Lawrence Berkeley National Laboratory

LBL Publications

Title

Identification of Heterotic Loci with Desirable Allelic Interaction to Increase Yield in Rice.

Permalink

<https://escholarship.org/uc/item/6f67g0xm>

Journal

Rice, 14(1)

ISSN

1939-8425

Authors

Xiong, Yin Zhang, Chaopu Zhou, Hongju [et al.](https://escholarship.org/uc/item/6f67g0xm#author)

Publication Date

2021-11-26

DOI

10.1186/s12284-021-00539-z

Peer reviewed

ORIGINAL ARTICLE

Rice

Open Access

Identifcation of Heterotic Loci with Desirable Allelic Interaction to Increase Yield in Rice

Yin Xiong 1† , Chaopu Zhang 1† , Hongju Zhou 1† , Wenqiang Sun 1 , Peng Wang 1 , Dianwen Wang 1 , Xianjin Qiu 1 , Jauhar Ali² and Sibin Yu^{1[*](http://orcid.org/0000-0003-0458-7526)}

Abstract

Heterosis denotes the superiority of a hybrid plant over its parents. The use of heterosis has contributed signifcantly to yield improvement in crops. However, the genetic and molecular bases on heterosis are not fully understood. A large number of heterotic loci were identifed for 12 yield-related traits in one parental population of chromosome segment substitution lines (CSSLs) and two test populations, which were interconnected by CSSLs derived from two rice genome-sequenced cultivars, Nipponbare and Zhenshan 97. Seventy-fve heterotic loci were identifed in both homozygous background of Zhenshan 97 and heterogeneous background of an elite hybrid cultivar Shanyou 63. Among the detected loci, at least 11 were colocalized in the same regions encompassing previously reported heterosis-associated genes. Furthermore, a heterotic locus *Ghd8*NIP for yield advantage was verifed using transgenic experiments. Various allelic interaction at *Ghd8* exhibited diferent heterosis levels in hetero-allelic combinations of five near-isogenic lines that contain a particular allele. The significant overdominance effects from some hetero-allelic combinations were found to improve yield heterosis in hybrid cultivars. Our fndings support the role of allelic interaction at heterotic loci in the improvement of yield potential, which will be helpful for dissecting the genetic basis of heterosis and provide an optional strategy for the allele replacement in molecular breeding programs in hybrid rice.

Keywords: Heterotic loci, Allelic interaction, Grain yield, Overdominance, *Ghd8*, Rice

Background

Heterosis or hybrid vigor refers to the phenomenon for which a hybrid markedly outperforms its parents. The use of heterosis in crops such as rice and maize have contributed signifcantly to the improvement of yield. Massive eforts have been made in exploring the genetic mechanisms of heterosis, leading to propose three main genetic models for heterosis (Chen [2013](#page-13-0); Zhang et al. [2021](#page-13-1)), which include dominance (Xiao et al. [1995](#page-13-2)) and

¹ National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Numerous quantitative trait loci (QTLs) have been identified for heterosis in various plants (Li et al. [2001](#page-13-3); Wang et al. [2012](#page-13-7); Zhou et al. 2012; Huang et al. [2016](#page-13-12); Zhu et al. [2016](#page-14-0)), indicating that complex genetic bases of heterosis. The advances of integrating multi-omics in

© The Author(s) 2021. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://creativecommons.org/licenses/by/4.0/.](http://creativecommons.org/licenses/by/4.0/)

^{*}Correspondence: ysb@mail.hzau.edu.cn

[†] Yin Xiong, Chaopu Zhang and Hongju Zhou contributed equally to this work

Full list of author information is available at the end of the article

the identifcation of heterotic loci or genes support the signifcant role of the allelic interactions at both single locus and multiple loci in plant heterosis (Huang et al. [2015](#page-13-13); Li et al. [2016](#page-13-14); Liu et al. [2020](#page-13-15)). For example, *SIN-GLE FLOWER TRUSS* (*SFT*) in tomato (*Lycopersicon esculentum* Mill.) is frstly identifed as a single overdominant gene for yield (Krieger et al. [2010](#page-13-16)). In rice (*Oryza sativa* L.), *Heading date 3a* (*Hd3a*) has been identifed to be responsible for heterosis in a large-scale F₂ population (Huang et al. [2016](#page-13-12)). The gene *Ideal Plant Architecture1* (*IPA1*) that regulates plant architecture enhancing yield heterosis in rice, displays a strong overdominance efect from *IPA1* heterozygotes (Huang et al. [2016](#page-13-12)). Similarly, the ortholog gene of *IPA1* in maize (*Zea mays* L.), *unbranched 3* (*ub3*) has also been identifed as the major candidate gene for heterosis advantage in three F_2 populations (Liu et al. [2020](#page-13-15)). The other gene *OsMADS1* showed an incomplete dominance for grain size in rice and near-isogenic lines containing a particular alleles could highly increase grain yield by more than 8% (Wang et al. [2019a\)](#page-13-17). Since the development of genome re-sequencing of germplasms allows us capture various allelic variations at any gene of interest, the intriguing issue arises of how to explore optional allelic combinations that could produce higher heterosis performance in hybrids. However, few cases where diverse efects of various allelic interactions at a heterotic locus have been reported.

Rice is the staple crop, contributing for nearly half of worldwide population's food consumption (Elert [2014](#page-13-18)). The increase of rice yield is critical to ensuring global food security. Exploitation of interspecies hybrid vigor between *indica/xian* and *japonica/geng* has been a promising approach to enhance rice yield potential (Qian et al. 2016 ; Tao et al. 2016). The genetic dissection of hybrid vigor could facilitate this efficient exploitation. However, the precisely identifcation of heterotic loci has been limited in many segregating populations such as $F₂$ and recombinant inbred lines because of some epistatic or high-order gene interactions in a complex genetic background (Yu et al. [1997;](#page-13-6) Li et al. [2001](#page-13-3)). With the advantage of chromosome segment substitution lines (CSSLs), each containing only one or a few introduced donor segments in the same background, the genetic efect and contribution of a gene can be confrmed without the efect of other loci in genome (Ali et al. [2010;](#page-13-21) Zhang et al. [2021](#page-13-1)). Thus, CSSLs and their derived populations could provide one of the optimal approaches for dissecting the genetic factor of heterosis at the single-locus level (Zhang et al. [2019](#page-13-22)). In this study, the objectives are to detect heterotic loci using CSSLs and their derived testing populations of backcross and testcross, and to unravel allelic interaction at a given heterotic loci using near-isogenic lines in rice.

As a result, a number of heterotic loci (HLs) were identifed for yield and yield-related traits in the backcross (BC) and testcross (TC) populations. Among them, a major heterotic gene (*Ghd8*) was verifed through transgenic experiments. Moreover, diferent interaction efects arose from various allelic combinations of *Ghd8* were found associated with yield heterosis. Our fndings of heterotic loci with favorable allelic combinations provide new insights into the genetic basis of heterosis. This will be useful for improving yield by hybrid rice breeding.

Materials and Methods

Plant Materials

Three mapping populations were developed and used in this study. The first population of 146 CSSLs was developed from a cross between two genome-sequenced rice cultivars, *japonica* Nipponbare (NIP) as the donor and elite *indica* Zhenshan 97 (ZS97) as the recurrent parent, using a backcross scheme of at least four times backcrossing with a marker-assisted selection (MAS) approach. The backcross population contained 146 F_1 hybrids $(CSSL \times ZS97)$ derived by backcrossing each CSSL with the recurrent parent ZS97. The elite restorer line Minghui 63 (MH63) as the male parent was testcrossed with each CSSL to generate the testcross population. The parental lines (MH63, NIP, and ZS97) and hybrid cultivar Shanyou 63 (SY63, MH63 \times ZS97) were used as controls in the phenotype experiments.

Experimental Design and Phenotypic Evaluation

Two experiments were conducted to dissect of the genetic basis of heterosis in rice. First, three mapping populations were used to analyze the allelic efect at a single locus. A CSSL and BC were used to identify the mid-parent heterotic loci (HL_{MP}) in the homozygous background of ZS97. At the same time, a TC along with a check (SY63) were used to detect the over-standard heterotic loci (HL_{OS}) in a similar heterozygous background of SY63. Second, to determine the interaction of diferent allelic combinations at *Ghd8*, an half-diallel mating design was used to generate ten allelic combinations with five parental lines (NIL-Ghd8^{ZS97}, NIL-Ghd8^{NIP}, NIL-*Ghd8*⁹³¹¹, NIL-*Ghd8*^{ACC10}, and NIL-*Ghd8*^{MH63}). The five near-isogenic lines (NILs) carrying diferent *Ghd8* alleles were developed independently from the cross of four parents (NIP, 9311, ACC10, and MH63) as donors and ZS97 as the recurrent parent using a MAS backcross scheme. These NILs have the common background of ZS97.

All the lines were grown at the experimental station of Huazhong Agricultural University in Wuhan (30.48° N, 114.2° E), China. A randomized complete block design was carried out with two replications for three mapping populations in 2006 (E1) and 2007 (E2), respectively. The

same feld experimental design with three replications was used for the ten allelic combinations and NILs. Each line was planted in four rows with 10 individuals per row at a spacing of 16.7×26.6 cm. The eight plants in the middle of each row were harvested individually at maturity and used for scoring traits. The field was managed according to local standard practices.

Twelve quantitative traits were assayed: grain number (GN), heading date (HD), number of primary branches (PB), plant height (PH), panicle length (PL), panicles per plant (PP), panicle weight (PW), number of secondary branches (SB), spikelet number (SN), seed setting ratio (SS), thousand-grain weight (TGW), and grain yield per plant (YD).

Transgenic Test of Ghd8 Efects on Heterosis

The transgenic experiments were performed to analyze *Ghd8* effects on heterosis. Homozygous complementary transgenic lines with the NIP alleles of *Ghd8* (*Ghd8*NIP) introduced into ZS97 (here named as NIL-*Ghd8*ZS97) were developed previously (Yan et al. 2011). An F₁ hybrid was then generated by crossing each transgenic line with the corresponding negative control line or ZS97.

DNA Extract and Genotype of Hybrids

Genomic DNA was extracted from young leaves using the CTAB method (Murray and Thompson, [1980](#page-13-24)) with minor modifcations. Genotyping of the 146 CSSLs by using a RICE 6 K chip generated a total of 5,102 highquality single nucleotide polymorphisms (SNPs), which were evenly distributed on all 12 chromosomes (Sun et al. [2015\)](#page-13-25). A genetic bin map with 518 bins was constructed based on the recombination breakpoints in the CSSLs. The genotypes of the BC and TC were deduced from each corresponding CSSL. The insertion/deletion (Indel) marker PID2 (F: TAGAGATGAAATGGA GGTG; R: GTCTCATGTTCTTCAACATG) was used to identify the genotypes of all the allelic combinations, except that NIP/ACC10 hybrid was determined by Indel marker PID3 (F: CTTATCTATCAAGGTGCTC; R: TGC ACACATGTAATGCAAAC), and MH63/ZS97 hybrid was identifed by simple sequence repeat (SSR) marker RM5556 (F: GTAAGCCATTTGCACGGACAAGG; R: GAGCTCAGGATCATCCCTACATGC). PID2 was also used to identify the genotypes of complementary transgenic hybrids. Polymerase chain reaction was performed following the procedure of Panaud et al [\(1996\)](#page-13-26). The Indel and SSR markers were separated by 4% polyacrylamide gel electrophoresis and visualized by silver staining.

Data Analysis

The additive effect (a) was calculated using the following equation: $a = (CSSL - ZS97)/2$. The dominance effect

(*d*) was estimated as $d = F_1 - (CSSL + ZS97)/2$. The midparent heterosis (MPH) was calculated as $MPH = (F_1 MP$)/MP × 100%, MP = (CSSL + ZS97)/2, where F₁ is the phenotypic value of the BC. The over-standard heterosis (OSH) value was calculated as $OSH = (F_1 - SY63)$ / SY63 \times 100%, where F₁ is the phenotypic value of the TC. For allelic combinations at *Ghd8*, $MPH = (F_1 - MP)/$ $MP \times 100\%$, $MP = (NIL - Gh d8^i + NIL - Gh d8^i)/2$, where the F_1 represented the phenotypic value of the hybrid for two NILs (NIL-*Ghd8ⁱ* × NIL-*Ghd8^{<i>i*}, *i* and *j* denote different alleles of *Ghd8*). For complementary transgenic plants, the additive and dominance efects were calculated as *a*=(homozygous-positive transgenic line—negative line)/2, $d = F_1$ —(homozygous-positive transgenic $line + negative$ line)/2. The estimated additive and dominance efects were used to calculate *|d/a|* for the classifcation of HL_{MP} as additive effect (A) ($|d/a| < 0.2$), partial dominance (PD) $(0.2 \le |d/a| < 0.8)$, complete dominance (CD) $(0.8 \le |d/a| < 1.2)$, and overdominance (OD) (|d/ $a|\geq 1.2$), as described previously (Stuber et al. [1987](#page-13-27)). The means and standard error of the phenotypic values were analyzed in Microsoft Excel 2010.

QTL Analyses

To decrease multicollinearity among the bin markers, the linear ridge regression method was used for the QTL analysis with the bin-map in the CSSLs as described previously (Sun et al. [2015\)](#page-13-25) and for the QTL analysis of MPH and OSH values. A signifcance level of *P*<0.05 was set as the threshold in the three mapping populations to declare the presence of a putative QTL in a given bin. If several adjacent bins showed *P* values lower than the threshold, the QTL was tentatively located in the bin (peak bin) with the lowest P value (Sun et al. [2015](#page-13-25)). The phenotypic variance explained by each QTL was decomposed using "relaimpo" package of R ("*lmg*" function). QTL nomenclature followed the principles suggested in a previous report by McCouch ([2008\)](#page-13-28).

Results

Phenotypic Performance of CSSLs, BC, and TC Populations

Three mapping populations (CSSLs, BC, and TC) exhibited wide phenotypic variances with continuous distribution for 12 yield-related traits (Fig. [1;](#page-4-0) Additional fle [1](#page-12-0): Table S1), showing a quantitative trait inheritance pattern. Most of the lines in the CSSLs and BC populations had similar phenotypic performance as ZS97, except for several lines that showed signifcantly higher or lower values than ZS97 (Fig. [1;](#page-4-0) Additional file [1](#page-12-0): Table S1), indicating that these lines carry either the introduced homozygous NIP or heterozygous NIP segments associated with the measured traits. Moreover, wide variation and continuous distribution of MPH and OSH values

were observed (Fig. [2;](#page-5-0) Additional fle [1:](#page-12-0) Table S1). Several hybrids (of BC and TC) also exhibited heterosis values in two directions signifcantly higher or lower than cor-responding controls for yield-related traits (Fig. [2\)](#page-5-0). The TC population within the complex heterozygous background revealed similar variation in heterosis values to

BC population within the background of ZS97 (Fig. [2](#page-5-0); Additional fle [1](#page-12-0): Table S1).

Correlation analysis was performed for these 12 traits among three populations (Additional fle [2:](#page-12-1) Figure S1). Signifcantly positive correlations were observed in all of the pairwise traits except for seed setting ratio between

x-axis represents the MPH value (%) and OSH value (%) for each trait. The median of each trait is indicated by the the colored triangle. GN, grain number; PB, number of primary branches; PL, panicle length; PP, panicles per plant; PW, panicle weight; SB, the number of secondary branches; SN, spikelet number; TGW, thousand-grain weight; YD, grain yield per plant

the CSSLs and BC. Similarly, signifcantly positive correlations were found in seven traits (HD, PB, PH, PL, SB, SN, and TGW) between the CSSL and TC. However, only four traits (HD, PH, PL, and SB) exhibited signifcantly positive correlations but with low values between the BC and TC. These results indicate that different genetic bases exist for trait performances among the three populations.

Detection of QTLs in CSSLs

The linear ridge regression method was used for the QTL mapping in CSSLs to decrease multicollinearity among markers. A total of 341 QTLs for 12 yield-related traits were identifed in the CSSLs across two environments $(E1 \text{ and } E2)$ (Fig. [3](#page-7-0)a), and they were distributed on all 12 chromosomes (Additional fle [1:](#page-12-0) Table S2). Among them, 114 QTLs were detected in both two environments and 40.4% of the loci suggested that the homozygous NIP alleles increased the phenotypic values. The total phenotypic variances ranging from 47.5 to 79.2% were explained by 14 to 24 QTLs for diferent traits (Additional fle [1:](#page-12-0) Table S2). In the case of HD, 20 QTLs were detected across two-year trials; among them, *qHD7.4* on chromosome 7 had the largest efect, explaining 9.5% and 16.1% of the phenotypic variance in E1 and E2, respectively. Twenty-seven QTLs for PH were identifed; of these, *qPH1.4* on chromosome 1 explaining 40.6% of the phenotypic variance, exhibited the greatest efect on PH. For panicle traits, 28, 24, 32, and 30 QTLs were identifed for PB, PL, PP, and PW, respectively. Among them, the QTL regions (*qPB7.5*/*qPL7.6*/*qPW7.4*) on chromosome 7 (29.62–29.70 Mb) overlapped for three panicle traits with NIP alleles increasing the phenotypic values. For spikelet traits, 35, 25, and 27 QTLs were identifed for GN, SB, and SN, respectively, of which three QTLs (*qGN7.6*/*qSB7.5*/*qSN7.4*) mapped on the same region (29.62–29.70 Mb) exhibited the most signifcant efect on these three traits in both two environments (Additional file [1](#page-12-0): Table S2).

Detection of HL_{MP} for Yield Traits

The CSSL and BC populations were used to identify HL_{MP} in the homozygous background of ZS97. Every line in BC population contains only one or a few introduced heterozygous NIP segments (NIP/ZS97) within the homozygous background of ZS97. Therefore, the HL_{MP} mainly present a non-additive genetic efect between NIP and ZS97 alleles at a given single locus. A total of 307 HL_{MP} were detected for 12 traits across two environments (Fig. [3a](#page-7-0)). Among them, 42 QTLs were detected in both two environments. Most of HL_{MP} (57.0%) increased MPH for yield and yield-related traits (Additional fle [1](#page-12-0): Table S3). For HD, 25 HL_{MP} were detected; among these, *qBHD2.2* and *qBHD7.4* had the most significant effect,

explaining 10.3% and 12.9% of the phenotypic variance in E1 and E2, respectively. For PH, 32 HL_{MP} were identified; of these, *qBPH1.3* revealed the most significant effect, explaining 8.3% of the phenotypic variance. For panicle traits, 21, 31, 19, and 20 HL_{MP} were detected for PB, PL, PP, and PW across the two-year trials. Among them, the QTL overlapping region (*qBPL1.1/qBPW1.1/qBPB1.1*) on chromosome 1 (3.04–5.72 Mb) was detected with a positive efect on multiple panicle traits. Seven-three loci were identifed for three spikelet traits across two environments, with 21 HL_{MP} for GN, 25 for SB, and 27 for SN. Among these, *qBSB8.1/qBSN8.1* on chromosome 8 (3.80–4.37 Mb) was detected in both two environments and was located in the same region of *Ghd8* that was reported to regulate heading date and grain number (Yan et al. 2011). For SS, 36 HL_{MP} were detected; among these, *qBSS9.2* had the most significant effect, explaining 6.8% of the phenotypic variance. A total of 28 HL_{MP} were detected for thousand-grain weight (TGW) in two environments. Among these, *qBTGW8.1* had the largest efect and explained 16.4% of the phenotypic variance in E1. Twenty-two HL_{MP} were detected for YD in E1 and E2 and 14 of them showed positive efects (Additional fle [1](#page-12-0): Table S3).

In addition, all three genetic components (additive, dominance, and overdominance effects) at HL_{MP} were estimated (Fig. [3](#page-7-0)b). The majority (97%) of HL_{MP} exhibited an overdominance or dominance efect (Fig. [3](#page-7-0)b; Addi-tional file [1](#page-12-0): Table S3). These data indicate that overdominance and dominance efects play a crucial role in MPH.

Detection of HL_{os} for Yield Traits

Each line in the TC population contains one or a few introduced heterozygous (NIP/MH63) segments in the otherwise uniform heterozygous background of a widely used hybrid cultivar SY63. Therefore, each HL_{OS} effect represents an interaction effect between NIP and MH63 alleles at a given locus. HL_{OS} detected in TC are summarized in Table S4 (Additional fle [1](#page-12-0): Table S4). A total 310 HL_{OS} were identified for the 12 traits across two environments, which were distributed on all 12 chromosomes. Fifty-seven loci were detected in both two environments. Among them, 55.4% of the loci showed that NIP/MH63 hetero-allelic interaction increased over-standard heterosis. Twenty-eight HL_{OS} for HD were detected across two environments. Twenty-five HL_{OS} affecting PH was identifed; among these, *qTPH1.6* on chromosome 1 (38.10–38.47 Mb) had the largest efect, explaining 40.8% and 39.9% of the phenotypic variance in both E1 and E2, respectively. For panicle traits, 26, 27, 26, and 26 HL_{OS} were detected for PB, PL, PP, and PW, respectively. Among them, three HL_{OS} (*qTPL4.1*/*qTPW4.1*/*qTPB4.1*) were localized in the same region (19.60–19.89 Mb)

of chromosome 4, with the heterozygote increasing the phenotypic values. For spikelet traits, a total of 22, 26, and 28 HL_{OS} were identified for GN, SB, and SN, respectively. Three loci (*qTGN1.4/qTSB1.2/qTSN1.4*)

overlapped in the same region (38.10–38.47 Mb) and exhibited the largest effect, which explained 11.1%, 8.0% and 11.3% of the phenotypic variance of GN, SB, and SN in E2, with the heterozygote increasing the phenotypic

values. Twenty-fve loci were detected for SS, with 16 of them showing that the heterozygous alleles decreased the phenotypic values. For TGW, a major locus *qTTGW5.3* explained 8.5% of the phenotypic variance in E1. For YD, 24 HL _{OS} were identified, explaining 45.1% and 38.9% of the phenotypic variance in E1 and E2, respectively. *qTYD1.2* had the most significant effect (Additional file [1](#page-12-0): Table S4), explaining 16.2% of the phenotypic variance.

Positive Efect of Ghd8 on Yield Heterosis

Among the HLs, a major loci on chromosome 8 (3.80– 4.37 Mb) was identifed for MPH and OSH of four traits (Fig. [3c](#page-7-0), d; Additional fle [1](#page-12-0): Table S3-4), and it was located in the same region of the QTL for six yieldrelated traits detected in the CSSLs (Additional fle [1](#page-12-0): Table S2), which contains a known functional gene (*Ghd8*^{NIP}) (Yan et al. [2011](#page-13-23)). To validate the effect of this HL, NIL-Ghd8^{NIP} that carries an introduced NIP segment encompassing *Ghd8* (Fig. [4](#page-8-0)a) was selected and crossed with NIL-*Ghd8*^{ZS97} to produce F_1 hybrids. The MPH efects at *Ghd8* were assayed in 11 yield-related traits. The heterozygotes at *Ghd8* showed significant MPH for GN, PW, SN, and YD over the two parental lines (NIL-*Ghd8*^{NIP} and NIL-*Ghd8*^{ZS97}) across two-year trials (Fig. [4b](#page-8-0)). As GN and PW are highly dependent on SS, but SS is easily afected by high temperature in summer during the experiments, a representative yield component, SN, which is highly correlated with GN and PW, is used as the example to assess the heterotic effect. The heterozygous *Ghd8* showed high MPH for YD (9.7%) and SN (6.9%) across the two-year trials (Fig. [4b](#page-8-0)). Moreover, an overdominance efect (*|d/a|*=2.94) of *Ghd8* on YD and a complete dominance effect $(|d/a| = 0.99)$ on SN were found in the NIL- *Ghd8^{ZS97}*/NIL-*Ghd8*^{NIP} hybrid (Fig. [4](#page-8-0)c). These results confirm that *Ghd8* is a heterotic locus with an overdominance or dominance efect increasing yield and yield traits.

Validation the Heterotic Efect of Ghd8 by Transgenic Experiment

To validate the heterotic efect of *Ghd8*, the complementary transgenic line (*Ghd8*⁺) carried the *Ghd8*NIP alleles were crossed with NIL-*Ghd8^{ZS97}* (*Ghd8*[−]) to generate the heterozygote (named F_1) containing a hetero-allelic combination (*Ghd8^{ZS97}* and *Ghd8*^{NIP} alleles) (Fig. [4d](#page-8-0)). The F_1 hybrid increased average MPH of YD and SN by 17.1% and 8.4% across the two-year trials, respectively (Fig. [4](#page-8-0)e, f; Additional fle [1:](#page-12-0) Table S5). For YD, the heterozygous genotype (*Ghd8NIP*/*Ghd8ZS97*) exhibited high MPH (e.g. $14.5\% \sim 19.7\%$). The combination showed moderate heterosis for SN (e.g. $5.3\% \sim 11.5\%$) (Fig. [4e](#page-8-0), f; Additional fle [1](#page-12-0): Table S5). Moreover, the heterozygous *Ghd8* showed a positive overdominance efect on YD and partial dominance effect on SN (Fig. [4c](#page-8-0); Additional file [1](#page-12-0): Table S5). These results indicate that *Ghd8* affecting heterosis in yield components, and the two alleles (*Ghd8*NIP and *Ghd8*ZS97) exhibited a strong interaction on MPH in the ZS97 background.

Allelic Interaction of Ghd8 Associated with Heterosis

In a previous study, three alleles (*Ghd8*NIP, *Ghd8*⁹³¹¹ and *Ghd8^{ACC10}*) were reported to be functional, while *Ghd8*ZS97 and *Ghd8*MH63 being loss-of-function alleles due to a premature stop codon occurred (Fig. [5a](#page-10-0)) (Wang et al. [2019b](#page-13-29)). To investigate the interaction efect of *Ghd8* on yield MPH, fve NILs (NIL-*Ghd8*ZS97, NIL-*Ghd8*NIP, NIL-*Ghd8*9311, NIL-*Ghd8*ACC10, and NIL-*Ghd8*MH63) were developed, with each carrying an introduced segment covering *Ghd8* from a particular donor in the same background of ZS97 (Fig. [5b](#page-10-0)), and a half-diallel mating design with fve NILs that contain a particular allele (*Ghd8*ZS97, *Ghd8*NIP, *Ghd8*9311, *Ghd8*ACC10, and *Ghd8*MH63) was used to generate 10 hetero-allelic combinations. The combination (*Ghd8^{ACC10}/Ghd8^{MH63}*) revealed the highest MPH for YD (29.0%) and SN (20.4%) (Fig. [5c](#page-10-0), d; Additional fle [1](#page-12-0): Table S6). Another fve combinations (*Ghd8^{ZS97}*/*Ghd8^{ACC10}, <i>Ghd8^{ZS97}*/*Ghd8*^{NIP}
Ghd8⁹³¹¹/Ghd8^{ACC10}, <i>Ghd8⁹³¹¹/Ghd8^{MH63}, *Ghd8*⁹³¹¹/*Ghd8*^{ACC10}, *Ghd8*NIP/*Ghd8*ACC10) showed signifcantly higher YD heterosis over the check *Ghd8^{ZS97}/Ghd8^{MH63}* (Fig. [5d](#page-10-0)). However, three allelic combinations (*Ghd8*^{NIP}/*Ghd8*⁹³¹¹, and *Ghd8*ZS97/*Ghd8*9311, *Ghd8*NIP/*Ghd8*MH63) produced low or no YD and/or SN advantage over the check *Ghd8*ZS97/*Ghd8*MH63 (Fig. [5](#page-10-0)c, d; Additional fle [1](#page-12-0): Table S6). These results indicate that the interaction of various *Ghd8* alleles could cause diferent heterosis levels of yield.

Fig. 4 Validation of the *Ghd8* efect on mid-parent heterosis (MPH) using near-isogenic lines (NILs) and complementation transgenic lines. **a** Graphical genotype of NIL-*Ghd8*NIP showing a single introduced Nipponbare segment encompassing *Ghd8* in the ZS97 background. **b** The heterosis advantage of Ghd8 for the yield traits in hybrids of NIL-Ghd8^{NIP} and NIL-Ghd8^{ZS97} in a two-year trial. Error bar represents the mean ± SE (n=3). **c** The dominance degree of *Ghd8* efect on spikelet number (SN) and grain yield per plant (YD) in hybrids. If the efect has an excessive degree of dominance, it is set to a score of 5.0. **d** Phenotypes of the complementation transgenic lines and their hybrids at maturity. *Ghd8*+, homozygous-positive transgenic line containing the alleles *Ghd8^{NIP}; Ghd8[−]*, homozygous-negative control lines; F₁ denotes the hybrid derived from the cross of the independent complementation transgenic plant and corresponding negative plant. Scale bars, 10 cm. **e**, **f** MPH of *Ghd8* for SN (E) and YD (F) in the F₁ hybrids across a two-year trial. The error bar represents the mean \pm SE (n = 3)

⁽See fgure on next page.)

Discussion

In the present study, we identifed 98 QTLs for yield traits and HL_{MP} for MPH in the same or overlapping regions in both CSSLs and BC population with the homozygous background of ZS97 (Fig. [3](#page-7-0)a). These commonly detected loci are in the accordance with the high correlations among the yield-related traits (Additional fle [2](#page-12-1): Fig. S1). As comparison, a larger number of loci were found only in the CSSLs not in the BC or TC (Fig. [3](#page-7-0)a; Additional fle [1](#page-12-0): Table S2-S4), suggesting that most HLs were caused by allelic interaction from heterozygotes. These results also suggest that independent genetic efects (*a*, *d*) at that loci are refected in the homozygous NIP in CSSLs and heterozygous NIP alleles in BC. Seventy-fve heterotic loci (HL_{OS}) were found co-localized in the same or overlapping regions of HL_{MP} , indicating that both heterozygous NIP/ZS97 and NIP/MH63 alleles at the detected loci signifcantly afect heterosis in rice, although the interaction efects were infuenced by diferent genetic backgrounds. Of these heterotic loci for MPH and OSH, 32 also revealed major efects on the trait performances in the CSSLs (Fig. [3](#page-7-0)a).

Under comparison of the QTLs detected in the CSSLs with those in previous reports, at least 81 loci co-localized in the same or overlapping regions harboring the genes associated with yield-related traits (Additional fle [1](#page-12-0): Table S2). For example, *qPH1.4* for PH detected in the CSSLs was located near *sd1*, a gibberellin synthesis gene (*OsGA20ox2*) regulating plant height (Sasaki et al. [2002\)](#page-13-30). Five loci (*qGN7.2/qHD7.1/qPH7.2/qSN7.2/ qYD7.1*) were localized in the region that contains the known yield gene *Ghd7* (Xue et al. [2008](#page-13-31)). Five QTLs (*qGN7.6/qHD7.4/qPH7.5/qSN7.6/qYD7.5*) were mapped in the same region where *Ghd7.1* was reported to afect grain number, plant height, and heading date (Yan et al. [2013](#page-13-32)). Six loci (*qGN8/qPB8/qPH8.1/qPW8.1/qSB8/ qSN8.1*) were detected in the region encompassing *Ghd8*, a yield-related gene with a pleiotropic efect on grain number, plant height, and heading date (Yan et al. [2011](#page-13-23)).

We have further identified that 42 HL_{MP} and 59 HL_{OS} located in the same or overlapping regions, where harbor many heterotic genes previously reported associated with yield-related traits (Additional file [1](#page-12-0): Table S3-S4), such as the genes *Gn1a*, *LAX1*, *sd1*, *OsMADS22*, *NAL1*,

Hd1, *Ghd7*, *Ghd7.1*, *Ghd8*, *IPA1*, and *Ehd1* (Huang et al. [2015](#page-13-13), [2016](#page-13-12); Li et al. [2016\)](#page-13-14). Particularly, three HL_{OS} (*qTHD7.1/qTPW7.2/qTYD7.2*) were co-localized in the region of *Ghd7*, which was reported exhibiting a strong heterotic efect on heading date and spikelet number in hybrids (Liu et al. [2015](#page-13-33); Huang et al. [2016\)](#page-13-12). Three HL_{MP} (*qBPH7.4/qBHD7.4/qBSN7.4*) and four HL_{OS} (*qTHD7.4/ qTPH7.2/qTSB7.3/qTYD7.4*) were all co-localized in the *Ghd7.1* region. Three HL_{OS} (qTPB1.1/qTSN1.2/ *qTPW1.1*) were identifed overlapping in the same region of *Gn1a*, which was reported as a grain number gene (Ashikari et al. [2005\)](#page-13-34). Three HL_{OS} (*qTPL1.3/qTPW1.3/ qTSN1.3*) were mapped in the region surrounding a lax panicle gene, $LAX1$ (Komatsu et al. [2011\)](#page-13-35). Three HL_{MP} (*qBPW10/qBPH10.2/qBHD10.2*) were mapped in the region containing *Ehd1*, which is a flowering time gene (Doi et al. [2004\)](#page-13-36). Thus, the data on heterotic loci encompassing candidate genes associated with yield or yield components in both homozygous and heterozygous backgrounds could be immediately exploited for improving yield heterosis in hybrid rice breeding programs.

Notably, many studies reported that *Ghd8* could be an important candidate gene that afects heterosis for yieldrelated traits (Li et al. [2016](#page-13-14); Huang et al. [2015](#page-13-13), [2016](#page-13-12); Chen et al. [2019;](#page-13-37) Lin et al. [2020\)](#page-13-38). However, it lacked transgenic validation. In the present study, we identified four HL_{MP} $(qBHD8.1/qBPL8.2/qBSB8.1/qBSN8.1)$ and one HL_{OS} (*qTHD8.1*) (Additional fle [1:](#page-12-0) Table S3-S4) that were commonly detected in the *Ghd8* region and validated them as the major heterotic locus for yield and spikelet number using transgenic experiments (Fig. [4\)](#page-8-0). Moreover, the interaction efects arose from some hetero-allelic combinations of *Ghd8* caused diferent levels of YD and SN heterosis. Three functional alleles (*Ghd8^{NIP}*, *Ghd8⁹³¹¹*, and *Ghd8ACC10*), when interacting with non-functional allele *Ghd8ZS97*, signifcantly increased heterosis for YD and SN compared with the combination of two non-functional alleles (*Ghd8^{ZS97}* and *Ghd8^{MH63}*) (Fig. [5\)](#page-10-0). The heteroallelic combinations, such as *Ghd8ACC10*/*Ghd8MH63* and *Ghd89311*/*Ghd8MH63*, also exhibited much signifcantly higher MPH for YD and SN than the check combination *Ghd8^{ZS97}/Ghd8^{MH63}*. These data suggest that the allelic interaction efect arose from the functional and nonfunctional alleles at *Ghd8* could produce more spikelet

⁽See figure on next page.)

Fig. 5 Yield mid-parent heterosis (MPH) of 10 allelic combinations at *Ghd8* in heterozygotes within the background of ZS97. **a** Schematic gene mode showing nucleotide variations in the coding region of *Ghd8* among fve parents (NIP, ZS97, 9311, ACC10 and MH63). NIP (Nipponbare) is used as a reference. Polymorphic nucleotides are indicated by diferent color lines. "F" and "N" denote functional and non-functional alleles, respectively. **b** Plant image of five NILs (NIL-Ghd8^{ZS97}, NIL-Ghd8^{NIP}, NIL-Ghd8⁹³¹¹, NIL-Ghd8^{ACC10}, and NIL-Ghd8^{MH63}). The images were taken at the maturity of NIL-Ghd8^{ZS97}; scale bar, 10 cm. **c**, **d** MPH of Ghd8 for spikelet number (SN) and yield per plant (YD) in ten hybrids with different allelic combinations. The error bar represents the mean ± SE (n = 3). NIL-*Ghd8^{NIP}*, NIL-*Ghd8⁹³¹¹*, NIL-*Ghd8^{ACC10}*, and NIL-*Ghd8^{MH63}* represent those NILs carrying corresponding *Ghd8* alleles from diferent donors within the same ZS97 background, respectively. The diferent letters denote signifcant diferences by LSD test at $P < 0.05$. The error bar represents the mean \pm SE (n = 3)

number and grain yield in heterozygotes than in the corresponding homozygotes or the check combination. However, the molecular mechanisms for the varied heterosis levels led by allelic combinations require further investigation. It has been reported that various allelic interactions may lead to novel hybrid expression patterns (He et al. [2010;](#page-13-39) Groszmann et al. [2015](#page-13-40); Shao et al. [2019](#page-13-8)), protein metabolism (Gof, [2011;](#page-13-41) Chen, [2013\)](#page-13-0), and epigenetic changes such as small RNAs and histone modifcation (Springer and Stupar, 2007; Lauss et al. [2019\)](#page-13-42). In this regard, the transcriptional or post-transcriptional regulations, or polymer/dimer products from the allelic interaction may be causes of the heterosis variation. The developed NILs each contains a particular allele at the heterotic locus will provide an excellent stock to dissect the underlying mechanisms.

In addition, the elite rice hybrid SY63 has been successfully used for commercial hybrid production with the largest cultivated area in China during the past three decades (Xie and Zhang, [2018](#page-13-43)). In the present study, we found that the original hetero-allelic combination *Ghd8*ZS97/*Ghd8*MH63 in SY63 did not contribute to yield heterosis. However, the hetero-allelic combinations between *Ghd8^{ZS97}* (or *Ghd8^{MH63}*) and any other alleles like *Ghd8^{NIP}*, *Ghd8*⁹³¹¹, or *Ghd8*^{ACC10} in heterozygotes could produce a signifcant positive yield heterosis compared with the combination between *Ghd8*ZS97 and *Ghd8^{MH63}*. Thus, the replacement of either allele *Ghd8*ZS97 or *Ghd8*MH63 of SY63 with those identifed desirable *Ghd8* alleles with a marker-assisted selection approach can be used to improve the yield potential of hybrid cultivars.

Conclusion

A large number of HLs for yield-related traits were identifed using three rice CSSL interconnected populations. Of these loci, *Ghd8* was validated as a major HL for spikelet number and grain yield by transgenic experiments. Moreover, the investigation of 10 hetero-allelic combinations at *Ghd8* exhibited several desirable allelic interactions in heterozygotes that can enhance yield heterosis. These data provide new insights into understanding the genetic basis of heterosis and will be exploited for increasing yield potential in hybrid rice breeding programs to meet the demand of growing population.

Abbreviations

A: Additive efect; BC: Backcross; CD: Complete dominance; CSSLs: Chromosome segment substitution lines; HLs: Heterotic loci; HL_{MP}: Mid-parent heterotic loci; HL_{OS}: Over-standard heterotic loci; Indel: Insertion/deletion; MPH: Mid-parent heterosis; NIL: Near-isogenic line; OD: Overdominance; OSH: Overstandard heterosis; PD: Partial dominance; QTLs: Quantitative trait loci; SNP: Single nucleotide polymorphism; SSR: Simple sequence repeat; TC: Testcross.

Supplementary Information

The online version contains supplementary material available at [https://doi.](https://doi.org/10.1186/s12284-021-00539-z) [org/10.1186/s12284-021-00539-z.](https://doi.org/10.1186/s12284-021-00539-z)

Additional fle 1 Table S1. Phenotypic performances of 12 traits among the parents, CSSLs, BC, and TC across two environments. **Table S2**. QTLs were detected for 12 traits in CSSLs across two-year trials. **Table S3**. Mid-parent heterotic loci (HL_{MP}) were detected for 12 traits in BC across two environments. **Table S4**. Over-standard heterotic loci (HL_{OS}) were detected for 12 traits in TC population across two environments. **Table S5**. The degree of dominance and mid-parent heterosis for spikelet number and grain yield in transgenic hybrids. **Table S6** The degree of dominance and mid-parent heterosis for spikelet number and grain yield in 10 allelic combinations.

Additional file 2 Figure S1. Correlation coefficients for 12 traits among CSSLs, BC and TC populations in 2007. GN, grain number; HD, heading date; PB, number of primary branches; PH, plant height; PL, panicle length; PP, panicles per plant; PW, panicle weight; SB, the number of secondary branches; SN, spikelet number; SS, seed setting ratio; TGW, thousand-grain weight; and YD, grain yield per plant.

Acknowledgements

The authors would like to thank Mr. Kun Xie for assistance in data analysis.

Authors' Contributions

YS designed and conceived the research; XY, ZH, QX and WD developed the populations and NILs; XY and WP developed the transgenic lines; ZC and SW performed genotyping; ZC and XY analyzed data; YS, ZC and AJ wrote the paper. All authors read and approved the fnal manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31971864), the Major Project of Science and Technology of Hubei (2019ABA104), and the National High Technology Research and Development of China (2014AA10A604). Also, the Bill & Melinda Gates Foundation (BMGF) is acknowledged for providing a research grant on Green Super Rice Project under ID OPP1130530.

Availability of Data and Materials

The data sets supporting the results of this article are included within the article and its supporting fles.

Declarations

Ethics Approval and Consent to Participate Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Author details

¹ National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. ²International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.

Received: 27 July 2021 Accepted: 17 November 2021Published online: 26 November 2021

References

- Ali ML, Sanchez PL, Yu S, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from *Oryza* wild species into cultivated rice (*O. sativa*). Rice 3:218–234
- Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745
- Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010) Heterosis. Plant Cell 22:2105–2112
- Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482
- Chen E, Huang X, Tian Z, Wing R, Han B (2019) The genomics of *Oryza* species provides insights into rice domestication and heterosis. Annu Rev Plant Biol 70:639–665
- Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) *Ehd1*, a B-type response regulator in rice, confers short-day promotion of fowering and controls *FT-like* gene expression independently of *Hd1*. Gene Dev 18:926–936
- Elert E (2014) Rice by the numbers: a good grain. Nature 514:50–51
- Gjuvsland AB, Plahte E, Adnoy T, Omholt SW (2010) Allele interaction–single locus genetics meets regulatory biology. PLoS ONE 5:e9379
- Goff SA (2011) A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. New Phytol 189:923–937
- Groszmann M, Gonzalez-Bayon R, Lyons RL, Greaves IK, Kazan K, Peacock WJ, Dennis ES (2015) Hormone-regulated defense and stress response networks contribute to heterosis in *Arabidopsis* F1 hybrids. Proc Natl Acad Sci USA 112:6397–6406
- He GM, Zhu XP, Elling AA, Chen LB, Wang XF, Guo L, Liang MZ, He H, Zhang HY, Chen FF, Qi YJ, Chen RS, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33
- Huang XH, Yang SH, Gong JY, Zhao Y, Feng Q, Gong H, Li WJ, Zhan QL, Cheng BY, Xia JH, Chen N, Hao ZN, Liu KY, Zhu CR, Huang T, Zhao Q, Zhang L, Fan DL, Zhou CC, Lu YQ, Weng QJ, Wang ZX, Li JY, Han B (2015) Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun 6:6258
- Huang XH, Yang SH, Gong JY, Zhao Q, Feng Q, Zhan QL, Zhao Y, Li WJ, Cheng BY, Xia JH, Chen N, Huang T, Zhang L, Fan DL, Chen JY, Zhou CC, Lu YQ, Weng QJ, Han B (2016) Genomic architecture of heterosis for yield traits in rice. Nature 537:629–633
- Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2011) The *LAX1* and *FRIZZY PANICLE 2* genes determine the inforescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364–373
- Krieger U, Lippman ZB, Zamir D (2010) The fowering gene *SINGLE FLOWER TRUSS* drives heterosis for yield in tomato. Nat Genet 42:459–463
- Lin Z, Qin P, Zhang X, Fu CJ, Deng HC, Fi XX, Huang Z, Jiang SQ, Li C, Tang XY, Wang XF, He GM, Yang YZ, He H, Deng XW (2020) Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proc Natl Acad Sci USA 117:4623–4631
- Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multi parental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (*Zea mays* L.). Genetics 190:795–811
- Lauss K, Wardenaar R, Oka R, Hulten MHA, Guryev V, Keurentjes JJB, Stam M, Johannes F (2019) Parental DNA methylation states are associated with heterosis in epigenetic hybrids. Plant Physiol 176:1627–1645
- Li DY, Huang ZY, Song SH, Xin YY, Mao DH, Lv QM, Zhou M, Tian DM, Tang MF, Wu Q, Liu X, Chen TT, Song XW, Fu XQ, Zhao BR, Liang CZ, Li AH, Liu GZ, Li SG, Hu SN, Cao XF, Yu J, Yuan LP, Chen CY, Zhu LH (2016) Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc Natl Acad Sci USA 113:6026–6035
- Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I Biomass and Grain Yield Genetics 158:1737–1753
- Liu C, Song GY, Zhou YH, Qu XF, Guo ZB, Liu ZW, Jiang DM, Yang DC (2015) *OsPRR37* and *Ghd7* are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep 5:12803
- Liu HJ, Wang Q, Chun MJ, Yang XR, Liu J, Li XH, Zhou CC, Tian QL, Lu YQ, Fan DL, Shi SP, Zhang L, Kan CB, Sun MF, Li FY, Wu YJ, Zhang YZ, Liu BS, Zhao XY, Feng Q, Yang JL, Han B, Lai JS, Zhang XS, Huang XH (2020) Genome-wide identifcation and analysis of heterotic loci in three maize hybrids. Plant Biotechnol J 18:185–194
- McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72–84 Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321
- Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (*Oryza sativa* L.). Mol Gen Genet 252:597–607
- Qian Q, Guo L, Smith S, Li JY (2016) Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev 3:283–294
- Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702
- Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88
- Shao L, Xing F, Xu CH, Zhang QH, Che J, Wang XM, Song JM, Li XH, Xiao JH, Chen LL, Ouyang YD, Zhang QF (2019) Patterns of genome-wide allelespecifc expression in hybrid rice and the implications on the genetic basis of heterosis. Proc Natl Acad Sci USA 116:5653–5658
- Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigation of quantitative trait loci in maize. II. Factors infuencing yields and its component traits. Crop Sci 27:639–648
- Sun WQ, Zhou QL, Yao Y, Qiu XJ, Xie K, Yu S (2015) Identifcation of genomic regions and the isoamylase gene for reduced grain chalkiness in rice. PLoS ONE 10:e0122013
- Tao YJ, Zhu JY, Xu JJ, Wang LJ, Gu HW, Zhou RH, Yang ZF, Liang GH (2016) Exploitation of heterosis loci for yield and yield components in rice using chromosome segment substitution lines. Sci Rep 6:36802
- Wang CS, Tang SC, Zhan QL, Hou QQ, Zhao Y, Zhao Q, Feng Q, Zhou CC, Lyu DF, Cui LL, Li Y, Miao JS, Zhu CR, Lu YQ, Wang YC, Wang ZQ, Zhu JJ, Shangguan YY, Gong JY, Yang SH, Wang WQ, Zhang JF, Xie HA, Huang XH, Han B (2019a) Dissecting a heterotic gene through GradedPoolSeq mapping informs a rice-improvement strategy. Nat Commun 10:2982
- Wang P, Xiong Y, Gong R, Yang Y, Fan K, Yu S (2019b) A key variant in the cis-regulatory element of fowering gene *Ghd8* associated with cold tolerance in rice. Sci Rep 9:9603
- Wang ZQ, Yu CY, Liu X, Liu SJ, Yin CB, Liu LL, Lei JG, Jiang L, Yang C, Chen LM, Zhai HQ, Wan JM (2012) Identifcation of *indica* rice chromosome segments for the improvement of *japonica* inbreds and hybrids. Theor Appl Genet 124:1351–1364
- Xiao JH, Li JM, Yuan LP, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754
- Xie FM, Zhang JF (2018) Shanyou 63: an elite mega rice hybrid in China. Rice 11:11–18
- Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu S, Xu CG, Li XH, Zhang Q (2008) Natural variation in *Ghd7* is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767
- Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu S, Xing Y, Zhang Q (2011) A major QTL, *Ghd8*, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330
- Yan WH, Liu HY, Zhou XC, Li QP, Zhang J, Lu L, Liu TM, Liu HJ, Zhang CJ, Zhang ZY, Shen GJ, Yao W, Chen HX, Yu S, Xie WB, Xing YZ (2013) Natural variation in *Ghd7.1* plays an important role in grain yield and adaptation in rice. Cell Res 7:969–971
- Yu S, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai-Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231
- Zhang B, Shang LG, Ruan BP, Zhang AP, Yang SL, Jiang HZ, Liu CL, Hong K, Lin H, Gao ZY, Hu J, Zeng DL, Guo LB, Qian Q (2019) Development of three sets of high-throughput genotyped rice chromosome segment substitution lines and QTL mapping for eleven traits. Rice 12:33
- Zhang SN, Huang XH, Han B (2021) Understanding the genetic basis of rice heterosis: Advances and prospects. Crop J 9:688–692
- Zhou G, Chen Y, Yao W, Zhang CJ, Xie WB, Hua JP, Zhang Q (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 109:15847–15852

Zhu D, Zhou G, Xu CG, Zhang Q (2016) Genetic components of heterosis for seedling traits in an elite rice hybrid analyzed using an immortalized F_2 population. J Genet Genomics 43:87–97

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen^o journal and benefit from:

- \blacktriangleright Convenient online submission
- \blacktriangleright Rigorous peer review
- ▶ Open access: articles freely available online
- \blacktriangleright High visibility within the field
- \blacktriangleright Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com