
UC Davis
UC Davis Previously Published Works

Title
Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in 
Elemental Profiling of Wine by ICP-MS

Permalink
https://escholarship.org/uc/item/6f44q78x

Journal
Molecules, 22(10)

ISSN
1420-3049

Authors
Godshaw, Joshua
Hopfer, Helene
Nelson, Jenny
et al.

Publication Date
2017

DOI
10.3390/molecules22101609
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6f44q78x
https://escholarship.org/uc/item/6f44q78x#author
https://escholarship.org
http://www.cdlib.org/


molecules

Article

Comparison of Dilution, Filtration, and Microwave
Digestion Sample Pretreatments in Elemental
Profiling of Wine by ICP-MS

Joshua Godshaw 1,2, Helene Hopfer 3, Jenny Nelson 1,2,4 and Susan E. Ebeler 1,2,* ID

1 Department of Viticulture & Enology, University of California, One Shields Ave, Davis, CA 95616, USA;
jgodshaw@ucdavis.edu (J.G.); jenny_nelson@agilent.com (J.N.)

2 Food Safety & Measurement Facility, University of California, One Shields Ave, Davis, CA 95616, USA
3 Department of Food Science, The Pennsylvania State University, 202 Food Science Building, University Park,

PA 16802, USA; hopfer@psu.edu
4 Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA
* Correspondence: seebeler@ucdavis.edu; Tel.: +1-530-752-7150

Received: 1 September 2017; Accepted: 23 September 2017; Published: 25 September 2017

Abstract: Wine elemental composition varies by cultivar, geographic origin, viticultural and
enological practices, and is often used for authenticity validation. Elemental analysis of wine
by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential
for non-spectral interferences and plasma instability arising from organic matrix components.
Sample preparation mitigates these interferences, however, conflicting recommendations of best
practices in ICP-MS analysis of wine have been reported. This study compared direct dilution,
microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to
filtration and filtration followed by acidification, in elemental profiling of one white and three
red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method,
with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration
treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope
dilution determination of copper based on natural abundances and the 63Cu:65Cu instrument response
ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall,
microwave digestion did not compare favorably, and direct dilution was found to provide the best
compromise between ease of use and result accuracy and precision, although all preparation strategies
were able to differentiate the wines.

Keywords: ICP-MS; sample preparation; wine analysis; isotope dilution; elemental profiling

1. Introduction

The analysis of the elemental composition of wines is important for several reasons. Several
elements, such as As, Cd, and Pb, can have adverse health effects in humans even at low concentrations
(<100 µg/L), while others (i.e., Cu) are essential nutrients that only become toxic at levels greater than
typically encountered in the human diet [1], or are of importance for wine stability or development [2].
In addition, wine elemental composition has been shown to vary with origin, grape variety,
environmental conditions, and viticultural and winemaking practices [2–6]. This variation in the
elemental profile of wines can be utilized to distinguish between wines of different geographic origin
as a means of authenticity validation. However, sample preparation methods are inconsistent among
studies and have been shown to impact the results, with no consensus of which method is more
appropriate for the elemental profiling of wines for authenticity purposes [7,8].
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Wine elemental analysis is usually performed using atomic absorption and emission spectroscopy
techniques such as Flame Atomic Absorption/Emission Spectroscopy (FAAS and FAES) and
Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) or Mass Spectrometry (ICP-MS).
ICP-MS reports of sub-parts per billion detection limits, multielement analysis capabilities, and a
wide linear dynamic range have made it an often used technique for wine elemental analysis [9].
However, elemental determination in wine, via plasma sources, presents a challenge analytically
due to the risk of non-spectral interferences by organic matrix components, primarily ethanol
when present in concentrations from 7 to 20% [7,10]. As such, direct analysis of wine by ICP-MS
can affect plasma conditions and sample transport thus causing variations in signal stability and
intensity [9,10]. Modifications on the instrumental configurations, e.g., using a microwave desolvation
chamber, employing an internal standard (IS) and/or collision cell technology in combination with
matrix-matched calibration are used to mitigate the effects and allow for direct wine analysis by
ICP-MS [8].

Several sample preparation methods have been employed for the elemental analysis of wines,
including direct dilution by factors ranging from one to 10, UV-assisted digestion, and open or
closed vessel acid digestion assisted by microwave radiation [4,6–12]. It is important to note that
no single sample pretreatment is recommended for the elemental profiling of wines by governing
bodies. For example, official methods of the International Organization for Vine & Wine (OIV) call for
alcohol removal by evaporation in Fe and Zn analysis while suggesting simple dilution for Cu and Mg
analysis [13]. A standard multielement method requires a twenty-fold dilution in 5% HNO3 along
with external calibration for ICP-MS analysis but suggests microwave digestion using concentrated
nitric acid be applied to wines containing more than 100 g/L of sugar, although no digestion procedure
is provided [13]. While high dilution factors help to minimize matrix effects in ICP-MS analysis, this
can limit the ability to measure trace and ultratrace elements.

Examination of the results obtained using different sample preparation methods yields conflicting
recommendations of best practices in wine elemental analysis. For instance, Gonzalvez et al. [7]
concluded microwave assisted acid digestion should be used for wine elemental analysis after
comparing the elemental composition of twelve Spanish red wines measured by ICP-MS after direct
dilution, open vessel acid digestion, and microwave assisted closed vessel acid digestion pretreatments.
The authors found nearly congruent results between both acid digestion methods with the exception
of Ti and Li, which exhibited higher concentrations in the microwave digested samples. They also
found significant differences for Mg, Cr, Fe, and Ba concentrations when comparing acid digestion
with direct dilution (and matrix-matched calibration standards) and attributed these differences to
plasma interferences due to the presence of alcohol and organic compounds.

A less decisive study by Grindlay et al. [8] compared microwave assisted acid digestion to direct
dilution of two white, one red, and one brandy wine samples by measuring fifteen elements by ICP-MS.
The authors reported lower detection limits and reduced matrix effects on ICP-MS measurements
when the wine samples were microwave digested prior to analysis. However, they also suggested that
direct dilution employing an internal standard was adequate for elemental analysis of wines, noting it
was more user friendly and time efficient. Similar conclusions have been made in the comparison of
microwave-assisted digestion with direct dilution pretreatments in wine elemental analysis employing
an internal standard to account for plasma variability [4,11,14].

The contradicting recommendations for sample preparation treatments in ICP-MS analysis
substantiate an experiment to compare them once again. Previous reports comparing sample
preparation strategies in wine ICP-MS analysis do not employ the technology of a collision/reaction
cell that is commonly used in most modern ICP-MS instruments. Collision/reaction cell technology
(CRC) has been demonstrated to reduce the effects of spectral interferences in elemental analysis
of wine by ICP-MS and allowed for the application of lower dilution factors [15]. Notably, it was
determined that CRC must be applied for ultratrace analysis of 47Ti and 52Cr in wine to account for
spectral interferences, both of which are implicated in differences observed among sample preparation
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strategies of wine by ICP-MS analysis [7,8,15]. Recent work in wine elemental analysis by ICP-MS has
taken advantage of CRC and thus it is applied in this study [6,12,15].

In addition to microwave assisted acid digestion (MW) and direct dilution (DD), the use of
filtration in sample preparation procedures is assessed. Filtration in wine analysis has been previously
applied to remove particulate matter after dilution with an acid solution [5] but has not been fully
investigated as a sample preparation step for ICP-MS analysis. The use of filters could impact the
determination of elements that are known to form complexes with polyphenols, polysaccharides, and
proteins in wine conditions [16]. Copper, for example, has been demonstrated to form complexes
with polyphenols and tannins in red wines and model wine solutions via fluorometric quenching
experiments [17]. The stability of these organic metal species varies greatly with pH and thus two
treatments were devised to investigate the use of filters in wine sample preparation for ICP-MS analysis:
filtration of the wine followed by acidification (FA) and acidification followed by filtration (AF).

To assess the accuracy and precision of each sample preparation treatment, recovery of isotopically
labeled 65Cu and 206Pb spikes in addition to multi-element spiking experiments are employed, as no
certified reference material (CRM) for elemental analysis of wine is currently available. Approximate
levels of copper and lead in wines of below 0.1–10 mg/L and <100 µg/L, respectively, as well as atomic
mass were considered in the selection of these isotopes [18]. Wine copper and lead levels are often
monitored to assess wine stability or to account for associated health risks and assess the impact of
anthropogenic activities. In fact, wine copper concentration is limited to 0.5 mg/L in the United States
and the OIV limits wine lead levels to a maximum of 0.15 mg/L [13,19]. Additionally, copper is used
as a viticultural antifungal agent and can be added to wine after fermentation as copper sulfate, up to
6.0 mg/L, to remove undesirable sulfidic aroma compounds via precipitation [19]. However, effective
removal of added copper as its precipitates is often not achieved by current filtration strategies which
some have attributed to the small particle size of the precipitates [20,21]. This can cause increased
copper concentration in the finished wine where stability issues could arise, further justifying the need
for its routine analysis.

An advantage of using stable isotope standards for spiking experiments is the potential to measure
isotope ratios. Wine Sr and B isotope ratios have been investigated previously as potential indicators
of geographical origin [22,23]. However, proper isotope dilution in ICP-MS analysis of wine has only
been applied for lead determination [14,24–26]. In isotope dilution, isotopically labeled standards serve
as both the internal standard and calibrator, offering the advantage of exact matrix matching of each
sample. Isotope dilution offers comparable accuracy and has been shown to improve measurement
precision of Pb in wine compared to external calibration [14,24]. Properly developed isotope dilution
methods rely on the use of established isotope ratios or the variation in isotope ratio of the natural
sample once it is spiked. Ultimately, this allows for a single point calibration to be used in routine
sample analysis, eliminating the need for separate calibration standards, thus, decreasing the length
of the analytical run and improving sample throughput. To our knowledge, copper determination
in wine by isotope dilution with ICP-MS has not been previously reported, and its feasibility was
thus investigated.

Here, we aim to compare the accuracy, precision, and detection limits of 43 isotopes in four
wines by ICP-MS utilizing four sample preparation treatments (FA, AF, DD, and MW) and employing
spike recovery of 65Cu and 206Pb stable isotope spikes besides multi-element spiking experiments.
Additionally, we undertake preliminary exploration of isotope dilution as a calibration strategy for
copper determination in all wines by each sample pretreatments.

2. Results and Discussion

2.1. Detection Limits and Method Blanks

Instrumental detection limits calculated using matrix matched calibration blanks (4% Ethanol,
5% HNO3) differed slightly between the direct methods (DD, FA, AF) and microwave digestion
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(MW), with MW detection limits being higher for twenty-three of the forty-three isotopes measured,
Table 1. Equivalent instrumental detection limits were found for 93Nb, 125Te, 137Ba, and 147Sm. Isotopes
detected in the method blanks for each sample preparation treatment were evaluated as the mean
(n = 3) and differed with respect to preparation method as shown in Table 1. It is clear from inspection
of mean method blank concentrations that microwave digestion (MW) presents the greatest risk of
sample contamination, as evidenced by noticeably higher results (>1 µg/L) for 27Al, 47Ti, 52Cr, 55Mn,
59Co, 60Ni, 66Zn, 98Mo, 181Ta, and 182W, while 7Li was found at levels near or exceeding 1 µg/L by all
preparation methods. Two additional analytes, 27Al and 52Cr, exceeded 1 µg/L in DD method blanks,
but were still at levels more than four times less than MW method blanks. The high levels observed in
MW method blanks point to the possibility of reagent contamination as these samples were digested in
concentrated ultrapure nitric acid as opposed to the use of a dilute acid solution in the direct methods.
While more analytes were detected in DD blanks than in either filtration method on average, only 27Al,
52Cr, 55Mn, and 60Ni were detected at levels greater than 0.5 µg/L when not detected in AF and FA
method blanks. Though we observe a background, many of the elements detected in method blanks
are at levels at least an order of magnitude lower than typically measured in wine and thus small
sample contamination may be inconsequential relative to the detection of these elements in wine [18].
For example, the greatest raw contamination was observed for 55Mn in MW method blanks, which
exceeded 20 µg/L, but represents less than two percent of average 55Mn levels in the wines studied.
Method blank concentrations of four elements, 93Nb, 123Sb, 181Ta, and 182W, were found to exceed
average wine concentrations in MW blanks. Normally these values would be omitted from any further
analysis, however for the purposes of distinguishing among sample preparation techniques they are
included here.

Table 1. Instrumental detection limits (LODs) and average (n = 3) method blank concentrations of all
isotopes. Values in italic are below the limit of quantitation (LOQ).

Isotope Mode 1 LOD 2 Method Blank Concentration [µg/L]

AF-DD-FA MW AF DD FA MW
7Li NG 0.103 0.029 1.23 1.77 1.50 0.962

27Al He 0.802 0.988 <LOD 1.84 <LOD 13.7
47Ti He 0.236 0.174 0.611 <LOD <LOD 2.27
51V He 0.010 0.008 0.013 0.020 0.015 0.029
52Cr He 0.220 0.049 <LOD 1.04 <LOD 5.07

55Mn He 0.068 0.041 <LOD 0.772 <LOD 20.1
59Co He 0.005 0.003 <LOD 0.026 <LOD 1.36
60Ni He 0.086 0.042 <LOD 0.600 <LOD 5.22
63Cu He 0.049 0.042 <LOD <LOD <LOD 0.248
65Cu He 0.018 0.010 <LOD <LOD <LOD 0.045
66Zn He 0.280 0.184 <LOD <LOD <LOD 1.16
71Ga He 0.005 0.003 0.007 0.006 0.010 <LOD
75As HEHe 0.013 0.011 0.056 0.154 0.116 0.106
78Se HEHe 0.080 0.018 <LOD <LOD <LOD 0.280
85Rb He 0.043 0.065 0.467 0.558 0.279 0.130
88Sr He 0.021 0.020 0.065 <LOD <LOD 0.050

93Nb He 0.007 0.007 <LOD 0.018 <LOD 0.524
98Mo NG 0.075 0.017 <LOD <LOD 0.099 1.96
101Ru He 0.008 0.009 0.009 <LOD <LOD <LOD
103Rh He 0.002 0.001 <LOD <LOD <LOD 0.034
107Ag He 0.015 0.002 <LOD <LOD <LOD 0.138
111Cd He 0.007 0.009 0.040 <LOD 0.040 <LOD
123Sb He 0.043 0.012 <LOD 0.060 <LOD 0.732
125Te NG 0.003 0.003 <LOD 0.007 0.004 0.005
133Cs He 0.018 0.014 0.029 0.033 0.074 0.033
137Ba He 0.041 0.041 <LOD <LOD <LOD 0.124
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Table 1. Cont.

Isotope Mode 1 LOD 2 Method Blank Concentration [µg/L]

AF-DD-FA MW AF DD FA MW
140Ce He 0.002 0.004 0.003 <LOD <LOD <LOD
141Pr He 0.0005 0.003 <LOD 0.003 <LOD <LOD

146Nd He 0.002 0.003 0.005 0.002 0.002 0.003
147Sm He 0.002 0.002 0.002 0.004 <LOD <LOD
153Eu He 0.0005 0.003 <LOD 0.001 <LOD <LOD
157Gd He 0.001 0.004 <LOD 0.004 <LOD <LOD
163Dy He 0.001 0.005 <LOD <LOD <LOD <LOD
165Ho He 0.0004 0.003 0.001 0.0004 <LOD <LOD
166Er He 0.001 0.003 <LOD 0.003 <LOD <LOD

169Tm He 0.001 0.002 <LOD 0.001 <LOD <LOD
172Yb He 0.001 0.003 0.008 0.004 0.005 0.005
181Ta He 0.022 0.033 <LOD 0.032 <LOD 1.94
182W He 0.117 0.013 <LOD 0.189 0.122 1.27
205Tl He 0.002 0.003 0.005 0.007 0.008 <LOD
206Pb He 0.009 0.003 <LOD 0.140 <LOD 0.030
208Pb He 0.007 0.004 0.017 0.130 <LOD 0.043
238U He 0.004 0.001 0.009 <LOD 0.009 <LOD

1 Use of CRC in no gas (NG), helium (He), or high energy helium (HEHe) mode; 2 LOD = t × SD; n = 6, t = 3.365
(AF—Acidification prior to Filtration, FA—Filtration prior to Acidification, DD—Direct Dilution) and n = 8, t = 2.998
(MW—Microwave Digestion) calibration blanks. LOQ = 10 × SD of calibration blanks.

2.2. Profiling of Wines

Multivariate Analysis of Variance (MANOVA) of the samples showed a significant sample
preparation method effect was present. Subsequent univariate Analysis of Variance (ANOVA) of
the samples revealed significant differences by sample preparation method (p ≤ 0.05) for 37 of the
43 isotopes included in this analysis: 7Li, 27Al, 47Ti, 52Cr, 55Mn, 59Co, 60Ni, 63Cu, 65Cu, 66Zn, 75As, 78Se,
85Rb, 88Sr, 93Nb, 98Mo, 101Ru, 103Rh, 107Ag, 111Cd, 123Sb, 125Te, 133Cs, 137Ba, 141Pr, 146Nd, 147Sm, 153Eu,
157Gd, 165Ho, 169Tm, 181Ta, 182W, 205Tl, 206Pb, and 208Pb (Table A1).

Average wine concentrations of monitored isotopes ranged from 3 ng/L for some rare-earth
elements to greater than 1 mg/L for 55Mn and 85Rb by all preparation methods, as seen in Table A1.
Most notably, MW results were significantly higher than all other methods for seventeen isotopes
(27Al, 55Mn, 59Co, 65Cu, 66Zn, 93Nb, 98Mo, 103Rh, 107Ag, 123Sb, 125Te, 133Cs, 137Ba, 146Nd, 181Ta, 182W,
and 206Pb). This is not surprising as all of these isotopes were detected in the MW method blanks with
the exception of 146Nd. Higher concentrations of some elements in MW samples have been reported
previously, including significantly higher results for 59Co in comparison to a two-fold wine dilution [4].
Furthermore, MW samples exhibited the lowest level of precision when RSDs of detected isotopes of
each wine and preparation method are averaged, with a mean RSD = 29.5% compared to less than
13–18% for AF, FA, and DD. These values are inflated due to the inclusion of some elements (e.g.,
101Ru, 103Rh, 107Ag, and 182W) at levels near detection limits where measurements are more variable.
A possible source of variation in MW samples could be varying levels of sample contamination as
mentioned previously. The digestion procedure used here was similar to those used in other reports [8]
and was the manufacturer recommended procedure for solid food matrix digestion. Therefore, it is
unlikely that the microwave-assisted matrix degradation is variable among the liquid wine samples.

Only 27Al, 55Mn, 60Ni, 66Zn, 75As, 78Se, and 101Ru differed significantly on average between
AF and FA treatments, suggesting minimal effect of acidification on overall profile determination.
Surprisingly, average wine concentrations were found to be lower in AF samples than FA samples for
each of these isotopes, contrary to our hypothesis that AF could yield higher results compared to FA
due to the dissociation of metal complexes with a lowered pH. Both FA and AF treatments yielded
significantly lower results than DD or MW for 7Li, 59Co, 63Cu, 85Rb, 88Sr, 93Nb, 133Cs, 182W, 205Tl, 206Pb,
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and 208Pb, possibly owing to analyte loss as a result of filtration. This effect has been demonstrated
in attempts to recover copper additions to model wine, and wine to a lesser extent, using 0.45 µm
filtration [20].

The elemental profile of each wine by preparation method was also visualized by Principal
Component Analysis (PCA) as a dimensionality reduction technique. PCA develops linear
combinations of the variables (i.e., isotopes) that capture the maximum amount of variance in the
sample data. The first three principal components (PCs) accounted for over 76% of the total variance
observed in the elemental profiles of the wines (Figure 1). The first two principal components (54.5%
of total variance) appear to separate microwave digested samples from other methods, Figure 1a, due
to higher levels of most elements in the microwave digested samples (Table A1). Microwave digested
samples for all four wines are located in the top left quadrant of Figure 1a, while all other samples
group according to the wine and not the sample preparation method, indicating minimal differences
in elemental composition of the direct dilution and filtration methods. Alternatively, a similar biplot of
the first and third principal components (51.0% of total variance) appears to differentiate the samples
by wine grape cultivar, Figure 1b, indicating that the elemental variability due to wine cultivar is
smaller than due to sample preparation method, when comparing MW to the other methods.
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Figure 1. Principle component analysis biplot of wine sample scores and analytes found to differ
significantly by preparation method. (a) First two dimensions (54.5% of total variance); (b) first
and third dimensions (51.0% of total variance). Symbols represent different preparation methods:
acidification prior to filtration (AF = #); direct dilution (DD = �); filtration prior to acidification
(FA = ♦); microwave digestion (MW =4). Wine varieties are color-coded: Chardonnay (C = purple),
Pinot noir (PN = blue), Syrah (S = green), and Tempranillo (T = yellow).

To better represent differences in wine elemental profiles, isotopes that showed no significant
sample effect by ANOVA with the method blanks were excluded and a second PCA was performed,
Figure 2a,b. Five elements, 93Nb, 101Ru, 103Rh, 107Ag, and 181Ta were excluded as a result of this
analysis. Additionally, 123Sb and 182W were omitted, since method blank concentrations exceeded
levels encountered in the samples by at least one method. Interestingly, the first two principal
components (62.8% of total variance) in this analysis separated the samples primarily by wine grape
cultivar with each wine prepared by all methods localized in one of the four quadrants of the data space.
This result suggests that all preparation methods used may adequately differentiate these wines by
elemental composition and explains the previously reported successful applications of different sample
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preparation methods in discriminant analyses of wine on the basis of geographic origin [2,4,11,23,27].
Nevertheless, closer inspection of the biplot of the wines in the first and third dimensions (52.0% of
total variance), Figure 2b resembles Figure 1a in that the microwave digested wine samples appear
to be separated in the data space from wines of the same grape cultivar, prepared by DD, AF, or FA.
It is likely that the omission of 123Sb and 182W contributed to the less dramatic spatial separation by
preparation strategy in Figure 2b as average wine concentrations were significantly higher in MW
samples than all other methods. However, the same general trend is observed.Molecules 2017, 22, 1609 7 of 15 
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Figure 2. Principal component analysis biplots of wine scores and analyte loadings for each sample
found to differ by preparation method with seven additional elements removed. (a) First two
dimensions (62.8% of total variance); (b) first and third dimensions (52.0% of total variance). Symbols
represent different preparation methods: acidification prior to filtration (AF = #); direct dilution
(DD = �); filtration prior to acidification (FA = ♦); microwave digestion (MW =4). Wine varieties are
color-coded: Chardonnay (C = purple), Pinot noir (PN = blue), Syrah (S = green), and Tempranillo
(T = yellow).

2.3. Spike Recovery

Recovery of 100 µg/L 65Cu additions to each wine sample and method blank was expected to vary
with respect to sample preparation method after ANOVA revealed a significant sample preparation
method effect for 65Cu. However, recoveries were not found to be significantly different by ANOVA,
Figure 3a. Comparison of mean recoveries of each method by wine cultivar shows no significant
differences among methods for all samples except the Syrah (S), in which AF yielded significantly
higher recoveries than both DD and MW. Recoveries in MW samples were the least precise with an
average RSD of 11.98 (%) per sample. In contrast, RSDs of the direct methods were all below four
percent. Despite differences in recovery precision among the methods, it is important to note that
total 65Cu recoveries for all methods ranged from 80 to 105% and were not found to be significantly
different by Tukey’s Honestly Significant Differences (HSDs).

Similar to 65Cu, 206Pb determination was found to vary with preparation method in the wine
samples as determined by ANOVA. Recovery of 5 µg/L 206Pb spikes in wines and method blanks
reveals significant differences for all wines when averaged by sample preparation method and wine
cultivar, Figure 3b. Average method blank recoveries did not differ significantly by preparation method.
In all four wine samples, significantly higher recoveries are observed for MW samples than the direct
methods, which did not differ from one another in any samples. Additionally, MW samples were
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found to have the most variation in all sample types, with an average RSD of 9.1%, although this is
an acceptable level in this analysis. In concordance, averaging of recoveries by preparation treatment
shows significantly higher recoveries in MW samples (Tukey’s HSD used for means comparisons; data
not shown). The lack of significantly different recoveries in spiked method blanks indicates that any
matrix effects observed are unlikely to be the result of ethanol content alone.Molecules 2017, 22, 1609 8 of 15 
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Figure 3. Average (a) 65Cu and (b) 206Pb spike recoveries (%) for each sample type (BL = method
blank, C = Chardonnay, PN = Pinot noir, S = Syrah, T = Tempranillo) and preparation method
(AF = acidification prior to filtration, DD = direct dilution, FA = filtration prior to acidification,
MW = microwave-assisted digestion). Error bars represent one standard deviation. Means not sharing
a letter (a, b, c) are significantly different by Tukey’s HSD’s. Recoveries calculated as the difference of
concentration in the spiked sample and average unspiked sample concentration divided by the spike
level, expressed as percentage.

2.4. Cu Isotope Dilution

The use of stable isotope standards for spiking experiments allowed for the exploration of applying
isotope ratios as a means of quantitation. Internal calibration via isotope dilution was explored in this
experiment and compared to external calibration by measuring the 63Cu:65Cu instrumental response
ratio. ANOVA of copper concentrations of each sample with calibration method as an additional
source of variation (i.e., quantitation method was either external or internal), did not reveal significant
differences due to calibration technique. The high degree of agreement between calibration techniques
is represented by the linear fit depicted in Figure 4, in which a slope of 1 would indicate a perfect
agreement. Isotope dilution results were within 12% of external calibration results for all samples
within each preparation method, except for PN and T samples prepared via microwave digestion, in
which isotope dilution yielded higher concentrations than external calibration. This could be explained
by the ability of isotope dilution to account for analyte loss during sample preparation [26].

Less variation in quantitation was observed with isotope dilution (0.78% RSD) than external
calibration (2.44% RSD) on average, though both calibration strategies were highly precise. These
results are in accordance with similar findings for Pb isotope dilution ICP-MS analysis of wine [14,24].
Inspection of the means of isotope dilution results by each sample preparation method displayed a
similar pattern to that of 63Cu determination by external calibration, with averaged wine concentrations
by each method decreasing in the order MW > DD > FA > AF. This is a reminder that the preparation
method effect remained significant in the ANOVA for determination of copper concentration using
isotope dilution and serves as an isolated protection against calibration errors.

The lack of significant difference between calibration strategies demonstrates the viability of
isotope dilution for wine copper ICP-MS analysis. This exploration showed comparable accuracy
to external calibration without full consideration of sources of systemic error in ID measurements
such as mass bias. Although isotope dilution may not be feasible for multi-element analysis, internal
calibration should be considered in single-element wine analysis by plasma source technologies.
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Figure 4. Comparison of external calibration and isotope dilution for wine copper determination.
Error bars represent one standard deviation from the mean (n = 3). Symbols represent different
preparation methods: acidification prior to filtration acidification prior to filtration (AF = #); direct
dilution (DD = �); filtration prior to acidification (FA = ♦); microwave digestion (MW = 4). Wine
varieties are color-coded: Chardonnay (C = purple), Pinot noir (PN = blue), Syrah (S = green), and
Tempranillo (T = yellow).

3. Conclusions

All direct preparation methods (i.e., direct dilution (DD), acidification prior to filtration (AF),
and filtration prior to acidification (FA)) showed a high degree of similarity in measured elemental
profiles for the wines analyzed, while significantly higher measured concentrations were apparent for
several analytes with micowave assisted digestion (MW). The precision for the wine elemental profiles
was also lower for MW digestion compared to DD, AF, and FA as determined by the spike recovery
experiments. These results indicate no advantage of MW digestion as a sample preparation protocol
for wine ICP-MS analysis; overall the additional preparation steps and use of reagents requred for MW
digestion increase the risk of compromising sample integrity. Filtration treatments, AF and FA, with
0.45 µm PTFE filters did not yield substantial differences in overall elemental profiles in comparison
with DD. However, if elements 7Li, 59Co, 63Cu, 85Rb, 88Sr, 133Cs, 182W, 205Tl, 206Pb, and 208Pb are of
interest, filtration prior to analysis is not recommended due to the potential for retention of organic
metal species. Wines are often passed through 0.45 µm filters prior to bottling to remove remaining
particulates, and as shown in this study, this practice may alter the elemental signature in comparison to
the same unfiltered wine. This could provide further evidence of the impact of winemaking practices
on wine elemental profiles. Based on these results, we find DD prior to analysis to offer the best
compromise between ease of use and result accuracy and precision. It is important to note, that all
preparation strategies tested here were able to differentiate the wines tested and individually each
preparation method may be applied for in-depth investigations. However, in the interest of monitoring
toxic elements and for authenticity validation, the data acquired via different sample preparation
methods may not be directly comparable and careful consideration of the sample preparation method
is necessary when evaluating results from different studies. Finally, copper determination in wine
using a simplified isotope dilution model yielded comparable results to those of external calibration for
all preparation methods, and offers a robust avenue to mitigate challenges in wine elemental analysis
by ICP-MS.
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4. Materials and Methods

4.1. Reagents and Samples

Nitric acid (67–70%; ultrapure) was purchased from J.T. Baker (Center Valley, PA, USA). Ultrapure
water (UPW) (18 MΩcm, EMD Millipore, Bellerica, CA, USA) and 200 proof ethanol (Koptec, King
of Prussia, PA, USA) were used for matrix matching of calibration standards and method blanks.
Calibration standards were prepared by diluting multi-element standard mix 1 (Ce, Dy, Er, Eu, Gd,
Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, Y, Yb), 2A (Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga,
K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn), 3 (Au, Hf, In, Pb, Pt, Rh, Ru, Sb, Sn, Te), 4 (B, Ge,
Mo, Nb, P, Re, S, Si, Ta, Ti, W, Zr), as well as 65Cu and 206Pb stable isotope standards used in spiking
experiments, and were all purchased from SPEX CertiPrep (Metuchen, NJ, USA).

Chardonnay (C), Pinot Noir (PN), Syrah (S), and Tempranillo (T) wine samples, unfiltered and
not fined, with 12–15% ethanol content were supplied from the on-campus winery at UC Davis (Davis,
CA, USA). Method blanks for each sample preparation method were prepared by following each
preparation procedure with a 12% ethanol solution. Recovery experiments involved gravimetrically
spiking aliquots of each wine and method blank sample with 100 µg/L 65Cu and 5 µg/L 206Pb stable
isotope standards. Spiked samples were vortexed and prepared in triplicate by each method.

4.2. Sample Preparation

All unfiltered wine samples (50 mL) were centrifuged at 4 ◦C at 5000× g for 10 min before
preparation for analysis via all methods evaluated. All samples and blanks were evaluated by all
methods in triplicate, including the use of fresh, unused filters for each replication where applicable.
For sample preparation treatments were evaluated:

1. Direct Dilution (DD): samples were diluted 1:3 with 5% HNO3 (v/v) prior to analysis. Method
blanks contained 4% ethanol and 5% HNO3 (v/v).

2. Filtration prior to acidification (FA): A 7 mL aliquot of sample was filtered through an Agilent
Captiva Premium syringe filter (PTFE, 15 mm, 0.45 µm; Wilmington, DE, USA), then an aliquot
of each filtered sample was diluted 1:3 with 5% HNO3 (v/v) prior to analysis. Method blank was
the same as for DD.

3. Acidification prior to filtration (AF): A 15 mL aliquot of diluted sample (1:3 with 5% HNO3 (v/v))
was filtered through an Agilent Captiva Premium syringe filter (PTFE, 15 mm, 0.45 µm) prior to
analysis. Method blank was the same as for DD.

4. Microwave-assisted acid digestion (MW): 2 × 1 mL concentrated HNO3 was added to 2 mL of
sample in PTFE microwave tubes that were capped and digested using a Milestone UltraWAVE
microwave system (Sorisole, Italy) according to manufacturer’s recommendations (20 min ramp
to 240 ◦C and 150 bar, 15 min hold; E = 1500 W). Two milliliter aliquots of digested samples were
then diluted 1:5 with ultrapure water prior to analysis. PTFE microwave vessels were cleaned
using a cleaning program (15 min ramp to 230 ◦C and 150 bar, 5 min hold; E = 1500 W) with
concentrated nitric acid according to manufacturer’s recommendations, subsequently rinsed (5%
HNO3 and ultrapure water) and allowed to dry between digestions.

4.3. ICP-MS Analysis

A triple quadrupole-ICP-MS/MS 8800 from Agilent Technologies (Santa Clara, CA, USA) with a
quartz double-pass spray chamber (held at 4 ◦C) and borosilicate micromist nebulizer (nebulizer pump
speed at 0.1 rps) was used for all measurements. Helium (99.999% pure, Airgas, Sacramento, CA, USA)
in the collision/reaction cell was used for all elements at a flow rate of 5 mL/min except for Li, Mo,
and Te which were measured in no gas mode, and As and Se which were measured in high-energy
helium mode with a 10 mL/min gas flow rate [15]. RF power and matching power were 1.5 kW and
1.8 V, respectively. The sampling depth was set at 10 mm, with an Ar (99.9999% pure, Airgas) carrier
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gas flow of 1.05 L/min. Most elements were monitored both without and with helium in the collision
cell, and several isotopes were measured for non-monoisotopic elements, with 100 sweeps per each
of three replicates. The IS mix containing 1 µg/L 6Li, 45Sc, 72Ge, 89Y, 115In, 159Tb, 209Bi in 1% HNO3

(Agilent, Santa Clara, CA, USA) was constantly fed into and mixed with the sample stream before
entering the nebulizer, using a mixing tee (sample tubing inner diameter 1.02 mm, IS tubing inner
diameter 0.25 mm).

Isotopes were selected based on the absence of possible interferences as well as manufacturer
recommendations. Quality control consisted of the repeated analysis of the 10 µg/L calibration
standard of each calibration series approximately every fifteen samples during analysis. Quantified
isotopes were found to be accurate (within 20%) and precise (%RSD < 20%) across all analytical
runs in replications of the 10 µg/L calibration standards used as quality control material. Limits of
detection (LODs) were determined as the critical value (p ≤ 0.05) from the one-tailed t-distribution
times the standard deviation of six measurements (t = 3.365) of the matrix-matched calibration blank
per analytical run for the direct methods and eight measurements (t = 2.998) for analysis of microwave
digested samples [28]. Reported LODs for the direct methods are the average obtained from two
analytical runs. Calibration blanks were measured throughout each sequence batch as continuing
calibration blanks (CCB).

Elements were quantified using matrix-matched calibration standards, 4% ethanol and 5% HNO3

for the DD, FA, and AF treatments, and 5% HNO3 for the MD treatments. The quantified isotopes
were 7Li, 27Al, 47Ti, 51V, 52Cr, 55Mn, 59Co, 60Ni, 63Cu, 65Cu, 66Zn, 71Ga, 75As, 78Se, 85Rb, 88Sr, 93Nb,
98Mo, 101Ru, 103Rh, 107Ag, 111Cd, 123Sb, 125Te, 133Cs, 137Ba, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd,
163Dy, 165Ho, 166Er, 169Tm, 172Yb, 181Ta, 182W, 205Tl, 206Pb, 208Pb, and 238U.

4.3.1. External Calibration

Six point calibrations between 0 and 500 µg/L were prepared separately for all four multielement
standard mixes using matrix matched solutions, 4% ethanol and 5% HNO3 for DD, FA, and AF
treatments, and 5% HNO3 for MW. A separate matrix matched calibration between 0 and 500 µg/L
was realized containing 65Cu and 206Pb stable isotope standards. All calibration standards were
prepared gravimetrically.

4.3.2. Isotope Dilution

Copper in the spiked samples was also determined using isotope dilution calculations and
compared to results obtained by external calibration. The total 63Cu concentration in the spiked
samples was calculated from the measurement of the instrument response ratio of 63Cu:65Cu using
Equation (1):

[
63Cu

]
=
[

65CuSpike

]
×
(

mspike

msample

)
×
(

Wspike

Wsample

)
×
(

R× A65 − A63

B63 − R× B65

)
, (1)

in which R is the instrument response ratio, mspike is the mass of the spike solution added to the
sample, msample is the mass of the sample, Wspike is the atomic weight of Cu in the sample, Wsample
is the atomic weight of Cu in the spike, A65 and A63 are the respective abundances of 65Cu and
63Cu in the spike, and B63 and B65 are the natural abundances of 63Cu and 65Cu, 0.6915 and 0.3085,
respectively [29]. Assumptions in this exploratory calculation include the use of manufacturer’s
certified isotopic abundance values, A65 and A63, atomic weight in the spike, Wspike, as well as the
omission of instrumental mass bias correction.

4.4. Statistical Analysis

For all analyses, statistical significance was evaluated at (p ≤ 0.05). For statistical computation
purposes, all values below detection limits for an element were replaced with one-half the detection
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limit for that element [30]. Multivariate Analysis of Variance (MANOVA) was carried out to determine
whether an overall sample preparation method effect was present before univariate Analysis of
Variance (ANOVA) for the main effects sample, replicate, and method was applied for each element.
Mean comparisons by preparation method were made using Tukey’s Honestly Significant Differences
(HSD) for elements found to vary significantly by ANOVA. Principal Component Analysis (PCA) of
sample analyte means was carried out as an unsupervised dimensionality reduction technique using a
correlation matrix to account for differences in concentration range. All statistical analyses were carried
out in RStudio (version 1.0.136, Boston, MA, USA; www.rstudio.org), an open source interface for the
open source statistical programming language R (version 3.0.2, Vienna, Austria; www.rproject.or),
with the additional packages FactoMineR, agricolae, and ggplot2 [31–33].
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Appendix A

Table A1. Mean wine concentrations (µg/L) ± standard error of all analytes. Letters denote an analyte
with a significant method effect by ANOVA (p ≤ 0.05), means not sharing a letter for an isotope are
significantly different by Tukey HSD’s (AF: Acidification prior to Filtration; DD: Direct Dilution; FA:
Filtration prior to Acidification; MW: Microwave Digestion).

Isotope AF DD FA MW
7Li 12.3 ± 0.209 b 18.8 ± 0.483 a 14.3 ± 0.614 b 20 ± 1.25 a

27Al 247 ± 6.97 c 281 ± 9.13 b 267 ± 12.3 b 325 ± 13.2 a
47Ti 6.04 ± 0.577 ab 5.02 ± 0.736 ab 6.58 ± 0.621 a 4.7 ± 2.04 b
51V 1.16 ± 0.033 b 1.33 ± 0.061 a 1.26 ± 0.05 ab 1.36 ± 0.12 a
52Cr 14.0 ± 0.33 b 16.1 ± 0.308 ab 15.1 ± 0.564 ab 20.8 ± 6.15 a

55Mn 1100 ± 24.4 d 1190 ± 27.7 b 1150 ± 26.3 c 1310 ± 41.2 a
59Co 4.26 ± 0.074 c 5.23 ± 0.103 b 4.5 ± 0.103 c 5.63 ± 0.139 a
60Ni 30.0 ± 0.44 c 36.4 ± 0.356 a 32.8 ± 1.06 b 36.9 ± 1.99 a
63Cu 101 ± 1.5 b 122 ± 1.36 a 109 ± 2.74 b 129 ± 6.65 a
65Cu 31.9 ± 0.47 b 35.5 ± 0.46 b 35.1 ± 0.979 b 44.0 ± 2.28 a
66Zn 634 ± 8.68 c 682 ± 8.25 b 686 ± 17 b 717 ± 25.1 a
71Ga 0.109 ± 0.023 0.107 ± 0.025 0.113 ± 0.03 0.125 ± 0.125
75As 0.954 ± 0.032 c 1.65 ± 0.525 a 1.25 ± 0.095 b 1.03 ± 0.108 bc
78Se 1.42 ± 0.066 b 2.05 ± 0.457 a 1.99 ± 0.557 a 1.85 ± 0.533 ab
85Rb 1740 ± 28.3 b 1970 ± 49.8 a 1690 ± 11.9 b 1950 ± 46.7 a
88Sr 578 ± 7.13 b 784 ± 13.4 a 576 ± 6.95 b 779 ± 19.9 a

93Nb <LOD b <LOD b <LOD b 0.346 ± 0.098 a
98Mo 1.52 ± 0.052 b 1.28 ± 0.044 b 1.64 ± 0.057 b 3.18 ± 0.524 a
101Ru <LOD b <LOD b 0.012 ± 0.005 a 1 <LOD b
103Rh <LOD b 0.004 ± 0.003 b 1 <LOD b 0.019 ± 0.009 a
107Ag <LOD b <LOD b 0.016 ± 0.002 b 1 0.091 ± 0.054 a

www.rstudio.org
www.rproject.or


Molecules 2017, 22, 1609 13 of 15

Table A1. Cont.

Isotope AF DD FA MW
111Cd 0.189 ± 0.01 ab 0.183 ± 0.006 ab 0.198 ± 0.01 a 0.177 ± 0.017 b
123Sb 0.188 ± 0.015 b 0.11 ± 0.013 b 1 0.202 ± 0.012 b 0.6 ± 0.296 a
125Te 0.018 ± 0.003 c 0.037 ± 0.009 b 0.033 ± 0.016 bc 0.061 ± 0.031 a
133Cs 3.36 ± 0.075 c 4.01 ± 0.094 b 3.37 ± 0.112 c 4.42 ± 0.14 a
137Ba 167 ± 1.94 b 155 ± 2.19 c 170 ± 2.86 b 177 ± 5.15 a
140Ce 0.047 ± 0.002 0.047 ± 0.003 0.049 ± 0.002 0.047 ± 0.008
141Pr 0.004 ± 0.001 b 0.008 ± 0.001 a 0.004 ± 0.001 b <LOD b

146Nd 0.034 ± 0.006 b 0.029 ± 0.005 b 0.034 ± 0.005 b 0.048 ± 0.018 a
147Sm 0.011 ± 0.003 a 0.011 ± 0.006 a 0.01 ± 0.004 a 0.003 ± 0.003 b 1

153Eu 0.003 ± 0.002 ab 0.004 ± 0.001 a 0.003 ± 0.001 b <LOD b
157Gd 0.013 ± 0.003 a 0.016 ± 0.004 a 0.012 ± 0.003 a 0.006 ± 0.004 b 1

163Dy 0.024 ± 0.005 0.019 ± 0.004 0.023 ± 0.003 0.018 ± 0.008
165Ho 0.006 ± 0.001 a 0.006 ± 0.001 a 0.006 ± 0.001 a <LOD b
166Er 0.027 ± 0.003 0.024 ± 0.003 0.024 ± 0.002 0.022 ± 0.006

169Tm 0.004 ± 0.001 b 0.007 ± 0.001 a 0.003 ± 0.001 b <LOD c
172Yb 0.049 ± 0.008 0.045 ± 0.005 0.047 ± 0.007 0.044 ± 0.008
181Ta <LOD b 0.18 ± 0.166 b 0.046 ± 0.035 b 1 1.06 ± 0.429 a
182W 0.257 ± 0.041 c 1 0.509 ± 0.114 b 0.298 ± 0.033 c 1 0.831 ± 0.436 a
205Tl 0.143 ± 0.004 b 0.189 ± 0.005 a 0.15 ± 0.006 b 0.182 ± 0.016 a
206Pb 0.612 ± 0.019 c 0.738 ± 0.021 b 0.538 ± 0.013 c 0.963 ± 0.051 a
208Pb 2.36 ± 0.06 b 2.89 ± 0.06 a 2.26 ± 0.032 b 3.13 ± 0.155 a
238U 0.025 ± 0.002 0.029 ± 0.003 0.026 ± 0.001 0.031 ± 0.004

1 Value below quantitation limit (LOQ): LOQ = 10 × SD.

References

1. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Copper. Available
online: http://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=206&tid=37 (accessed on 23 March 2017).

2. Castiñeira, M.D.M.; Brandt, R.; Jakubowski, N.; Andersson, J.T. Changes of the metal composition in German
white wines through the winemaking process. A study of 63 elements by inductively coupled plasma−mass
spectrometry. J. Agric. Food Chem. 2004, 52, 2953–2961. [CrossRef] [PubMed]

3. Almeida, C.M.R.; Vasconcelos, M.T.S.D. Multielement composition of wines and their precursors including
provenance soil and their potentialities as fingerprints of wine origin. J. Agric. Food Chem. 2003, 51, 4788–4798.
[CrossRef] [PubMed]

4. Iglesias, M.; Besalú, E.; Anticó, E. Internal standardization−atomic spectrometry and geographical pattern
recognition techniques for the multielement analysis and classification of Catalonian red wines. J. Agric.
Food Chem. 2007, 55, 219–225. [CrossRef] [PubMed]

5. Rossano, E.C.; Szilágyi, Z.; Malorni, A.; Pocsfalvi, G. Influence of winemaking practices on the concentration
of rare earth elements in white wines studied by inductively coupled plasma mass spectrometry. J. Agric.
Food Chem. 2007, 55, 311–317. [CrossRef] [PubMed]

6. Hopfer, H.; Nelson, J.; Collins, T.S.; Heymann, H.; Ebeler, S.E. The combined impact of vineyard origin and
processing winery on the elemental profile of red wines. Food Chem. 2015, 172, 486–496. [CrossRef] [PubMed]

7. Gonzálvez, A.; Armenta, S.; Pastor, A.; de la Guardia, M. Searching the most appropriate sample pretreatment
for the elemental analysis of wines by inductively coupled plasma-based techniques. J. Agric. Food Chem.
2008, 56, 4943–4954. [CrossRef] [PubMed]

8. Grindlay, G.; Mora, J.; Maestre, S.; Gras, L. Application of a microwave-based desolvation system for
multi-elemental analysis of wine by inductively coupled plasma based techniques. Anal. Chim. Acta 2008,
629, 24–37. [CrossRef] [PubMed]

9. Grindlay, G.; Mora, J.; Gras, L.; de Loos-Vollebregt, M.T.C. Atomic spectrometry methods for wine analysis:
A critical evaluation and discussion of recent applications. Anal. Chim. Acta 2011, 691, 18–32. [CrossRef]
[PubMed]

http://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=206&tid=37
http://dx.doi.org/10.1021/jf035119g
http://www.ncbi.nlm.nih.gov/pubmed/15137840
http://dx.doi.org/10.1021/jf034145b
http://www.ncbi.nlm.nih.gov/pubmed/14705914
http://dx.doi.org/10.1021/jf0629585
http://www.ncbi.nlm.nih.gov/pubmed/17227045
http://dx.doi.org/10.1021/jf061828t
http://www.ncbi.nlm.nih.gov/pubmed/17227059
http://dx.doi.org/10.1016/j.foodchem.2014.09.113
http://www.ncbi.nlm.nih.gov/pubmed/25442583
http://dx.doi.org/10.1021/jf800286y
http://www.ncbi.nlm.nih.gov/pubmed/18553915
http://dx.doi.org/10.1016/j.aca.2008.09.023
http://www.ncbi.nlm.nih.gov/pubmed/18940318
http://dx.doi.org/10.1016/j.aca.2011.02.050
http://www.ncbi.nlm.nih.gov/pubmed/21458627


Molecules 2017, 22, 1609 14 of 15

10. Dams, R.F.J.; Goossens, J.; Moens, L. Spectral and non-spectral interferences in inductively coupled plasma
mass-spectrometry. Microchim. Acta 1995, 119, 277–286. [CrossRef]

11. Martin, A.E.; Watling, R.J.; Lee, G.S. The multi-element determination and regional discrimination of
Australian wines. Food Chem. 2012, 133, 1081–1089. [CrossRef]

12. Hopfer, H.; Nelson, J.; Mitchell, A.E.; Heymann, H.; Ebeler, S.E. Profiling the trace metal composition of
wine as a function of storage temperature and packaging type. J. Anal. At. Spectrom. 2013, 28, 1288–1291.
[CrossRef]

13. International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine and
Must Analysis. Available online: http://www.oiv.int/public/medias/4231/compendium-2016-en-vol1.pdf
(accessed on 23 March 2017).

14. Goossens, J.; De Smaele, T.; Moens, L.; Dams, R. Accurate determination of lead in wines by inductively
coupled plasma mass spectrometry. Fresenius J. Anal. Chem. 1993, 347, 119–125. [CrossRef]

15. Grindlay, G.; Mora, J.; de Loos-Vollebregt, M.T.C.; Vanhaecke, F. Evaluation of the multi-element capabilities
of collision/reaction cell inductively coupled plasma–mass spectrometry in wine analysis. Talanta 2014, 128,
379–385. [CrossRef] [PubMed]

16. Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J.
Enol. Vitic. 2001, 52, 67–87.

17. Vasconcelos, M.T.; Azenha, M.; de Freitas, V. Role of polyphenols in copper complexation in red wines.
J. Agric. Food Chem. 1999, 47, 2791–2796. [CrossRef] [PubMed]

18. Pohl, P. What do metals tell us about wine? Trends Anal. Chem. 2007, 26, 941–949. [CrossRef]
19. Materials Authorized for the Treatment of Wine and Juice, 27 CFR § 24.246. Available

online: https://www.gpo.gov/fdsys/granule/CFR-2012-title27-vol1/CFR-2012-title27-vol1-sec24--246/
content-detail.html (accessed on 23 March 2017).

20. Clark, A.C.; Grant-Preece, P.; Cleghorn, N.; Scollary, G.R. Copper(II) addition to white wines containing
hydrogen sulfide: Residual copper concentration and activity. Aust. J. Grape Wine Res. 2015, 21, 30–39.
[CrossRef]

21. McKinnon, A.J.; Scollary, G.R. Size fractionation of metals in wine using ultrafiltration. Talanta 1997, 44,
1649–1658. [CrossRef]

22. Almeida, C.M.; Vasconcelos, M.T.S.D. ICP-MS determination of strontium isotope ratio in wine in order to
be used as a fingerprint of its regional origin. J. Anal. At. Spectrom. 2001, 16, 607–611. [CrossRef]

23. Coetzee, P.P.; Vanhaecke, F. Classifying wine according to geographical origin via quadrupole-based
ICP–mass spectrometry measurements of boron isotope ratios. Anal. Bioanal. Chem. 2005, 383, 977–984.
[CrossRef] [PubMed]

24. Augagneur, S.; Medina, B.; Grousset, F. Measurement of lead isotope ratios in wine by ICP-MS and its
applications to the determination of lead concentration by isotope dilution. Fresenius J. Anal. Chem. 1997,
357, 1149–1152. [CrossRef]

25. Dean, J.R.; Ebdon, L.; Massey, R.C. Isotope ratio and isotope dilution analysis of lead in wine by inductively
coupled plasma-mass spectrometry. Food Addit. Contamin. 1990, 7, 109–116. [CrossRef] [PubMed]

26. Quetel, C.R.; Nelms, S.M.; Van Nevel, L.; Papadakis, I.; Taylor, P.D.P. Certification of the lead mass fraction
in wine for comparison 16 of the International Measurement Evaluation Programme. J. Anal. At. Spectrom.
2001, 16, 1091–1100. [CrossRef]

27. Rodrigues, S.M.; Otero, M.; Alves, A.A.; Coimbra, J.; Coimbra, M.A.; Pereira, E.; Duarte, A.C. Elemental
analysis for categorization of wines and authentication of their certified brand of origin. J. Food Comp. Anal.
2011, 24, 548–562. [CrossRef]

28. Thomsen, V.; Schatzlein, D.; Mercuro, D. Limits of detection in spectroscopy. Spectroscopy 2003, 18, 112–114.
29. Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.;

Loss, R.D.; Walczyk, T.; et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl.
Chem. 2016, 88, 293–306. [CrossRef]

30. Croghan, C.; Egeghy, P.P. Methods of Dealing with Values Below the Limit of Detection Using SAS.
Southeastern SAS User Group. Available online: http://analytics.ncsu.edu/sesug/2003/SD08-Croghan.pdf
(accessed on 23 March 2017).

31. Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18.
[CrossRef]

http://dx.doi.org/10.1007/BF01244007
http://dx.doi.org/10.1016/j.foodchem.2012.02.013
http://dx.doi.org/10.1039/c3ja50098e
http://www.oiv.int/public/medias/4231/compendium-2016-en-vol1.pdf
http://dx.doi.org/10.1007/BF00322842
http://dx.doi.org/10.1016/j.talanta.2014.05.008
http://www.ncbi.nlm.nih.gov/pubmed/25059175
http://dx.doi.org/10.1021/jf981032x
http://www.ncbi.nlm.nih.gov/pubmed/10552567
http://dx.doi.org/10.1016/j.trac.2007.07.005
https://www.gpo.gov/fdsys/granule/CFR-2012-title27-vol1/CFR-2012-title27-vol1-sec24--246/content-detail.html
https://www.gpo.gov/fdsys/granule/CFR-2012-title27-vol1/CFR-2012-title27-vol1-sec24--246/content-detail.html
http://dx.doi.org/10.1111/ajgw.12114
http://dx.doi.org/10.1016/S0039-9140(97)00070-2
http://dx.doi.org/10.1039/b100307k
http://dx.doi.org/10.1007/s00216-005-0093-7
http://www.ncbi.nlm.nih.gov/pubmed/16258741
http://dx.doi.org/10.1007/s002160050321
http://dx.doi.org/10.1080/02652039009373827
http://www.ncbi.nlm.nih.gov/pubmed/2307260
http://dx.doi.org/10.1039/B103248H
http://dx.doi.org/10.1016/j.jfca.2010.12.003
http://dx.doi.org/10.1515/pac-2015-0503
http://analytics.ncsu.edu/sesug/2003/SD08-Croghan.pdf
http://dx.doi.org/10.18637/jss.v025.i01


Molecules 2017, 22, 1609 15 of 15

32. Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Available online: http://cran.r-
project.org/web/packages/agricolae/index.html (accessed on 23 March 2017).

33. Wickham, H. ggplot2: Elegant Graphic for Data Analysis. Available online: http://ggplot2.org/ (accessed
on 23 March 2017).

Sample Availability: Samples of the compounds are not available.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://cran.r-project.org/web/packages/agricolae/index.html
http://cran.r-project.org/web/packages/agricolae/index.html
http://ggplot2.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Detection Limits and Method Blanks 
	Profiling of Wines 
	Spike Recovery 
	Cu Isotope Dilution 

	Conclusions 
	Materials and Methods 
	Reagents and Samples 
	Sample Preparation 
	ICP-MS Analysis 
	External Calibration 
	Isotope Dilution 

	Statistical Analysis 

	



