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Deep Kernel Representation for Image Reconstruction in PET

Siqi Li,
Department of Radiology, University of California Davis Health, Sacramento, CA 95817, USA

Guobao Wang
Department of Radiology, University of California Davis Health, Sacramento, CA 95817, USA

Abstract

Image reconstruction for positron emission tomography (PET) is challenging because of the 

ill-conditioned tomographic problem and low counting statistics. Kernel methods address this 

challenge by using kernel representation to incorporate image prior information in the forward 

model of iterative PET image reconstruction. Existing kernel methods construct the kernels 

commonly using an empirical process, which may lead to unsatisfactory performance. In this 

paper, we describe the equivalence between the kernel representation and a trainable neural 

network model. A deep kernel method is then proposed by exploiting a deep neural network 

to enable automated learning of an improved kernel model and is directly applicable to single 

subjects in dynamic PET. The training process utilizes available image prior data to form a set of 

robust kernels in an optimized way rather than empirically. The results from computer simulations 

and a real patient dataset demonstrate that the proposed deep kernel method can outperform the 

existing kernel method and neural network method for dynamic PET image reconstruction.
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I. INTRODUCTION

POSITRON emission tomography (PET) is an imaging modality for quantitatively 

measuring biochemical and physiological processes in vivo by using a radiotracer [1]. Image 

reconstruction for PET is challenging due to the ill-conditioned tomographic problem and 

low-counting statistics (high noise) of PET data [2], for example, in dynamic PET imaging 

where short time frames are used to monitor rapid change in tracer distribution.

Among different methods of PET image reconstruction, the kernel methods (e.g., [3]–

[9]) address the noise challenge by uniquely integrating image prior information into the 

forward model of PET image reconstruction through a kernel representation framework 

[3]. Image prior information may come from composite time frames of a dynamic PET 

scan [3], or from anatomical images (e.g., magnetic resonance (MR) images [4], [5] in 

integrated PET/MRI). The kernel methods can be easily implemented with the existing 
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expectation-maximization (EM) algorithm and have demonstrated substantial image quality 

improvement as compared to other methods [3]–[5].

In the existing kernel methods, a kernel representation is commonly built using an empirical 

process for defining feature vectors and manually selecting method-associated parameters 

[3]. However, such an experience-based parameter tuning and optimization approach often 

leads to suboptimal performance. In this paper, we first describe the equivalence between 

the kernel representation and a trainable neural network model. Based on this connection, 

we then propose a deep kernel method that learns the trainable components of the neural 

network model from available image data to enable a data-driven automated learning of an 

improved kernel model. The learned kernel model is then applied to tomographic image 

reconstruction and is expected to outperform existing kernel models that are empirically 

defined.

There are many ongoing efforts in the field to explore deep learning with neural networks 

for PET image reconstruction, see recent review articles, e.g., [10]–[15]. Deep neural 

networks have been proposed for direct mapping from the projection domain to the image 

domain (e.g., [16]) but the models are so far mainly practical for 2D data training. By 

unrolling an iterative tomographic reconstruction algorithm, model-based deep-learning 

reconstruction (e.g., [17], [18]) represents a promising direction. One limitation of this 

method is that it requires pre-training using a large number of data sets and involves 

projection data in the iterative training process, which is computationally intensive. 

Alternatively, neural networks can be used as “deep image prior” for image representation 

in iterative reconstruction, e.g. by the convolutional neural network (CNN) model [19]–

[24]. It has the advantage of being directly applicable to single subjects. The resulting 

reconstruction problem, however, is nonlinear and is often complex and challenging to 

optimize.

Different from these methods that utilize pure neural networks, the proposed deep kernel 

method combines deep neural networks into the kernel framework [3] to form a novel way 

for tomographic image representation. The method has a unique advantage that once the 

model is trained with neural networks, the unknown kernel coefficient image remains linear 

in the model and is therefore easy to be reconstructed from PET data. It does not necessarily 

require a large data set for training but is directly applicable to single-subject learning and 

reconstruction, e.g., in dynamic PET, as will be demonstrated in this paper.

The rest of this paper is organized as follows. Section II introduces the background materials 

of the kernel method for PET image reconstruction. Section III describes the generalized 

theory of the proposed deep kernel method that derives a data-driven automated learning 

of an improved kernel method. We then present a computer simulation study in Section IV 

and a real patient data study in Section V to demonstrate the improvement of the proposed 

method over existing methods. Finally discussions and conclusions are drawn in Section VI 

and VII.
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II. BACKGROUND

A. PET Image Reconstruction

PET projection data y = {yi} can be well modeled as independent Poisson random variables 

using the log-likelihood function [2],

L(y ∣ x) = ∑
i = 1

N
yi logyi − yi − log yi!, (1)

where i denotes the detector index and N is the total number of detector pairs. The 

expectation of the projection data, y, is related to the unknown image x through

y = Px + r, (2)

where P is the detection probability matrix for PET and includes normalization factors for 

scanner sensitivity, scan duration, deadtime correction and attenuation correction. r is the 

expectation of random and scattered events [2].

The maximum likelihood (ML) estimate of the image x is found by maximizing the Poisson 

log-likelihood,

x = arg max
x ≥ 0

L(y ∣ x) . (3)

A common way of seeking the solution of (3) is to use the EM algorithm [25].

B. Kernel Methods for PET Reconstruction

The kernel methods describe the image intensity xj at the pixel j as a linear representation of 

kernels [3],

xj = ∑
l ∈ Nj

αlκ(fj, fl), j, l = 1, ⋯, np (4)

where Nj defines the neighborhood of pixel j and np is the total number of image pixels. fj 

and fl are the feature vectors extracted from image priors for pixel j and pixel l, respectively. 

αl is the kernel coefficient at pixel l. κ(·, ·) is the kernel function that defines a weight 

between pixel j and pixel l. A popular choice of κ(·, ·) is the radial Gaussian kernel,

κ(fj, fl) = exp − fj − fl
2

2σ2 . (5)

with σ being the kernel parameter. The equivalent matrix-vector form of (4) is

x = Kα (6)

with the (j, l)th element of the square kernel matrix K being κ(fj, fl).
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The kernel coefficient image α is then estimated from the projection data y by maximizing 

the log-likelihood L,

α = arg max
α ≥ 0

L(y ∣ Kα), (7)

which can be solved using the kernelized EM algorithm [3],

αn + 1 = αn

KT P T 1N
⋅ KT P T y

PKαn + r
, (8)

where n denotes the iteration number and the superscript “T” denotes matrix transpose. 1N 

is a vector with all elements being 1. Once α is estimated, the final PET activity image x is 

given by x = Kα.

Note that in practice, a normalized kernel matrix

K = diag−1[K1N]K (9)

is commonly used for better performance [3]. The (j,l)th element of K is equivalent to

κ(fj, fl) =
exp − fj − fl 2

2σ2

∑l′ ∈ Nj exp − fj − fl′ 2

2σ2

, l ∈ Nj . (10)

The neighborhood Nj of pixel j can be defined by its k-nearest neighbors (kNN) [29] to 

make K sparse. The feature vector fj is usually set to the intensity values of the image prior 

at pixel j and the kernel parameter σ is chosen empirically, e.g. σ = 1.0.

III. PROPOSED DEEP KERNEL METHOD

A. Kernel Representation as Neural Networks

We first describe the kernel representation using a neural network description illustrated in 

Fig. 1. The construction of kernel representation is decomposed into two main modules: (1) 

feature extraction and (2) pairwise attention.

Denote the image prior data by Z which consists of nz prior images, each with np pixels. The 

feature extraction module is to extract a feature vector f of length nf for each image pixel 

from Z,

fj = Ψj(Z), (11)

where Ψ denotes the feature extraction operator, for example, a convolutional neural 

network. The extraction of conventional intensity-based features is equivalent to a 1 × 1 

× 1 convolution operations on Z (if the images are 3D). This step provides a feature data F 
of size np × nf.
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The pairwise attention module first calculates the similarity between pixel j and its 

neighboring pixels that are specified by a pre-determined neighborhood Nj,

sjl = − fj − fl 2

2σ2 , l ∈ Nj . (12)

Note that here only k neighbors are selected for each pixel j, e.g., using the Euclidean 

distance-based kNN algorithm [3], [29]. This leads to a similarity data S of size np × k. 

Pairwise weights are then calculated from S using

wjl = exp(sjl)
∑l′ ∈ Nj exp(sjl′)

, (13)

generating a weight data W of size np × k. Here ∑l ∈ Nj wjl = 1. This type of weight 

calculation is also called softmax in neural networks and can be directly explained as a 

pairwise attention mechanism [26], [27]. wjl is the attention weight of other “key” pixels {l} 

as compared to the “query” pixel j.

The final step reshapes W using the neighborhood indices defined by {Nj}j = 1
np  to generate 

a sparse matrix, which is equal to the normalized kernel matrix defined in (9). Each row of 

the kernel matrix is of the size np × 1 and can be displayed as an image, which can also be 

understood as an attention map for the corresponding pixel in α.

B. Deep Kernel Model

Integrating all the neural network components in Fig. 1 together, we have the following deep 

kernel model to represent a PET image x,

x = K(θ; Z)α, (14)

where K(θ; Z) denotes the equivalent neural network model of K with the image prior data Z 

as the input and θ collecting any model parameters that are trainable.

The deep kernel model is nonlinear with respect to θ and Z but remains linear with respect 

to the kernel coefficient image α. While this model shares the spirit of using attention with 

the nonlocal neural network [27], the linearity of α makes it unique and more suitable 

for tomographic image reconstruction problems. Once θ is determined, α can be easily 

reconstructed from the projection data y using the kernelized EM algorithm in (8).

In conventional kernel methods, θ is equivalent to be determined empirically, which does 

not explore the full potential of the kernel method. For example, intensity-based features 

are commonly used for f. However, convolutional neural network-derived features can be 

more informative [28]. In this paper, we exploit the capability of deep learning to train an 

optimized feature set for generating K from available image prior data based on the proposed 

deep kernel model.
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C. Deep Kernel Learning

The deep kernel learning problem is formulated using the observation that in the kernelized 

image model (6), x is usually a clean version of α if α is noisy. This inspires the following 

use of the denoising autoencoder framework [30] to train the model parameters of K(θ; Z),

θ = arg min
θ

∑
q = 1

ntr
Iq − K(θ; Z)Iq

2, (15)

where Iq denotes the qth high-quality image in the training dataset and Iq is a corrupted 

version of Iq. ntr is the total number of training image pairs. In PET, Iq and Iq can be 

obtained from high count data and low-count data, respectively.

The deep kernel model can be pretrained using a large number of patient scans (large ntr) if 

such a training dataset is available. It can also be trained online for single subjects (small ntr) 

without pretraining, as described below.

D. Single-Subject Deep Kernel Method for Dynamic PET

In dynamic PET, the image prior data Z may consist of several composite images {zm}m = 1
nz

where nz is the number of composite frames. These images are reconstructed from the 

rebinned long-scan projection data {ymreb}m = 1
nz  and may have good image quality due to 

the relatively high count level of a composite frame. For example, a one-hour dynamic 
18F-fluorodeoxyglucose (FDG) PET scan can be divided into three composite frames, each 

of 20 minutes [3]. The composite image prior has been used in the standard kernel methods 

for constructing the kernel matrix empirically. Here we use it to train an improved kernel 

model adaptive to a single subject.

The single-subject deep kernel learning problem for dynamic PET is constructed using the 

following optimization criterion,

θ = arg min
θ

∑
m = 1

nz
zm − K(θ; Z)zm

2, (16)

where the corrupted image zm can be obtained from the reconstruction of the low-count 

projection data which are downsampled from ymreb using a count reduction factor d (e.g. d = 

10). Once θ is trained, the learned kernel model is then used to reconstruct all the dynamic 

frames of the scan frame-by-frame using the kernel EM algorithm in (8).

In theory, both the feature extraction and pairwise attention modules in the neural network 

model (Fig. 1) are trainable. As a proof of concept, in this work we only train the feature 

extraction operator Ψ, while the pairwise attention module is calculated using (12) and (13) 

as used in the conventional kernel method [3].
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E. Model Structure of Feature Extraction

The proposed method is applicable to different neural network architectures if they are 

suitable for image representation. Here a popular residual U-net architecture [19], as 

illustrated in Fig. 2, is used for the feature extraction module Ψ. The network is available 

in both 2D and 3D versions for learning 2D and 3D images, respectively. It consists of 

the following operations: 1) 3×3 (×3) 2D (3D) convolutional layer, 2) 2D (3D) batch 

normalization (BN) layer, 3) leaky rectified linear unit (LReLU) layer, 4) 3×3 (×3) 

convolutional layer with stride 2×2 (×2) for down-sampling, 5) 2×2 (×2) bilinear (trilinear) 

interpolation layer for up-sampling, 6) identity mapping layer that adds feature maps from 

left-side encoder path to the right-side decoder path. In addition, a ReLU layer is used before 

the output in order to satisfy the non-negative constraint on the last feature map.

IV. COMPUTER SIMULATION VALIDATION

A. Simulation Setup

Dynamic 18F-FDG PET scans were simulated for a GE DST whole-body PET scanner in 

two-dimensional mode using a Zubal head phantom shown in Fig. 3a. The phantom is 

composed of gray matter, white matter, blood pools and a tumor (15 mm in diameter). A 

early 20-minute dynamic scan was divided into 63 time frames: 30×2s, 12 ×5s, 6 ×30s, and 

15×60s. The pixel size is 3×3 mm2 and the image size is 111×111.

The time activity curves of different regions are shown in Fig. 3(b–c). An attenuation map 

was simulated with a constant linear attenuation coefficient assigned in the whole brain. 

Dynamic images were first forward projected to generate noise-free sinograms. Poisson 

noise was then introduced. A 20% uniform background was included to account for mean 

random and scatter events. The expected total number of events over 20 min was 20 million. 

Twenty noisy realizations were simulated and each was reconstructed independently for 

comparison.

B. Reconstruction Methods

The simuated dynamic data were reconstructed using four different methods: (1) standard 

ML-EM reconstruction; (2) existing kernel EM [3]; (3) the deep image prior (DIP) 

reconstruction method [19] as a recent representative of nonlinear neural network-based 

reconstruction methods; and (4) proposed deep kernel method with single-subject online 

training of the feature extraction module. The deep kernel method was trained separately for 

each of the 20 noisy data realizations. All reconstructions were run for 200 iterations with a 

uniform initial image.

The image priors for the kernel methods were the composite images obtained from four 

composite frames, each with 5 min scan. For the conventional kernel method, pixel intensity 

values extracted from the composite images {zm} were used to form the feature vector f for 

generating the kernel matrix K using kNN with k = 48 in the same way as used in [3].

The DIP method was implemented using the alternating direction method of multipliers 

(ADMM) in a way similar to [19] but was adapted to use the composite image prior data 
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as the input of the U-net. Within each outer iteration, 4 iterations were used for solving 

the penalized-likelihood image reconstruction problem and 50 iterations were used for the 

image-domain DIP learning. These settings were empirically optimized for obtaining stable 

results across different time frames according to the image mean squared error (MSE) in our 

experiments. The effect of the ADMM hyper-parameter ρ was also investigated and ρ = 5 × 

10−6 was chosen to obtain nearly optimal image MSE.

In the deep kernel method, the low-count images {zm} were obtained by using one-tenth of 

the counts in each composite frame zm. ML-EM was used to reconstruct the image pair {zm}
and {zm} for training. The k in kNN for defining the neighborhood {Nj} was set to be 200 

for optimized image MSE performance. For implementation, the tomographic reconstruction 

step was implemented in MATLAB and the deep kernel training step was implemented 

in PyTorch, both on a PC with an Intel i9-9920X CPU with 64GB RAM and a NVIDIA 

GeForce RTX 2080Ti GPU. Three hundred iterations were used for the training step with 

the learning rate set to 10−3. The Kaiming initialization method [31] was used for each 

convolutional layer and uniform initialization was used for each BN layer.

C. Evaluation Metrics

Different image reconstruction methods were compared using the image MSE defined by

MSE(xm) = 10 log10 xm − xmtrue 2/ xmtrue 2)(dB), (17)

where xm is an image estimate of frame m obtained with one of the reconstruction methods 

and xmtrue denotes the ground truth image. The ensemble bias and standard deviation (SD) 

of the mean intensity in regions of interest (ROIs) were also calculated to evaluate ROI 

quantification,

Bias = 1
ctrue c − ctrue , SD = 1

ctrue
1

Nr − 1 ∑
i = 1

Nr
|ci − c|, (18)

where ctrue is the noise-free intensity and c = 1
Nr

∑i = 1
Nr ci denotes the mean of Nr 

realizations. ci is the mean ROI uptake in the ith realization.

D. Demonstration of Attention Map for the Kernel Methods

To understand how the deep kernel method may improve image reconstruction, Fig. 4 

illustrates the attention maps for two different “query” pixels, one from the tumor and the 

other from the white matter region. These attention maps were generated by reshaping 

the corresponding row of the kernel matrix for a query pixel j. The traditional ML-EM 

reconstruction can be considered as a special pixel-kernel method for which the kernel 

matrix is the identity matrix. As illustrated in Fig. 4(b), the attention of ML-EM just focuses 

on the query pixel j itself. No spatial correlation is explored by this pixel kernel.
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The conventional kernel method [3] is able to exploit spatial correlation from pixels that 

are considered as neighbors of the query pixel j by kNN. The attention is not only on the 

query pixel but also spreads nonlocally to neighboring pixels (“key”) in the whole image. 

However, these “key” pixels may be falsely identified if k in kNN is large (here k = 200) 

[3]. Without deep learning, the existing kernel model is unable to exclude the effect of those 

false neighbors. For example, as shown in Fig. 4(c), “key” pixels in the gray-matter and 

white-matter regions were falsely assigned with high attention for a query pixel from the 

tumor, and “key” pixels in the gray-matter were also falsely assigned with high attention for 

a query pixel from the white-matter region.

In comparison, the deep kernel model with training can learn feature extraction from data, 

which leads to a more appropriate weight to irrelevant “key” pixels even if those pixels 

are initially included in the k nearest neighbors. Fig. 4(d) shows that with deep learning, 

attention is predominantly extracted in the tumor region for the tumor query pixel and in the 

white-matter region for the white-matter query pixel.

E. Image Quality Comparison

Fig. 5 shows the ground-truth activity images and reconstructed images by different 

reconstruction methods for frame 5 (an early 2-s frame, low count level), frame 15 (a middle 

2-s frame, low count level) and frame 55 (a late 1-min frame, relatively high count level), 

respectively. The results of image MSE in dB are included. The kernel-based methods ((d) 

and (e)) both achieved a better image quality with lower MSE as compared to the methods 

without kernel ((b) and (c). The DIP method [19] suppressed noise well but also resulted 

in over-smoothness. The proposed deep kernel method achieved a better image quality with 

lower MSE as compared to other three methods thanks to the improved attention weights 

embedded in the learned kernel matrix K.

Fig. 6(a–c) further show the image MSE plots of frame 5, frame 15 and frame 55 by 

varying the iteration number in each reconstruction algorithm. For the DIP reconstruction, 

the results of the first iteration were always better due to the use of four sub-iterations for the 

tomographic reconstruction step in the ADMM algorithm. The proposed deep kernel method 

demonstrated a substantial improvement at all later iterations over the conventional kernel 

method and the DIP method.

The MSE results of all time frames are shown in Fig. 6(d). Here shown are the best MSE 

(over different iterations) for each frame in different methods. Error bars were calculated 

over 20 noisy realizations. The DIP method showed an unstable behavior across different 

frames. In contrast, the deep kernel demonstrated a significant improvement over other 

methods.

Note that image MSE is only an indicator of global image quality and does not reflect 

task-specific evaluation. Its weakness is compensated by the ROI quantification results 

presented in the next subsection.
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F. ROI Quantification Comparison

Fig. 7 shows the trade-off between the absolute bias and SD of different methods for ROI 

quantification in a blood ROI (Fig. 7a) and a tumor ROI (Fig. 7b and Fig. 7c). The curves 

were obtained by varying the iteration number from 10 to 200 iterations with an interval of 

10 iterations. Note that the uptake in the blood region reached its maximum in frame 5 as 

shown in Fig. 3b. At a comparable bias level, the proposed deep kernel had a lower noise SD 

than the conventional kernel method for both the blood ROI and tumor ROI. The results by 

the DIP method were even worse than the ML-EM results due to over-smoothness, though 

it had a better image MSE performance as shown in Fig. 6. Some curves in Fig. 7b show 

a sharp change of direction because the bias at early iterations was negative and became 

positive due to high noise at late iterations.

G. Effect of Method Parameters

One parameter that has an important effect on the deep kernel method is the number of 

training iterations. With increasing iteration number, the training loss was steadily reduced 

but the corresponding final performance of the PET reconstruction results did not follow 

this trend. Fig. 8 shows the effect of training iterations on the MSE performance for frame 

5, frame 15, and frame 55. The quality of reconstructed PET images may become worse if 

the training iteration number is too large. This is because the training may start to fit the 

noise in the composite image prior and the resulting error can be propagated into the trained 

kernel matrix and final reconstruction. The result here suggests a reasonable choice was 300 

iterations, which also worked well for all other frames.

V. APPLICATION TO PATIENT DATA

A. Data Acquisition

A cardiac patient scan was performed on the GE Discovery ST PET/CT scanner in 2D mode 

at the UC Davis Medical Center. The patient received approximately 20 mCi 18F-FDG with 

a bolus injection, followed by an immediate dynamic scan. The one-hour data are divided 

into 109 time frames following the schedule 75 × 2s, 15 × 10s, 10 × 60s, and 9 × 300s. A 

low-dose transmission CT scan was performed at the end of PET scan for PET attenuation 

correction. The projection data size was 249 × 210 × 47 and the image size was 128 × 128 

× 47 with a voxel size of 3.91 × 3.91 × 3.27 mm3. The data correction sinograms of each 

frame, including normalization, attenuation correction, scattered correction and randoms 

correction, were extracted using the vendor software and used in the reconstruction process.

B. Results of Reconstructed PET images

We compared the propsed deep kernel method with the ML-EM, DIP method [19] and 

conventional kernel method [3]. Because the ADMM algorithm resulted in a very poor 

DIP reconstruction for this patient dataset, here we instead used the optimization transfer 

algorithm [32] for the DIP method. Details and advantages of the OT algorithm are 

described in [32]. The prior images used in the two kernel methods and the DIP method 

were obtained using four composite images that were reconstructed from four composite 

frames (one 5-min frame, one 15-min frame and two 20-min frames). Other implementation 
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settings were as the same as the simulation study. The k in kNN for defining the 

neighborhood Nj was also set to be 200. All the methods were run for 100 iterations starting 

from a uniform initial image.

Fig. 9 shows the reconstructed activity images using different algorithms for two early-time 

high-temporal resolution (HTR) frames (2s/frame), one at t = 37s and the other at t = 

145s. The ML-EM reconstructions were extremely noisy due to the low-count level. The 

conventional kernel method led to substantial noise reduction but additional noise still 

remained. Similar to the simulation results, the DIP method successfully suppressed the high 

noise but also resulted in oversmoothed images and inconclusive separation between the left 

ventricle and right ventricle. In comparison, the images by the proposed deep kernel method 

demonstrated a significant improvement with clearer structures and lower noise in the left 

ventricle cavity and myocardium, though no ground truth is available for the real dataset.

C. Demonstration for Parametric Imaging

Parametric imaging was also performed for the dynamic images of the same subject using 

a two-tissue compartment model [33]. We used the classic Levenberg–Marquardt algorithm 

with 50 iterations to solve the optimization problem and the fitting process was implemented 

using c/c++ programing [34]. For each method, the left ventricle region was used to extract 

an image-derived input function. Because different reconstruction methods mainly make a 

difference for early-time frames which have a low count level (Fig. 9), here we focused on 

parametric imaging of early-dynamic data using the first 150 seconds.

Fig. 10 shows the parametric images of FDG delivery rate K1. The ML-EM result suffered 

from heavy noise. The conventional kernel method demonstrated an improvement but still 

suffered from noise and artifacts. The DIP method largely reduced the noise but also resulted 

in oversmoothness. It also led to a high K1 value in the aorta region compared to other 

three methods. In comparison, the K1 image obtained by the proposed deep kernel method 

substantially suppressed the noise and showed a more continuous and clearer myocardium.

Fig. 11 further shows a quantitative comparison of different methods for myocardial ROI 

quantification in the K1 image. Here the ROI mean is plotted versus normalized background 

noise SD by varying the iteration number from 20 to 100 with an interval of 20 iterations. 

The conventional kernel method outperformed the ML-EM reconstruction noticeably. For a 

given myocardial K1 value, the conventional kernel method had a lower liver background 

noise SD than ML-EM. The DIP method resulted in underestimation of myocardial K1 

compared to other three methods, though the noise was suppressed well. The proposed deep 

kernel method achieved a better trade-off than all other three methods. For a given ROI 

mean value (e.g., 0.57), for example, the deep kernel method had the lowest background 

noise level as compared to the ML-EM and conventional kernel methods. The deep kernel 

method also had a higher myocardial K1 value than the DIP method for a given noise level 

(e.g., 8%) in the liver background. The higher K1 value was closer to the myocardial ROI 

mean quantified with the ML-EM reconstruction.
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VI. DISCUSSIONS

This paper proposed a deep kernel method that learns the trainable components of the 

neural network model from image prior to enable automated learning of an improved 

kernel method. Compared to the conventional kernel method [3] that builds the kernel 

representation using an empirical process, the proposed deep kernel method can learn to 

extract a more appropriate feature set for building improved kernels from the data, as 

illustrated in Fig. 4. Compared to the DIP method [19] that introduces a complex non-linear 

learning in the reconstruction, the deep kernel method only introduces the non-linear 

learning into the kernel representation, but remains a linear representation for the kernel 

coefficient image and is therefore easy to be reconstructed from PET data. The comparison 

results from the simulation and real data studies indicate a better performance of the deep 

kernel method than other methods.

Similar to the conventional kernel method [3] and the DIP method [19], the proposed 

method is directly applicable to single subjects, which has been demonstrated for dynamic 

PET in this paper but can be potentially extended to static image reconstruction if a training 

pair becomes possible. The prior image must be of relatively high quality. When noise 

presents, early-stopping can be used to avoid overfitting in the training. Alternatively, 

regularized training may be explored to address the challenge.

The deep kernel method in this work focused on frame-by-frame image reconstruction in the 

spatial domain but can be potentially extended to the spatiotemporal domain as used in [6]. 

The kernel coefficient image α in the deep kernel model can be also further parameterized 

using a neural network, in a way similar to our other work [32]. In addition, the current 

study only used the kernel form following the Gaussian function and Euclidean distance. 

However, it is possible to train an optimized kernel form from the prior data. These modified 

but more complex methods will be explored in our future work.

Compared to the standard kernel method, the learning of a deep kernel adds an extra 

computational cost. For the 3D real data study, the training time was 20 minutes as 

compared to half a minute for the construction of a conventional kernel matrix. However, the 

extra computational cost may be relatively small when compared to the time (ranging from 

30 minutes to several hours) required for the actual kernelized EM reconstruction step (see 

(8)) for a dynamic PET scan. In addition, the extra time can be further reduced if a large 

database becomes available to pre-train the optimal kernel construction, for example, using 

high performance total-body PET scanners (e.g., [35]–[39]), which will also be explored in 

our future work.

VII. CONCLUSION

In this paper, we have developed a new deep kernel method for PET image reconstruction. 

The proposed deep kernel model allows the construction of kernel representation to be 

trained from data rather than defined by an empirical process. Computer simulation and 

patient results have demonstrated the improvement of the deep kernel method over existing 

methods in dynamic PET imaging.
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Fig. 1: 
The construction of kernel representation for a PET image is described as a series of 

neural network components. Both the feature extraction and pairwise attention modules are 

trainable.
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Fig. 2: 
Illustration of a residual U-net Ψ used for feature extraction in this work.
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Fig. 3: 
Digital phantom and time activity curves used in the simulation study. (a) Zubal brain 

phantom composed of gray matter, white matter, blood pools and a tumor; (b) blood input 

function; (c) Regional time activity curves of brain regions.
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Fig. 4: 
Illustration of two query pixels and the attention maps provided by different methods. (a) 

location of the two query pixels - one in the tumor region (top, A) and the other in the white 

matter (bottom, B), (b-c) attention maps by traditional ML-EM (b), conventional kernel 

method (c), and the proposed deep kernel method (d). All the attention maps are overlaid on 

the structural image.
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Fig. 5: 
True activity images and reconstructed images by different methods for frame 5 (top row), 

frame 15 (middle row) and frame 55 (bottom row). (a) True images, (b) ML-EM, (c) DIP 

method, (d) conventional kernel method, and (e) proposed deep kernel method.
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Fig. 6: 
Comparison of image MSE for different reconstruction methods. (a-c) plot of image MSE 

as a function of iteration number for (a) frame 5, (b) frame 15, and (c) frame 55; (d) image 

MSE of all time frames. The error bars in (d) were obtained from 20 realizations and here 

the MSE of each frame was minimized over the iteration numbers in different methods.
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Fig. 7: 
Plots of bias-SD trade-off for ROI quantification by varying the iteration number from 10 

to 200 with 10 intervals (i.e., from rightmost to leftmost on each curve). (a) Blood ROI in 

frame 5, (b) tumor ROI in frame 5, (c) tumor ROI in frame 55.
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Fig. 8: 
Effect of training iterations on the MSE performance of the proposed deep kernel for three 

different time frames.
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Fig. 9: 
Reconstruction of high-temporal resolution frames (2s/frame) at (a) t = 36 – 38s and (b) t 
= 144 – 146s by different methods: ML-EM, DIP method, conventional kernel method and 

proposed deep kernel method.
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Fig. 10: 
Parametric images of K1 generated from the early-dynamic images reconstructed using 

ML-EM, DIP method, conventional kernel method and proposed deep kernel method. Each 

image is shown in transverse, coronal and sagittal views.
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Fig. 11: 
Plots of ROI mean of myocardial K1 versus liver background noise by varying the 

reconstruction iteration number from 20 to 100 in each method.
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