
UCSF
UC San Francisco Previously Published Works

Title
Navigating the pitfalls of applying machine learning in genomics

Permalink
https://escholarship.org/uc/item/6f5210xq

Journal
Nature Reviews Genetics, 23(3)

ISSN
1471-0056

Authors
Whalen, Sean
Schreiber, Jacob
Noble, William S
et al.

Publication Date
2022-03-01

DOI
10.1038/s41576-021-00434-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6f5210xq
https://escholarship.org/uc/item/6f5210xq#author
https://escholarship.org
http://www.cdlib.org/


0123456789();: 

As the amount and complexity of genomic data rapidly 
increase, machine learning (ML) tools are being used 
for a wide array of analytical tasks. Examples include 
processing and normalizing raw data, integrating hetero­
geneous sources of genomic information, exploring data 
structure, predictive modelling, generative modelling 
and prioritizing experiments. In this Review, we discuss 
several pitfalls that one might encounter when applying 
ML tools to genomics data. We focus on supervised ML 
in which the goal is to learn a model that makes accurate 
predictions on new data and/or yields mechanistic insight 
via identification of genomic features that underlie  
a predictive model.

A crucial first step in applying supervised learning 
in genomics is identifying the most useful formula­
tion of the scientific question as a ML task. Some tasks 
have limited scientific value. For example, predicting a 
cheap form of experimental data from a more expensive 
form may not be practically useful unless the expen­
sive data are already available or the model itself pro­
vides some specific biological insight. Once one has 
identified a general problem for which ML can be help­
ful, some specific formulations of the problem may be 
more useful than others. For instance, a model trained 
to predict gene expression from promoter sequences 
using data in one cell type may not generalize to a 
new cell type in which expression levels are driven by 
other transcription factors. In addition, circular pro­
blems should be avoided, such as predicting protein 
functions from a protein interaction database that links 
two proteins if they share a Gene Ontology (GO) cate­
gory or other functional annotation. Here, the circular 
issue is that the label being predicted (protein func­
tion) is actually directly encoded in the features used  
for prediction.

Once the analyst has identified the specific ML pro­
blem that will be solved, they must choose a model 
and determine how to properly evaluate its perfor­
mance. Performance evaluation is often executed using 
cross-​validation (Box 1), whereby examples are iteratively 
randomized into a training set used to fit a model and a 
held-​out test set used to quantify model performance. 
This is where one typically encounters the pitfalls that 
we discuss. The primary problem is that examples are 
assumed to be independent and identically distributed 
(IID). But genomics is replete with violations of these 
assumptions, such as adjacent genomic positions that 
exhibit correlated activity, or proteins in the same 
family, pathway or complex that have very similar func­
tions. If modelling assumptions are inaccurate, then the 
reported predictive accuracy of a model may be sub­
stantially inflated compared with the true generalization  
error the model would have on a completely indepen­
dent prediction set. Unfortunately, ML software cannot 
detect this; instead, it is the job of the modeller to check 
assumptions and adjust their statistical procedures 
accordingly. Our goal is to highlight specific scenarios 
where model and performance evaluation assumptions 
are violated, along with solutions for mitigation.

This Review is organized around five pitfalls that 
arise when applying supervised ML models in genetics 
and genomics (Fig. 1). Several problems we explore have 
been touched upon by Teschendorff1, Minhas et al.2 and 
in reviews of genomics applications for deep learning3–6. 
We cover these alongside many new topics to provide 
a complete picture of the interrelated pitfalls that arise 
when applying supervised ML in genomics. Owing to 
their connections, the pitfalls share some mitigation 
strategies (see the Conclusions section), but we discuss 
each one separately because they can occur in isolation. 

Examples
Also known as ‘samples’ or 
‘observations’. The primary 
data objects being 
manipulated by a machine 
learning system. They are the 
basic units being measured.

Training set
Examples and associated 
outcomes that are used  
to fit a supervised machine 
learning model.
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Abstract | The scale of genetic, epigenomic, transcriptomic, cheminformatic and proteomic 
data available today, coupled with easy-​to-​use machine learning (ML) toolkits, has propelled 
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Each problem is described in generality and through 
illustrative examples selected from many in the literature. 
To further demonstrate these ideas quantitatively, we 
developed interactive notebooks with data and code that 
can be downloaded and run locally or in a web browser 
without installing any software. These notebooks use 
epigenomic data or simulations, some with no true asso­
ciations between features and the outcome, to quantify the 
effects of the pitfalls and demonstrate their mitigation. 
Satisfying model assumptions is hard in complex bio­
logical systems, but we hope that the strategies presented 
here increase the usefulness of ML in genomics.

Pitfall 1: distributional differences
This first pitfall concerns examples that are not identi­
cally distributed, meaning that the probability of observ­
ing a given value is not the same across examples (Fig. 1a).  

Repeated coin tosses are identically distributed (the 
probability of heads is the same each time), whereas 
online search results are not (they vary by season). 
Distributional differences can affect the features (whose 
marginal distribution is denoted as P(x)), the outcome 
(P(y)), and/or the relationship between features and 
outcome (the conditional distribution P(y|x)).

In genomics, distributional differences arise for many 
reasons. A common cause is inherent biological struc­
ture in the data. For example, epigenetic profiles differ 
between euchromatin and heterochromatin. Proteins 
belong to functional categories, each with distinct 
expression patterns and physical interactions. Population 
genetic structure creates distributional differences 
known as ascertainment bias in genome-​wide association 
studies (GWAS) when variants are discovered or models 
are trained on individuals with different ancestry from 
the population being tested for genotype–phenotype 
associations7–10. Distributional differences also arise 
when a model is trained and applied in different biologi­
cal contexts (for example, different cell types, different 
species or in vitro versus in vivo11). Lastly, distributions 
may differ owing to study design and technical factors 

Box 1 | terminology of performance evaluation

cross-​validation
In this procedure for estimating the performance of a supervised machine learning (ML) 
model on held-​out data, examples are randomly split into k groups, known as folds.  
The model is fit on k−1 groups (the training set) and then applied to the remaining group  
(the test set). By comparing predictions with actual outcomes across many random test 
sets, model performance on unseen data can be estimated. Group k-​fold cross-validation, 
or blocking, is a variant of cross-​validation (CV) that takes into account information about 
groups of dependent examples, such as which chromosome a gene is located on or the 
patient from which a sample was derived. In group k-​fold CV, when splitting into k folds, 
all examples belonging to the same group are assigned to the same fold. In this way, 
examples that belong to the same group cannot cross the train–test divide.

Performance statistics
We can summarize the performance of a binary classifier in various ways.

•	The true positive rate (also known as ‘recall’ and ‘power’) is the number of true 
positives divided by the total number of positives.

•	The false positive rate (FPR) is the number of false positives divided by the total 
number of negatives.

•	Precision is the number of true positives divided by the total number of predicted 
positives (true positives plus false positives). The false discovery proportion (FDP) is 
1 − precision. The expected (or average) FDP over many iterations of an experiment  
is the false discovery rate (FDR).

•	Accuracy is the proportion of correct predictions made by a classifier. It is calculated 
as the number of correct predictions (true positives plus true negatives) divided by the 
total number of predictions.

Visualizing performance
Most classifiers allow the user to vary how many examples get classified as positive  
(for example, by varying a threshold). As the number of predictions changes, we can 
plot two types of curves.

•	A receiver operating characteristic (ROC) curve plots the true positive rate as a 
function of the FPR. The area under this curve (auROC) quantifies the performance  
of the classifier, with an area of 1.0 corresponding to perfect performance and  
0.5 corresponding to random chance. The auROC does not depend on the ratio of 
class sizes in the test set.

•	A precision–recall (PR) curve plots precision as a function of recall (also known as  
the true positive rate). Perfect performance corresponds to an area (auPR) of 1.0,  
and random chance corresponds to an area of (number of positives/total number of 
examples). For a fixed classifier, the auPR will change depending on the ratio of the 
class sizes in the test set.

auROC measures how recall increases as FPR increases, whereas auPR measures how 
recall increases as FDP increases. FPR and FDP both have the number of false positives 
as their numerator, but their denominators are different: the number of negatives for 
FPR versus the number of predictions for FDP. As a consequence, auPR can be low when 
auROC is high.

Test set
Examples and associated 
outcomes that are used to 
evaluate model performance. 
Training and test sets are 
disjoint.

Independent
The value of one example  
does not depend on the  
value of others.

Identically distributed
Generated by the same 
underlying distribution,  
with a particular mean, 
variance and shape.

Fig. 1 | An overview of five common pitfalls. a | Distri
butional differences can arise from various sources, such 
as batch effects. If the training and test sets are a mixture 
of examples from every batch (left), performance on the 
testing set will be much higher than on a new batch. To fit  
a model that will generalize to new batches, training and 
test sets should be composed of different batches (right).  
b | Dependency structure arises when biological groups 
exhibit similar feature–outcome relationships, such as 
correlated functions of proteins from the same family or 
complex. Predicting outcomes is easy if a model is trained 
using other entities in the same group (left). To ensure 
that the model can generalize, one should instead partition 
entire biological groups into either the training or test set 
(right). c | Confounding variables are unobserved variables 
that alter dependence structures between the observed 
variables. In this example, the unmeasured ancestry of 
individuals is a confounder of the relationship between 
genetic variants and gene expression (left), causing the 
C allele to appear associated with higher expression.  
After adjusting for the ancestry of individuals (right),  
we see that expression is higher for individuals from one 
ancestry group (A4). The association between the C allele 
and expression is only due to C being more common in 
individuals from A4. Although difficult to discover, con-
founders should be explicitly included in the modelling 
approach and construction of training and test sets.  
d | Information leakage can happen when information is 
leaked from the test set into the training as a result of the 
training and test sets being preprocessed together (left). 
Instead, the raw data should be split into training and 
test sets with preprocessing performed separately (right).  
e | Unbalanced data can make model training and  
evaluation difficult. If the training and test sets are 
balanced but the prediction set is unbalanced, test set 
performance will not reflect prediction set performance 
(left). Regardless of whether a balanced or unbalanced 
training set is used, the imbalance in the test set should 
be reflective of the imbalance in the prediction set (right). 
Ideally, one should also use a performance measure that 
can handle imbalance.

▶
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such as time, personnel, reagents or instruments12. These 
batch effects are extremely common in genomics, includ­
ing single-​cell experiments13, and can bias both the mean 
and the variability of measurements. Most genomic 
datasets have some distributional differences from these  
various sources.

Violations of the assumption that examples are identi­
cally distributed create several problems for ML model­
ling. In this pitfall, we focus on when the training and test 
sets have one distribution and the prediction set has a 
different distribution. In this case, one should expect that 
performance will be higher in cross-​validation (same 
setting) than on the prediction set (different setting). 
Because the prediction and test sets have distributional 
differences, the relationships between features and out­
comes that are learned during model fitting may not hold 
in the prediction setting.

Fortunately, some distributional differences are 
simple to identify. Ideally, the marginal distributions of 
both outcomes and features should be examined. But the 
outcome is typically unknown in the prediction setting, 
so one can only assess feature distributions. A straight­
forward approach is visualization, either by projecting 
the data into two dimensions and making scatter plots 
or by comparing histograms of feature values. A more 
sophisticated approach uses statistical tests to detect 
when distributions differ14; for example, the binomial 
test for binary features, the Kolmogorov–Smirnov test 
for univariate continuous features or Maximum Mean 
Discrepancy for multivariate continuous features14,15. 
Model-​based techniques for outlier and anomaly 
detection can also be used16–18.

Accounting for distributional differences is still an 
area of open research. Various batch correction methods 
are commonly used, such as quantile normalization, 
empirical Bayes adjustment for measured variables 
with ComBat19, surrogate variable analysis for estimat­
ing and correcting for unknown sources of noise20, and 
canonical correlation analysis, which enables the identi­
fication of common patterns across batches21,22. It is  
worth noting that sometimes performing this cor­
rection can inadvertently cause information to leak 
between training and test splits in cross-​validation (see 
pitfall 4). More elaborate approaches from domain 
adaptation and transfer learning23 include unsuper­
vised feature transformations and supervised learning 
of robust feature representations24,25. Another solution 
is adversarial learning, a set of techniques that attempt to 
fool models by providing them with deceptive inputs. 
Specifically, a model trained to predict the dataset 
that each example came from can be used to generate 
penalties for the primary prediction task14,26,27.

Case study. Various ML approaches have been used to 
model the sequence preferences of RNA- and DNA-​
binding proteins. Transcription factor binding motifs, 
for instance, are estimated using data from a variety of 
assays, both in vitro28,29 (for example, protein-​binding  
microarrays30–34, HT-​SELEX35–37, MITOMI or HiTS-​
Flip38) and in vivo (for example, ChIP–seq or ChIP–exo).  
These measurement techniques each have unique biases, 
including which sequences are assayed and which other 

proteins, if any, are present during the experiment. Hence, 
the observed distribution of bound sequences for a given 
transcription factor is different across assays. When a 
comprehensive evaluation of methods for modelling 
mouse transcription factor binding sites was conducted, 
the authors noted the effect of these distributional dif­
ferences as a major source of performance disparities11. 
They show that a model learned from in vitro protein-​
binding microarray data typically performs much better  
in cross-​validation than it does on in vivo ChIP–seq data, 
with area under the receiver operating characteristic 
(auROC) curve differing by up to 0.4 (0.5 being the diffe­
rence between perfect prediction and random guessing). 
The reverse is also true. Neither setting is superior; they 
are simply different. The study showed that performance 
also drops when transcription factor binding models are 
applied to make predictions on a different species from 
the one on which they were trained. One should be aware 
of these performance differences across contexts, but they 
are not inherently bad. In fact, analysing the sources of 
differential performance can reveal interesting biological 
differences between the settings, such as the presence of 
cofactors or cooperativity in ChIP–seq that is absent from 
protein-​binding microarray data.

Other examples. Distributional differences are common. 
GWAS data can have differences in allele frequency 
distributions arising from ancestry. Single-​cell and bulk 
gene expression measurements can have systematic 
differences across batches. In proteomics, distribu­
tional differences across mass spectrometers mean that 
reproducibility is higher on the same instrument than 
across instruments39. Supervised ML models  that 
predict protein function are frequently applied to 
proteins from different protein families than those 
represented in the training data. Outside molecu­
lar biology, machine- and hospital-​based biases have 
been observed in medical images and electronic health 
records40–45, complicating the development of meth­
ods that aim to be deployed to entire medical systems. 
Another example is when drug repurposing models do 
not perform well on new drugs or rare diseases where 
distributions differ from databases on which the models  
were trained46.

Pitfall 2: dependent examples
The mathematics of commonly used ML models and 
cross-validation depends upon the assumption of inde­
pendence, meaning that the values of one example are 
not dependent on another example (Fig. 1b). To illustrate 
the concept, repeated draws from a card deck without 
replacing the drawn card are dependent, because the 
probability of the next card depends on what has already 
been drawn.

In genomics, dependence is pervasive yet can be chal­
lenging to recognize. When predicting protein–protein 
interactions, examples are pairs of proteins. When pairs 
are represented in a dataset with unique identifiers they 
may appear to be independent, but all pairs that share a 
given protein are correlated with each other. Dependent 
examples are similarly created with enhancer–promoter, 
regulator–gene and drug–protein interactions47–50. 

Generalization error
A measure of how accurately  
a model predicts outcomes in 
data it has never seen before.

Prediction set
A third set of examples whose 
associated outcomes are truly 
not known, where a fitted 
model is applied to make 
predictions. Also known as  
a prospective validation set.

True negatives
Negatives whose labels  
are correctly predicted.

Features
Properties of a given example, 
for example, the gene 
expression values associated 
with a gene or the sequence 
patterns associated with a 
genomic window. Also known 
as ‘covariates’.

Outcome
Outcomes are what we  
want to predict in supervised 
learning, for example, the 
functional class assigned  
to a gene or the binary 
classification of whether a 
given genomic window contains 
a promoter. Categorical 
outcomes are often referred  
to as ‘labels’. In regression 
settings, the outcome is a  
real number.

Ascertainment bias
Examples in a study are not 
representative of the general 
population.

Adversarial learning
Machine learning techniques 
for improving model 
robustness to distributional 
differences, such as those 
caused by batch effects 
or other confounders.
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Frequently, the independence and identical distribu­
tion assumptions are entangled. For instance, geno­
typing results for family members are dependent and 
also may differ distributionally from other families. 
Unfortunately, dependence relationships are not always 
known. Even known dependencies have a tendency to 
be ignored in supervised ML analyses. When data are 
formatted as a table with one example in each row, the 
standard for most ML toolkits, it is easy to proceed with 
model fitting and cross-​validation without checking 
whether examples are independent (Fig. 2a).

Failing to account for dependencies between exam­
ples can lead to biased models and overly optimistic 
estimates of model performance. Randomized cross-​ 
validation (Box 1) does not protect against this problem 
and overestimates performance because examples in 
the test set can be correlated with training examples 
and bring information into the test set that should not 
be there. For instance, a model that predicts protein–
protein interactions would be likely to perform better in 
cross-​validation than on novel proteins, because proteins 
with more than one interaction can appear in both the 
training and test sets of each fold. The scale of this prob­
lem increases with the level of dependence; it is worse 
in highly connected graphs and graphs with hub nodes 
where area under the precision–recall (auPR) curve can 
be elevated by more than 0.5 (Fig. 2b, notebook A).

To check for this pitfall, we recommend explicitly 
considering the underlying dependencies in your data 
before applying ML tools. One intuitive way of doing 
this is to visualize the dependencies as a graph in which 
nodes represent biological entities (for example, genes, 
proteins, regulatory elements or chemicals) and edges 
represent associations or interactions between nodes. 
Cytoscape, R and Python all have tools for rendering tab­
ular data as a graph and computing summary statistics. 
Edges can be binary (presence or absence of relation­
ship) or quantitative (strength of association). Genomic 
proximity, protein complexes, transcriptional networks 
and metabolic pathways are all examples of biological 
phenomena that generate edges. Nodes with many edges 
(high degree) create groups of correlated nodes, which 
are common in genome biology. Examples of such hub 
nodes are a promoter interacting with many enhancers, a 
transcription factor regulating many genes and a protein 
involved in many different complexes. For this pitfall, 
the key point is that directly — and even indirectly — 
connected nodes are dependent, as are edges that share 
a node.

Several approaches exist for mitigating the effects 
of dependent examples on ML models, and these are 
not mutually exclusive. The best solution may be to 
acknowledge dependence and mitigate overfitting at the 
model evaluation stage. Group k-​fold cross-​validation 
(Box 1), also known as blocking51, is a bulwark against 
non-​independent examples crossing the train–test 
divide. It does not reduce dependence and is not a 
universal solution; some dependence structures are 
too complex to address with blocking. But it does pre­
vent inflated performance metrics caused by depen­
dent examples in the training and test sets, bringing 
performance closer to what would be expected on an 
independent prediction set (notebook A). As another 
approach, it is tempting to directly reduce dependence 
by downsampling edges (for example, only including 
one edge per high-​degree node) or downweighting 
nodes with high degree (for example, using node pro­
pensity scores). However, these strategies can make 
the modified data biologically unrealistic, for example,  
by removing highly interactive proteins or genomic 
regions. A third alternative is to use methods that 
explicitly model the covariance between examples, such 
as mixed effects models from biostatistics52, time-​series 
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Fig. 2 | Pairs of nodes in biological networks are not independent. a | A bipartite graph 
with interactions connecting nodes from set A to set B. Each node contains a vector of 
features, and existing (interaction) and non-​existing (no interaction) edges are encoded 
by concatenating the features of the node pairs that define them. The resulting feature 
matrix and labels are usable by standard machine learning (ML) algorithms. To estimate 
model performance, edges are randomly split into training and test sets. By chance,  
one edge from node A1 is in the training set and the other in the test set. These samples 
are dependent and thus allow information to leak across the train–test divide, inflating 
performance. This problem (pitfall 2) has affected various areas in genomics, where  
sets A and B could be proteins and ligands, drugs and target genes or enhancers and 
promoters. b | Performance inflation on graph-​based datasets grows with the number  
of edges. We demonstrate this phenomenon by simulating many realizations of random 
bipartite graphs with power law degree distributions (notebook A). Each graph is encoded 
as in panel a using random node feature vectors so that there is no relationship between 
features and edge presence. Models that assess area under the precision–recall (auPR) 
curve using blocking perform similarly to the baseline model that guesses randomly.  
This is an accurate assessment of performance, because there is no relationship between 
features and the outcome in the data. Without blocking, the random forest and logistic 
regression classifiers learn which nodes have a large number of edges in the training set, 
and make stronger predictions when the features of those nodes are present for edges  
in the test set. As a consequence, auPR values for unblocked cross-​validation are falsely 
inflated; the outcome is random and not associated with the features, but the model can 
make accurate predictions on the test set owing to dependence between node pairs in 
the training and test sets. The problem increases with the number of edges, because the 
probability of edges with shared nodes crossing the train–test divide grows.
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models and autocorrelation models from spatial 
statistics53. Unfortunately, these models may not scale 
to large genomic datasets and are rarely implemented by 
common ML toolkits, although progress is being made 
in this area54,55. Finally, if specific features are found  
to be responsible for creating dependent examples,  
it may be possible to reformulate the problem to have 
less dependence.

Case study. To illustrate these points, we review an exam­
ple from our own work on predicting 3D enhancer–
promoter interactions using features derived from 
functional genomics measurements56. The examples are 
enhancer–promoter pairs, which are labelled as physi­
cally interacting or not, using Hi-​C data. Promoters that 
interact with many enhancers are over-​represented in the 
positive class and under-​represented in the negative class. 
Applying randomized (k-​fold) cross-​validation produces 
overly optimistic performance measurements owing to 
the same promoter appearing in enhancer–promoter  
pairs in both the training and test sets47,48. Shuffled 
measurements result in a model with equivalent perfor­
mance. We reformulated the problem to make pairs of 
genomic windows the examples rather than enhancer–
promoter pairs, which dramatically reduces hub nodes 
in the dataset. This plus blocking by chromosome in 
cross-​validation dramatically reduced dependence 
and produced a generalizable model49. In this case, the 
important features learned with randomized versus 
group cross-​validation were similar, demonstrating that 
a ML model can be useful even when performance evalu­
ations are incorrect. Nonetheless, group cross-​validation 
is preferred.

Other examples. The interconnected and, at times, 
redundant nature of biological systems means that 
dependencies can be found in most prediction pro­
blems. Two genomic loci being in linkage disequilib­
rium creates a dependency between variants at those 
positions, requiring the development of methods 
that can disambiguate these effects for the analysis of 
GWAS data57. When using functional activity measure­
ments from several cell types or tissues, genomic loci 
themselves are dependent across samples because the 
underlying functional activity is generally shared58. 
The family of a protein is predictive of its function59, 
and so measuring true generalization performance of 
a computational method may require ensuring that a 
protein and its entire family fall on the same side of the 
train–test split.

Pitfall 3: confounding
One of the hardest pitfalls to diagnose involves data 
in which an unmeasured or artefactual variable (‘con­
founder’) creates or masks associations with an outcome. 
This occurs because the confounder induces dependence 
between features and the outcome (Fig. 1c). The error is 
that the confounder is not measured or not thought  
to be important and is therefore not included in the 
model. This may have little or no effect on the accuracy of  
predictions, but it leads to incorrect interpretations  
of the learned feature–outcome relationships and poor 

performance when the model is applied in a new con­
text in which the confounder is absent or is distributed 
differently than in the original context.

The lack of easily interpretable cues in genomics 
data means that confounders are difficult to identify. 
In image analysis, where confounders are in front of 
our eyes, they can still be hard to recognize. Examples 
include background scenery confounding prediction of 
types of animals60 and radiology scanner type confound­
ing prediction of hip fractures42. Confounding in genetic 
studies can arise from unmodelled environmental fac­
tors and population structure8, as well as other factors.  
An example from genomics involves predicting 3D 
chromatin interaction data (for example, Hi-​C) from 
epigenetic features. Pairs of loci close to each other along 
the linear genome have similar epigenetic marks and 
also interact frequently in 3D owing to polymer physics, 
making genomic distance a confounder. Another com­
mon example is inadvertently confounding the data by 
sampling or processing samples with different outcomes 
(for example, diseased versus healthy or different treat­
ment groups) in different batches. When integrating data 
from multiple studies, differences in genomic assays or 
bioinformatics pipelines across conditions or cell types 
also creates confounding. Unfortunately, this means that 
some degree of confounding can potentially be present 
in any genomic dataset.

The main problem with this pitfall is that ML models 
will estimate an association between the outcome and 
features that depends on the confounder, but the model­
ler will wrongly interpret this as a direct biological effect. 
The issue is that we are unaware of the confounder’s effect 
on the observed data, and we do not include it in the ML 
model. Importantly, cross-​validation does not protect 
against confounded effects, because the confounding is 
present in both the training and test sets. Confounded 
associations often come to light when the fitted model 
makes inaccurate predictions in a new context where 
the confounder is absent or has a different relationship 
with the measured features and outcomes. For instance, 
if ancestry confounds genotype–phenotype relationships 
in a training cohort, then the fitted ML model will per­
form poorly when applied to a cohort in which ancestry 
is randomized. In addition to creating false associations, 
confounding can mask a real relationship. The variability 
introduced by the confounder makes it hard to learn true 
relationships between features and an outcome.

Several statistical approaches help to prevent these 
problems. Ideally, examples should be randomized with 
respect to potential confounders, such as experimental 
batches. When this is not possible, one solution is to 
use principal components, probabilistic estimation of 
expression residuals (PEER)61 or other statistics that 
summarize structure in high-​dimensional data to cap­
ture unmeasured confounders62,63. One may also try 
to measure potentially confounding variables. In both  
cases, including the variable in the ML model will adjust 
for its effect and reduce confounding64. In the example 
of predicting 3D chromatin interactions from epigenetic 
features, including genomic distance in the model clarifies 
whether epigenetic marks are more correlated with 3D 
interaction than expected by chance. Many regression  

Positive
Positives are examples with  
the outcome of interest in a 
binary classifier.

Negative
Negatives are examples with 
the alternative outcome in a 
binary classifier. In genomics, 
negatives often outnumber 
positives.
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models are amenable to always including a variable and 
thereby adjusting for it. But ML approaches that choose 
features randomly make it hard to force the confounder 
into the model. To solve this problem, adversarial strate­
gies (mentioned in pitfall 1) for supervised and unsuper­
vised ML models are being developed65. Alternatively,  
a measured variable can be used as a baseline predictor 
with which models with other features can be compared. 
It is important to note that adding a variable to a model 
to reduce confounding can induce bias when it acts as 
a collider.

Case study. A common confounding variable in geno­
mics experiments is the number of reads sequenced. 
The outputs from genomic experiments often take 

the form of signal tracks, where each position in the 
genome is assigned the number of aligned reads or a 
processed version thereof. Deeper sequencing means 
higher average signal. This effect is clear in data from 
a publicly available ChIP–seq experiment profiling 
histone H3 lysine 27 acetylation (H3K27ac), which we 
analysed using random subsets of reads to simulate a 
range of sequencing depths (notebook B). The effect 
of sequencing depth on peak height is nonlinear, with 
some peaks showing more pronounced differences  
than others (Fig. 3a) and a larger genome-​wide effect 
at lower sequencing depth (Fig. 3b). Applying a ML 
model trained on data with one sequencing depth to a 
prediction context with a different depth will result in 
systematic misprediction of signal values.

Collider
A variable causally influenced 
by two variables, for example, 
both a feature and the 
outcome in predictive 
modelling.
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Fig. 3 | sequencing depth as a confounding variable. An experiment profiling histone H3 lysine 27 acetylation (H3K27ac) 
in smooth muscle cells (ENCODE accession: ENCSR210ZPC) reprocessed at six read depths (notebook B). a | The −log10  
P value signal at one locus on chromosome 17. Peaks are higher as sequencing depth increases, making depth a confounder 
if not accounted for in machine learning modelling (pitfall 3). This trend is greater in some of the peaks than in others, 
indicating that the confounding effect is nonlinear. b | A cumulative distribution function (CDF) of the maximum signal 
value (−log10 P value) in each peak across all peaks in the genome. The CDFs show what percentage of peaks have a −
log10 P value less than or equal to every threshold (going from least to most significant from left to right). The same set 
of genome-​wide peaks, those called using 10 million reads, is used for all sequencing depths. The CDF curves for low read 
depths being above those for high read depths means that fewer peaks would be called significant at any given P-​value 
threshold. Machine learning models that aim to predict peaks or learn features enriched in significant peaks would be 
biased when applied to data with a different sequencing depth if they did not account for the confounding.
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Other examples. Confounding arises in GWAS when 
population genetic structure is systematically different 
between cases and controls. This problem has arisen in 

studies of many phenotypes. One notable example is a 
ML model trained to predict autism spectrum disorder 
(ASD) using genotyping data, which initially appeared 
successful66. However, the results were generally irrepro­
ducible after accounting for population structure67 and 
further analysis suggested that the variants were more 
indicative of shared ancestry than they were of ASD68,69.

Confounding is also frequently introduced through 
the data collection process. Technical artefacts are a 
common source of confounding in genomics, especially 
when datasets from different sources are integrated 
into one model. For example, co-​expression networks 
are a powerful tool for predicting gene functions or 
disease associations. But batch effects induce spurious 
correlations between sets of genes that confound these 
predictions63. Unmeasured population structure can be 
associated with both genotypes and gene expression, 
making it a common confounder in models used to 
identify expression quantitative trait loci (eQTLs)62. 
Technical artefacts can operate in a similar way in eQTL 
studies. As an additional example, the data derived from 
electronic health records (EHRs) can be confounded by 
socioeconomic status, because poorer patients may be 
more likely to be seen at clinics where the authors of 
the EHRs are less experienced70, as well as by severity  
of disease and ability to access health care71.

Pitfall 4: leaky preprocessing
A subtle yet pervasive problem in ML analyses is data 
processing that inadvertently causes information to 
leak from the test set into the training set. Information 
leakage (‘double dipping’) occurs when the training set 
is processed in a manner that depends on data from the 
test set, which induces dependence between examples 
(a special case of pitfall 2) and interferes with the utility 
of the test set for evaluating model performance (Fig. 1d).

Leaky preprocessing is pervasive in genomics. Any 
data transformation that looks at multiple examples 
together can be problematic. Specific methods include 
standardization and principal component analysis (PCA), 
plus various other scalings and unsupervised embedding 
approaches. Supervised feature selection, which involves 
filtering features that are based on association with the 
outcome, is another form of preprocessing that can 
cause leakage when performed outside cross-​validation. 
More broadly, recent work on post-​selection inference 
highlights the problem of performing statistical analyses 
such as differential expression after clustering72, even if the 
clusters were defined on independent datasets73.

The consequence of preprocessing the whole data­
set is an overly optimistic cross-​validation performance 
estimate (notebooks C and D) that is easily interpreted 
as indicating a true biological relationship. This can 
happen even when there is no association in the data 
(Fig. 4a, notebook C). Information leakage is also a pro­
blem for unsupervised ML methods, such as clustering 
or visualization techniques. For instance, examples with 
similar outcome values may incorrectly group together 
if supervised feature selection is applied to data before 
they are explored with unsupervised ML (Fig. 4b). More 
generally, any downstream analysis will be impacted by 
information leakage.
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Fig. 4 | Performing feature selection outside cross- 
validation yields unrealistically high model accuracy. 
We demonstrate the consequences of improperly using 
supervised feature selection approaches (pitfall 4) on a 
synthetic dataset and label vector composed entirely of 
random values (notebook C). a | Because the data have no 
real signal by design, a random forest classifier evaluated 
with feature selection carried out properly does not 
perform significantly above random chance (grey); 
however, when feature selection is erroneously performed 
before cross-​validation on all the folds together (red), the 
model exhibits a striking increase and subsequent decrease 
in performance as the number of features increases.  
This problematic behaviour occurs with any machine 
learning (ML) model. b | A principal component analysis 
(PCA) projection of the same dataset after 200 features  
are chosen using supervised feature selection, coloured 
by class label (blue = negatives, red = positives). Despite 
the lack of real differences between the two classes, the 
feature selection procedure corrupted the subsequent 
unsupervised PCA approach. Outside the scope of ML 
analyses, preprocessing and visualizing the entire dataset  
is not necessarily problematic. But if one subsequently 
chooses to fit an ML model, preprocessing should be 
redone using only the training set.

Clustering
Unsupervised learning,  
where there is no measured 
outcome, although the cluster 
assignment is an estimate of  
an unobserved label. The goal 
is to organize examples on the 
basis of pairwise similarities  
of their features, for example, 
into groups (‘clusters’) or a 
hierarchical tree.
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Most ML toolkits enable leakage-​free application 
of supervised and unsupervised transformations by 
learning parameters from the training set only, then 
applying the transformation to the training and test sets 
independently. For example, standardization involves 
subtracting the mean from a variable and dividing by its 
standard deviation. The mean and standard deviation are 
parameters that can be learned from and applied to the 
training set, and those same parameters can be re-​used 
to transform the test set. This is in contrast to learning 
the mean and standard deviation from the entire dataset, 
before splitting into training and test sets. Fortunately 
for users, this process is already included in scikit-​learn’s 
pipeline and transformer API74, as well as the preProcess 
parameter of the caret package’s train() function75.

Case study. In ML analysis of DNA methylation assays, 
researchers are faced with more features (tens of thou­
sands of probes) than examples (typically 100 or fewer 
samples). To build a robust ML model of an outcome 
across samples using probes as features it is essential to 
perform feature selection. If this is performed on the 
entire dataset before cross-​validation, leakage will occur. 
Identifying probes that exhibit high univariate predictive 
power across the entire dataset is one way that informa­
tion is leaked76–80. Another way is through identifying 
‘differentially methylated probes/positions’ (DMPs), 
or aggregates of DMPs called ‘differentially methyl­
ated regions’ (DMRs)81–85, where only probes with large 

differences across outcome labels (typically 0.2) are used. 
Information is leaked because the labels are explicitly 
used to define how differential each probe is. When stud­
ies find high predictive accuracy using DMPs or DMRs 
defined on the whole dataset, it is unclear whether this 
signal is real biology or a consequence of train–test 
leakage. Unfortunately, many overviews of methylation 
analysis and tools that implement methylation data pro­
cessing do not explicitly consider downstream ML analy­
sis86. We note that identification of DMPs and/or DMRs 
on an entire dataset is reasonable when these are the final 
result; the pitfall arises when they are subsequently used 
as features to build a predictive model87.

Other examples. Leaky preprocessing was so prevalent 
in microarray analysis that the journal Bioinformatics 
released an editorial that encouraged scientists to be 
more critical of their own papers88. Pulini et al.89 refer to 
this pitfall as ‘circular analysis’ and point out that it affects 
a large number of surveyed studies that classify cases of 
attention deficit hyperactivity disorder (ADHD). Other 
examples include prediction of clinical or cellular out­
comes from functional MRI data90, gene expression91,92, 
metabolomics93 or DNA methylation76–85. Identifying 
motifs that predict gene expression is another setting 
in which performing feature selection outside cross-​
validation has been a problem. Here, feature selection 
refers to identifying motifs that are enriched in the pro­
moters of co-​expressed genes, and leakage occurs when 
this is performed prior to random assignment of genes 
to training and test sets in cross-​validation94. Leakage 
also occurs when evolutionary profiles are used to pre­
dict protein structures or other properties. The problem 
is that profile parameters are chosen using all proteins 
before cross-​validation95.

Pitfall 5: unbalanced classes
A supervised learning task is balanced if examples are 
evenly distributed across values of the outcome and 
unbalanced otherwise. Few real datasets are perfectly 
balanced, and some problems in genomics exhibit 
extreme imbalance (Fig. 1e). For example, when applying 
ML to millions of genomic windows to predict whether a 
given window contains an enhancer, windows with vali­
dated examples (positives) may constitute ~1% of the 
total (Fig. 5). In the context of predicting patient disease 
risk, Khalilia et al.96 reported disease prevalence rang­
ing from 0.01% to 29%. A study predicting deleterious 
non-​coding variants used 400 positives with 14 million 
negatives for Mendelian disease and 2,000 positives with 
1.4 million negatives for complex disease97.

In these scenarios, models are at risk of over-​learning 
the majority class and under-​learning the minority class. 
This is particularly problematic when the minority class 
is of primary interest and false negatives can be high cost, 
such as in detecting disease from medical scans or pre­
dicting side effects of drug combinations. Importantly, 
unbalanced data also affect the performance of regres­
sion tasks in which labels are continuous values rather 
than discrete classes (notebook E).

Class imbalance is addressed with a range of strate­
gies. Within the modelling procedure, one can put prior 
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Fig. 5 | Balancing classes inflates performance when applied outside cross-validation. 
Predicting enhancers genome-​wide (notebook D) is an example of a very unbalanced 
classification problem, because most genomic windows do not contain an active enhancer 
(pitfall 5). Making the positive (enhancer) and negative (not enhancer) classes equal in size 
(‘balancing’) can be helpful in the training step of cross-​validation. But balancing should be 
performed inside cross-​validation (blue) so that the test set used to evaluate performance 
reflects the actual imbalance in the genome. Failing to do so inflates performance (red).  
(In the graph, performance is quantified according to the area under the precision–recall 
(auPR) curve.) Similarly, preprocessing to select a subset of features (‘selection’) will  
inflate performance when performed outside cross-​validation owing to leakage (pitfall 4), 
and performing both balancing and selection outside cross-​validation leads to the most 
inflated performance (red versus blue). These trends hold for two types of cross-​validation 
(shuffled (dark shades) versus cross-​chromosome (light shades)).
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probability distributions on the classes. More commonly, 
researchers use rebalancing approaches to increase 
performance on the minority class98–102. There are three 
basic strategies: oversampling the minority class, under­
sampling the majority class and weighting examples. 
Each of these approaches emphasizes the importance 
to the model of the minority class. Oversampling either 
duplicates existing data (sampling with replacement)103 
or synthesizes ‘plausible’ examples of the minority class 
using interpolation of existing examples (for example, 
SMOTE104 or ADASYN105). Conversely, undersampling 
takes a random subset of the majority class, matching the 
size of the minority class. Weighting examples involves 
using the inverse of the class proportion so that the ML 
model gives more emphasis to errors on the minority 
class. Each approach makes different trade-​offs: over­
sampling retains all data but increases computation 
time, undersampling decreases computation time but 
discards some data and sample weighting retains all 
data but requires determination of the optimal weights.  
The imbalanced-​learn package106 for scikit-​learn74, as 
well as the weights argument for train and the sampling 
argument for trainControl in caret75, provide practi­
tioners in Python and R with off-​the-​shelf methods for 
handling class imbalance.

All three approaches tend to decrease accuracy for the 
majority class while increasing accuracy for the minority 
class, which is often a desirable trade-​off. However, there 
are two important considerations to keep in mind. First, 
balancing should always be performed only within the 
training fold, so that the fitted model is evaluated against 
the distribution of classes expected in the prediction set 
(Fig. 5, notebook D). Second, rebalancing the classes will 
cause the estimator to become uncalibrated in the sense 
that the distribution of probabilities predicted will more 
closely match the balanced training set instead of the 
unbalanced test set. This is not necessarily a problem 
when the ranking of examples is more important than 
the predicted probability itself, and estimators can be 
recalibrated using a post-​processing step, but the issue 
should be kept in mind.

The performance metrics used to evaluate ML mod­
els are differentially affected by imbalance. As a classic 
example, 99% accuracy is achieved on a training set with 
100 positives and 9,900 negatives by always predicting 
the negative class. Traditional alternatives are auROC and 
auPR curves (Box 1). Both quantify recall (also known 
as power and true positive rate) as the number of posi­
tive predictions changes. auROC does so as a function of 
false positive rate (FPR). In many genomics problems, high 
recall can be achieved at a very low FPR owing to the large 
number of negatives in the test set107, making it easy to 
obtain a high auROC even when false positives vastly out­
number true positives (that is, high false discovery rate). 
Alternatively, auPR compares recall with precision, which 
is one minus the false discovery rate and does not depend 
on the number of negatives. When false positives domi­
nate true positives, auPR will be low. Thus, for imbalanced 
problems where the positive minority class is of primary 
interest, auPR is generally preferred (notebook D).  
No performance metric is universally best, and the 
analyst should carefully evaluate options for their setting.

Class imbalance can also occur in the regression 
setting, although this is discussed less frequently. For 
instance, when a model makes predictions of multiple 
outputs for a single example (the multi-​task setting), 
the distribution of values in these outputs can influence 
both training and evaluation. As a hypothetical example,  
if one task has values entirely between 1,000 and 10,000 
and the other task has values between 0.01 and 0.1, then 
evaluating the model simply using mean squared error 
(MSE) across the two tasks will largely ignore the second 
task. A distributional difference of that magnitude may 
be unlikely in genomics, but varying patterns of spar­
sity are common across genomic assays. For example, 
some RNA sequencing (RNA-​seq) assays exhibit signal 
primarily at the ends of transcribed genes. Evaluation 
of a model that tries to predict those assays alongside  
ChIP–seq assays, where signal is exhibited over a much 
larger portion of the genome, may be biased (notebook E).  
Fortunately, a simple workaround in the regression  
setting is to evaluate each output individually, or as part 
of a group of outputs with similar distributions (for 
example, RNA-​seq separately from ChIP–seq) instead 
of aggregating overall outputs regardless of distribution.

Case study. ML models are used to predict protein func­
tions from heterogeneous features such as expression, 
protein domains, orthology patterns and protein–protein 
interactions. This is a very unbalanced problem for most 
annotation labels with fewer than 100 positives (for 
example, proteins with a given GO term) and thousands 
of negatives (the rest of the proteins). Hence, a model 
that always predicts the negative class will have high 
accuracy. Furthermore, the set of predicted positives 
at a fixed FPR may actually contain mostly negatives  
(false positives). At FPR = 0.05, for example, we expect 
only 5% of the negatives to be in the predictions, but 
5% of a large number can easily exceed the number of 
true positives. For these reasons, a critical assessment 
of ML methods for mouse protein function prediction 
used precision at fixed recall in addition to auROC108. 
Reporting auPR or applying rebalancing methods are 
other strategies that are useful for this problem.

Other examples. In genomics, imbalance is the default 
state. Indeed, many problems are so imbalanced that 
researchers have to use statistical approaches simply to 
ensure that the small number of positive examples that 
they find are real. For instance, selecting conservative 
significance thresholds in alignment queries, GWAS 
projects109 and motif scanning110 is crucial for properly 
controlling the number of false positives because the 
number of true positives is very low compared with 
the size of the genome. Given the size of the human 
genome, problems involving non-​coding variants are 
often highly imbalanced. Examples include prediction 
of chromatin states, gene expression and disease status 
from sequence. In the last setting, researchers have 
developed a balancing algorithm that oversamples the 
negative class and undersamples the majority class97.  
A common strategy for training models to predict func­
tional peaks from ChIP–seq or chromatin accessibility 
assays is to use all the peaks and an equal number of 

True positives
Positives whose labels  
are correctly predicted.

False positives
Negatives whose labels  
are incorrectly predicted  
as positive.
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negative regions29, effectively undersampling the majority 
class. Databases for drug–target interactions generally 
do not contain negative interactions, and so one must 
construct their own negative sets during the training of 
predictive models70. This pitfall focuses on classification 
but similar problems arise when predicting a quantita­
tive outcome with regression models. Performance can 
be poor in areas of the quantitative signal where data are 
sparse, such as genomic regions or genes with low read 
counts in single-​cell genomics assays.

Conclusions
ML shows great potential in genomics, but applying it 
effectively can be challenging owing to the inherent com­
plexities of biological systems. In this Review, we use gen­
eral concepts, examples, case studies and computational 
notebooks to illustrate five common pitfalls that reduce 
the value of supervised ML. An unfortunate reality is that 
these mistakes are often easy to make yet subtle enough 
that we may not realize we are making them, as we have 
learned in our own work47–49,56,58. Although guaranteeing 
that one has avoided these pitfalls is difficult, we have 
found that the best guard is to be constructively sceptical 
and do a thorough inspection of the results to ensure that 
they make sense.

We have emphasized that the pitfalls can occur inde­
pendently but are interconnected. Indeed, several of 
them involve failure to properly evaluate a model in the 
setting where it will be used in practice. An alternative 
way to view pitfalls 1–4 is through the lens of artefactual 
variables that induce relationships in the data that we 
fail to account for in the model. Confounding (pitfall 3) 
is a specific example of the dependence structures and 
graphs discussed in pitfall 2: confounder variables are 
nodes that create an indirect path between a feature and 
the outcome, thereby changing the feature–outcome 
relationship111. Leaky preprocessing (pitfall 4) also relates 
to dependence, in this case between examples in the 
training and test sets. Leakage can also be thought of as 
test data confounding the relationship between features 
and outcome in the training data. The distributional dif­
ferences from pitfall 1 arise when variables that differ 
systematically between the training and prediction sets 
(for example, batch or ancestry) are not modelled. This 
relates to pitfall 3, because confounder variables shift the 
distribution of the observed data away from the distri­
bution that we think we are modelling. The difference is 
that pitfall 3 is about the training data, whereas pitfall 1  
focuses on when feature–outcome relationships are 
different between the prediction and training sets.

Although this unified view is abstract, it explains 
why the remedy is the same in each case: construct your 
training, test and prediction sets such that the relation­
ship between the training and test sets is the same as the 
relationship between the training and the prediction set. 
For example, if a model is trained on in vitro data but 
the prediction setting is in vivo, then the test set should 
also be in vivo; avoid training and testing on data arising 
from a mixture of all existing batches if the prediction 
setting is a new batch; avoid splitting dependent exam­
ples into your training and test sets if the prediction set 
will not include similarly dependent examples; avoid 

performing preprocessing steps on your training and 
test data together because you cannot carry them out at 
the same time on your prediction set.

Performing research is rarely a straightforward pro­
cess, and sometimes the winding path one takes can lead 
to a pitfall. For instance, given gene expression values 
from samples under two conditions, one may initially be 
interested in identifying differentially expressed genes. 
Here, it is appropriate to analyse the entire dataset. 
However, if later on, the researcher decides to add a ML  
analysis using differentially expressed genes as fea­
tures, they would have inadvertently fallen into pitfall 4. 
Hence, we recommend considering the entire path your 
data has taken before applying ML.

Beyond these five pitfalls, there are other considera­
tions to keep in mind for the most effective application 
of ML. Among these is using appropriate baselines to 
ensure that your model has not learned simple rules that 
are not biologically interesting. We discussed predict­
ing chromatin interactions from genomic distance as 
an example of a baseline model, and Fig. 2 uses random 
guessing as a baseline. Another issue not directly covered 
in our pitfalls is using performance on test folds to tune 
model parameters or perform model selection, which 
leads to elevated performance estimates. A further con­
sideration, touched on in pitfall 5, is using informative 
performance measures. Global performance measures 
(for example, auROC or correlation across the entire test 
set) are informative but frequently obscure interesting 
details that can be captured by finer-​grained measures, 
such as breaking performance down by demographics or 
genomic annotations. When it is unclear what the best 
fine-​grained measures are beforehand, we recommend 
looking closely at examples that are poorly predicted.

In this Review, we primarily illustrate the direct 
effects of ML pitfalls on model performance. However, 
ML is often employed for gaining biological insights 
rather than prediction per se. In these cases, one will 
generally interpret a trained model, after validating 
that it performs well, to extract the relationships it has 
learned. Unfortunately, models that exhibit good per­
formance may have learned meaningless relationships 
if one or more pitfalls has influenced the analysis. Our 
suggestions for checking the pitfalls are important even 
for model interpretation. However, in some cases an 
overfitted or biased model can produce accurate biologi­
cal conclusions; insufficient for generalizable predictions 
but sufficient for attribution112. For example, the model 
may overestimate the strength of association between a 
feature and outcome owing to confounding or depen­
dence. When this is a true biological relationship, an 
effect size error has been made but the association is not 
a false discovery.

We as modellers and reviewers are the key to ensur­
ing effective use of ML in genomics. Before accepting 
ML outputs at face value, we should become familiar 
with the data, apply healthy scepticism and conduct 
robust follow-​up analyses113. This is easier said than 
done, but the trustworthiness of ML in biomedical 
research depends on these strategies.
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