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Optimal Bidding, Scheduling, and Deployment of
Battery Systems in California Day-Ahead Energy Market

Hamed Mohsenian-Rad, Senior Member, IEEE

Abstract—An optimal supply and demand bidding, scheduling,
and deployment design framework is proposed for battery
systems. It takes into account various design factors such as
the day-ahead and real-time market prices and their statistical
dependency, as well as the location, size, efficiency, lifetime, and
charge and discharge rates of the batteries. Utilizing second-life
/ used batteries is also considered. Without loss of generality, our
focus is on the California Independent System Operator (ISO)
energy market and its two available bidding options, namely self-
schedule bidding and economic bidding. While the formulated
stochastic optimization problems are originally nonlinear and
difficult to solve, we propose a methodology to decompose them
into inner and outer subproblems. Accordingly, we find the global
optimal solutions within a short amount of computational time.
All case studies in this paper are based on real market data.

Keywords: Battery systems, supply-demand bids, economic and
self-schedule bids, charge and discharge schedules, second-life
batteries, stochastic optimization, California ISO energy market.

NOMENCLATURE

a Price in day-ahead market
b Price in real-time market
n Number of segments in Economic bids
i Economic bid segment index
k Random price scenario index
t, l Hourly time-slot index
τ, κ Sub-hourly time-slot index
C init Initial battery charge level
Cmin Minimum allowed battery charge level
Cmax Maximum allowed battery charge level
δ Battery discharge efficiency
σ Battery charge efficiency
γ Battery charge-discharge cycle parameter
θ, φ, ψ Optimization problem coefficients
α, β Risk management parameters
xmax Maximum discharge rate
ymax Maximum charge rate
x Supply energy bid
y Demand energy bid
p Price bid
m Supply and demand bid selection variable
x, y, p, m Vector representation of bid variables
η, ϕ Risk management optimization variables
z Real-time market bid in extended models
T Hourly market horizon
Γ Sub-hourly market horizon
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California, Riverside, CA, USA, e-mail: hamed@ece.ucr.edu. This work was
supported by NSF grants ECCS 1253516, ECCS 1307756, and CNS 1319798.

K Number of random price scenarios
? Marker for optimal solutions
I(·) Indicator function
E{·} Expected-value function
G(·), H(·) Objective functions of subproblems
x, y, p, m Vector representation of bid variables

I. INTRODUCTION

With the recent advancements in battery technologies [1],
grid-scale battery systems are gradually becoming practical
energy solutions. Accordingly, there has been a growing
interest in finding new and efficient applications for batteries
in power systems. For example, a recent study in [2] has listed
several applications for grid-scale battery systems, such as bulk
energy resource support, voltage support, synchronous reserve,
non-synchronous reserve, and frequency regulation.

In this paper, our focus is on utilizing battery systems as
bulk energy resources. In this scenario, the battery system
enters the wholesale electricity market as a supplier during its
discharge cycles and as a consumer during its charge cycles.
While the general idea of using battery systems as bulk energy
resources is mentioned in the literature before, e.g., see [2],
[3], the optimal operation and market participation of battery
systems under this application scenario is yet to be investi-
gated. More specifically, we still need to answer the following
fundamental questions: Given the wholesale market conditions
and the characteristics of the battery system technology, what
is the best supply and demand bidding strategy for a battery
system? Also, what is the best charge and discharge schedule?
Finally, what is the best location to install the battery system?

A. Summary of Technical Contributions

In this paper, we seek to answer the questions that we
raised in the previous subsection. Without loss of generality,
our focus is on the California energy market, that is operated
by the California Independent System Operator (ISO). Please
refer to Section II-A for a detailed description of this market.
The contributions in this paper can be summarized as follows:

• We propose an optimal bidding, scheduling, and deploy-
ment design framework for bulk battery systems. It takes
into account design factors such as the day-ahead and
real-time market prices and the location, size, efficiency,
lifetime, and charge and discharge rates of the batteries.
Utilizing second-life / used batteries is also considered.

• Three design scenarios are considered based on the
available bidding options in the California energy market.
First, the case where the bid includes only energy quan-
tity. Second, the bid also includes price quanity, and we
assume that the day-ahead and real-time market prices are
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statistically independent. Third, same as the second case,
but we consider the fact that in practice the day-ahead
and real-time market prices are statistically dependent.

• While the formulated stochastic optimization problems
are originally nonlinear and difficult to solve, we propose
a methodology to decompose them into inner and outer
subproblems. Accordingly, we find the global optimal
solutions within a short amount of computational time.

• Case studies are based on real market data in California.

In this paper, we assume that the battery system is price-
taker, i.e., it is not large enough to be price-maker. This is
a reasonable assumption given the typical sizes of battery
systems in California and elsewhere. For example, currently,
the largest battery project in Southern California is located
in Tehachapi, CA and has a capacity of 8 MW × 4 hour
(32MWh) [4]. This capacity is practically negligible compared
to the 30 GW peak energy that is traded in the California day-
ahead energy market [5]. The case of large and price-maker
battery systems, together with a few other directions to extend
the analysis in this paper, are discussed in Section V.

B. Comparison with Related Work

We can classify the literature on battery system operation
into two groups. First, the studies that optimize the use
of battery systems to improve efficiency and reliability at
transmission level [6] or at distribution and microgrid level
[7], [8], but without taking into account the profitability and
market participation aspects. In contrast, in the second group,
profitability is a major concern. Accordingly, the focus is
on market participation and offering various market products,
such as energy, reserve, and ancillary services. A large number
of papers in this second group tend to combine and co-locate
batteries with other energy resources, such as wind farms [9],
[10], solar farms [11], or demand response aggregators [12].

Different from [9]–[12], the focus in this paper is on the
profitability and wholesale market participation of independent
battery systems, where the battery system is not combined or
co-located with any other energy resource. As a result, our
work is in part comparable with the recent studies in [13]–
[15], with at least three key distinctions. First, no prior work
has discussed the optimal choice of price bids for independent
bulk battery systems. Note that, while generators and loads
select their price bids in relation to their marginal costs [16];
batteries are concerned with the price differential across their
charge and discharge cycles. Second, the studies in [13]–[15]
do not address battery lifetime, per-cycle profit valuation, and
battery charge and discharge efficiency. Finally, those prior
studies mostly use simulation-based market data, e.g., for an
IEEE 24 bus system as in [14]. However, here, we use one
year of real market data from the California ISO market.

Another line of related work is on optimal bidding and
market participation, but not for batteries. Rather, the focus
is on market participation of conventional generators [17],
renewable generators [18], and loads [19], [20]. Finally, this
paper is also related to the recent studies on reusing second-
life batteries, e.g., see [21], [22]. However, those studies do not
discuss optimal bidding and bulk energy market participation.

II. PROBLEM FORMULATION

A. California Energy Market

Energy trading in the California ISO energy market is done
in two settlements through day-ahead and real-time markets.
Buyers and sellers participate in these markets by submitting
demand and supply bids, respectively. The bids include energy
quantities and possibly price quantities [23]. If a demand bid
includes both energy and price quantities, then it indicates
that the buyer is willing to purchase the given quantity of
energy only if the price is equal to or below the price bid. If
a supply bid includes both energy and price quantities, then
it indicates that the seller is willing to sell the given quantity
of energy only if the price is equal to or above the price
bid. In the California ISO energy market, the bids with price
quantities are called Economic bids [23]. The bids that do not
include price quantities are called Self-Schedule bids [23]. A
self-schedule demand bid indicates that the buyer is willing
to purchase the given quantity of energy, regardless of the
price. Similarly, a self-schedule supply bid indicates that the
seller is willing to sell the given quantity of energy, regardless
of the price. Supply bids can be Economic or Self-Schedule,
whether they are submitted to the day-ahead market or real-
time market. However, only the demand bids that are submitted
to the day-ahead market can be Economic. That is, the demand
bids that are submitted to the real-time market must be Self-
Schedule. In this paper, we assume that the battery system
submits Economic and Self-Schedule bids to the day-ahead
market and Self-Schedule bids to the real-time market.

B. Energy Bids

Let us divide the day-ahead energy market into T = 24
hourly time slots. Let m[t] ∈ {0, 1} denote the type of the
bid at time slot t. If the battery system submits a supply bid,
then m[t] = 1. If the battery system submits a demand bid,
then m[t] = 0. Next, let n denote the number of segments
in each economic bid. Each bid segment is in form of an
energy-price pair [16]. In California, n can be between 1 and
10 [23]. For each i = 1, . . . , n, let xi[t] and yi[t] denote the
energy component in segment i of the economic bid at time
slot t, when the battery system submits a supply bid and when
it submits a demand bid, respectively. It is required that

x[t] ,
n∑
i=1

xi[t] ≤ xmax, (1)

y[t] ,
n∑
i=1

yi[t] ≤ ymax, (2)

where xmax ≥ 0 and ymax ≥ 0 denote the maximum discharge
rate and the maximum charge rate of the battery system of
interest, respectively. The choices of xi[t] and yi[t] at each
time t are also bounded based on the value of m[t] as follows:

0 ≤ xi[t] ≤ m[t]xmax, i = 1, . . . , n, (3)
0 ≤ yi[t] ≤ (1−m[t]) ymax, i = 1, . . . , n. (4)

If m[t] = 1, then (3) and (4) reduce to 0 ≤ xi[t] ≤ xmax and
yi[t] = 0. If m[t] = 0, then (3) and (4) reduce to xi[t] = 0 and
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0 ≤ yi[t] ≤ ymax. Note that, a battery system cannot submit
both supply and demand bids at the same time-slot.

C. Price Bids

For each i = 1, . . . , n, let pi[t] denote the price component
in segment i of the economic bid at time slot t, whether the
bid is a supply bid or a demand bid. Let a[t] denote the cleared
market price at the day-ahead market at time slot t. Note that,
a[t] is a random variable. Its value is known only after the
market is cleared. Since the battery system is price-taker, a[t]
does not depend on the battery charge and discharge variables
xi[t] and yi[t]. Suppose m[t] = 1, i.e., the battery system
decides to submit a supply bid at time t. Once the day-ahead
market is cleared, the total energy that is sold in the day-ahead
market by the battery system at time slot t is calculated as

n∑
i=1

I (a[t] ≥ pi[t])xi[t], (5)

where I(·) is the 0-1 indicator function. If a[t] ≥ p[t], then
I(a[t] ≥ p[t]) = 1; otherwise, I(a[t] ≥ p[t]) = 0. The unsold
amount of energy is then sold at the real-time market:

n∑
i=1

xi[t]−
n∑
i=1

I (a[t] ≥ pi[t])xi[t]. (6)

Let b[t] denote the cleared market price at the real-time market
at time slot t. Again, b[t] is a random variable. Its value is
known only after the real-time market is settled. Since the
battery system is price-taker, b[t] does not depend on xi[t]
and yi[t]. From (5) and (6), and after reordering the terms,
the total revenue that the battery system obtains from selling
energy at time slot t is calculated as

n∑
i=1

I (a[t] ≥ pi[t])xi[t]a[t] + (1−I (a[t] ≥ pi[t]))xi[t]b[t].

(7)
Next, suppose m[t] = 0, i.e., the battery system decides

to submit a demand bid at time slot t. Once the day-ahead
market is cleared, the total energy that is purchased by the
battery system at time slot t is calculated as

n∑
i=1

(1− I (a[t] ≥ pi[t])) yi[t]. (8)

The unmet energy is then purchased at the real-time market:
n∑
i=1

yi[t]−
n∑
i=1

(1− I (a[t] ≥ pi[t])) yi[t]. (9)

From (8) and (9), and after reordering the terms, the total cost
that the battery system incurs at time slot t is calculated as

n∑
i=1

(1−I (a[t] ≥ pi[t])) yi[t]a[t] + I (a[t] ≥ pi[t]) yi[t]b[t].

(10)
Note that, from (3) and (4), the battery system cannot submit
supply and demand bids simultaneously. Thus, the expressions
in (7) and (10) cannot be non-zero at the same time.

It is worth reemphasizing that for the problem formulations
in this paper, the unsold energy of an uncleared supply bid at

time slot t in day-ahead market is assumed to be sold in the
real-time market at time slot t. Similarly, the unmet energy of
an uncleared demand bid at time slot t in day-ahead market is
purchased in the real-time market at time slot t. An alternative
for these assumptions is discussed in Section V-B.

D. Storage Capacity
Finally, let C init, Cmin, and Cmax denote the initial charge

level and the minimum and maximum allowed1 charge levels
of the battery, respectively, where Cmin ≤ C init ≤ Cmax. Also
let δ ≥ 1 and σ ≤ 1 denote the discharge and charge efficiency
of the battery system, where δ = σ = 1 indicates the ideal
case with 100% efficiency. At each time t, we must have

Cmin ≤ C init − δ

(
t∑
l=1

n∑
i=1

xi[l]

)
+ σ

(
t∑
l=1

n∑
i=1

yi[l]

)
, (11)

Cmax ≥ C init − δ

(
t∑
l=1

n∑
i=1

xi[l]

)
+ σ

(
t∑
l=1

n∑
i=1

yi[l]

)
. (12)

Note that, in order to sell xi[t] MWh of energy to the market,
the battery system must discharge δ xi[t] MWh of energy,
where δ xi[t] ≥ xi[t]. Similarly, if the battery system buys
yi[t] MWh of energy from the market, it is charged by σ yi[t]
MWh of energy, where σ yi[t] ≤ yi[t]. The constraints in (11)
and (12) assure that the total energy that is stored at the battery
system at each time slot t is within its allowed operation range.

E. Discharge Cycles
The life for a rechargeable battery is often stated in number

of discharge cycles. Therefore, one can extend the battery
lifetime by limiting the number of discharge cycles. Math-
ematically, this can be done by using the following constraint:

T∑
t=1

x[t] ≤ γ
(
Cmax − Cmin

)
(13)

where γ > 0 is a design parameter. For example, if γ = 2,
then the daily operation of the battery is limited to two full
dicharge cycles. See Section IV-C for more detailed examples.

F. Economic Bidding
To find the optimal supply and demand economic bids, we

need to solve the following stochastic optimization problem

Max
m,x,y,p

T∑
t=1

E

{
n∑
i=1

I (a[t] ≥ pi[t])xi[t]a[t]

+ (1− I (a[t] ≥ pi[t]))xi[t]b[t]

}

−
T∑
t=1

E

{
n∑
i=1

(1− I (a[t] ≥ pi[t])) yi[t]a[t]

+ I (a[t] ≥ pi[t]) yi[t]b[t]

}
S.t. Eqs. (1), (2), (3), (4), (11), (12), (13).

(14)

1If the battery is designed to offer multiple services, then Cmax denotes
the portion of the battery that is allocated to energy market participation.
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where the variables are m = (m[t], ∀t), x = (xi[t], ∀i, t), y =
(yi[t], ∀i, t), and p = (pi[t], ∀i, t); and the expected value E{·}
is with respect to the day-ahead and real-time market prices
a[t] and b[t]. Here, the optimization objective is to maximize
the total expected value of the battery system’s daily profit, i.e.,
the expected value of the revenue in (7) minus the expected
value of the cost in (10) across all T = 24 hourly time slots.

The optimization problem in (14) is a mixed-integer non-
linear program (MINLP). It is mixed integer because m is a
discrete variable while x, y, and p are continuous variables.
Also, it is nonlinear because of the indicator function I(·).

G. Self-Schedule Bidding

A self-Schedule bid is a special case of economic bid, where
the number of segments is n = 1, and the price components are
p1[t] → 0 for all supply bids, and p1[t] → ∞ for all demand
bids. After replacing these values in (14), the problem to find
the supply and demand self-schedule bids becomes

Max
m,x,y

T∑
t=1

E
{
a[t] (x[t]− y[t])

}
S.t. Eqs. (3), (4), (11), (12), (13).

(15)

Note that, since n = 1, constraint (1) is covered by constraint
(3) and constraint (2) is covered by constraint (4). That is why
we did not include (1) and (2) in optimization problem (15).

We can see that the objective function in (15) is significantly
less complex compared to the one in (14). The optimization
problem in (15) is a mixed-integer linear program (MILP).

III. OPTIMAL BIDDING SOLUTIONS

Recall from Section II-G that as far as the mathematical
formulation is concerned, self-schedule bidding is a special
case of economic bidding. Therefore, in this section, we focus
on solving problem (14) to obtain optimal economic bids.

After reordering the terms, we can rewrite problem (14) as

Max
m,x,y,p

T∑
t=1

n∑
i=1

E
{
xi[t]b[t]−yi[t]a[t]

}
+

T∑
t=1

n∑
i=1

E
{

(a[t]−b[t])

I (a[t] ≥ pi[t]) (xi[t]+yi[t])
}
,

S.t. Eqs. (1), (2), (3), (4), (11), (12), (13).

(16)

The first term in the objective function depends on x and y.
The second term in the objective function depends on x, y,
and p. The constraints in (1), (2), (3), (4), (11), (12), (13)
depend on m, x and y. Thus, we can rewrite problem (16) as

Max
m,x,y

G(x,y) + Max
p

H(x,y,p)

S.t. Eqs. (1), (2), (3), (4), (11), (12), (13).
(17)

where

G(x,y) =

T∑
t=1

n∑
i=1

E
{
xi[t]b[t]−yi[t]a[t]

}
, (18)

H(x,y,p) =

T∑
t=1

n∑
i=1

E
{

(a[t]−b[t]) I (a[t] ≥ pi[t])

(xi[t]+yi[t])
}
.

(19)

Problems (14), (16), and (17) are all equivalent. That is, they
are just different ways to write the same problem. The advan-
tage of the formulation in (17) is that it clearly identifies two
subproblems for our analysis. First, an inner subproblem over
p, which takes x and y as constant. The objective function for
the inner subproblem is H(x,y,p). The inner subproblem is
unconstrained. Second, an outer subproblem over m, x and y
that takes the optimal objective value of the inner subproblem
as a function over x and y. The objective function for the outer
subproblem is G(x,y)+maxp H(x,y,p). The constraints in
(1), (2), (3), (4), (11), (12) all belong to the outer subproblem.

A. Solving the Inner Subproblem

The inner subproblem in (17) seeks to find the optimal price
bids p, assuming that the rest of the variables m, x, and y
are fixed. We can show the following key theorem.

Theorem 1: For any number of segments n ≥ 1, the optimal
price bids at time t in the inner subproblem are obtained as

p?1[t] = . . . = p?n[t] = p?[t]. (20)

If the day-ahead and real-time market prices are statistically
independent, then, at each time slot t, we have

p?[t] = E{b[t]}. (21)

Otherwise, i.e., if the day-ahead and real-time market prices
are statistically dependent, then, at each time slot t, we have

p?[t] , arg max
ρ≥0

E
{

(a[t]−b[t]) I (a[t] ≥ ρ)
}
. (22)

The proof of Theorem 1 is given in the Appendix. We can
make multiple interesting observations from the above results.
First, from (20), regardless of the number of segments that are
allowed to be included in an economic bid, there is always
only one segment in an optimal bid. In other words, unlike
generators and loads that submit economic bids with several
price segments in relation to their marginal costs [16], battery
systems do not need to submit more than one price segment
in their economic bids. It must be noted that, in general, the
operation cost of a generator depends on its output power.
As a result, a single-segment bid is often sub-optimal for a
generator. If, similar to a battery, a generator does not have an
operation cost, then it too would not need to submit bids with
more than one segment. Such generator could then be treated
as a special case battery system with an unlimited initial charge
level. Second, the optimal solutions in (21) and (22) depend
only on price parameters a[t] and b[t], but not the rest of the
optimization variables m, x, and y. This will be helpful when
it comes to solving the outer subproblem, as we will see in
Section III-B. Third, the choice of the optimal price bid in
(21) and (22) at time t does not depend on whether the bid at
this time slot is a supply bid or a demand bid.

The optimal price bids in (20)-(22) can be calculated using
historical price data. For example, consider the following 31
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Fig. 1. The conditional density distribution function for the real-time market
price b[t], subject to the day-ahead market price a[t].

price data points from the California energy market at time
t = 14 = 2:00 PM during May 2014 in Chino, CA [5]:
a[14] = 63.8, 65.8, 49.1, 43.6, 46.1, 39.4, 39.2, 44.9, 33.1,
37.2, 41.1, 53.7, 61.8, 65.6, 77.9, 62.5, 43.7, 32.5, 41.3, 41.2,
39.2, 53.1, 45.4, 43.1, 41.6, 43.9, 52.2, 50.0, 61.2, 53.6, 48.0;
and b[14] = 161.7, 48.8, 47.5, 52.1, 63.4, 56.5, 41.0, 38.6,
46.8, -31.3, 10.5, 40.8, 51.4, 55.3, 67.9, 48.5, 36.1, 41.4, 0.3,
39.1, 90.5, 227.8, 36.4, 23.7, 43.7, 62.1, 49.6, 47.2, 52.0, 40.0,
51.5. All numbers are in $/MWh. If we use (21), then we set
p?[14] = 52.9. If we use (22), then we set p?i [14] = 63.8,
where E{(a[14]− b[14]) I (a[14] ≥ 63.8)} = 1.2.

The difference between the two solutions above suggest
that the prices in the day-ahead and the real-time markets
are indeed statistically dependent. This can be realized also
by looking at the conditional probability density functions in
Fig. 1, which are based on 365× 24 = 8760 price data points
from May 1, 2013 to April 30, 2014. We can see that the
two curves are quite different. More specifically, the real-time
market prices are higher when the day-ahead market prices
are higher. Given the statistical dependency between the day-
ahead and the real-time market prices in practice, it is better
to use the more realistic solution in (22), see Section IV.

B. Solving the Outer Problem

Given the optimal price bids in (20)-(22), we can rewrite
the objective function in the outer subproblem in (17) as

T∑
t=1

E{b[t]}

(
n∑
i=1

xi[t]

)
− E{a[t]}

(
n∑
i=1

yi[t]

)

+

T∑
t=1

E
{

(a[t]−b[t]) I (a[t] ≥ p?[t])
}( n∑

i=1

xi[t]

)

+

T∑
t=1

E
{

(a[t]−b[t]) I (a[t] ≥ p?[t])
}( n∑

i=1

yi[t]

)
.

(23)

The above objective function depends only on the summation
of supply energy bids across all segments and the summation
of demand energy bids across all segments. This is because, as
we explained in Section III-A, we need only one segment in

an optimal economic bid, whether it is a supply bid or demand
bid. Therefore, we can reformulate the outer subproblem as

Max
m,x,y

T∑
t=1

(θ[t] + ψ[t])x[t] + (θ[t]− φ[t]) y[t]

S.t. Eqs. (3), (4), (11), (12), (13),

(24)

where x[t] and y[t] are defined in (1) and (2); and we have

θ[t] , E
{

(a[t]−b[t]) I (a[t] ≥ p?[t])
}
, (25)

φ[t] , E
{
a[t]
}
, (26)

ψ[t] , E
{
b[t]
}
. (27)

The outer subproblem in (24) is an MILP, which is much more
tractable than the original MINLP in (14).

It is intresting to compare the outer subproblem in (24) for
economic bidding with the optimization problem in (15) for
self-schedule bidding. To make the comparison easier, let us
first rewrite problem (15) using the notation in (26) as

Max
m,x,y

T∑
t=1

φ[t]x[t]− φ[t]y[t]

S.t. Eqs. (3), (4), (11), (12), (13).

(28)

We can see that while problems (24) and (28) are both MILP
and have similar structures, the coefficients in their objective
functions are very different. As an example, again consider
the 31 price data points that we analyzed in Section III-A. We
have θ[14] = 1.2, φ[14] = 48.9, and ψ[14] = 52.9. In this
case, the coefficients of x[14] and y[14] in (24) are 1.2 + 48.9
= 50.1 and 1.2 − 52.9 = −51.7, respectively. In contrast, the
coefficients of x[14] and y[14] in (28) are 48.9 and −48.9,
respectively. The differences are major and they can result in
different solutions for the energy bids x[14] and y[14].

Problems (24) and (28) can be solved efficienctly using
various MILP solvers, such as CPLEX [24] or MOSEK [25].
These problems each has T = 24 binary and 2 × T = 48
continuous variables and a total of 6× T = 144 constraints.

IV. CASE STUDIES

In this section, we compare three bidding approaches. First,
Self-Schedule Bidding, based on the solution of problem (28).
Second, Economic Bidding - Design I, based on the solution
of problem (24), where p?[t] is as in (21). Third, Economic
Bidding - Design II, based on the solution of problem (24),
where p?[t] is as in (22). We use CPLEX [24] to solve the
optimization problem in each case. Using a laptop computer
with a 2.90 GHz CPU and 8 GB RAM, on averge, it took only
< 1 second, < 1 second, and about 4 seconds to obtain the
optimal supply-demand bids for Self-Schedule Bids, Economic
Bids - Design I, and Economic Bids - Design II, respectively.

To examine the impact of location on the performance of
the proposed bidding strategies for battery systems, we use the
locational marginal price (LMP) data at three different nodes
to represent three geographical regions in California: node
DAVIS_1 to represent Nothern California, node HURON_6 to
represent Central California, and node CHINO_6 to represent
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Fig. 2. Average daily profit for a winter day and a summer day and across
the three regions in California, based on three different bidding options.

Southern California [5]. Since the focus in this paper is on
solving the bidding and charge and discharge scheduling opti-
mization challenges, rather than price forecasting, we assume
that the probability distribution functions for the day-ahead
and real-time market prices are accurate, i.e., they are known.
Of course, it will be interesting to combine our design with
price forecasting methods; however, such analysis is beyond
the scope of this paper and can be considered as a future work.

Unless we state otherwise, we assume that γ � 1, and the
battery system of interest has the same size as in Southern
California Edison battery energy storage facility in Tehachapi,
CA [4], where xmax = ymax = 8 MW and Cmax = 32 MWh.
We again emphasize that the results in this paper are based
on the assumption that the battery system is price-taker. If the
battery system is large and price-maker then it may generate
even more profit through strategic market participation and by
relieving or creating congestion on transmission lines.

A. Impact of Location and Season

Consider the case studies in Fig. 2. We can see that
Economic Bidding - Design II outperforms Economic Bidding
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Fig. 3. The annual profit versus battery efficiency in Northern and Southern
California, based on three different bidding options.

- Design I; and Economic Bidding Design I outperforms Self-
schedule Bidding. For example, on average, daily profit in
Summer 2013 and across the three geographical regions is
two times higher for Economic Bidding - Design II compared
to Self-Schedule Bidding. Another observation is that, in
winter, there is little difference in the profit across the three
geographical regions. For example, the average daily profit
for Economic Bidding - Design II is $1,388 in Northern Cal-
ifornia, $1,300 in Central California, and $1,391 in Southern
California. This is because the power grid in California is
typically less congested during the winter when there is less air
conditioning load. However, the situation changes drastically
in summer, where the average daily profit for Economic
Bidding - Design II is $1,891 in Northern California, $1,242
in Central California, and $1,762 in Southern California. We
can see that locations that are prone to more price fluctuations,
e.g., due to congestion, are more profitable to install batteries.

B. Impact of Battery Efficiency

So far, and for the results in Fig. 2, we assumed that
the battery efficiency is 100%, i.e., δ = σ = 1. However,
in practice, the efficiency of lithium-ion batteries is 85 to
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Fig. 4. The details of supply-demand bids across different bidding approaches
for the case of Northern California in Summer 2013. The color code is the
same as that of Fig. 3. Numbers above or below the bars indicate price bids.

90% [26]. More advanced battery technologies offer 95%
efficiency [27]. The annual profit versus battery efficiency
based on the price data in Northern and Southern California is
shown in Figs. 3(a) and (b), respectively. We can see that the
profit decreases as battery efficiency degrades. However, the
relative performance remains the same across the three bidding
options. That is, regardless of the battery efficiency, Economic
Bids - Design II outperform Economic Bids - Design I; and
Economic Bids - Design I outperform Self-Schedule Bids.

The optimal supply-demand bids based on the price data
in Northern California in Summer 2013 and at 95% battery
efficiency are visualized in Fig. 4. The average daily profit
corresponding to the three sets of bids in Fig. 4 are $706,
$1,442, and $1,676, respectively. We can make several inter-
esting observations. First, the optimal self-schedule bids tend
to have fewer charge and discharge cycles than the optimal
economic bids. We will address this issue in details later in
Section IV-C. Second, there are some similarities between the
energy bids under Economic Bidding - Design I and Economic
Bidding - Design II; however, the differences between the two
designs in terms of price bids are significant. Third, the price
bids under Economic Bidding - Design II have more variations
during the day. Note that, a price bid equal to zero for an
economic demand bid at a time slot t means that the entire
energy bid y[t] must be purchased at the real-time market.

C. Battery Life and Impact of Parameter γ

Recall from Fig. 4 that the optimal self-schedule bids have
fewer charge and discharge cycles than the optimal economic
bids. This may suggest that, although economic bidding is
more profitabe, it depreciates the battery at a higher rate. This
shortcoming can be fixed by adjusting parameter γ. The results
are shown in Fig. 5. In Fig. 5(a), the annual profit decreases as
we decrease γ. For example, reducing γ from 4 to 1.4 lowers
the profit under Economic Bidding - Design II by 10% from
$420,000 to $378,000. However, in return, decreasing γ can
significantly increase the battery life, as shown in Fig. 5(b).
For example, if the battery can support up to 2000 cycles [28],
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Fig. 5. The impact of changing parameter γ on profit and battery life.
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Fig. 6. The impact of changing γ on Economic Bids - Design II for the
case of Northern California in Summer 2013. Battery efficiency is 95%.

then reducing γ from 4 to 1.4 increases the battery life under
Economic Bidding by about 180% from 2.1 to 3.7 years.

We can conclude that when γ is not too large, Self-
Schedule Bidding does no longer have lifetime advantage
over Economic Bidding, yet its achievable profit is still much
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Fig. 7. The impact of discharge rate on annual profit at different locations.
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Fig. 8. Annual profit versus battery capacity for second-life batteries.

less. As an example, at γ = 1.4 and for batteries with 5000
cycles [29], Self-Schedule Bidding results in $228,000 profit
per year for 11 years, adding up to $2,510,000 profit over the
battery lifetime. Under same operational conditions, Economic
Bidding - Design II results in $378,000 profit per year for 9.1
years, adding up to $3,450,000 profit over the battery lifetime.

The optimal supply-demand Economic Bids - Design II for
three different values of parameter γ are visualized in Fig. 6,
based on the price data in Northern California in Summer 2013
and at 95% battery efficiency. We can see that the number
of charge and discharge cycles reduces significantly as we
decrease γ. The average daily profit corresponding to the three
sets of bids in this figure are $1,623, $1,558, and $1,400,
respectively. The bids in this figure are comparable with those
in Fig. 4. When γ = 1, the Economic Bidding - Design II in
Fig. 6 results in almost twice more profit compared to the case
of Self-Schedule Bidding in Fig. 4, even though the battery
is utilized almost equally. In other words, the per cycle profit
in this case is almost twice higher for Economic Bidding -
Design II. It is interesting to also note in Fig. 6 that changing
parameter γ only affects the energy bids but not the price bids.
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Fig. 9. Performance comparison with sole real-time market participation
based on one year of market data in Southern California.

D. Impact of Charge and Discharge Rates

For all the case studies so far, we assumed that the capacity
and the charge and discharge rates of the battery system are
based on the major Southern California Edison battery system
in Tehachapi, CA [4]. However, it is insightful to also see how
the results may change if we increase these battery parameters.
For example, the annual profit versus the charge / discharge
rate of the batteries is shown in Fig. 7, based on the market
price data in Southern California. Here, the capacity of the
battery is still fixed at 32 MWH. Under Economic Bidding -
Design II, the annual profit increases by 130% from $460,000
to $594,000 if we increase the charge and discharge rate from
8 MW per Hour to 32 MW per Hour. Similar results can be
derived by changing the storage capacity of the battery.

E. Second-Life Batteries

We can employ the proposed optimal battery storage system
operation frameowork also to assess the performance when we
use second-life battery systems, which support lower storage
capacities than their rated capacities. Second-life batteries have
received great attention in recent years, particularly due to the
increasing penetration of plug-in electric vehicles [21], [22].
The annual profit versus degraded battery capacity is shown in
Fig. 8. We can see that market participation is still profitable
even for second-life batteries. For example, even after losing
half of its storage capacity, the battery system that is installed
in Tehachapi, CA can result in over $350,000 annual profit if
the Economic Bidding - Design II is being used.

F. Comparison with Real-Time Market Participation

In this section, we compare the performance of our pro-
posed market participation approaches with the case where
the battery system participates only in the real-time market.
In this case, the charge and discharge schedules are obtained
by solving problem (15), but after replacing a[t] with b[t]. The
results are shown in Fig. 9, where four market participation
scenarios are compared with each other. The black bars
represent the three scenarios that involve bidding to the day-
ahead market. The white bar, however, is the scenario where
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market participation is limited to the real-time market. The
annual profit is calculated for each scenario based on the
market data in Southern California. We can see that the annual
profit is less for the case of sole real-time market participation.

V. REMARKS AND EXTENSIONS

In this section, we provide some pointers and remarks about
a few directions to extend the analysis in this paper. In all
discussions, we assume that n = 1, δ = σ = 1, and γ � 1.

A. Risk Management

While the focus in this paper is on maximizing profit, one
can extend the analysis to include risk management. This can
be done by incorporating a risk model, such as the conditional
value-at-risk (CVaR) [30], into the problem formulation in
(14). In this approach, the objective is to maximize

E
{
Profit

}
− β CVaRα

{
− Profit

}
, (29)

where α ∈ [0, 1] is a confidence interval and β ≥ 0
is a weighting parameter to adjust the importance of risk
management. If β = 0, then the design objective reduces back
to profit maximization. Here, CVaRα indicates the average
profit for the (1 − α) fractile worst case random scenarios
with respect to profit. By maximizing the objective function
in (29), we care about not only the overall expected profit but
also the average profit in low-profit scenarios. The latter is
directly related to risk management and risk aversion.

The new objective function in (29) is generally difficult to
handle because the CVaR term adds to the complexity of an
already complex problem formulation in (14). In particular,
the inner-outer subproblems decomposition approach that we
proposed in Section III may no longer be applicable in pres-
ence of the CVaR term. Alternatively, we can rather include the
CVaR term in the outer subproblem in (24), as we will explain
in the next paragraph. Interestingly, although this alternative
problem formulation is a deviation from the original problem
formulation in (14) where the objective function is replaced
with (29), it can still provide us with an effective mechanism
to conduct risk management with respect to the obtained profit,
as we will see in a case study at the end of this subsection.

Suppose K denotes the number of random market price
scenarios. We can write the expected values in (25)-(27) as

θ[t] =
1

K

K∑
k=1

θk[t], (30)

φ[t] =
1

K

K∑
k=1

φk[t], ψ[t] =
1

K

K∑
k=1

ψk[t], (31)

where for each random scenario k = 1, . . . ,K, we have
θk[t] = (ak[t]− bk[t]) I (ak[t] ≥ p?[t]), φk[t] = ak[t], ψ[t] =
bk[t]. Notations ak[t] and bk[t] are the realizations of the day-
ahead and real-time market prices under scenario k, respec-
tively. From (30) and (31), and following the analysis in [30],
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Fig. 10. The impact of changing the risk management parameter β on the
overall average daily profit and the average worst 5% daily profit based on
Winter 2015 data in Southern California when risk management is being used.

we can rewrite problem (24) to incorporate risk management:

Max
m,x,y

T∑
t=1

[(
1

K

K∑
k=1

(θk[t] + ψk[t])

)
x[t]

+

(
1

K

K∑
k=1

(θk[t]− φk[t])

)
y[t]

− β

(
ϕ+

1

1− α
1

K

K∑
k=1

ηk

)]

S.t. ηk + ϕ+

T∑
t=1

(θk[t]+ψk[t])x[t]

+ (θk[t]−φk[t]) y[t] ≥ 0, k = 1, . . . ,K,

ηk ≥ 0, k = 1, . . . ,K,

Eqs. (3), (4), (11), (12), (13),
(32)

where ηk and ϕ are auxiliary variables. If we choose parameter
β to be small, then problem (32) results in solutions that are
close to those of problem (24). However, as we increase β,
the solutions of problem (32) become more risk averse.

As an example, suppose α = 0.95 and consider the results in
Fig. 10, which are based on the Winter 2015 data in Southern
California. As we increase the risk management parameter β
from 0.001 to 10, the average profit decreases, but the average
profit under the worst 5% scenarios rather increases, offering
a more risk averse design. Note that, the curve in Fig. 10(a)
shows E{Profit}, i.e., the first term in (29). Also, the curve in
Fig. 10(b) shows −CVaRα{−Profit}, i.e., the second term in
(29), excluding the weighting parameter. Therefore, the above
bidding approach based on the solution of problem (32) has
been successful in conducting risk management with respect
to the obtained profit, even though the problem formulation
in (32) is not exactly the same as the problem formulation in
(14) where the objective function is replaced with (29).

B. More Flexible Real-Time Market Participation

Recall from Section II-C that an unsold energy at a time
slot in the day-ahead market is sold in the real-time market
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at the same time slot. Similarly, an unmet energy at a time
slot in the day-ahead market is purchased in the real-time
market at the same time slot. In this section, we explain how
one can change the problem formulation to give the battery
system more flexibility about the time of selling an unsold or
purchasing an unmet energy in the real-time market.

Let z[t] denote the amount of energy that is sold to or
purchased from the real-time market at time slot t. A positive-
valued z[t] indicates selling energy while a negative valued z[t]
indicates purchasing energy. To comply with the maximum
discharge and charge rate requirements, we must have

−ymax ≤ z[t] + I (a[t] ≥ p[t])x[t]

− (1− I (a[t] ≥ p[t])) y[t] ≤ xmax,
(33)

where the expression inside the two inequality signs is the net
amount of energy discharge (when positive) or energy charge
(when negative) of the battery system across both the day-
ahead market and the real-time market. Note that, if we use
the set up in Section II-C, then the above expression reduces
to x[t]− y[t]. Accordingly, since x[t] and y[t] cannot be non-
zero at the same time, the inequality constraints in (33) are
dominated by the constraints in (3) and (4). Therefore, they
can be removed from the problem formulation.

The storage capacity constraints are revised in this case as

Cmin ≤ C init −
t∑
l=1

(
z[l] + I (a[l] ≥ p[l])x[l]

− (1− I (a[l] ≥ p[l])) y[l]

)
,

(34)

Cmax ≥ C init −
t∑
l=1

(
z[l] + I (a[l] ≥ p[l])x[l]

− (1− I (a[l] ≥ p[l])) y[l]

)
.

(35)

If we use the set up in Section II-C, then (34) and (35) reduce
to (11) and (12), respectively. Recall that for all discussions
in Section V, we assume that n = 1 and α = β = 1.

Finally, we can revise the objective function as

T∑
t=1

E

{
I (a[t] ≥ p[t])x[t]a[t]

− (1− I (a[t] ≥ p[t])) y[t]a[t] + z[t]b[t]

}
.

(36)

The above objective function has fewer terms than the original
objective function in (14). However, the complexity has now
moved to the constraints in (33)-(35) because they now include
the 0-1 indicator function I(·). As a result, the optimization
problem that is formulated under the alternative real-time mar-
ket bidding scenario in this section involves strong coupling
between the price and energy bids in its constraints. Accord-
ingly, the inner-outer subproblems decomposition approach
that we proposed in Section III is no longer applicable. Solving
such alternative problem formulation is beyond the scope of
this paper and can be considered as a future work.

C. Sub-Hourly Markets
If both the day-ahead and the real-time markets work on a

sub-hourly basis but with equal time slots, then the analysis in
this paper is still applicable without any changes, except for
selecting a new and proper value for T . However, sometimes,
the day-ahead market is hourly while the real-time market is
sub-hourly. For example, in California, the real-time energy
market consists of Γ = 12 five-minute market cycles within
each hour [5]. One approach to incorporate a sub-hourly real-
time market is to take the average of the Γ price values for
each hour so as to represent the real-time market on an hourly
basis in the problem formulation. This is what we have done
so far. Alternatively, one can increase the resolution in defining
the optimization variables for the real-time market.

For each t = 1, . . . , T and any τ = 1, . . . ,Γ, let z[t, τ ]
denote the amount of power that is purchased from or sold to
the real-time market during the sub-hourly cycle τ at hour t. A
positive z[t, τ ] indicates selling energy while a negative z[t, τ ]
indicates purchasing energy. To comply with the maximum
discharge and charge rate requirements, we must have

−ymax ≤ Γz[t, τ ] + I (a[t] ≥ p[t])x[t]

− (1− I (a[t] ≥ p[t])) y[t] ≤ xmax,
(37)

where the expression inside the two inequality signs denotes
the net amount of energy discharge (when positive) or energy
charge (when negative) of the battery system based on the
combined impact of the day-ahead and real-time market par-
ticipation. Since z[t, τ ] is discharged or charged during 1/Γ
fraction of an hour, z[t, τ ] is multiplied by Γ to match the
hourly rates for x[t] and y[t]. If Γ = 1, then the constraints in
(37) reduce to those of an hourly market in (33).

With respect to the storage capacity constraints, at each
hourly time slot t and sub-hourly time slot τ , we must have

Cmin ≤ C init−
t−1∑
l=1

(
Γ∑
κ=1

z[l, κ] + I (a[l] ≥ p[l])x[l]

− (1− I (a[l] ≥ p[l])) y[l]

)
−

τ∑
κ=1

z[t, κ],

(38)

Cmax ≥ C init−
t−1∑
l=1

(
Γ∑
κ=1

z[l, κ] + I (a[l] ≥ p[l])x[l]

− (1− I (a[l] ≥ p[l])) y[l]

)
−

τ∑
κ=1

z[t, κ],

(39)

where the expression on the right hand side denotes the current
state-of-charge and b[t, τ ] is the random variable that denotes
the cleared market price at sub-hourly cycle τ of hour t in the
real-time market. If Γ = 1, then the constraints in (38) and
(39) reduce to those in (34) and (35), respectively.

Finally, we can revise the objective function as
T∑
t=1

E

{
I (a[t]≥p[t])x[t]a[t]

− (1−I (a[t]≥p[t])) y[t]a[t]

+

Γ∑
τ=1

z[t, τ ]b[t, τ ]

}
.

(40)
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While the above objective function has fewer terms than the
one in (14), the complexity has now moved to the constraints
in (37)-(39) as they now include the 0-1 indicator function
I(·). The optimization problem that is formulated under this
alternative real-time market bidding scenario involves strong
coupling between the price and energy bids in its constraints.
Accordingly, the inner-outer subproblems decomposition ap-
proach that we proposed in Section III is no longer applicable.
Solving such alternative problem formulation is beyond the
scope of this paper and can be considered as a future work.

D. Large and Price-Maker Battery Systems

While the price-taker assumption in this paper is adequate
for the existing battery projects, it is interesting to extend the
results to address larger and price-maker battery systems that
may become reality in the future. In case of a pool-based
market, one can extend the results in [31], [32] and [33] to
obtain the optimal self-schedule bids and the optimal economic
bids for battery systems, respectively. In a nodal market, one
can also benefit from the existing models, e.g., in [34], [35].

VI. CONCLUSIONS

A new framework was proposed for bidding, scheduling,
and deployment of battery systems in the California ISO
energy market. Both market and battery parameters are taken
into consideration. Three design scenarios are presented. First,
self-schedule bidding, where the bid includes only energy
quantity. Second, economic bidding, with both energy and
price quantities, where the day-ahead and real-time market
prices are assumed to be statistically independent. Third, eco-
nomic bidding, where the statistical dependency across day-
ahead and real-time market prices is taken into consideration.
The originally nonlinear stochastic optimization problems are
solved efficiently using a decomposition approach. Several
case studies are presented using real market data to assess the
impact of location, season, battery efficiency, lifetime, charge
and discharge rates, and using second-life / used batteries.

To motivate a few future research directions, we also pro-
vided some detailed pointers and remarks with respect to risk
management, more flexible real-time market participation, sub-
hourly markets, and large and price-maker battery systems.
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APPENDIX: THE PROOF OF THEOREM 1

The inner subproblem in (17) can be reformulated as

Max
p

T∑
t=1

n∑
i=1

E
{

(a[t]−b[t]) I (a[t]≥pi[t]) (xi[t]+yi[t])
}

= Max
p

T∑
t=1

n∑
i=1

E
{

(a[t]−b[t])

I (a[t] ≥ pi[t])
}

(xi[t]+yi[t])

=

T∑
t=1

n∑
i=1

Max
pi[t]

E
{

(a[t]−b[t])

I (a[t] ≥ pi[t])
}

(xi[t]+yi[t])

=

T∑
t=1

n∑
i=1

(xi[t]+yi[t]) Max
pi[t]

E
{

(a[t]−b[t])

I (a[t] ≥ pi[t])
}
.

(41)

The first equality in (41) is due to the fact that xi[t] and
yi[t] are not random parameters; therefore, they can be taken
out from the expected value. The second equality in (41) is
due to the fact that, for each time slot t, the term inside the
summations depends only on pi[t] but not on pj [τ ] for any
j 6= i and any τ 6= t. Therefore, we can switch the expected
value and summations without affecting the outcome of the
maximization. Here, we are using the general fact that

max
v,w

f(v) + g(w) = max
v

f(v) + max
w

g(w). (42)

Finally, the third equality in (41) is due to the fact that, by
definition, xi[t] and yi[t] are non-negative for any segment i;
therefore, the constant coefficient xi[t] + yi[t] is non-negative
and it can be taken out of the maximization operation.

From (41), for any i = 1, . . . , n, the optimal price bids are
obtained by solving the following single-variable problem:

Max
pi[t]

E
{

(a[t]−b[t]) I (a[t] ≥ pi[t])
}
. (43)

This directly results in the expressions in (20) and (22). If
the day-ahead and real-time market prices are statistically
independent, then we can rewrite (22) as

p?[t] , arg max
ρ≥0

E
{

(a[t]−E {b[t]}) I (a[t] ≥ ρ)
}
, (44)

where the outmost expected value is now only on a[t] but not
b[t]. Let us define F (ρ) as the objective function in (44):

F (ρ) =
1

K

K∑
k=1

fk(ρ), (45)

where for each scenario k = 1, . . . ,K, we have

fk(ρ) = (ak[t]− E {bk[t]}) I (ak[t] ≥ ρ) . (46)

We need to show that the optimal solution of problem (44) is
obtained as in (21). First, consider any ρ such that

ρ > E{b[t]}. (47)

For each k, where ak[t] < E{b[t]}, we have

fk(ρ) = fk(E{b[t]}) = 0. (48)

For each k, where E{b[t]} ≤ ak[t] < ρ, we have

fk(ρ) = 0, fk(E{b[t]}) = ak[t]− E{b[t]} ≥ 0. (49)

Finally, for each k, where ρ ≤ ak[t], we have

fk(ρ) = fk(E{b[t]}) = ak[t]− E{b[t]}. (50)

From (45), (47), (48), and (49), we have

F (ρ) ≤ F (E{b[t]}). (51)

Next, consider any ρ such that

ρ < E{b[t]}. (52)

For each k, where ak[t] < ρ, we have

fk(ρ) = fk(E{b[t]}) = 0. (53)

For each k, where ρ ≤ ak[t] < E{b[t]}, we have

fk(ρ) = ak[t]− E{b[t]} < 0, fk(E{b[t]}) = 0. (54)

Finally, for each k, where E{b[t]} ≤ ak[t], we have

fk(ρ) = fk(E{b[t]}) = ak[t]− E{b[t]}. (55)

From (45), (52), (53), and (54), we have

F (ρ) ≤ F (E{b[t]}). (56)

From (51) and (56), we conclude that p?[t] = E{b[t]} is a
maximizer for problem (44). That is, (21) holds. �
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