
UCSF
UC San Francisco Previously Published Works

Title
Navigating the pitfalls of applying machine learning in genomics

Permalink
https://escholarship.org/uc/item/6f5210xq

Journal
Nature Reviews Genetics, 23(3)

ISSN
1471-0056

Authors
Whalen, Sean
Schreiber, Jacob
Noble, William S
et al.

Publication Date
2022-03-01

DOI
10.1038/s41576-021-00434-9

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6f5210xq
https://escholarship.org/uc/item/6f5210xq#author
https://escholarship.org
http://www.cdlib.org/

0123456789();:

As the amount and complexity of genomic data rapidly
increase, machine learning (ML) tools are being used
for a wide array of analytical tasks. Examples include
processing and normalizing raw data, integrating hetero­
geneous sources of genomic information, exploring data
structure, predictive modelling, generative modelling
and prioritizing experiments. In this Review, we discuss
several pitfalls that one might encounter when applying
ML tools to genomics data. We focus on supervised ML
in which the goal is to learn a model that makes accurate
predictions on new data and/or yields mechanistic insight
via identification of genomic features that underlie
a predictive model.

A crucial first step in applying supervised learning
in genomics is identifying the most useful formula­
tion of the scientific question as a ML task. Some tasks
have limited scientific value. For example, predicting a
cheap form of experimental data from a more expensive
form may not be practically useful unless the expen­
sive data are already available or the model itself pro­
vides some specific biological insight. Once one has
identified a general problem for which ML can be help­
ful, some specific formulations of the problem may be
more useful than others. For instance, a model trained
to predict gene expression from promoter sequences
using data in one cell type may not generalize to a
new cell type in which expression levels are driven by
other transcription factors. In addition, circular pro­
blems should be avoided, such as predicting protein
functions from a protein interaction database that links
two proteins if they share a Gene Ontology (GO) cate­
gory or other functional annotation. Here, the circular
issue is that the label being predicted (protein func­
tion) is actually directly encoded in the features used
for prediction.

Once the analyst has identified the specific ML pro­
blem that will be solved, they must choose a model
and determine how to properly evaluate its perfor­
mance. Performance evaluation is often executed using
cross-​validation (Box 1), whereby examples are iteratively
randomized into a training set used to fit a model and a
held-​out test set used to quantify model performance.
This is where one typically encounters the pitfalls that
we discuss. The primary problem is that examples are
assumed to be independent and identically distributed
(IID). But genomics is replete with violations of these
assumptions, such as adjacent genomic positions that
exhibit correlated activity, or proteins in the same
family, pathway or complex that have very similar func­
tions. If modelling assumptions are inaccurate, then the
reported predictive accuracy of a model may be sub­
stantially inflated compared with the true generalization
error the model would have on a completely indepen­
dent prediction set. Unfortunately, ML software cannot
detect this; instead, it is the job of the modeller to check
assumptions and adjust their statistical procedures
accordingly. Our goal is to highlight specific scenarios
where model and performance evaluation assumptions
are violated, along with solutions for mitigation.

This Review is organized around five pitfalls that
arise when applying supervised ML models in genetics
and genomics (Fig. 1). Several problems we explore have
been touched upon by Teschendorff1, Minhas et al.2 and
in reviews of genomics applications for deep learning3–6.
We cover these alongside many new topics to provide
a complete picture of the interrelated pitfalls that arise
when applying supervised ML in genomics. Owing to
their connections, the pitfalls share some mitigation
strategies (see the Conclusions section), but we discuss
each one separately because they can occur in isolation.

Examples
Also known as ‘samples’ or
‘observations’. The primary
data objects being
manipulated by a machine
learning system. They are the
basic units being measured.

Training set
Examples and associated
outcomes that are used
to fit a supervised machine
learning model.

Navigating the pitfalls of applying
machine learning in genomics
Sean Whalen   1,6, Jacob Schreiber2,6, William S. Noble   3 and Katherine S. Pollard   1,4,5 ✉

Abstract | The scale of genetic, epigenomic, transcriptomic, cheminformatic and proteomic
data available today, coupled with easy-​to-​use machine learning (ML) toolkits, has propelled
the application of supervised learning in genomics research. However, the assumptions
behind the statistical models and performance evaluations in ML software frequently are not
met in biological systems. In this Review, we illustrate the impact of several common pitfalls
encountered when applying supervised ML in genomics. We explore how the structure of
genomics data can bias performance evaluations and predictions. To address the challenges
associated with applying cutting-​edge ML methods to genomics, we describe solutions and
appropriate use cases where ML modelling shows great potential.

1Gladstone Institutes,
San Francisco, CA, USA.
2Department of Genetics,
Stanford University, Stanford,
CA, USA.
3Department of Genome
Science, University of
Washington, Seattle,
WA, USA.
4Department of Epidemiology
& Biostatistics, University
of California, San Francisco,
CA, USA.
5Chan Zuckerberg Biohub,
San Francisco, CA, USA.
6These authors contributed
equally: Sean Whalen,
Jacob Schreiber.

✉e-​mail: katherine.pollard@
gladstone.ucsf.edu

https://doi.org/10.1038/
s41576-021-00434-9

REvIEWS

NATuRe ReVIeWs | Genetics

http://orcid.org/0000-0002-6648-3610
http://orcid.org/0000-0001-7283-4715
http://orcid.org/0000-0002-9870-6196
mailto:katherine.pollard@gladstone.ucsf.edu
mailto:katherine.pollard@gladstone.ucsf.edu
https://doi.org/10.1038/s41576-021-00434-9
https://doi.org/10.1038/s41576-021-00434-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41576-021-00434-9&domain=pdf

0123456789();:

Each problem is described in generality and through
illustrative examples selected from many in the literature.
To further demonstrate these ideas quantitatively, we
developed interactive notebooks with data and code that
can be downloaded and run locally or in a web browser
without installing any software. These notebooks use
epigenomic data or simulations, some with no true asso­
ciations between features and the outcome, to quantify the
effects of the pitfalls and demonstrate their mitigation.
Satisfying model assumptions is hard in complex bio­
logical systems, but we hope that the strategies presented
here increase the usefulness of ML in genomics.

Pitfall 1: distributional differences
This first pitfall concerns examples that are not identi­
cally distributed, meaning that the probability of observ­
ing a given value is not the same across examples (Fig. 1a).

Repeated coin tosses are identically distributed (the
probability of heads is the same each time), whereas
online search results are not (they vary by season).
Distributional differences can affect the features (whose
marginal distribution is denoted as P(x)), the outcome
(P(y)), and/or the relationship between features and
outcome (the conditional distribution P(y|x)).

In genomics, distributional differences arise for many
reasons. A common cause is inherent biological struc­
ture in the data. For example, epigenetic profiles differ
between euchromatin and heterochromatin. Proteins
belong to functional categories, each with distinct
expression patterns and physical interactions. Population
genetic structure creates distributional differences
known as ascertainment bias in genome-​wide association
studies (GWAS) when variants are discovered or models
are trained on individuals with different ancestry from
the population being tested for genotype–phenotype
associations7–10. Distributional differences also arise
when a model is trained and applied in different biologi­
cal contexts (for example, different cell types, different
species or in vitro versus in vivo11). Lastly, distributions
may differ owing to study design and technical factors

Box 1 | terminology of performance evaluation

cross-​validation
In this procedure for estimating the performance of a supervised machine learning (ML)
model on held-​out data, examples are randomly split into k groups, known as folds.
The model is fit on k−1 groups (the training set) and then applied to the remaining group
(the test set). By comparing predictions with actual outcomes across many random test
sets, model performance on unseen data can be estimated. Group k-​fold cross-validation,
or blocking, is a variant of cross-​validation (CV) that takes into account information about
groups of dependent examples, such as which chromosome a gene is located on or the
patient from which a sample was derived. In group k-​fold CV, when splitting into k folds,
all examples belonging to the same group are assigned to the same fold. In this way,
examples that belong to the same group cannot cross the train–test divide.

Performance statistics
We can summarize the performance of a binary classifier in various ways.

•	The true positive rate (also known as ‘recall’ and ‘power’) is the number of true
positives divided by the total number of positives.

•	The false positive rate (FPR) is the number of false positives divided by the total
number of negatives.

•	Precision is the number of true positives divided by the total number of predicted
positives (true positives plus false positives). The false discovery proportion (FDP) is
1 − precision. The expected (or average) FDP over many iterations of an experiment
is the false discovery rate (FDR).

•	Accuracy is the proportion of correct predictions made by a classifier. It is calculated
as the number of correct predictions (true positives plus true negatives) divided by the
total number of predictions.

Visualizing performance
Most classifiers allow the user to vary how many examples get classified as positive
(for example, by varying a threshold). As the number of predictions changes, we can
plot two types of curves.

•	A receiver operating characteristic (ROC) curve plots the true positive rate as a
function of the FPR. The area under this curve (auROC) quantifies the performance
of the classifier, with an area of 1.0 corresponding to perfect performance and
0.5 corresponding to random chance. The auROC does not depend on the ratio of
class sizes in the test set.

•	A precision–recall (PR) curve plots precision as a function of recall (also known as
the true positive rate). Perfect performance corresponds to an area (auPR) of 1.0,
and random chance corresponds to an area of (number of positives/total number of
examples). For a fixed classifier, the auPR will change depending on the ratio of the
class sizes in the test set.

auROC measures how recall increases as FPR increases, whereas auPR measures how
recall increases as FDP increases. FPR and FDP both have the number of false positives
as their numerator, but their denominators are different: the number of negatives for
FPR versus the number of predictions for FDP. As a consequence, auPR can be low when
auROC is high.

Test set
Examples and associated
outcomes that are used to
evaluate model performance.
Training and test sets are
disjoint.

Independent
The value of one example
does not depend on the
value of others.

Identically distributed
Generated by the same
underlying distribution,
with a particular mean,
variance and shape.

Fig. 1 | An overview of five common pitfalls. a | Distri
butional differences can arise from various sources, such
as batch effects. If the training and test sets are a mixture
of examples from every batch (left), performance on the
testing set will be much higher than on a new batch. To fit
a model that will generalize to new batches, training and
test sets should be composed of different batches (right).
b | Dependency structure arises when biological groups
exhibit similar feature–outcome relationships, such as
correlated functions of proteins from the same family or
complex. Predicting outcomes is easy if a model is trained
using other entities in the same group (left). To ensure
that the model can generalize, one should instead partition
entire biological groups into either the training or test set
(right). c | Confounding variables are unobserved variables
that alter dependence structures between the observed
variables. In this example, the unmeasured ancestry of
individuals is a confounder of the relationship between
genetic variants and gene expression (left), causing the
C allele to appear associated with higher expression.
After adjusting for the ancestry of individuals (right),
we see that expression is higher for individuals from one
ancestry group (A4). The association between the C allele
and expression is only due to C being more common in
individuals from A4. Although difficult to discover, con-
founders should be explicitly included in the modelling
approach and construction of training and test sets.
d | Information leakage can happen when information is
leaked from the test set into the training as a result of the
training and test sets being preprocessed together (left).
Instead, the raw data should be split into training and
test sets with preprocessing performed separately (right).
e | Unbalanced data can make model training and
evaluation difficult. If the training and test sets are
balanced but the prediction set is unbalanced, test set
performance will not reflect prediction set performance
(left). Regardless of whether a balanced or unbalanced
training set is used, the imbalance in the test set should
be reflective of the imbalance in the prediction set (right).
Ideally, one should also use a performance measure that
can handle imbalance.

▶

www.nature.com/nrg

R e v i e w s

https://github.com/shwhalen/ml-pitfalls

0123456789();:

Batch 4Batch 3Batch 2Batch 1

Observed variables

Incorrect Correct

Train Test PredictionTrain Test Prediction

MAD MAX

G
en

e
ex

pr
es

si
on

Ancestry Genetic variant

G
en

e
ex

pr
es

si
on

Ancestry Genetic variant

a Pitfall 1: distributional differences

b Pitfall 2: dependent examples

c Pitfall 3: confounding

d Pitfall 4: leaky pre-processing

e Pitfall 5: unbalanced classes

MAZ

MYC

MAD MAX

MYC

AA CC GG TT

JUNB

JDPL

JUND

JUNB

JDPL

JUND

FOXA1

FOXA3

FOXA2

Preprocessing steps
(feature selection,
scaling, imputation, etc.)

Original
data

Processed
data

Processed
train data

Processed
test data

Preprocessing steps
(feature selection,
scaling, imputation, etc.)

Original
data

Processed
train data

Processed
test data

Train data

Test data

From the same protein family

A1 A2 A3 A4

Train Test PredictionTrain Test Prediction

+

+
+
+

+
+

–
–
–

+

+
+
+

+
+

–
–
–

+

+
+
+

+
+

–
–
–

+

+
+
+

+

–

–
–

–

–

–

+

+
+
+

+
+

–

–
–

–

–

–

+

+
+
+

+
+

–

–
–

–

–

–

+

+
+
+

+
+

–

–
–

–

–

–

OR

MAZ

FOXA1

FOXA2

FOXA3

NATuRe ReVIeWs | Genetics

R e v i e w s

0123456789();:

such as time, personnel, reagents or instruments12. These
batch effects are extremely common in genomics, includ­
ing single-​cell experiments13, and can bias both the mean
and the variability of measurements. Most genomic
datasets have some distributional differences from these
various sources.

Violations of the assumption that examples are identi­
cally distributed create several problems for ML model­
ling. In this pitfall, we focus on when the training and test
sets have one distribution and the prediction set has a
different distribution. In this case, one should expect that
performance will be higher in cross-​validation (same
setting) than on the prediction set (different setting).
Because the prediction and test sets have distributional
differences, the relationships between features and out­
comes that are learned during model fitting may not hold
in the prediction setting.

Fortunately, some distributional differences are
simple to identify. Ideally, the marginal distributions of
both outcomes and features should be examined. But the
outcome is typically unknown in the prediction setting,
so one can only assess feature distributions. A straight­
forward approach is visualization, either by projecting
the data into two dimensions and making scatter plots
or by comparing histograms of feature values. A more
sophisticated approach uses statistical tests to detect
when distributions differ14; for example, the binomial
test for binary features, the Kolmogorov–Smirnov test
for univariate continuous features or Maximum Mean
Discrepancy for multivariate continuous features14,15.
Model-​based techniques for outlier and anomaly
detection can also be used16–18.

Accounting for distributional differences is still an
area of open research. Various batch correction methods
are commonly used, such as quantile normalization,
empirical Bayes adjustment for measured variables
with ComBat19, surrogate variable analysis for estimat­
ing and correcting for unknown sources of noise20, and
canonical correlation analysis, which enables the identi­
fication of common patterns across batches21,22. It is
worth noting that sometimes performing this cor­
rection can inadvertently cause information to leak
between training and test splits in cross-​validation (see
pitfall 4). More elaborate approaches from domain
adaptation and transfer learning23 include unsuper­
vised feature transformations and supervised learning
of robust feature representations24,25. Another solution
is adversarial learning, a set of techniques that attempt to
fool models by providing them with deceptive inputs.
Specifically, a model trained to predict the dataset
that each example came from can be used to generate
penalties for the primary prediction task14,26,27.

Case study. Various ML approaches have been used to
model the sequence preferences of RNA- and DNA-​
binding proteins. Transcription factor binding motifs,
for instance, are estimated using data from a variety of
assays, both in vitro28,29 (for example, protein-​binding
microarrays30–34, HT-​SELEX35–37, MITOMI or HiTS-​
Flip38) and in vivo (for example, ChIP–seq or ChIP–exo).
These measurement techniques each have unique biases,
including which sequences are assayed and which other

proteins, if any, are present during the experiment. Hence,
the observed distribution of bound sequences for a given
transcription factor is different across assays. When a
comprehensive evaluation of methods for modelling
mouse transcription factor binding sites was conducted,
the authors noted the effect of these distributional dif­
ferences as a major source of performance disparities11.
They show that a model learned from in vitro protein-​
binding microarray data typically performs much better
in cross-​validation than it does on in vivo ChIP–seq data,
with area under the receiver operating characteristic
(auROC) curve differing by up to 0.4 (0.5 being the diffe­
rence between perfect prediction and random guessing).
The reverse is also true. Neither setting is superior; they
are simply different. The study showed that performance
also drops when transcription factor binding models are
applied to make predictions on a different species from
the one on which they were trained. One should be aware
of these performance differences across contexts, but they
are not inherently bad. In fact, analysing the sources of
differential performance can reveal interesting biological
differences between the settings, such as the presence of
cofactors or cooperativity in ChIP–seq that is absent from
protein-​binding microarray data.

Other examples. Distributional differences are common.
GWAS data can have differences in allele frequency
distributions arising from ancestry. Single-​cell and bulk
gene expression measurements can have systematic
differences across batches. In proteomics, distribu­
tional differences across mass spectrometers mean that
reproducibility is higher on the same instrument than
across instruments39. Supervised ML models that
predict protein function are frequently applied to
proteins from different protein families than those
represented in the training data. Outside molecu­
lar biology, machine- and hospital-​based biases have
been observed in medical images and electronic health
records40–45, complicating the development of meth­
ods that aim to be deployed to entire medical systems.
Another example is when drug repurposing models do
not perform well on new drugs or rare diseases where
distributions differ from databases on which the models
were trained46.

Pitfall 2: dependent examples
The mathematics of commonly used ML models and
cross-validation depends upon the assumption of inde­
pendence, meaning that the values of one example are
not dependent on another example (Fig. 1b). To illustrate
the concept, repeated draws from a card deck without
replacing the drawn card are dependent, because the
probability of the next card depends on what has already
been drawn.

In genomics, dependence is pervasive yet can be chal­
lenging to recognize. When predicting protein–protein
interactions, examples are pairs of proteins. When pairs
are represented in a dataset with unique identifiers they
may appear to be independent, but all pairs that share a
given protein are correlated with each other. Dependent
examples are similarly created with enhancer–promoter,
regulator–gene and drug–protein interactions47–50.

Generalization error
A measure of how accurately
a model predicts outcomes in
data it has never seen before.

Prediction set
A third set of examples whose
associated outcomes are truly
not known, where a fitted
model is applied to make
predictions. Also known as
a prospective validation set.

True negatives
Negatives whose labels
are correctly predicted.

Features
Properties of a given example,
for example, the gene
expression values associated
with a gene or the sequence
patterns associated with a
genomic window. Also known
as ‘covariates’.

Outcome
Outcomes are what we
want to predict in supervised
learning, for example, the
functional class assigned
to a gene or the binary
classification of whether a
given genomic window contains
a promoter. Categorical
outcomes are often referred
to as ‘labels’. In regression
settings, the outcome is a
real number.

Ascertainment bias
Examples in a study are not
representative of the general
population.

Adversarial learning
Machine learning techniques
for improving model
robustness to distributional
differences, such as those
caused by batch effects
or other confounders.

www.nature.com/nrg

R e v i e w s

0123456789();:

Frequently, the independence and identical distribu­
tion assumptions are entangled. For instance, geno­
typing results for family members are dependent and
also may differ distributionally from other families.
Unfortunately, dependence relationships are not always
known. Even known dependencies have a tendency to
be ignored in supervised ML analyses. When data are
formatted as a table with one example in each row, the
standard for most ML toolkits, it is easy to proceed with
model fitting and cross-​validation without checking
whether examples are independent (Fig. 2a).

Failing to account for dependencies between exam­
ples can lead to biased models and overly optimistic
estimates of model performance. Randomized cross-​
validation (Box 1) does not protect against this problem
and overestimates performance because examples in
the test set can be correlated with training examples
and bring information into the test set that should not
be there. For instance, a model that predicts protein–
protein interactions would be likely to perform better in
cross-​validation than on novel proteins, because proteins
with more than one interaction can appear in both the
training and test sets of each fold. The scale of this prob­
lem increases with the level of dependence; it is worse
in highly connected graphs and graphs with hub nodes
where area under the precision–recall (auPR) curve can
be elevated by more than 0.5 (Fig. 2b, notebook A).

To check for this pitfall, we recommend explicitly
considering the underlying dependencies in your data
before applying ML tools. One intuitive way of doing
this is to visualize the dependencies as a graph in which
nodes represent biological entities (for example, genes,
proteins, regulatory elements or chemicals) and edges
represent associations or interactions between nodes.
Cytoscape, R and Python all have tools for rendering tab­
ular data as a graph and computing summary statistics.
Edges can be binary (presence or absence of relation­
ship) or quantitative (strength of association). Genomic
proximity, protein complexes, transcriptional networks
and metabolic pathways are all examples of biological
phenomena that generate edges. Nodes with many edges
(high degree) create groups of correlated nodes, which
are common in genome biology. Examples of such hub
nodes are a promoter interacting with many enhancers, a
transcription factor regulating many genes and a protein
involved in many different complexes. For this pitfall,
the key point is that directly — and even indirectly —
connected nodes are dependent, as are edges that share
a node.

Several approaches exist for mitigating the effects
of dependent examples on ML models, and these are
not mutually exclusive. The best solution may be to
acknowledge dependence and mitigate overfitting at the
model evaluation stage. Group k-​fold cross-​validation
(Box 1), also known as blocking51, is a bulwark against
non-​independent examples crossing the train–test
divide. It does not reduce dependence and is not a
universal solution; some dependence structures are
too complex to address with blocking. But it does pre­
vent inflated performance metrics caused by depen­
dent examples in the training and test sets, bringing
performance closer to what would be expected on an
independent prediction set (notebook A). As another
approach, it is tempting to directly reduce dependence
by downsampling edges (for example, only including
one edge per high-​degree node) or downweighting
nodes with high degree (for example, using node pro­
pensity scores). However, these strategies can make
the modified data biologically unrealistic, for example,
by removing highly interactive proteins or genomic
regions. A third alternative is to use methods that
explicitly model the covariance between examples, such
as mixed effects models from biostatistics52, time-​series

0.00

0.25

0.50

0.75

1.00

0 2,000 4,000 6,000

Total edges

au
PR

 c
ur

ve

Unblocked/baseline

Blocked/baseline

Unblocked/logistic regression

Blocked/logistic regression

Unblocked/random forest

Blocked/random forest

A
1

B
1

A
2

B
2

Graph to
pairwise nodes

a b

Shuffle rows

Split into train/test

A1–B1
A1–B2
A2–B1
A2–B2

1
1
0
1

Node pair Label

A1–B1
A2–B1
A2–B2
A1–B2

1
0
1
1

Node pair Label

A1–B1
A2–B1
A2–B2
A1–B2

1
0
1
1

Train

Test

Node pair Label

Le
ak

ag
e

Fig. 2 | Pairs of nodes in biological networks are not independent. a | A bipartite graph
with interactions connecting nodes from set A to set B. Each node contains a vector of
features, and existing (interaction) and non-​existing (no interaction) edges are encoded
by concatenating the features of the node pairs that define them. The resulting feature
matrix and labels are usable by standard machine learning (ML) algorithms. To estimate
model performance, edges are randomly split into training and test sets. By chance,
one edge from node A1 is in the training set and the other in the test set. These samples
are dependent and thus allow information to leak across the train–test divide, inflating
performance. This problem (pitfall 2) has affected various areas in genomics, where
sets A and B could be proteins and ligands, drugs and target genes or enhancers and
promoters. b | Performance inflation on graph-​based datasets grows with the number
of edges. We demonstrate this phenomenon by simulating many realizations of random
bipartite graphs with power law degree distributions (notebook A). Each graph is encoded
as in panel a using random node feature vectors so that there is no relationship between
features and edge presence. Models that assess area under the precision–recall (auPR)
curve using blocking perform similarly to the baseline model that guesses randomly.
This is an accurate assessment of performance, because there is no relationship between
features and the outcome in the data. Without blocking, the random forest and logistic
regression classifiers learn which nodes have a large number of edges in the training set,
and make stronger predictions when the features of those nodes are present for edges
in the test set. As a consequence, auPR values for unblocked cross-​validation are falsely
inflated; the outcome is random and not associated with the features, but the model can
make accurate predictions on the test set owing to dependence between node pairs in
the training and test sets. The problem increases with the number of edges, because the
probability of edges with shared nodes crossing the train–test divide grows.

NATuRe ReVIeWs | Genetics

R e v i e w s

0123456789();:

models and autocorrelation models from spatial
statistics53. Unfortunately, these models may not scale
to large genomic datasets and are rarely implemented by
common ML toolkits, although progress is being made
in this area54,55. Finally, if specific features are found
to be responsible for creating dependent examples,
it may be possible to reformulate the problem to have
less dependence.

Case study. To illustrate these points, we review an exam­
ple from our own work on predicting 3D enhancer–
promoter interactions using features derived from
functional genomics measurements56. The examples are
enhancer–promoter pairs, which are labelled as physi­
cally interacting or not, using Hi-​C data. Promoters that
interact with many enhancers are over-​represented in the
positive class and under-​represented in the negative class.
Applying randomized (k-​fold) cross-​validation produces
overly optimistic performance measurements owing to
the same promoter appearing in enhancer–promoter
pairs in both the training and test sets47,48. Shuffled
measurements result in a model with equivalent perfor­
mance. We reformulated the problem to make pairs of
genomic windows the examples rather than enhancer–
promoter pairs, which dramatically reduces hub nodes
in the dataset. This plus blocking by chromosome in
cross-​validation dramatically reduced dependence
and produced a generalizable model49. In this case, the
important features learned with randomized versus
group cross-​validation were similar, demonstrating that
a ML model can be useful even when performance evalu­
ations are incorrect. Nonetheless, group cross-​validation
is preferred.

Other examples. The interconnected and, at times,
redundant nature of biological systems means that
dependencies can be found in most prediction pro­
blems. Two genomic loci being in linkage disequilib­
rium creates a dependency between variants at those
positions, requiring the development of methods
that can disambiguate these effects for the analysis of
GWAS data57. When using functional activity measure­
ments from several cell types or tissues, genomic loci
themselves are dependent across samples because the
underlying functional activity is generally shared58.
The family of a protein is predictive of its function59,
and so measuring true generalization performance of
a computational method may require ensuring that a
protein and its entire family fall on the same side of the
train–test split.

Pitfall 3: confounding
One of the hardest pitfalls to diagnose involves data
in which an unmeasured or artefactual variable (‘con­
founder’) creates or masks associations with an outcome.
This occurs because the confounder induces dependence
between features and the outcome (Fig. 1c). The error is
that the confounder is not measured or not thought
to be important and is therefore not included in the
model. This may have little or no effect on the accuracy of
predictions, but it leads to incorrect interpretations
of the learned feature–outcome relationships and poor

performance when the model is applied in a new con­
text in which the confounder is absent or is distributed
differently than in the original context.

The lack of easily interpretable cues in genomics
data means that confounders are difficult to identify.
In image analysis, where confounders are in front of
our eyes, they can still be hard to recognize. Examples
include background scenery confounding prediction of
types of animals60 and radiology scanner type confound­
ing prediction of hip fractures42. Confounding in genetic
studies can arise from unmodelled environmental fac­
tors and population structure8, as well as other factors.
An example from genomics involves predicting 3D
chromatin interaction data (for example, Hi-​C) from
epigenetic features. Pairs of loci close to each other along
the linear genome have similar epigenetic marks and
also interact frequently in 3D owing to polymer physics,
making genomic distance a confounder. Another com­
mon example is inadvertently confounding the data by
sampling or processing samples with different outcomes
(for example, diseased versus healthy or different treat­
ment groups) in different batches. When integrating data
from multiple studies, differences in genomic assays or
bioinformatics pipelines across conditions or cell types
also creates confounding. Unfortunately, this means that
some degree of confounding can potentially be present
in any genomic dataset.

The main problem with this pitfall is that ML models
will estimate an association between the outcome and
features that depends on the confounder, but the model­
ler will wrongly interpret this as a direct biological effect.
The issue is that we are unaware of the confounder’s effect
on the observed data, and we do not include it in the ML
model. Importantly, cross-​validation does not protect
against confounded effects, because the confounding is
present in both the training and test sets. Confounded
associations often come to light when the fitted model
makes inaccurate predictions in a new context where
the confounder is absent or has a different relationship
with the measured features and outcomes. For instance,
if ancestry confounds genotype–phenotype relationships
in a training cohort, then the fitted ML model will per­
form poorly when applied to a cohort in which ancestry
is randomized. In addition to creating false associations,
confounding can mask a real relationship. The variability
introduced by the confounder makes it hard to learn true
relationships between features and an outcome.

Several statistical approaches help to prevent these
problems. Ideally, examples should be randomized with
respect to potential confounders, such as experimental
batches. When this is not possible, one solution is to
use principal components, probabilistic estimation of
expression residuals (PEER)61 or other statistics that
summarize structure in high-​dimensional data to cap­
ture unmeasured confounders62,63. One may also try
to measure potentially confounding variables. In both
cases, including the variable in the ML model will adjust
for its effect and reduce confounding64. In the example
of predicting 3D chromatin interactions from epigenetic
features, including genomic distance in the model clarifies
whether epigenetic marks are more correlated with 3D
interaction than expected by chance. Many regression

Positive
Positives are examples with
the outcome of interest in a
binary classifier.

Negative
Negatives are examples with
the alternative outcome in a
binary classifier. In genomics,
negatives often outnumber
positives.

www.nature.com/nrg

R e v i e w s

0123456789();:

models are amenable to always including a variable and
thereby adjusting for it. But ML approaches that choose
features randomly make it hard to force the confounder
into the model. To solve this problem, adversarial strate­
gies (mentioned in pitfall 1) for supervised and unsuper­
vised ML models are being developed65. Alternatively,
a measured variable can be used as a baseline predictor
with which models with other features can be compared.
It is important to note that adding a variable to a model
to reduce confounding can induce bias when it acts as
a collider.

Case study. A common confounding variable in geno­
mics experiments is the number of reads sequenced.
The outputs from genomic experiments often take

the form of signal tracks, where each position in the
genome is assigned the number of aligned reads or a
processed version thereof. Deeper sequencing means
higher average signal. This effect is clear in data from
a publicly available ChIP–seq experiment profiling
histone H3 lysine 27 acetylation (H3K27ac), which we
analysed using random subsets of reads to simulate a
range of sequencing depths (notebook B). The effect
of sequencing depth on peak height is nonlinear, with
some peaks showing more pronounced differences
than others (Fig. 3a) and a larger genome-​wide effect
at lower sequencing depth (Fig. 3b). Applying a ML
model trained on data with one sequencing depth to a
prediction context with a different depth will result in
systematic misprediction of signal values.

Collider
A variable causally influenced
by two variables, for example,
both a feature and the
outcome in predictive
modelling.

10 million reads
20 million reads
30 million reads
40 million reads
50 million reads
60 million reads

Genomic coordinate (chromosome 17)

–log10 signal P value

0

a H3K27ac signal value at differing depths

–l
og

10
 s

ig
na

l P
 v

al
ue

0 50 100 150 200 250 300 350

C
D

F

b Distribution of maximum signal value in peaks

10 million reads
20 million reads
30 million reads
40 million reads
50 million reads
60 million reads

7,838,000 7,840,000 7,842,000 7,844,000 7,846,000

100

200

300

400

500

0.80

0.85

0.90

0.95

1.00

Fig. 3 | sequencing depth as a confounding variable. An experiment profiling histone H3 lysine 27 acetylation (H3K27ac)
in smooth muscle cells (ENCODE accession: ENCSR210ZPC) reprocessed at six read depths (notebook B). a | The −log10
P value signal at one locus on chromosome 17. Peaks are higher as sequencing depth increases, making depth a confounder
if not accounted for in machine learning modelling (pitfall 3). This trend is greater in some of the peaks than in others,
indicating that the confounding effect is nonlinear. b | A cumulative distribution function (CDF) of the maximum signal
value (−log10 P value) in each peak across all peaks in the genome. The CDFs show what percentage of peaks have a −
log10 P value less than or equal to every threshold (going from least to most significant from left to right). The same set
of genome-​wide peaks, those called using 10 million reads, is used for all sequencing depths. The CDF curves for low read
depths being above those for high read depths means that fewer peaks would be called significant at any given P-​value
threshold. Machine learning models that aim to predict peaks or learn features enriched in significant peaks would be
biased when applied to data with a different sequencing depth if they did not account for the confounding.

NATuRe ReVIeWs | Genetics

R e v i e w s

0123456789();:

Other examples. Confounding arises in GWAS when
population genetic structure is systematically different
between cases and controls. This problem has arisen in

studies of many phenotypes. One notable example is a
ML model trained to predict autism spectrum disorder
(ASD) using genotyping data, which initially appeared
successful66. However, the results were generally irrepro­
ducible after accounting for population structure67 and
further analysis suggested that the variants were more
indicative of shared ancestry than they were of ASD68,69.

Confounding is also frequently introduced through
the data collection process. Technical artefacts are a
common source of confounding in genomics, especially
when datasets from different sources are integrated
into one model. For example, co-​expression networks
are a powerful tool for predicting gene functions or
disease associations. But batch effects induce spurious
correlations between sets of genes that confound these
predictions63. Unmeasured population structure can be
associated with both genotypes and gene expression,
making it a common confounder in models used to
identify expression quantitative trait loci (eQTLs)62.
Technical artefacts can operate in a similar way in eQTL
studies. As an additional example, the data derived from
electronic health records (EHRs) can be confounded by
socioeconomic status, because poorer patients may be
more likely to be seen at clinics where the authors of
the EHRs are less experienced70, as well as by severity
of disease and ability to access health care71.

Pitfall 4: leaky preprocessing
A subtle yet pervasive problem in ML analyses is data
processing that inadvertently causes information to
leak from the test set into the training set. Information
leakage (‘double dipping’) occurs when the training set
is processed in a manner that depends on data from the
test set, which induces dependence between examples
(a special case of pitfall 2) and interferes with the utility
of the test set for evaluating model performance (Fig. 1d).

Leaky preprocessing is pervasive in genomics. Any
data transformation that looks at multiple examples
together can be problematic. Specific methods include
standardization and principal component analysis (PCA),
plus various other scalings and unsupervised embedding
approaches. Supervised feature selection, which involves
filtering features that are based on association with the
outcome, is another form of preprocessing that can
cause leakage when performed outside cross-​validation.
More broadly, recent work on post-​selection inference
highlights the problem of performing statistical analyses
such as differential expression after clustering72, even if the
clusters were defined on independent datasets73.

The consequence of preprocessing the whole data­
set is an overly optimistic cross-​validation performance
estimate (notebooks C and D) that is easily interpreted
as indicating a true biological relationship. This can
happen even when there is no association in the data
(Fig. 4a, notebook C). Information leakage is also a pro­
blem for unsupervised ML methods, such as clustering
or visualization techniques. For instance, examples with
similar outcome values may incorrectly group together
if supervised feature selection is applied to data before
they are explored with unsupervised ML (Fig. 4b). More
generally, any downstream analysis will be impacted by
information leakage.

Number of selected features

PC1

0.50

0.45

0.55

0.60

0.65

0.70

0.75

0.80
A

cc
ur

ac
y

PC
2

Negatives
Positives

101 102 103 104

a Model accuracy on random data

b 200 selected features

Outside cross-validation Inside cross-validation

Fig. 4 | Performing feature selection outside cross-
validation yields unrealistically high model accuracy.
We demonstrate the consequences of improperly using
supervised feature selection approaches (pitfall 4) on a
synthetic dataset and label vector composed entirely of
random values (notebook C). a | Because the data have no
real signal by design, a random forest classifier evaluated
with feature selection carried out properly does not
perform significantly above random chance (grey);
however, when feature selection is erroneously performed
before cross-​validation on all the folds together (red), the
model exhibits a striking increase and subsequent decrease
in performance as the number of features increases.
This problematic behaviour occurs with any machine
learning (ML) model. b | A principal component analysis
(PCA) projection of the same dataset after 200 features
are chosen using supervised feature selection, coloured
by class label (blue = negatives, red = positives). Despite
the lack of real differences between the two classes, the
feature selection procedure corrupted the subsequent
unsupervised PCA approach. Outside the scope of ML
analyses, preprocessing and visualizing the entire dataset
is not necessarily problematic. But if one subsequently
chooses to fit an ML model, preprocessing should be
redone using only the training set.

Clustering
Unsupervised learning,
where there is no measured
outcome, although the cluster
assignment is an estimate of
an unobserved label. The goal
is to organize examples on the
basis of pairwise similarities
of their features, for example,
into groups (‘clusters’) or a
hierarchical tree.

www.nature.com/nrg

R e v i e w s

0123456789();:

Most ML toolkits enable leakage-​free application
of supervised and unsupervised transformations by
learning parameters from the training set only, then
applying the transformation to the training and test sets
independently. For example, standardization involves
subtracting the mean from a variable and dividing by its
standard deviation. The mean and standard deviation are
parameters that can be learned from and applied to the
training set, and those same parameters can be re-​used
to transform the test set. This is in contrast to learning
the mean and standard deviation from the entire dataset,
before splitting into training and test sets. Fortunately
for users, this process is already included in scikit-​learn’s
pipeline and transformer API74, as well as the preProcess
parameter of the caret package’s train() function75.

Case study. In ML analysis of DNA methylation assays,
researchers are faced with more features (tens of thou­
sands of probes) than examples (typically 100 or fewer
samples). To build a robust ML model of an outcome
across samples using probes as features it is essential to
perform feature selection. If this is performed on the
entire dataset before cross-​validation, leakage will occur.
Identifying probes that exhibit high univariate predictive
power across the entire dataset is one way that informa­
tion is leaked76–80. Another way is through identifying
‘differentially methylated probes/positions’ (DMPs),
or aggregates of DMPs called ‘differentially methyl­
ated regions’ (DMRs)81–85, where only probes with large

differences across outcome labels (typically 0.2) are used.
Information is leaked because the labels are explicitly
used to define how differential each probe is. When stud­
ies find high predictive accuracy using DMPs or DMRs
defined on the whole dataset, it is unclear whether this
signal is real biology or a consequence of train–test
leakage. Unfortunately, many overviews of methylation
analysis and tools that implement methylation data pro­
cessing do not explicitly consider downstream ML analy­
sis86. We note that identification of DMPs and/or DMRs
on an entire dataset is reasonable when these are the final
result; the pitfall arises when they are subsequently used
as features to build a predictive model87.

Other examples. Leaky preprocessing was so prevalent
in microarray analysis that the journal Bioinformatics
released an editorial that encouraged scientists to be
more critical of their own papers88. Pulini et al.89 refer to
this pitfall as ‘circular analysis’ and point out that it affects
a large number of surveyed studies that classify cases of
attention deficit hyperactivity disorder (ADHD). Other
examples include prediction of clinical or cellular out­
comes from functional MRI data90, gene expression91,92,
metabolomics93 or DNA methylation76–85. Identifying
motifs that predict gene expression is another setting
in which performing feature selection outside cross-​
validation has been a problem. Here, feature selection
refers to identifying motifs that are enriched in the pro­
moters of co-​expressed genes, and leakage occurs when
this is performed prior to random assignment of genes
to training and test sets in cross-​validation94. Leakage
also occurs when evolutionary profiles are used to pre­
dict protein structures or other properties. The problem
is that profile parameters are chosen using all proteins
before cross-​validation95.

Pitfall 5: unbalanced classes
A supervised learning task is balanced if examples are
evenly distributed across values of the outcome and
unbalanced otherwise. Few real datasets are perfectly
balanced, and some problems in genomics exhibit
extreme imbalance (Fig. 1e). For example, when applying
ML to millions of genomic windows to predict whether a
given window contains an enhancer, windows with vali­
dated examples (positives) may constitute ~1% of the
total (Fig. 5). In the context of predicting patient disease
risk, Khalilia et al.96 reported disease prevalence rang­
ing from 0.01% to 29%. A study predicting deleterious
non-​coding variants used 400 positives with 14 million
negatives for Mendelian disease and 2,000 positives with
1.4 million negatives for complex disease97.

In these scenarios, models are at risk of over-​learning
the majority class and under-​learning the minority class.
This is particularly problematic when the minority class
is of primary interest and false negatives can be high cost,
such as in detecting disease from medical scans or pre­
dicting side effects of drug combinations. Importantly,
unbalanced data also affect the performance of regres­
sion tasks in which labels are continuous values rather
than discrete classes (notebook E).

Class imbalance is addressed with a range of strate­
gies. Within the modelling procedure, one can put prior

False negatives
Positives whose labels
are incorrectly predicted
as negative.

No balancing
or selection

Selection

Balancing

Balancing and
selection

Performance (auPR)

D
at

a
pr

oc
es

si
ng

 s
te

ps

Cross-validation and data processing

Cross-chromosome, inside cross-validationShuffled, inside cross-validation
Cross-chromosome, outside cross-validationShuffled, outside cross-validation

0.00 0.25 0.50 0.75 1.00

Fig. 5 | Balancing classes inflates performance when applied outside cross-validation.
Predicting enhancers genome-​wide (notebook D) is an example of a very unbalanced
classification problem, because most genomic windows do not contain an active enhancer
(pitfall 5). Making the positive (enhancer) and negative (not enhancer) classes equal in size
(‘balancing’) can be helpful in the training step of cross-​validation. But balancing should be
performed inside cross-​validation (blue) so that the test set used to evaluate performance
reflects the actual imbalance in the genome. Failing to do so inflates performance (red).
(In the graph, performance is quantified according to the area under the precision–recall
(auPR) curve.) Similarly, preprocessing to select a subset of features (‘selection’) will
inflate performance when performed outside cross-​validation owing to leakage (pitfall 4),
and performing both balancing and selection outside cross-​validation leads to the most
inflated performance (red versus blue). These trends hold for two types of cross-​validation
(shuffled (dark shades) versus cross-​chromosome (light shades)).

NATuRe ReVIeWs | Genetics

R e v i e w s

0123456789();:

probability distributions on the classes. More commonly,
researchers use rebalancing approaches to increase
performance on the minority class98–102. There are three
basic strategies: oversampling the minority class, under­
sampling the majority class and weighting examples.
Each of these approaches emphasizes the importance
to the model of the minority class. Oversampling either
duplicates existing data (sampling with replacement)103
or synthesizes ‘plausible’ examples of the minority class
using interpolation of existing examples (for example,
SMOTE104 or ADASYN105). Conversely, undersampling
takes a random subset of the majority class, matching the
size of the minority class. Weighting examples involves
using the inverse of the class proportion so that the ML
model gives more emphasis to errors on the minority
class. Each approach makes different trade-​offs: over­
sampling retains all data but increases computation
time, undersampling decreases computation time but
discards some data and sample weighting retains all
data but requires determination of the optimal weights.
The imbalanced-​learn package106 for scikit-​learn74, as
well as the weights argument for train and the sampling
argument for trainControl in caret75, provide practi­
tioners in Python and R with off-​the-​shelf methods for
handling class imbalance.

All three approaches tend to decrease accuracy for the
majority class while increasing accuracy for the minority
class, which is often a desirable trade-​off. However, there
are two important considerations to keep in mind. First,
balancing should always be performed only within the
training fold, so that the fitted model is evaluated against
the distribution of classes expected in the prediction set
(Fig. 5, notebook D). Second, rebalancing the classes will
cause the estimator to become uncalibrated in the sense
that the distribution of probabilities predicted will more
closely match the balanced training set instead of the
unbalanced test set. This is not necessarily a problem
when the ranking of examples is more important than
the predicted probability itself, and estimators can be
recalibrated using a post-​processing step, but the issue
should be kept in mind.

The performance metrics used to evaluate ML mod­
els are differentially affected by imbalance. As a classic
example, 99% accuracy is achieved on a training set with
100 positives and 9,900 negatives by always predicting
the negative class. Traditional alternatives are auROC and
auPR curves (Box 1). Both quantify recall (also known
as power and true positive rate) as the number of posi­
tive predictions changes. auROC does so as a function of
false positive rate (FPR). In many genomics problems, high
recall can be achieved at a very low FPR owing to the large
number of negatives in the test set107, making it easy to
obtain a high auROC even when false positives vastly out­
number true positives (that is, high false discovery rate).
Alternatively, auPR compares recall with precision, which
is one minus the false discovery rate and does not depend
on the number of negatives. When false positives domi­
nate true positives, auPR will be low. Thus, for imbalanced
problems where the positive minority class is of primary
interest, auPR is generally preferred (notebook D).
No performance metric is universally best, and the
analyst should carefully evaluate options for their setting.

Class imbalance can also occur in the regression
setting, although this is discussed less frequently. For
instance, when a model makes predictions of multiple
outputs for a single example (the multi-​task setting),
the distribution of values in these outputs can influence
both training and evaluation. As a hypothetical example,
if one task has values entirely between 1,000 and 10,000
and the other task has values between 0.01 and 0.1, then
evaluating the model simply using mean squared error
(MSE) across the two tasks will largely ignore the second
task. A distributional difference of that magnitude may
be unlikely in genomics, but varying patterns of spar­
sity are common across genomic assays. For example,
some RNA sequencing (RNA-​seq) assays exhibit signal
primarily at the ends of transcribed genes. Evaluation
of a model that tries to predict those assays alongside
ChIP–seq assays, where signal is exhibited over a much
larger portion of the genome, may be biased (notebook E).
Fortunately, a simple workaround in the regression
setting is to evaluate each output individually, or as part
of a group of outputs with similar distributions (for
example, RNA-​seq separately from ChIP–seq) instead
of aggregating overall outputs regardless of distribution.

Case study. ML models are used to predict protein func­
tions from heterogeneous features such as expression,
protein domains, orthology patterns and protein–protein
interactions. This is a very unbalanced problem for most
annotation labels with fewer than 100 positives (for
example, proteins with a given GO term) and thousands
of negatives (the rest of the proteins). Hence, a model
that always predicts the negative class will have high
accuracy. Furthermore, the set of predicted positives
at a fixed FPR may actually contain mostly negatives
(false positives). At FPR = 0.05, for example, we expect
only 5% of the negatives to be in the predictions, but
5% of a large number can easily exceed the number of
true positives. For these reasons, a critical assessment
of ML methods for mouse protein function prediction
used precision at fixed recall in addition to auROC108.
Reporting auPR or applying rebalancing methods are
other strategies that are useful for this problem.

Other examples. In genomics, imbalance is the default
state. Indeed, many problems are so imbalanced that
researchers have to use statistical approaches simply to
ensure that the small number of positive examples that
they find are real. For instance, selecting conservative
significance thresholds in alignment queries, GWAS
projects109 and motif scanning110 is crucial for properly
controlling the number of false positives because the
number of true positives is very low compared with
the size of the genome. Given the size of the human
genome, problems involving non-​coding variants are
often highly imbalanced. Examples include prediction
of chromatin states, gene expression and disease status
from sequence. In the last setting, researchers have
developed a balancing algorithm that oversamples the
negative class and undersamples the majority class97.
A common strategy for training models to predict func­
tional peaks from ChIP–seq or chromatin accessibility
assays is to use all the peaks and an equal number of

True positives
Positives whose labels
are correctly predicted.

False positives
Negatives whose labels
are incorrectly predicted
as positive.

www.nature.com/nrg

R e v i e w s

0123456789();:

negative regions29, effectively undersampling the majority
class. Databases for drug–target interactions generally
do not contain negative interactions, and so one must
construct their own negative sets during the training of
predictive models70. This pitfall focuses on classification
but similar problems arise when predicting a quantita­
tive outcome with regression models. Performance can
be poor in areas of the quantitative signal where data are
sparse, such as genomic regions or genes with low read
counts in single-​cell genomics assays.

Conclusions
ML shows great potential in genomics, but applying it
effectively can be challenging owing to the inherent com­
plexities of biological systems. In this Review, we use gen­
eral concepts, examples, case studies and computational
notebooks to illustrate five common pitfalls that reduce
the value of supervised ML. An unfortunate reality is that
these mistakes are often easy to make yet subtle enough
that we may not realize we are making them, as we have
learned in our own work47–49,56,58. Although guaranteeing
that one has avoided these pitfalls is difficult, we have
found that the best guard is to be constructively sceptical
and do a thorough inspection of the results to ensure that
they make sense.

We have emphasized that the pitfalls can occur inde­
pendently but are interconnected. Indeed, several of
them involve failure to properly evaluate a model in the
setting where it will be used in practice. An alternative
way to view pitfalls 1–4 is through the lens of artefactual
variables that induce relationships in the data that we
fail to account for in the model. Confounding (pitfall 3)
is a specific example of the dependence structures and
graphs discussed in pitfall 2: confounder variables are
nodes that create an indirect path between a feature and
the outcome, thereby changing the feature–outcome
relationship111. Leaky preprocessing (pitfall 4) also relates
to dependence, in this case between examples in the
training and test sets. Leakage can also be thought of as
test data confounding the relationship between features
and outcome in the training data. The distributional dif­
ferences from pitfall 1 arise when variables that differ
systematically between the training and prediction sets
(for example, batch or ancestry) are not modelled. This
relates to pitfall 3, because confounder variables shift the
distribution of the observed data away from the distri­
bution that we think we are modelling. The difference is
that pitfall 3 is about the training data, whereas pitfall 1
focuses on when feature–outcome relationships are
different between the prediction and training sets.

Although this unified view is abstract, it explains
why the remedy is the same in each case: construct your
training, test and prediction sets such that the relation­
ship between the training and test sets is the same as the
relationship between the training and the prediction set.
For example, if a model is trained on in vitro data but
the prediction setting is in vivo, then the test set should
also be in vivo; avoid training and testing on data arising
from a mixture of all existing batches if the prediction
setting is a new batch; avoid splitting dependent exam­
ples into your training and test sets if the prediction set
will not include similarly dependent examples; avoid

performing preprocessing steps on your training and
test data together because you cannot carry them out at
the same time on your prediction set.

Performing research is rarely a straightforward pro­
cess, and sometimes the winding path one takes can lead
to a pitfall. For instance, given gene expression values
from samples under two conditions, one may initially be
interested in identifying differentially expressed genes.
Here, it is appropriate to analyse the entire dataset.
However, if later on, the researcher decides to add a ML
analysis using differentially expressed genes as fea­
tures, they would have inadvertently fallen into pitfall 4.
Hence, we recommend considering the entire path your
data has taken before applying ML.

Beyond these five pitfalls, there are other considera­
tions to keep in mind for the most effective application
of ML. Among these is using appropriate baselines to
ensure that your model has not learned simple rules that
are not biologically interesting. We discussed predict­
ing chromatin interactions from genomic distance as
an example of a baseline model, and Fig. 2 uses random
guessing as a baseline. Another issue not directly covered
in our pitfalls is using performance on test folds to tune
model parameters or perform model selection, which
leads to elevated performance estimates. A further con­
sideration, touched on in pitfall 5, is using informative
performance measures. Global performance measures
(for example, auROC or correlation across the entire test
set) are informative but frequently obscure interesting
details that can be captured by finer-​grained measures,
such as breaking performance down by demographics or
genomic annotations. When it is unclear what the best
fine-​grained measures are beforehand, we recommend
looking closely at examples that are poorly predicted.

In this Review, we primarily illustrate the direct
effects of ML pitfalls on model performance. However,
ML is often employed for gaining biological insights
rather than prediction per se. In these cases, one will
generally interpret a trained model, after validating
that it performs well, to extract the relationships it has
learned. Unfortunately, models that exhibit good per­
formance may have learned meaningless relationships
if one or more pitfalls has influenced the analysis. Our
suggestions for checking the pitfalls are important even
for model interpretation. However, in some cases an
overfitted or biased model can produce accurate biologi­
cal conclusions; insufficient for generalizable predictions
but sufficient for attribution112. For example, the model
may overestimate the strength of association between a
feature and outcome owing to confounding or depen­
dence. When this is a true biological relationship, an
effect size error has been made but the association is not
a false discovery.

We as modellers and reviewers are the key to ensur­
ing effective use of ML in genomics. Before accepting
ML outputs at face value, we should become familiar
with the data, apply healthy scepticism and conduct
robust follow-​up analyses113. This is easier said than
done, but the trustworthiness of ML in biomedical
research depends on these strategies.

Published online xx xx xxxx

NATuRe ReVIeWs | Genetics

R e v i e w s

0123456789();:

1.	 Teschendorff, A. E. Avoiding common pitfalls in
machine learning omic data science. Nat. Mater. 18,
422–427 (2019).
This Comment article talks about cross-​validation
and independent test sets as solutions to two
pitfalls encountered when applying supervised
ML in genomics: the ‘curse of dimensionality’
and confounding.

2.	 Minhas, F., Asif, A. & Ben-Hur, A. Ten ways to fool the
masses with machine learning. Preprint at arXiv
https://arxiv.org/abs/1901.01686 (2019).

3.	 Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep
learning: new computational modelling techniques for
genomics. Nat. Rev. Genet. 20, 389–403 (2019).

4.	 Ching, T. et al. Opportunities and obstacles for deep
learning in biology and medicine. J. R. Soc. Interface
15, 20170387 (2018).

5.	 Zou, J. et al. A primer on deep learning in genomics.
Nat. Genet. 51, 12–18 (2019).

6.	 Flagel, L., Brandvain, Y. & Schrider, D. R. The
unreasonable effectiveness of convolutional neural
networks in population genetic inference. Mol. Biol.
Evol. 36, 220–238 (2019).

7.	 Liu, J., Lewinger, J. P., Gilliland, F. D., Gauderman, W. J.
& Conti, D. V. Confounding and heterogeneity in
genetic association studies with admixed populations.
Am. J. Epidemiol. 177, 351–360 (2013).

8.	 Vilhjálmsson, B. J. & Nordborg, M. The nature of
confounding in genome-​wide association studies.
Nat. Rev. Genet. 14, 1–2 (2013).

9.	 Hellwege, J. N. et al. Population stratification in
genetic association studies. Curr. Protoc. Hum. Genet.
95, 1.22.1–1.22.23 (2017).

10.	 Sul, J. H., Martin, L. S. & Eskin, E. Population
structure in genetic studies: confounding factors and
mixed models. PLoS Genet. 14, e1007309 (2018).

11.	 Weirauch, M. T. et al. Evaluation of methods for
modeling transcription factor sequence specificity.
Nat. Biotechnol. 31, 126–134 (2013).

12.	 Leek, J. T. et al. Tackling the widespread and critical
impact of batch effects in high-​throughput data.
Nat. Rev. Genet. 11, 733–739 (2010).
This Review documents the prevalence of batch
effects in genomic data and shows how these
can confound statistical inferences.

13.	 Tran, H. T. N. et al. A benchmark of batch-​effect
correction methods for single-​cell RNA sequencing
data. Genome Biol. 21, 12 (2020).

14.	 Rabanser, S., Günnemann, S. & Lipton, Z. Failing loudly:
an empirical study of methods for detecting dataset
shift. in Advances in Neural Information Processing
Systems (NeurIPS 2019) (eds Wallach, H. et al.) Vol. 32,
1396–1408 (Curran Associates, Inc., 2019).

15.	 Gretton, A., Borgwardt, K. M., Rasch, M. J.,
Schölkopf, B. & Smola, A. A kernel two-​sample test.
J. Mach. Learn. Res. 13, 723–773 (2012).

16.	 Ren, J. et al. in Advances in Neural Information
Processing Systems (NeurIPS 2019) (eds Wallach, H.
et al.) Vol. 32, 14707–14718 (Curran Associates, Inc.,
2019).

17.	 Kingma, D. P. & Welling, M. Auto-encoding variational
Bayes. Preprint at arXiv https://arxiv.org/abs/
1312.6114# (2013).

18.	 Liu, F. T., Ting, K. M. & Zhou, Z. in IEEE International
Conference on Data Mining 413–422 (IEEE, 2008).

19.	 Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch
effects in microarray expression data using empirical
Bayes methods. Biostatistics 8, 118–127 (2007).

20.	 Leek, J. T. & Storey, J. D. Capturing heterogeneity
in gene expression studies by surrogate variable
analysis. PLoS Genet. 3, 1724–1735 (2007).

21.	 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. &
Satija, R. Integrating single-​cell transcriptomic data
across different conditions, technologies, and species.
Nat. Biotechnol. 36, 411–420 (2018).

22.	 Stuart, T. et al. Comprehensive integration of
single-​cell data. Cell 177, 1888–1902.e21 (2019).

23.	 Wang, T. et al. BERMUDA: a novel deep transfer
learning method for single-​cell RNA sequencing
batch correction reveals hidden high-​resolution
cellular subtypes. Genome Biol. 20, 165 (2019).

24.	 Pan, S. J. & Yang, Q. A survey on transfer learning.
IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010).

25.	 Kouw, W. M. & Loog, M. A review of domain
adaptation without target labels. IEEE Trans.
Pattern Anal. Mach. Intell. 43, 766–785 (2019).

26.	 Shimodaira, H. Improving predictive inference under
covariate shift by weighting the log-​likelihood function.
J. Stat. Plan. Inference 90, 227–244 (2000).
This paper discusses distributional differences,
also known as covariate shift, and proposes several
weighting schemes for adjusting for this pitfall.

27.	 Bickel, S., Brückner, M. & Scheffer, T. Discriminative
learning under covariate shift. J. Mach. Learn. Res.
10, 2137–2155 (2009).

28.	 Orenstein, Y. & Shamir, R. Modeling protein-​DNA
binding via high-​throughput in vitro technologies.
Brief. Funct. Genomics 16, 171–180 (2017).

29.	 Alipanahi, B., Delong, A., Weirauch, M. T. &
Frey, B. J. Predicting the sequence specificities
of DNA- and RNA-​binding proteins by deep learning.
Nat. Biotechnol. 33, 831–838 (2015).

30.	 Berger, M. F. & Bulyk, M. L. Universal protein-​binding
microarrays for the comprehensive characterization of
the DNA-​binding specificities of transcription factors.
Nat. Protoc. 4, 393–411 (2009).

31.	 Annala, M., Laurila, K., Lähdesmäki, H. & Nykter, M.
A linear model for transcription factor binding affinity
prediction in protein binding microarrays. PLoS ONE
6, e20059 (2011).

32.	 Agius, P., Arvey, A., Chang, W., Noble, W. S. & Leslie, C.
High resolution models of transcription factor-​DNA
affinities improve in vitro and in vivo binding
predictions. PLoS Comput. Biol. 6, e1000916 (2010).

33.	 Riley, T. R., Lazarovici, A., Mann, R. S. &
Bussemaker, H. J. Building accurate sequence-​
to-affinity models from high-​throughput in vitro
protein-​DNA binding data using FeatureREDUCE.
Elife 4, e06397 (2015).

34.	 Wong, K.-C., Li, Y., Peng, C. & Wong, H.-S.
A comparison study for DNA motif modeling on
protein binding microarray. IEEE/ACM Trans. Comput.
Biol. Bioinform. 13, 261–271 (2016).

35.	 Rastogi, C. et al. Accurate and sensitive quantification
of protein-​DNA binding affinity. Proc. Natl Acad. Sci.
USA 115, E3692–E3701 (2018).

36.	 Im, J., Park, B. & Han, K. A generative model for
constructing nucleic acid sequences binding to
a protein. BMC Genomics 20, 967 (2019).

37.	 Ishida, R. et al. RaptRanker: in silico RNA aptamer
selection from HT-​SELEX experiment based on local
sequence and structure information. Nucleic Acids
Res. 48, e82 (2020).

38.	 Nutiu, R. et al. Direct measurement of DNA affinity
landscapes on a high-​throughput sequencing
instrument. Nat. Biotechnol. 29, 659–664 (2011).

39.	 Tabb, D. L. et al. Repeatability and reproducibility in
proteomic identifications by liquid chromatography-​
tandem mass spectrometry. J. Proteome Res. 9,
761–776 (2010).

40.	 Pooch, E. H. P., Ballester, P. L. & Barros, R. C. Can we
trust deep learning models diagnosis? The impact
of domain shift in chest radiograph classification.
Preprint at arXiv https://arxiv.org/abs/1909.01940#
(2019).

41.	 Zech, J. R. et al. Variable generalization performance
of a deep learning model to detect pneumonia in chest
radiographs: a cross-​sectional study. PLoS Med. 15,
e1002683 (2018).

42.	 Badgeley, M. A. et al. Deep learning predicts hip
fracture using confounding patient and healthcare
variables. NPJ Digit. Med. 2, 31 (2019).

43.	 Antun, V., Renna, F., Poon, C., Adcock, B. &
Hansen, A. C. On instabilities of deep learning in image
reconstruction and the potential costs of AI. Proc. Natl
Acad. Sci. USA 117, 30088–30095 (2020).

44.	 Geis, J. R. et al. Ethics of artificial intelligence in
radiology: summary of the joint european and north
american multisociety statement. Radiology 293,
436–440 (2019).

45.	 Larrazabal, A. J., Nieto, N., Peterson, V., Milone, D. H.
& Ferrante, E. Gender imbalance in medical imaging
datasets produces biased classifiers for computer-​
aided diagnosis. Proc. Natl Acad. Sci. USA 117,
12592–12594 (2020).

46.	 Guney, E. in Biocomputing 2017: Proceedings of
the Pacific Symposium (eds Altmann, R. B. et al.)
132–143 (World Scientific, 2016).

47.	 Xi, W. & Beer, M. A. Local epigenomic state cannot
discriminate interacting and non-​interacting enhancer-​
promoter pairs with high accuracy. PLoS Comput. Biol.
14, e1006625 (2018).

48.	 Cao, F. & Fullwood, M. J. Inflated performance
measures in enhancer-​promoter interaction-​prediction
methods. Nat. Genet. 51, 1196–1198 (2019).

49.	 Whalen, S. & Pollard, K. S. Reply to ‘Inflated
performance measures in enhancer-​promoter
interaction-​prediction methods’. Nat. Genet. 51,
1198–1200 (2019).

50.	 Eid, F.-E. et al. Systematic auditing is essential to
debiasing machine learning in biology. Commun. Biol.
4, 183 (2020).
This article proposes a set of data modifications
that can be used to identify overestimated

performance in supervised ML with paired-​input
data, such as protein–protein interactions,
where examples occur in many pairs.

51.	 Roberts, D. R. et al. Cross-​validation strategies for data
with temporal, spatial, hierarchical, or phylogenetic
structure. Ecography 40, 913–929 (2017).
This study demonstrates blocking as an effective
strategy for estimating the performance of ML
models on data with complex dependency structures.

52.	 Korte, A. et al. A mixed-​model approach for
genome-​wide association studies of correlated
traits in structured populations. Nat. Genet. 44,
1066–1071 (2012).

53.	 Stucki, S. et al. High performance computation of
landscape genomic models including local indicators
of spatial association. Mol. Ecol. Resour. 17,
1072–1089 (2017).

54.	 Runcie, D. E. & Crawford, L. Fast and flexible linear
mixed models for genome-​wide genetics. PLoS Genet.
15, e1007978 (2019).

55.	 Jiang, L. et al. A resource-​efficient tool for mixed
model association analysis of large-​scale data.
Nat. Genet. 51, 1749–1755 (2019).

56.	 Whalen, S., Truty, R. M. & Pollard, K. S.
Enhancer–promoter interactions are encoded by
complex genomic signatures on looping chromatin.
Nat. Genet. 48, 488–496 (2016).

57.	 Brzyski, D. et al. Controlling the rate of GWAS false
discoveries. Genetics 205, 61–75 (2017).

58.	 Schreiber, J., Singh, R., Bilmes, J. & Noble, W. S.
A pitfall for machine learning methods aiming to
predict across cell types. Genome Biol. 21, 282
(2020).

59.	 Lee, D., Redfern, O. & Orengo, C. Predicting protein
function from sequence and structure. Nat. Rev. Mol.
Cell Biol. 8, 995–1005 (2007).

60.	 Ribeiro, M. T., Singh, S. & Guestrin, C. in Proc. 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 1135–1144 (Association
for Computing Machinery, 2016).

61.	 Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R.
Using probabilistic estimation of expression residuals
(PEER) to obtain increased power and interpretability
of gene expression analyses. Nat. Protoc. 7, 500–507
(2012).

62.	 Listgarten, J., Kadie, C., Schadt, E. E. & Heckerman, D.
Correction for hidden confounders in the genetic
analysis of gene expression. Proc. Natl Acad. Sci. USA
107, 16465–16470 (2010).

63.	 Parsana, P. et al. Addressing confounding artifacts
in reconstruction of gene co-​expression networks.
Genome Biol. 20, 94 (2019).

64.	 Dinga, R., Schmaal, L., Brenda, W. J., Veltman, D. J. &
Marquand, A. F. Controlling for effects of confounding
variables on machine learning predictions. Preprint at
bioRxiv https://doi.org/10.1101/2020.08.17.255034
(2020).

65.	 Dincer, A. B., Janizek, J. D. & Lee, S.-I. Adversarial
deconfounding autoencoder for learning robust
gene expression embeddings. Bioinformatics 36,
i573–i582 (2020).

66.	 Skafidas, E. et al. Predicting the diagnosis of autism
spectrum disorder using gene pathway analysis.
Mol. Psychiatry 19, 504–510 (2014).

67.	 Robinson, E. B. et al. Response to ‘Predicting the
diagnosis of autism spectrum disorder using gene
pathway analysis’. Mol. Psychiatry 19, 859–861
(2014).

68.	 Keys, K. L. et al. On the cross-​population
generalizability of gene expression prediction
models. PLoS Genet. 16, e1008927 (2020).

69.	 Belgard, T. G., Jankovic, I., Lowe, J. K. &
Geschwind, D. H. Population structure confounds
autism genetic classifier. Mol. Psychiatry 19,
405–407 (2014).

70.	 Chen, X. et al. Drug-​target interaction prediction:
databases, web servers and computational models.
Brief. Bioinform. 17, 696–712 (2016).

71.	 Brookhart, M. A., Stürmer, T., Glynn, R. J., Rassen, J.
& Schneeweiss, S. Confounding control in healthcare
database research: challenges and potential
approaches. Med. Care 48, S114–S120 (2010).

72.	 Zhang, J. M., Kamath, G. M. & Tse, D. N. Valid
post-​clustering differential analysis for single-​cell
RNA-​seq. Cell Syst. 9, 383–392.e6 (2019).

73.	 Gao, L. L., Bien, J. & Witten, D. Selective Inference
for hierarchical clustering. Preprint at arXiv https://
arxiv.org/abs/2012.02936 (2020).

74.	 Pedregosa, F. et al. Scikit-​learn: machine learning in
Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

75.	 Kuhn, M. Building predictive models in R using the
caret package. J. Stat. Softw. Artic. 28, 1–26 (2008).

www.nature.com/nrg

R e v i e w s

https://arxiv.org/abs/1901.01686
https://arxiv.org/abs/1312.6114#
https://arxiv.org/abs/1312.6114#
https://arxiv.org/abs/1909.01940#
https://doi.org/10.1101/2020.08.17.255034
https://arxiv.org/abs/2012.02936
https://arxiv.org/abs/2012.02936

0123456789();:

76.	 Vidaki, A. et al. DNA methylation-​based forensic age
prediction using artificial neural networks and next
generation sequencing. Forensic Sci. Int. Genet. 28,
225–236 (2017).

77.	 Kimura, R. et al. An epigenetic biomarker for
adult high-​functioning autism spectrum disorder.
Sci. Rep. 9, 13662 (2019).

78.	 Levy, J. J. et al. MethylNet: an automated and
modular deep learning approach for DNA
methylation analysis. BMC Bioinforma. 21, 108
(2020).

79.	 Rauschert, S., Raubenheimer, K., Melton, P. E.
& Huang, R. C. Machine learning and clinical
epigenetics: a review of challenges for diagnosis
and classification. Clin. Epigenetics 12, 51
(2020).

80.	 Capper, D. et al. DNA methylation-​based classification
of central nervous system tumours. Nature 555,
469–474 (2018).

81.	 Bahado-​Singh, R. O. et al. Deep learning/artificial
intelligence and blood-​based dna epigenomic
prediction of cerebral palsy. Int. J. Mol. Sci. 20,
2075 (2019).

82.	 Mohandas, N. et al. Epigenome-​wide analysis
in newborn blood spots from monozygotic twins
discordant for cerebral palsy reveals consistent
regional differences in DNA methylation.
Clin. Epigenetics 10, 25 (2018).

83.	 Crowgey, E. L., Marsh, A. G., Robinson, K. G.,
Yeager, S. K. & Akins, R. E. Epigenetic machine
learning: utilizing DNA methylation patterns to
predict spastic cerebral palsy. BMC Bioinforma. 19,
225 (2018).

84.	 Aref-​Eshghi, E. et al. Genomic DNA methylation-​
derived algorithm enables accurate detection of
malignant prostate tissues. Front. Oncol. 8, 100
(2018).

85.	 Luo, R. et al. Identifying CpG methylation signature
as a promising biomarker for recurrence and
immunotherapy in non-​small-cell lung carcinoma.
Aging 12, 14649–14676 (2020).

86.	 Wilhelm-​Benartzi, C. S. et al. Review of processing
and analysis methods for DNA methylation array
data. Br. J. Cancer 109, 1394–1402 (2013).

87.	 Peters, T. J. et al. De novo identification of
differentially methylated regions in the human
genome. Epigenetics Chromatin 8, 6 (2015).

88.	 Rocke, D. M., Ideker, T., Troyanskaya, O.,
Quackenbush, J. & Dopazo, J. Papers on
normalization, variable selection, classification or
clustering of microarray data. Bioinformatics 25,
701–702 (2009).

89.	 Pulini, A. A., Kerr, W. T., Loo, S. K. & Lenartowicz, A.
Classification accuracy of neuroimaging biomarkers
in attention-​deficit/hyperactivity disorder: effects
of sample size and circular analysis. Biol. Psychiatry
Cogn. Neurosci. Neuroimaging 4, 108–120 (2019).

90.	 Poldrack, R. A., Huckins, G. & Varoquaux, G.
Establishment of best practices for evidence for
prediction: a review. JAMA Psychiatry 77, 534–540
(2020).

91.	 Ambroise, C. & McLachlan, G. J. Selection bias in gene
extraction on the basis of microarray gene-​expression

data. Proc. Natl Acad. Sci. USA 99, 6562–6566
(2002).
The authors present prediction of cancer
outcome from expression of a small number of
genes as an example of how supervised feature
selection performed before cross-​validation leads
to performance overestimation.

92.	 van Eyk, C. L. et al. Analysis of 182 cerebral palsy
transcriptomes points to dysregulation of trophic
signalling pathways and overlap with autism.
Transl. Psychiatry 8, 88 (2018).

93.	 Alakwaa, F. M., Chaudhary, K. & Garmire, L. X. Deep
learning accurately predicts estrogen receptor status
in breast cancer metabolomics data. J. Proteome Res.
17, 337–347 (2018).

94.	 Yuan, Y., Guo, L., Shen, L. & Liu, J. S. Predicting gene
expression from sequence: a reexamination. PLoS
Comput. Biol. 3, e243 (2007).

95.	 Urban, G., Torrisi, M., Magnan, C. N., Pollastri, G.
& Baldi, P. Protein profiles: biases and protocols.
Comput. Struct. Biotechnol. J. 18, 2281–2289
(2020).
This study demonstrates how protein profiles
cause leakage of information between the
training and test sets, and hence performance
overestimation, in the context of protein structure
prediction.

96.	 Khalilia, M., Chakraborty, S. & Popescu, M. Predicting
disease risks from highly imbalanced data using
random forest. BMC Med. Inform. Decis. Mak. 11,
51 (2011).

97.	 Schubach, M., Re, M., Robinson, P. N. & Valentini, G.
Imbalance-​aware machine learning for predicting rare
and common disease-​associated non-​coding variants.
Sci. Rep. 7, 2959 (2017).

98.	 Japkowicz, N. & Stephen, S. The class imbalance
problem: a systematic study1. Intell. Data Anal. 6,
429–449 (2002).

99.	 Barandela, R., Sánchez, J. S., Garca, V. & Rangel, E.
Strategies for learning in class imbalance problems.
Pattern Recognit. 36, 849–851 (2003).
This work explores the negative consequences
of imbalanced data as well as several common
strategies for mitigating this pitfall.

100.	Batista, G. E. A. P. A., Prati, R. C. & Monard, M. C.
A study of the behavior of several methods for
balancing machine learning training data. SIGKDD
Explor. Newsl. 6, 20–29 (2004).

101.	Buda, M., Maki, A. & Mazurowski, M. A. A systematic
study of the class imbalance problem in convolutional
neural networks. Neural Netw. 106, 249–259 (2018).
This article explores performance measures
and mitigation strategies for class imbalance
specifically in the context of prediction with
convolutional neural networks.

102.	Cui, Y., Jia, M., Lin, T.-Y., Song, Y. & Belongie, S.
Class-​balanced loss based on effective number
of samples. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR)
(IEEE, 2019)

103.	Nguyen, H. M., Cooper, E. W. & Kamei, K. Borderline
over-​sampling for imbalanced data classification.
Int. J. Knowl. Eng. Soft Data Paradig. 3, 4 (2011).

104.	Chawla, N. V., Bowyer, K. W., Hall, L. O. &
Kegelmeyer, W. P. SMOTE: synthetic minority over-​
sampling technique. J. Artif. Intell. Res. 16, 321–357
(2002).

105.	Haibo H., Yang B., Garcia, E. A. & Shutao L.
in 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational
Intelligence) 1322–1328 (IEEE,2008).

106.	Lemaître, G., Nogueira, F. & Aridas, C. K. Imbalanced-​
learn: a python toolbox to tackle the curse of
imbalanced datasets in machine learning. J. Mach.
Learn. Res. 18, 559–563 (2017).

107.	Davis, J. & Goadrich, M. in Proc. 23rd International
Conference on Machine Learning 233–240
(Association for Computing Machinery, 2006).

108.	Peña-​Castillo, L. et al. A critical assessment of
Mus musculus gene function prediction using integrated
genomic evidence. Genome Biol. 9, S2 (2008).

109.	Kaler, A. S. & Purcell, L. C. Estimation of a significance
threshold for genome-​wide association studies.
BMC Genomics 20, 618 (2019).

110.	 Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO:
scanning for occurrences of a given motif.
Bioinformatics 27, 1017–1018 (2011).

111.	 VanderWeele, T. J. & Shpitser, I. On the definition
of a confounder. Ann. Stat. 41, 196–220 (2013).

112.	Efron, B. Prediction, estimation, and attribution.
J. Am. Stat. Assoc. 115, 636–655 (2020).

113.	Yu, B. & Kumbier, K. Veridical data science. Proc. Natl
Acad. Sci. USA 117, 3920–3929 (2020).

Acknowledgements
The authors thank P. Baldi, M. Beer, A. Ben-​Hur, J. Ernst,
E. Eskin, G. Haliburton, H. Huang, S.-​I. Lee, M. Libbrecht,
J. Majewski, Q. Morris, S. Mostafavi, J.-​P. Vert, W. Wang,
B. Yu and M. Zitnik for recommending examples and for
helpful suggestions on how to review this topic.

Author contributions
S.W. and J.S. researched data for article. All authors substan-
tially contributed to the discussion of content, wrote the
article and reviewed and or edited the manuscript before
submission.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Genetics thanks A. Gitter, J. Gagneur and the
other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© Springer Nature Limited 2021

Related links
interactive notebooks of the pitfalls discussed in this
Review: https://github.com/shwhalen/ml-pitfalls

NATuRe ReVIeWs | Genetics

R e v i e w s

https://github.com/shwhalen/ml-pitfalls

	Navigating the pitfalls of applying machine learning in genomics

	Terminology of performance evaluation

	Pitfall 1: distributional differences

	Case study.
	Other examples.

	Pitfall 2: dependent examples

	Case study.
	Other examples.

	Pitfall 3: confounding

	Case study.
	Other examples.

	Pitfall 4: leaky preprocessing

	Case study.
	Other examples.

	Pitfall 5: unbalanced classes

	Case study.
	Other examples.

	Conclusions

	Acknowledgements

	Fig. 1 An overview of five common pitfalls.
	Fig. 2 Pairs of nodes in biological networks are not independent.
	Fig. 3 Sequencing depth as a confounding variable.
	Fig. 4 Performing feature selection outside cross-validation yields unrealistically high model accuracy.
	Fig. 5 Balancing classes inflates performance when applied outside cross-validation.

