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Genome analysis
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Abstract

Motivation: CpG sites within the same genomic region often share similar methylation patterns and tend to be co-
regulated by multiple genetic variants that may interact with one another.

Results: We propose a multi-trait methylation random field (multi-MRF) method to evaluate the joint association be-
tween a set of CpG sites and a set of genetic variants. The proposed method has several advantages. First, it is a
multi-trait method that allows flexible correlation structures between neighboring CpG sites (e.g. distance-based
correlation). Second, it is also a multi-locus method that integrates the effect of multiple common and rare genetic
variants. Third, it models the methylation traits with a beta distribution to characterize their bimodal and interval
properties. Through simulations, we demonstrated that the proposed method had improved power over some exist-
ing methods under various disease scenarios. We further illustrated the proposed method via an application to a
study of congenital heart defects (CHDs) with 83 cardiac tissue samples. Our results suggested that gene BACE2, a
methylation quantitative trait locus (QTL) candidate, colocalized with expression QTLs in artery tibial and harbored
genetic variants with nominal significant associations in two genome-wide association studies of CHD.

Availability and implementation: https://github.com/chenlyu2656/Multi-MRF.

Contact: li498@indiana.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation can be influenced by genetic variants in a region
(Gaunt et al., 2016), referred to as a methylation quantitative trait
locus (mQTL or methQTL; here we utilize the first abbreviation).
mQTLs are primarily cis-acting and located close to the CpG site.
Many cis-mQTLs are also found to co-localize with genetic variants
associated with complex diseases, such as cardiovascular disease
(Huan et al., 2019), respiratory disease (Morrow et al., 2018) and
metabolic disease (Volkov et al., 2016). Detecting mQTLs is crucial
to understand the functional mechanisms of how genotypic varia-
tions may influence the disease risk within specific tissues.

Many existing mQTL studies have adopted a single-locus single-
trait strategy (Almli et al., 2015; Dick et al., 2014; Smith et al., 2014),
by evaluating the association between a genetic variant and a CpG site

one-at-a-time. Despite existing successes (Huan et al., 2019), there are
also a few limitations. First, the single-locus strategy may suffer from
power loss due to heavy multiple testing burden, ignore potential inter-
actions between multiple genetic variants, and fail to detect rare var-
iants as mQTL SNPs. As an alternative, multi-locus testing or region-
based analysis has been proposed to integrate the effect of multiple
common and rare genetic variants, including burden tests (Li and Leal,
2008), quadratic tests (Wu et al., 2011) and combined tests (Lee et al.,
2013). Second, the single-trait strategy may also not be optimal, be-
cause CpG sites that are close to one another tend to be co-methylated
and share similar methylation patterns. As an alternative, multi-trait
methods have been proposed to account for the correlation between
CpG sites and to further reduce the burden of multiple testing for
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power improvement (Aschard et al., 2014). Broadly speaking, these
methods fall into three groups: (i) combining test statistics or P-values
from univariate analyses (van der Sluis et al., 2013); (ii) dimension re-
duction methods, such as principal component analysis and canonical
correlation analysis (Aschard et al., 2014; Tang and Ferreira, 2012);
and (iii) regression frameworks including linear mixed models, multi-
variate analysis of variance and reverse regression (O’Reilly et al.,
2012). However, these methods were all designed for multi-trait single-
locus testing. Relatively few methods are available for multi-trait multi-
locus testing.

Recently, we and others developed a methylation random field
(MRF) method for mQTL detection by modeling the methylation
trait with a beta distribution (Lyu et al., 2021). To address the co-
methylation between neighboring CpG sites, we propose to extend
the MRF to a multi-trait MRF (multi-MRF) method and test the
joint association between multiple CpG sites and multiple variants
within a genomic region. Similar to the MRF, multi-MRF uses beta
distributions to characterize the bimodal and interval properties of
methylation traits. It also uses the multi-locus genotypes as the coor-
dinates of a subject in the high-dimensional space and further inte-
grates the effect of multiple common and rare genetic variants with
a conditional autoregressive model. As an extension of MRF, multi-
MRF is a multi-trait method, and allows flexible correlation struc-
ture between neighboring CpG sites (e.g. distance-based correl-
ation). To evaluate the performance of multi-MRF, we conducted
simulation studies and compared it with other existing methods,
including the dual kernel association test (DKAT; Zhan et al., 2017)
and the multiple-testing-adjusted MRF (mMRF). We further illus-
trated our multi-MRF with a study of congenital heart defects
(CHDs) to identify cis-acting mQTLs within cardiac tissues.

2 Materials and methods

2.1 Multi-MRF framework
Assume we have a study of n unrelated subjects who were profiled for
m CpG sites, sequenced for k genetic variants, and measured for l non-
genetic covariates. For the ith subject, let Yi ¼ ðYi;1; Yi;2; . . . ; Yi; mÞ
be the vector of methylation traits; Gi ¼ ðGi;1; Gi;2; . . . ; Gi;kÞ
denotes the genotypes, coded as the minor allele counts; and Xi ¼
ðXi;1; Xi;2; . . . ; Xi;lÞ be the potential confounders, such as the top
principal components of the genomic and epigenomic data. Our re-
search question for detecting mQTLs can be formulated as testing the
association between the methylation traits of m CpG sites and the gen-
otypes of k genetic variants within a genomic region, while adjusting
for l covariates.

A conditional autoregressive model can be used as:

EðYi;pjY�i;pÞ ¼ li;p þ d
P

p 6¼qvðY:;p;Y:;qÞðYi;q � li;qÞ
þ c
P
ði;pÞ6¼ðj;qÞsðGi; GjÞðYj;q � lj;qÞ;

for any 1 � i � n; 1 � p � m; 1 � q � m;

(1)

where li;: ¼ f ðXibÞ is the expected contribution of non-genetic cova-
riates, b ¼ ðb1; b2; . . . ; blÞ0 are the coefficients of these covariates,
f ð�Þ is the link function connecting methylation traits with covari-
ates, and Y�i;p represents all methylation traits other than Yi;p.
Because DNA methylation arrays estimate the methylation level at a
CpG site based on the ratio of intensities between methylated and
unmethylated alleles, the methylation trait (i.e. beta values) is an
interval variable and bimodally distributed. Hence, we adopt a beta
regression with a logit link to model the properties. Further,
sðGi; GjÞ describes the genotypic similarity between subject i and j,
and is defined by the genetic relationship (Yang et al., 2011):
s Gi; Gj

� �
¼
Pk

h¼1 whðGi;h � 2phÞðGj;h � 2phÞ, where ph is the aver-
age minor allele counts for the hth variant in the study population,
and a weighting scheme wh is incorporated to allow flexible consid-
eration across variants (e.g. allele frequencies or effect sizes). For ex-
ample, weighting based on the probability density function of a beta
distribution, wh ¼ dbetaðMAFh; 1; 25Þ2 recommended by Wu and
Pankow (2016), mimics a scenario that rare variants contribute rela-
tively large effect on methylation traits and the effect size decreases
as MAF increases. We further use v Y:;p; Y:;q

� �
to model the within-

subject similarity of methylation traits between the pth and the qth
CpG sites, where Y:;p ¼ ðY1;p;Y2;p; . . . ; Yn;pÞ0 and Y:;q ¼ ðY1;q;
Y2;q; . . . ; Yn;qÞ0. The trait similarity accounts for the correlation
structure among traits, which can be flexible and defined based on
prior knowledge. For example, previous studies indicated that the
co-methylation of two neighboring CpG sites decreased as their
physical distance on the genome increased (Affinito et al., 2020;
Lövkvist et al., 2016). Hence, we could assume that the correlation
of methylation traits between neighboring CpG sites decreases expo-
nentially as their physical distance increases (Nautiyal et al., 2010):

vðY:;p; Y:;qÞ ¼ e�
jdp–dq j

c ; for any 1 � p 6¼ q � m;

where dp and dq are the base pair (BP) locations for the pth and the
qth CpG sites, respectively, and c is a constant as the size of the re-
gion being tested. Alternatively, if the correlation among CpG sites
is assumed to be exchangeable regardless of physical distance,
v Y:;p; Y:;q

� �
¼ 1 can be used for any 1 � p 6¼ q � m.

Intuitively from Equation (1), the methylation trait of the pth
CpG site for subject i can be predicted by the methylation traits of
other CpG sites within the region through their correlation struc-
ture, and by the methylation traits of other subjects through their
genotypic similarities. Thus, the parameter d is a nuisance parameter
that measures the magnitude of adjustment for the correlation of
CpG sites within the region. The joint association between m CpG
sites and k genetic variants is measured by a fixed parameter c, and
can be tested against a null hypothesis of H0 : c ¼ 0.

2.2 Statistical inference
Equation (1) can be written in a matrix form as:

E YjY�ð Þ ¼ lþ dV þ cSð Þ Y � lð Þ; (2)

where l ¼ exp ðXbÞ
1þexp ðXbÞ as within a beta regression; Y ¼ ðY 01;

Y 02; . . . ; Y 0nÞ
0 is a n�m matrix for the methylation traits of n sub-

jects at m CpG sites; Y� ¼ ðY�i;pÞn�m; X is a n� l matrix for covari-

ates ; V is a m�m block matrix modeling the within-subject trait

similarities among m CpG sites, with its element v p; qð Þ ¼
v Y:;p; Y:;q

� �
¼ e�

jdp–dq j
c for any 1 � p 6¼ q � m, and v p; pð Þ ¼ 0 for

any 1 � p � m; and S is a n� n matrix modeling the genetic

similarities among n subjects, with its element s i; jð Þ ¼ s Gi; Gj

� �
¼Pk

h¼1 whðGi;h � 2phÞðGj;h � 2phÞ for any 1 � i 6¼ j � n, and

s i; ið Þ ¼ 0 for any 1 � i � n.
We use the estimating equation to construct a generalized score

test for H0 : c ¼ 0.

Uc b; d; cð Þ ¼ @E YjY�ð Þ
@c

T

Y � E YjY�ð Þ
� �

¼ Y � lð ÞTS I � dV � cSf g Y � lð Þ ¼ 0; (3)

The test statistics can be obtained as (Boos, 1992):

Q ¼ Uc b̂; d̂; 0
� �

n
¼ Y � l̂ð Þ0S I � d̂Vð Þ Y � l̂ð Þ

n
; (4)

where the estimated b̂ and d̂ can be solved iteratively in the linear
equations under the null hypothesis. Previous research has demon-
strated that the Q statistic follows an asymptotic weighted sum of
chi-square distributions with 1 degree of freedom (He et al., 2015;
Li et al., 2018a,b). Although this score test tends to be overly conser-
vative when sample size is small and when rare variants are tested,
empirical adjustment can be used (Guo et al., 2005).

2.3 Simulation studies
We conducted a series of simulations to evaluate the performance of
the proposed multi-MRF, and compared it to other existing meth-
ods, including the DKAT that was developed for multi-trait multi-
locus association tests, and the MRF that was developed for single-
trait multi-locus association tests. Both DKAT and multi-MRF use
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kernel functions to integrate multiple genetic variants. However,
while DKAT uses kernel functions to integrate multiple traits, multi-
MRF directly models the correlation of traits. Benjamini–
Hochberg’s false discovery rate was applied to MRF for multiple
testing adjustment. The methods were compared in terms of Type I
errors and statistical power.

The genotype data were based on the sequencing data of 1092
unrelated subjects in the 1000 Genomes Project, and we randomly
selected a 1 MB segment on Chromosomes 17:7 344 328–8 344 327
(Li et al., 2018a,b). The segment covered a total of 12 735 single nu-
cleotide polymorphisms (SNPs), including both common and rare
variants (82.7% had minor allele frequency [MAF] < 0.05). To
align with the real data (i.e. 450 K array), we assumed that each sub-
ject was profiled for 10 CpG sites (average number of CpGs within
a gene; see Table 4) within a 10 kb region (average gene size) to be
tested. We first randomly sampled the 10 kb region within the 1 MB
segment, and then randomly selected 10 non-overlapping positions
for 10 CpG sites within the region. Each of the three methods was
applied to test the association between the 10 CpG sites and SNPs
within the 10 kb region (i.e. aiming to detect mQTLs with cis-acting
effect). To capture the interval and bimodal properties, the methyla-
tion trait of the pth CpG site for subject i was simulated following a
beta distribution Yi;p � betaðai;p; bi;pÞ. The beta distribution was
characterized by two shape parameters ai;p and bi;p, which can be
determined by a mean parameter li;p and a precision parameter /,
so that ai;p ¼ li;p/, and bi;p ¼ ð1� li;pÞ/. In this study, we fixed /
to be 30, as suggested by previous literature (Bayes et al., 2012). The
mean parameters of 10 CpG sites were simulated under varying cor-
relation structures and other simulation scenarios described below.
To evaluate Type I error, the methylation mean parameters were
simulated independently from the genotypes. To evaluate statistical
power, the methylation means were simulated with a non-genetic
component (i.e. covariates’ contribution), a genetic component, and
a random error to accommodate within-subject correlation.

Overall, we considered disease scenarios of varying correlation
structures (i.e. exchangeable, autoregressive and distance-based), causal
structures between mQTLs and methylation traits (i.e. ‘unique’, ‘half-
shared’ and ‘all-shared’), sample sizes (n¼50, 100, 250 and 500),
directions of mQTL effects on methylation traits (i.e. one-or bi-direc-
tional), and strategies to model the distributions of the methylation
traits (i.e. normal, beta or logit). The detailed explanations for each
scenario are summarized in Supplementary Table S1. To model the
methylation traits, the normal strategy used a linear regression with an
identity link for methylation traits assuming a normal distribution; the
beta strategy used a beta regression with a logit link for methylation
traits assuming a beta distribution; and the logit strategy used a linear
regression with an identity link for logit-transformed traits assuming a
normal distribution after logit-transformation. In practice, the normal
and beta strategy represent testing beta values as methylation traits,
whereas the logit strategy represents testing M values since M values
are proportional to the logit transformation of beta values. Because
beta regression was not implemented in DKAT, we only considered the
normal and logit strategies for DKAT. When the methylation traits
were tested for joint association with genotypes, we also considered
varying genetic frequencies of the variants within the region (a mixture
of common and rare, and rare variants only) and the misspecification
of traits correlation. All combinations of these disease scenarios were
considered while evaluating the performances of multi-MRF, DKAT
and mMRF (MRF with multiple testing adjustment).

2.3.1 Type I error

To evaluate Type I errors, we simulated the mean parameters of the
methylation traits of 10 CpG sites for the ith subject independently
from the genotypes:

logit lið Þ ¼ logit l0ð Þ þ ei; with ei � N 0;Rð Þ;

where li ¼ ðli;1; . . . ; li;10Þ0 was the vector of mean parameters for 10
correlated CpG sites; l0 ¼ ðl0;1; . . . ; l0;10Þ0 was the baseline methyla-
tion trait from non-genetic contribution (i.e. effect from covariates),
and was set to 0.1 for all l0;p; 1 � p � 10, based on real data

distribution (Lyu et al., 2021); and ei ¼ ðei;1; . . . ; ei;10Þ0 represented a
multivariate random error to accommodate the within-subject correl-
ation among CpG sites. We assumed a multivariate Gaussian distribu-

tion with mean of zero and a variance-covariance matrix (R) describing
varying correlation structures.

We considered three correlation structures: (i) exchangeable
correlation (R1), or compound symmetry:

R1 ¼ r2

1 q q
q 1 q
q q 1

..

. ..
. ..

.

q q q

. . . q

. . . q

. . .
. .

.

. . .

q

..

.

1

2
666664

3
777775
;

assuming that all CpG sites within a candidate region had the same
correlation coefficient; (ii) first-order autoregressive correlation
(R2):

R2 ¼ r2

1
q1

q2

..

.

q9

q1

1
q1

..

.

q8

q2

q1

1
..
.

q7

. . . q9

. . . q8

. . .
. .

.

. . .

q7

..

.

1

2
666664

3
777775
;

assuming that the correlation between CpG sites decayed in order;
and (iii) distance-based correlation (R3):

R3 ¼ r2

1
e�
jd2�d1 j

c

e�
jd3�d1 j

c

..

.

e�
jd10�d1 j

c

e�
jd1�d2 j

c

1

e�
jd3�d2 j

c

..

.

e�
jd10�d2 j

c

e�
jd1�d3 j

c

e�
jd2�d3 j

c

1
..
.

e�
jd10�d3 j

c

. . . e�
jd1�d10 j

c

. . . e�
jd2�d10 j

c

. . .
. .

.

. . .

e�
jd3�d10 j

c

..

.

1

2
6666664

3
7777775
;

assuming that the correlation between CpG sites exponentially
decreased as their BP distance on genome increased (Nautiyal et al.,
2010); where dp; 1 � p � 10, represented the genomic location of
the pth CpG site.

The methylation trait at the pth CpG site of subject i,
Yi;p; 1 � p � 10, was then simulated following a beta distribution of
Yi;p � betaðli;p/; ð1� li;pÞ/Þ, where / was fixed to 30 as suggested

in the literature (Bayes et al., 2012). The Type I errors were also eval-
uated under varying correlation structures of CpG sites, sample sizes

(n¼50, 100, 250 and 500), strategies to model the distribution of
methylation traits (normal, beta and logit) and genetic frequencies of
the SNPs in the region (a mixture of common and rare, and rare var-

iants only). A total of 100 000 replicates were simulated.

2.3.2 Statistical power

To evaluate the statistical power, we simulated the mean parameters
of the methylation traits of 10 CpG sites for the ith subject based on

the following model:

logitðliÞ ¼ logitðl0Þ þ
Xk

h¼1

Gi;hbh;1

..

.

Gi;hbh;10

2
664

3
775þ ei; with ei � N 0;Rð Þ;

where Gi; h was the minor allele count for the hth SNP of subject i
and ðbh;1; . . . ::; bh;10Þ0 denoted its effects on the 10 CpG sites. We

assumed that the effects of mQTL SNPs were inversely associated
with MAF as follows:

bh;p ¼

1

MAFh 1�MAFhð Þ ; SNP h is a mQTL SNP for the pth CpG site

0 ; SNP h is not a mQTL SNP for the pth CpG site

8>><
>>:

For any given CpG site, we assumed 10% of the variants in the

region were mQTL SNPs that were causal to each methylation trait.
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The mQTL SNPs were randomly selected in each simulation scen-
arios to represent varying causal structure of methylation traits.

We conducted three sets of simulations representing varying
causal structures between mQTL SNPs and methylation traits as
illustrated in Figure 1.

Simulation I: ‘unique’ causal structure. In this simulation scenario,
each of the 10 CpG sites was influenced by 10% of the SNPs within
the region, and these mQTL SNPs were mutually exclusive across CpG
sites.

Simulation II: ‘half-shared’ causal structure. In this simulation
scenario, each of the 10 CpG sites was influenced by 10% of the
SNPs within the region. However, half of these mQTL SNPs were
shared by all CpG sites, but the other half of the mQTL SNPs were
mutually exclusive across CpG sites.

Simulation III: ‘all-shared’ causal structure. In this simulation
scenario, all of the 10 CpG sites shared the same mQTL SNPs which
were 10% of all SNPs within the region.

In Simulations I–III, we also simulated the methylation traits under
three correlation structures, including exchangeable correlation (R1),
autoregressive correlation (R2) or distance-based correlation (R3). The
robustness of multi-MRF, DKAT and mMRF was evaluated when the
correlation structure between traits was correctly specified or mis-
specified in the analysis. In addition, we assumed that the mQTL SNPs
affecting methylation traits might have either one- or bi-directional ef-
fect. The bi-directional effect was simulated by assigning a negative
sign to bh for half of the randomly selected mQTL SNPs.

Simulation IV: testing only rare variants for mQTL effects. In
this simulation, we evaluated the power of all methods when only
variants with MAF < 0.05 were tested. The scenario was illustrated
under ‘all-shared’ causal structure described above. Three correl-
ation structures and directions of mQTL effects were evaluated in
the simulation as well.

In summary, when evaluating the statistical power of each
method, the methylation traits were simulated under varying correl-
ation structures (i.e. exchangeable, autoregressive and distance-
based), causal structures, sample sizes (i.e. n¼50, 100, 250 and
500), effect directions (i.e. one- and bi-direction) and strategies to
model the distribution of methylation traits (i.e. normal, beta and
logit). We also considered the frequencies of genetic variants being
tested (i.e. a mixture of common and rare variants, and rare variants
only). For each simulation scenario, a total of 1000 replicates were
generated for empirical statistical power.

2.4 Application studies
We further applied the proposed multi-MRF to the genomic and epi-
genomic data of 83 cardiac tissue samples. Alternative methods,
DKAT and mMRF, were also applied for comparison. The details of
the samples can be found elsewhere (Li et al., 2021). Briefly, each
sample was genotyped for �5 million SNPs using IlluminaVR

Infinium HumanOmni5Exome BeadChip, and was profiled for
�450 K CpG sites using Illumina HumanMethylation450 Beadchip
or 850 K CpG sites using Illumina MethylationEPIC Beadchip. For
epigenomic data, we used the Bioconductor package ‘minfi’ in R to
combine the raw intensity values from all samples at the same time
(Aryee et al., 2014; Fortin et al., 2014, 2017). Functional normaliza-
tion was applied to raw intensities, which used internal control
probes on each array to remove between-array technical variations.
Beta values were produced to measure the methylation level of CpG

sites, and intensities with detection P-values > 0.01 were set to miss-
ing. We further removed CpG sites with more than 5% missing val-
ues or with an SNP in the probe. For genomic data, we used PLINK
1.9 for data processing (Purcell et al., 2007) and the website is avail-
able: https://www.cog-genomics.org/plink/. We removed variants
that deviated from Hardy–Weinberg equilibrium among control
samples (P-value < 0.0001). After the quality control process, a
total of 3 055 128 SNPs and 275 357 CpG sites remained for ana-
lysis. To conduct region-based association tests, gene units were
defined based on the UCSC genome browser under the genome as-
sembly of GRCh37/hg19. A candidate genomic region was defined
as a gene unit along with its 7.5 kb upstream and downstream
sequences. To detect multi-locus multi-trait associations, we tested
all regions with at least two SNPs and at least two CpG sites.

Within each region, both multi-MRF and mMRF were applied to
test the joint association between all SNPs and all CpG sites adjusting
for the covariates, including gender, case-control status and top five
principal components for the genomic and epigenomic profiles. In add-
ition, both multi-MRF and mMRF were applied with various modeling
of trait distributions (i.e. normal, beta or logit) and correlation struc-
tures (i.e. exchangeable, autoregressive or distance-based). On the other
hand, because the R package of DKAT did not allow modeling of
methylation traits with a beta distribution or covariate adjustment,
DKAT was applied assuming either a normal or a logit-transformed
normal distribution without adjusting for the covariates. A total of 15
695 regions were tested for multi-CpG multi-SNP associations.
Bonferroni adjustment was used to account for the multiple testing
based on the total number of regions being tested.

2.5 Bayesian colocalization
Multiple previous studies have suggested that causal genetic variants
for complex diseases may function through regulating the methylation
or expression level of genes. Bayesian colocalization was used as a com-
mon strategy to map functional regulatory SNPs underlying disease
risk (Battle et al., 2017; Giambartolomei et al., 2014). Upon identifica-
tion of mQTLs, we further used Bayesian colocalization
(Giambartolomei et al., 2014) to prioritize the mQTL findings by lever-
aging the results of two previous CHD genome-wide association stud-
ies (GWASs) and the known heart-tissue expression QTLs. The goal of
Bayesian colocalization was to evaluate each genomic region for shar-
ing causal genetic variants to two traits (e.g. methylation trait and
CHD status, or methylation trait and expression trait). For example,
the colocalization analysis between mQTLs and a CHD GWAS would
estimate five posterior probabilities (PP0, PP1, PP2, PP3 and PP4) with
each supporting a corresponding hypothesis (H0: no association with
either methylation or CHD risk; H1: association with methylation
trait, but not with CHD risk; H2: association with CHD risk, but not
with methylation trait; H3: association with methylation trait and
CHD risk through two independent SNPs; H4: association with methy-
lation trait and CHD risk through at least one shared SNP). Two CHD
GWASs had a case-parental trio design with 440 and 225 trios, respect-
ively, who were participants of the National Birth Defects Prevention
Study. For the expression QTLs, we searched the Genotype-Tissue
Expression database for five types of heart tissues, including artery
aorta, artery coronary, artery tibial, heart atrial appendage and heart
left ventricle. R package ‘coloc’ was used for the analysis
(Giambartolomei et al., 2014).

3 Results

3.1 Data simulation studies
3.1.1 Type I errors

The Type I errors were evaluated at the a level of 0.05 (Fig. 2) with
100 000 replicates. We considered scenarios of testing a mixture of
common and rare variants (Fig. 2A) and testing rare variants only
(Fig. 2B). When the methylation traits were modeled with beta dis-
tributions (i.e. beta strategy), both multi-MRF and mMRF had rea-
sonably well-controlled Type I errors regardless of the underlying
correlation structures among methylation traits. The Type I errors
were also robust when the correlation structures were mis-specified.

Fig. 1. Three causal structures between mQTL SNPs and methylation traits: (1) mu-

tually exclusive mQTL SNPs; (2) half of the mQTL SNPs were shared by all CpG

sites and the other were mutually exclusive across CpG sites; and (3) all CpG sites

shared the same mQTL SNPs
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When the methylation traits were modeled with logit-transformed
normal distributions (i.e. logit strategy), all methods (multi-MRF,
mMRF and DKAT) had well-controlled Type I errors for all actual
and assumed correlation structures. However, when the methylation
traits were modeled with normal distributions (i.e. normal strategy),
multi-MRF showed conservative Type I error rates that were con-
sistently < 0.05. The conservativeness is the most severe when an
exchangeable correlation was assumed among methylation traits
and when the sample size was large. The Type I errors of mMRF
and DKAT remained to be well-controlled in such situations.

3.1.2 Statistical power

We evaluated the statistical power of multi-MRF, mMRF and
DKAT under four sets of simulations considering varying causal
structures between mQTL SNPs and methylation traits. In each
simulation, we also considered varying correlation structures of
methylation traits, effect directions, sample sizes and the modeling
strategies for the distributions of methylation traits. The results are
summarized in Figures 3–6.

Simulation I: ‘unique’ causal structure (Fig. 3).
This simulation assumed that the CpG sites had mutually exclu-

sive mQTL SNPs. Under such a scenario, the single-trait testing
method with multiple testing adjustment (i.e. mMRF) was often the
most powerful. In particular, the power of mMRF assuming a beta
distribution (i.e. beta strategy) was consistently higher than that of
DKAT regardless of the sample sizes and effect directions of the
mQTL SNPs. mMRF also outperformed multi-MRF when the sam-
ple size was small (i.e. n¼50 or 100) or the mQTL SNPs had bi-
directional effect (Fig. 3B). On the other hand, multi-MRF showed
improved performance as the sample size increased, and achieved
comparable or slightly higher power than mMRF when the sample
size was relatively large (n¼250 or 500) and the mQTL SNPs had
one-directional effect (Fig. 3A). We found the observation reason-
able because the methylation traits at multiple CpG sites did not
have overlapping causal components, which made the single-trait
analysis (i.e. mMRF) a powerful test.

For the comparisons between the multi-trait methods (multi-
MRF and DKAT), the power of multi-MRF was lower than that of
DKAT when the sample size was very small (n¼50) but increased
with the sample size and was higher than that of DKAT for all other
sample sizes (n¼100, 250 and 500). The pattern was consistent re-
gardless of the effect directions of mQTL SNPs.

The performance of each method was also influenced by the
strategies to model the methylation trait’s distributions. Assuming a
beta distribution of methylation traits (i.e. beta strategy) was the
most advantageous when the sample size was relatively small (i.e.
n�250), while assuming a log-transformed normal distribution (i.e.
logit strategy) may achieve comparable or slightly higher power
when the sample size was relatively large (i.e. n¼500). In particular,
assuming a normal distribution of methylation traits (i.e. normal
strategy) showed substantial power loss when multi-MRF was

applied with an exchangeable correlation structure, which was also
consistent with the conservative Type I error observed above. The
performance of DKAT was relatively robust assuming either a nor-
mal distribution or logit-transformed normal distribution.

Simulation II: ‘half-shared’ causal structure (Fig. 4).
This simulation assumed that half of the mQTL SNPs were

shared by all CpG sites and the other half were mutually exclusive
across all CpG sites. The results showed similar trend to those of
Simulation I, and the single-trait method (mMRF) achieved the
highest power in most of the scenarios, especially when the sample
size was relatively small or the mQTL SNPs had bi-directional ef-
fect. When compared with Simulation I, we also observed improved
performance of multi-trait testing methods. In particular, the power
of multi-MRF increased much faster with the sample size, and out-
performed mMRF when sample size was relatively large (n¼250 or
500) and the mQTL SNPs had one-directional effect (Fig. 4A). In
such a situation, multi-MRF gained strength through modeling the
correlation of methylation traits due to the shared mQTL SNPs. On
the other hand, because 50% of the mQTL SNPs remained mutually
exclusive for all methylation traits, mMRF was the best method in
various scenarios. In terms of the strategies to model trait distribu-
tions, both mMRF and multi-MRF attained the highest power when
modeling the methylation trait with a beta distribution.

Simulation III: ‘all-shared’ causal structure (Fig. 5).
This simulation assumed that all CpG sites shared the same

mQTL SNPs. In such a scenario, multi-MRF showed the most
advantages, and achieved either comparable or substantially higher
power in all simulations (Fig. 5). The results were consistent across
sample sizes, correlation structures and effect directions. The other
multi-trait testing method, DKAT, was also able to outperform
mMRF when the sample size was small (n¼50), but had lower

Fig. 2. Type I error rates of multi-MRF, mMRF and DKAT at alpha level of 0.05.

(A) A mixture of common and rare variants was tested for association with traits;

(B) Only rare variants were tested. Multi-MRF.e and multi-MRF.d represents apply-

ing the multi-MRF with exchangeable and distance-based correlation structures,

respectively

Fig. 3. Statistical power for Simulation I, when the causal structure was ‘unique’.

(A) The mQTL SNPs had one-directional effect on methylation traits; (B) The

mQTL SNPs had bi-directional effect on methylation traits. Multi-MRF.e and

multi-MRF.d represent applying the multi-MRF with exchangeable and distance-

based correlation structures, respectively

Fig. 4. Statistical power for Simulation II, when the causal structure was ‘half-

shared’. (A) The mQTL SNPs had one-directional effect on methylation traits; (B)

The mQTL SNPs had bi-directional effect on methylation traits. Multi-MRF.e and

multi-MRF.d represents applying the multi-MRF with exchangeable and distance-

based correlation structures, respectively
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power when the sample size was larger. In terms of strategies to
model trait distributions, multi-MRF also showed robust perform-
ance across simulations, and modeling methylation traits with beta
distributions had slightly higher power than other strategies. For
mMRF, beta strategy worked better with relatively small sample
size (n¼50 or 100) or bi-directional genetic effect, while logit trans-
formation performed better when the sample size was relatively
large (n¼250 or 500) under one-directional scenario.

Simulation IV: testing rare variants only (Fig. 6).
This simulation aimed to evaluate the performance of methods

for detecting rare variants as underlying mQTLs. The scenario was
illustrated under ‘all-shared’ causal structure. The results showed
similar patterns with those of Simulation III. Multi-MRF models
achieved higher power than mMRF and DKAT in all simulation
scenarios and the improvement over other methods was most evi-
dent when the mQTL SNPs affected the methylation traits in one
direction. Modeling the methylation traits with beta distributions
also showed improved power than other strategies (i.e. normal dis-
tributions or logit-transformed distributions).

3.1.3 Simulation summary

In summary, multi-MRF, mMRF and DKAT were all able to detect
multi-locus mQTL with reasonably controlled Type I errors.
However, the current version of DKAT did not allow covariate ad-
justment. Both multi-MRF and mMRF allowed the adjustment of
confounding factors, and outperformed DKAT in most of the simu-
lation scenarios. For the comparison between multi-MRF and
mMRF, multi-MRF showed more advantages when multiple methy-
lation traits share the same mQTL SNPs, the sample size was

relatively large (n�250), and the mQTL SNPs had one-directional
effect on methylation traits. On the other hand, mMRF was more
appropriate when the methylation traits had largely mutually exclu-
sive mQTL SNPs. The conclusion was consistent across varying cor-
relation structures.

The choice of correlation structures and modeling strategies of
the methylation traits may also affect the testing power of each
method. For multi-MRF, assuming distance-based correlation and
beta distribution of methylation traits showed the most robust per-
formance across simulation scenarios. We also found that applying
multi-MRF assuming exchangeable correlation and normal distribu-
tions of methylation traits would yield conservative Type I errors
and reduced statistical power, which should be avoided in practice.
For mMRF, modeling methylation traits with beta distributions (i.e.
beta strategy) performed best when the sample size was relatively
small (n¼50 or 100), while modeling with logit-transformed nor-
mal distribution (i.e. logit strategy) may be a better choice for stud-
ies of larger sample sizes (n�250). For DKAT, modeling
methylation traits with logit-transformed normal distributions
showed higher power with relatively small sample size, while model-
ing with normal distributions (i.e. normal strategy) may be more ap-
propriate for larger sample sizes.

3.2 Application study
To identify cis-acting mQTLs, we tested a total of 15 695 genomic
regions within 83 cardiac tissue samples. For each region, we
applied multi-MRF, mMRF and DKAT to evaluate the joint associ-
ation between all SNPs and all CpG sites. Based on the aim of our
study and the simulation results, we prioritized the findings by
applying multi-MRF assuming that the methylation traits followed
beta distributions with a distance-based correlation structure. The
application of multi-MRF identified a total of 162 significant
mQTL regions after multiple testing adjustment. The complete
results are summarized in Supplementary Table S2.

We further leveraged the findings from two previous CHD
GWAS studies by comparing with the GWAS testing P-values of the
SNPs within those 162 genomic regions. Most of these regions (107
out of 162) harbored SNPs with nominally significant associations
in both GWAS studies. On the other hand, among the 15 695
regions tested, a total of 5406 contained nominally significant SNPs
in both GWAS phases. A Fisher’s exact test for enrichment
(pval ¼ 1:8� 10�16) showed that the GWAS-associated SNPs were
significantly over-represented or enriched in the identified mQTL
regions (107 out of 162) compared with all the regions tested (5406
out of 15 695).

In Table 1, we summarized the top 10 mQTL candidates among
these 107 regions. The 10 mQTL regions were located on
Chromosomes 2, 7, 8, 11, 16, 18, 20 and 21.

3.3 Bayesian colocalization
We further conducted Bayesian colocalization to prioritize mQTL
findings leveraging the findings from two CHD GWASs and the ex-
pression QTL studies. The full colocalization results of 162 regions
identified by multi-MRF are summarized in Supplementary Table
S3. Among which, gene BACE2, as an mQTL candidate, had a high
posterior probability to colocalize with expression QTLs in artery
tibial (PP4>0.8). The gene region also harbored SNPs with nominal
significance association with CHD risk in both phases of GWASs
(Table 2). For the other identified mQTL regions, we did not ob-
serve strong evidence for colocalization, which may partly be due to
insufficient power. It should also be noted that the existing GWASs
and eQTL studies commonly utilized the single-trait single-locus
testing strategy with a focus to detect common variants. In contrast,
multi-MRF is a multi-locus multi-trait method aiming to detect both
common and rare variants.

3.4 Comparison with the results of DKAT and mMRF
A total of 74 302 and 344 significant mQTL regions were identified
by mMRF assuming methylation traits following a beta distribution,
and by DKAT assuming either a normal or logit-transformed normal

Fig. 5. Statistical power for Simulation III, when the causal structure was ‘all-

shared’. (A) The mQTL SNPs had one-directional effect on methylation traits; (B)

The mQTL SNPs had bi-directional effect on methylation traits. Multi-MRF.e and

multi-MRF.d represents applying the multi-MRF with exchangeable and distance-

based correlation structures, respectively

Fig. 6. Statistical power for Simulation IV, when only rare variants were tested for

association with methylation traits. (A) The mQTL SNPs had one-directional effect

on methylation traits; (B) The mQTL SNPs had bi-directional effect on methylation

traits. The causal structure between mQTL SNPs and methylation traits were

assumed to be ‘all-shared’. Multi-MRF.e and multi-MRF.d represent applying the

multi-MRF with exchangeable and distance-based correlation structures,

respectively
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distribution, respectively. However, we found relatively few over-
lapping findings between methods, and no overlaps for all methods
(Supplementary Fig. S1). We think this is mainly because each
method has unique advantages and disadvantages under various
underlying causal scenarios. Based on the simulation results, multi-
MRF was the most powerful in detecting rare variants which con-
tributed to all CpG sites within the region, while mMRF was the
most appropriate for situations when methylation traits were largely
determined by mutually exclusive mQTL SNPs. On the other hand,
as an extension of SKAT, we hypothesized that DKAT might be
more advantageous to detect common variants regulating methyla-
tion traits.

4 Discussion

We proposed a multi-MRF method for mQTL detection from test-
ing the association between a set of CpG sites and a set of genetic
variants within a genomic region. This method leverages co-
methylation among neighboring CpG sites, and in doing so achieved
improved power over single-trait analysis in various situations. The
benefits are most evident when multiple traits share the same genetic
mechanisms or when the sample size is relatively large (n�250).
The multi-MRF shares similar strengths with previous region-based
methods (He et al., 2014; Li et al., 2014; Lyu et al., 2021) as a
powerful multi-locus test for rare variants, accounting for the link-
age disequilibrium or potential interactions among SNPs and was es-
pecially tailored for beta-distributed traits.

In the past few years, several computational tools have been
developed for mQTL detection (Ongen et al., 2016; Scherer et al.,

2021; Shabalin, 2012). These existing methods conduct single-locus,
single-trait analysis, and are commonly used for detecting common
variants (e.g. MAF>0.05) as QTLs. A major goal of our study is to
consider the effect of rare variants for mQTL detection. The pro-
posed multi-MRF may serve as a complementary method to the
existing ones. We also conducted additional simulations to compare
the proposed multi-MRF with Matrix-eQTL, a well-established
benchmark method (Shabalin, 2012). The simulation results are
summarized in Supplementary Figures S2–S4. The results showed
Matrix-eQTL had significantly inflated Type I errors for testing a
mixture of common and rare variants or rare variants only
(Supplementary Figs S2A and B). The power comparison would not
be meaningful under such a situation. When only common variants
were tested, Matrix-eQTL had well-controlled Type I errors, espe-
cially when sample size was relatively large (Supplementary Fig. S3).
We further evaluated the statistical power of all methods
(Supplementary Fig. S4) for testing common variants. Matrix-eQTL
had highest power when the sample size is 50, while multi-MRF out-
performed Matrix-eQTL for larger sample sizes (Supplementary Fig.
S3). In summary, Matrix-eQTL is not appropriate for detecting rare
mQTL SNPs due to the inflated Type I errors. When only common
variants are tested, multi-MRF, DKAT and Matrix-eQTL are all vi-
able options.

To evaluate the performance of all methods, our simulations
were conducted to evaluate Type I errors (i.e. false positive rate) or
statistical power (i.e. 1�false negative rate). It should be noted that
the numbers of false positives and false negatives in practice will de-
pend on the number of tests conducted under null hypothesis (H0:
genes without mQTLs) and alternative hypothesis (H1: genes with

Table 1. Top 10 significant genetic regions that were identified by multi-MRF and overlapped with nominal significant SNPs in two phases

of CHD GWASa

Chr Region Gene nCpGs nSNPs N1b N2c Method Normal Beta Logit

chr18 34 815 507–35 153 500 CELF4 64 463 10 15 multi-MRF 8.80e�10 7.85e�16 5.14e�09

mMRF 0.13 0.13 0.05

DKAT 0.16 — 0.21

chr8 97 956 591–98 466 225 TSPYL5 and LOC101927066 36 630 4 5 multi-MRF 5.28e�08 1.82e�11 1.46e�09

mMRF 0.40 0.32 0.43

DKAT 1.37e�04 — 4.32e�05

chr7 18 119 064–19 049 537 HDAC9 41 1314 20 16 multi-MRF 1.11e�12 8.08e�11 5.31e�15

mMRF 0.06 0.02 0.01

DKAT NA — NA

chr8 72 102 167–72 467 392 EYA1 19 438 40 11 multi-MRF 4.74e�08 1.16e�10 1.59e�11

mMRF 0.14 0.14 0.23

DKAT 0.20 — 0.08

chr20 13 968 645–16 041 341 MACROD2 24 2807 86 56 multi-MRF 4.71e�10 1.47e�10 3.25e�10

mMRF 0.04 0.05 0.03

DKAT 0.03 — 0.02

chr2 236 395 232–237 047 944 AGAP1 270 844 23 33 multi-MRF 1.30e�11 4.99e�10 1.12e�08

mMRF 5.43e�03 6.91e�03 2.38e�03

DKAT 5.22e�04 — 0.04

chr11 118 861 342–118 894 002 CCDC84 8 51 1 8 multi-MRF 4.92e�07 6.27e�10 1

mMRF 0.34 0.36 0.35

DKAT 0.33 — 0.25

chr18 7 559 813–8 414 359 PTPRM 25 1211 35 40 multi-MRF 6.23e�09 6.81e�10 1.30e�07

mMRF 0.79 0.86 0.84

DKAT 0.01 — 1.12e�03

chr16 88 774 245–88 859 128 PIEZO1 and MIR4722 96 188 5 1 multi-MRF 1.76e�07 1.96e�09 7.65e�07

mMRF 2.63e�03 5.12e�03 2.66e�03

DKAT 7.47e�04 — 5.06e�04

chr21 38 113 425–38 370 194 HLCS 19 376 1 3 multi-MRF 1.41e�11 2.16e�09 3.55e�11

mMRF 0.02 0.01 0.03

DKAT 0.30 — 0.44

aLogit transform represents M values here because M values are proportional to the logit transformation of beta values.
bNumber of nominal significant SNPs in CHD GWAS1.
cNumber of nominal significant SNPs in CHD GWAS2.
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mQTLs). For example, we conducted a simulation scenario of 2000
tests (1000 under H0 and 1000 under H1) with 500 samples. We fur-
ther assumed that the mQTLs had ‘all-shared’ causal structure as
described in Simulation III. Applying multi-MRF with distance-
based correlation had an estimated Type I error rate of 0.051 and
statistical power of 0.87. The full confusion matrix was observed as:

For whole-genome analysis, multiple testing adjustment (e.g.
Bonferroni correction or Benjamini–Hochberg’s false discovery rate)
should also be applied to limit the number of false positives.

A major feature of multi-MRF is that flexible assumptions can
be made to model the potential correlation between CpG sites. Due
to the utilization of Generalized Estimating Equation for statistical
inference, the method may be robust to the misspecification of cor-
relation structure. However, for better estimation and statistical
power, it is highly recommended to choose the appropriate correl-
ation structure based on existing knowledge. Multi-MRF is especial-
ly advantageous to detect mQTLs when the same mQTL SNPs
contribute to the methylation traits of all CpG sites within the re-
gion. In Table 3, we provide an empirical guideline to choose among
methods based on their strengths and limitations. We think other
existing tools, such as fastQTL and MAGAR (Ongen et al., 2016;
Scherer et al., 2021), share many strengths with Matrix-eQTL.

When applied to a tissue-specific study of CHDs, the multi-MRF
identified some cis-mQTLs regions with evidence of biological
plausibility. One of the mQTL candidates, BACE2, was colocalized
with expression QTL in artery tibial and overlapped with nominal
significant findings in two CHD GWASs, suggesting a potential
pathway linking genetic variants, DNA methylation and gene ex-
pression to CHD status. Previous literature indicated that BACE2
was a critical region for Down syndrome, a type of syndromic CHD
(Asim et al., 2015). However, its association with non-syndromic
CHD has not been reported and may merit further investigation. In
addition, several genes identified by multi-MRF have been previous-
ly reported in association with CHDs. For example, both an animal
study (Guo et al., 2011) and an epidemiological study (Li et al.,
2018a) suggested that EYA1 was associated with conotruncal heart
malformations. Meanwhile, HDAC9 is involved in cardiac develop-
ment. The Bayesian test for colocalization is underpowered prob-
ably due to the small sample size in mQTL study (n¼83).
Nevertheless, we believe the mQTLs identified by multi-MRF may
also reveal some novel signals to represent rare variants of relatively
large and pleiotropic effect.

Although applying different methods, very few overlaps were
observed among the mQTL regions identified by multi-MRF,
mMRF and DKAT. This observation is reasonable because each
method has unique advantages and disadvantages under various
causal scenarios. They should be viewed as complementary methods
for detecting mQTL regions underlying varying biological
mechanisms.

Our study must be considered in the light of certain limita-
tions. First, DNA methylation varies by tissue and cell types. We
conducted tissue-specific analysis but were not able to quantify

the cell types within tissues. A few computational methods,
referred to as deconvolution methods, have been developed to es-
timate cell compositions from DNA methylation data (Li and
Wu, 2019; Rowland et al., 2022; Zhang et al., 2021). These
methods may be used to adjust for the heterogeneity due to differ-
ent cell types. Second, the computation time of multi-MRF
depends on the sample size, the dimensionality of traits and the
number of genetic variants within a genomic region, and the

Table 2. mQTL regions colocalized with eQTLs in heart tissues with a threshold of PP4> 0.8

Chr Regions Gene Source for coloc PP0 PP1 PP2 PP3 PP4 Multi-MRF P value N1a N2b

chr21 42 532 227–42 661 961 BACE2 mQTL—Artery Tibial 2.53e�05 4.96e�04 8.79e�03 0.13 0.86 1.71e�06 20 21

aNumber of nominal significant SNPs in CHD GWAS1.
bNumber of nominal significant SNPs in CHD GWAS2.

Test positive

(rejecting H0)

Test negative

(not rejecting H0)

Total

H0 is true 51 949 1000

H1 is true 870 130 1000

Total 921 1079 2000

Table 3. Empirical guideline to choose among methods in practice

Considerations Multi-

MRF

MRF DKAT Matrix-

eQTL

Input Programming

language

R R R R

Adjustment of

covariates

� � — �

Genomic locations of

CpG sites

� — — —

Working

scenario

Multi-trait testing � — � —

Multi-variant testing � � � —

Detecting rare var-

iants as mQTLs

� � � —

Detecting common

variants as mQTLs

� � � �

Accounting for pleo-

tropic effect on

multiple CpG sites

� — � —

Top performer for

modeling traits

with beta

distributions

� � — —

Top performer for

modeling traits

with normal distri-

butions after logit-

transformation

— — � �

Top performer with

small sample size

(e.g. <100)

� � — —

Top performer with

large sample size

(e.g. 500)

— — � �

Speed Fast method for quick

results

— — — �

Output Method gives P value � � � �
Burden of multiple

testing adjustment

Low Median Low High

Table 4. Distributions for the numbers of CpG and variants within a

gene

Min First

quartile

Median Mean Third

quartile

Max

No. of CpG sites 2 5 8 12.84 14 296

No. of variants 2 32 56 110 111 7200
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number of bootstrap resampling for empirical P-values to avoid
conservative Type I errors (Wu et al., 2011). In our application
data, the distributions for the number of CpG sites and number of

variants within a gene are given in Table 4. The expected run-
times are provided in Table 5.

Empirically, a median-sized gene with 13 CpG sites and 109 var-
iants can be tested in 1.32 s on a local MacBook (Catalina 10.15.7;

x86_64-apple-darwin17.0). Over 75% and 95% of genes in our data-
set (450 K array) have <15 and 50 CpG sites, respectively. We also ex-
pect that there could be more genes with a larger number of CpG sites

for studies with 800 K arrays and bisulfite sequencing. We recommend
partitioning large genes into smaller regions each with <300 CpG sites

to ensure computational speed. Testing a large number of genetic
markers has been a challenge because of the computational burden to
estimate the full set of eigenvalues of a high-dimensional matrix.

Approximation strategies have been proposed and successfully applied
to region-based testing methods, such as SKAT (Lumley et al., 2018).
We are evaluating similar strategies to improve the computation speed

of our method. Third, within the current multi-MRF framework we
only considered unrelated subjects. Future work may evaluate multi-

trait analysis incorporating family data and consider the potential inter-
action between genetics and epigenetics. Fourth, due to the small sam-
ple size of the cardiac tissues, we chose MAF < 0.05 as an operational

cutoff for rare variants. A lower threshold (e.g. 0.01) may be used for
studies with a larger sample size.
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