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The magnitude distribution of dynamically triggered
earthquakes
Stephen Hernandez1, Emily E. Brodsky1, and Nicholas J. van der Elst2

1Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, California, USA,
2Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA

Abstract Large dynamic strains carried by seismic waves are known to trigger seismicity far from their
source region. It is unknown, however, whether surface waves trigger only small earthquakes, or whether
they can also trigger large earthquakes. To partially address this question, we evaluate whether current data
can distinguish between the magnitude distribution of triggered and untriggered small earthquakes. We
use a mixing model approach in which total seismicity is decomposed into two classes: ‘‘triggered’’ events
initiated or advanced by far-field dynamic strains and ‘‘untriggered’’ spontaneous events consisting of every-
thing else. The b-value of a mixed data set, bMIX, is decomposed into a weighted sum of b-values of its con-
stituent components, bT and bU. We utilize the previously observed relationship between triggering rate
and dynamic strain amplitude to identify the fraction of triggered events in populations of earthquakes and
then invert for bT. For Californian seismicity, data are consistent with a single-parameter Gutenberg-Richter
hypothesis governing the magnitudes of both triggered and untriggered earthquakes.

1. Introduction

Transient strains delivered by large amplitude seismic waves are frequently associated with seismicity rate
increases in the far field at both active margins and stable plate interiors [Hill et al., 1993; Velasco et al.,
2008]. This triggering phenomenon is frequently attributed to dynamic stresses since static stresses decay
quickly at such large distances (�2–3 fault lengths) [King et al., 1994]. One of several outstanding problems
associated with remote dynamic triggering is whether the magnitudes of triggered earthquakes are signifi-
cantly different from the magnitudes of ambient seismicity. For instance, Parsons and Velasco [2011] investi-
gated whether large (M� 7) events are capable of dynamically triggering other large (5�M� 7)
earthquakes in the far field and found that they were unable to observe near-instantaneous triggering of
large events in the far field. From these observations, they concluded that dynamic stresses must be incapa-
ble of affecting faults above a certain length scale. This conclusion was somewhat upended by the 2012
Sumatra-East Indian Ocean earthquake, which triggered over a dozen remote earthquakes of magnitude
5.5–7.0 over the next several days [Pollitz et al., 2012]. The question remains as to whether this new observa-
tion of large triggered earthquakes reflects an extraordinarily rare event or whether triggered earthquakes
simply follow the same size distribution as the population of earthquakes as a whole. In the latter case, the
observation of large triggered earthquakes is rare, but expected.

Some of the difficulties in interpreting these intriguing events stem from the relative paucity of large
earthquakes in general in the catalog. Since earthquake magnitude distributions generally follow a
power law, small earthquakes are much more abundant and amenable to statistical studies than large
ones. The magnitude distributions of small earthquakes are also in themselves important for seismicity
modeling. Cascade models of earthquake sequences take a parsimonious approach of assuming that
triggered earthquakes follow an identical magnitude distribution as untriggered ones [e.g., Ogata, 1998].
As a result, the models predict that a cascade of events drawn from a single magnitude distribution can
culminate in large, societally significant earthquakes [Ogata, 1998; Felzer et al., 2002, 2004; Helmstetter
et al., 2005].

The assumption that the earthquake magnitude distribution is unaffected by the triggering process bears
inspection. Assessing the assumption is observationally intricate as it relies on distinguishing the triggered
and untriggered populations. Near-field aftershocks from large earthquakes are routinely observed to follow
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the standard magnitude distribution, however, the potential for multiple triggering processes and the dis-
covery of remote dynamic triggering has reopened the conundrum as discussed above.

Here we use a new strategy based on estimating the fraction of earthquakes that are triggered following a
given dynamic strain. We seek to determine if populations of earthquakes that include many remotely trig-
gered events have a different distribution than those that contain very few triggered earthquakes. We focus
our work in this paper on the most common magnitudes of earthquakes, i.e., small events. After an over-
view of earthquake frequency-magnitude distributions, we will discuss a mixing model that relates the
observable b-value of a mixed group of triggered and untriggered earthquakes, bMIX, to the parameter of
interest (the b-value of the triggered events, bT). Utilizing this model requires constructing populations of
earthquakes with an inferred fraction of triggered events. We proceed to form groups of earthquakes that
have been affected by dynamic strains of similar amplitude. We then estimate the fraction of triggered
events in each of these groups based on the applied strain and invert for bT.

2. Earthquake Magnitude Distributions

The magnitude-frequency distribution of earthquakes over broad swaths of regions and time can be repre-
sented by the cumulative Gutenberg-Richter (GR) distribution

log10ðNðmÞÞ5a2b �m (1)

where a and b are constants, N(m) is the number of earthquakes with magnitude greater than m, and
m�MC, with MC the magnitude of completeness of the catalog [Ishimoto and Iida, 1939; Gutenberg and
Richter, 1944]. The Aki-Utsu maximum likelihood estimator for the parameter b is

b5
log 10ðeÞ
hMi2MC

(2)

where hMi is the observed mean magnitude [Aki, 1965; Utsu, 1965]. This formulation is appropriate for mag-
nitudes within the power law range of the distribution which is applicable for the small earthquakes consid-
ered here.

The Gutenberg-Richter distribution is a representation of the exceedance probabilities for a given range of
magnitudes. Characterizing and identifying differences in b-values has implications for both hazard analysis
and the physical mechanisms of earthquake nucleation [Frohlich and Davis, 1993; Utsu, 1999; Schorlemmer
et al., 2005]. For constant a-value, differences in b-value map into differences in the relative hazard of large
earthquakes as a function of either space or time for magnitudes up to the maximum magnitude of the
underlying distribution. Other parameterizations of the frequency-magnitude distribution are possible,
including a truncated distribution that includes maximum magnitude as a free parameter [Holschneider
et al., 2011]. However, resolving a multivariate distribution requires even more data than resolving differen-
ces in b-value. As will be shown below, resolving even mean magnitude differences is at the limit of the cur-
rent data resolution and so no more complex model is warranted by the data.

3. Mixing Model

Suppose a sequence of earthquake magnitudes, Mmix
i , exists such that it is composed entirely of either trig-

gered, MT
j , or untriggered, MU

k , events. The sum of magnitudes of the mixed (composite) catalog is

Xntot

i

Mmix
i 5

XnT

j

MT
j 1
XnU

k

MU
k (3)

where nT and nU are the total number of triggered and untriggered observations, respectively, and
ntot 5 nT 1 nU. By dividing both sides by ntot and defining the triggering fraction fT � nT/ntot, equation (3)
can be recast as a weighted sum of the means of the individual components

hMmixi5fT � hMTi1ð12fT Þ � hMUi (4)

We use equation (2) to substitute into equation (4) to find the equivalent relationship between the b-values
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1
bMIX

5fT �
1

bT
1ð12fT Þ �

1
bU

(5)

where bT, bU, and bMIX are the b-values of the triggered, untriggered, and mixed populations, respectively.
We then isolate bT and find

bT 5
fT � bU

bU
bMIX

1fT 21
(6)

Equation (6) is pragmatically useful because the variables on the right-hand side can all be independently
estimated. The same result can also be derived using the maximum likelihood method presented in Kijko
and Smit [2012; Appendix A]. In practice, the form of equation (6) necessitates two regularity conditions to
stabilize the inversion and to produce physically meaningful results: the denominator in equation (6) must
be greater than 0 and fT must be greater than 0. For fT greater than 0, the denominator is greater than 0 if
bU/bMIX> 1 2 fT.

To use equation (6), we need to construct populations of earthquakes with differing fractions triggered and
then perform two distinct tasks: (1) measure bMIX in the combined population and (2) determine the fraction
of triggered events. Additionally, we need to find a group of earthquakes with a very low fraction of trigger-
ing in order to estimate the untriggered b-value bU.

We will accomplish all of these goals by capitalizing on the previous observation that the fraction of trig-
gered events in the far field is a well-defined function of the peak amplitude of the seismic waves, i.e., larger
amplitude waves trigger more events [van der Elst and Brodsky, 2010]. Therefore, we can construct groups
of earthquakes that immediately follow dynamic strains from distant earthquakes. The groups of earth-
quakes following large amplitude shaking will have a large (and measurable) triggered fraction, fT, and can
be used in conjunction with equation (6) to measure the b-value of triggered earthquakes, bT. Those follow-
ing small or extremely distant earthquakes will have a very low triggered fraction and can be used to
approximate bU. Note that this definition of the untriggered population may include many earthquakes that
are triggered by other, unidentified local main shocks. It has been proposed elsewhere that the fraction of
locally triggered events catalog-wide is large and so essentially any group of earthquakes will contain after-
shocks [e.g., Marsan and Lenglin�e, 2008]. However, for the purpose of this study, we are asking if a group of
identifiable, remotely triggered events has magnitude behavior that is distinct from other groups of earth-
quakes. This is a key question for both operational forecasting and physical understanding of the dynamic
triggering process.

4. Data and Analysis Method

We focus our study on California for the period 1 January 2009 to 1 January 2014. The locale was chosen
because previous work has already established a useable relationship between dynamic strain ampli-
tudes and rate changes in the region. The time period was chosen because of a California-wide change
in the definition of ML, implemented in 2008 for hypocenters cataloged by the Southern California Seis-
mic Network (SCSN, network code CI) and in January 2009 for seismicity within the Northern California
Seismic Network (NCSN, network code NC) [Hutton et al., 2010; Tormann et al., 2010; Uhrhammer et al.,
2011]. Data with network codes NC and CI were accessed from the Advanced National Seismic System
(ANSS) Catalog (last accessed July 2014, http://www.ncedc.org/). We used the earthquakes in the box
defined by 32�N–42�N, 124�W–114�W with depth less than 15 km. Uhrhammer et al. [1996, Table 6] pre-
viously established an average difference of 0.4 magnitude units between the magnitudes of identical
events reported by the Nevada and Northern California networks. Therefore, we restricted our data to
only magnitudes reported by the Northern and Southern California networks to ensure consistency. We
fit the minimum magnitude of the power law regime of the frequency-magnitude distribution to find
the magnitude of completeness which is 1.8 [Wiemer and Wyss, 2000]. The calculated completeness is
applicable over the high seismicity regions where measurements are dense (compare Figure 1 and sup-
porting information Figure 1). The b-value and 95% confidence level, generated via 5000 bootstrap
resamplings, for the combined CI and NC seismicity is 0.87 6 0.01. As previously documented by Tor-
mann et al. [2010], the magnitude recalibration in 2009 makes this b-value less than the commonly
quoted value of 1.
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In order to identify earthquake populations with strong triggering, we need to estimate the local peak
ground velocity from a distant earthquake. We make this estimate by inverting a surface wave magnitude
regression appropriate at both regional and teleseismic distances. Our target catalog is partitioned into a
0.1� 3 0.1� grid and the effect of each possible trigger is considered on the group of earthquakes in each
grid square. For each node, we loop through a global catalog of test triggers. Events with magnitude
MW> 5 from the ANSS catalog qualify for inclusion as a test trigger. Depths are limited to those shallower
than 100 km because of their greater relative efficiency at generating surface waves. Additionally, each
global test trigger must be at least 200 km from a local node.

The previous work of van der Elst and Brodsky [2010] used the standard Ms attenuation relationship to esti-
mate ground motion for teleseismic earthquakes more than 800 km away based on distance and magnitude.
In this study, we use earthquakes as close as 200 km away in order to assemble a sufficiently large set of
potential triggers during the period of consistent magnitude determination. Therefore, we require a different
attenuation relationship that is more appropriate to the regional distances and is calibrated to be consistent
with the teleseismic data. The attenuation relationship of Russell [2006] satisfies these criteria and is

MS5log10ðAlÞ1
1
2
� log10ðsin ðDÞÞ10:0031 � D2log10ðfcÞ12:57 (7)

where Am is the zero-to-peak, narrow-band-passed amplitude in microns around the reference period of
20 s, D is the epicentral distance in degrees [Russell, 2006]. (Note that we convert to microns in equation (7)
from the original reference in nanometers.) The parameter fc corrects for the zero-phase third-order Butter-
worth filter applied to the data and is equal to 0.03�(D21=2). The drawback of using equation (7) is that the
band-pass results in new strain estimates that need to be check for consistency with previous studies. The
advantages of having a consistent measure throughout the distance range of interest outweigh this disad-
vantage for the current use. Since equation (7) is an empirically derived regression, we do not directly use
or filter any seismic waveforms; we simply replace the MS value in the equation with the preferred magni-
tude for the test trigger as reported by ANSS.
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Figure 1. Map of the spatial grid squares with earthquakes of magnitude greater than magnitude 1.8 from 1 January 2009 to 1 January
2014. Colors show number of earthquakes detected at each node. Background image shows state borders and major faults.
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Finally, we estimate strain, e, by
assuming

e5
V
CS

(8)

where V is the particle velocity
(approximately equal to 2pfA
[Aki and Richards, 2002], with A
inverted from equation (7))
and CS is the surface wave
group velocity (3.5 3 109 lm/s
for Rayleigh waves). Second-
order effects due to depth, rup-
ture directivity, and radiation
pattern are not captured by
these regressions and can
result in errors as high as 1
order of magnitude in extreme
cases. The global average
curve will accurately predict
the average strain of a large
group of potential triggering
events [Gomberg and Agnew,
1996].

Once the shaking is known, we
can use the previous calibra-
tion of fractional seismicity rate
changes in California as a func-
tion of applied dynamic strain
[van der Elst and Brodsky, 2010;
van der Elst et al., 2013]. For a
given source volume with a

distribution of faults, van der Elst and Brodsky [2010] model the seismicity of the volume as a Poisson pro-
cess with an average intensity parameter k. Dynamic strains traveling through a source volume can activate
faults and induce a step change in the intensity parameter from k1 to k2. For a stepwise homogenous Pois-
son process, the fractional rate change induced by some far-field trigger is

dk5
k22k1

k1
(9)

For a group of target areas that have experienced given amplitudes of shaking, van der Elst and Brodsky
[2010] and van der Elst et al. [2013] showed that

dk582e0:43 (10)

This measurement is based on using the interevent time ratio called the R-statistic to measure rate changes
[Felzer and Brodsky, 2005]. We review the method here as the R-statistic is key to our identification of
triggered and untriggered earthquake magnitude distributions.

The interevent time ratio is defined as

R � t2

t11t2
(11)

where t1 and t2 are times to the first earthquakes before (with magnitude M1) and after (with magnitude
M2) the arrival of seismic energy from some potential far-field trigger (Figure 2). In the absence of triggering,
the population of R-values will be distributed according to the standard uniform distribution with l 5 0.5
and r2 5 1/12. In the presence of triggering, there will be a bias toward small values of t2, leading to a larger
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Figure 2. Schematic cartoon of hypothetical synthetic data from a single grid node, demon-
strating the procedure for measuring R-values. The vertical black line is the approximate
arrival time of seismic energy from one far-field event, i.e., ‘‘test trigger.’’
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proportion of small R-values and
therefore a deflection of the
mean value of R, �R, to less than
0.5. In particular,

�R5
1

dk2 � ðdk11Þ � ln ðdk11Þ2dk½ �

(12)

For any real catalog of earth-
quakes, the finite observation
period introduces a bias in the
calculation of R-values. Neither
t1 nor t2 can take on infinite val-
ues. The limits on t1 and t2 are
set by the time of triggering
earthquakes. Therefore, van der
Elst and Brodsky [2010] estimate
this bias by generating simu-
lated catalogs at all grid points
with uniformly distributed local
earthquake times and fixed
global trigger times. In each
amplitude bin, the deviation of
the mean values of R in the sim-
ulations from 0.5 is subtracted

from the mean values of R measured prior to applying equation (12) to determine the fractional rate
change.

Figure 3 compares the rate changes inferred from the 2009–2014 Californian data set as defined above with
the prediction of equation (10). We use 100 local simulations here for the bias-correction and 1000 boot-
straps of the R-value in each amplitude bin to establish the 90% confidence intervals. The consistency of
the current results with the previous work allows us to proceed in using equation (10) with the 2009–2014
data to study triggered magnitude distributions.

5. Fractional Rate Change

Inverting for bT from the mixing model in equation (6) requires an estimate of the fraction of the data attrib-
uted to triggered earthquakes, or fT. Over one pretrigger recurrence interval (time s5k21

1 ), the number
expected in the recurrence interval prior to the test trigger is nbefore 5 k1�k21

1 51. Since we are interested in
the amount and type of seismicity in the aftermath of a potential rate change, this can be expressed as

nafter5k2 � s5ntot (13)

where again s5k21
1 is the relevant time scale we are interested in and ntot is the total number of earth-

quakes in the interval after the trigger including both triggered and untriggered events. It follows that
ntot 5 nafter 5 dk 1 1. With these two definitions of nbefore and nafter, we can therefore define fT as

fT 5
nT

ntot
5

ntot2nU

ntot
5

nafter2nbefore

nafter
5
ðdk11Þ21

dk11
1

dk
dk11

(14)

Equation (10) is used to estimate dk and therefore fT with equation (14). Once fT has been estimated, we
then measure the composite b-value (bMIX) and proceed to infer a range of values for bT that is consistent
with the data.

6. Sampling Biases

One of the advantages of the R-statistic approach to identifying triggered magnitude distribution is the
measurements require only that there be uniform detection capability for each local measurement over the
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Figure 3. Triggering intensity (fractional rate change, dk) for the ANSS California seismicity
(network codes CI & NC) between 1 January 2009 and 1 January 2014, depths <15 km and a
magnitude of completeness 1.8 (red). For each amplitude bin, the finite-catalog-corrected
mean R ratio was converted to a fractional rate change via equation (12). Error bars are 90%
confidence intervals from 1000 bootstrap resamplings of the R-values in the amplitude bin.
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study period. Spatial variability
of completeness between grid
squares can be tolerated. How-
ever, there are other, insidious
biases that result because of
the conditioning introduced by
the R-statistic. Here we
describe and analyze the
effects of these biases which
we term aftershock and fore-
shock shielding.

6.1. Aftershock Shielding
Effect
The final requirement to infer
bT is a measurement of bU, the
reference background seismic-
ity parameter. We initially
attempted to define bU using
events from the population of
M1 events. In that case, we sup-
posed that the magnitude of
the event immediately preced-
ing the arrival of dynamic

stress was an accurate representation of the steady state distribution of magnitudes in a system unper-
turbed by far-field transient waves. However, we found that over the entire range of strain, the bias-
corrected M1 population shows a consistently higher b-value (corresponding to a lower mean magnitude)
than its equivalent population of bias-corrected M2 magnitudes (Figure 4). This effect stems from the clus-
tering of earthquakes into aftershock sequences. We therefore call this the aftershock shielding effect. Fig-
ure 5 shows a schematic diagram demonstrating the origin of the systematic offset of magnitudes between
the measurements of M1 and M2. When a larger-than-average earthquake occurs, it tends to generate after-
shocks. The time to the first earthquake in this aftershock sequence tends to be shorter than the time to the
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Figure 4. b-Values for the M1 and M2 populations of data as a function of peak dynamic
strain. Both curves show b-values higher than the catalog-wide value (solid blue line). The
persistent static offset between the three curves is due to the aftershock shielding effect
and foreshock shielding effect (see text and Figure 5).

Figure 5. Schematic diagram for the origin of the systematic offset of magnitudes between the M1s and M2s. Teleseismic waves arriving in
our target catalog are represented by black arrows. For each far-field event, a unique R-ratio is calculated and an M1 and M2 within the
local catalog are identified. When a local main shock occurs, the time to the next event is, on average, substantially reduced as aftershocks
tend to cluster in time and space. It is therefore unlikely that teleseismic surface waves will arrive in the time interval between the local
main shock and its first local aftershock. Therefore, the large local main shocks in a target catalog are rarely designated M1, and almost
always designated M2. Hence, the systematic offset in magnitudes between the two data sets. We call this the aftershock shielding effect.
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first earthquake that preceded the main shock. Seismic waves from a distant earthquake are thus much less
likely to fall within the latter interval than the former. This means that a large magnitude local main shock is
systematically biased to be labeled an ‘‘M2’’ versus an ‘‘M1.’’ The large main shock is shielded from being
labeled an M1 by its ensuing aftershocks.

6.2. Foreshock Shielding Effect
The presence of foreshocks induces a similar shielding effect. In figure, the b-values of the M2 data are sys-
tematically larger than the b-value of the overall catalog (	0.87). Since foreshock sequences follow an
Inverse Omori Law, as far-field triggers approach the time of a local main shock, they may fall within the
rate increases (in an average sense) that precede the local main shock.

6.3. ETAS Simulation
We can reproduce both of these shielding effects in an epidemic-type aftershock (ETAS) model [Ogata,
1998]. Following the procedure of Brodsky [2011], we produced a synthetic catalog with a b-value of 1 and
measured the magnitude distribution of the events prior and after randomly selected times. We found for
100 simulations that the M1 b-value 5 1.22 6 0.04 and the M2 b-value 5 1.0 6 0.03, with 1 standard devia-
tion reported.

As discussed in Brodsky [2011], standard ETAS simulations have too few foreshocks (relative to aftershocks)
compared to the observations. This disparity is due to either completeness problems or a physical propen-
sity for foreshocks. The overabundance of foreshocks is an interesting issue in itself; however, here we are
only concerned with its effect on the sampling of magnitudes. Therefore, since the standard ETAS simula-
tion using standard parameters only reproduced the aftershock shielding and did not explain the deviation
of the M1s in the observations, we performed an additional set of modified ETAS simulations that mimic the
large fraction of foreshocks. To illustrate the foreshock abundance of real catalogs, a fraction of the after-
shocks were randomly assigned to occur as foreshocks, i.e., the sign of the time from the main shock is
reversed. We emphasize that this adaptation of the ETAS model is employed simply as a tool to investigate
the effects of foreshocks on selection of earthquakes. If 25% of the aftershocks are turned into foreshocks,
the observed aftershock to foreshock ratio was close to the catalog values (	2) and the observed M1 b-
value 5 1.19 6 0.03 (1 std.) and the M2 b-value 5 1.10 6 0.04 (1 std.), which offset approximately 0.1 and 0.2
units from the catalog-wide b-value. These offsets from the catalog-wide value are similar to the offsets
observed in actual data (Figure 4). We conclude from this exercise that the offsets between the M1 and M2

populations can be explained as a natural consequence of the effect of earthquake foreshock and after-
shock sequences on selecting earthquakes. No more elaborate hypothesis about triggered magnitudes is
necessary.

7. Results

Because of the aftershock and foreshock shielding, we cannot directly compare the M1 and M2 magnitudes
as a measure of the effect of triggering. Instead, we must define a reference, untriggered mean magnitude
from the M2 data set for comparison to the triggered M2 magnitudes. We therefore take the values of M2

corresponding to the lowest fractional rate changes (i.e., e 	 1029) to represent the parameter bU, equal to
0.99 (Figure 4). Next we apply the mixing model to bMIX data to extract bT from the three observable varia-
bles: bMIX, bU, and fT. Figure 6 shows the results of the bT inversion for the combined catalog. We generate
1000 bootstrap resamplings (sampling with replacement) of the M2 values in each amplitude bin and use
the 50% and 90% confidence intervals on M2 to derive the confidence intervals shown in Figure 6 [Efron
and Tibshirani, 1994]. These observations suggest that b-values of data with high percentage of triggered
earthquakes have no obvious trend relative to the b-values of untriggered or spontaneous seismicity. The
differences with the overall b-value of the data set are insignificant and cannot be distinguished from back-
ground seismicity.

It is tempting to further disaggregate the data and exam whether or not particular regions might have a
magnitude distribution change. However, the ability to distinguish bT from bU relies on the ability to mea-
sure the triggered fraction fT. As shown by van der Elst et al. [2013], there is a strong trade-off between the
number of measurements and the resolution of rate changes and so we are limited to the aggregate data
set that provides sufficient population sizes for robust measurements.
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8. Implications

Our results indicate there are no discernible differences between the magnitude distributions of data sets
that likely contain a high proportion of triggered events, versus data sets that do not contain high propor-
tions of triggered events. The observed composite b-values (bMIX, red curve in Figure 4) show no significant
variation with respect to calculated peak dynamic strains (Figure 4). The small variations that do exist do
not show a monotonic trend with the fraction of likely triggered events in the population, meaning that
this conclusion is not likely to change with increased statistical resolution. Inverting for bT directly using a
mixing model does not alter these conclusions (Figure 6).

These interpretations are significantly different than that of Parsons and Velasco [2011] who suggested that
dynamically triggered earthquakes are preferentially small. These studies differ in fundamental ways. For
instance, the statistical treatment here includes greater than 400 examples of potential triggers for each data
set, including some very weak triggers, and deals explicitly with the fact that any observed group of earth-
quakes is a mixture of triggered and untriggered events via our mixing model. The previous work had 205
examples of very strong triggering. Second, the R-statistic uses an optimized, adaptive time window to mea-
sure rate changes and therefore is inherently more sensitive than the counting method of Parsons and
Velasco. Finally (and perhaps most importantly), we focus on small earthquakes as diagnostic of the magni-
tude distribution; this contrasts with the approach of Parsons and Velasco where only 5<MW< 7 events are
examined. The advantage of this paper’s approach is that larger numbers ensure statistical robustness since
larger magnitude earthquakes are intrinsically rare and may not be observed during a short time interval.

The current results more directly constrain the cascade behavior of earthquake sequences. The current data
suggest that a single magnitude distribution is adequate to capture the triggering behavior from dynamic
waves and therefore an ETAS-style model is an appropriate tool to evaluate the expected consequence of
shaking.

9. Conclusions

We find that no statistical evidence for fundamentally different underlying distributions between triggered
and untriggered earthquakes. This supports the idea that the magnitudes of triggered and untriggered
earthquakes are randomly drawn from a single-parameter GR distribution over the studied magnitude
range. Remotely triggered earthquakes are likely to be as large as any other group of seismicity. However,
since the total number of triggered events is small, the probability of observing a remotely triggered large
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Figure 6. bT as inverted from equation (6), with inset showing an expanded version. The horizontal line corresponds to an estimate of bU

based on data from the strain measurements in the smallest amplitude bin. Error bars derived from 5000 bootstraps indicate the triggered
b-values (bT) are insignificantly different from our reference bU.
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earthquake is accordingly small. Cascade models drawn from a single magnitude distribution are consistent
with the dynamically triggering data as currently available.
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