defined as 10 years old in this cohort24,25,34, but statistically our asso-
ciations held true at 9 and 11 years aswell. However, estimated BEC and
neutrophil proportions changed in opposite directions—that is as BEC

Table 2 | Model indices of developmental period-specific prediction of PedBe age by chronological age and estimated BEC
proportion

Commonality Analysis

Predictor Beta (β) coefficient Structured coefficient Unique contribution Shared contribution Total contribution

Childhood (<120 months)

Chronological age 1.1942 0.9974 0.6517 0.3170 0.9737

Estimated BEC proportion −220.1476 −0.5750 0.0049

Adolescence (>120 months)

Chronological age 0.9247 0.9378 0.7173 −0.0860 0.7177

Estimated BEC proportion 4.5898 0.0231 0.0864

Betamodel regression coefficients, structural coefficients, representing thecorrelationbetween apredictor variable and thepredictor-criterionvalues, and the unique, shared, and total contribution
of each predictor from the commonality analysis are presented.
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proportion decreased, neutrophils increased. Additionally, both cell
types increased in variability with age—both across samples andwithin
longitudinal repeated samples. In contrast, in the adolescent period,
from pre- to late adolescence, we observed no association between
estimated BEC proportion and age. However, estimated BEC propor-
tion variability was much greater in adolescence compared to the
childhood period. BEC proportion decline with chronological age was
recently reported across the lifespan and into older ages, yet we dis-
covered a difference in this association within the pediatric age range,
pointing to the importance of examining cell-type associations with
age within developmental periods, as well as across them4. As expec-
ted, this association also influenced the interpretation of epigenetic
age estimation tools, such as PedBE, in childhoodwhere estimatedBEC
proportion in children’s cheek swabs declined strongly with predicted
pediatric epigenetic age, though, again, not within adolescence.

However, this association was no longer observed if differences in
estimated BEC proportion were controlled for in calculating the DNA
methylation age residuals, also known as EAA. In adolescence,
accounting for estimated BEC proportion improved model fit for EAA
likely by eliminating noise during this more variable developmental
period. Together, these findings indicated the importance of
accounting for variation in BEC proportion in samples collected
throughout childhood and adolescence.

From infancy through childhood, there was a significant decrease
in estimated BEC proportion in cheek swabs. This may be explained by
the oral epithelial morphological changes reported in studies in
rodents, which showed increases in size along with reduced density,
and decreased proliferation of oral epithelial cells with age35,36, as well
as the development of these cells during early-life craniofacial devel-
opment as the head and mouth grow37. In fact, it has been

Table 3 | Comparison of two linear mixed effect models which tested for the association of daily cortisol slope steepness with
PedBE Epigenetic Age Acceleration (EAA): one without accounting for estimated BEC proportion (left column) and one with
estimated BEC proportion correction (right column)

PedBE EAA without BEC correction PedBE EAA with BEC correction

Predictors Estimates CI P value Estimates CI P value

(Intercept) 0.49 −0.20–1.18 0.16 0.52 −0.17–1.20 0.134

Mean cortisol slope 1.48 0.19–2.47 0.024* 1.4 0.28–2.53 0.016

Random effects

a2 0.41

Too 0.24twinpairs 0.23twinpairs

ICC 0.37

Observations 41 41

Marginal R2/ Conditional R2 0.12/0.44 0.14/0.44

AIC 104.4 103.2

BIC 111.2 110

Associations remain significant after multiple-test correction.

r = −0.2, p < 2.2e−16
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Fig. 6 | Correlation of estimated buccal epithelial cell proportion with epige-
netic age acceleration was absent only after correcting residuals for cell type.
A A weak correlation was reported between estimated buccal epithelial cell (BEC)
proportion and DNA methylation residuals corrected for chronological age
(n = 3587), using Pearson correlation on Box-Cox transformed estimated BEC pro-
portion. In the scatter plot, estimated BEC proportion by EpiDISH-RPCmethodwas
plotted on the y-axis and DNAmethylation residuals (0.00± 10.99) regressed only
onto chronological age was on the x-axis. B No correlation of estimated

BEC proportionwith DNAmethylation residuals (−0.00 ± 10.90) corrected for both
chronological age and estimated BEC proportion was observed. In the scatter plot,
estimated BEC proportion by EpiDISH-RPC method was plotted on the y-axis and
DNAmethylation residuals regressed onto chronological age and BEC proportions
were represented on the x-axis. Estimated BEC proportion and DNA methylation
residuals are presented asmean values ± SD. “Source data are provided as a Source
Data file”.
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hypothesized that epidermal growth factor receptor function reg-
ulates normal craniofacial development, especially mandibular mor-
phogenesis, partially through inducing activity in oral epithelial
cells38,39. However, the decrease in BEC proportion was accompanied
by a reciprocal increase in estimated neutrophil proportion, with the
estimated proportion of no other immune cell type showing an asso-
ciationwith chronological age. The directly proportional nature of this
association speaks to the dual functions of the oral epithelium as both
a skin- and mucosa-like barrier with immunological properties to
excludemicroorganisms and fight infections40,41. Neutrophils arewhite
blood cells found primarily in the gingiva, or outer gums, after birth41,
and are the main innate immune cells recruited to protect the oral
epithelium in response to bacterial invasion and inflammation.
Therefore, the oral neutrophil proportion and activity are closely
associated with oral health and the oral microbiome41. Our data are in
support of the hypothesis that this juxtaposition of BEC to neutrophil
proportion estimated within a pediatric cheek swab may be infor-
mative of the immunological activity within a child’s mouth. For
example, 48-month-old children in the GUSTO cohort whose parents
brought them to the dentist at least yearly had a higher BEC pro-
portion than those children who did not. This may be an indicator of
an association of oral health events or perhaps oral health prevention
and BEC proportions in young children. As those children whose
parent’s reported fear of the dentist as their primary reason for not
visiting had the lowest BEC proportion compared to all other groups
reporting not visiting, this may indicate BEC is lowest in the group
avoiding in-office dental care regardless of need, rather than a diffi-
culty of access or absence of concerns in this cohort. However, daily
oral hygiene at 48 months old was not associated with BEC propor-
tions, so this may indicate an association with either deep cleaning or
the necessity of a dental visit as precipitating these oral cell-type
differences. Many factors can alter the developing oral microbiome.
Though factors known to alter the microbiome, such as breastfeed-
ing status and mode of delivery, were not associated with inter-
individual variability in BEC proportion within the 3-month-old
cohort, we note that the variability was particularly low in the
youngest cohorts. These factors, and other untested exposures, may
contribute to variability as these children age and should be a con-
sideration for further research.

Not only did the average estimated BEC proportion decrease and
neutrophil proportion increase during childhood (<120 months/10
years), but both cell types also increased in variability with age,
including adolescence (>120 months/10 years). Therefore, the young-
est infants in these cohorts had the highest BEC proportions, and they
were also the least variable. In contrast, adolescents were the most
variable. An individual’s estimated BEC proportion in early life did not
accurately predict estimated BEC proportion at later time points, with
decreasing correlations between larger time steps within the first few
years of life. Taken together, these results indicated low intra-
individual consistency coupled with robust inter-individual trends
toward variability with age. Therefore, it is tempting to speculatemost
children experience an increase in immunological activity in the oral
epithelium with age, but this level of activity, indicated by an increase
in estimated neutrophil proportion and subsequent decrease in esti-
mated BEC proportion, varies both within and between individuals
with age in early life. While we may not see an overall increase in oral
immune cells, specifically neutrophils, throughout adolescence, we do
see a greater amount of variability in oral neutrophils (and inversely
BECs) within this developmental timeframe. For example, one study of
adolescent cheek swabs found a decrease in BEC proportion with a
subsequent increase in oral cells containing the bacterium Actinoba-
cillus actinomycetemcomitans with the introduction of orthodontic
appliances, which may speak to one avenue of variability observed in
adolescence9. There are many other potential explanations for this
variability, including tooth development, tooth loss and eruption, oral
hygiene and habits, use of orthodontic or dental apparatuses, diet and
environmental exposures, and other oral health concerns8,9,42–44. These
events may also differ across developmental stages, such as the
importance of tooth loss and eruption in childhood versus oral
hygiene later in the pediatric period, but also may point to any event
that would increase blood in the mouth transiently. One compelling
possibility is the incidence of pediatric gingivitis2,5,6,45–47, an inflamma-
tory condition of the gums reflecting bacterial challenge, which is
especially common during pediatric development and can appear
within the first few months of life48. This inflammation is often tran-
sient and superficial, but indicates the increasing presence of gingival
Bacteroides melaninogenicus, which is mostly absent in young chil-
dren but then develops to be almost universally present in themouths

p = 0.001, Cohen's d = 0.43 p = 0.016, Cohen's d = 0.33
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Fig. 7 | Association of PedBE epigenetic age acceleration and childhood-onset
OCDdiagnosis attenuated after accounting for estimatedbuccal epithelial cell
proportions. A significant but attenuated association of PedBE Epigenetic Age
Acceleration (EAA) with childhood-onset obsessive-compulsive disorder (OCD)
diagnosis was observed when EAA calculation accounted for both chronological
age andestimatedBECproportion in the cohort (ANCOVA). Box plots of PedBE EAA
on the y-axis against the OCD-cases (n = 28, 0.82 ± 1.57, minima= −1.34, maxima =
5.36, 1st Quantile = −0.30, 3rd Quantile = 1.78)) and controls (n = 31, −0.74 ± 2.04,

minima= −4.06, maxima= 4.10, 1st Quantile = −2.31, 3rd Quantile = 0.39) showed a
significant but attenuated association, when PedBE EAA accounted for both
chronological age and estimated BEC proportion, whereas when PedBE EAA cor-
rected only for age a lower p value was obtained when OCD-cases (0.16 ± 1.57,
minima= −2.76, maxima= 4.00, 1st Quantile = −0.73, 3rd Quantile = 0.95) were
compared to the controls (−0.95 ± 1.86, minima = −4.01, maxima = 3.11, 1st Quan-
tile = −2.41, 3rd Quantile = 0.32). “Source data are provided as a Source Data file”.
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of adolescents, who have the highest prevalence of gingivitis of any
age group49–51. The presence and severity of both gingivitis and similar
oral health events have been associated with increased oral neutrophil
proportions and/or decreased BEC proportions3,41,52. Future research is
needed to characterize the oral environment and other features
associated with BEC proportion in pediatric populations.

As estimated BEC proportion was strongly associated with
chronological age in childhood (<120 months/10 years), it was also
associated with predicted epigenetic age based on pediatric cheek
swab samples. The PedBE clock13, specifically trained inpediatric cheek
swab samples, showed an even stronger association between calcu-
lated epigenetic age and estimated BEC proportion than chronological
age in childhood. This indicates epigenetic tools may be particularly
sensitive to age-related changes in cell type. However, there were also
significant associations between estimated BEC proportion and pre-
dicted epigenetic age using both the Horvath pan-tissue14 and Horvath
skin-blood20 clocks during early life, whichwere largely trained outside
the pediatric age range. This association between cell-type and epi-
genetic age prediction in all cheek swab-relevant clocks may be due to
the computational approaches underlying epigenetic clock creation,
which would likely prioritize age-related cell-type differences in
selection of informative DNA methylation sites13,14. Similarly, multiple
epigenetic clocks, trained exclusively in adults, were shown to be
associated with age-related immunological cell-type changes in
blood53. However, none of the DNA methylation sites chosen for the
PedBE clock are used for cell type prediction in buccal swabs23,54,
suggesting they may be influenced by cell type but are not the sites
most indicative of cell identity. Further evidence for thiswere the large
model beta coefficients of estimated BEC proportion when predicting
PedBE age, even accounting for chronological age in both childhood
and adolescence.

The increases in β coefficients when estimated BEC proportion is
in the model with chronological age to predict PedBE, as well as
examination of the model fit (R2), structural coefficients, and com-
monality analysis, suggested statistical suppression effects with esti-
mated BEC proportion across the pediatric age range. Specifically, we
observed a classical suppression effect in childhood and a negative
suppression effect in adolescence. In childhood, the high common
variance measured by the commonality analysis implies that chron-
ological age and BEC proportion explained overlapping components
of PedBE age variance. This indicates a classical suppression effect,
where estimated BEC proportion enhanced the predictive power of
chronological age by accounting for variance that chronological age
cannot explain alone. This results in only a small improvement in
model fit, as chronological age alone is already predictive of PedBE age
and estimated BEC proportion is correlated with chronological age.
However, in adolescence, the low common variance coupled with a
more substantial model fit improvement, suggests a negative sup-
pression effect, which is notably statistically rare28,29,55. In this context,
we observed estimated BEC proportion was slightly suppressing irre-
levant variance in chronological age, despite their lack of association in
adolescence, which subsequently allowed the model to better explain
the variance in PedBE age. Together, these indices suggested that
including estimated BEC proportion helps clarify the prediction of
PedBE age made by chronological age by eliminating noise. As such,
though for differing reasons, we recommend researchers to account
for estimated BEC proportion when examining EAA in children and
adolescents. This association of epigenetic age with cell type in early
life may contribute to the relative accuracy of the PedBE clock in
pediatric cheek swabs in comparison to other epigenetic clocks10.
Therefore, the power of epigenetic age as a biomarker is likely related
to some extent to the associations between cell-type proportions and
the trait of interest56. The expected changes in cell-type proportion
heterogeneity with agemay not be synonymous to, but informative of
biological age prediction.

Due to the stronger association between estimated BEC propor-
tion and predicted epigenetic age than chronological age, it was not
surprising to find a moderate correlation between EAA and BEC pro-
portion during childhood. However, the addition of differences in
estimated BEC proportion as a covariate when calculating EAA led to
the disappearance of the correlation between EAA and estimated BEC
proportion. These data thus strongly support and expandour previous
recommendation when creating the PedBE clock1 to correct for esti-
mated BEC proportionwhen calculating PedBE EAA. Given the primary
use of PedBE age, or any epigenetic age estimation, to compare these
residuals (PedBE EAA) from the regression of chronological age on
PedBE age, incorporation of estimated BEC proportion, in calculating
EAA can lead to robust and accurate epigenetic age estimates. This, in
turn, will likely enhance the validity and replicability of the resulting
statistical analyses. Given the primary use of PedBE age, or any epi-
genetic age estimation, to compare these residuals (PedBE EAA) from
the regression of chronological age on PedBE age14,56, incorporation of
estimated BEC proportion, in calculating EAA can lead to robust and
accurate epigenetic age estimates. This, in turn, will likely enhance the
validity and replicability of the resulting statistical analyses. If this is
not possible, or not preferred, then we recommend evaluating for
associations and heteroskedasticity with estimated BEC proportion
within pediatric samples and correct models accordingly. Due to sta-
tistical concerns with confounding and heteroskedasticity across the
pediatric age range, specifically due to the increased variability
observed with increased age, we would also extend this sentiment to
all epigenetic age investigations employing pediatric cheek swabs. We
also caution researchers in future studies to not assume BEC propor-
tion stability in pediatric cohorts over time, especially when con-
ducting longitudinal research or when combining independent, age-
heterogeneous samples.

With the associations of estimated BEC proportion and EAA cal-
culated by all cheek swab-relevant epigenetic clocks, it was important
to consider the differences between models when calculating EAA
accounting for this cell type. For example, controlling for differences
in estimated cell-type proportions in bloodwas found to attenuate the
associations of all-causemortality with both the Hannum and Horvath
pan-tissue clocks1. Therefore, two proof-of-concept models were
considered: a categorical ANCOVA comparison of childhood-onset
OCD diagnosis and a linear mixed model comparison of diurnal cor-
tisol slope steepness in monozygotic twin pairs. These comparisons
are indicative of two areas of research in which PedBE EAA has been
applied, i.e., developmental perspectives on mental health and stress
responses13,19,57–59. In both examples, accounting for BEC proportion
during PedBE EAA calculation resulted in a more appropriate model,
based on both the information criterion and magnitude of the asso-
ciation ofmodel residuals with BEC proportion. However, thesemodel
differences may be exaggerated over larger timescales or with
increasing variability. Although robustly associated with PedBE EAA,
these regressions could be attenuated or amplified when considering
estimated BEC proportion depending on variables of interest, cohort
characteristics, and statistical assumptions of modeling. These find-
ings demonstrate the importance of accounting for estimated BEC
proportion when exploring potential associations with pediatric epi-
genetic aging mirroring previous findings in other age groups and
tissue types3,4,53.

While these analyses had many strengths, especially the large
sample size and range of ages from 2months through 20 years of age,
our study also had some limitations. The present study analyses were
appropriately powered and the pediatric cheek swab sample sizes
were larger than have been analyzed in this developmental window in
previous studies; however, a more granular spread across a wider
range of ages may reveal a clearer picture of the association between
estimated BEC and age. Similarly, these data did not have accom-
panying genetic information, and given the association between DNA
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methylation and the underlying genetic architecture for the epigenetic
clocks60,61, analyses would benefit from examining the potential of
genotype to affect these cell-type predictions and associations with
age. While the cohorts were processed together, and buccal samples
from the majority of the cohorts were run by the same facility, the
combining ofmultiple cohorts (450K and 850K) rather than one, large,
uniform collection likely introduced some technical variation at this
level. However, in the context of DNA methylation-based calculated
cell types, we demonstrate that EpiDISH-RPC-estimated BEC propor-
tions are congruent between arrays, irrespective of whether all the
CpGs in the EpiFibIC reference are used for BEC estimations or limiting
the references to the shared CpGs between the arrays. This finding
highlights EpiDISH-RPC as the robust algorithm for BEC estimations,
specifically when collating proportions across the two platforms.
Although four large longitudinal cohorts were available, the inclusion
of more repeated samples with additional time points and using
identical methods of collection and storage would have enhanced the
robustness of the cell-type proportion variability findings across the
pediatric age range, especially in relation to intra-individual variability.
Similarly, while oral-microbiome-relevant information was available
for the infant cohorts, these analyseswould have benefited fromdirect
and more encompassing assessments of the children’s oral health and
oral microbiome. Finally, although multiple cell-type estimation
references were investigated and compared with previous cytology
findings in the literature, our analyses did not include true cell counts
from cytology or histology although previous research has docu-
mented generally high concordance. However, this approach allowed
for the examination of the precise subset of probes used for BEC
proportion estimation by estimation method and array platform,
which revealed array-specific differences with CPmethod, either using
equality or inequality constraint, that should be considered if using
this method in the future.

The strong associations of chronological age with both BEC and
neutrophil average proportion in childhood, but not in adolescence,
and increasing variability with age across the pediatric periodmust be
taken into consideration when using pediatric cheek swabs for any
analyses in which cell type is relevant, such as determination of epi-
genetic age. The model indices suggested accounting for estimated
BEC proportion could meaningfully affect PedBE age prediction, and
subsequently EAA, in both childhood and adolescence. This would be
particularly important if oral differences were confounded with both
estimated cell-type proportions—either through correlation or het-
eroskedasticity—and variables of interest, such as in adolescent
populations where parental income can be associated with both the
variable of interest and whether the child has orthodontic appliances,
which reduce BEC proportions in pediatric cheek swabs9,62,63. Cell-
type-sensitivemolecular studies based on cheek swab samples should
consider the relations of the oral landscape to differences in both
amount and variability of estimated cell-type proportions and inves-
tigate how the oral environment is related to exposures and pheno-
typic outcomes. Taken together, these findings provide robust,
replicable, and interpretable results from one of the very few tissues
that can be obtained safely and noninvasively in pediatric
populations.

Methods
Ethics approval and consent to participate
Themajority of the datasets were obtained from the publicly available
GEO repository and details regarding ethics approval of these cohorts
were presented in a previous publication1. In addition, research related
to five cohorts that are not deposited in GEO (SEED, BEPAC, APrON
Neurotox, OCD, and Cohort 12) presented in this manuscript was
performed in compliance with local, state, and national regulations for
the ethical treatment of humansubjects. Ethics approval information is
provided in the Supplementary Methods.

Developmental period definition
Here, we define developmental periods across the spanof youth based
on the existing American Psychological Association age guidelines and
American Academy of Pediatrics, though these are corroborated in
other disciplines, such as pediatric nursing, as well. Infancy is defined
as 0–2 years, childhood from 2 to 10 years, preadolescence from 10 to
12 years, and adolescence from 12 to 20 years24,25,34. Though the exact
age span varies across individuals and is based primarily on physiolo-
gicalmaturitymilestones,weuse these age ranges as our development
guides.

DNA methylation data preprocessing
Data preprocessing and subsequent analyses were performed in the R
statistical environment (version 4.0.3). Multiple sample quality checks
were performed64,65, and sampleswere excluded if they failed technical
control metrics, such as extension, hybridization, specificity, array
staining, target removal, and bisulfite conversion. Samples with poor
detection p values in >1% of the probes and in which <3 beads con-
tributed to the signal for >1% of the probes were also eliminated. Sex
was predicted from the DNA methylation intensities on the sex
chromosomes.

Cell-type estimation
Cell types in cheek swabs were estimated using the Smith (2015)
method54 and HEpiDISH, an iterative hierarchical version of the EpiD-
ISH R package23. BEC proportions in saliva were predicted based on a
buccal dataset (accession: GSE46573) and a FACS-sorted leukocyte
dataset (accession: GSE35069) as described by Smith et al.54 using the
CP approach60. The HEpiDISH algorithm embedded in the EpiDISH R
package computes sample-specific cellular proportions using three
methods: CP (using the default inequality constraint unless otherwise
specified)60; CIBERSORT (CBS)61; and RPC66. As estimated cell-type
proportions are not normally distributed, we used the nonparametric
Kendall’s tau correlation67 to determine if the reference-estimated BEC
proportion was correlated between the methods implemented in the
EpiDISH R package and the Smith (2015) approach.

To ensure that our cell-type estimations are as comparable and
robust across models as possible, we compared BEC proportions esti-
mated by different algorithms using both nonconstrained (EpiDISH-
RPC, EpiDISH-CBS) and constrained methods (EpiDISH-CP, inequality
constraint), Smith (2015)23. One CpG (cg00769161) used to infer buccal
cell types in the EpiFibIC reference (from EpiDISH) was different from
those used in the Smith (2015) method. Eight CpGs (cg01012879,
cg05344747, cg25757820, cg26538782, cg02780988, cg10624395,
cg11160673, cg16429499) from the HEpiDISH blood reference (188
CpGs) were shared with the Smith (2015) reference (500 CpGs). None of
the 94 DNA methylation sites used to calculate PedBE age overlapped
with CpGs used for cell-type deconvolution in the EpiDISH and Smith
(2015) methods13. Although the estimated BEC proportion was com-
parable across all approaches (Kendall’s τb (4624) =0.64 to 0.91,
p<2.2 × 10−16), both EpiDISH-RPC and EpiDISH-CBS consistently pre-
dicted higher BEC proportions across all cohorts, were strongly corre-
lated (Kendall’s τb (4624) =0.91, p<2.2 × 10−16), and showed the same
correlations when the cohorts were investigated independently (Sup-
plementary Fig. 1). Therefore, all results were presented with predicted
cell-type proportions derived from EpiDISH-RPC estimation.

Epigenetic age calculation
Pediatric epigenetic age was calculated using the publicly available
PedBE tool (available from https://github.com/kobor-lab/Public-
Scripts/blob/master/PedBE.Md)13, which multiplies the DNA methyla-
tion beta values of 94CpG sites by predeterminedweights and adds an
intercept to estimate epigenetic age. DNA methylation age residuals
were extracted from a linear model of pediatric epigenetic age
regressed onto chronological age or chronological age and BEC
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proportion. As recommended for the PedBE tool, data were back-
ground color corrected using the noob R package13.

Horvath pan-tissue and Horvath skin-blood epigenetic clock ages
were calculated using the online DNA Methylation Age Calculator
developed by the clocks’ creator (https://dnamage.genetics.ucla.edu/
new)14,20.

Estimated cell-type proportion regression analysis
Linear regression in stats R package with Box-Cox transformation was
used to evaluate the associations between chronological age and RPC-
estimated cell-type proportions in pediatric cheek swab samples. Box-
Cox transformation using the boxcox function in the mass R package
was used to transform skewed estimated cell-type proportions into an
approximately normal distribution68. Two estimated proportions were
tested across all datasets: BECs (right-skewed) and neutrophils (left-
skewed). In addition, linear regressions of Box-Cox transformed RPC
estimates of BEC proportion and both epigenetic age and EAA resi-
duals were performed. All model assumptions for these analyses were
tested and met.

Further, to allow for different slopes during childhood and ado-
lescence for the regression between chronological age and estimated
BEC and neutrophil proportions, we performed a spline regression
analysis using the ss function in npreg R package by including a knot at
the developmentally relevant transition period.

Technical, demographic, and oral health measures with esti-
mated cell-type proportion
To examine whether estimated cell-type proportions differed by the
technology of the two most commonly used DNA methylation arrays,
we used a Pearson’s correlation test on a subset of samples from the
APrON FetalPro and APrON Neurotox cohorts (24 matched pairs) for
which we had obtained DNAmethylation measurements using both the
450K and 850K. Next, we explored whether the estimated BEC pro-
portion differed according to the sex and oral-microbiome-relevant
early-life variables including mode of delivery and breastfeeding status
using both 450K and 850K platforms, both represented in these data,
using Kruskal–Wallis test. Sex, inferred from DNA methylation inten-
sities of the XX and XY chromosomes, was explored across all the
samples but excluding samples that were represented at more than one
timepoint in a dataset, while mode of delivery and breastfeeding status
were examined in only the APrON cohort for which these data were
available (n= 124).

Additionally, we employed the GUSTO cohort to investigate the
potential association of estimated cell-type proportion andoral health.
The GUSTO cohort timepoint at 48 months old asked parents if their
children brushed their teeth daily and if they took their child to the
dentist yearly with yes or no response options. These responses were
compared to estimated BEC type proportion in children with DNA
methylation data at 48 months (n = 298) using an ANCOVA model
controlling for age at DNA methylation sample, sex, and maternal
reported ethnicity. Of parents who reported they did not take their
child to the dentist yearly, they were asked to provide the primary
reason why they had not with the available options of no money, no
time, transportation difficulties, fear of drills/injections and dentists,
the child’s teeth did not bother them, and other reasons.

Analysis of estimated cell-type proportion variance in long-
itudinal cohorts
Four cohorts with repeated longitudinal BEC sampling (BEPAC, SEED,
GUSTO, and BIBO) were independently utilized to examine variability
of RPC-estimated BEC proportion over time. The BEPAC cohort con-
sisted of 244 child pairs for whichDNAmethylation datawere available
at 2 and 24 months. Data at three time points (48, 60, and 72 months)
for 64 children were quantified for the SEED cohort, whereas data at 3,
9, and 48months for 114 children inGUSTO cohort and data at 72, 120,

and 168 months for 121 children in BIBO cohort was used in this ana-
lysis. The Fligner–Killeen test of homogeneity of variance69 was per-
formed to compare variances for the non-normally distributed RPC-
estimated BEC proportion.

Assessment of estimated BEC proportion contribution to PedBE
age prediction
To further understand the association of estimated BEC proportion to
the prediction of PedBE age by chronological age, we compared the
differences in model β coefficients for estimated BEC proportion
across the two developmental periods. Upon discovering large dis-
crepancies in estimated BEC proportion model β coefficients when
BEC proportion was a covariate and when BEC proportion was a sole
predictor, we investigated the possibility of statistical
suppression28,29,55. This exploration included the effects of estimated
BECproportion as a covariate to chronological age inpredicting PedBE
age, specifically: (a) employing model indices including model fit
(adjusted R2) and (b) structure coefficients extracted from the
regression models, which were fitted using the stats R package70.
Structure coefficients reflect the correlation between a predictor
variable and the outcome-predicted values and reflect the unique
strength of the predictor as specified by the model28. Additionally, we
conducted a commonality analysis using the yhat R package71 to dis-
sect the unique contribution of the independent predictors and the
shared contribution of the predictors in explaining the overall variance
of the model29.

Estimated cell-type proportion correction when calculating
PedBE EAA in an OCD cohort
Previously biobanked cheek swabs from a cohort of children with
pediatric-onset OCD were drawn from BC Children’s Hospital BioBank.
After sample preprocessing, 28 OCD-affected cases and 31 age-matched
controls from theWisconsin Study of Families andWork cohort ranging
in age from ~7 to 18 years remained. PedBE EAA was calculated using
residuals extracted from linear models by regressing chronological age
alone onto biological age (PedBE EAA without BEC) and by regressing
both chronological age and estimated BEC proportion onto biological
age (PedBE EAA with BEC). Subsequently, we fitted two ANCOVA mod-
els, on PedBE EAAwith BEC and PedBE EAAwithout BEC, accounting for
covariates, including age, predicted sex, and batch variables.

Estimated cell-type proportion correction when calculating
PedBE EAA in cortisol diurnal slope in monozygotic twins
In one cohort (accession: GSE147058) of monozygotic twins recruited
prospectively for a longitudinal investigation of child health72, daily
cortisol slope was measured from saliva samples concurrently with
BECDNAmethylation samples. The children ranged in age from ~7.5 to
9 years (mean= 8.5 years). The methods for saliva collection and daily
cortisol slope calculation are described elsewhere27. Slope coefficients
were negative, as cortisol declines over the course of the day27. PedBE
EAA was calculated as described above for the OCD cohort. Individu-
ally, a mixed effect linear model was run with the lmer function in the
lme4 R package with a random effect of twin pair, where PedBE EAA
with and without BEC predicted daily cortisol slope.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available in the GEO SuperSeries under
accession numbers GSE137503 and GSE147058 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE147058. However, data from five
cohorts (SEED, BEPAC, APrON Neurotox, OCD, and Cohort 12) are not
yet publicly available because they include sensitive information
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related to children’s epigenomics, mental health, trauma exposure,
and therapy. To request access to this data, kindly contact the corre-
sponding author and expect a response within 2 weeks. Source data
are provided with this paper.

Code availability
Code for this manuscript is available https://github.com/kobor-lab/
PedBE_BEC/blob/main/Script.
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