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Abstract

We analyze interferometric synthetic aperture radar (InSAR) data acquired between 

2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite 

missions to measure and characterize time-dependent deformation at the Brady Hot 

Springs geothermal field in western Nevada due to extraction of fluids. The long axis of 

the ∼4 km by ∼1.5 km elliptical subsiding area coincides with the strike of the 

dominant normal fault system at Brady. Within this bowl of subsidence, the interference 

pattern shows several smaller features with length scales of the order of ∼1 km. This 

signature occurs consistently in all of the well-correlated interferometric pairs spanning 

several months. Results from inverse modeling suggest that the deformation is a result 

of volumetric contraction in shallow units, no deeper than 600 m, likely associated with 

damaged regions where fault segments mechanically interact. Such damaged zones 

are expected to extend downward along steeply dipping fault planes, providing a high 

permeability conduit to the production wells. Using time series analysis, we test the 

hypothesis that geothermal production drives the observed deformation. We find a good

correlation between the observed deformation rate and the rate of production in the 

shallow wells. We also explore mechanisms that could potentially cause the observed 

deformation, including thermal contraction of rock, decline in pore pressure and 

dissolution of minerals over time.
 Previous     article
 Next     article
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1. Introduction

The Brady Hot Springs geothermal field is located approximately 80 km east-northeast 

of Reno, in the Hot Spring Mountains of northwestern Nevada. The area surrounding 

the field is dominated by a network of north-northeast trending, steeply dipping, en 

echelon normal faults, as mapped by Faulds et al. (2003) and shown in Fig. 1. A 

∼15 megawatt geothermal plant at Brady has been generating power since 1992. Six 

production wells, located near a prominent bend in the normal fault system (Fig. 1) are 

used to withdraw hot water from depths of 400 to 1850 m. Following generation of 

electricity, most of the spent brine is recycled back into the subsurface, between depths 

of 200 and 300 m, via two injection wells located 1500–2500 m away in the north-

northeast direction, along the strike of the predominant fault system, whereas the rest is
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diverted away from the field. The geothermal reservoir is hosted in layered 

Tertiary volcanic rocks, including welded tuff, rhyolite and meta-sediments 

overlying Mesozoic crystalline intrusions (Jolie et al., 2012, Siler and Faulds, 2013). 

The primary production interval reaches temperatures of ∼175 °C at depths of 1000–

2000 m (Benoit and Butler, 1983, Shevenell et al., 2012). The net extraction rate, 

averaged over the 2004–2014 time interval, is ∼0.2 m3/s.
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Fig. 1. Map showing location of the Brady Hot Springs geothermal field. The fault map is
from Faulds et al. (2010) and surface hydrothermal activity is from Coolbaugh et al. 
(2004). Injection wells are shown by blue triangles and producing wells are shown by 
red triangles. Fiducial crosses indicate 1000-meter grid in easting and northing of the 
Universal Transverse Mercator (UTM) projection (Zone 11). The TSX interferogram in 
the background shows wrapped phase change values over the 308-day interval from 
December 24, 2011 to October 27, 2012. One colored fringe corresponds to one cycle 
of phase change, or 16 mm of range change. The dotted and dashed grey line delimits 
the broad deforming zone described in Section 2.1. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Withdrawal of fluids from the subsurface can cause deformation through a number of 

processes, including thermal contraction of rock, change in pore pressure, and 

dissolution/alteration of minerals. At the surface, this deformation can be measured 

using interferometric synthetic aperture radar (InSAR). InSAR uses the phase difference

between two SAR images, acquired at two different points in time (epochs), to create 

an interferogram (e.g., Massonnet and Feigl, 1998). The resulting map of ambiguous 

wrapped phase contains information about ground deformation, topography, and 

atmospheric changes. After correcting the interferogram for topography, an unwrapping 

algorithm is used to estimate the range change along the line of sight. By analyzing the 

pattern of deformation, we can gain insight into the underlying geomechanical 

processes and the plumbing of the reservoir which can aid the operator to better 

manage the geothermal resource. This approach has been used to study deformation at

several geothermal fields, including, Cerro Prieto, Mexico (Carnec and Fabriol, 

1999, Sarychikhina et al., 2007), Coso, California (Fialko and Simons, 2000, Wicks et 

al., 2001), Dixie Valley, Nevada (Foxall and Vasco, 2003), Brady, Nevada (Oppliger et 

al., 2004, Oppliger et al., 2006, Shevenell et al., 2012), Taupo Volcanic Zone, New 

Zealand (Chang et al., 2005, Hole et al., 2007), Svartsengi, Iceland (Jonsson, 

2009, Masters, 2011), Imperial Valley, California (Eneva et al., 2009, Eneva et al., 

2012), San Emidio, Nevada (Eneva et al., 2011) and The Geysers, California (Vasco et 

al., 2013). Most of these studies show rates of deformation that remain fairly constant 

over time scales of years. At Brady, Oppliger et al., 2004, Oppliger et al., 2006 applied 

InSAR to map deformation resulting from geothermal production between 1997 and 

2002, using images acquired by the C-band radar aboard the ERS satellite of 

the European Space Agency (ESA), and interpreted the cm-scale signal in terms of a 

contracting aquifer. In this study, we use multiple images acquired between 2004 and 

2014 by several satellite missions, including ERS-2, Envisat, ALOS, TerraSAR-X (TSX) 
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and TanDEM-X (TDX), to measure and characterize the time-dependent deformation at 

Brady.

2. Data and methods

2.1. SAR interferometry

We analyze 139 SAR images acquired by the ERS-2, Envisat (McLeod et al., 1998), 

ALOS (Igarashi, 2001), TSX (Pitz and Miller, 2010) and TDX (Krieger et al., 

2007) satellite missions between 2004 and 2014 and combine them to form 354 distinct 

interferometric pairs (Table S1). To generate interferograms from ERS-2, Envisat, and 

ALOS data, we use GMTSAR, an open-source code developed by Sandwell et al. 

(2011). For the TSX and TDX data, we generate interferograms using the DIAPASON 

software developed by the French Space Agency CNES (Massonnet and Rabaute, 

1993, Massonnet and Feigl, 1998). The topographic contribution to the interferograms 

created in DIAPASON is removed using a digital elevation model (DEM) with 10 m 

posting from the National Elevation Dataset (Gesch et al., 2002). For interferograms 

processed with GMTSAR, we use a DEM with 1 arc-second posting from the Shuttle 

Radar Topographic Mission (Farr et al., 2007).

For example, the observed wrapped phase change values for the TSX pair spanning a 

308-day time interval between December 24, 2011 and October 27, 2012 are shown 

in Fig. 1. One fringe of phase change in this interferogram corresponds to 16 mm of 

range change along the radar line of sight between the satellite and the ground. The 

wrapped phase values have been filtered using their two dimensional spectra (Goldstein

and Werner, 1998). The spatial pattern of the deformation is aligned parallel to the 

north-northeast strike of predominant fault system, including the 4-km-long 

Brady normal fault, and the trend of the associated fumaroles. The interferogram shows 

several signatures of varying dimension. For example, a broad, elliptically shaped area 

roughly 4 km long by 1.5 km wide (outlined by the dotted and dashed grey line), that is 

consistent with earlier observations (Oppliger et al., 2004, Oppliger et al., 2006). Within 

this broad bowl, we observe several smaller elliptical features, with length scales 

ranging from 1 to 2 km. The major axes of each of these subsidence bowls trend NNE, 

following the bending trace of the normal fault strands (black lines in Fig. 1). The smaller

bowls are centered along strike, but more than 0.5 km away from the two injection wells 

in the northeast part of the field. Similarly, the larger bowl is centered approximately 

∼1 km along strike from the producing wells in the southwest part of the field. These 

signatures are consistently observed in all interferograms spanning more than a year 

(Fig. S1). Pairs spanning less than year show only the short scale features that abut the
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producing and injection wells. Using pairwise logic (Massonnet and Feigl, 1995), we 

reject the possibility that the observed signatures are due to imprecise orbital 

trajectories or atmospheric perturbations.

2.2. Inverse modeling

To gain insight into the sources causing the deformation observed in the interferograms,

we perform non-linear inverse modeling using unwrapped range change rate as the 

observable quantity. To unwrap the phase values, we use the statistical-cost, network-

flow phase-unwrapping algorithm developed by Chen and Zebker (2001). Following 

unwrapping, we account for any unmodeled effects in the satellite orbits by estimating 

three parameters describing a planar ramp and subtracting it from the range values 

across the entire scene. Finally, we calculate the range change rate in millimeters per 

year.

To describe the signatures in the interferograms, we use an elastic model where 

observed deformation is attributed to change in volume at depth. We model the 

reservoirs using a combination of mode-I, tensile dislocations in rectangular prisms, 

embedded in a halfspace with uniform elastic material properties (Okada, 1985). The 

tensile dislocating sources are especially appropriate because the thickness of 

an aquifer or reservoir is usually smaller than its length or width. By estimating the 

parameters in this idealized model, we can gain insight into the geometry and location 

of the reservoir, e.g., its extent and depth. The estimated volume change in the model 

that fits the surface deformation is presumably due to injection and/or extraction of 

fluids, as discussed above. To solve the inverse problem, we use an iterative, gradient 

based inversion scheme that uses a Taylor series to approximate the fitting function (Ali 

and Feigl, 2012). The inversion procedure minimizes the L1 norm of the residual 

between the observed and modeled values of the range change, averaged over all 

points in the dataset. Uncertainties are calculated using the bootstrapping procedure 

(Efron and Tibshirani, 1986) described in Ali et al. (2014).

Since the rate of hot fluid withdrawal exceeds the rate of injection, the resulting total is 

net extraction that decreases the volume of the reservoir. Our mechanical model 

includes four tensile dislocating sources. The free parameters for each source include 

position, geometry (i.e., length, width, dip, and strike) and the opening, which is positive 

for an expanding source and negative for a contracting source. In addition, we estimate 

a nuisance parameter that accounts for systematic offsets in range change rate as an 

additive constant. First, we perform inversion using the stack (average) of all the maps 

of range change rate, in each track, in order to estimate the geometrical parameters. 
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This procedure improves the signal-to-noise ratio as random noise will average to zero. 

For example, Fig. 2shows the stacked range change rate, in mm/year, averaged for all 

successful TSX/TDX pairs in Track 53, the modeled range change calculated using the 

final estimate of parameters, following the inversion, and the residual difference 

between the stacked and the modeled rates of range change. During inversion, the 

cost, defined as the L1 misfit of the range change rate, averaged over all pixels, 

decreases to less than 1 mm/year. The main features, such as the elliptical lobes near 

production wells in the south, and near the injection wells, are reproduced by the model.

The estimated parameters are listed in Table 1 along with their bootstrap uncertainties. 

In the second step, we fix the geometry of all four sources and perform inversion for 

each individual pair in the track to estimate the opening parameter for each individual 

source, along with the nuisance parameter. For example, Fig. 3 shows the results for a 

single pair in Track 53, spanning the 363-day interval from May 13, 2013 to May 11, 

2014. For this pair the final cost is 2.2 mm.

1. Download high-res image     (886KB)

2. Download full-size image

Fig. 2. (a) Average rate of range change, in mm/year, calculated from 90 unwrapped 
TSX/TDX interferometric pairs in Track 53 spanning 2011–2015. Coordinates are 
northing and easting in kilometers in zone 11 of the Universal Transverse Mercator 
projection using the WGS84 ellipsoid. (b) Modeled unwrapped range change rate, in 
mm/year, calculated from the final estimate of the parameters. (c) Residual values of the
range change calculated by subtracting the modeled values from the observed values. 
Thin solid lines represent the surface trace of faults, triangles represent producers, 
inverted triangles represent injection wells and square represents the location of well 
15-12. Thick solid lines in (b) represent the surface projections of the modeled sources. 
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(d) Observed and modeled rate of range change, across a cross-section shown by 
dashed lines in (a) and (b), respectively.

Table 1. Parameters estimated for the elastic model consisting of four, mode-I, rectangular tensile 

dislocations in elastic half-space (Okada, 1985), using the averaged/stacked rate of range change in 

Track 53 (TSX/TDX) shown in Fig. 2.

Parameter Estimated value Uncertainty

Okada1 length (m) 1729.606 119.439

Okada1 width (m) 5.007 0.275628

Okada1 depth (m) 277.686 36.1025

Okada1 dip (deg) 6.412 4.66619

Okada1 strike (deg) 18.520 2.43446

Okada1 east (m) 327,638.515 21.28

Okada1 north (m) 4,406,713.126 48

Okada1 opening (m) −0.952 0.107816

Okada2 length (m) 738.462 111.717

Okada2 width (m) 5.036 0.409102

Okada2 depth (m) 221.930 54.8961

Okada2 dip (deg) −9.459 8.56973

Okada2 strike (deg) 36.797 6.41109

Okada2 east (m) 328,458.785 31.875

Okada2 north (m) 4,408,425.726 32.5

Okada2 opening (m) −0.818 0.166806

Okada3 length (m) 516.322 37.2377

Okada3 width (m) 5.007 0.28433

Okada3 depth (m) 100.998 13.9591

Okada3 dip (deg) −34.252 10.6134

Okada3 strike (deg) 22.992 3.39852

Okada3 east (m) 328,547.951 13.8

Okada3 north (m) 4,407,906.391 16.5

Okada3 opening (m) −1.173 0.152854

Okada4 length (m) 255.253 40.7995

Okada4 width (m) 5.845 0.62326

Okada4 depth (m) 273.394 35.5125

Okada4 dip (deg) −26.515 13.6735
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Parameter Estimated value Uncertainty

Okada4 strike (deg) 44.716 17.1364

Okada4 east (m) 327,713.976 36.565

Okada4 north (m) 4,406,448.995 43.25

Okada4 opening (m) −2.483 0.233498

Rate of total volume increase (m3/yr) −18887.7 168.5
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Fig. 3. (a) Range change, in mm, calculated by unwrapping phase values from a TSX 
interferometric pair, spanning the 363-day interval from May 13, 2013 to May 11, 2014, 
shown in (d). Coordinates are northing and easting in kilometers in zone 11 of the 
Universal Transverse Mercator projection using the WGS84 ellipsoid. (b) Modeled range
change, in mm, calculated from the final estimate of the parameters. (c) Residual values
of the range change calculated by subtracting the modeled values from the observed 
values. (e) Modeled wrapped phase, calculated from the final estimate of the 
parameters. (f) Observed and modeled range change, across a cross-section shown by 
dashed lines in (a) and (b), respectively. One colored fringe in (d) and (e) corresponds 
to one cycle of phase change, or 16 mm of range change.

The estimated depths of the sources range from ∼100 m for the shallowest deforming 

source near the injection wells to ∼300 m for source near producing wells that results in

the long wavelength signal. The estimates of tensile closing rates for the sources are 

between 1.0 and 2.5 m/year. As shown in Fig. 2, the strikes of the sources coincide with 

the strike of the predominant fault system. This result, along with small (but significant) 

estimates for width (∼5 m), suggests that the deforming sources are associated with the

faults.

We repeat the above procedure(s) for 354 interferometric pairs across 8 separate tracks

to estimate model parameters. The geometry of various sources, e.g., their estimated 

length, width and strike, does not vary substantially across different tracks. Their 

estimated depth, however, ranges from ∼100 m for the shallowest source to ∼600 m for

the deepest source. We then combine the estimated length, width and opening of 

corresponding sources to calculate the total rate of volume change for the time interval 

spanned by each pair. This calculation provides a scalar quantity that is convenient for 

studying the temporal evolution of the deformation. The estimated rate of volume 

change, in m3/year, for each pair is shown in Fig. 4. The average value is 

48.2 ± 0.1 × 103 m3/year or about 1.5 liter/s. However, the rate is not constant in time 

and appears to be decreasing, almost linearly since 2004, at least over the long term. 

Over shorter time scales, e.g., between 2012 and 2014, the variations do not show a 

clear non-linear pattern.
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1. Download high-res image     (170KB)
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Fig. 4. Cumulative rate of volume change calculated from the final estimate of 
parameters, for each pair, along with uncertainties (vertical bars) which have been 
scaled by the square root of the mean squared error from the temporal adjustment. 
Horizontal bars indicate time span for each interferometric pair.

2.3. Time-series analysis

In order to evaluate the time dependence, we perform time-series analysis using 

temporal adjustment. This procedure converts the rate of volume change estimated over

individual interferometric pairs spanning different time intervals into the integrated 

volume at each point in time (e.g., Schmidt and Bürgmann, 2003, Beauducel et al., 

2000, Feigl and Thurber, 2009, Feigl et al., 2014). To do so, we use the GraphTreeTA 

method of temporal adjustment (Baluyut et al., 2015unpublished manuscript) Because 

the rate of volume change is not constant (Fig. 4), we assume a piecewise linear 

parameterization for the temporal function that includes 8 segments, each spanning 

between 1 and 2 years. The volumetric rates of change estimated from the 354 pairs 

are weighted by the inverse of their covariance. The off-diagonal elements of this data 

covariance matrix account for the temporal correlation between interferometric pairs 

sharing a common epoch (e.g., Biggs et al., 2007). Each of the 8 free parameters in the 

model for the time dependence corresponds to the rate of change during the 

corresponding time interval. These 8 parameters are estimated, along with their 
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uncertainties, using standard weighted least squares (e.g., Aster et al., 2011). The 1-

sigma uncertainties have been scaled by the weighted root mean squared scatter of the

residuals. The number of free parameters in the temporal adjustment represents a 

trade-off between fitting the data and smoothing the model. Using a polynomial 

parameterization of order two yields a mean squared error value of 0.42, which is 

significantly worse than 0.26 found using a piecewise linear parameterization, 

respectively, by an F-test with 95% confidence. The results of temporal adjustment are 

shown in Fig. 5 (and Fig. S2) along with their uncertainties. The trend of the curve (solid 

black line) suggests that the underlying processes are continuous in time.

1. Download high-res image     (170KB)

2. Download full-size image

Fig. 5. Volume change as a function of time as estimated from the individual pairs using 
temporal adjustment, assuming a piecewise linear model. Each colored line segment 
represents an individual InSAR pair connecting the first epoch with the second epoch. 
The mid-point of each time interval is taken as a reference and plotted arbitrarily on the 
modeled curve (black). The slope of each colored line segment denotes the rate of 
volume change estimated from the corresponding InSAR pair. A blue bar, drawn at the 
second epoch for each pair, denotes the uncertainty. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this 
article.)

To gain more insight into the processes, we compare the InSAR derived time series to 

the flow rates in various producing wells that were active between 2004 and 2014, along
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with the time series estimated from InSAR. While these are two different quantities, i.e., 

the measured volume of water extracted versus decrease in the modeled volume of the 

reservoir, it can tell us if the deformation is being preferentially caused by certain wells 

or a group of wells. We do the comparison by calculating the correlation 

coefficient R between the two quantities.

We find good correlation between the volume change estimated from InSAR analysis 

and the production in shallow wells. Specifically, the strongest correlations occur in 

three cases, i.e., (i) wells 48A-1, 47C-1 and 46-1 summed together (R = 0.9954), (ii) 

well 48A-1 (R = 0.9936), and (iii) well 47C-1 (R = 0.9830). In each of these three cases, 

we find that the rate of production decreases with time, as does the rate of volumetric 

decrease as estimated from InSAR data. On the other hand, we find that the rate of 

production in deeper wells, i.e., wells 82A-11, 27-1 and 18-1, both individually and 

together, increases over time. This mismatch is reflected in the relatively low values 

(R ≤ 0.9548) of the correlation coefficient. This result suggests that that the deformation 

is likely being caused by wells 48A-1, 46-1 and 47C-1, given their close proximity.

3. Discussion

Subsidence due to geothermal production can be caused by a number of processes, 

including: (i) gradual thermal cooling of reservoir, especially near injection wells, that 

recycle the cooler brine back into the subsurface, (ii) sediment compaction due to 

decreasing pore pressure and desaturation, and (iii) dissolution and transport of 

minerals in the flowing brine.

The temperature of produced fluids at geothermal fields decreases slowly over time. 

Subsidence, however, depends on the volume of rock that is cooled. If we assume that 

the thermal energy gained by the water equals the energy lost by the rock, we have,

(1)cprodρprodVprodTprod−cinjρinjVinjTinj=crockρrockΔTrockVrock,

where c is the specific heat capacity, ρ is the density, V is the volume, and T is the 

temperature. Subscripts prod, inj, and rock represent values for produced water, 

injected water and reservoir rock, respectively. Because liquid water at Brady does not 

flash to steam, we neglect the latent heat of vaporization. Since the volume of the rock 

cooled is the same as the volume of rock that contracts,

(2)ΔVrock=αrockΔTrockVrock,

where α is the coefficient of thermal expansion. Substituting, we find

(3)ΔVrock=αrockcprodρprodVprodTprod−cinjρinjVinjTinjρrockcrock.

Assuming ρprod = 902 kg/m3, ρinj = 972 kg/m3, cprod = 4360 J/kg/K, cinj = 4198 J/kg/K, ρrock = 2

750 kg/m3, crock = 800 J/kg/K, αrock = 10−5 K−1, Vprod = 0.5607 m3 (per second), Tprod = 420 K 
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(average value for producers), Vinj = 0.3318 m3 (per second), and Tinj = 355 K (average 

value for injection wells), we obtain ΔVrock = 2.0 liters (per second). This value is ∼ 1.5 

times the average rate of volume change over 2004–2014 estimated from the modeling 

of InSAR data (Fig. 4). If the assumptions in this simple model are correct then we infer 

that shallow contracting sources, which presumably have a higher fracture density and 

therefore can cool faster than the rest of the reservoir, provide more than half of the 

energy. Any contraction in the larger, deeper reservoir, tapped by wells 82A-11, 27-1, 

and 18-1, is likely to result in a subsidence signature that is too broad to be observed in 

the InSAR pairs spanning less than 2 years.

Another possible explanation for the observed deformation involves compacting 

sediments in multiple, laterally separated zones, likely associated with faults. Such 

zones, potentially comprising anomalously soft, highly porous compressible sediments 

(e.g., expansive clays), could deform due to decrease in pore pressure, following steady

decline in the water table, as fluids are extracted for geothermal production. Declining 

pore pressure has been suggested as a plausible mechanism for subsidence at a 

number of geothermal fields, e.g., those in the Taupo Volcanic Zone in New Zealand 

(Allis and Zhan, 2000, Bromley et al., 2009). At Brady, precise measurements of water 

levels near the production wells over the 2004–2014 interval are not available. Because 

the depth of the shallowest producing well is ∼400 m, the maximum drop in water level 

that is theoretically possible, following the start of production in 1992, is 400 m or 

∼18 m per year. If this indeed is the case, then the compaction due to the concomitant 

increase in effective stress can be estimated from the 1-dimensional settlement 

equation (Terzaghi and Peck, 1968):

(4)δc=Cc1+e0Hlogσzf′σz0′

where δc is the displacement by settlement, Cc is the compression index, e0 is the 

initial void ratio, H is the thickness of the compacting layer, and σzf′ and σz0′ are the final

and initial vertical effective stresses, respectively. Values chosen are a product 

of CcH = 2.75 m, e0 = 0.5, a depth of 400 m with overlying sediments of density 

2000 kg/m3, and a hydrostatic water column. We estimate the initial effective stress at 

400 meters to be 4 × 106 Pa. The change in effective stress since 1992, due to a water 

table decline of 400 m is 4 × 106 Pa. The vertical displacement due to settlement in one 

year is then δc ∼ 2.5 cm. Many combinations of the product of the compaction 

coefficient and compacting thickness are possible. A compaction coefficient Cc = 0.1 

and H = 27.5 m can be interpreted as a 400-meter thick aquifer in which the thickness of

clay layers is 27.5 m.

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquifer
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrostatics
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/void-ratio
https://www.sciencedirect.com/science/article/pii/S0375650516000109?via%3Dihub#bib0260
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/effective-stress
https://www.sciencedirect.com/science/article/pii/S0375650516000109?via%3Dihub#bib0050
https://www.sciencedirect.com/science/article/pii/S0375650516000109?via%3Dihub#bib0020
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/water-table
https://www.sciencedirect.com/science/article/pii/S0375650516000109?via%3Dihub#fig0020


An equivalent specific storage coefficient due to compaction can be calculated 

from Galloway and Sneed (2013):

(5)SSk*=Δb¯*γwb¯0*Δ(σzz−γwh)

where Δb¯=b¯0−b¯ is the change in thickness of a control volume with initial 

thickness b¯0 of a deformable geologic unit, σzz is the total vertical stress, h the hydraulic

head, and γw the specific gravity of water. A change in aquifer thickness relative to its 

initial thickness of 0.55 m/400 m yields SSk*=3.5×10−6 m−1. This value corresponds to a 

skeletal compressibility of 3.5 × 10−10 Pa−1. Such a value is of the same order of 

magnitude as the compressibility of water, typical of alluvial sediments (e.g., Hoffmann 

et al., 2001). Thus, compaction is a plausible mechanism for observed subsidence due 

to a shallow source, if the water level has indeed declined continuously at Brady since 

sometime before 2004.

A third possibility is that the reinjected cold water dissolves minerals, as the equilibrium 

between fluids and reactive minerals is disturbed (e.g., Glassley, 2011, Akin, 2012), and 

transports them through the producing wells. Mass loss associated with hydrothermal 

alteration has been suggested as the cause for long-term subsidence at Rotokawa 

geothermal field in New Zealand (Powell, 2011). At Brady, core samples from well BCH-

3 indicate the presence of an argillic alteration zone that extends to a depth of 600 m 

(Lutz et al., 2011). Assuming a dissolved-solids concentration of 0.25% (the average 

value for fluids at Brady), rock density of 2500 kg/m3, and net extraction rate of 

200 liter/second, we estimate the rate of mass loss to be ∼0.2 liter/second, which is 

much lower than the rate estimated from modeling of InSAR data. Also, this rate is an 

upper bound as it requires that all of the solids dissolved in the produced water originate

in the same locations as the sources causing the subsidence.

Irrespective of the mechanism of deformation, the InSAR observations indicate a 

connection between the shallow subsurface and the production wells at Brady. 

Accordingly, we infer that highly permeable conduits along faults channel fluids to the 

reservoir tapped by the production wells. In contrast, Desert Peak, a blind geothermal 

field, located less than 7 km away from Brady, shows little or no deformation in the 

InSAR dataset, although the two fields are otherwise similar in spatial extent, structural 

setting, and geothermal production. Desert Peak exhibits neither hydrothermal features 

nor any evidence of recent surficial fault slip, however, suggesting that the plumbing 

associated with the fault system there is deeper and more isolated from the surface 

than at Brady.
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