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We present a general simulation approach for fluid–solid interactions based on the fully-
Eulerian Reference Map Technique (RMT). The approach permits the modeling of one
or more finitely-deformable continuum solid bodies interacting with a fluid and with
each other. A key advantage of this approach is its ease of use, as the solid and fluid
are discretized on the same fixed grid, which greatly simplifies the coupling between
the phases. We use the method to study a number of illustrative examples involving an
incompressible Navier–Stokes fluid interacting with multiple neo-Hookean solids. Our
method has several useful features including the ability to model solids with sharp corners
and the ability to model actuated solids. The latter permits the simulation of active
media such as swimmers, which we demonstrate. The method is validated favorably in
the flag-flapping geometry, for which a number of experimental, numerical, and analytical
studies have been performed. We extend the flapping analysis beyond the thin-flag limit,
revealing an additional destabilization mechanism to induce flapping.

1. Introduction

Fluid–structure interaction (FSI) problems highlight a natural dichotomy in the
simulation approaches for solids and fluids, where fluid problems tend to be solved
using Eulerian-frame methods (Chorin 1967; Hirt et al. 1974; Versteeg & Malalasekera
1995; Tannehill et al. 1997) and solids with Lagrangian approaches (Zienkiewicz & Taylor
1967; Sulsky et al. 1994; Hoover 2006; Belytschko et al. 2013). An FSI simulation method
must therefore bridge the gap between these two perspectives. For example, one set of FSI
approaches treats both fluid and solid phases in a Lagrangian frame, with a finite-element
representation in the solid and an adaptive Lagrangian mesh in the fluid (Rugonyi &
Bathe 2001; Bathe 2007; Froehle & Persson 2015), or with both phases treated with a
mesh-free approach (Rabczuk et al. 2010). An alternative methodology is to treat the
fluid on a fixed Eulerian mesh and the solid with Lagrangian points, such as the family of
immersed boundary methods (Peskin 2002; Griffith et al. 2009; Fai et al. 2013).

A fully Eulerian method whereby fluid and solid are both computed on a fixed grid
has its advantages. Computation time benefits arise from both phases being treated on a
single fixed background grid. The handling of multiple objects interacting or of topological
changes to objects can be done with level set fields (Sethian 1999; Osher & Sethian
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1988) rather than requiring complex on-the-fly Lagrangian remeshing. In addition, certain
common conditions such as incompressibility are easier to implement in an Eulerian form.
Lastly, fixed-grid approaches are well-suited to numerical analysis, such as a von Neumann
stability analysis (LeVeque 2007).

The key challenge for a fully-Eulerian FSI method is to develop an Eulerian description
of the solid. In a small strain limit, this can be achieved by writing the equations of linear
elasticity in rate form, referred to as hypoelasticity (Truesdell 1955), which has formed
the basis of several numerical techniques (Udaykumar et al. 2003; Rycroft & Gibou 2012;
Rycroft et al. 2015). However, here our interest is in developing a large-deformation
description of the solid, the more general approach in solid mechanics (Gurtin et al. 2010;
Belytschko et al. 2013). In recent years, we have addressed the issue by developing an
Eulerian-frame solid simulation approach called the Reference Map Technique (RMT)
(Kamrin & Nave 2009; Kamrin et al. 2012; Valkov et al. 2015), which is based on tracking
the reference map field—i.e. where material started from—on the Eulerian grid. The
reference map field allows the finite deformation of the solid to be computed, from which
the material stress is calculated according to a prescribed nonlinear constitutive law.
This approach has shown the ability to simulate basic FSI and separately cover a span
of desirable features. However, a single implementation covering all needed features for
robust physical simulation—e.g. (i) numerical stability, (ii) second-order accuracy in space
and time, and (iii) desirable physical traits such as the ability to model incompressible
materials, objects with sharp corners, and activated media—has been lacking and non-
trivial to produce. In this paper we present such a method and provide a variety of
physical simulations using it, which extend our understanding of certain FSI problems.

To represent incompressible solids and fluids we have reformulated the numerical
discretization using the projection method framework of Chorin (1967, 1968). In this
method, to integrate the velocity field forward by a time step, an intermediate velocity
field is computed where the incompressibility constraint is temporarily relaxed. After
this, a Poisson problem is solved for the pressure, which is used to project the velocity to
be divergence-free. The method has been extensively developed since Chorin’s original
work (Brown et al. 2001). Here, we consider a modern second-order implementation
described by Yu et al. (2003, 2007) in the context of inkjet printer nozzle simulation.
This implementation incorporates a number of improvements, including the treatment
of advective terms by Bell et al. (1989), and the approximate projection approach of
Almgren et al. (1996) based on a finite-element discretization. We deliberately keep the
fluid component of the simulation to match this existing implementation, to emphasize
that the reference map technique does not require any special treatment of the fluid.
However, we show that the discretization techniques can be generalized to simulate solids
via the RMT, and we find that the advective discretization is especially well-suited to
simulating the reference map update equations in a fashion more accurate than Valkov
et al. (2015).

The projection method removes the Courant–Friedrichs–Lewy (CFL) condition (Courant
et al. 1967) associated with pressure waves. This makes it possible to simulate a wide
variety of problems in an intermediate Reynolds number regime (and potentially for high
Reynolds problems should an adaptive background grid be used). As in Valkov et al.
(2015), the level set field representing interface(s) is not explicitly updated, but is tied to
where the boundary should be in the reference map field. However, here we switch to a
regression-based extrapolation method, which is more stable, simpler, and allows shapes
with corners to be considered. Some accuracy tests are provided, demonstrating second-
order spatio-temporal accuracy. As a further test of this method for physical simulation,
we consider the flag flapping stability problem, which has been studied extensively (Zhang
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et al. 2000; Watanabe et al. 2002; Zhu & Peskin 2002; Connell & Yue 2007). We are
able to quantitatively reproduce the phase plot of stability for a thin flag (Connell &
Yue 2007) with very good accuracy for Reynolds numbers below 1000, and reasonably
good accuracy for Reynolds numbers above 1000. Our method also makes it possible to
simulate flags with substantial thickness, which show a different instability mechanism
due to vortex shedding from the tip. The transition between the thin and thick flag
behaviors is captured and studied with our method. We also augment the approach to
allow internal actuation of the solid bodies. With this addition, the method is well-suited
to biolocomotion problems and we show an example of this tool by modeling a jellyfish-like
swimmer. Another advantage of the method is the ability to perform many-body contact
problems quickly but in a fashion that balances momentum carefully. We demonstrate
this approach with an example of many objects of various sizes settling under gravity.

2. Theory

2.1. Overview of the reference map technique

We begin by considering the solid material, which we model using the large-deformation
hyperelastic framework (Lubliner 2008; Gurtin et al. 2010). As shown in Fig. 1(a), we
introduce an undeformed reference configuration for the solid at time t = 0 with coordinate
system X. We then consider a time-dependent map χ(X, t) from the undeformed
configuration to the deformed state in the physical frame at time t. The deformation
gradient tensor is defined as

F =
∂χ

∂X
(2.1)

and represents how an infinitesimal element of the solid has been deformed and rotated.
From here, a consititutive law

σs = f(F, ζ) (2.2)

can be used to calculate the Cauchy stress σs in the physical frame, where ζ represents
any internal state variables such as plastic deformation. The material velocity v(x, t) then
satisfies

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · σ (2.3)

where σ = σs in this case, ρ = ρs/(detF), and ρs is the solid density in the undeformed
configuration.

The most commonly used approach to simulate hyperelastic solids is to introduce a
deforming mesh on the solid, and then solve for the nodal displacements, from which (2.1)
can be used to compute the stress (Belytschko et al. 2013). However, here we take an
alternative approach of introducing the reference map field in the physical frame ξ(x, t)
that represents the inverse mapping of χ. The field is initialized as ξ(x, 0) = x, and
satisfies the advection equation

∂ξ

∂t
+ (v · ∇)ξ = 0. (2.4)

The deformation gradient tensor is computed from the reference map field according to

F =

(
∂ξ

∂x

)−1

, (2.5)

from which the Cauchy stress is evaluated. Equations (2.2), (2.3), (2.4), & (2.5) then
form a minimal system of equations for finite-strain hyperelasticity in an Eulerian frame.
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(a) (b)

X
Mapping
χ(X, t)

Initial undeformed
configuration

Deformed configuration
at time t

Blur zone, |φ| < wT Solid reference
map, ξ(x, t)

Global
velocity

field,
v(x, t)

Solid, φ < 0

Fluid, φ > 0

Figure 1. (a) Overview of the hyperelastic framework, whereby an initially undeformed solid
with reference coordinate system X undergoes a time-dependent mapping χ(X, t) to its current
configuration at time t. (b) Overview of the reference map technique for simulating fluid–structure
interaction on a fixed background grid. The sign of the level set function φ(x, t) demarcates the
solid and fluid phases. The blur zone, used to transition from solid to fluid stress, is defined as
the region where |φ| < wT .

The reference map ξ(x, t) and velocity v(x, t) can be represented on a fixed grid. At each
timestep equations (2.5) and (2.2) can be used to evaluate the Cauchy stress, after which
equations (2.3) and (2.4) can be integrated forward in time. So far, this prescription is
general, and could be solved using a variety of discretization approaches such as a finite
difference method, finite volume method, or a discontinuous Galerkin method.

The reference map is a standard definition in solid mechanics (Gurtin et al. 2010), and
it has been used in problems of inverse design (Govindjee & Mihalic 1996; Fachinotti
et al. 2008), but it is not widely employed as a primary simulation variable in the physical
frame. Fixed-grid approaches by Plohr & Sharp (1988); Trangenstein & Colella (1991);
Liu & Walkington (2001) have been developed that use the deformation gradient tensor
F as a primary simulation variable.

2.2. Incompressible fluid–structure interaction

In this paper we employ the reference map technique to simulate incompressible fluid–
structure interactions. We shall use the terms τ , τs, and τf to refer only to the deviatoric
part of the stress, as the pressure field is now deformation independent and separately
calculated. We make use of a globally defined velocity field v(x, t) that satisfies the
incompressibility constraint

∇ · v = 0. (2.6)

We consider a solid immersed within the fluid, and introduce a level set function φ(x, t)
(Sethian 1996; Osher & Fedkiw 2003) that is the signed distance to the solid–fluid interface
with the convention that φ < 0 in the solid and φ > 0 in the fluid. The reference map
ξ(x, t) is defined within the solid region only.

Let the fluid have density ρf and dynamic viscosity µ. The fluid stress deviator at any
gridpoint is given by

τf = µ(∇v + (∇v)T). (2.7)

Kinematic viscosity is defined as ν = µ/ρf . The deviatoric stress is then defined as a
smooth transition between the fluid and solid stresses,

τ = τs +Hε(φ)(τf − τs), (2.8)
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(a) (b)

hy

hx

pi,j

pi,j+1

pi+1,j

pi+1,j+1

vi,j , ξi,j

(φi,j)

vi−1/2,j ,
ξi−1/2,j

vi+1/2,j , ξi+1/2,j

vi,j−1/2, ξi,j−1/2

vi,j+1/2,
ξi,j+1/2

Figure 2. (a) Arrangement of the fields within a simulation grid cell. The reference map ξi,j ,
velocity vi,j , and level set field φi,j are held at the cell center, while the pressure is held at the cell
corners. The level set field is bracketed to emphasize that it is not time-evolved independently, but
is instead derived from the reference map. (b) Arrangement of the edge velocities and reference
maps that are computed at the half-timestep to evaluate the advective terms.

where

Hε(φ) =


0 if φ 6 −ε,
1
2 (1 + φ

ε + 1
π sin πφ

ε ) if |φ| < ε,
1 if φ > ε,

(2.9)

is a smoothed Heaviside function with a transition region of width 2ε. The detailed form of
Hε is not important, but the choice in (2.9) has been used elsewhere (Yu et al. 2003, 2007)
and is twice differentiable. In order to calculate τ it is necessary to smoothly extend ξ in
the region 0 < φ < ε, which is done using extrapolation methods that will be described in
the following section. The density is also defined as a smooth transition between the solid
and fluid, as

ρ = ρs +Hε(φ)(ρs − ρf ). (2.10)

3. Numerical Method

The numerical procedure is based on the projection method of Chorin (1967, 1968) for
solving the incompressible Navier–Stokes equations. Specifically, we consider a modern
second-order method described by Yu et al. (2003, 2007) that is especially effective at
dealing with advection, and incorporates a number of algorithmic advancements from
Chorin’s original treatment.

The simulation domain is a rectangle of size W by H, and is divided into an M×N grid
of rectangular cells of size hx by hy. The velocity, the reference map, and the level set, are
held at cell centers and are indexed as vi,j , ξi,j , and φi,j , respectively, for i = 0, . . . ,M −1
and j = 0, . . . , N − 1 (Fig. 2(a)). The components of the velocity field are written as
vi,j = (ui,j , vi,j). Pressures are held at cell corners and are indexed as pi,j for i = 0, . . . ,M
and j = 0, . . . , N . In addition, the grid is padded by two layers of cells in each direction
whose values are populated to enforce different boundary conditions.

Superscripts are used to denote timesteps. To advance the simulation forward from
timestep n to n+ 1 with interval ∆t, the following procedure is used. The reference map
field is updated using

ξn+1 − ξn

∆t
= − [(v · ∇)ξ]

n+1/2
(3.1)
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and an intermediate velocity v∗ is computed using

v∗ − vn

∆t
= − [(v · ∇)v]

n+1/2
+

µ

ρ(φn+1/2)
∇ ·
[
τ (ξn+1/2,vn)

]
. (3.2)

Here, the advective derivatives [(v · ∇)ξ]n+1/2 and [(v · ∇)v]n+1/2 are evaluated at
the middle of the timestep using a second-order explicit Godunov scheme, described
in Subsec. 3.1. Once the advective derivatives are evaluated, Eq. (3.1) allows ξn+1 to
be computed. This allows the time-centered reference map to be defined as ξn+1/2 =
(ξn+ξn+1)/2 after which v∗ is computed using Eq. (3.2). From here, the Poisson problem
for pressure is evaluated using

∇ · v∗ = ∇ ·
(

∆t

ρ(φn+1/2)
∇pn+1

)
. (3.3)

Following Almgren et al. (1996); Puckett et al. (1997), Eq. (3.3) is solved using a finite-
element formulation, described in Subsec. 3.4. After this, the velocity is projected to be
divergence-free using

vn+1 = v∗ − ∆t

ρ(φn+1/2)
∇pn+1 (3.4)

where the gradient of pn+1 is evaluated using a second-order centered difference formula.

3.1. Advective terms

To evaluate the advective terms appearing in Eqs. (3.1) and (3.2), a second-order
explicit Godunov scheme is used. The same scheme is applied to both the velocity v and
reference map ξ. Throughout this section, we denote a to be a generic scalar component
of either of these two fields. We also refer the reader to recent work by Jain & Mani
(2017), which introduces an alternative numerical treatment for reference map advection.

3.1.1. Godunov upwinding

To begin, the gradients of the reference map and velocity at each cell center are
evaluated using the fourth-order monotonicity-limited scheme of Colella (1985) described
in Appendix A.1. Once the gradients are calculated at the center of each cell, edge-centered
velocities and reference maps are created at t+∆t/2 using Taylor expansions to each of
the four edges, which are indexed using half-integers as shown in Fig. 2(b). As an example,
an extrapolation of the reference map to the right edge of the cell (with superscript R) is
given by

ξ
R,n+1/2
i+1/2,j = ξni,j +

∆t

2
(∂tξ)ni,j +

hx
2

(∂xξ)ni,j

= ξi,j +
1

2

(
hx − uni,j∆t

)
ξnx,i,j −

∆t

2
(ṽξy)ni,j , (3.5)

where Eq. (2.4) has been substituted for the ξt derivative. The extrapolation of the
velocity to the right edge is

v
R,n+1/2
i+1/2,j = vni,j +

∆t

2
vnt,i,j +

hx
2
vnx,i,j

= vni,j +
1

2

(
hx − uni,j∆t

)
vnx,i,j −

∆t

2
(ṽvy)ni,j −

∆t

2
ani,j , (3.6)

where

ani,j =

[
−1

ρ
∇p+

1

ρ(φ)
∇ · τ

]
i,j

. (3.7)
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Equivalent procedures are used to compute extrapolations left, down, and up with
superscripts L, D, and U , respectively. To ensure tangential stability the terms with tildes
in Eqs. (3.5) & (3.6) are computed differently using the procedure in Appendix A.2. After
this procedure, each edge has velocities and reference maps from the two cells that adjoin
it, and a Godunov upwinding procedure is used to select which values to use. On the
vertical edge at (i+ 1/2, j),

a
n+1/2
i+1/2,j =


a
L,n+1/2
i+1/2,j if u

L,n+1/2
i+1/2,j > 0 and u

L,n+1/2
i+1/2,j + u

R,n+1/2
i+1/2,j > 0,

a
R,n+1/2
i+1/2,j if u

R,n+1/2
i+1/2,j < 0 and u

L,n+1/2
i+1/2,j + u

R,n+1/2
i+1/2,j < 0,

F(a
L,n+1/2
i+1/2,j , a

R,n+1/2
i+1/2,j ) otherwise.

(3.8)
where a is a generic component. Thus if the velocity field points rightward then the
components are taken from the left cell, and if the velocity field points leftward then
the components are taken from the right cell. The function F is used when the two
velocities are ambiguous. For the horizontal velocity F(β, γ) = 0 (Case A), and for all
other components F(β, γ) = (β + γ)/2 (Case B). On an edge where a velocity boundary
condition is applied (e.g. a no-slip condition) the corresponding edge velocity is set to
exactly match the condition. In this paper we restrict to cases of localized solid objects
that do not extend to the boundary and thus we do not apply special boundary condition
treatment for edge reference map fields.

3.1.2. Marker-and-cell (MAC) projection

The edge velocities calculated in Subsubsec. 3.1.1 may not be precisely divergence free.
We therefore apply an intermediate MAC projection step to ensure that the discrete
flux entering any grid cell is exactly zero. Let ve be the edge velocities, and let q be a
cell-centered scalar field. We aim to make

ve −
1

ρ
∇q (3.9)

divergence free. Taking the divergence of Eq. (3.9) yields

∇ ·
(

1

ρ
∇q
)

= ∇ · ve, (3.10)

which is discretized as

1

h2
x

(
qi+1,j − qi,j
ρi+1/2,j

+
qi,j − qi−1,j

ρi−1/2,j

)
+

1

h2
y

(
qi,j+1 − qi,j
ρi,j+1/2

+
qi,j − qi,j−1

ρi,j−1/2

)
=
ui+1/2,j − ui−1/2,j

hx
+
vi,j+1/2 − vi,j−1/2

hy
. (3.11)

Edge-based densities appearing in this equation are computed via linear interpolation
from the two adjacent grid cells. At boundaries where a velocity boundary condition
is applied, any derivative on the left hand side of Eq. (3.11) is omitted if it contains q
values that are out of range. If a pressure condition is applied, then a Dirichlet condition
of q = ∆t p/2 is applied, where the factor of two arises because the edge velocities are
time-centered.

Equation (3.11) results in a large linear system Aq = b where A is a sparse matrix,
b is the source term, and q is a vector of the components qi,j . This is solved with a
custom multigrid C++ library that employs multithreading using OpenMP. Since the
q field typically varies smoothly in time, the initial guess for the multigrid algorithm is
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computed as a linear interpolation from the previous two timesteps. Multigrid V-cycles
are performed until the mean squared element in the residual vector r = Aq − b reaches
a required tolerance TMAC. We assume that velocities and densities are within several
orders of magnitude of unity. Then an appropriate scale for an element of the residual
is rs = 4(h−2

x + h−2
y )∆t, and a tolerance of TMAC = 104rsεm is used, where εm is the

machine epsilon for double precision floating point arithmetic. Once the tolerance level is
reached, one further V-cycle is performed to further improve accuracy. Typically 5–15
V-cycles are required.

3.1.3. Evaluation of the derivative

Once the MAC projection has been performed the time-centered advective term for
the velocity and reference maps are evaluated as

[(v · ∇)a]
n+1/2
i,j =

u
n+1/2
i+1/2,j + u

n+1/2
i−1/2,j

2

a
n+1/2
i+1/2,j − a

n+1/2
i−1/2,j

hx

+
v
n+1/2
i,j+1/2 + v

n+1/2
i,j−1/2

2

a
n+1/2
i,j+1/2 − a

n+1/2
i,j−1/2

hy
(3.12)

where a is a generic field component.

3.2. Level set update and reference map extrapolation

The simulation makes use of a cell-centered level set function φi,j for tracking the
fluid–solid boundary. The level set routine is stored in a narrow band of points of width
2φW surrounding the interface (Sethian 1996; Rycroft & Gibou 2012) that is chosen to
be large enough to contain the entire blur zone and perform finite difference calculations
at all points in this region. The level set is used to extrapolate the reference map fields in
the narrow band, and to calculate the mixing of stress and density according to Eqs. (2.8)
& (2.10), respectively. Unlike typical applications of the level set method, the φ field is
not explicitly updated, but is instead continually given by the reference map field using
the procedure first described in Valkov et al. (2015).

3.2.1. Level set construction

For a given shape, define a continuous function of the reference map φ0(ξ) such that
φ0 < 0 for reference map values in the solid, φ0 > 0 for reference map values outside the
solid, and φ0 = 0 on the interface. During the timestep, the reference map field ξn+1 is
computed inside the solid using Eq. (3.1), from which the half-timestep reference map is
defined as ξn+1/2 = (ξn + ξn+1)/2. Both fields are extended into the narrow band fluid
region using the extrapolation methods described in Subsubsec. 3.2.2.

To construct the new level set function φn+1/2, an auxiliary function ψn+1/2 is first
computed in the narrow band such that ψn+1/2 = φ0(ξn+1/2). The zero contour of
ψn+1/2 will lie at the fluid–solid interface, but this function itself may not satisfy the
signed-distance property. To recover the signed-distance property, the level set φn+1/2

is constructed from ψn+1/2 using the reinitialization procedure described in Rycroft &
Gibou (2012). This procedure first considers points (i, j) that straddle the interface, so
that one of their orthogonal neighbors has a ψn+1/2 value of an opposite sign. Each
straddling point is considered. The bicubic interpolant ψ

n+1/2
c is computed, and the

modified Newton–Raphson approach of Chopp (2001, 2009) is used to find the shortest
distance vector ∆x from each straddling point to the interface ψ

n+1/2
c (x) = 0, after which

the level set function is initialized to ±|∆x|. In extremely rare cases the root-finding
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method can fail, in which case the routine falls back on the first-order method described
by Sethian (1996). For further details, see Rycroft & Gibou (2012).

With the straddling points of φn+1/2 now initialized, the remaining points are filled in
using the second-order fast marching method of Sethian (1996). In the fluid, the positive
φn+1/2 values are computed in order of increasing value, until reaching a cutoff φW that
defines the width of the narrow band. The same procedure is used to fill in the negative
φn+1/2 values in the solid, until reaching a cutoff −φW . After this procedure, the level
set function is now a signed-distance function inside the narrow band. Note that these
routines work reliably even if the function ψn+1/2 has a loss of regularity as some points:

since the entire φn+1/2 field is directly constructed, there is no possibility for instabilities
to grow over time, as can happen in PDE-based update procedures. Identical methods
are used to construct φn+1 from ξn+1.

3.2.2. Extrapolation

During the construction of the level set function, a list of non-straddling fluid points
sorted in order of increasing value, 0 < φ1 < φ2 < . . . is constructed, which is used for
extrapolating the reference map ξ from the solid into the fluid narrow band. Previous
approaches to do this have employed PDE-based methods by defining a normal vector
n = ∇φ and extrapolating outwards from the object in the direction of n (Aslam 2004;
Rycroft & Gibou 2012). While these methods are well-suited to mathematical analysis,
they require considerable bookkeeping for performing the finite difference calculations of
φ and ξ due to the fields only existing at certain grid locations. In previous work we have
found this to be a source of difficulty (Valkov et al. 2015).

In the current work, we make use of the following alternative extrapolation procedure.
Consider the points in increasing order of φ value. For a particular point (i, j) at physical
location xi,j :

(i) Set r = 3.
(ii) Use least-squares regression to fit a linear map ξlm(x) = Ax+ By + C using all

available reference map values at (i′, j′) such that |i− i′| 6 r, |j − j′| 6 r. Weight each
value in the regression according to φi,j − φi′,j′ .

(iii) If the linear map is degenerate then increment r and return to Step 2. Otherwise,
continue.

(iv) Set ξi,j = ξlm(xi,j).
This procedure is simpler than the PDE-based methods since it does not require extensive
bookkeeping. Since the method uses all available values in a neighborhood, this repeated
averaging results in substantial blurring if the extrapolation is continued far away from
the interface. However, here, only values near the interface are required, and the averaging
is beneficial, serving to damp out high-frequency modes that could be the source of
instability. In Step 3, degeneracies occur only when the available points are colinear, in
which case there is insufficient information to determine the linear map. In this case, Step
4 causes the algorithm to retry using more neighboring points.

3.3. Computation of stress

In order to evaluate the stress divergence terms that appear in Eq. (3.2) & (3.7), the
stresses are first computed on the edges of each grid cell. The stress term in Eq. (3.7) is
computed as

∇ · [τ (ξn)] =
[τx]ni+1/2,j + [τx]ni−1/2,j

hx
+

[τy]ni,j+1/2 − [τy]ni,j−1/2

hy
(3.13)
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where τx = (τxx, τxy) and τy = (τxy, τyy) are the components acting on the vertical and
horizontal edges, respectively.

3.3.1. Solid stress

To begin, the components of the Jacobian are computed using the second-order finite
difference formulae(
∂ξ

∂x

)
i−1/2,j

=
ξi,j − ξi−1,j

hx
,

(
∂ξ

∂y

)
i−1/2,j

=
ξi,j+1 + ξi−1,j+1 − ξi,j−1 − ξi−1,j−1

4hy
(3.14)

after which the deformation gradient is evaluated as

Fi−1/2,j =

((
∂ξ

∂x

)
i−1/2,j

)−1

. (3.15)

From here, any constitutive law τs = f(F) could be used to evaluate the deviatoric stress,
τs. In the current work, we employ the plane-strain incompressible neo-Hookean law,

τs = f(F) = G
(
FFT − 1

31(trFFT + 1)
)
, (3.16)

where G is the small-strain shear modulus.

3.3.2. Fluid stress

To evaluate the fluid stress, the gradients of the velocity on vertical edges are computed
as (

∂v

∂x

)
i−1/2,j

=
vi,j − vi−1,j

hx
, (3.17)(

∂v

∂y

)
i−1/2,j

=
vi,j+1 + vi−1,j+1 − vi,j−1 − vi−1,j−1

4hy
. (3.18)

Equivalent stencils are used to compute velocity gradients on horizontal edges, after which
the fluid stress is given by

τf = µ(∇v + (∇v)T) (3.19)

where µ is the viscosity. Equation (3.19) is our standard approach for computing the fluid
stress. However, we have also investigated a simplified calculation. Since ∇ · v = 0, it
follows that in the bulk of the fluid, the second term in Eq. (3.19) has zero contribution
to ∇ · τf . Hence an alternative formula is

τ
(simp)
f = µ∇v. (3.20)

This formula only requires evaluating the simpler stencil in Eq. (3.17). However, Eq. (3.20)
is not strictly valid in the blur zone since taking the divergence Eq. (2.8) results in a
non-zero contribution from the second term of Eq. (3.20).

Once all edge stresses are computed, the divergence is computed using

[∇ · τ ]i,j =
τi+1/2,j − τi−1/2,j

hx
+

τi,j+1/2 − τi,j−1/2

hy
. (3.21)

3.4. Finite-element projection

To solve the Poisson problem in Eq. (3.3), we make use of a finite-element formulation.
The pressure is comprised of piecewise bilinear elements, and the velocity and density are
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piecewise constant on the grid cells. For a given pressure element ψ the weak formulation
of Eq. (3.3) is∫

Ω

v∗ · ∇ψ dx dy −
∫
Ω

∆t

ρ(φn+1/2)
∇pn+1 · ∇ψ dx dy =

∫
Γ1

ψvBC · n dS (3.22)

where Γ1 is the section of the boundary where inflow and outflow conditions are prescribed.
Consider a particular bilinear element function ψ located at a pressure point pi,j in the
bulk of the domain. The first term of Eq. (3.22) is

hx(u∗i+1,j+1 + u∗i+1,j − u∗i,j+1 − u∗i,j) + hy(v∗i+1,j+1 − v∗i+1,j + v∗i,j+1 − v∗i,j) (3.23)

and the second term is

λapi,j + λb(pi−1,j + pi+1,j) + λc(pi,j−1 + pi,j+1) + λd
∑
k=±1
l=±1

pi+k,j+l. (3.24)

where

λa =
4(h2

x + h2
y)

3hxhy
, λb =

−2h2
y + h2

x

3hxhy
, λc =

−2h2
x + h2

y

3hxhy
, λd =

−h2
x − h2

y

6hxhy
. (3.25)

This linear system is solved using the multithreaded custom C++ geometric multigrid
library mentioned in Subsubsec. 3.1.2 using an error tolerance of TFEM = λa104εm.

3.5. Parameter choices and stability

Our test cases involve four physical parameters: solid shear modulus G, solid density ρs,
fluid viscosity µ, and fluid density ρf . In the solid, the shear wave speed is cs =

√
G/ρs.

The CFL condition requires that the simulation timestep be less than or equal to

∆tI = cs min{hx, hy} =

√
G

ρs
min{hx, hy}. (3.26)

In addition, performing a von Neumann stability analysis shows that the timestep must
be less than or equal to

∆tII =
ρf

2µ(h−2
x + h−2

y )
(3.27)

in order to resolve the viscous fluid stress. Inside the solid, we find that simulating stress
using only Eq. (3.16) results in an instability—this should be expected since we are
effectively solving a hyperbolic system using centered finite differences. To rectify this, we
incorporate an extra small artificial viscous stress inside the solid. Based on dimensional
considerations, the artificial viscosity should satisfy

µe = κeρscs max{hx, hy} (3.28)

where κe is a dimensionless constant. In addition, we also find that artificial viscosity is
useful in the fluid–solid transition region. We therefore define the extra viscous stress as

τe(x) = µe [(1−H(φ(x))) + q(1− wTH ′(φ(x)))]∇v. (3.29)

where q is a dimensionless constant. Based on a variety of tests, we use q = 1 and κe = 0.4
throughout the paper. Since the purpose of this extra stress is to stabilize the numerical
system, we employ the simpler form of fluid stress given in Eq. 3.20. Since µe scales
linearly with grid spacing, and the simpler fluid stress only introduces a discrepancy in
the blur zone, any errors that are introduced will reduce to zero as the grid is refined.
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The corresponding timestep restriction is

∆tIII =
ρs

2µe(1 + q)(h−2
x + h−2

y )
. (3.30)

With these definitions in place, the simulation timestep ∆t is chosen to be smaller than
the minimum of the three conditions in Eqs. (3.26), (3.27), & (3.30), so that

∆t = min{αpad∆tI, αpad∆tII, βpad∆tIII}. (3.31)

Here, αpad and βpad are padding factors that are smaller than one. For this paper we use
αpad = 0.4 and βpad = 0.8, so that the restrictions arising from the two physical stresses
(I & II) are applied more stringently than the one for the artificial stress (III). Note that
in the limit as hx, hy → 0, the artificial viscosity vanishes.

4. Results

Since our purpose is to demonstrate the numerical method as opposed to apply it to a
specific problem, we make use of non-dimensionalized quantities for all of the results that
we present. To connect the results to reality, the simulation parameters and output can
be multiplied by appropriate length, time, and mass scales. Our results also focus on the
case of equal grid spacing, hx = hy = h.

4.1. A spinning flexible rotor

The first example demonstrates our method’s ability to handle sharp solid corners
within a non-trivial FSI setting. It consists of a spinning flexible regular seven-pointed
star that is centered on the origin and has a vertex at (0.62 cos 2πk

7 , sin 2πk
7 ) for k ∈ Z,

with density ρs = 3. The resolution is 800× 800, the simulation domain is [−1, 1)2 and
periodic boundary conditions are used. The fluid and rotor are initially stationary. The
region r = |x| < 0.16 is used as a pivot. To excite the fluid, the pivot is rotated with an
oscillatory motion with angle θ(t) = π(1− cos t). This is done by applying an external
tether force to the pivot region of

fteth(x) = KtethHε(r − rteth)(x−Rθ(t)ξ(x)) (4.1)

where rteth = 0.16 and Rθ(t) is a rotation matrix with angle θ(t). The spring constant is
set to Kteth = 10−2ρs∆t

2, which ensures that the natural frequency of the tether satisfies
the timestep restriction imposed by the method.

The simulation was run from t = 0 to t = 4π using sixteen threads on a Linux server
with two Intel Xeon E5-2683 2.10 GHz processors. For the given parameters, the timestep
of ∆t = 1.105× 10−4 was determined by the extra viscous stress in the solid. Simulation
output was saved at regular intervals of π/150. The total wall clock time for the simulation
was 10.48 h. A total of 114,000 timesteps were performed, with each taking 0.33 s to
compute. A substantial fraction of the computation time is spent performing the two
linear solves. The MAC projections take on average 14.78 V-cycles and require 0.08 s per
timestep. The finite element projections take on average 13.48 V-cycles and require 0.11 s
per timestep.

Snapshots of the simulation are shown in Fig. 3. As the star begins to rotate, each point
deforms clockwise, and vortices are shed from the points, which are visible at t = 4π/15.
By t = π, the rotor is stationary, and the points are now deformed anti-clockwise due
to the angular deceleration. As time progresses, the disturbance to the fluid becomes
larger. By t = 2π, the rotational symmetry of the fluid flow is lost, due to interactions
across the periodic boundaries, which break the seven-fold symmetry. By t = 4π, after
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two complete cycles of the oscillatory motion, there are vortices present throughout the
fluid. Supplemental Movie 1 shows the complete simulation. To visualize the fluid motion,
the movie also shows a number of tracers with trajectories x(t). The tracers are initialized
at random positions in the fluid and are updated using the ordinary differential equation

dx

dt
= vbic(x(t)), (4.2)

where vbic is the bicubic interpolation of the velocity field, and the time integration is
performed using the second-order improved Euler method (Süli & Mayers 2003).

4.2. Tests of convergence and accuracy

To study the accuracy of the numerical method, we performed a convergence test in
the periodic domain [−1, 1)2 using an initial incompressible velocity field of

v(x, 0) =

5∑
k=0

(−1)kvvor

(
x− −5 + 2k

6
, y − −5 + 2k

6
, 2(k + 1)

)
(4.3)

where

vvor(x, λ) = (− sinπy, cosπx)× e−λ(2−cosπx−cosπy). (4.4)

This velocity field is designed to have features with a variety of length scales. We simulated
up to t = 0.5, used a shear modulus of G = 1, a fluid density of ρf = 1, and employed the
standard choices for extra viscosity and timestep selection. Using the same initial velocity
field, we ran tests using (i) fluid only, (ii) solid only, (iii) a circle of radius 0.6 centered on
(−0.1, 0), and (iv) a square of side length 1.2 centered on (−0.1, 0). We also examined
the effect of viscosity, and a fluid/solid density ratio, and the scaling of the extra viscous
term. The configurations of eight different tests are shown in Table 1.

Due to the complexity of the governing equations, it is near-impossible to write down an
analytical solution to compare against for any test configuration. We therefore performed
reference simulations using a 3960×3960 grid. For each test, we then ran a suite of coarser
simulations using n× n grids where n ∈ {1980, 1320, 990, 792, 660, 495, 440, 396, 360} to
compare against the reference results. Since each n divides evenly into 3960, the grid
squares of these coarse simulations align with the reference simulations.

We calculated normalized error measures with respect to Lq norms

Epq =

(
1

A

∫
Ω

|pref(x)− pcoa(x)|q dx
)1/q

, Ev
q =

(
1

A

∫
Ω

||vref(x)− vcoa(x)||q2 dx
)1/q

,

(4.5)
where A = 4 is the area of the domain, and the ‘ref’ and ‘coa’ subscripts refer to the
reference and coarse simulation fields, respectively. The integral is calculated using a direct
sum over the field values in the coarser simulation grid. The pressure field is cell-cornered,
and hence each coarse gridpoint exactly coincides with a reference gridpoint. The velocity
field is cell-centered, so some coarse gridpoints may not align with a reference gridpoint,
in which case the reference value is computed using bilinear interpolation. The errors
associated with this interpolation are O(h2) and are small compared to the errors to be
measured.

Figure 4 shows convergence plots for the velocity in the L2, L1, and L∞ norms, plus
the pressure in the L2 norm; our discussion focuses on velocity, since the pressure can
be viewed as a Lagrange multiplier enforcing the incompressibility constraint. For each
set of data, Table 1 lists the corresponding rate of convergence, calculated using linear
regression for the data from the three finest grids, n ∈ {1980, 1320, 990}. The fluid-only
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Figure 3. Snapshots of vorticity ω in a simulation of flexible seven-pointed rotor being spun
with an oscillatory motion a fluid. The thick black line marks the fluid–structure interface. The
thin dashed lines are contours of the components of the reference map and indicate how the
rotor has deformed.

tests, A & B, are the most accurate, exhibiting clear second-order convergence across all
metrics. Results for the solid-only test C are less accurate with error measures on the
scale of 10−3. However, this test is substantially more challenging since the limit involves
tracking elastic waves with zero dissipation. The velocity fields converge at order 1.6 in
the L2, L1, and L∞ norms.
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Test State µ ρs CEV v, L2 v, L1 v, L∞ p, L2

A Fluid only 10−3 – No 2.28 2.29 2.28 2.32
B Fluid only 4× 10−3 – No 2.32 2.32 2.32 2.33
C Solid only 10−3 1 No 1.57 1.57 1.56 1.58
C’ Solid only 10−3 1 Yes 2.35 2.40 1.13 2.30
D Square 10−3 1 No 1.81 1.69 1.11 1.26
E Circle 10−3 3 No 1.83 1.79 1.89 1.19
F Circle 10−3 1 No 1.80 1.80 1.97 1.21
F’ Circle 10−3 1 Yes 1.61 1.63 1.53 1.21

Table 1. Details of the eight convergence tests that were performed with model problem described
in the text. Tests C’ and F’ were performed using constant extra viscosity (CEV) whereby the
extra viscosity was held constant at the standard value for the lowest resolution grid, 330× 330,
as opposed to scaling linearly with the grid size. The last four columns give the exponents of
convergence for velocity v and pressure p under different Lq norms, based on a linear fit of the
three finest-resolution data points in Fig. 4.

Test C uses the usual procedure (Subsec. 3.5) for choosing extra viscosity, whereby it
scales linearly with the grid size. This procedure is consistent with standard numerical
schemes; for example, in the second-order Lax–Wendroff method (Lax & Wendroff 1960;
LeVeque 2002) the stabilizing diffusive term scales linearly with the grid spacing. However,
we also considered an alternative test C’ whereby the extra viscosity was chosen based on
the 360× 360 grid and then held constant for the higher-resolution tests. This resulted
in solutions that were almost as accurate as the fluid-only tests, with clear second-order
convergence in the L2 and L1 norms. However, the convergence rate in the L∞ norm is
reduced. Inspection of the results shows that that the maximum deviations are localized
to a one-dimensional set of points where the velocity components are switching sign, thus
resulting in a discrete switch in the timestep update and a lower convergence rate when
measured in the L∞ norm.

The remaining tests, D, E, F, and F’ all involve fluid–structure interaction. For these
tests, the rate of convergence is approximately 1.8 in the L1 and L2 norms. Inspection of
the results shows that the largest deviations occur at the fluid–structure interface. Since
the blur zone is defined in terms of grid points, its width shrinks at higher resolution. This
involves altering the underlying equations over a region of size O(h), this results in a lower
rate of convergence. However, since the fluid and solid discretizations are independently
second order, is likely that an alternative boundary treatment—perhaps using a sharp
interface approach (Gibou & Fedkiw 2005)—could yield improved results. Test E shows
that a fluid–solid density ratio has little effect on the convergence rate. Test D shows
that the square geometry does not affect the convergence rate in the L2 and L1 norms,
but does result in first-order convergence in the L∞ norm due to localized effects at the
corners.

4.3. Flag flapping

Besides numerical convergence, as a test of the robustness of our approach and its
accuracy across Reynolds numbers, we consider the example of flag flapping, a problem that
has been studied extensively from experimental, numerical, and analytical perspectives
(Zhang et al. 2000; Watanabe et al. 2002; Zhu & Peskin 2002; Connell & Yue 2007).
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Figure 4. Plots showing the accuracy of the solutions for different grid sizes h for the eight
convergence tests given in Table 1. Accuracy is computed with respect to reference solutions
on a 3960× 3960 grid. Four accuracy measures are shown: the velocity in the L2, L1, and L∞
norms, and the pressure in the L2 norm.

Following the problem description and notation of Connell & Yue (2007),† we introduce a
thin filament of length L, thickness h� L, density ρs, and Young’s Modulus E, clamped
at its left endpoint and submerged in fluid of kinematic viscosity ν and density ρf , flowing
rightward with speed V at infinity. Three dimensionless numbers can be introduced to
study the dynamical behavior of the filament: the mass ratio µ = ρsh/ρfL, Reynolds
number Re = V L/ν, and nondimensional bending rigidity KB = EI/(ρfV

2L3). Unlike
the previous numerical approaches that consider the filament to be a one-dimensional
beam, our method uses a true continuum solid formulation so we can consider cases

† For consistency with Connell & Yue (2007) we fully adhere to their notation. However we
draw attention to the reader that two symbols used in this section, µ (mass ratio) and h (filament
thickness), have different meanings than µ (dynamic viscosity) and h (grid spacing) that are
used in all other sections.
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Figure 5. Plot showing the steady-state oscillation amplitude A of a thin flag with aspect ratio
20 and bending rigidity KB = 0.001, as a function of the Reynolds number Re and mass ratio µ.
The colors shown are based on a bilinear interpolation of a two-dimensional grid of simulations.
The axis ticks show the sampled values of Re and µ, with more simulations being performed in
parameter ranges of interest. The thin dotted lines are contours at spacings of (n/50)2 for n ∈ N.
The thick solid line is the stable-to-flapping transition formula (4.6) of Connell & Yue (2007).

beyond the thin filament limit, such as a thick flag for which the parameter h does not
necessarily satisfy h� L.

We first seek to determine if our method correctly captures the transition of the filament
dynamics from stable to flapping in the limit of a thin filament. We consider a filament
with L = 1, h = 0.05, KB = 0.001, and ρf = 1. To set KB, we use the fact that in
the linear elastic regime E = 3G, and the moment of inertia is I = h3/12. We vary
ν and ρs in order to test a range of µ and Re. The simulation domain is set to be a
[−1, 5] × [−1, 1) rectangle with assigned rightward velocity of speed V = 1 on the left
boundary, vanishing pressure on the right boundary, and periodic boundary conditions on
the top and bottom boundaries. We use a 1824× 608 grid to represent the domain. The
filament is modeled as rectangle 0 < x < 1,−h/2 < y < h/2 with semicircular end caps.
The filament is clamped at (0, 0) using the tethering methodology described in Sec. 4.1,
with θ(t) = 0 and rteth = h/4 in this case. We track the filament tip by introducing a
tracer x(t) that starts from (1, 0) and is integrated according to Eq. (4.2). To prevent
integration errors building up over time, the position of the tracer is periodically reset
to satisfy ξbic(x(t)) = (1, 0) using a Newton–Raphson root-finding method, where ξbic is
the bicubic interpolant of the reference map field. The results of this section are based
upon 556 simulations with different parameters that were run on a variety of Linux and
Apple servers at Harvard University and the Lawrence Berkeley National Laboratory.
Depending on parameters and computer speed, each simulation took been approximately
3–12 days using 4–6 threads. Simulations with smaller Re generally take longer, since
resolving the fluid viscosity requires a smaller timestep.

To systematically evaluate the behavior of the filament, we take the Fourier transform
of the perpendicular deflection of the filament tip over t ∈ [120, 160], and output the
maximum Fourier amplitude, A. If A = 0 the filament is in the stable (no-flapping)
regime and otherwise the filament is flapping, with A serving as a scalar measure of the
amplitude of the dominant flapping mode. Since our initial conditions are symmetric,
the breakage of symmetry occurs due to numerical noise introduced by the multigrid
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solver, on the scale of the parameters TMAC and TFEM introduced previously. We also
investigated explicitly breaking symmetry by applying an initial perturbation to the
perpendicular velocity in the filament tip, but the calculations of A were insensitive to
this. Since the typical filament oscillation period is approximately 1.7, the simulations
correspond to almost one hundred complete oscillations, which is sufficient time for the
oscillation amplitude to reach steady state. Connell & Yue (2007) proposed an analytical
formula for the stable-to-flapping transition line:

µ =
1.3Re−1/2 +KB4π2

1− 0.65Re−1/22π − 0.5KB8π3
. (4.6)

Connell & Yue (2007) validated this equation numerically using a direct fluid–filament
coupling procedure, a procedure that itself was validated against experiments (Zhang
et al. 2000; Watanabe et al. 2002). In Fig 5 we show the behavior of A from our numerical
simulations together with the analytical phase boundary above. For Reynolds numbers
below 1000, there is very good agreement between the locus where A goes non-zero and
the analytical curve. When Re > 1000 the transition predicted by the simulation happens
at a slightly higher µ than predicted by Eq. (4.6). The most likely explanation for this is
that numerical diffusion from the fluid advection effectively increases the fluid viscosity.
However, other factors such as the finite domain size, the extensibility of the filament,
and the non-zero h may also play a role.

The behavioral switch from stable to flapping is also quite evident in the long-time flow
fields, shown in Fig. 6. Small values of µ and KB result in stable behavior, characterized
by a straight filament and fluid flow that is symmetric about the filament axis (Fig. 6(a)).
Upon crossing the transition, periodic undulatory filament motions develop with a fluid
vortex street shed from the filament (Fig. 6(b)). Increasing Re and µ even further reveals
a chaotic filamentary motion, which was also observed in Connell & Yue (2007) (Fig. 6(c),
Supplemental Movie 2). The chaotic regime coincides with a drop in A shown in the top
right of Fig. 5 because the tip deflection no longer has a clear single dominant oscillatory
mode. Because the filament is modeled as a thin continuum body of isotropic elastic
media as opposed to an inextensible beam, we observe filament extension in the initial
moments of the simulation as the imposed fluid flow applies a net rightward traction.

We explore the importance of aspect ratio by introducing R = h/L as an independent
dimensionless group. We observe that as one departs from the R� 1 regime, adherence
to (4.6) is diminished. In Fig. 7 we show results for R = 10 and 5. In general, thick flags
have a smaller stable domain than would be predicted by the thin-filament limit. We can
explain this effect at least in part with bluff-body dynamics. When R is non-negligible, the
thickness of the flag allows the solid geometry to act as a bluff body over which the fluid
is driven to flow. Flow over a fixed cylinder of diameter D undergoes a transition from a
laminar flow to a periodic vortex street as DV/ν grows beyond ∼ 50 (Lienhard 1966). In
our case, the flag thickness acts like D, and once a vortex street is induced off the bluff
back end of the flag, the oscillatory force it induces necessitates flapping. We reiterate
that this physical source of oscillatory forcing emerges only when flags are thick enough
to act as a bluff body. Consistent with this expectation, when V h/ν = Re×R > 50 we
see only flapping states for any choice of µ or Re. Figures 8(a) and 8(b) show simulation
snapshots of bulky flags with low and high mass ratios, respectively. Simulations of these
two cases are shown in Supplemental Movie 3 and Supplemental Movie 4, respectively.
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Figure 6. Simulations of a thin flexible flag anchored at (0, 0) in a fluid with mean
velocity v = (0, 1), at t = 160. The flag has an aspect ratio of 20. Three simulations
with different parameters are shown: (a) stable with (µ,KB ,Re) = (0.04, 0.001, 400), (b)
limit-cycle flapping with (µ,KB ,Re) = (0.16, 0.001, 1400), and (c) chaotic flapping with
(µ,KB ,Re) = (0.32, 0.001, 3000). The thick black lines mark the fluid–structure interfaces.
The thin dashed lines are contours of the components of the reference map and indicate how the
flags deform. The colors show vorticity, using the same scale as Fig. 3.

4.4. Solid actuation

The method also admits a simple approach for simulating actuated solids. This feature
allows one to assign time-dependent internal deformations to subregions of a solid, which
is useful for modeling active media such as swimmers. Unlike the tethering approach used
in Section 4.1, which assigns the full motion of a region by adding an external body force
in that region, here what is done is to add extra internal stresses to achieve a desired
shape change in a subdomain, without adding net external force. To actuate a particular
(Lagrangian) solid region, Ba, one writes the actuated deformation gradient Fa(X ∈ Ba, t),
which can then be equivalently expressed in Eulerian frame as Fa(X = ξa(x ∈ ba, t), t) for
ba the image of Ba in the Eulerian frame. At any point x ∈ ba, the constitutive relation
is adjusted by replacing all references to F(x, t) with F(x, t)Fa(x, t)

−1. In an isotropic
hyperelastic system, for example, this effectively distorts the region’s rest configuration
to the distortional state given by Fa. If at any moment in time a configuration of
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Figure 7. Plot showing the steady-state oscillation amplitude A as a function of the Reynolds
number Re and mass ratio µ, for (a) flags with KB = 0.002 and aspect ratio 10, and (b) flags
with KB = 0.004 and aspect ratio 5. The colors shown are based on a bilinear interpolation
of a two-dimensional grid of simulations, using the same scale as Fig. 5. The axis ticks show
the sampled values of Re and µ, with more simulations being performed in parameter ranges of
interest. The thin dotted lines are contour at spacings of (n/50)2 for n ∈ N. The thick solid line
in (a) is the stable-to-flapping transition formula (4.6) for thin flags of Connell & Yue (2007).
For (b), the formula is out of range and the entire parameter space is in the stable region.

the actuated domain differs from the intended actuated configuration, a stress given by
f(F(x, t)Fa(x, t)−1) emerges that moves the system toward the actuated deformation. One
could in principle assign a stiffer response in the actuated domain if a faster conformation
is desired, but we have found it to be sufficient to use the same underlying hyperelastic
constitutive model in the actuated and passive subregions of the solid. This approach is
similar to the multiplicative Kroner–Lee decomposition used in plasticity (Kröner 1960;
Lee 1969), where a tensorial state variable Fp is introduced and the elastic deformation
gradient is given by FF−1

p . But unlike Fp, which evolves under a constitutive flow rule,
here we assign Fa(x, t) directly.

As an example, we consider a flapping swimmer (Fig. 9, Supplemental Movie 5). The
swimmer is a rectangle of width W = 0.5 and height H = 0.052 with circular end caps,
initially centered on (0,−0.8), which we choose to be the location of the origin. We choose
the actuated domain, Ba, to be a centered subregion within the swimmer, comprising a
rectangle of width 0.28 and height 0.042 with circular end caps. The following actuation
is applied:

Fa(X, t) =

(
e−α(X,t) 0

0 eα(X,t)

)
(4.7)

where

α(X, t) = −λXyHε(d) sin8 ωt = −λξy(x, t)Hε(d) sin8 ωt (4.8)

and d is the signed distance from the Eulerian boundary of ba. By blurring the boundary
of the actuated domain under Hε(d), it should be noted material positioned up to ε away
from the true boundary of ba will receive some actuation stress. The parameters used
in the simulation are ω = 2π/8, ε = 2.5hx, and λ = log(2.2/0.021). Thus the maximum
stretch on the top boundary is 2.2. The simulation uses 1200× 1200 grid in [−1.5, 1.5)2

with periodic boundary conditions.
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Figure 8. Simulations of a thick flexible flag anchored at (0, 0) in a fluid with mean velocity
v = (0, 1), at t = 160. The flag has an aspect ratio of 5. Two simulations with different parameters
are shown: (a) vortex-shedding with (µ,KB ,Re) = (0.04, 0.004, 750) and (b) limit-cycle flapping
with (µ,KB ,Re) = (0.28, 0.004, 750). The thick black lines mark the fluid–structure interfaces.
The thin dashed lines are contours of the components of the reference map and indicate how the
flags deform. The colors show vorticity, using the same scale as Fig. 3.

By actuating the flapper in this fashion, the Lagrangian domain Ba, which comprises
roughly half the area of the body, is forced to bend periodically in time. The unactuated
portion of the swimmer remains passive and flaps as an elastic body in response to
be being conjoined to the actuated region. The swimming flapper achieves a Reynolds
numbers of Re = V max

solid W/ν ∼ 200. Its ability to translate its center of mass by swimming
evidences that this example is not near zero Reynolds number; vortex shedding can be
seen for each flap.

4.5. Multi-body contact

Since the reference map technique does not employ moving meshes, it is particularly
well-suited to problems involving many objects coming into contact. This capability
would be useful for a variety of problems, such as studying colloidal mixtures with soft,
deformable particles.

To generalize the method to N objects, we introduce independent reference maps
ξ(1), ξ(2), . . . , ξ(N) with the “(j)” suffix being used to denote any quantity associated with
object j. For the purposes of exposition, we assume each field is defined as a separate
globally defined function that is extrapolated separately, although in reality each reference
map only need be defined in a local neighborhood of each object. Each reference map

is updated using Eq. (3.1). For a given ξ(j), the solid stress τ
(j)
s is computed using the

methods of Subsec. 3.3.
When two or more objects come together, their blur zones may overlap, and thus it
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Figure 9. Six successive snapshots of the flapping swimmer (Re ≈ 200), with colors showing
vorticity ω. A subregion within the solid body is actuated to bend periodically and the remaining
solid is passive. The motion induces the flapping body to swim. The thick black lines mark the
fluid–structure interface. The thin dashed lines are contours of the components of the reference
map and indicate how the swimmer deform.

is necessary to generalize the definition of global stress that was given in Eq. (2.8). At
a given point, define λ(j) = 1 −Hε(φ

(j)) to be the solid fraction of object j. Then the
stress is given by

τ =


τf +

∑
i λ

(i)(τ
(i)
s − τf ) if

∑
i λ

(i) 6 1,∑
i λ

(i)τ
(i)
s∑

i λ
(i)

if
∑
i λ

(i) > 1.
(4.9)

If only one object is present, this definition exactly matches Eq. (2.8). If several objects
are present, then they each contribute to the global stress, with the fluid stress filling any
unassigned fraction. In rare situations (e.g. three objects meeting at a point) the solid
fractions may total more than one. In this case, τ is taken as a weighted average of the
solid stresses, and the fluid stress does not contribute at all. The global density field is
defined using the same mixing procedure as in Eq. (4.9).
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In our tests, we have found that independently updating N reference maps and
computing a global stress according to Eq. (4.9) is sufficient to perform multi-body
simulations. However, since the simulation employs a single globally-defined velocity field,
it becomes problematic when shapes become very close together, since it is hard for them
to separate as they move according to the same underlying velocity. Similar behavior
has been noted in the literature on the immersed boundary method (Lim & Peskin 2012;
Krishnan et al. 2017), which also employs a single global velocity field for the movement
of structures. To rectify this, we introduce a small contact stress (in addition to the stress
of Eq. (4.9)) when the blur zones of two objects overlap, which penalizes the interfaces
from becoming too close together. We first define a contact force function of

f(α) =

{
1
2 (1− α

ε ) if α < ε,

0 if α > ε.
(4.10)

Now, consider the stress calculation at an edge that is within the blur zones of two or
more solids. Consider a pair of the solids (i) and (j). Using finite differences, compute a
unit normal vector

n =
∇(φ(i) − φ(j))

||∇(φ(i) − φ(j))||2
(4.11)

where || · ||2 denotes the Euclidean norm. The contact stress is defined as

τcol = −ηmin{f(φ(i), f(φ(j))}(G(i) +G(j))(n⊗ n− 1), (4.12)

where η is a dimensionless constant, the G(i) are object-dependent shear moduli, and the
1 term is included to make the stress trace-free. In the rare case where the edge is within
three or more solid blur zones, the calculation is repeated τcol for each pair, and each
contribution is added to the global stress.

These collision stress terms induce forces that push apart objects when they become
close. Formulating the collision interaction as an additional stress is advantageous since
it immediately ensures that total momentum of the entire simulation is numerically
conserved. The method is not sensitive to the exact functional form of f in Eq. (4.10).
An alternative formulation is to directly use the transition function, f(α) = 1−Hε(α),
but we find that the faster growth of the function in Eq. (4.10) when α becomes smaller
than ε yields smoother results in our test cases.

Figure 10 shows snapshots from a multi-body simulation in a non-periodic box [−1, 1]2

using a resolution of 1000× 1000.Forty squares with shear modulus G = 2 and density
ρs = 3 are inserted at random positions in the box, with side lengths chosen uniformly
over the range [0.1, 0.4]. Any squares that lie within a distance of 0.1 of another square
are rejected, and are chosen again. At t = 0, each square is set to initially spin with
angular velocity chosen uniformly from the range [−5, 5]. A gravitational acceleration of
0.5 in the negative y direction is applied, so that the squares sediment at the bottom of
the box. The full simulation is shown in Supplemental Movie 6.

5. Conclusion

Herein, we have presented a robustly accurate, yet straightforward to implement,
reference map technique, which has allowed us to study a variety of FSI problems using a
single background grid. It augments the multi-phase fluid framework of Yu et al. (2003)
by allowing general finite-deformation solid models to be coupled directly to a fluid. In
doing so, it maintains a number of the advantages of working on a fixed Eulerian grid that
are enjoyed in fluid simulation methods. The practicality and usefulness of this approach



24 C. H. Rycroft, C.-H. Wu, Y. Yu, and K. Kamrin

−0.5

0

0.5

1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 −0.5 0 0.5 1

y
t = 0 t = 1

y

t = 3 t = 5

y

x

t = 8

x

t = 20

−12

−6

0

6

12

ω

Figure 10. Snapshots of vorticity ω in a simulation of forty squares sedimenting in a fluid-filled
box. The thick black lines mark the fluid–structure interfaces. The thin dashed lines are contours
of the components of the reference map defined in each object and indicate how the squares
deform.

is demonstrated in various tests. It is shown to capture the flapping phase diagram for
thin flags and the transition from thin- to thick-flag behaviors, which highlights the role
of new mechanisms to initiate flapping. Additional physics, such as actuation of solids, is
straightforward to implement with a user-described actuated deformation gradient. This
capability is used to model a swimming object with realistic internal driving. The ability
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to model objects with sharp corners is typically a challenge in Eulerian approaches, but
here it can be done by exploiting the reference map field near the edge of the object. We
also present an improved contact algorithm, which we use to simulate situations with
many soft interacting objects submerged in a fluid.

There are a number of future directions. One of clearest applications is in biomechanics,
with the simulation of systems of many interacting, actuated cells. We also foresee
modeling solids beyond hyperelasticity, such as plasticity, thermal material models, and
growth. These modifications can be done through the inclusion of new state variables
in the solid and/or the addition of a heat diffusion equation; there are clear advantages
to implementing thermal diffusion in the Eulerian frame. Beyond extensions to three
dimensions, there are opportunities to use the approach for dimensionally-reduced models
such as membranes and shells by restricting the reference map to a lower dimensional set.
Regarding contact modeling, the reference map field could be used to instruct formulations
for more advanced contact problems, including friction and self-contact. Lastly, it is a
major goal to extend the approach to allow for non-persistent material boundary sets, as
occurs in fracture. It may be possible to represent crack surfaces through intersecting
level set fields and to couple this capability with physical traction–separation relations to
generate new surface material as cracks advance.

Appendix A. Additional numerical details

A.1. Monotonicity-limited derivative

The gradients of the reference map and velocity appearing in Eq. 3.5 are computed
using the fourth-order monotonicity-limited scheme of Colella (1985). For the derivative
of a generic component ai,j the x direction, finite differences

Dc(a)i,j = (ai+1,j−ai−1,j)/2, D+(a)i,j = ai+1,j−ai,j , D−(a)i,j = ai,j−ai−1,j (A 1)

are introduced, from which the limiting slope is defined as

δlim(a)i,j =

{
2×min(|D−(a)i,j |, |D+(a)i,j |) if D−(a)i,jD

+(a)i,j > 0,

0 otherwise.
(A 2)

The second-order limited slope is then

δf (a)i,j = min(|Dc(a)i,j |, δlim(a)i,j)× sign(Dc(a)i,j) (A 3)

from which the fourth-order monotonicity limited derivative is defined as

δ4(a)i,j = min

(
|8Dc(a)i,j − δf (a)i+1,j − δf (a)i−1,j |

3
, δlim(f)i,j

)
× sign(Dc(f)i,j)

hx
.

(A 4)
The y-derivative is evaluated similarly.

A.2. Tangential derivatives

To ensure stability, the tangential derivatives appearing in Eqs. (3.5) & (3.6) are
computed using

(ṽξy)ni,j =
ṽadv
i,j−1/2 + ṽadv

i,j+1/2

2

ξ̃i,j+1/2 − ξ̃i,j−1/2

hy
, (A 5)

(ṽvy)ni,j =
ṽadv
i,j−1/2 + ṽadv

i,j+1/2

2

ṽi,j+1/2 − ṽi,j−1/2

hy
, (A 6)
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where the terms with tildes are computed using a preliminary Godunov upwinding
step where stress, pressure, and tangential derivatives are neglected (Yu et al. 2003).
Extrapolations to the right edge are given by

ξ̃
R,n+1/2
i+1/2,j = ξi,j +

1

2

(
hx − uni,j∆t

)
ξnx,i,j , (A 7)

ṽ
R,n+1/2
i+1/2,j = vni,j +

1

2

(
hx − uni,j∆t

)
vnx,i,j , (A 8)

and with extrapolations to the other edges given similarly. On each edge, with the selection
procedure of Eq. (3.8) is used, with Case A used for ṽadv = (ũadv, ṽadv) and Case B used
for ξ̃ and ṽ.
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