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ABSTRACT

~ The method of geometrical optics has become é popular tool iﬁ the analysis
of short wavelength wave propagation in inhomogenedus plasmas. Recent numeri;
cal ray tracing studies for the purposes of radio fr'equency heating have indicated
that in many plasma profiles with two-dimensional nonuniformity the ray trajec-
tories can become chaotic. | In addition, other investigations have shown that
bound ray systems may also exhibit varying degrees of ergodic ray behavior.
Indeed, there is reason to believe that chaotic rays are a characteristic of most

wave/ray systems with more than one degree of freedom.

In this work [ concentrate on the relationship between waves. and rays, and
specifically how this relationship is affected when the rays are chaotic. For
the case of well-behaved (integrable) ray trajectories, modern eikonal theory
and the Einstein-Brillouin-Keller method of quantization (for normal modes)
have provided the correspondence between properties of éhe waves and certain
structures in the ray phase space. These theories and associations fail, however,

for the case of nonintegrable or chaotic rays.



In order to investigate general relationships between waves and rays in
- chaotic systems, I study the eigenfunctions and spectrum of a simple model,
the two-dimensional Helmholtz equation in a stadium boundary, for which the
rays are ergodic. Statistical measurements are performed so that the apparent
“randomness” of the stadium modes can be quantitatively contrasted with the
familiar regularities observed for the modes in a circular boundary (with in-
~ tegrable rays). The local spatial autocorrelation of the eigenfunctions is con-
structed in order to indirectly test theoretical predictions for the nature of the
Wigner distribution corresponding to chaotic waves. A portion of the large-
eigenvalue spectrum is computed and reported in an Appendix; the probability
distribution of successive level spacings is analyzed and compared with theoreti-
cal predictions. The two principal conclusions are: 1) Waves associated with
chaotic rays may exhibit randomly situated localized regions of high intensity;
2) The Wigner function for these waves may depart significantly from being
uniformly distributed over the sﬁrface of constant frequency in the ray phase

space.

These results suggest that a phase space representation of a wave (Such
as the Wigner function) is crucial to thé understanding of the correspondence
between rays and waves. In addition, the amplitude transport equations of
geometrical optics (expressed in terms of configuration space) suffer singularity
difficulties in regions where rays focus (caustics); the use of a phase space
description may prpvide a method of avoiding these singularities. In view of
this, I consider three types of phase space formalisms: the Ordinary Symbol, the
Weyl Symbol, and the coherent state _representaiion. Starting with a general
linear wave equation in configuration space, I derive the equations which govern
each of these quantities in phase space. From the equation for the Weyl Symbol

of the wave (the Wigner function), I give a concise derivation of the wave kinetic



equation.  Finally, I apply a generalized phase space eikonal analysis of the
coherent state equation which results in a method for constructing a smooth
representation of the wave along rays in phase space. This procedure produces a
uniform approximation of the wave when “projected” onto configuration space
(without singularities or matching). Therefore, this method may be useful for |
~ avoiding caustic singularitieé and may also provide a basis for constructin‘g'an

asymptotic theory of chaotic waves.

I e
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INTRODUCTION

A program for heating a confined plasma with radio frequency waves has
been extensively developed in recent years.! From a theoretical ’standpoint; it
has been of ﬁrime concern to determine the conditions under which a particular
wave, launched from the exterior of the plasma, is able toupropagate into a region
where an effective conversion of wave energy to particle thermal energy can be
achieved. With a view toward application to real experimental and reactor
devices, it has become necessary to consider increasingly more realistic plasma
profiles; the effect of asymmetries, toricity and other compliéations found in
actual three dimensional plasma prohibit the use of simplified one dimensional
models. Due to the fact that over most of the plasma the relevant parameters
such as density and temperature vary on a scale much larger than the short
wavelength 6f these waves,‘(su‘ch as lower hybrid waves), it is popular to apply
the techniques of geometrical optics in order to analyze the propagation of
the wave. The analytical difficulties impdsed by theﬁ complexity of the plasma
dispersion relations usually considered (especiallj in more than one dimension),
have necessitated the use of numerical ray tracing codes. In many cases, 23

these codes have succeeded in resolving the circumstances for the wave energy
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(carried along the rays) to reach the desired resonant region, as well as providing

a general picture of the behavior of these trajectories.

At this point there are two observations to be made. First, depending on the
model,?# ray trajectories may appear to be very “regular looking” or they may
be “chaotic”; these descriptions are not only qualitative and visual, but they
have been connected with precise mathematical ideas. Secondly, the theory of

58 includes the rules for constructing the wave

geometrical optics in a plasma
phase and asymptotic wave amplitude along the rays; however, even numerically
these equations are laborious to integrate and therefore the structure of the wave
supported by the rays has not been determined. While it may be argued that
this information is secondary to ascertaining the path of the wave energy in
the plasma, amplitude and phase are important for both linear and nonlinear
pro.cesses which may occur due to the presence of the wave. These two points
are related in the following question: How are the features of the asymptotic

wave form related to and affected by the “regular” or “chaotic” properties of

the corresponding ray trajectories?

This question also arises in the context of plasma eigenmode problems."’8

Here, instead of being externally launched, the rays supporting the eigenfunction
are confined to a region of the plasma. Again, depending on the model, the
trajectories may be qualitatively characterized as “regular” or “chaotic” in more
than one dimension. Quantization of the ray system is accomplished in the
geometrical optics limit with the Einstein-Brillouin-Keller (EBK)® method when
the rays are integrable. In these cases the question has been answered: the
relationship between ray and wave properties relies on the structure of the ray

phase space.

The purpose of this thesis is twofold and it is in two Parts. In Part [, I shall
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review the basic ideas of the EBK quantization procedure for plasma eigenmodes
and present the pertinent formulas with discussion but without derivation. The
aim here is to point out how various properties of regular modes and spectra are
related to phase space quantities when the geometrical optics rays bare iﬁtegrable.
In the case of bound chaotic rays, I shall attempt to analyze irregular eigenmode
structures in terms of possible phase space associations and to provide an intui-
tion for how the EBK ideas break down and become inadequate for the treatment
of theee systems. Many authors have given qualitative and quantitative predic- -
tions concerning statistical properties of the eigenfunctions and eigenvalues in

this case; [ shall discuss and test_ several of these theories.

In order to illustrate these ideas I have chosen a inodel'which, although
extrem_ely simple and rather removed from a realistic plasma mode probiem, ‘
containe the basic ingredients necessary to indicate the features ohe might expect
irregular waves to exhibit. I consider the scalar Helmholtz equation inside a
" bounded two dimensional region,!% with the condition that the wave function
vanish on the boundarj. Thus this model is directly applicable to the modes of
a drumhead, the quantum mechanics of a particle in a two dimensional infinite
well, or the transverse modes in an electromagnetic cavity or waveguide. The
boundary has the shape of a racetrack or stadium (two semicircles connected
by parallel lines) and is parameterized by the length of the straight sections at
constant area; the wave equation is to be soived at fixed valuevof this parameter.
When the parameter is zero, the boundary is a circle and the Helmholtz equation
is solvable analytically; in this case, short wavelength modes are obtainable in
the EBK approximation because the fay trajectories (free motion with specular
reflection from the boundary) are integrable. However, for any length of the
straight sections greater than zero, no analytic method of exact solution is

available and EBK quantization fails because almost all ray orbits are ergodic.
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Therefore, in order to examine how this property of the rays is manifested by the
eigenfunctions, I have solved the wave equation numerically. The investigation
of this relationship requires the analysis of many short wavelength eigenmodes

(s.e., high eigenvalues), so that a novel numerical procedure is used.

Several features distinguish the difference between the regular modes of the
circle and the irregular modes of the stadium. Qualitatively, the distribution of
wave intensity for a typical mode in the circle is readily explained in terms of
the ray trajectories. The existence of two invariants of the motion (frequency
and angular‘momentum) restricts a given orbit to an annulus of the circle.
- Consequently, the corresponding eigenfunction is found to be evanescent in the
region of the circle which is inaccessible to the ray. Fufthermore, the intensity of
the mode is greatest along the interior rim of the annulus where the rays focus;
this is the well-known caustic phenomenon. In contrast, the ergodicity of the
rays in the stadium would suggest that irregular modes in the stadium should
exhibit a fairly uniform distribution of intensity; however, this is not observed.
Instead, in the region of the spectrum studied, a typical mode is characterized
by small regions of high intensity interspersed almost randomly among regions
of low intensity. In fact, a fraction of the modes are observed to be quite regular
in appearance, displaying many features one would associate with integrable
rays. These apparently nonintuitive attributes indicate that the correspondence
between rays and waves for chaotic systems requires further study, and I proceed

to investigate several quantitative characteristics of this relationship.

Based on a sense of randomness in a chaotic trajéctory, Berry!! has predicted
that an irregular mode is a gausssan random function at every point; that is, the
probability that the eigenfunction has a certain value at any point should be dis-

tributed as gaussian. This prediction is verified by constructing the probability
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distribution for the amplitude of many stadium modes and this result is con-
trasted with the extremely non-gaussian distributions found for the regular

modes in the circle.

Other statistical properties of regular and irregular modes can be deduced by
considéring‘ the nature of the Wigner function associated with these modes. This
is an example of a phase space representation (or joint (z, k) representation) of the
wave function and can be regarded, in some sense, as the wave-optical analogy of
the classical Liouville density in phase space. As the EBK method fails for non-
integrable ray systems, several authors!1:12 have uSéd the Wigner function as a
basis for predicting the character of irregular eigenmodes. Moreover, examina-
tion of the Wigner function has led some to a quantitative definition of what has
become known asbquantum or wave stochasticsty. For regular eigenfunctions, the
' Wigner. function is concentrated in the same region of phase space occupfed by
th;a corresponding rays; consequently, for irregular modes it is predicted to spread
over the constant frequencj surface just like the correspondiﬁg ergodic Liouville
density. [ have tested these ideé.s by constructing the local spatial autocorrelation
function of representative modes (the Fourier transform of the Wigner function)
and conclude that while the theory for regular modes is confirmed, the Wigner
function for irregular modes probably exhibits considerably more structure than

the Liouville density.

Besides the fairly obvious correspondence between spatial characteristics of |
the eigenfunctions and the associated ray motion, properties of the eigenvalue
spectrum have also been related to the integrabili_ty of the ray system. Among
these is the tendency for the regular spectrum to cluster, while the irregular
spectrum is expected to exhibit a more uniform arranvgement of eigenvalues. For

both the circle and the stadium I construct the distribution of neighboring level
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spacings over a range of the spectrum; in both cases I find fairly good agreement

with theoretical models of this distribution.

These experimental results demonstrate the relationships between ray phase
space quantities and various wave phenomena as well as the need for constructing
an asymptotic 'theory of short wavelength waves associated with nonintegrable
or chaotic rays. Furthermore, even though the usual eikonal theory of geometri-
cal optics is generally successful in treating regular or integrable ray systems,
it suffers from amplitude singularities at caustics (turning points) where rays
- focus. The discussion of the eikonal method in Part I emphasizes that caus-
tics are properly interpreted in terms of the projection of the phase space ray
trajectories onto configuration space. While these singularities can be treated
with standard boundary layer techniques or more modern mehods, they may
pose serious probiems from a numerical standpoint if they occur freqﬁéntly in
actual applications. The possibility of constructing a representation of the wave
in phase space where rays do not focus (as opposed to in either configuration or
wavevector space separately) holds the advantage of avoiding these singularities

completely.

In view of thesé considerations, I devote Part II of this thesis to the develop-
ment of phase space represéntations of waves. A phase space representation is
not a unique quantity and, as previously mentioned, the Wigner function is an
example of such a joint (z, k) description. The modern theory of geometrical
optics!? is based on the theory of pseudodifferential operators and their Ordinary
Symbols, which are indeed phase space representations of the operators. In these
formulations of wave theory, the operator which describes the field will be the
abstract bilinear spectral or correlation operator; consequently, thé phase space

representations (or Symbols) of the wave are related to the spectral and correla-
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tion functions (tensors) of the field. I shall provide a brief description of the
‘concept of the Ordinary Symbols and their mathematical properties in order to

establish a basis for developing other Symbol formalisms.

The Wéyl Symbol of an operator is closely related to the Ordinary Symbol
but it is much more useful in this study of the correspondence between rays
‘and waves. In fact, the Wigner function is the Weyl Symbol of the spectral
operator and the Weyl calculus has properties which are reminiscent of the
~ classical Poisson structure on the ray phase spaée. Application of the Weyl
theory to the general electromagnetic equations for wave propagation in a weakly
inhomogeneous plasma permits a concise derivation of the wave kinetic equatsion

governing the wave action denssty in phase space. -

Yet another phase space repreéentation of waves, known in Quantum mechanics
- as the cokerent state representation, can be viewed as a locally smoothed Fourier
trénsform of the spatial representation of the wave. One of the advantages of this
description is that it is linear in the wave field while the earlier Symbol quantities
are quadratic. Both the spatial and wavevector representations are obtainable.
from this quantity via projectson integrals which retain phase information. One
may relate this new representation to the previous Symbols so that the Weyl cal-
culus may be used to derive a wave equation in phase space. Thus, beginning
with Maxwell’s equations coupled to a hermitian linear plasma response in a
coordinate-free operator representation, I derive the equation governing the
coherent state representation of the wave. Treating this equation with a general-
ized WKB method allows the construction of the wave along the usual ray orbits
in phase space (as opposed to the space-time paths of traditional WKB). ‘The
resulting amplitude transport eqdations along the rays encounter no singularities

as the rays do not focus in phase space.
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The primary reason for the introduction of this'pha.se space representation
is that, due to the smoothing incorporated in its definition, it provides a uniform
approzimation everywhere to the asymptotic form of the wave when projected
onto physical space (with no singularities or matching). This is illustrated in a
simple one dimensional example for which the traditional WKB method requires
special attention at turning points (caustiés), whereas this theory yields not
only a uniform representation of the wave function but the exact result. For
real multidimensional plasma problems hdwever, the nature of the phase space
method may prohibit analytic calculations so that a numerical method is desired.
For application to chaotié ray systems, the computation of this phase .space
representation may be superior to numerical codes based on traditionai WKB
wave amplitude equations if caustic singularities are frequently encountered;
indeed, this method may be instrumental in the development of an asymptotic

wave theory for such systems.
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I.1. Introduction - : : 12

1. INTRODUCTION

The propagation of linear waves in a plasma is in general governed by
an integrodiﬁ'efential eduation for the fields (comm:)nly expressed in space and
| time variables) which couples a linear plasma response to either the Maxwell
or Poisson differential operator. A great deal of progress has been made by
making the simplest assumption that the plasma is uniform in space and sta-
tionary in tiine; translational symmetry then implies that the plasma suscep-
tibility depends only on the space-time separation of the field and response
points. In this case a change of representation (Fourier transform from space-
time to wavevector-frequency) provides the method of solution in terms of plane
waves whiéh obey the familiar basic dispersion relations. The requirements of
special geometries and boundaries beg'in to complicate this picture in that simple
plane waves may not be the appropriate choice for the basic modes of the sys-
‘tem. Finally, allowing for spatial. inhomogeneity and temporal non-stationarity
prevents the use of this method altogether; the susceptibility now depends on

the field and response points separately.

In many cases, it may be assumed that the plasma parameters (density,
temperature) vary slowly in space and time over most of the region of interest.
These assertions however must be made with respect to an estimate of the scale
»of variation exhibited‘ by the desired wave solution; thus, the concept.s of phase,
wavevector and frequency must be borrowed from}the uniform plasma solutions
and expanded somewhat to generate thé concept of a local plane wave. Short
wavelength solutions w;vill then be those for which the scale of variation of the
weakly inhomogeneous plasma parameters is large compared with the scale of
oscillation of the local plane wavé in both space and time. Such solutions are

usually difficult to obtain numerically (especially in more than one dimension)
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due to the disparity of the scales involved.

Geometrical considerations and the existence of symmetries may allow separa-
tion of the real three-dimensional problem, simplifying the application of analyti-
cal and numerical technidges_. If the plésma is assumed to vary in only one dimen-
sion or if the problem is 'se.parable so that this is effectively the case, the tradi-
tional techniqué for obtaining short wavelength solutions is known as the WKB,
or eikonal, method. While probably more familiar in the context of quantum
mechanics; this method has been rigorously applied to a wide class of problems
where it has been placed on firm theoretical foundations. The essence of this pro-
cedure is to convert the integrodifferential equation for the wave field into a set
of ordinary differential equations governing-the so-called ray trajectories. In
quantum mechanics, these are the classical particle trajectories in phase space
generated by Hamilton’s equations, v?ith the classical Hamiltonian correéponding
to the Hamiltonian operator in the Schrodinger equation. In the present wave-
optical problem, these paths are the rays of geometrical optics generated by the
local dispersion relation in the ray phase space, where wavevector and: position
are conjugate variables. Thus, it is the eikonal method that lies at the heart of
the connection between geometrical optics (classical mechanics) and wave optics

(quantum mechanics).

The WKB technique is applicable to two types of wave problems of interest

in plasma physics: the propagation of an externally launched wave into a plasma
| (eg., for heating purposes) or the determination of plasma eigenmodes. The
first case (scattering) presents an initial value problem: the rays travel from the
edge of the plasma, are typically refracted and eventually are either completeley
absorbed, transmitted through, or a}e reflected back out (as in the case of the

propagation of radio waves in a stratified ionosphere). In the second case (bound
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states), the rays are trapped in a region of the plasma and in one dimension
execute closed orbits. In both cases the wave (in the space-time representation)
is constructed along the projection of the phase space trajectories onto vphysical

space. In the scattering pfoblem, the wave is subject to the boundary conditions

provided by the wave form on the edge of the plasma (which also provides -

the initial conditions for the rays), while the bound problem requires single-

valuedness of the wave.

When the wave problem is not reducible to one dimension many new issues
arise. The straightforward attempt to apply the eikonal method naturally leads
to the conéideration of a Hamiltonian system of rays with more thanvone de-
gree of freedom and if, as in one dimension, the wave is to be supported by
these trajectories, then the structure of the phase space should be examined.
Two developmenté in recent years have irﬁportant implications in this regard:
1)The discovery of thé relationship between certain ray phase space objects and
properties of the asymptotic wave field constructed with the eikonal method,
and 2)The realization that even ray systems of only two degrees of freedom may
be nonintegrable and chaotsc, thus tremendously complicating the nature of the

phase space.

For the trapped wave or bound (eigenvalue) problem in N > 1 dimensions,
the extension of the WKB technique which has emerged is known as the Einstein-
Brillouin-Keller (EBK) method.! This procedure recognizes the fact that the
orbits of an tntegrable bound Hamiltonian system with NV degrees of freedom
are constrained to lie on N dimensional tori in the 2/N dimensional phase space.
The N conserved actions which label the tori are quantized in this asymptotic
scheme, generalizing the Bohr-Sommerfeld rules; this provides a complete set

of N mode numbers. A single mode of the system corresponds to the entire
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family of trajectories which constitute a single member of the discrete set of
tori. The construction of a regular mode (in any representation) is accomplished
by means of path integrals on the torus (not necessarily along orbits) which are
then projected onto the appropriate variable subspace. Therefore, the principal
classical quantity of inierest in this multidimensional asymptotic quantization

method is the torus in phase space, an exémp_le-of a Lagrangian manifold.

When the bound ray system is nonintegrable a complete set of N conserved
actions does not exist everywhere in phase space and the orbits may éxplore sur-
faces of higher dimension. In the extreme case, the Hamiltonian (the frequency,
or the numerical value of the local dispersion relation) is the only invariant
under the flow so that almost every trajectory eventually ergodically wanders
over f,he entire 2N — 1 dimensional surface of constant frequency. When the
bound system is non-integrable, the eﬁtire phase space is not foliated by invariant
Lagrangian manifolds (although some may exist). Yet even though this is why
the method of EBK quantization fails, the underlying wave problem does possess
a discrete spectrum; here, the connection between the structure of phase space -

and these trregular eigenfunctions and eigenvalues is not known.

The propagation of a wave given an initial phase surface in N dimensions
should also be interpreted in terms of a geometrical object in phase space.
Constructing the local wavevector at each poiﬁt on the initial N —1 dimensional
wavefront produces an NV — 1 dimensional surface of initial conditions in phase-
space. The N dimensional manifold composed of the family of trajectories
generated by these initial conditions under the flow (the outflow) is also an
example of a Lagrangian manifold. As in the bound problem, the wave supported
by these trajectories is constructed by (path-independent) line integrals along

this manifold and then projécted onto physical space (if this is the representation
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desired). Singularities in the projection of this manifold are responsible for
the optical phenomenon of amplitude enhancement at caustics. These occur,
for example, when a family of trajecﬁories are refracted or reflected; in phase
‘space the manifold “bends” or turns parallel to the “wavevector directions” so
that the projection onto physical space produces focusing. Such singularity
difficuities occur in the bound problem as well and give rise to the Stokes
phenomenon. The modern treatment recognizes the fundamental role played
by the Lagrangian manifold: in the neighborhood of a caustic the projection of
the manifold onto the wavevector space (or a combination of some coordinates
and the remaining wavevector variables) will be non-singular. The structure of
the wave in the caustic region may be determined in the wavevector {or possibly

mixed) representation, and then in physical space via Fourier transform.?

‘Since the geometry of this Lagrangian manifold is central to the construction
of a propagating wave, it is again important to study the evolution in time of the
rays. The concepts of integrability are not appropriate in this context because
either the surface of constant frequency may be unbounded or the wave may
be damped by so‘me process so that it becomes unnecessary to follow a ray
beyond several dampilig times. However, numerical integrations of lower hybrid
rays in realistic plasma profiles have demonstrated that trajectories in an actual
plasma may be unstable in the sense that initialiy neighboring rays separate
exponentially in time (a behavior shared by ergodic rays of bound Hamiltonian
systems). If this is the case, the manifold generated by the outflow of a family of
initial conditions may prove to be extremely convoluted and the projection of this
manifold onto configuration space may involve many singularities. Therefore,
in spite of the formal understanding provided by the.concept of the relation
between a short wavelength wave and a Lagrangian manifold in phase space,

the analytic or numerical computation of the wave structure may be extremely
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difficult in these cases.

Part [ of this thesis will be concerﬁed with the concepts and implications
-of the correspondence between rays and waves. qu the case of integrable
bound trajectories I intend to demonstrate the ideas that have been developed
in association with the EBK method; for “chaotic” orbits, I hope to provide anf
intuition for how these ideas break down and for how one should perhaps view
the ray-wave correspondence. The extent to which these conclusions (in both

cases) can be applied to the propagating wave system will be given attention.

In Chapters 2 and 3, I shall discuss the method of EBK quantization,
omitting the details of the £réhsformatioi1 of the underlying wave equation
into a set of ordinary differential eduations constituting the Hamiltonian ray
system. [ shall_' immediately introduce the extremely simple sﬁadium model in
order‘ to illustrate this procedure. This two dimensional eigenﬁlue problem has
a geometrical parémeter 4 such that when v = 0 the resulting ray system is-
integrable, while for ¥ > 0 it is chaotic (in fact, ergodic). The model wave
equation is exactly solved (numerically) for large eigenvalue and the regulaf wave
solutions for 4 = 0 are qualitatively compared with the EBK reéults in Chapter
4. Numerical solutions for ¥ > 0 are presented in Chapter 5 and the striking
features of these irregular modes are qualitatively discussed with regard to the
properties of the chaotic ray system. As an initial attempt at. understanding the
apparent “randomness” of these mode structures in terms of the “randomness”
of the ray orbits, I compute in Chapter 6 the probability distribution of wave
amplitude for several modes and verify the prediction that this quantity should_
be a gaussian. In Chapter 7, the evolution of eigenvalues and eigenfunctions is

examined as the parameter v is increased from zero.

A quantitative description of the relationship between the ray phase space
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and the characteristics of short wavelength waves is facilitated by the inves-

tigation of the Wigner function. In Chapter 8, I discuss this distribution, its

properties and its interpretation as a phase space representation of the eigen-
function. In the regular case, the asymptotic form of the Wigner function is
related to the EBK result; for the case of irregular waves, I motivate the predic-
tion of Berry3 and Voros? in terms of the relationship of the Wigner function to
the classical Liouville density. These expressions for the Wigner function may
be used to compute the local spatial autocorrelation of a mode; the predictions
are given in both the regular and irrﬁegu‘lar cases and compared with numerical

results.

The spectrum of eigenvalues is analyzed statistically in Chapter 9 by con-
structing the probability distribution of successive level spacings. The results

for the regular and irregular cases are contrasted and compared with theoretical

“predictions of Berry and Tabor® and Zaslavskii.® C_onclud'ing in Chapter 10, -

summarize the essential distinctions between regular and irregular waves, how
these may or may not be understood in terms of the properties of the correspond-
ing integrable and nonintegrable ray systems, and the general 1mphcatxons these

results may have for chaotic propagatlng waves.
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2. THE EIKONAL METHOD ].N NONUNIFORM PLASMA

The existence of a linear wave in a plasma involves the coupling of Maxwell’s
equations for the wave electromagnetic field to a model of the interaction of the

field with the plasma. In space-time variables, this is represented by
iz, t) = /d"’z’dt’ gz, t;2,t | p)- El, V) (L1)

which relates the current j at the response point (z,t) to the wave electric field £
at the field point (z/,#). The linear coupling is mediated by the plasma conduc-

tivity kernel g(z,¢; z/

,t’. | o) which depends on some set of plasma parameters
{p} such as density, temperature or magnetic field. This real, possibly non-
symmetric tensor is determined by the plasma model chosen (t.e., kinetic, fluid,
etc.) and in general it will depend on each space-time point separately. The in-
tegral over the field pbiﬁté encompasses the entire plasma (in this nonrelativistic
treatment) whereas only earlier times (¢ < t) are considered (due to causality).

When (I.1) is inserted into Maxwell’s equations, the magnetic field can be eliminated

so that the linear wave equation governing the electric field may be written
/ S2dt Dz, 2, ¢ | o) B, ¢) =0 (12)

The integral is to be performed as in (I.1) and the equation is to hold at all
points (z,t). Depending on the circumstances, appropriate boundary conditions
must be specified for a well-posed problem. In terms of the Maxwell operator
and the conductivity kernel, the dispersion kernel 2 in (I.2)is

2
D(z,t;2',t' | p) = K;lggat—z - V2)£+ VV] §(z - 2)6(t - )

" 4w 0

- '*;——U v & 'ytl

(.3)

Due to space and time translational invariance, the vacuum terms in (I.3)

depend only on the separation of the space-time points. When the assumption
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is made that the plasma is uniform in space and stationary in time, then the
conductivity depends only on this separation as well, and the parameters {p}
are constant. If this is the case, a change of variables allows (1.2) to be written

in the form

/d3adr Du(a,r|p) - E(z—8,t—7)=0 ' (I.4)

where

Patid = Dua-Zit-¢1p) (5

defines the kernel D, for the uniform plasma. Now, introducing the Fourier

transform of E(z,t)

a3k dw » . '
E(z,t) = /Wﬁﬂ(&’w) ¢l (E:z—wt) (L6)

the wave equation (I.4) may be expressed in the wavevector-frequency repre-

sentation as

with the uniform plasma dispersion tensor @u defined by
@u(&,w | p) = /dsadr Du(s, 7| p)e"'(b'-'-“'" . (1.8)

Owing to the orthogonality of the Fourier plane wave modes, the solution to
(I.7) is simply

a

Dulkyw | ) Elk,w) =0 (L9)
which in turn requires

det Du(k,w|p)=0 = w=uwlk]|p) (1.10)

The same results are obtained with the assumption that a single plane wave

or Fourier mode is present in the system and that the boundary conditions are

to be satisfied by considering a linear superposition of the waves. Substitution



1.2 The Eikonal Method in Nonuniform Plasma _ 21

~of the form

E(z,t) = E,ef bzt (L11)

into (I.4) immediately gives (1.9) and hence (1.10). Thus, equations (1.9) and (I.10)
define the polarizations and dispersion relations of the linear waves in the given
uniform model of the plasma. These wave.s are labeled as }diﬁerent branches
{b} or roots of the characteristic equation for (I.10) and depend on the uniform

plasma parameters {p}.

When the plasma is nonuniform and nonstationary this familiar method
fails. When space-time transiation is not a symmetry, the conductivity kernel
g does not simply depend on the separation (g, r); instead, it depends on the
field and respbnse points individually and the simplifications made in eQuations
(I.4-1.10) are not possible. However if the inhomogéneities are.in .éome sense
small so that thebpara'meters {r} é.re nearly uniform over most of the plasma,
one would expect waves similar to those that exist in the uniform case. This is
reasonable if the waves satisfying the uniform plasma dispersion relations (I1.10)
have wavelengths short compared with the scale of variationv of the plasmé (of
course, there may be several such scales but for the present discussion it is
assumed there is only one). In this case, one would expect that over a suitably
small region of the plasma the wave would have a form similar to (I.11), i.e.,
locally a plane wave with coﬁstant wavevector and amplitude. However, over a
region the size of several wévelengths the plasma parameters would change and
on this scale the wavevector and amplitude should vary also. The wave equation
being linear, the desired solution at a point would be a superposition of such

primitive wavelets.

This reasoning is embodied in the basic tenets of the eskonal procedure.

Quantifying the foregoing statements, one assumes the form of the solution to
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(I.2) to be a local plane wave
E(z,t) = E(z, t)e' =Y (1.12)

which generalizes the phase of (I.ll') and allows for spatial amplitude variation.
In keeping with the usual ideas of wavevector and frequency being measures of

phase oscillation, these quantities are defined by

k(z,t) = Vo(z,t) w(z,t)=-0:4(z,) (1.13)

Now the conditions for short wavelength solutions to (1.2) in a weakly inhomogeneous .

plasma are

kL>1  wT>1 (1.14)

where L and T are respectively the scales of the spatial and temporal variation
of the unperturbed medium. The large quant.ities in ([.14) are assumed to be of
the order of a large parameter A. The amplitude £ is written in a formal power

series

nam(

Ez, )= f: AT E (z,t) (1.15)

with the following ordering |
% E(z,t) ~ A~ (1.16)
where 3% is a kth order combination of space and time derivatives. Thus, the

amplitude is slowly varying compared with the phase and the wavevector and

frequency are assumed to change on the same scale

% k(z,t) ~ % w(z,t) ~ A™* (1.17)

When the form (I.12) is substituted into the wave equation (I.2) and separated
by the ordering scheme above, asymptotic solutions are obtained as A — oo. |
shall omit the details of this calculation and refer to the derivation of Bernstein

and Baldwin’ for an example of the usual treatment;3%10 [intend to perform a
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similar computation in Part II. The result to lowest order O(A%) is similar to (1.9),
D(z,t,k,w) Eo(z,t) =0 o (118)
and is solved by
detD(z,t, k,w) =0 = w=2%z,t,k) (1.19)
Here, the local disperaz;ﬁn tensor D is related to the dielectric kernel D by
D(z,t k,w) = /dssdre-"‘g'!_“'" Diz+4a,t+%rz—$s,t—4r) (1.20)

and in terms of the definition (I.3) it is

D(z,t,k,w) = (/c'-’_ - -“’7) [— k- Tzt k) (121)
~ e 2 )= c?

The local conductivity g, is defined in terms of the conductivity kernel g by

the same centered transform as in (1.20).

The set of local dispersion relations labelled by {b} obtained as the roots
of the characteristic equation in (I.19) are related to the local frequency and

" wavevector by

w(z,t) = 2z, ¢, 5(;, t)) (1.22)

and as such, this is to be interpreted as an equation for the phase ¢(z,t) of the

eikonal wave. Thus, inserting the relations of (I.13) into (1.22), one obtains

as the equation to be solved in the lowest order of the eikonal method. Although
a procedure has been outlined here for arriving at these local dispersion relations,
 ‘the common method of obtaining them is to generalize the uniform dispersion
relations {w®(k | p)} of (I.10) by allowing the plasma parameters {p} to have

weak spatial-temporal dependence.

Equation (I.23) is known in classical mechanics as the Hamilton-Jacobi

equation when the eikonal phase ¢(z, ¢) is interpreted as the action function with
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the local dispersion relation £ playing the role of the classical Hamiltonian.!!

Thus the solution to (I.23) is given in terms of the characteristic trajectories
governed by Hamilton’s equations

dz _ 902 - dk _ 0N dw _ 042 : (1.24)
dt ~ Ok dt =~ 0Oz dt ~ Ot '

These trajectories evolve in the six dimensional phase space of the independent
variables (k, z) and are the rays of geometrical optics. This is a slight generaliza-
tion of the usual nomenclature which refers to the physical z-space projection

of these orbits as the light rays of electromagnetic theory.

Before proceeding with the discusion of the method in which these trajec-
tories are used to determine the eikonal phase, I shall begin to introduce an
extremely simple example so that the following development may be illustrated
-at each point. Thus consider the local dispersion tensor (1.21) in vacuum (g = 0)
with transverse waves (k- £ = 0). The local dispersion relation (I.19) is then

the familiar expression
w? =%z, k) = k2 + k2 | (1.25)

where [ have set ¢ = 1 and have restricted the problem to two dimensions. At
first glance, it would seem that this example does not requii‘e the application of
the eikonal method at all; however I shall impose a boundary on the region of
interest, thereby removing the appearance of spatial uniformity and justifying

the depehdence of the dispersion relation on z.

The shape of the boundary as shown in Fig. 1 is that of a racetrack or
stadium: two semicircles connected by parallel lines. It is to be parameterized
by ~, the ratio of the halflength of a straight section to the semicircle radius,
so that when v = 0 the boundary is a circle. In addition, for reasons to be

explained later, the area is to remain at the constant value x as 7 is varied.



1.2 The Eikonal Method in Noruniform Plasma l 25

Therefore, the semicircle radius is a function of 4 and is given by

R(y) = (1 + 47") o © (1.26)

Comparing (1.25) with (I.3), it is apparent that the underlying wave equation

for this system is the Helmholtz equation in two dimensions

(V2 +w?)9(z) =0 | (L.27)

where ¢ is any component of E. The boundary condition is taken to be ¥ = 0
and hence this is the problem of transverse modes in an electromz;zgnetic cavity
or waveguide. On a broader level, this problem is also that of the modes of a
drumhead and is the Schrodinger equation for a particlé in a two dimensional
infinite well of this shape; in some instances it may be useful to think in terms
of these ‘interpretations. Equatioxi (1.27) is to be solved at a fixed value of ~; this
is not a time—dependent problem, but rather an investigation _of the solutions
as ~ is varied.‘ With these considerations, (I.27) is an éigenvalug problem‘which |

possesses an infinite discrete spectrum for all values of 7.
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Figure 1. Stadium boundary for the Helmholtz equation. This family of bound-
ary shapes is governed by the parameter 5, the ratio of the halflength of the

straight segment a to the semicircle radius B. The area is to remain constant .
(= m) as v is varied.
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3. EBK QUANTIZATION

Returning now to the discussion of the equation for the eikonal phase, it is
known!! that boundary conditions must be specified in order for (I1.23) to be a
well-posed problem. These can be of two types depending on the nature of the

solution desired:

1) A propagating eikonal wave is evolved in space-time from initial data (at
t = 0) of the form
E(z,0) = E(z,0)e' %@ | - (128)

This supplies an initial condition ¢¢ for (I.23) and hence initial conditions for

the rays in phase space via the definitions (I.13).

2) A normal mode o'f a time-independent wave system is required to be.

single-valued in space.

An example of the first case is a wave launched into.a plasma from an
_external antenna. An initial wavefront (o(z) = constant = ¢J) serves as the
initial condition for a family of rays which propagate into the plasma (governed
by (I1.24)), are typically refracted and may eventually emerge from the plasmé.. :

The wavefront evolves in space-time as a line integral along the rays!!

ba,t]4) =85+ /o dt' (K¢ | 43)-2(¢ | 45) = w(t' | 43)] (129)

where ( k(¢ | 3),z(t | ¢3),w(t | #3)) are the solutions of (I.24) with the initial
conditions on ¢). In three dimensions, the phase surface ¢J is two dimensional so
that with a given initial value of k(z | #3) at each point on the surface by (1.13),
- this wavefront determines a tfvo dimensional surface of initial conditions in the
ray phase space. As this family of initial conditions evolves under (1.24), a three
dimensional surface in phase space is generated. This surface is an example of

a Lagrangsan submanifold!! of phase space; that is, one may show that because
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of the definitions (I.13) which are satisfied at every point on the manifold, the
line integral in (I.29) is path-independent when interpreted as an integral along
the manifold. This property of 'Lagraﬁgian manifolds will be useful shortly.
The cbnstruction of the full asymptotic solution for E(z,t) for the propagating
wave is deeply involired with the structure of the Lagrangian manifold and in
this respéct, the method beafs ‘many similarities to the treatment of the normal
mode case. Therefore, I shall proceed to discuss eigenmodes and return to the

propagating wave when the nature of this influence has been eiucidated.

When thé.wave problem has normal mode solutions, the rays are confined
to a region of z-space which may encompass either the entire plasma or just .
a small part of it. For example, one could imagine a localized mode due to
a large scale inhomogeneity in the plasma profile (such as an electromagnetic
wave “trapped” in a density minimum, a model to. which I shall return in Part
II). The plasma is assumed to be stationary in time, or so slowly varying that
it is eﬂ'eqtively so; otherwise, the concept of normal mode has no meaning. In
addition to confinement in physical space, I shall also assume that the region of
intérest contains no resonances, or points where the local wavenumber becomes
infinite. Under these conditions, the local dispersion relation 2(k, z) is time-

independent and the surface of constant frequency, or frequency surface, defined
by | -

w = constant = 2(z, k) - (L30)

is compact in phase space. In N dimensions, this is a 2N — 1 dimensional

surface in the 2N dimensional phase space. Since the value of the frequency
(or Hamiltonian) is invariant along a phase space trajectory (as guaranteed by
(I.24)), every orbit is confined to the frequexicy surface determined by the initial

point.
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‘Studies!?! of recent years have indicated that two basic types of motion
exist in multidimensional Hamiltonian systems; the recognition of this fact has
many important consequences for the construction of the modes in terms of the

rays.

A time-independent Hamiltonian sysﬁem with N degrees of freedom is said
to be tntegrable!® if there exist N indepéndent, global constants of the motion. -
This set of invariant functions on phase spa‘cbe {L(k, z)} must also be in involution, |
- or form a set of “commuting observables”; in terms of the usual Poisson Bracket

on phase space, this condition is
{IL}=0 | (131)

where

_3F 3G 9F G

{Flz k)Gl b} = 3" 3~ 3F 72 - (1.32)

These functions {[} are the conserved actions; when they exist a canonical trans-
formation may be performed so that they and their conjugate angle variables
| {8} coordinatize phase space. [t may be noted!3 that in some cases a set of N
action variables might exist in some regions of phase space while not in others;

even these cases are referred to as nonsntegrable.

When the transformation to action-angle variables is possible, the Hamiltonian

in the new variables is a function of the actions alone. The new Hamiltonian

is
Nz E) =00k (1.33)
in terms of which the equations governing the ray trajectories are
dg a0 dl _ 82
S T —— == —_— = —_—— = 1.34
iy, =(1) i Y] (1.34)

which shows the actions to be invariant along orbits and defines the constant

angular frequencies @([). The existence of these N invariants constrains a
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trajectory to lie on an N dimensional surface (instead of the previous requirement
- of the 2N — 1 dimensional frequency surface); it may be shown that this surface

in phase space has the geometry of an N-torus.!!

When the ray system is completely integréble, the entire phase space is
foliated by these N-tori, each labelled by the values of the N actions on the
torus. An N-torus has N irreducible closed curves; that is, each “way around”
the torus which cannot be continuously deformed into another. Thus, every path
between two points on the torus can be continuously deformed into any other
path modulo a number of ‘irreducible closed curves. In fact,ﬁthese closed curves

{C} serve to define the invariant actions themselves by!

Lzb = El;f;j_lg;dg:_ (135)
In order to see how this works, consider the example introduced in (I.25).
The rays governed by this Hamiltonian are freely propagating (straight lines
- in z-space) and undergo specular reflection at the boundary. In the case of a
circular boundary (4 = 0), the trajectories are confined to an annulus and may
or may not be closed; an example of a single initial condition is shown in Fig.
2. In the circle the orbits are integrable, and although the motion in the four
dimensional phase space cannot be displayed, one may imagine it by “inflating”
the annulus into a torus so that the rays travel from the interior of the annulus
to the boundary along the top of the torus, reflect, and then proceed back to the
interior along the bottom. Naturally, the restriction of the orbit to an annulus
and the existence of the torus in phase space is due to the fact that angular
momentum is conserved in the circularly symmetric geometry. The angular

momentum is one of the conserved actions, as can be seen by expressing (1.25)

in polar coordinates (a canonical transformation)
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kS

w? = 0%(r, k., ko) = k2 + = (1.36)

and then computing (I.35) along Cy, a concentric circle being one of the ir-
reducible circuits around the torus. Since (I.38) is independent of 4, kg is con-

stant and the integral is

7

‘ 2w ' :
1 .
I, ———/ kedl = k ' . 1.37
6 27 Jo f ‘ s ( )

The inner edge of the annulus, or radial turning point, is given by (I.36)

with k£, = 0 and it depends on Iy and w,

a(w, Iy) = i—’ | (1.38)

Now, the “short” way around the torus may be taken as C,, a radial path from

a(w, Is) to R and back. Therefore, the radial action I, is
. _

I, = o Jo k.(r; Is, w)dr

| g .
- l/ ﬂ[w‘z_,z R (1.39)

- lawilg) T

wR
Although this form for the radial action I,(/p, w) cannot be explicitly inverted,

= %{[oﬁRz — 3] vz _ Ipcos™! _[9_}

it is the implicit definition of the new Hamiltonian w = f)(I,, Iy) in action-angle

variables.

It can be shownil that each torus of an integrable Hamiltonian system is a
Lagrangian submanifold of phase space. A Lagrangian manifold is simply any
N dimensional surface in the 2N dimensional phase space on which the phase
integral |

¢ = f& -dz - (1.40)
gives the same value along curves continuously deformable into one another.

Thus, the integral (1.40) vanishes around a closed curve which may be deformed
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Figure 2. Single trajectory in the (4 = 0) circle. Due to conservation of angular
" momentum /g, an orbit with frequency (or wavenumber) w is confined to the
annulus between r = a(w, Iy) = Ip/w and r = R.
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to a point; the integral around other closed contours not shrinkable to a point
(Such as the irreducible curves on a torus, ¢f. Eq.(I.35)) may not vanish. There
are many examples of Lagrangian submanifolds in the phase space of any system,
as their definition depends only on the structure of phase space and not the
Hamiltonian of the system; simple examples are the N dimensional ‘planes of
either constant g or constant z. The N -tori of integrable Hamiltonian systems
are special, howeve;', in that like the maﬁifold generated in phase space by the
prbpagating wave described earlier, they are invariant under the flow of the
Hamiltonian; t.e., an orbit remains on the manifold determined by its initial

condition.

In view of the multivaluedness of the phase due to these irreducible circuits,

the conditions for single-valuedness have been shown!* to be
I=[,=m+ia m=2012... (1.41)

This is the resulf. of the Einstein-Brillouin-Keller (EBK)! quantization procedure
for smooth, bound Hamiltonian systems; theyv generalize the usual one dimen-
sional Bohr-Sommerfeld rules to nonseparable multidimensional problems. The
integgrs m can be understood in terms of the desired single-valuedness of the
wave function of the form exp(:¢), but the corrections ¢ require a careful analysis
of the relationship between the torus {{ = m} and thé wave function in both
the z and k representations. For a good discussion of these Keller-Maslov indices
and how they depend on the structure of the torus, I fefer to the excellent review
article of Percival.! In the example (1.38) of rays in a circle, the conditions (1.41)

become

I, mn=201,2,... (1.42)

h=m=1I, 1,=n+‘}

Keller!® has shown that the quantization rules (I.41) must be amended when

non-smooth Hamiltonians are considered, as is the case with this examble due
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to the infinite potential at the boundary; f,hus, the factor of 4 in the radial action
is partially due to effects produced by this “hard wall” which are not included

in the usual EBK treatment.

With the actions quantized, it is a simple matter to derive the frequency

spectrum for the normal mode problem. Expressing the integrable Hamiltonian

in action-angle variables, the eigenfrequencies are

wp = 2(L,) (L.43)

Thus, the N actions provide the labelling of the eigenvalues with N mode

‘numbers. In the example, the conditions (1.42) inserted into (I.39) gives the

implicit equation for the eigenvalues {wm,n} of the Helmholtz equation in the
circle (I.27). Of course, this problem is analytically solvable in terms of Bessel
functions; Keller!® has shown that the eigenfrequencies obtained from (I.39) by
numerical means compare favorab'ly with the exact values (zeros of the Bessel

functions) even down to low mode numbers.

In general, the asymptotic form of the z-space representation of the wave
is a supei'position of eikonal “wavelets” (I.12), each of which might be thought
of as being due to a trajectory passin.g through the point z. However, since the
phase integral (1.40) is independent of path on the torus, it is more correct to
think of each contribution in the superposition as coming from different points

on the torus with the same z coordinate. Thus, the wave at a point z is the

sum of contributions of the form (I.12), each term representing a point on the |

Lagrangian manifold (torus) which projects to the point z. These points are

determined by _
| lz.b)=1, = {(&,(zllﬂ),z)} (149

In the example of rays in a circle, thinking of the torus as the “inflated”

annulus allows one to visualize that in this case there are two such points on the
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torus, “above” and “below” each point in the interior of the annulus. However,

for each point on the inside rim of the annulus there is only one point on the

torus; this exception will give rise to an important effect later.

Now, the phase ¢; for each contributing wavelet at a point z can be ex-

pressed as

bilz | Ly) = / kiz|ly)-dz  (L45)

where k;(z | [,)is the point on the torus [, above z generating the jth con-
tribution to the wave. The integral is performed along any path on the torus
beginning at a consistent. arbitrary point (leading to an overall constant phase
factor) to the point (kj,z). In the example problem, the two branchea of k(z)

are most easily obtained from (I.36):

' o 1 o v :
B (r | myum ) = 2= [0h - m?] 2 (Lag)
which is degenerate on the inside rim of the annulus (r = a(w, Ip) = Mm/wm o =
Gw,m)- Taking the phase to be zero at the point (r, ) = (@, m,0), the two phases

¢{=) are computed by (I.45) to give

¢(+) (r,9 I m, wm,,,) = mé + \/weu.nr2 —m2 — fncos‘l ( m )

w,u'nr

¢V (r, 0 | M, W) = md — \/“?';;,;;?’2 —m? +mcos™! ( ) +2xl,

(1.47)

Wm nt

The amplitude factor for a scalar eikonal wave is simply related to the phase.

The leading term in the amplitude expansion for the jth wavelet can be shown!

to be } y
- {5) e;z |1 DY |
= — 1.48
36| L) det( e (148)
[=]
With (1.47), the amplitudes of the wavelets in the example are
507 (r I mwma) =By (r | mywmn) ~ (022 =m2) T (L49)
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~(?-a2,)" {1.50)

These formulas complete the solution of the wave equation to O(A™!) over most
of the region of interest (i.e., at all po'ints for which they ar“e real and do not .
violate the eikonal assumptions). Combining equations (I.45) and (1.48), the
asymptotic eikonal form for the normal modes of a scalar wave equation is
ba(2) ~ i %7’:)” ( l" lﬁ)ew,-(.z_llm_) +0(A™?) (L51)
j=1
This of course assumes that the time-independent Hamiltonian ray system is
integrable so that the actions {[} exist; these are quantized by the EBK rules
(I.41) to obtain the eigenfrequencies (1.43).” The sum in (I.51) is over the finite
number of values {k;(z | [,)} given by (I.44). These relationships indicate that
é. normal mode of a wﬁve system labelled by mode numbers {m} corresponds
asymptotically ( |_/§(, Wm.n %v.oo)-to the entire family of orbits on the torus [, in

the phase space of the associated integrable ray system.

Using (1.47) and (I.49), the expression (I.5'1) for the example of the circle

becomes

(\'/W?n;nr2 —m2 — mcos™! (m/wm,nr) = f)

(B a7 — M)

CcOSs
Ym.n(Z) ~ ™ (1.52)

In the reference cited above, Keller was the first to derive this formula for
eigenmodes of the circle. Holding only in the annulus (ay.» < r < R), Keller
has shown that (I.52) is indeed an asymptotic representation of the appropriate
Bessel function solutions!® in that region. The exponentially decaying solutions
in the inner disk (r < au.m) ‘may also be obtained, but I shall not discuss
that here; I have used this example only in order to clarify the correspondence
between the classical torus and the wave eigenmode. I shall now describe one of

the dominant consequences of this relationship.
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4. REGULAR RAYS AND WAVES

. The singular behavior of the amplitude near r = a, n, in the cése of 'the
circle (I.5IO,I.52) illustrates a quite general feﬁture of the formula (1.48). This
feature is known as a caustic and it is characterized by thefocuéing of rays in
physical space, as can be observed in Fig. 2 along the inside of the annulus; the
term caustic means “bright spot” and refers to the high intensity (due to the
focusing) in this region. A caustic is the multidimensional frersion of a turning
point for the rays, and like the wavé phase, it is properly interpreted in terms
| of the projection of the Lagrangian manifold onto z-space. As discussed earlier,
when the “inflated” annulus is projected back down to configuration space each
point in the interior of the annulus possesses two branches of k(z), whereas '
points on r = Gw,m have only one. This is a symptom of the fact that thié
‘projection is singular on r = @w,m; thus, a small two dimensional region on the
torus projects to a small region of the same dimension except near a,, ;, Where
the projection becomes one dimensional. This particular projection singularity
is known as a fold catastrophe and in more dimensions more exotic singularities
can occur.!” It can be shown® that (I.48) tends to infinity near all points \in
z-space where this projection is singular, with some exponent characteristic of
the type of catastrophe involved. Naturally, the exact solution of the wave
equation does not become singular at caustics, but the intensity of the wave is
large in those regions. It is only this asymptotic approximation to the wave in
the coordinate representation which fails at caustics; in view of the assumptions
(I.18) on the slow variation of the amplitude, one should not expect a good

asymptotic solution in the neighborhood of a caustic.

The traditional method® of dealing with these singularities (which appear

even in one dimensional problems) involves the solution of a differential equa-
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tion which approximétes the one under consideration near the caustic, and the
matching of exterior, interior, and boundary layer solutivons. However, recogni-
tion of the role played by the Lagrangian manifold in the construction of the
wave function and especially ih the formation of caustics allows one to make full -
use of phase space concepts in order to determine the asymptotic behavior of

the wave in the singular regions.

It can be shown,z'18 that when the projection of some part of the Lagrangian
manifold onto z-space is singular, the projection of that part dnto either k-space
or possibly some mixed coordinate-wavenumber space (e.g., Ek,, y)) will be non-
singular. Thus there is a procedure for constructing the mode in this “good”
representation which will be nonsingular, and then the wave in the z i-epre-
sentation in the neighborhood of the caustic is obtained by Fourier tfansforming
on the appropriate k variables. Each basic type of caustic catastrophe has its
own characteristic!7'1? function which describes the behavior of the diffraction
pattern near the caustic, and these may be derived by this method; the fold
-catéstrophe found in the example is distinguished by the familiar Airy func-
tion pattern. In order to comstruct the complete asymptotic solution valid in
all regions accessible by the rays, one must match these caustic solutions onto
the eikonal form (I.51). This technique will not be developed further here, but
it is introduced in order to impart an intuition for thése modern phase space

methods.

L

Having briefly reviewed the theory of the asymptotic method for obtaining
normal modes in more than one dimension, it is useful at this point to actuallyv
exhibit an exé.mple of a short wavelength mode in order to visualize some of
the aspects of the ray-wave correspondence upon which the method is based.

Of course, the asymptotic nature of all of these results restrict the validity of
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their comparison with any mode of finite wavelength, but this must be balanced
by the limitations imposed by numerical analysis. Thus, I have attempted to
concentrate on a range of the spectrum which seems to provide a reasonable bﬁsis
for in'terpretation of wave properties in termé of the rays yet computationally
manageable. When unexpected features arise; I shall consider modes of shorter
wavelength in order to gauge the trend and to determine whether these aspects
persist as opposed to being artifacts of the location in the spectrum. This will

be a very important point and I shall often return to it.

For the continuing model of the Helmholtz equation (I.27) in the circle (y =
0'in the more general boundary of Fig. 1), a typical eigenfunction is displayed in
Fig. 3; this is J4o(k40,57)sin 400 (angular action m = 40, radial action n = 35).
" The eigenvalue k4o,5 is the fifth zero of Jyo and has the value of 85.012; it is also
the value of w since by (1.27) and (1.25), w® = k2. This mode is approximately
200 levels above the ground state, and since the radius of the circle is unity, the

eikonal conditions are satisfied to the extent that kR ~ 65 > 1.

Here it is important to understand the mode of display to be used throughout
this thesis. Figure 3a shows the nodal pattern of this eigenfunction in the positive
quadrant (z,y > 0) with the boundary of the circle clearly visible. The ir-
regularity in the boundary and the odd behavior of the nodal lines near crossings
and near the origin are due to the computer routines which génerated the contour
plot. Figure 3b is a perspective view of the intensity |%|? in the positive quadrant
looking in the direction of the positive y axis. Thg behavior of the nodal lines
near the origin in Fig. 3a is explaingd by the extremely small amplitude of the

wave in that region, as indicated in Fig. 3b.

Another point to be remembered is that due to the reflection symmetries of

both the circle and stadium boundaries across both axes, the normal modes (for
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Figure 3. a) Nodal structure of a “high angular momentum” eigenfunction in
the positive quadrant (z,y > 0) of the (4 = 0) circle. This mode is ¥ n =
1505 = Ji0(kso.37)sin 400 with eigenvalue ko 5 = 65.012. The coordinate axes
are podal lines (odd-odd parity). The irregular behavior of the nodal lines near
the origion are due to imperfections in the contour plotting routine where the
amplitude of the mode is extremely small.



Figure 3. b) Intensity distribution |¢|*(z,y) in
igenfunction. This perspective view (
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any value of v) may be categorized by four definite parities. For simplicity (and
other reasons to be explained later), I shall restrict attention to just one parity
class; only modes which are odd under 4both z an;:l y reflection will be considered.
Thus, in the quadrant displays of the eigenfunctiohs both axes are nodal lines.’
The mode under ﬁresent consideration is 200 levels above the ground state in the
odd-odd parity class alone (or 800 levels above the ground state when all modes
are cOnsideréd); howaver, I shall usually refer to the number of levels without

such a caveat, implying only modes of the same parity.

Comparing the perspective view of the intensity of Fig. 3b with the ray
trajectories in Fig. 2, two features are immediately apparent. First, the wave -
is vanishingly small in the interior disk, an inaccessible region for thélrays
due to the conservation of angular momentum. This is a satisfactory and
expected consequence of the picture that the wave is supported by the rays and
hence confined to the annulus. The second quite noticeable aspect is the large
amplitude of the wave function along the inside rim of the annulus. This of
course is thé_ caustic region and corresponds to the focusing of the rays in this
vicinity as discussed above. Naturally the wave is not singular here (as is the
projection of the torus or “inflated annulus” onto configuration space), but the
intensity is enhanced. In faét, the 'j,uxtaposition of these two features dominates
the appearance of the eigenfunction and both can be eﬁ(plained in terms of the

projection of the phase space structure of the Lagrangian manifold.

The next higher mode in the spectrum (of the same parity) is rather different
and is shown in Fig. 4. This is Jy(k4.19r)sin 40 with k4 ;0 = 65.067 and thus
has angular action m = 4 and radial action n = 19. Whereas the “high angular

‘momentum” mode of Fig. 3 is concentrated away from the origin.(extreme cases

of this are termed whispering gallery modes), this “low angular momentum”



1.4 Regular Rays and Waves : 43

mode is distributed over almost the entire interior of the circle. Although the
corresponding fay motion is not shown, the trajectories are still confined to an
annulus with a very small vaiue of a,,m as this mode represents almost diametric
oscillations of the ré.ys. ‘The interior disk is nearly washed out bj the surrounding
caustic and this region of high intensity again dominates the structure of the
wave. The*amplitude peak appears higher in this figure than in the previous one,

but the scales in which they have been depicted are not necessarily the same.

These two examples begin to indicate that, at .least' qualitatively, this region
of the spectrum is sufficiently “asymptotié” to use for an investigation of wave
properties with regard to the ray phase space. This will be made firmer when
more quantitative analyses are made of these circular modes and interpreted in |
terms of predictions based on the EBK results. The main purpose here, however,
is not to dwell on the well-known solutions of this problem in a circular boundary,
but to establish a basis for discussing the properties of the modes in the more
general problem of the stadium. In that case, the relationship between rajs and
waves is not known (as will be seen below) and it will be important to have
confidence that when these new modes are studied, they are suitably located in

the spectrum to provide insights into this correspondence.
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Figure 4. a) Nodal structure of the “low angular momentum” circular eigen-
function ¢m.n = 'Q[J.L]g = J.;(IC.;JQ?‘) sin 40, with IC.;‘lg = 65.067.
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Figure 4. b) Intensity distribution of the same mode. Note that the caustic
region is extremely near the origin, obscuring the evanescent inner disk.
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5. CHAOTIC RAYS AND WAVES

Returning then to the definition of the model problem, consider the Helmholtz
equation (I.27) inside the stadium boundary of Fig. 1 with v+ > 0 and 4 = 0 on
the boundary. In the attempt to obtain short wavelengih sdlutions, the substitu-
tion of an eikonal waveform into (I1.27) yields to lowest order (under the assum-
tions beginning at (I.14)) the vacuum dispersion relation (1.25), irrespective of the
geometry of the boundary. Again, the interprétation of (I.25) in terms of the
Hamilton-Jacobi equation (I.23) leads to the consideration of the ray trajectories
gpverned by (I.24) in order to hopefully construct the phase and amplitude of the

solution. Figure 5 shows the typical evolution of a single initial condition, for the

case v == 1.

Comparison of Fig. 5 with Fig. 2 immediately demonstrates the fact that
the trajectories in the stadium are much more complicatéd than those in the
circle. Even when an orbit is not closed in the circular case so that it completely
fills the annulus, it is still restricted to that annulus in configuration space and to
the surface of the torus in phase space. A single initial condition in the stadium,
however, will eventually paés arbitrarily close to every point in z-space inﬁnifely
many times. In phase space, the trajectory is not constrained to lie on a torus or
any other two dimensional manifold; instead, it passes arbitrarily close to evefy
point on the entire three dimensional frequency surface infinitely many times.
These properties have not only been indicated?? in numerical studies, but in
fact, it has been shown®! analytically that the ray system inside the stadium

(sometimes known as a bslliard problem) is mizing!322 for all v > 0.

Not every trajectory in this system has this property; there is a small class
(teéhnically, a set of measure zero) of periodic orbits, each of which lies on a

one-dimensional (disconnected) manifold in phase space. Examples are the orbit
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Figure 5. Typical example of a single trajectory in the 4y = 1 stadium bound-
ary with specular reflection. This computer computer-generated picture was
produced and provided to me by Dr. J. Meiss.




L5 Chaotic Rays and Waves 48

which travels between the midpoints of the semicirclles, the diamond-shaped
orbit which connecté the midpoints of the straight sides and the midpoints
of the seniicircles, and the entire family of orbits which oscillate between the
straight sections with k, = 0. However, each of these 6rbits is ﬁnstable iﬁ that
almost any infinitesimal perturbation in the initial condition will produce an
ergodic orbit. Chaotic orbits themselves are also unstable in the closely related
sense that inﬁnitesiirially close initial conditions separate exponentAially20 in time

(asymptotically, as t = 00).

In view of these observations on the phasé space of the ray system in the
stadium, it is apparent that the next step in the EBK procedure is not possible.
The ohly constant of the motion is the value of the Hamiltonian or frequency;
* ‘the action invariants required for quantiiation do not exist and thus there is no
- Lagrangian manifold upon which to construct a correspondence between phase
space and normal modes. The stadium problem is not unique‘in this respect
and in fact it is the integrable system which is uncommon. A more generic
- Hamiltonian with N degrees of freedom is one which s merely nonintegrable, :.e.,
one for which there are between zero and N invariant actions depending on the
region of phase space; these systems cannot be quantized by the EBK technique.
Actually, Einstein23 (who was the first to observe that the quantization of
the quantities (I.35) is the correct way to extend the Bohr-Sommerfeld rules)

recognized the difficulty if a complete set of actions does not exist.

And yet, the Helmholtz equation does have solutions in the stadium geometry.
Do the eigenfunctions reflect any properties of the ray system? Are there any
dominant or distinguishing aspects of these waves such as the caustics of in-
tegrable ray systems? Is there any object in phase space (corresponding to the

Lagrangian manifold of integrable systems) in terms of which one can understand
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- these features?

I do not intend to provide complete and conclusive answers to these ques-
tions nor shall I offer a scheme for quantizing nonintegrable ray systems. However,
I do hope to supply some insight into the ray-wave' correspondence in these cases
and :to point out géneral propertiés one might expect to characterize waves
supported by unstable rays. The example of the stadium is particularly suited to
this endeé,vor because for ¥ > 0 the rays are ergodic; thus the phase space is not
complicated by the presence of tori invsome regions indicating the existence of an

additional invariant.

Tb'begin, a tfypical’eigenmode for the stadium with v = 1 is depicted in
Fig. 6; the nodal curves and the perspective view of intensity are shov?n in the
positive -quadrant as for the circular case, except that now the boundary is a
quarter-stadium. This and all other modes (including those shown in Figs. 3and
4 of the circle) were obtained by numerically solving the Helmholtz boundaryv
value problem using a novel technique developed by Riddell and Lepore.?t A
discussion of this method and the details concerning its use, accuracy, etc., are
deferred to Appendix A. At this point however, I should point out several matters

to be borne in mind when viewing these diagrams.

First, the eigenvalue of the mode shown is &k = 85.326 and, as in the case of
the circle, this mode is approximately 200 levels above the ground state in the
odd-odd pafity class. This would not have been true if the area were not held
constant as ¥ was inqreased, since the lowest order estimate of the asymptotic
density of eigenvalues in two dimensions is inversely proportional to the area.
Therefore, modes in this range of the spectrum (k = 65) are the same elevation
above the ground state and have the same 'a.verage density for all ~; it is on this

basis that the properties of the modes will be compared.
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Figure 8. a) Nodal structure of a typical ¥ = 1 stadium eigenfunction in the
positive quadrant, with £k = 65.326. Again, the coordinate axes are nodal lines
for this odd-odd parity mode. - ' ‘ e
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Figure 6. b) Pérspective of intensity distribution of the same mode in the positive |
quadrant, looking along the positive y-axis. The quarter-circular part of the
stadium boundary is visible in the upper right-hand corner.
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Secondly, the novelty of this numerical method lies in the fact that it
does not rely on a discretization of the interior of the two dimensional region
under consideration in order to compute eigenvalues or the eigenfunctions. Not
only‘does this allow for extremely accurate determination of large eigenvalues
(associated with short wavelength modes), but once the eigenvalue is known, the
eigenfunction may Be computed over the entire regidn or any subregson of any
ssze, shape or scale. This caﬁability permits the “magniﬁc’atibn” of a very small
domain in 6rde_r to more closely investigate the mode structure or to check the

accuracy of the solution.

A third point concerns just this subject of accuracy. Among the standards
discussed in Appendix A hpon which the statements of accuracy are based is
the assumption that the precision of the numerical method in the circular case
(where comparisons can be made with exact results) extends to the eigenvalues'
and eigenfunctions in the stadium, for modes in the same range of the spectrum.
This proposition has been partially tested, and in every instance has led to
satisfactory agreement with theory. .Therefore, I rely oﬁ an absolute accuracy
of +.001 in the eigenvalues and a relative error of lb()‘4 in the values of the
eigenfunctions for the two circular modes presented, and these estimates are to

be applied to the stadium modes near k& = 65 as well.

With these preliminaries d(_esigned to instill confidence in the numerical
sblutions, I shall proceed to point out some features of the ¥ = 1 stadium
mode in Fig. 8 with £ = 65.326. The seemingly random weaving of the nodal |
contours in (a) is in striking compérison with the rigidly geometric patterns
found for circular modes or for almost every other textbook example. Smooth,
boundary' conforming nodal curves are the usual expectation, although Courant

and Hilbert?5 demonstrate how superpositions of degenerate modes can produce
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rather more 'interesting patterns. Those examples and others are still very
regular (maybe predictable?) in appearance when contrasted with these contours,

however, although this‘ is a subjective conclusion.

One peculiarity of this pattern i; a considerable avoidance of nodal crossings.
Although a similar behavibr is noticeable in the circular displays, those very near
misses are due to the contour plotting routine whereas most of the non-crossings
in this stadium mode are real; this may be verified with the’ “mag'niﬁcation”
capability of the numerical method. At one time, such avoided intersections were
taken as a mark of (and almost a criterion for) the wave analogy of ray stochas-
ticity.2® Somewhat like Hamiltonian integrability, however, the preponderance
of nodal crossings found in the usﬁal textbook examples is extraordinary and due
to the separability of the wave function iﬁ some coordinate systenf. There are
crossings in stadium nodal patterns but these are almost always accidental. It is
also shown in Ref.[25] that an intersection of two nodal lines of a solution to the
Helmholtz equétion must occur perpendicularly; this property is reflected in the

special intersections of the interior nodal lines with the axes and the boundary.

The most important information contained in this diagram concerns the
local wavevector. As a contour plot, one may deduce from it a qualitative
(though incomplete) picture of the general direction of the gradient of the wave
function around the stadium. For short wavelength modes with slowly varying
amplitudes, this gradient is proportional to the local wavevector k(z) in the sense
as defined for eikonal waves (1.12,1.13). Thus, the random behavior of the nodes
in the stadium indicate a fairly ssotropic distribution of the direction of k(z),
whereas the circular modes convey a definite anisotropy. Now this could be
interpreted in terms of a similar behavior of the rays in both cases: The infinite

number of directions taken by a trajectory passing near a given point infinitely
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many times in the stadium as compared with the finite number of branches (kx)

of the Lagrangian mamfold above each point in the circular annulus These

inferences will be made more quantitative in the next Chapter.

The perspective view of the inténsity |%|? in the positive quadrant (Fig. 6b)
also presents a quite different structure than that found for circular modes. It
appears that this mode is characterized by small regions (several wavelengths)
of high intensity interspersed randomly among low amplitude regions. At first
this feature seems appealing when one considers the random or chaotic behavior
of the ray.s. in the stadium; however, another line of reasoning results in an
apparent contradiction. The ergodic nature of the the rays implies that almost
every trajectory will spend an equal amount of time in every neighborhood of
the frequency surface as ¢ — oo, so that time averages are lequal to phase space
averages. Another way of stating this is that the classical Liouville density in
phase space covers the frequency surface uniformly in this limit. Projecting
down from phase space to conﬁguration space, the conclusion is that every orbit
will eventually “uniformly cover” the entire intérior of the stadium. Thus, a
naive correspondence between rays and waves would lead to a prediction of
a uniform intensity distribution over the stadium. This would be the natural
conclusion if one interpreted the rays as classical particle ofbits and the intensity
[%]? as the quantum mechanical probability distribution which should approach
the uniform classical quantity as the wavelength (of order k) goes to zero.
This expectation has also been formulated mathematically by Shnirelman.?7

Apparently, however, this is not what is exhibited by the mode in F‘ig. 8.

A reaction might be to question whether this mode is really typical and
representative of the modes in this range of the spectrum, and whether this range

contains modes which are of short enough wavelength for comparison with the

®
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ray picture. In order to partially answer both of these objections,-l present in

Fig. 7 several successive modes in the spectrum near k ~ 85 and near k£ = 100.

In the case of the circle, the lower rangé at about 200 levels above the ground
state seemed adequate for interpretation in terms of rays. As this Figure shows,
the features indicated above are commbn to most stadium modes in this range as
well as in the higher section which is apprbximately 800 levels above the ground
state. These higher modes represent the present limit of my numerical method,
but they do‘ not seem to indicate a trend toward the more expectéd uniform

intensity distribution.

Among the eigenfunctioné displayed in Fig. 7, the ones at £ = 65.558 and
100.202 are cohspicuously unlike their neighbors. These modes resemble st’anding
‘waves in the rectangle formed by the straight sections of the stadium and are
vanishingly small. in the semicircular ends. The fact that the wavelength is
shorter in the y' direction than in the z dii'ection (ky > k) seems to indicate that
these modes correspond to rays which primarily oscillate between the straight
sections; hence, for lack of a better. name, they are referred!® to as bouncing
ball modes. It is a mystery why there should exist modes which are associated
with an isolated family of unstable periodic orbits, although about 10% of the
modés found in both ranges of the spectrum studied are of this type. It is also a
curious noté that the eigenvalues of these modes are quite accurately predicted
on the basis of the familiar formulas for rectangular modes, even though there
" is no boundary condition that requires ¥ = 0 in the semicircular ends. Thus,
for the rectangle spanned by the straight sections of length 2a(v) and the circle
diameters 2R(v) (remember, Fig. 7 shows only a quarter of this rectangle, a X R)

the quantization condition for the eigenvalue & is

2 211/2 '
- _["‘__, + "_,,} m,n=0,12... (1.53)
a* R° : v v
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Figure 7. a) Nodal structure and intensity distribution in 4 = 1 stadium mode
with eigenvalue £ = 65.036 SR :
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Figure 7. b) Nodal structure and intensity distribution in vy =1 stadium mode
with eigenvalue £ = 65.326 ‘ :
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Figure 7. c¢) Nodal structure and intensity distribution in v = 1 stadium mode
with eigenvalue £k = 65.412
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Figure 7. d) Nodal structure and intensity distribution in vy =1 stadlum mode
with eigenvalue k£ = 65.556 (bouncing ball mode)
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Figure 7. e) Nodal structure and intensity distribution in 4y = 1 stadium mode
with eigenvalue £ = 65.656
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Figure 7. f) Nodal structure and intensity distribution in v = 1 stadium mode
with eigenvalue £ = 65.736 (whispering gallery mode?)
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Figure 7. g) Nodal structure and intensity distribution in 4 = 1 stadium mode
with eigenvalue £ = 100.107 (whispering gallery or “diagonal orbit” mode?)
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Figure 7. h) Nodal structure and intensity distribution in ¥ = 1 stadium mode
with eigenvalue £ = 100.144 '
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Figure 7. i) Nodal structure and intensity distribution in 4 = 1 stadium mode
with eigenvalue £ = 100.202 (bouncing ball mode)
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Figure 7. j) Nodal structure and intensity distribution in 4 = 1 stadium mode
with eigenvalue £ = 100.269 ' :
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Figure 7. k) Nodal structure and intensity distribution in_- ~-= 1 stadium mode
with eigenvalue k£ = 100.297
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Figure 7. 1) Nodal structure and intensity distribution in 4 = 1 stadium mode
with eigenvalue k£ = 100.386 -
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Here, the quantum numbers m and n are the numbers of half-wavelengths of the
mode in the distance 2e (z direction) and 2R (y direction) respectively. Since
a = vR and usihg (I.28), this condition can be expressed entirely in terms of v

N1)2 -
kmn = —’L(l + ﬂ) (m? + 4%n?) vz (1.54)
27 T

Now the Bouncing ‘ball mode at k£ = 65.556 has 13 half-wavelengths in the y
direction in the quadrant and about 5 or 8 in the z direction; therefore, using
m = 10 and n = 26 in (1.54) with v = 1, one obtains k;q.26 = 65.97. Such
good agreement is also found for the mode at £ = 100.202; with m = 8 and
n = 42, kg 22 = 100.48. |

Two other modes in Fig. 7 deserve special attention. The eigenfunction
at £k = 65.736 exhiBits an intensity structure which is almost entirely con-
. centrated around the Stadium boundary. This is very reminiscent of the whiaper-‘
ing gallery!S or high angular momentum circular modes and could similarly cor-
respond to rays skipping.around the boundary. Although Keller!5 has predicted
that both bouncing ball and whispering gallery modeé should exist for the two
dimensional Helmholtz problem in an arbitrary convex domain, he assumes that
the associated ray trajectories are stable (s.e., continually being refocused upon
reﬂection so as to remain in the bouncing ball or whispering gallery regions).
In that reference, Keller also expects whispering gallery modes to obey a one
dimensional quantization rule around the perimeter L (which for the stadium is

~-dependent)

_2rm _ mx'/3(r +4q)!/2
T L) (r+2v)
This is just the condition for m full wavelengths around the boundary. The

mode at £k = 85.736 has m = 64 so that kgy = 58.96. The fact that the

km m=201,... (1.55)

mode does have some interior structure could explain this discrepancy. The

mode at & = 100.107 is similar, but it also appears to have a high intensity
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“ridge” running from the lower right (midpoint of semicirclé) to the upper left
(midpoint of sfraight segment). Although it is just speculation, this feature
could correspond to the diamond-shaped closed ray trajectory which follows the
same path in this quadrant. Again, like the whispering gallery an& bouncing ball
classes, this orbit is unstable and there is no theoretical basis for constructing a

mode corresponding to it.

The.modes of the vy = .1 stadium are then of two types: most can be
described as being “random” or “chaotic” (in a quite different sense as these
terms refer to rays), whereas a small class of modes (bouncing ball, whispering
gallery, etc.) seem to correspond naively to a definite set of “special” ray orbits.
Percival! has introduced the terms regular and -i[rregular to differentiate betﬁveen
modes of systems whose rays are integrable:and nonintegrable respectively. Thus,
the circ.‘ular modes are categorized as regular while the stadium modes should
all be irregular since almost all ray trajectories are ergodic. Unfortunately, the
small class of “special” modes does not seem to fit into this scheme and appear to
be almost regular. One might be led to expect that this class of modes represents
a set of measure zero in the full spectrum (as their associated rays are likewise
unique) so that as k — oo fewer would be present; I can only report that this is

not what I have observed.
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8. INTENSITY DISTRIBUTION P(y)

As aﬁ initial quantitative measure for distinguishing between regular and
irregular eigenfunctions, Berry3 has proposed a simple test based on the concepts
of eikonal theory. If one were to attempt to construct the wave at a point in
the stadium, for example, an idea might be to follow a trajectory and keep
track of the accumulated phase as computed by (1;40). Now in this example the
réys freely propagate between reflections so that the phase integral between two

points is just proportional to the length of the path: v _
_ z o *
¢z | z0) = / k-dz = |k|L] (1.58)
zg

Setting t,he- phasev #(zo) = 0 and initiating a ray at z, which passes throﬁgh the
point z, the phase integral in (1.56) giires the first contribution ~ expi|k[L§ to
the wave at the point z. Since almost all :'trajectories in the stadium are ergodic,
this ray will eventually retufn arbitrarily close to the point z after traversing a
length 6L, ; thus, the next contribution to the wave at z is ~ expi|k|L;  where
Ly = L§ + 6L, is the total pathlength from the initial point z;. The point z
will in fﬁct‘ be “nearly” visited an infinite numBer of vtimes so that the wave at

z will be of the form
. o0
P(z) ~ Y Aje’lElLs (L57)

j=0
_ Since this system is mixing, the L,;’s may be considered to be independent
random variables and so the same is true for each term in the sum. With these
assumptions, one concludes on the basis of the central limit theorem that 1b(g:_j is
a gaussian random variable for all z. Thus, the probability of finding the value
1 at any given point inside the stadium, without knowledge of the surrounding

values, is distributed as a gaussian

P(y) ~ eP%" (1.58)
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There have been many shdrtcuts and assumptions in arriving at this result.
- The amplitude as well as phase contributions due to boundary reflections have
been ignored, and nothing has been said about quantizatiori. In fact, this is -
probably not even a correct interpretation of a stadium mode at all. However,
- it does serve to convey this general idea: if an irregular wave supported by
stochastic rays may indeed. be represented by a éuperpositibn of a large number
(possibly infinite) of eikonal wavelets, then the chaotic paths of the rays could
pfoduce a phase decorrelation of the individual contributions. Then the final
argument yields the prediction that an irregulé.r wave function is a gaussian

random variable at each point.

This is a simple statistical test to perform. Evaluating a single normalized
eigenfunction ¥ at approximately 5000 points in the interior of the quadrant,
the probaBility distribution P(%) is constructed as a normalized histogram with
100 bins. qu eigenfunctions normaiized to unity in the quadrant of area /4,

the width o of the numerical distribution P(%) is \/4/x because
o = ¢2P(¢')d¢ = /¢2£2—z 2= (s
- A A = ,

This is true for all modes at all values of y. Therefore, each numerical P(y) at

any value of v may be compared with the same standard normalized gaussian

prediction

=1 (-}
Pe(y) = '/ exp(. 3 ) (1.80)

The result for the stadium mode of Fig. 8 at £ = 65.326 is displayedv in Fig.
8. Despite the rough form of the numerical data, it seems that the general shape
of the probability distribution is fairly well described by the gaussian prediction.
Actually, the jagged peaks are due to the finite wavelength of the mode as each
peak in the distribution represents a local minimum or maximum in the wave

(a wave peak). When the wavelength is shortened (larger eigenvalue) each mode
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contains more waves and the peaks in P(4) tend to coalesce. Figure 8 is typical
of the general agreement with this theory found for all of the “chaotic” type of

~ = 1 stadium modes examined.

The bouncing ball modes, however, possess a somewhat different charac-
teristic probability distribution as shown in Fig. 9. While the “wings” of the
numerical P(%) seem to fit the gaussian prediction, there is a definite disagree-
ment near ¥ = 0. Of course, this central peak is readily explained upon con-
sideration of the bouncing ball mode st._ruéture shown in Fig. 7: it reflects the
large semicircular ends of the stadium where these modes are evanescent. In
fact, with this connection, the distribution for bouncing ball modes is similar to ‘

those found for circular modes.

Figure 10 shows P(¢) for both the high and low angular momentum circular
eigenfunctions previously discussed. In (a) the effect of an evanescent region is
overwhelming and of course corresponds to the large interior disk where the high
angular momentum mode has very low amplitude (see Fig. 3). Although the fit
to the gaussian comparison seems better in (b) for the low angular momentum
mode, there is still a central peak due not only to the comparatively small interior
disc but also to the decaying amplit}ude toward the circle boundary. In fact, this
Figure clearly points out the effect of the high intensify caustic region as the
~ distribution is stretched out to large values of ¥. Thus, one could conclude that a
regular mode is characterized by a non-gaussian probability distribution; in this
case, P(¢) displays a balance between the extremes of high and low amplitude
regions (since the width of P(%) is constant) and in this way it describes the
dominant features of this type of mode. On this basis, stadium bouncing
ball modes with very similar distributions should probébly be categdrized as

being regular even though the nature of the ray-wave correspondence which this
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Figure 8. Probability distribution P(%) for vy = 1 stadium mode with eigenvalue
= 65.326 and comparison to gaussian prediction (I1.60). Each jagged peak in
the numerical data is due to a wave “crest” or “trough” in the eigenfunction.
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PWY)

Figure 9. Probability distribution P(%) for 4 = 1 bouncing ball stadium mode, -
k = 65.566. Large central peak is due to the large number of small values of ¢
sampled in the semicircular ends of the stadium.
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Figure 10. a) Probability distribution P(%) for v = 0 high angular momentum
mode of Fig. 3. The peak near ¢ = 0 represents the contribution from the large
evanescent central disk region exhibited by this mode; the shift to the right of
zero of this peak is due to {an unsatisfactory) binning procedure.
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for v = 0 low angular momentum

.
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Figure 11. Variation of “goodness of fit” parameter R with 4. Dots at each
value of v denote separate measurements on different individual eigenfunctions;

squares denote measurements on bouncing ball modes; crosses denote superposi-
tion averages.
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association entails remains unexplained.

In order to quantify this observation, for each mode studied | have measured

the fit to the proposed gaussian (I.60) by computing the residual defined by

" : 1/2
R = {;ll'z [P(4:) — Pa(¥:)] 2} | | (1.61)

R
Here, n is the number of bins in the histogram P(%) (I have used n = 100). This
quantity was evaluated for sample eigenfunctions with 60 < k& < 70 at both
~ = 0 and v == 1, in addition, I have aiso investi_gaf,ed the trend in R as 7 takes

on intermediate values. The results are shown in the graph of R vs.~ in Fig. 11.

At vy =0, this “goodness of fit” parameter varies over a wide range from
the worst fit (large R) for high angular momentum modes to the best for low
angﬁlar momentum modes; thj.s is plausible in view of F.ig.Al‘O. Almost all modes
examined for ¥ > 0.25 exhibit a uniformly better fit to the predicted gaussian by
an average factor of about four. The obvious exceptions to this general behavior
(denoted by t‘he squares) are the bouncing ball modes, which have values of R
typical of low .angular momentum circular modes; this again is consistent with
earlier remarks. The intermediate value of ¥ = 0.125 represents the case where
the wavelength of the modes in this' range of the spectrum is comparable to the
irregularity in the boundary (the length of the straight section) and thus marks
a transition between systems with regular and irregular modes (at least as far as
this measurement is concerned). If this transition is truly a wave effect (the mode
“sensing” the ifregularity) then the threshold should decrease to lower values of
v as the wavelength is shortened as in the ray limit (where rays are ergodic for
all 4+ > 0). However, I shall soon exhibit a phenomenon which casts doubt on

the e_xistence of such a “wave threshold”.

These data tend. to substantiate the prediction that irregular modes can
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be characterized as gaussian random functions. They also point out that in
terms of P(4) as a criterion, the classification of regular and irregular waves
based on corresponding ray properties may need refinement (at least for this
system) in order to account for the anomolous properties of bouncing ball modes.
Moreover, while most stadium modes are irregular by this standard, they do not
manifest the uniform intensity expected from a primitive concept of ray-wave
correspondence. As previously argued, these are also aspects of ﬁigher eigenvalue

ranges so that they do not appear to be finite wavelength effects.

Besides providing.a few insights into the relationship between rays and waves
in irregular wave systems, ‘these initial observations have potential practical ap-
plication. As the bdundary value Helmholtz problem in two dimensions governs
cyl.indrical electromagnetic cavity modes, the stadium results might be extrapo-
lated to short wavelength modes of any irregularly shaped cavity. When such
ca.vitigs are operated at frequencies far enough above the fundamental (so that
a typical wavelength is much smaller than the irregularity scalelength), modes -
with properties similar to chaotic stadium eigenfunctions may be present. An
example of this situation is in millimeter wave devices being developed for use

in gyrotrons.?8

With a view toward these applications, I\lri:«mheimex'29 points out that. when
cavities are operated at high frequencies (overmoded) it maj be difficult to attain
high mode purity due to the close spacing of the eigenvalues. Indeed, in the
range of the spectrum near k = 85, the average separation of the levels is about
- Ak/k ~ 1073 . Thus, in the interest of determining the effect of mode mixing, I

have considered the statistics of a linear superposition of two neighboring levels

¥1 and %o

Ya = ¥1 + Y2cosa (I.62)>
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where @ is a random relative phase and ¥, is to be properly normalized. The

average probability distribution
- 1 » . v )
- Py = ;/0 P(va)da | (1.83)

is then computed by constructing the histogram P(1,) at 13 values of a between
0 and 7 and averaging. This procedure is intended to simulate a time average

over one period of the field oscillation.

In the circular case, the neighboring levéls chosen were the high and low an-
gular momentum modes of Figs. 3 and 4, for which Ak = 0.055. An example of
the superposed mode structure at a single value of a is shown in Fig. 12; although
the nodal and intensity patterns for this combinatibn appears “irregular”, they

are not quite as random as those found for chaotic stadium modes.

The ‘average P(9) is displayed in Fig. 13 and the residual R of the fit to
the standard gaussian is plotted in Fig. 11 as the cross at’ ~ =l0'. The fit is
now better than for any pure state, including that for irregular stadium modes,
despite the fairly ordinary appearance of the wave function. One reason for this -
is the smoothing out of the “wings” of the probability distribution due to the
better statistics involved in the averaging: the jagged peaks have coalesced with
the varying amplitude of the wave peaks at different values of ‘a. Note that the
central peak of P(4) near % = 0 persists.

' For the 4 == 1 stadium, I have studied the superposition of k£, = 65.326 and
ks = 65.412 (Ak = 0.088). A typical individual mixture of these two modes
is pictured in Fig. 14, which appears just as random as any of the pure modes.
The averaged distribution® P(¢) shown in Fig. 15 is now an extremely good fit
due to the averaging process and this is conﬁrm‘ed‘ by its value of' R in Fig. 11
(the cross at ¥ = 1). It seems that the net result of averaging over the relative |

phase of two superposed modes is about a factor of three in the “goodness of
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Figure 12. a) Nodal structure of superposition of neighboring low and high
angular momentum circular modes £ = 65.012,65.067 (see Figs. 3, 4).
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Figure 13. Averaged probability distribution P(%) for the superposition of
low and high angular momentum circular modes with standard gaussian com-
parison.
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fit” to a gaussian. The superposition of many modes and'subsequent averaging

may produce better gaussian statistics even for the circular case.

In practical applications one may leo be interested in the power either
dissipated in the walls of a cavity with finite conductivity or output through
a window. If ¢ is taken to be E, then the local power flux into the wall is
proportional to |8y/8n|® where 89/3n = 4, is the normal derivative at the
bounciary.‘;;0 The actual problem of power through an output window is of
course much more complicated, but it may be that in the neighborhood of the

window E, (which is zero on the walls) is principally determined by H,,, (which
| is not zero on the walls, and is proportional to 4, there). Therefore I have also_

studied the statistics of the normal derivative for regular and irregular modes.

As a comparison, both Berry3! and Manheimer and Ott3? have suggested
that the mean square value of the normal deriﬁtive of an irregular mode should
satisfy _ .

(¥3)p = k> (¥%)a = 4% /7 (1.64)
where the average on the left is over the boundary and that on the right is ovér
the interior (t.e., by (L.59) it is equal to the width 0> = 4/x). I have tested
this hypothesis and have examined the distribution P(4,). Numerically, I could
sample the normal derivative at only 50— 100 points along the one-dimensional
boundary, as opposed to the approximately 5000 interio;' sample points available

for constructing P(). In order to increase the statistics, and in the spirit of high

frequency mode mixing, I have considered the superposition
W& = 9, cos by + ¥ cos s : (1.65)

and have allowed ¢, and 6> to vary independently between 0 and = (keeping
%€ properly normalized). The averaged distribution of normal derivative is thus

constructed in analogy with (1.63)
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Figure 14. a) Nodal structure of ¥ = 1 stadium superposition of modes at k =
65.326,65.412 (see Figs. 7b, 7c). ‘
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Figure 14. b) Intensity distribution for same superposition.
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Figure 15. Averaged probability distribution P(#) for 4 = 1 stadium superposi-
tion and gaussian comparison. ‘
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P(yg) = -5—;/0 P(45)d6, db, (1.86)

For the case of regular modes at 7 = 0, I again examined the combination
of the low and high angular momentum modes previously introduced. The
distribution P(yy,) shbwn in Fig. 16a has a root mean squére of 61.87, which is to
be compared with the value & ~ 65.0 (for both modes) to be used in (1.64). The
distribution for the superposition of the two irregular modes at v = 1 (k; =
85.328, k» = 65.412) is showﬁ in Fig. 16b, where the width is 81.07. In both
cases the root mean square is near the predicted value (althaugh (I1.64) does not
apply to regular modes) and , perhaps surprisingly, ?(1&,,) for the superposition

of two irregular modes is fairly well approximated by a gaussian.

These results on the probability distributions P(4) and P(%,) and their
averages over superposition phases have several implications for the design of
electromagnetic cavities. If the cavity is of an irregular or nonseparable geometry
and is to be operated at high frequencies, it may possess normal modes with
properties similar to the irregular stadium modes; in that caSe, it may be difficult
to compute the actual mode structure. Howevér, one could use the fact that such -
modes obey gaussian statistics in the design of output windows or instrumenta-
tion which is to be contained inside the cavity. The knowledge that the prob-
ability of measuring a particular value of the field amplitude at any given point
is diétributed as a gaussian allows one to estimate the tolerance with which the
apparatus should be constructed. In fact, these results seem to indicate that
a superposition of several regular modes could also produce gaussian statistics
so that this simple estimation procedure might apply to overmoded reg'ularly
shaped cavities as well. It should be remembered that while irregular modes
may be described statistically in this manner, they are also characterized by a

nonuniform and random or unpredictable spatial intensity distribution which
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provides the prospect of unexpected intensity peaks (“hot spots”) within the

cavity or on the walls.
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Figure 16. a) Averaged normal derivative probability distribution P(y,) for

superposition of low and high angular momentum circular modes, and gaussian
comparison with same numerically determined width (= 61.87).
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Figure 16. b) Averaged normal derivative probability distribution P(%,) for
superposition of ¥ = 1 stadium modes £ = 65.326,65.412, and gaussian com-
parison with same numerically determined width (= 61.07).
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7. EVOLUTION OF MODES WITH ~

Before proceeding to further quantitative investigations of irregular waves,
it is of interest to look at ahother qualitative aspect of the contrast between
stadium and circular modes in terms of the differing properties of the correspond-
ing rays. As previously stated, almost all borbits'in the stadium are ergodic for
all values of ¥ > 0 whereas the graph of R vs.~ in Fig. 11 seems to indicate that
in order for wave functions to become irregular, 4 has to be large enough for
the wavelength to “sense” the change in the boundary. This is a quite intuitive
result based on general principles of wave optics and in fact is consistent with
the behavior of the rays in the geometrical optics limit. Thus, even though the
modes in the rangé of the spectrum near k£ = 65 meet the eikonal condition for
72> 0 (kR(v) = 85,R/\ =~ 10), the values of ka = 7kR or a/\ = YR/ are
a faétor of 4 smaller (where a, the halﬂength of the straight section and R, the
radius of the semicircle, are both '7-depéndent since the area is held constant).

For these modes, the threshold # for irregularity should be such that, using ( 1.28)
a(v) _ R() _af, 4\ "? -
— =2 bt 87
X Y 5 1+ - ~ 1 | (1.87)
which for k % 65 gives 4 s .1 as observed in Fig. 11.

In an attempt to observe this wave transition, I have followed the evolution
of several eigenfunctions and eigenvalues as <~ is increased slightly above zero.
Figure 17 is a graph of the trajectories of six eigenvalues as a function of ~ for
0 < v £ 0.07. The parenthetical number labelling each curve reférs to the
value of m (angular momentum) of that mode at v = 0. Immediately obvious
is the quite disparate behavior of the high and low angular momentum modes,
the latter displaying much greater sensitivity to the change in boundary shape
even at very small 4. A similar sensitivity of low angular momentum modes to

perturbation has been noticed by Tabor32 in a different problem, but here these
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modes seem to be “feeﬁng” the straight section in a regime much lower‘than the

threshold.

Equally striking is the evolution of the eigenfunctions of the low angular
momentum modes. The vpicturesrin Fig. 18 depict the changes in Jo(k2,20 r) sin 26
at 0.01 intervals for 0 _<_v v < 0.07. Particularly interesting are the mode
structures at v = 0.02 and v = 0.05. Further analysis shows that near vy =
0.05, the eigenvalue of this mode is very near another eigenvalue (although not
shown in Fig. 17) so that this fairly chaotic pattern may be due to the mixing
of nearly degenerate modes. This effect of the crossing of _éigenvalue trajectories

will be discussed below..

The struc‘t'ure of the mode in Fig. 18c is very reminiscent of that found in
Stadium bouncing ball modes. In the interval 0 5 v < 0.02, the nodal line
- which at y = 0 v&a.s the positive z axis has swung radially leaving behind a
large section of the quadrant with very small amplitude. In a way, this could
almost be interpreted as an effect of spontaneous circular symmetry breaking
and this is compatible with the ray picture: the low angular momentum mode
represents almost diametrically oscillating rays (with a, m = 0.03) so that as v
is increased slightly the most stable family of rays with nearly this pfoperty are
the ones bouncing between the straight sections. Although there is no rigorous
theory for this correspondence since even the low angular momentum ray torus
in phase space is destroyed when ~ differs from zero, it would be interesting to
- determine if the bouncing ball modes _observed at v = 1 do indeed originate
from small m modes at vy = 0. [ have not followed the evolution of eigenvalues

over the entire interval 0 < 4 < 1, for reasons which will be explained below.

The rather insensitive behavior of the high angular momentum eigenvalues

in Fig. 17 is accompanied by a slight change in the eigenfunctions. Figurg



1.7 Evolution of Modes with 7y l 94

! :
(2)

W.s T

6¢.0 + .

(4) '
(5.5 4+ : *
= | [ :___-’\—.— /
S /\ . - (58)
T t— — H ——
. \.\.
[ . / T ™
e
s —_—
—_—
| ./ \.
—— / \ . (ZO)
$5.0 + —_—
.61 Ty Y .09 .of b .07
v YBL 825-11137

Figure 17. Evolution of six eigenvalues as 7 is increased from zero. Numbers
in parentheses denote angular mode number m at 4y = 0. The inset illustrates
schematically the possibility of an avoided eigenvalue degeneracy at the several
trajectory intersections indicated in the main figure.
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Figure 18. a) Nodal and intensity structure of 4 = 0 circular mode Ja(k2.201) sin 24.
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K= 65.26609

Figure 18. b) Nodal and intensity structure of the same mode at 4 = 0.01
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Figure 18. d) v = 0.03
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K= 66.81640

Figure 18. h) v = 0.07
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19 shows that the rapidly oséillating angular structure of an m = 48 mode
is modulated so that the amplitude is diminished near § = = /4 (although the
caustic peak seems unaffected). These whispering gallery type modes may persist
-and evolve into similar structures such as the modes at k = 65.736 and .k =

100.107, but again this connection has not been investigated.

In a later Chapter the spectrum of eigenvélues will be analj'zed statistically
at different ~ in terms of the probability distribution of neighboring level spacings
P(Ak). The graph of eigenvalue evolution in Fig. 17 has a bearing in this regard
as it reveﬁls several instances of appareﬁt eigenvalue tr.aject;ry crossings. Such
an intersection implies a degeneracy of modes at that value of 4, and as such
is an important contribﬁtion to P(Ak) at Ak = 0. It is fairly common lore
that eigenvalues generically do not cross under perﬁurbation and that such a
degeneracy mafks a symmetry of the system. Although there has been m'uchA
discussion3® of this phen‘ombenon and its relation to the integrability of the
corresponding ray system, I do not intend to address the general question of
eigenvalue crossings for the present vsystem except in the light of Fig. 17 and
the coxhpﬁtation of P(Ak). It is well known that there is a two-fold degene}acy
of modes in the circle (sinmé and cosmd) and althoﬁgh this is a result of the
continuous angular symmetry, the degeneracy is removed when the modes are
separated inf.o reflection parity classes.” This is the reason for concentrating on
only one parity; crossings or near degeneracies due to this effect will not appear

in Fig. 17 or in P(Ak).

Considering the wide range of eigenvalue sensitivity to boundary perturba-
~tion exhibited in Fig. 17, it is natural to expect the several crossings indicated.
However, it is difficult to determine numerically whether these trajectories ac-

tually intersect or narrowly avoid each other as schematically illustrated in the
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XBL 828-11112

Figure 19. 3a) Nodal structure of the mode at v = 0.0125 which evolves from
the circular high angular momentum mode Jyg(kyg 3r)sin 480 at v = 0.
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Figure 19. b) Intensity distribution of the same mode. Note the diminished
amplitude at the rim of the circle near § = x/4. ' :
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inset; the numerical error in the eigenvalue produces an I@ncertainty in both
trajectories in a small neighborhood of the apparent crossing. Even the com-
putation of the eigenfunctions of the two modes involved at values of 7 before
and after the intersection is not necessarily a good test because in the vicinity
of the near degeneracy there is considerable mixing and the identity of the

eigenvalue-eigenfunction association is lost."

The behavior of the eigenvalues as a function of 4 near vy = 1 is similar to
that found for small v; that is, most modes are fairly insensitive to changes in
the boundary, but there are exceptions. The eigenvalues of bouncing ball modes
in this regime follow trajectories which can be understood in terms of the fact
that they are quite accurately given by the rectangle quantization formula (1.54).

Thus the first derivative is

de 2%k 3k
T At o~ m2 4+ ~2n2 -
dy 49+7 v mi+9%n _ (L68)
2k
~
v+

where the approximation n >> m has been made corresponding to these modes
with large k,. From this it is clear that both the first and second de_rivatives» are
of the order of k. Other authors3* have used thé second derivatives of eigenvalue
trajectories to classify the regular and irregular spectrum, noting that irregular
modes are generally more sensitive to perturbation. This result is contradictory
in that respect; bouncing ball modes (which seem to share more of the properties
of regular modes) are very sensitive whereas the chaotic irregular stadium modes

are stable and insensitive to perturbation.

Whispering gallery modes on the other hand are much less sensitive. Considering

the approximate perimeter quantization rule (I.55), one has the derivative

GRS I
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Aty =1, the numencal factor in brackets is about 0.052 which greatly dlmlmshes

the dependence on k. In fact for very small 4,

which explains the insensitivity of high angular momentum modes near 5 = 0.
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8. THE WIGNER DISTRIBUTION

Up to this point, the discussion has centered on the general features of
asymptotic normal .modes manifested by the z-space representation of the wave
and their interpretation in terms of the propérties of corresponding ray system
in phase space. Integrable ray systems are characterized by the existence of tori
(invariant Lagrangian manifolds) in phase space and each mode of the associated
wave system corresponds (as the wavelength >\ — 0) to a single torus quantized
by the EBK method. It has been demonstrated that perhaps the most dominant
spatial features of a regular wave function (such as caustics) can be understood
by considering the projection of the torus from phase space onto configuration
space. In fact, this projection operation (and variations of it) lies at the heart
of both the eikonal solution and the quantizatioh procedu,rev; nevertheless, the
basic association of a wave with a ray phase space object is requifed before the
projection can be effected. In other words, on the basis of the wave structure
it is usually impossible to infer the geometry of the corresponding phase space

manifold (if indeed one exists).

This difficuity has been emphasized in the discussion of the widely varying
properties of the stadium eigenfunctions. Here, the corresponding ray system
is nonintegrable; consequently, there is no theoretical basis for associating a
given mode with a phase space object. Thus, while it is tempting to interpret
the structure of the more regular stadium modes (bouncing balls, whispering
galleries,ete.) as projections of periodic orbits or families of trajectories which
remain “close together” in some sense for a “long time”, this has been only
speculation. The irregular modes especially illustrate the difficulty of deducing
a ray manifold from exact wave features intermediated by a projection. One

might expect these modes to represent the projection of the frequency surface
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onto z-space; but instead of exhibiting a uniform intensity. distribution, they |

" seem to be composed of small, randomly situated caustic regions. And yet, the
identification of these localized high intensitj domains as caustics necessitétes the
introduction of some convoluted phase space manifold with singﬁlar projection
ohto all these regions. Unfortunately, no such invariant manifolds exist for this

system.

The problem'of ass}ociating a phase space object with an asymptotic normal
mode, based on its spatial representation, could be eliminated by considering
a phase space repreaentation ‘of the wave. That is, instead of attempting to
infer this relationship from .the structure of the wave 9(z), one might examine
a represéntat_ion ¥(z, k | ¥), suitably constructed from 4(z), which would be a
function on phase space. Hopefully one could define ¥ so that in some sense it

is concentrated in the neighborhood of the associated ray manifold.

In fact, many such representaﬁons have been cdnstructed and studied; it
is not a unique quantity. Several examples will be discussed further in Part II,
and each has properties which might compel or preclude its use depending on
the application. The important feature of all of f.hem is that each conveys both
the k£ and z information of the wave simultaneously. In this way, considering
the Hamiltonian nature of the ray system, such a representation should provide

a most natural description of the relationship between waves and rays.

Perhaps the most common example of a phase space representation is the
Wigner function. Originally introduced by Wi'g'nex'35 in 1932 in the field of quan-
tum thermodynamics, it has recieved much attention of late with application to

Just this topic of regular and irregular waves. Defined by

Wiz k) = / - Vs p(z + $a)v*(z - ba) e ke (1.70)

-0

in' N dimensions, it is a real, bilinear functional of the wave function ¥. Many of
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its properties will be discussed here, as they are required, and in Part II; for more
complete details, the references of Berry,3® Voros37 and Leaf3® are suggested as

well as others contained in Ref.[39].

The definition (I.70) is a centered local Fourier transform of the quéntity

99 * so that it is readily invertible,

Yz +3s)y*(z— %)= [_ @n¥

The projection of the Wigner function onto conﬁguratlon space is sxmply ob-

N .
47K g, k)it (171)

tained by mtegratlng over the k£ dependence

(@) = f_ N (:x)',‘\,W(;,&) - (1.72)

Similar expressions may be derived in terms of the & representatidn of the mode

12(&). The relation (I.72) implies that the integral of the Wigner function over
phase space is unity for wave functions normalized in RN . Besides providing the.
transformatfions between the various representations, these equations indicate
that the correspondence between wave functions and functions on phase space is

not one-to-one; not every function of (z, £) transformed by (I.71) is factorable.

Two examples may serve to illustrate the properties of the Wigner function.

For the simple plane wave

»(z) = oetko
the definition (I.70) trivially yields
Wo(z, &) = (27)V |, P8 (& — ko) (L.73)

In this case, the Wigner function is indeed concentrated in the vdesired region of
 phase space: that is, the rays corresponding to the plane wave all propagate on
the N dimensional surface k = k, in phase space (a Lagrangian manifold) and
Wy is nonzero only on that surface. In this case the Wigner function is singular

which emphasizes the fact that it is to be regarded as a density on phase space.
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In addition, Balasz40 has shown that the Wigner function can be a delta function

only on N dimensional planes in the 2N dimensional phase space.

A more general behavior of the Wigner function is exemplified by the
following problem from quantum mechanics. The eigenfunction solutions for
the one dimensional Schrdinger equation in the harmonic oscillator potential

are

¥n(z) = CoHolaz)e >/ (174)

where C, is a normalization constant, Hp is the nth Hermite polynomial and
a = \/mw /h combines the oscillator mass and frequency with % into a charac- _

teristic inverse length. The energy levels are the familiar
Epn=(n+ })hw n=012... ’ (1.75)

| Su‘bstituting (1.74) into (1.70), the integral may be eﬁ(plic’itl'y-evaluz').t,ed-‘*l to give
Wi(z, k) = 2(—1)" L (2(a22? + k2 /a?))e==> " k2 /a
= 2(=1)"Ln (4hpo(z, k)/hw)e~2hholz k) /he (1.76)
Wa(r) = 2=1)" L (2rD)e~""
Here, L, is the nth Laguerre polynomial, ha,(z, k) is the classical harmonic
oscillator Ham_iltonian with p = hk and r is the radius in phase space in

dimensionless variables (az, k/a):

h2k2 B )
hho(z,k) = —2—";— -+ -21-mu"z'

HaPz® + £ /a®)hw (L.77)

Setting (I.77) equal to the value of the emergy (I.75), the radius of the one

dimensional torus in phase space corresponding to the nth level is

rm=v2n+1 ' (1.78)
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The Wigner function (I.78) for n = 20 is shown in Fig. 20; it is plotted only
as a function of r since, by (1.77), it is azimuthally symmetric in the reduced
variables. Including the large peak at the origin, Wag(r) is oscillatory out to
a radius > 8.0 where there is a final, somewhat broader peak and then rapid

decay. The position of this final peak is just inside the classical radius reg =

V4l ~ 6.40.

This example illustrates two significant points. First, in general the Wigner
distribution is an oscillatory function on phase space (with wavelength similar
to that of the underlying wave function) and it is not nec;ssarily positive; its
interpretation as a probability density suffers from this drawback. Secondly,
even for this “large” value of n, the exact W, does not appear to be localized
about the appropriate ray torus in phase space (and, except for more oscillations
out to larger radilis, not much change is observed for larger n). The only feature
- which encourages this expectation is the fact that even though the outer peak
is not the largest in amplitude, it is the broadest. Thus, if the Wigner function
were averaged locally in phase space (or coarse-grained) over several wavelengths,
the rapidly oscillating behavior would disappear and only this last peak would

survive (in nearly the correct position).

One further useful propery of the Wigner function deserves to be mentioned.
In Part II, the equation governing W(z, k) will be derived from the equation
for ¥(z) in the general case (i.e., not restricting to the Schréodinger equation
or scalar waves, but for a general vector integral wave equation as in (1.2)). It-
will be shown that under assumptions which roughly correspond to the eikonal
approximation (I.14), this equation can be reduced to the form of the Liouviile
equation of classical mechanics generated by the ray Hamiltonian f2(z, £). This

fact has enhanced the interpretation of the Wigner function as the wave analogy
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Woe(®)

8 10

Figure 20. Wigner function for the quantum mechanical harmonic oscillator
state with n = 20 plotted as a function of radius in phase space (see Eq.(1.77)).
The Wigner function (1.76) is azimuthally symmetric in these reduced variables,
and the final (broadest) peak is just inside the radius of the classical torus with

the same action at rog = V41 & 6.40.
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of the usual Liouville density of the associated ray system. On the basis of that
perturbation scheme then, W(gz, k), despite its oscillatory nature, is expected to

approach the Liouville density in the geometrical optics limit.

Proceeding from the exact results above, consider now the case of a scalar

- wave described by the eikonal form
¥(z) = Plz)e'*@ (1.79)

Inserting (I.79) into (I.70), one has
Wiz, k) = / Bap(z+3a)d (g - ba)e!Warta—sla—to-ka  (1g)

Assuming the amplitude to be slowly varying and expanding the phase ¢ around

the point z, this is to lowest order

oo

Wiz, k) ~ ]12:(_;;)]2/ d®s i (VOI—R)e |
~ (27)°(9(2)[25(k — V() (1.81)

~ (27)%19(2)[*8(k — £(2))

where the definition of the local wavevector £(z) = V¢(z) has been introduced.

This approximate result for the local plane wave is reminiscent of that for
the true plane wave (1.73), except that here the Wigner function is confined to
a more arbitrary Lagrangian manifold £ = k(z) in phase space. While this is
reasonable, the fact that W is singular on a nonlinear manifold contradicts the
general theorem of Balasz mentioned above. Thus, although the approximations
involved in (I.81) are responsible for this result (such as keeping only the linear
term in the phase expansion), the final expression in (I.81) should not be con-
sidered to be the first term in an expansion of W in the eikonal parameter; it is
difficult to see how higher order terms could “soften” this singular behavior so

as to produce a smooth Wigner function in the neighborhood of the manifold,
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as it must be. Nevertheless, this form is plausible as a rough description of the

Wigner function based on its interpretation in terms of the ray Liouville densityf

‘As discussed previously, the eikonal approximation of a wave is generally-
composed of a sum of wavelets .(I.79) due to a niult‘iplicity of points on the phase
space manifold (“branches”) which project onto a ‘single' point in éonﬁg’uration
space. For example, the normal mode expression for integrable ray systems (1.51)

when inserted into (1.70) produces a sum of integrals

D=3 [ @odia+ial L¥ya—telly)
i T

| - (L82)
« o #ilet Feily)=djla=}olly)~k-e]
Making the same assumptions which led to (I.81), this becomes
;,&)stb auﬂ gu,,
(1.83)

/ RIS T L)+ (el )~k ]2
o |

If Wy, is to be evaluated at a point in phase space near the manifold [,, =
I(z, k) and the manifold is not. too convoluted (¢.e., the point (z, k) is near only
one branch (k,(z | I,), z)) thenv all cross terms in (1.83) are rapidly oscillating
and may be ignored. In that case, one has '

Wiz, k) ~ (27)*|$u(z | Ly)IP6(k — ki(z | 1)) (1.84)

for points' near the tth b‘rvanch of the torus [,,. Berry3® derived these results and
has shown that with the formula (I.48) for %,(z | I,,), this expression for Wy

may be cast in a more symmetric form
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Wa(z, k) =~ 6(1, — L(z, k)
The determinant and the f'actor of -(27)% constitute the Jacobian of the trans-
‘formation £(z | I) — I(z, k). The final expression is evidently valid in these new

variables near all branches k; and is correctly normalized:

3k . _ 3
/ (gxl)c“ 4*z Wn(z, &) = / (;1,(;3 EI6(L, - Lz, k) =1 (1.86)

| The singular behavior of (I.85) in the neighborhood of the torus [ = lﬂ
again contradicts the result of Balasz. Berry, however, has provided a more
detailed analysis which indicates that t'he delta function is indeed softened in the
-geometrical optics approximation; in oné dimension, W(z, £) has Airy function
behavior near the torus. This appears to be verified in the exact result for the

harmonic oscillator in Fig. 20 where the last peak does resemble an Airy fuhction.

The most important aspect of (I.85) is that even though it is a rough ap-
proximation, it does match the invariant Liouville density on the torus. Allowing
for a degree of oscillatory or exponential broadening, one may conciude that the
Wigner function fop an asymptotic normal mode of an integrable ray system (t.e.,
for a regular mode) is cohcentrated in the desired appropriate region of phase
space. For these systems then, the computation of the Wigner function from an

exact wave function should reveal the correct wave-ray manifold correspondence.

Since the eikonal solution for nonintegrable ray systems does not exist, the
calculations leading up to (I.85) cannot be performed. In the case of ergodic
systems, even if an infinite sum of eikonal wavelets were inserted into (1.70)

one could not justify ignoring the cross terms because the “branches” k, are
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c}ontinbuously distributed and hence are not isolated. Therefore, the analytic
examination of (I.70) for an irregular wave does not indicate the phase space

manifold to be associated with the mode.

Nevertheless, based on the satisfactory result (1.85) for regular modes and
arguments concerning the asymptotic relétionship between the Wigner'function

37,4

and the ray Liouville density, Voros and Berry3 have predicted that for

- ergodic ray systems one should expect

Walz, £) ~ 5-6(wn — 2z, £) s

n

Here, w, is the frequency eigenvalue of the nth level, 2(z, k) is the ray Hamiltonian

and, for normalization, 0, is the volume of the nth frequency surface

A d’k
(27)?

Expression (I.87) is of course the invariant ergodic Liouville density on the

Q. = 43z §(w, — 2z, k) - (188)

frequency surface. Therefore, this prediction embodies the concept that each
mode of an irregular wave system corresponds to an entire frequexicy surface. In
fact, this is a conjecture which could be considered a criterion for what might

be referred to as wave stochasticiiy.

It would be interesting at this point to test both the regular (1.85) and
irregular (I.87) expressions against the respective types of modes found in the
model problem developed in previous Chapters. The difficulty is that for a two
dimensional problem, the Wigner function depends on four variables (z, £); it
would have to be numerically compﬁted' by (1.70) as a two dimensional Fourier
integral over numerical eigenfunctions as a functidn of these four parameters. In
addition to problems of display, it has unfortunately been numerically infeasible

to compute the exact Wigner functions for circular and stadium modes.

Taken as crude postulates for the Wigner function in these cases however,
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Berry® has shown that (1.85) and (1.87) have implications for the spatial features
of regular and irregular eigenfunctions. Dué to the inverse (I.71) and projection
(1.72) relations, one may define statistical measures of a wave ¥(z) in terms of
a local spatial average of the Wigner fuﬁction. Thus, the local average intensity

II(z)

. N
() = W@l = | Wi b 189)

and the local spatial autocorrelation C(z, g)

Clas) = 92+ 19 @ =30 /()

1 / diNe — " (1.90)
= Wiz, k)e'*2
I@/ gon &
are determined by the locally smoothed Wigner function
_ 1 z+ %A N
72 — ’ ' _
W(g:_, &) = Z-AT _z_—%A d™ z W(g ,&) (Igl)

The integral in (I.91) also serves to define the overbar in (1.89) 'ar.ld' (1.90); it
is a simple local spatial average to be performed over a region of dimension A
which encompasses many wavelengths yet small compared to the characteristic
variation of the medium or wave amplitude. This procedurg is intended to
eliminate the sho.rt wavelength oscillations in these quantities constructed from

an asymptotic wave ¥(z).

In the case of the Wigner function, this spatial ayeraging will reduce the
wave or “diffraction” effects and produce a distribution which will perhaps more
clearly emphasize the region of phase space that corresponds to the wave. This
expectation was made plausible above in the discussion of the harmonic oscillator
Wigner function, although there it was noted that a local phase space average
might be more suitable. Nevertheless, Berry® has conjectured that in the limit

of extremely short wavelength modes {A\ — 0) under a spatial average such that

A =0 with Ao (1.92)
A
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(so that infinitely many wavelengths are locally included), the smoothed Wigner
function W may be crudely approximated by the expressions (1.85) and (1.87) in

the regular and irregular cases respectively.

The substitution of (I.85) and (1.87) into the definitions of IT (1.89) and
C (1.90) leads to general. form‘ulasv for regular 'and irregular waves which may
be found in Ref.[3]. Instead of reproducing these here, I shall again specialize
to the stadium model problem in order to difectly illustrate the calculations
involved. Ip the case of the__circle then, the hypothesis is that the smoothed

Wigner function for asyrﬁptotié regular modes can be approximated by (1.85)

Wm,n(&: k)= J(Im _'IO(kO)) 6(11: - Ir(r, ke, ka)) (1.93)

The quantized values of f.he actions (I, I,) are given in (1.42) while the angular
- and radial actions ([y, I;) themselves are defined in terms of the polar variables
by (L.37) and (1.39)
I = kg

L(r, k,, ko) =

3|~
i s

R[ 9 9 .)( r2 )] 1/2 -1 kor }
—lkr+ kgl 1 — == — kg cos
r R RVERE 4 B

| . (

1.94)

The local average density II,, , for this regular circular mode is thus deter-

mined by (I.93) inserted into (I.89)

Oponlr) = / d")",, §(m — kg) 6(I, = I,(r, k,, ko))

dkg dk, §(m — ko) 6(I, — I.(r, k,, ko))
(1.95)

dk, §(In — I.(r, kr, m))

-1
(r,m,n)
+

al,
dk,




1.8° The Wigner Distribution ' ' 120

The partial derivatives required here are to be evaluated at the two branches
of k, (1.46) and may be computed using (1.94). Then, in terms of the EBK

eigenvalue wp, ., one obtains
_ 2 ,
. : A
1 m.n (96)

= oo 5] 5 5) 53 5] 5]
2z \/w;n‘nRz -m- \/w;n_nr‘ —-m-

This expression has several very interesting and reasonable properties. It is

Iy n(r)

defined only‘in the annulus between the radial turning point ay,.m = Mm/Wm.n
and the boundary of the circle R. In the vicinity of r > auw.m, II tends to
| infinity corresponding to the caustic in that region; this behavior is due to the
singular nature of the assumption (1.93) for W and would l;e “softened” if one
used a smoother approximatioh describing the behavior of the Wigner function
in the neighborhood of the torus [ = [,. The purely radial variation of I in
the annulus is the same as that of the square of the amplitude of the EBK wave
function given in (1.49); -the radial and angular oscillations of the asymptotic

solution (I.52) have been eliminated by the local averaging.

The calculation of the local autocorrelation function proceeds in much the

same manner. Beginning with (1.93) inserted in (I.90), one has

Cmnlz,t) = g [ Bk s(m— k) (1~ L e, by ko) 52
R O, n(r)J (27)2 ,
v ) . (1.97)
= dk, §(I — I(r, ky, ke
ErPer D nl?) [ k.30 = e
Expressing z and s in polar coordinates

£ =rcosd y=rsind (1.98)
8z = 8cos ¢ 8y = 8sin¢ (1.99)

and with the transformation (k;, ky) — (k., ks) given by

ky = k,costd — llt:g sin ¢

r (1.100)

) 1 '
ky = k. sind + —kg cos §
, _
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the scalar product £-38 is .

k-8=k,scos(¢p—8)+ ms sin{¢ — 0) (1.101)
, , r
Now the integral (I.97) can be évaluated as

m, —_ |
¢t sin(¢—0) Z| k(:)(r)acos(d’—a)

(272 r Oy af
= ¢* Tt sin($=0) (g [|lc,[(r)s cos(¢ - 9)] ' (I.102)

ém.n(r; 8;8,¢) =

B g S [ . .
— r .

Although the general behavior of this correlation is somewhat hidden in
its fairly complicated structure, a few simplifications will serve to illustrate
its important features. At fixed z (r,# constant), this expression exhibits a
pronounced dependence dpon the angle ¢ of 3. Thus, along the radial direction
(¢ = ) the correlation is determined by the local radial wavenumber C =
cos k,(r)s, whereas for g in the angular directio.n.(d; = §+ %) the variation is that
of the angular wavenumber C = exp(+ims/r) (for small 8, 8/r ~ the angular
deviation from the point z). For intermediate angles qS— d, the behavior is more
.complicated; the important conclusion here is that the correlation function, and
hence the wave, exhibits a high degree of local anisotropy. As a function of
position z, the most visible property of (I.102) is the very slow (almost constant)
dependence on 3 in the radial direction near r = a4y m = Mm/wm.n Which
indicates a high degree of wave correlation transverse to the caustic due to the
focusing of rays. Both of these features (anisotropy and caustic correlation)
have been shown to be properties of the more general formulas for C derived by

Berry.?

A numerical test of the formulas for ., (1.96) and Cp., (1.102) against
actual circular eigenfunctions is an indirect test of the hypoihesis (1.93) for

the asymptotic smoothed Wigner function in the specific circular model and
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to some extent the formula (I1.85) for general regular modes. However, in order
to compare the expression (I1.102) for C with numerical data based on the study
of eigenfunctions of the form J,,,(Ic,,,, nr)sinmd (as shown in Figs. 3 and 4)
slight adjustment must be made. Being complex (~ exp z(ms/r) sin(¢ — 0))
formula (I.102) refers to asymptotic modes of the form (1.52) produced in the
EBK analysis (~ expim#) or, in other words, the superposition of parities
Jm(km.nr)(cos md+1sinmd). Since '(1.102) depends only on radius r and relative
angie ¢—40 (instead of absolute angle 4), one may convince oneself that the actual
numerical local correlation functions of both parities cos mé and sin mé are the
same and correspond to the real part of (I.102). This is also justiﬁed by the
consideration that one must have C(z,3 = 0) = 1 whereas ImC(z,3 = 0) = 0.
Thus, numerical computations of the correlation function should be compared

with

Cm.n(r,0;s,¢) = cos [ﬂ— sin(¢ — 9)] cos[ \/w r2 —m?2 cos(¢ — )| (1.103)

I have studied the correlation function of circular modes and in particular
have given attention to the nature of the local averaging process described by
(I.91) with the condition (I.92). Since it is numerically impossible to meet the
requirement of vanishing wavelength, I have relied on the the results previously
reported which indicate that the range of eigenvalues near k£ = 65 is sufficiently
a.éymptotic for the comparison of wave properties with predictions based on the
EBK approximation. Consideration of finite wavelength modes then necessarily
requires by (I.92) the local average to be performed over some finite area which
is, however, of dimension small compared.with the wave amplitude variation.
With these limitations, I have found that for circular modes a local average over
an area encompassing approximately two wave minima and maxima provides

the best results. It should be noted that this process automatically introduces
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anisotropy in the correlation functio.n due to the influence of just one or two
local waves. The local average was computed numerically as

fé_«.«a,g P2 hmn(@ + 38)Vma(z — }2)

B fP_\(.%,zl a2z’ 97 .2) .

Pi(z,8) is a square “patch” of area A? centered at z; this area is reduced,

Cm.n(z,8) = (1.104)

however, for values of g such that all points z + 1’_;§_ lie inside the circle. The

integrals in (1.104) were cdmputed numerically with standard two dimensional
integration routines; the fact that they may be accurately evaluated is largely
due to the novel technique (see Appendix A) which allows for the determination

of ¥ over any arbitrarily small or dense grid.

For the circular mode with m = 40, n = 5 shown in Fig. 3, a typical com-

putation of the numerical correlation function is graphed in Fig. 21. For these

“examples, the center of the local smoothing area is at z = (r,vﬁ) = (.866, .877)

and Cyo s is plotted as a function of s for three angles ¢ = 0,x/4,7/2. The

numerical results at discrete values of 8 denoted by crosses seem to accurately

track the theoretical asymptotic formula (I.103). As similar gbod agreement is -

found for other positions (r, §) and other modes in the same range (as well as for
ones studied near k£ = 106}, two conclusions emerge. First, the use of the singulaf
distribution (I.93) as a crude approximation to the smoothed Wigner function
in the case of the circle appears to be extremely we»ll" justified, implying that
the Wigner function for a short wavelength circular mode is very concentrated
in the neighborhood of the corresponding torus in phase space. Extending this
to the general case of integrable Systems, it appears that the formula (1.85) for
W is verified, which justiﬁés to an extent the manipulations which produced
it based on the well-understood EBK theory of regular waves. Secondly, the

confidence that asymptotic expressions such as (I.103) are applicable to modes

in the eigenvalue range near & = 65 is again reinforced; this is important so that

s eafhEH
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numerical computations performed on stadium modes in the same range of the
spectrum can be reliably regarded as tests of predictions of asymptotic theories

for irregular waves.

Focusing attention now on the ergodic stadium (y > 0) case, the hypothesis
(1.87) for the smoothed Wigner function specialized to the free Hamiltonian

(dispersion relation) (1.25) is

Walk) = g-8lwn — VL + £ (1.105)

n

Again, the normalization constant (1, is the volume of the nth frequency surface
expected to correspond to the mode at w = w, = k,. The implications of this
assumption for the statistical properties of the modes are easily calculated since

W depends only on the magnitude of £. Thus, the local average density is
2 ~ '
I.(z) f('g';f-f&(wn— k) .
nid) = ;
2 2 - _

where A again is the constant area of the stadium. This expression is correctly
normalized and simply reiterates the expectation of uniform intensity over the
interior corresponding to the ergodic nature of the ray trajectories. As previously
noted, qualitative visual inspeétion of many stadium modes already tends to cast

doubt on this aspect of the assumption (I.105).

The local autocorrelation function is also easily determined

. 1 dzk tk-e
Calat) = = [ o olka ~ kD

S ik — k)

[ ks 5(ky — |K))

Using polar coordinates in k£ space

(1.107)

i
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-Figure 21. Locally averaged spatial autocorrelation function C(z, ) for circular
(v = 0) mode J4o(kys0.57)sin 4068, with k95 = 65.012. The point z is fixed
(r,8) = (0.866,0.867) and the correlation is plotted as a function of |s| for three
different angles ¢ of s. Crosses denote numerical measurements, dotted line is
theory based on Eq.(1.103). a) ¢ = 0. b) ¢ = x/4.
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Figure 21. ¢) ¢ = 7/2. d) Nodal structure of eigenfunction in “patch” P, used
for local smoothing of correlation function.
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ke =kcosty  ky, =ksin  d*k = kdkdb; (1.108)

and (1.99) for &, (1.107) becomes
. _ fkdk dox {5(/6,-. - k) etkocos(0p—9) .

Ch(8)
kdkdly 6(kn—k

| J k8 ) (1.109)

' 2 do

=/ __ﬁet'knccos(ﬂk—d’) -
_ o 27
This is evaluated as a usual Bessel integral to give

Culs) = Jolkns) ©(1110)

This expression is at once quite different from the corresponding one for
the circle (I.103). Not only is it independent of position z (a reflection of the
constant value of II,), but it is also isotropic in the angle ¢ of g. In‘ contrast with
the apparent disagreement noted for the expected uniform intensity distribution
II, casual observation of the nodal patterns of stadium modes has hinted at
this isotropic behavior. Indeed, this correlation isotropy is also a feature of
the expression derived by Berry® for general ergodic ray Hamiltonians in N |

dimensions.

A numerical test of (I.110) using finite wavelength stadium modes, and with
the same local averaging procedure described above for the circular case,-vmust
necessarily fail. This is because such a finite local average is influenced by only a
few local waves and hence the correlation function so computed will reflect this
anisotropy. This can be seen in Fig. 22 which graphs a typical local correlation
function for the stadium mode at £ = 65.326 shown in Fig. 6. The correlation
was computed by (I.104) over a “patch” P.(z,s) centered at z = (z,y) =
(.76, .48) with the same area as that used for the circular mode with roughly the

same wavelength. The numerical data is not only in obvious disagreement with

the theory (1.110), but it also varies with the angle ¢ = 0,7/4,7/2 of 3.

In order to remove these local fluctuation effects it is necessary to include
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Figure 22. Locally averaged spatial autocorrelation function for v = 1

stadium mode at k = 65.326. The point z is fixed (z,y) = (0.76,0.46) and
C(z, s) is plotted against |s| for three angles ¢ of s. Crosses denote numerical
measurements, solid line is theory based on Eq.(1.110). a) $ = 0. b) ¢ = /4.
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‘Figure 22. ¢) ¢ = n/2. d) Nodal structure of eigenfunction in “patch” P used
for local smoothing.
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more waves in the average. Increasing the size A of the “patch”, however,
violates the requirements of local avéraging by sampling regions over which I7
appears to vary. If the intensity II were truly uniform as predicted by ‘(I.106),A
the local average (1.104) could be replaced by an average over the entire interior
of the stadium thereby including a large number of wavelengths. This is in fact
the procedure I have used desi)ite the apparent nonuniformity of II; thus, the
test of a possible z dependence of the correlation is discarded in deference to
a crude test for its dependence on 3. The numerical computation is therefore

taken to be _ |
Saie) B2 Yl + $3)¥n(d — $3)

fA(g) d?z’ 3 (z’)

Here, A(g) is the portion of the entire interior of the stadium such that all points

Cnlg) (L111)

z' £+ 43 lie inside the boundary.

The result of the measurement (I.111) for the same mode studied in Fig. 22
(k = 65.328) is plotted in Fig. 23. While these data seem to fit the prediction
(I.110) better than those produced by the local average, it is apparent that even
the global average over all the waves does not yield a close agreement with
theory. This judgement is made in regard to the standard set by the degree of
success found for circular modes of roughly the same wavelength. Although the
nodal curves in Fig. 6 seem to indiéate a fairly random orientation of the local
wave vector as a function of position, this isotropy is not convincingly reflected

in the correlation function even when averaged over the entire interior.

The disagreement in this case is supported by the computation of the
correlation function shown in Fig. 24 for the mode at k£ = 100.386 (see Fig. 7(1)).
Here again, neither the expected isotropy nor the dependence on the magnitude
of 3 is confirmed as well as the theory in the circular case. In fact, there does

not even seem to be an obvious trend toward verification with the decrease in
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Figure 23. Globally averaged spatial autocorrelation function for vy = 1 stadium
mode at k = 65.326 (using Eq.(1.111)) plotted against |s| for three angles ¢ of
s. Crosses are numerical measurements, solid line is theory (1.110). a) ¢ = 0.

b) ¢ = n/4.
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Figure 24. Globally averaged spatial autocorrelation function for 4 = 1 stadium
mode at k£ = 100.386 (using Eq.(1.111)) plotted against |s| for three angles ¢ of
8. Crosses are numerical measurements, solid line is theory (1.110). a) ¢ = 0.

b) ¢ = n/4.
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wavelength as one would expect for an asymptotic cohjecture.

Based on these numerical tests, a modest conclusion would be that the
formula (I.110) for the correlation function is not accurate for typical stadium
modes of ﬁni_te wavelength. This evaluation is made with respect to the issues
- involved in the requirements for local averaging; even under global averaging,
however, the simple form of (I.110) is not substantiated. The standard against
which these results were appraised was the comparatively precise vindication
of the integrable circular theory (I.103) and it‘s evident applicability to regular
modes in the same finite Wavelength range of the spectrum. In addition, the
validity of (I.110) as an asymptotic approximation seems to be doubtful con-
sidering the almost undiminished degree of disagreement when the eigenvalue is

nearly doubled.

~ As an indirect investigation of the nature of the Wigner function, these
findings can only cast doubt on the proposition (I1.105) from which the expression
(I.110) for the correlation function was derived. The foregoing remarks on the
spatial smoothing procedure and the exteﬁt of applicabiltity ﬁo finite (but large)
- wavenumber stadium modes are relevant to the acceptibility of this conjecture
for the Wigner function as well. The nonuniformity of the projection IT and
the ahisotropy of the Fourier transform C appear to indicate that the Wigner
function for these shbrt wavelength modes exhibits somewhat more structure
than the uniform distribution over the frequency surface represented in (I1.105).
This additional structure could either be on the ffeq»uency surface or in the
immediate neighborhood of it. While the latter possibility could be ascribed
to phase space “diffraction” effects due to finite wavelength (and thus almost

inconsequential), the existence of detail in the frequency surface might imply a

correspondence of the wave with a subset of that manifold (as in the case of
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regular waves). Short of actually ¢omputing the Wigner function (as the Fourier
transform of the correlation function), it is difficult to determine the source of

the discrepancy.

Naturally, it would be presumptuous to extend these conclusions to the
conjecture (I.87) for the general case of a Hamiltonian (dispei'sion relation)
characterized by ergodic rays since the stadium system is in many respects
non-generic. Nevertheless, while this proposition seems extremely plausible, the
evidence provided by the intensity distributions and correlation functions of '
several stadium modes over a wide range of the spectrum indicates that this
facet of an asymptotic theory of irregular waves is not entirely correct. Thus,
it. remains an outstanding problem to determine, perhaps through the study of
the Wigner function (or some other phase space representation), the appropriate

correspondénce between an irregular mode and a ray phase space manifold.
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9. STATISTICS OF THE SPECTRUM: P(AE)

The previous Chépters have examined qualitative and quantitative differences
between spatial features of regular and irregular waves with respect to the
provperties of their corresponding ray systems. Statistical characteristics of eigen-
functions were compared with predictions based on the structure of the ray phase
'space; that is, a proposed correspondence between a mode of the wave system and
a submanifold of the phase space was exploited in an attempt to explain and
predict definite spatial properties of the waves. This procedure implicitly as-
sumed that a stationary state of the wave system is associated with almost all the
points on the correspvonding manifold or, ih other words, the entire “infinite time”
evolution of any typical single‘trajectory on that manifold. This is true for both
the integrable and the.ergodic case: even in the integrable case, a phase spacé
torus implicated inbt'h'is correspondence is generically one on which the fre-
quencies are incommensurate so that almost every trajectory is ergodic on the

torus.

Many of the concepts of integrability and ergodicity of ray systems, however,
are related to the actual temporal evolution of trajectories. Therefore, many
authors have considered the evolution of initial (mixed) states of the complemen-
tary wave systems in order to discern properties which might distinguish the
difference between regular and irregular wave systems and which may hopefully
be related to ray’quantities. Since the initial state of a bound wave system
may be decomposed in terms of the normal modes, its subsequent evolution is

“governed by the frequencies of each indepehdently oscillating component. In this
respect, the properties of the spectrum become important and there has been
considerable int,ei'ést;‘m"‘s'44 in characterizing the naturé of wave stochasticity by

contrasting the spectra of integrable and ergodic systems.
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For the model of the Helmholtz equation in the stadium, I have computed
the eigenvalues at y = 0 (circle) and ¥ = 1 (stadium) in the range 50 <
k < 100 (for the odd-odd parity case); these afe listed in Appendix A (y =
0) and Appendix B (v = 1). Before presenting the details of the numerical
accuracy and the analysis of the results, I present in Fig. 25 an almost schematic
comparison of the circle and stadium spectra over a small region containing
about 30 eigenvalues. Each slash-marks. the»approx-im-a-te -posit-ion—.of%a—-single-——-——--—————-:
eigenvalue; these were all computed numerically uéing. the method of Appendix
A even though those for the circle could be determined more accurately by other
means. If it is not iminediately apparent, | would like to draw attention to the_
rough distribution of the eigenvalues along the number lines a_.n_d submit that
whereas the stadium spectrum seems to be fairly evenly arranged, the circular
levels tend to be clustered. This behavior for large eigenvalues of the cirt;ular

problem is well known since the zeros of Bessel functions are given aSymptotically

byIB

b ~ (1 + $m — L) (L112)

Thus, even within this one parity class (~ sin mé, m even) there is a high degree
of near degeneracy at large k (note that the exact degeneracy of sinmé and

cos md has been removed).

According to recent work by Berry and Tabor,® level clustering in the
'asymptot-ic part of the spectrum is expected to be a feature of wave systems
corresponding to generic integrable ray Hamiltonians. The opposite behavior,
the tendency for the eigenvalues to “regularize” or “repel” each other, has been
predicted by several authors®%5 to be a hallmark of irregular wave systems.

More than just qualitative observations, these statements are expressed in terms



1.9 Statistics of the Spectrum: P(AFE) : 189 -

A a2 &
L N Bia I J

Figure 25. Schematic comparison of segments of the circular (left) and v = 1
stadium (right) spectra. Each slash represents one eigenvalue k. Note the high
degree of clustering in the circular spectrum as opposed to the relatively uniform
distribution of the stadium eigenvalues.
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of the probabili.ty distributibn of neighboring level separations. Thus, a clustered
spectrum would be characterized by a peak in the distribution near zero separa-
tion (indicating a high probabilty for near degeneracies), whereas a more uniform
spectrum would be described by a distribution which is peaked at a nonzero

(nearly the mean) separation.

[ have compiled this probability distribution from the eigenvalue data men-

tioned above over the range of the spectrum 50 < k£ < 100 for both the circie
and the stadium. Naturally, the true distribution is dominated by the contribu-
tion from asymptotic eigenvalues (due to the infinite spectrum) and so these are
only partial results (as to be expected from any finite computation). It is hoped,
however, that this part of the spectrum is far enough above the ground state
and is large enough to provide suitable statistics so that the general features of
the full distribut;ion emerge. One advantage of the numerical method employed
is that, in effect, any region of the spectrum can be studied without computing
all lower eigenvalues; therefore, these results do not contain the extremely non-

asymptotic separation data from the lower levels (approximately 200 states).

The construction of a probability distribution P(Ak) from a finite set of
eigenvalues {k;} is simple and straightforward. However, one would like to
remove the lowest order effect of the dependency of the density of eigenvalues
n(k) on position in the spectrum. For two dimensional “free” motion confined
to an area A, this asymptotic density is -

A
(27)

The area has been set equal to , the area of both the circle and the stadium; as

n(k)dk = ok dk = bk dk - (1.113)

previously mentioned, the area has been held constant as ¥ was varied so that
this density would remain unchanged. Expression (I.113) obviously indicates

that the average separation of eigenvalues (Ak) diminishes as & increases
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(Ak)=n"t (k) ~ k7! (1.114)

In order to examine level separation data from different parts of the spectrum
‘('e. g., near k == 50 and k£ = 100) on the same basis, one should cdnsider instead
the set of the squares of the eigenvalues {Icf} which has uniform densify. Thus,
defining the quantity |

E

k= w? ~ (L115)

* in an obvious connection with the energy of the classical free particle, the density

and mean separation of the set {£;} are

dk 1 |
mE)=nlk g =3 (L116)
(AE) = ™" (B) = 4

The estimates (I.113-1.116) of course describe the entire spectrum, s.e., they
include the contributions from all four parity classes when applied to the present
model with reflection symmetfies. In order to use these formulas in the analysis
of the single parity spectral data, one must divide the density by four (assuming
each parity contains the same number of levels). Thus, for one parity the density

and mean spacing are
np(E) = & (AE), = 16 (1.117)

Strictly speaking, the odd-odd parity class that has been studied throughout this
work contains fewer eigenvalues since the m = 0 modes do not appear (sinmf =
0). Although the correction to the asymptotic density due to the absence of this
measure zero set of modes is negligible, the effect is noticed at finite k as seen
below. The distribution of successive level spacings P(A E) within a single parity

class is the object to which the foregoing predictions properly refer.

In the circular (¥ = 0) case, my numerical procedure computed 451 odd-

odd parity eigenvalues between & = 50 and & = 100. This was compared with
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the true set of 454 eigenvalues obtained using Sandia Library Bessel function
routines. The discrepancy is due to the omission of 16 eigenvalues and the
inclusion of 13 spurious ones; this drawback of my computational method is
discussed in Appendix A. For the levels correctly identified, a direct comparison
of individual values of k revealed an absolute error of less than +0.001 in 97%

of the eigenﬁalues, less than +0.0005 in 90% and a maximum error of 0.023.

Therefore, | have taken as a reliable error estimate in the computed values of —

E = k* to be +0.2 and I assume this to be valid even when v 5 0.

The probability distribution for successive level separations P(AE) was
constructed from the eigenvalue data in the form of a histogram. Various bin
sizes Agk = 1,2 and 4 were used in the attempt to strike a balance between
bin statistics and histogram detail; the choice AgE = 2 seemed to provide
the optimum display. The histégram -.was. normalized by its é.rea so that it
represents a probability distribution over the values of 0 < AF < AEp,:
observed. Figure 26 shows the results in the circular case for both the numerically
obtained eigenvalues and the exact ones. It is evident that despite the errors in
the former list, most of the structure in the exaét histogram is retained by the

“experimental” one.

For this integrable system the expected property of a clustered spectrum is

unmistakably illustrated in these histograms. The obvious high probability of
extremely small spacings is balanced by the presence of very large values so that
the average is (AE) = 16.7 numerically (compared to the exact (AE) = 16.544
due to the absence of the m = 0 modes). The smallest separation computed
was 0.138 (although there is a near degeneracy of AL = 0.003 in the exact
spectrum which -was missed by the numerical method) with 15 observed spacings

of AE < 1; the largest value determined was AE = 71.
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Figure 26. Histogramé representing P(AE) for circular eigenvalue (E = k?)

spacings, with bin size Ag = 2. Smooth curve is best exponential fit determined
by examining the cumulative distribution N(AE). a} Numerically obtained

eigenvalues.
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Figure 26. b) P(AFE) with exact circular eigenvalues.
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Quite different are the numerical results obtained for the v = 1 stadium
spectrum. In the same interval 50 < k£ < 100 I computved 445 eigenvalues with
average separation (AE) = 16.4. Here, of course, there is no exact spectruin
for comparison, but as stated previously, it is assumed that the error in an
individual value of E is +£0.2 as in the circular case. This list contains nine less
eigenvalues (about 2%) than the exact count in the circle over the same interval,
and the same flaw of omittiﬁg real éigenvalues and'includingvspurious ones can
be expected. Just as in the circle, however, it is assumed that the effect of these.
inaccuracies in identifying valid éigenvalues will be spread fairly evenly over the

entire distribution P(AE).

The histogram constructed from the separation data with bin size AgE =
2 is shown in Fig. 27. The maximum of the distribution near AE = 12 ex-
presses the “repillsion” of neighboring levels and the tendency toward a uniform
spectrum. While the minimum spacing computed was 0.175, only four separa-
tions less than AE = 1 were detected in contrast with the much larger number
in the circle. The largest value observed was only AE = 50 in keeping with
the more compact distribution centered near (AE) =18.4. It is very difficult to
see how a reasonable omission and/or inclusion of about t.eﬁ_ eigenvalues could
alter the shape of this histogram enough to indicate anything other than level

repulsion.
S

As previously stated, several authors have provided theories which attempt
to explain this observed difference between regular and irregular spectra in terms
of the corresponding integrable and ergodic ray systems. In Réf.[5], Berry and
Tabor not only predict clustering for integrable systems in general, but with
arguments based on the EBK formalism deduce that the distribution P(AFE)

should be of exponential form
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Figure 27. Histogram of P(AE) for v = 1 stadium eigenvalue spacings, with bin

size AgE = 2. The smooth curve gives the best fit of the form (AE)* exp(—B(AE)?)
determined by examining the cumulative distribution N(AE).
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P(AE) = ae~*>E S (1.118)

Here P(AE) is normalized over all AE > 0 with average value (AE) = a~!.
While the graph in Fig. 26 certainly appears to be of this form, it is difficult
to actually verify by means of a numerical fit. This is because the shape of the
histogram (with a finite amount of data) depends to a large extent on the choice

of the bin size.

Casati suggested to me that one way to circumvent this effect of incomplete

data is to consider instead the cumulative distribution
o AE _

' N(AE)=  Pla)ds | (1.119)
which measures the fraction of separations less than AE. Even for a data set
{AE;} with only the order of 400 values this .function is much more continuous
than t.he hisiogram P(AE) and does not depend on the bin size. It is also just
as straightforward to construct; the only difficulty is fhat it must be compéred
with the integral of the prediction for the probab.ility distribution. This is easily
accomplished in the circular case, hoWever, as (I.118) may be integrated to give

simply
N(AE) =1—¢"aF (1.120)

Figure 28 shows the. “experimental” tabulation of the cumulative distribu-
tion in comparison with the best numerical least squares fit of the form (I.120).
While it appears that there is only one free parameter a available for the fitting
procedure, ahother overall multiplicative factor in (I.120) was introduced in or-
der to compensate for the undetermined normalization of the experimental data.
The data were subsequently divided by the best-fit value of this parameter so
that normalized curves could be compared. The general shape of the prediction

seems to be fairly well substantiated although the data indicates a somewhat
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longer tail on the distribution P(AE) than the theory would suggest. Perhaps a
more serious result is that the optimum value of & was found to be & = 1/20.77;
this indirectly implies a failure in the theory (I.118) which requires a to be the
inverse of the average separation @ = (AE)™! = & (or close to it). There are
tﬁvo possible explanations for this disagreement: (1) either the present integrable
Hamiltonian is too special or does not meet the genericity requirements of Ref.[5]
or (2), P(AE) for this system is truly not of the simple form (I.118) (perhaps ~
exp(—a(AE)P)). This problem is not resolved hére and clearly requires further

investigation.

There have been several approaches toward understanding and predicting
this statistical property for irregular 'svpectra and specifically for billiard sys-
tems like the stadium. In the recent review article on quantum stochasticity,
Zaslavskii® discusses the form of P(AE) fbr both limits AE — 0 and AE — oo
in terms of the mixing property of the ray Hamiltonian and the measure of this
behavior known as the Kolmogorov entropy. He and Casati and Guarneri?®
also 'att'em;‘)t to relate the observed level repulsion and general shape of the
distribution to similar results found for the eigenvalues of random matrices as
 studied by Wigxier, Porter and Dyson.#® Based upon the generic behavior of
eigenvalues .under parameter variation as formulated by Arnold,!! Berry‘”. has
given a prediction fof P(AE) at small AE. Without further elaboration of these
theories, I shall simply state that in all of them the expected form of the prob-

ability distribution is .
P(AE) = a(AE)® e —F13E? (L121)
Thus, the repulsion of neighboring l'evels is described by
P(AFE) ~ (AE)* for AF/(AE) < 1 (L.122) |

and the fact that (I.121) is maximum at a nonzero value of AFE.
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Figure 28. Cumulative distribution N(AFE) of circular eigenvalue spacings. Solid
smooth curve is best numerical fit of the form 1 — exp(—aAFE) based on an
exponential form for P(AE). The optimal value for a is 1/20.77.
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The histogram in Fig. 27 appears to have this form, but again a direct
numérical test is hampered by the incomplete data effects mentioned above.
The cumulative distribution N (AE) is shown in Fig. 29 corﬁpared with the
theoretical curve determined by the integral of (I.121). Unfortunately, the
result of this indefinite integral is.not analytically transparent; therefore, it was
computed numerically at each value of the parameters (g, c, f) as required by
the fitting procedure. All three of these parameters were allowed to vary (even
though normalization provides a relation among them) and ﬁhe amplitude of the
experimental curve was adjusted as in the circular case. However, the availability
of the extra degree of freedom (three parameters instead of two) obviously allows
for a much closer fit to the data than that found in Fig. 28. The optimal values

found for the two shape parameters were @ == 0.71, § = 0.0025. The average

~ value (AE) of the normalized theoretical curve with these parameters is 16.1

compared with the data average 16.4.

Perhaps.the most important (or controversial) aspect of this distribution is
the value of the exponent a and its relation to other properties of either the
wave or ray system. For example, Zaslavskii® has given an interpretation of this
small AFE behavior in terms of the Kolmogorov entropy K of the ray system;

specifically, he predicts simply

a=C/lhK | (1.123)

where C is some constant depending on the system. The value of K for the

stadium billiard has not been measured, but using extremely simple formulas
provided in Ref.[6] one obtains K = 2v. Thus, with X = 2 and a = 0.71 the
constant C is determined by (I.123) to be 0.49; this is in remarkable agreement
with the value of about 1/2 calculated by Zaslavskii and Filonenko*® for an

entirely different system. The significance of this result is minimal, however,
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since one should really investigate the dependence of @ on K (or on 7) in order

to determine the validity of (I.123).
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10. CONCLUSION

The intent of Part I of this thesis was to illustrate and attempt to inter-
pret the prominent features of short wavelength wave fields with-régard to the
corresponding ray trajectories of geometrical optics. In order to properly estab-
lish these relationships for systems with more than one degree of free'dom, it is
necessary to consider the Hamiltonian flow of the rays in the natural setting of
phase space. The spatial features of the waves were then discussed in terms of

the projection of the ray phase space onto configuration space.

For N dimensional wave systems which admit stationary state solutions, the
rays associated with the normal modes remain in a bounded region of the 2N
_;iimensional phase space. In this case the solvability of the wave equation in the
eikonal approximation then -hihges upon the question of integrabi_ﬁﬁy of the ray
Hamiltonian. Integrable rays are characterized by the existence of N constants
of the motion and are restricted to lie on N dimensional tori in phase space.
The correspondence between integrable rays and regular waves is constructed in
terms of these Lagrangian manifolds; this is the basis of the EBK quantization

procedure.

The identification of some of the more conspicuous consequences of the
normal mode - ray torus correspondence was facilitated by the introduction of
a familiar simple model. For normal modes of the two dimensional Heimholtz
equation in _the circle, the-existence of high intensity caustic regions juxtaposed
with low amplitude‘evanescent' regions were clearly seen to be the result of
the projection of the torus onto gz-space. Thus, .c>aus'tics are associated with
singularities in the projection. Evzfnescent regions are f,he projéction of parts of
phase space not accessible for rays on the particular torus involved. While these

_observations are by no means novel, the development of the implications of the
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EBK technique for iﬁtegrable rays/regular waves provides a foundation for the

investigation of waves associated with nonintegrable rays.

The essential new results reported in Part I concern both the qualitative
and quantitative investigation of irregular waves. These are normal modes of a
wave problem for which the eikonal approximation produces a ray Hamiltonian
characterized by ergodic trajectories. Specifically, the system is a modification of
the integrable problem described above; the circulér boundary is stretched into
a stadium shape by the introduction of straight sides with length governed by
a parameter v. For all values of ¥ > 0 almost all ray orbits ergodically explore
the entire three dimensional frequency (Hamiltonian == constant) surface; in
addition, initial conditions separate exponentially in time (unstable) and the
system is mixing. A measure zero set of orbits are closed (mot ergodic) but
st‘:ill. unstable to initial pex-"tu‘rbatioh; ‘an example is the fa.mily of bounéing ball

trajectories.

The absence of invariant Lagrangian manifolds (tori) defeats the application
of the EBK method and thus motivates the search for other theories of normal
mode - ray manifold correspondence (assuming one exists). Casual inspection

of numerically constructed eigenfunctions has yielded two conclusions:

(1) Most irregular eigenfunctions appear to be composed of localized regions
of relative high intensity randomly interspersed among larger areas of low amplitude.
These are reminiscent of caustics, although there is no evidence of their relation-
ship to projection singularities from the ray phase space. This wave structure ap-
pears to differ considerably from the uniform intensity distribution over the inte-
rior of the stadium which would be expected on the basis of t;he ergodic nature of

the rays.

(2) Many eigenfunctions are quite regular in appearance and share many
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of the features of circulé.r modes. Moreover, most of these modes display an
obvious relationship with underlying closed ray trajectories. This is especially
so for the largest class of this type which correspond to the family of bouncing
ball orbits. Also -in this category are the whispering gallery modes which appear

to have been identified.

These qualitative remarks contrasting the wide variety of eigenmode struc-
tures foﬁnd in the stadium with the comparativély ordinary circular modes have
been substantiated to a degree with a statistical analysis. The construction of
the probability distribution P(%) has- provided one method for distinguishing
between circular and the apparently regular stadium modes on the one hand
and the irregular, random or chaotic stadium modes on the .ot'her. The principal

conclusion is

(3) 'Irregular eigenfunctions may be described by gaussian statistics (i.e;,
P(¢) and P(0+/0n) are well approximated by a gaussian distribution). This
result supports the idea that a wave constructed from many contributions at.a
point due to the mulitiple random passages of miﬁing ray trajectpries is phase
decorrelated. Like circular modes, the regular-appearing stadium eigenfunctions

(such as bouncing ball modes) possess extremely non-gaussian distributions.

In this respect, the chaotic nature of most stadium modes seems to be_
related to the similar behavior of the corresponding rays despite the fact that

the eigenfunctions do not exhibit uniform intensity over the interior.

It remains an enigma that bouncing ball modes should represent‘ a modest
fraction of the spectrum, and one which seems to persist as the eigenvalue is
increased. Although the association of a class of modes with an unstable family
of rays has not been placed on theoretical grounds, there are two points which

make this seem reasonable. As Casati*® points out, even though an ergodic orbit
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“covers” the entire stadium uniformly as ¢ — oo, it will be trapped in nearly
a bouncing ball fashion (k; arbitrarily close to zero) for long periods.of tim-e'
- (long enough to traverse the length of the straight sections) and this will occur
infinitely many times. Thus, perhaps these modes represent the fraction of time

all orbits (not just the bouncing ball family) spend in this region of phase space. -

When viewed iﬁ phase space however, these periodic bouncing ball orbits are
very.speciél. Consider the family of initial conditions positioned along a straight
section with ky =0,ky = w5 0. As the rays evolve, a Lagrahgian manifold is
generated in phase space, just as for the outflow oi‘ any one dimensional family of
initial conditions. The difference is that this manifold (though disconnected be-
cause of the hard walls) continues to repeat itsélf : all other Lagrangian manifolds
so generated will become extremely convoluted (due to the exponential separa-
tion of orbits) and eventually fill the frequency surface. The Bouncingvball’ modes |
might correspond to the quantization of this ménifold.much like the quantiza-
tion of tori for integrable systems. However, the finite value of k, exhibited by
these modes remains to be explained, and this may require consideration of the

uncertainty priﬁciple.

Ina speculative manner, one couid extend this line of reasoning to the .
Lagrangian maﬁiféld generated in phase space by ahﬁést any one dimensional
family of initial conditions. As the manifold evolves, a piece of it may return close
enough to an earlier piece so that, within the error introduced by the uncertainty
principle, this part of the manifold could be considered to have “repeated”.
From this point on at least part of the manifold (with a degree of “fuzziness”)
is like the bouncing ball manifold in that it will continue to repeat itself (even
though the actual trajectories are not necessarily periodic). With the uncertainty

principle, one might expect such “fuzzy” manifolds surrounding periodic orbits
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and possibly modes corresponding to them; this may be the explanation not
only for the bouncing ball modes (with small k;) but also for the mode which
resembles the diamond-shaped periodic orbit. It may be that almost every orbit
is embedded in some “fuzzy” Lagrangian manifold which, although probably
extremely convoluted and multiply connected, eventually repeats itself (in the
above sense). In this way, modes of nonintegrable systems may correspond to
objects in the ray phase space generated after only a finite time (becéuse of
the uncertainty principle) and which therefore do not fill the entire frequency

surface.

These ideas, while xiot providing concrete quantization rules, would explain
the structure of the “regular” modes in the stadium (bouncing ball, whispering
gallery and other “nearly periodic” modes) as well as the .more»common chaotic
irregular modes which do not exhibiﬁ a uniform intensity distribution. As
a consequence, they also imply the possibility of the existence of caustics in
the irregular modes; that is, the projection of these “fuzzy manifolds” onto
configuration space may be singular over small regions due to their convoluted
structure. In fact, if the manifolds so constructed become extremely convoluted
then one would expect many such regions; thus, it may be that caustics should
be more prevalent in irregular waves than in regular waves. This seems to be
what is observed for most chaotic stadium modes, bﬁt again, the connection

between the modes and the rays is still unknown.

In order to further illuminate this connection I have attempted to study the
Wigner function as an example of a phase space representation of the wave. This
was done indirectly by ﬁumerically computing the local spatial autocorrelation
of an eigenfunction and comparing the result with theoretical predictions derived

from rather crude assumptions for the Wigner function. The numerical evidence
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séems_to support the following conclusions:

(4) The Wigner function associated with a short wavelength regular mode
of .an N dimensional integrable ray system can be féirly well approximated by
an N dimensional delta function in phase space which is nonzero only on the

torus which corresponds to the mode in the eikonal (EBK) theory.

This conclusion was inferred from the extremely accurate matching of the
numerical correlation function of sample circular modes with the prediction
based on this singular behavior of the Wigﬁer function. In this way, the Wigner
function provides a fealization of the‘ corréspondence between regular modes and

integrable rays.

(5) The Wigner function constructed from asymptotic irregular modes is
probably not described as simply by a one dimensional delta function on the
frequency surface corresponding to the frequency eigenvalue. It may have more
complicated structure either within this surface or in the transverse direction off

the manifold.

Again, this is a judgément inférred from the comparison of the numerical
correlation data with theory based on just such a delta function assumption; here
the agreement was ﬁot as clear as in the circular case. Since the Wigner function
was not determined, the actual correspondence between irregular modes and
chaotic rays remains uncertain. Perhaps there is no general rule of association;
it may be that a different model such as the “finite time”, uncertainty-principle-
fuzzy Lagrangian manifolds is required. I believe that the determination of
this correspondence for general ray systems is a significant outstanding problem,
and that the examination of the Wigner function or some other phase space

representation of the wave is an important tool.

One reason for this is provided by the propagation into a plasma of exter-
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nally launched short wavelength waves. The evolution of the rays in phase space
generates a Lagrangian manifold, the projection of which governs the z-space
eikonal structure of the wave. According to numerical experiments?, these rays

may separate exponentially asymptotically in time (just as the chaotic stadium

‘rays). Even if the waves are only present for a finite time (due to damping, 4

conversion, etc.) so that exponential separation is not achieved, one might ex-
pect the Lagrangian manifold to become extremely convoluted depending on

the -degree of ray instability. If this were indeed the case, the projection of

the manifold onto configuration space may be singular over many small regions

implying the existence of many caustics (as might be observed in the stadium
modes). Therefore, any numerical computation of the amplitude of the waves
~ based on the transport equations of eikonal theory would encounter frequent sin-
'gularities neces.si‘tating the use of patching and matching subroutines. Extreme

ray instability may render such a computation impractical.

It is important to note that the foregoing is quite speculative. To this point,
there have been no actual computations of famslies of ray trajectories in order
to observe the evolution of the Lagrangian manifold in phase space: does it

become convoluted for unstable rays and after how long? In addition, there are

no results on the numerical evaluation of the transport equations in more than

one dimension even for the case of well-behaved regular rays.®! Therefore, to my
knowledge there is no experience of the numerical effect of caustic singularities,
let alone the consequences of possibly frequent ones as suggested above. It would

certainly be enlightening to perform these computations.

If the foregoing speculation indeed proves correct, one might consider in-

stead the possibility of constructing a phase space representation of the wave and

numerically analyze its evolution as the wave propagates into the plasma. Such

—
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a distribution, for which the. Wigner function is a candidate, would be localized
in phase space near the ray. Lagrangian manifold (for short wavelength waves).
Additionally, since the c_austic phenomenon is a consequence of the projection
procedure, one would not expect singularities in the‘evaluatioﬁ of ,ihis quan-
tity. In a Sense; the Hamiltonian nat’ur.e of the rays impels‘ the consideration
of a phase space representation as the natural one for waves in- inhomogeneous
‘media. In general, either the z- or k-space represehtations are obtainable from -
these phase space distributions; however, it would perhaps be more desirable to
cast the relevant wave-plasma interactioﬁ processes in terms of the phase space
representation itself. A systematic exploration of wave phase space distributions

is the subject of Part II.
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1. INTRODUCTION

Central to the elucidation of the relatiohship between geometric ray optics
and physical wave optlcs is the development of the concept of the ray phase
space. Formally, the eikonal method of solution of a wave equation prov1des a
‘bridge which transforms that problem into the Hamilton-Jacobi equation for the*
eikonal phase. 'While this phase is properly a f'unction on space-time (as is the
wave field), it is determined by analyzing ’the characteristic ray trajectories in
phase space generated by the local dispersion relation via Hamilton’s equations.
Thus, the rays evolve in phase space on some manifold and the structure of the
wave in physical space-time is (in this asymptotic scheme) depéndent upon the

projection of this manifold onto configuration space.

This procedure consists then of Iiftz’ng the space-time (or‘wavevector-frequencjr)
‘problem into the joint phase space (z,t,k,w) for proper interpretation and
analysis with subsequent projectién back down to the appropriate space. In Part
[, it was demonstrated that this lifting and projection process has two uﬁdesirable

consequences:

1) The Einstein-Brillouin-Keller (EBK) theory is invalid when the ray system
is nonintevgrable. Thus, the relationship between wave field and phase space
manifold is unknown and furthermore, it cannot be determined solely from «

observation of the wave in either the (z,¢) or (k, w) representation.

2) Even if the apprdp_riate correspondence may be determined, the construc-
tion of the wave field under the eikonal prescription may suffer, complications
due to singularities in the projection procedure. While modern eikonal theory
provides a clear understanding and treatment of these caustic singularities, they

may present serious practical difficulties in more than one dimension.



.1 - Introduction 168

The introduction of the ray phase space pr_ovides two important clarifications.
Lying at the heart of the Hamiltonian formalism, it is in this space that the ray
~ trajectories of geometrical optics are most naturally described and investigated.
In phase space there is a unique flow determined by the Hamiltonian (lbcal disper-

sion relation) which preserves volume: rays do not cross or even focus as they may

in configuration space. In addition, when eikonal .theory is-valid the ray phase. . .

space is crucial to the ﬁnderstanding and determination of the wave field in space-
time. It would seem, however, that a more natural description of the wave would
be gained by constructing a phase space representation of the field. Thus,
viewing the wave as a function on phase space may perhaps provide a more
direct association’ with the ray trajectories. More importantly, perhaps the
sixﬁpliﬁcations achieved by lifting the rays into phase space will have correspond-
ing consequences for the properties of such a phase space representation of the '

wave.

‘There are many schemes for deﬁning what is meant by a phase space
representation of a field.! In Part II, I shall discuss three examples. Each
method has advantages_ and drawbacks which may affect its application to any
pafticular problem, élthough certain p-hysical results should be independent of

the description chosen.

~ Associated with the phase space representation of a field is the concept of the
phase space representation of an operator. In the niathematics literature, this
object is usually given the generic name Symbol, and I shall use that terminology
interchangeably with “phase space representation”. Thus, each phase space
method described will concern Symbols of operators and fields, although the

Symbols will have different definitions and will be given different names.

~An important ingredient in each scheme is the derivation of the equation
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'governing the phase-space representation of the field. This is accomplished in
the most direct fashion by viewing the ‘originél wave equation for the field in an
abstract (repfesentation-free) operator form. The phase space representation of
this equation is then immediately obtained by introducing the Symbols of both
‘the operator and the field and by invoking the corresponding Symbol calculus.
This is nothing more than the rules which translate the abstract operations (e.g.,
compositions of operators, adjoints, etc.) into operations on the corresponding

Symbols; these rules are specific to the method chosen and will be derived.

In Chapter 2, [ shall define perhaps the simplest exampljg of a Symbol and
| v brieﬁy discuss its properties. As xhe‘ntioned above, there is a relatively large and
growing assemblage of mathematical literature which concerns the classiﬁcétion
of pseudodifferential operators on the basis of the properties of their associated
Symbols; the particular type of _Syinbol introduced in this Chapter will be the
one most often considered in the literature. I shall present a simplified definition
of a pseudodifferential operator but I do not intend to provide a rigorous or even
s_atisfying discussion of the mathematical foundations of this theory. However,
it should become clear that such operators arise quite naturally in plasma wave
theory, and the specific type of Symbol developed here illustrates the way in
which the more common concept of partial differential operator is extended. In
order to keep track of Symbol types, I shall refer to f.his .example as an Ordinary
Symbol. The calculus of Ordinary Symbols is easily derived and the suitability

of this phase space method for the purposes described above will be discussed.

A second, perhaps more adva.htageous, phase space replresentat.ion will be
the subject of Chapter 3. The Weyl Symbol of an operator will be defined and will
be seen to be intimately related to the Ordinary Symbol. Indeed, this relationship

may be exploited to give a new derivation of the Weyl Symbol calculus. The
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familiar Wigner function of Part I will emerge as a special case of this phase
space representétion: it is, in a sense, the Weyl Symbol of the field. Thus, in this
scheme, the Weyl Symbol of the abstract operator equation governing the field
directly provides the equation for the Wigner function. This resﬁlt permits the
opporpunity to stﬁdy the Wigner function from a quite different 'po'int of viéw: ‘
instead of constructing it from the field, the =equa£ion governing this phase space

distribution may be analyzed and, in some cases, solved.

That these abstract concepts imply physically meaningful and important
cbnsequences (for plasma wave theory in particular) can now be demonstrated.
The Weyl Symbol of the wave electromagnetic field (a tensor Wigner function)
will be related to .the more familiar notions of the Iécal spectral tensor and
~ the wave action de.nait_y. The Weyl caléulus provides an exact equation for
the spectral tensof in terms of the local dispersibn tensor and sources which
account for discreteness and nonlinear effects. When eikonal-like assumptions
are made, this exact equation is reduced to the wave kinetsc equation for the wave
action density. Thus, the Weyl Symbol formalism permits a direct derivation
of this important equation in a way which can éasily be extended to include

nonlinearities.

The remainder of Part II will concern a third and somewhat different type
of phase space representation. In Chapter 4, I consider the coherent state
representation of' the electromagnetic wave field. Although this quantity is
perhaps uiore familiar in the context of quantum field theory,? it will be seen
to provide a useful description of the classical field as well (especially in the
short wavelength regime). In fact, this representation will be shown to be closely
related to the Weyl formalism and this association is exploited in order to derive

the phase space equation governing it. This equation may be directly treated
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with a phase space version of the eikonal method; the result is a procedure
for determining both the phase and the leading order amplitude of the short

wavelength wave along rays in phase space.

These ideas are applied to the simplified example of an electromagnetic
wave trapped in a quadratic density well. While traditional WKB methods
provide the correct spectrum for this problem, the WKB eigenmodes suﬁer :
from caustic singularities at the turning points. In contrast, the solutibn of
the phase space WKB equations for the coherent statve representation yields not
only the exact spectrum but the exact eigenmodes as well. Thus, the adirantage
of this description is that it provides a method of'v constructing the field in
phase space to avoid caustics (rays do not focus .in phase spage) and gives a

uniform approximatioﬁ of the field over all space when projected back down

- onto configuration space.
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2. SYMBOLS

In this Chapter I shall introduce the notion of the Symbol of an operator
and give a brief discussion of its usefulness and its properties. Since there is
a considerable body of mathematical literature devoted ‘to this concept!: and
its relation to the study of paeudadiﬁgre’ntial operators, 1 shall not strive for
- mathematical precision or completeness. However, even though modern eikonal
theory is increasingly béing described in terms of these ideas,* I shall attempt
to maintain a closer associafion with the application to plasma wave theory and

other physical implications than generally available in these references.

The motivation is to develop a phase space representation of the basic wave

equation introduced at the beginning of Part [:
/d3z' dt' D(z,t, 2, t) - E(Z,{)=0 (LD

Again, E is the wave electric field and D is the two-point dispersion kernel
composed of the vacuum Maxwell operator and a linear response model of the
plasma. In order to somewhat simplify the notation, I shall usually deal with

the similar one dimensional scalar problem

/dz' D(z,z)E(z') = J';(z) : (11.2)

as the extension to vector fields and many dimensions will either be apparent at
each step or explicitly noted. I have also allowed for a source term on-the right
hand side of (I.2) which may be taken to account for any departures from the
usual linear treatment of plasma waves (such as external sources, discreteness

effects or higher order nonlinear wave processes).

The dispersion kernel D(z, z') is the configuration space (or in many dimen-
sions, space-time) representation of the abstract dispersion operator D. Similarly,

E(z) and 7,(z) are the z-space represent,atidns of the abstract fields £ and j,. It
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“will be important for the following discussion to view (II.2) as just the z-space -

’ 'desci'ipt.ion of the abstract equation

DE =, " | (11.3)

This statement may perhaps be made more reasonable by using the Dirac
notation of quantum mechanics. Equation (I1.3) projected onto the basis states

|z) of the position operator is
(z|DE) = (z|7,) | (IL.4)

Now, with the projection operator (or completeness) identity familiar from quan-

. tum mechanics,®

/dz' |z} =1 (I1.5)
this becomes

[ & (=D1ay 1By = (el (IL8)

Defining the configuration space representations as
| | (z|D|z') = D(z,2')
(Z'|E) = E(Z') ‘ (I1.7)
(z]74) = 74(2)

equatioﬁ (I1.2) is recovered.

[ have stressed the difference between the abstract representation-free ex-
pression (II.3) and its z-space representation (II.2) because the abstract form will
be the starting point for developing the phase space equations. As an example
of the fact that other representations of (II.3) are possible, the wavenumber- or
- k-space description is often used

f 22 Bk, #)EK) = 4.(k) (11.8)

27r‘
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where the k-space quantities are related to their z-space counterparts by the
usual Fourier transform
' l:'}(k)E/dz' E(z')e""‘".
' (I1.9)
D(k, ¥) = / dz dz' e=** D(z, z')e™' ¥

Consider for a moment the case where (II.2) can be expressed as a finite

order differential equation for E(z). That is,

/ d2' D(z, #)E(z) = D(Z, B.)E(z)

M (IL.10)
=Y du(z)D] E(2)
D, = -id, | (I1.11)

Here, the superscript notation above the arguments c;f D dénotes the order of
' the differentiation And the multiplication by the z-dependent coefficients d,,(z)
as shown. The definition of the derivative operator D, incorporates the factor of
—1 for purposes to be séen shortly. In N dimensions, the obvious generalization

for the form of D(z, D) is

g 1 s
D(z,D.) = ) _ dp(z)DT (I1.12)
: m
where m = (m,, mo,...,my), m =m; + mq +---+mp, and |
DMt = " (I1.13)

, 8z 0z5 2 -0z pY
The sum is over all possible combinations of derivatives with respect to the

variables z; which may include time.

Writing £(z) in terms of its Fourier transform, (II.10) becomes

S dmlz)(=ida) [ 2 e bty = (o (IL.14)
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or

/ = [E dm(2) /c"'] = E(k) = ju(2)

= ;—f_d( ‘k) e*kpk) | (11.15)
d(z,lc)Ede(z)lc'"' | . (IL16)

Expressioﬁs (I1.15) and (IL.18) define the quantity d(z, k), which may be
referred to as the Symbol of a (partial) differential operator. Simply stated,
an operator whose actibn in the z-repre‘sentation may be written as in (11.10)
is associated with a Symbol obtained by replacing the differentiation D, by
k. Hence, the differential operator being a polynomial in D, with z-dependent

coefficients is represented by a Symbol which is the same polynomial in &

0 D,) o dzk=D(k - (ILl7)

Comparing the action of the operator in terms of its kernel (I.2) and its.
Symbol (II.15) one has

/dz' D(z,a&’)E(z’) =_/ﬂd(z k) :szAv(k) ( )
11.18

—/—dz d(z, k) gtka o= ika! E(z)
which implies |
! [ dk ik{z—z') ‘ :
D(z,2') = In d(z, k)e | (I1.19)

This relation just involves a Fourier transform which is assumed to be invertible
to give

d(z, k) = /ds D(z,z — s)e*k* - (I1.20)

These expressions show that the Symbol d(z, k) may be obtained directly

from the kernel D(z,z') by a kind of Fourier transform on just one of the
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arguments of the two-point function. Taken together, I shall use these formulas
to extend the definition of the Symbol for any operator in terms of its z-space
kernel representation. Since I shall be introducing other definitions of Symbols in
the next Chapters, I shall refer to this particular object as the Ordinary Symbol.
Being a joint function of (z,k) it is a candidate for a physieally useful phase

space representation of the operator. "

It is not difficult to see that the definition (I1.20) coincides with the expres-
sion found for the Symbol in the case of a differential operator From (I 10) one

concludes that this type of operator is represented by a kernel of the form

D - D(é,DI,);- de(z)D"‘

= '~ Zd D"‘&z—z)

When this is inserted into (I1.20) the polynomlal of (I1.18) is obtaiﬁed. Thus, the
extension of (II.20) to operators with kernels that are not of the simple form of
(I1.21) implies the construction of Ordinary Symbols which are not polynomial
in k. Such an operator cannot be written down in the z-representation in the
familiar form (II.10) of a differential operator even though its action may be
defined in terms of its kernel (or Symbol). This more general type of operator is

called a pseudodifferential operatof.

Much of the discussion in the mathematical references concentrates on the -
meaning of integrals like those in (II.19,I1.20), especially in regard to their con-
vergence. Thus, the behavior of the differentiability properties of Symbols (with
respect to both arguments) is examined; in this way pseudodifferential operators
are classified according to the form of their Symbols. While such investigations
are obviously necessary, they are beyond the scope of this presentation. [ shall

assume that the requirements of convergence are met (or can be dealt with) when
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the formalism is applied to the physically meaningful operators involved in this

treatment of plasma wave theory.

‘As an illustration of the precedlng development, cons1der the dispersion

’operator with the kernel given in equation (I.3): ' : .

Dz b2 ?) - Kclg? _v? )!4, vv]a(;.— 2)(t-¢) -

Obviously, the first part of this kernel (due to the vacuum Maxwell equations)
represents a partial dlﬂ'erentxal operator. In order to see wha.t. type of operator
the conductivity kernel g represents, assume a umform and stationary plasma
so that this two-point function depends only on the séace-time separation. In
this case, the integi'al (I1.20) which produces the Symbol from the kérnel reduces
to the usual‘ Fourier transforni; therefore, the Symbol associated with (I1.22) is .
the familiar uniform plasma dispersion tensor
(k) = (82 - k) — S (1 + T g(a )

) v - (1L.23)

= (K[ - k&) - Srélk )

d(z,t, k,w) =

I 3w 1

As expected, the partial differential operator piece of (II.22) is transformed
into the (k,w)-polynomial piece of (II.23). Focusing on just the longitudinal
component of this expression for example, one has the scalar dielectric function

—Skdkw) k= dkw) k

we ~

é(k, w) : (I1.24)

In the Vlasov model of an unmagnetized plasma in thermal equilibrium the

( kv.) (I1.25)

dielectric function € has the form

/cw)

npcc:ca
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Here the dependence on (&, w) through the plasma dispersion function Z is much
more complicated than just polynomial; this implies that even in uniform plasma

the dispersion operator is generally a pseudodifferential operator.

- Naturally, in a nonuniform plasma the integral in the definition of the
Symbol (I1.20) does not reduce to the usual Fourier transform so that without
a more specific model for the two-point conductivity kernel the Symbol cannot
be computed. However, one might expect that if the plasma is only weakly
nonuniform then the dispersion operator D would be only slightly modified and
that the Symbol of the longitudinal component, for example, would be similar in
form to (II.25). In fact, this is often the method used to obtain the local plasma
dispersion tensor; allowing for weak spatial dependence in the temperature of
a species produces a slowly varying Debye length A\, and thermal velocity v,
so that in this way the dielectric function becomes a function of both (k,w)
and (z,t). Evidently, the Symbol €(z, ¢, £, w) remains non-(k, w)-polynomial in
this approximation, sdpporting the premise that the dispersion operator D is in

general a pseudodifferential operator in nonuniform plasma.

The foregoing discussion indicates that the study of pseudodifferential operators
and their Symbols (or phase space representations) is indeed appropriate as they
arise quite naturally in plasma wave physics. As further substantiation, it may be
pointed out that the definition of the Symbol (II.20) has been used by several
authors®78 for constructing the local dispersion tensor D(z,t, k,w) in traditional
eikonal treatments of plasma wave propagation; this is usually a matter of con-
vention and without recognition of the more general application of these ideas. It
is not the purpose here, however, to describe these techniques nor to dwell on this

particular aspect of the theory of Symbols.

Having defined and discussed the concept of the Symbol of an operator,
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the remainder of this Chapter will be devoted to the derivation of an equation
governing the phase space representation of the wave field. This is most directly
effected by beginning with the representétion-free abstract operator expression
of the wave equation (I.3)
| DE = j, | - (11.26)

Now whereas D is an operator with a well-defined Symbpl, the electric field
E and source current j, are not operators. These quantities should be viewed
as elements of some function space upon which operators act to produce other
elements; this is in analogy to the action of the Hamiltonian operator on the
wave function in the Hilbert space of quantum mechanics. Naturally, these
ideas require more mathematical rigor than I pfesent here; however, I shall only
attempt to justify the followmg manipulations on the basis of this analogy with

the perhaps more familiar context of quantum mechamcs
In order to construct an operator representing the field, multiply (Il 26)
both sides by the adjoint or dual element E* of the field
DEE' = j,E* | (I11.27)
In Dirac notation, this equation would be written

DIEXE| = |7, XE| : | (11.28)

Now consider the adjoint of (II.26):
| E'D' = ji |
(IL.29)
or (ED" = (5]

Finally, assuming D7 is invertible and substituting (I1.29) into (II.28) one obtains
-1 v
D(EE") = (5,7,)(D")

(I1.30)
or D(EXE| = |7s7.|(D) |

-1
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This equation now involves only operators. The operator representing the field

E is the bilinear quantity
EE*  (or |[ENE]) (11.31)

which is usually known in quantum mechanics as the projection or density
operator. In the plasma physics context it will be convenient to call expressioh
(I1.31) the correlation or spectral operator of the field. Similarly, (7,57) is the

operator associated with the correlaton of the current sources.

Throughout the remainder of Part II, operators of thisvtype will appear and
will be impofta.nt in the development of the various phase space methods I shall
introduce. To get a feeling for the operator (EET) it should suffice to give its
z-space “kernel” representétion and to compute its Ordinary Symbol. In Dirac

notation.and usingthe definitions (II.7) one has simply

(EE)(z,2') = (z|EXE|z') = E(z)E*(2) (11.32)
The Symbol is now giveﬁ by (I1.20):

(EEY)(z,k) = f ds (EE")(z,z — s)e™***

= E(z)e"*= /dz' E*(zl)eikz' (11.33)

= E(2)E" (k)e~*>
The connotation “correlation operator” is due to the result (I1.32) for the z-
space description of (EE™); the autocorrelation function of the field is defined
as an average (usually an ensemble average) of this expression. Thus, since the
Symbol of the field is a type of Fourier transform of the “unaveraged” correlation
function, it may be interpreted as an “unaveraged” local spectral function. In
addition, as the form in (II.33) is the product of the z and k representations,
it is almost what one might expect for a phase space representation. In fact,

apart from the multiplicative phase factor this definition is just the mized kernel
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(z| EXE|k). Similar relations are obtained of course foriany field (such as 7,) and

these are easily extended to many dimensions and vector fields.

The basic representation-free equation (I1.3) has now been manipulated into
equation (I1.30) which involves only operators. Each side of (I1.30) is an operator
(being the product of two operators) so that the phase space representation of

this equation is simply

DEE(z, k) = (i DDY 'z k) (L34)

The equality of the two operators implies the eqliality of their Symbols. However,
in order to derive an equation for the field correlation Symbol (EE*)(z, k) one
must determine the rule for expressing the Symbol of the product of two‘ operators
in terms of the Symbdls of the individual operaﬁors. This rule is an element of
the calculus of ‘the Ordinary Symbols; the calculation requires only a short

digression and will be instructive of the manipulations involved in many of

the other derivations to follow.

Consider the product of two operators in terms of their kernels
C=AB

1135
Clz) = [ a4z, 23 ) -
The Symbol of C is by (IL20)
e(z, k) = /ds Clz,z — s)e™**
| (IL.386)

= /ds dz' A(z,z')B(z',z — s)e~ ke

Now, using (II.19) to express the kernels A and B in terms of their Symbols,

(I1.36) becomes

dk, dks . Nt .
k =/ d y S0 QA2 ik (z=2') tko(z —z+a8) ,—tks .
d(z k)= [ dodz S o ¢ ¢ (11.37)

X 'a(z, ky )b(z', k)
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The integrals over 8 and &> yield immediately -
c(z, k) = [AB|(z, k)

' (11.38)
=/dz’(;ie"“""‘)(""” a(z, k')b(z', k)
_ r

Thus, the Symbol of the product of two operators at the point (z,%) in
phase space is not simply given by the product of the Symbols at that point.
The product Symbol is given by this generalization of the convolution rule to
a nonuniform mediu.m; in uniform plasma, the Symbols a, 5 and ¢ would be

functions of k£ only, and this integral would reduce to the product &(k)l;(/c).

The relation (II.38) may be cast in a more compact and perhaps more useful

form as follows: change variables in the integral to z’ = z + 3,

, ' :
c(z, k) = /ds %— e~k ~k)e a(z, & )b(z + 3, k) (11.39)
and Taylor expand the Symbol 6 around z
. ,
oz, k) = f ds%e"“"—”' a(z, k')e*O=b(z, k) (I1.40)

The exponential operator here is a shorthand way of writing the Taylor expan-
sion; it is to be interpreted in terms of its power series and questions of conver-
gence are ignored for simplicity. Now that b(z, £) is independent of the integra-
tion variables, it may be taken outside of the integral to the right; the integral

is now an operator (of z-differentiation) acting on 6. The relation
— _
e""“‘"k” a(z, /c')e'a= = e"'“""")' a(z, k')e'iaka: (11.41)

holds since a is independent of &, and it also may be verified by power series
expansion. The left-pointing arrow above the k-derivative indicates that it
operates on all functions of k£ (not k') standing to the left (i.e., not on 6). With

these steps, (I1.40) becomes

! ) =3
c(z, k) = {/ ds (;—,:r g~k —k)e a(z, k') ¢~ 'O0k0z b(z, k) (11.42)



1.2 Symbols. T 188

The integrations are now trivial and one 'ﬁnally has

. [AB](z,k)=a(z,k)e-‘5;5;b(z,k) |  (11.43)

This is the desired compact form of (II. 38) it is to be interpreted in terms

of that integral form or its power senes

5.9, — (—1)" d™a(z, k) 8™b(z, k) ‘
a(z, k)e™*CkCz b(z, k) = E — — (11.44)
= Ak dz

From this it is apparent that if & is the Symbol of a partial differential operator
(t.e., it is an Nth degree bolynomial in k), then this is a finite series of z-
differentiation on 6 (6f order N). Furthermore, the earlier result for a uniform
medium is recovered in that if the Symbols are independent of position (spéciﬁcally, :
- b not a function of z), then the Symbol of the product is the product of the

Symbols (only the first term of the power series = 1 contributes).

Returning to the wave operator equation (I1.30) and its Symbol (II.34), one
may immediately apply the rule (I1.43) to obtain

iz, k)e= Oz (EE)(z, k) = (jaj})(a, Kje~0e: @ (e o (IL45)
This is the desired phase sp:ice equation for the Symbol of the field correlation
operator (EE*)(z,k). The four dimensional analog for the correlation tensor

Symbol is simply
—p.

z.(d " (z,k)  (I146)

|a~T

d(z, &)f,""a-"-'ai (EE")(z, k) - (2.1 .)(z:. k)e~

B B
The rather complicated structure of this tensor equation may be somewhat
clarified if expressed in explicit component form:
(_i)n a"d“y a"(E E:)

20 4 3
D D D T

Nom( jmm] ym=] t

(1L.47)
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Due to the usual Fourier transform convention with opposite signs for space and .
time (e"¥*=«*)) this equation is correct for (z4, ky) = (t,w) but (3,,,8%,) =
(=8¢, 8,). In addition, it must be remembered that this is an expression relating

two tensors and must be satisfied for all components (uc).

Let me reiterate the meaning of this equation. It is a (possiBly infinite
order) partial differential equation (or integral equation, c¢f. Eq.(I.38)) for the
“unaveraged” local spectral tensor defined in (II.33) (or its analogous vector
form). The left hand side involves (k, w)-derivatives of the local dispersion tensor

d(z,t,k,w), defined in the space-time tensor form of (II.20), and (z, t)-derivatives

of (EE")(z,t, k,w). It is important to remember that in this formalism (z, ¢, £, w)
are all independent variables. If the dispersion tensor is only a polynomial in

(£, w) (cf. Eq.(II.16)) then the left hand side reduces to a finite order differential
action on (E_E"). | '

The right hand side can be viewed in two ways, depending upon the meaning
of the current field j,. Taken as a given source field (such as an externally
supplied current), it represenﬁs an inhomogeneous term in an ot.herwise linear
equation for (E_E'). In this case, the right hand side is a function on phase space
composed of (k,w) derivatives of the “unaveraged” current spectral tensor and
space-time gradients of the inverse adjoint dispersion tensor (the calculation of
‘the Symbol (df)™" in terms of d will be discussed shortly). Thus, the entire right

hand side is a known source for the left hand side at each point in phase space.

The possibility exists, however, (due to the form of the basic equation (II.2))
that this term may be extended to include nonlinearly generated currents so that
7, could be considered a functional of E. Of course, this might have significant

implications for the nature of the abstract vector space in which the operator

equation (II.3) is to be viewed, but it seems as if this circumstance could be
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treated from the standpoint of either (IL.2) or (I1.46). In this case, then, the

right hand side would contain (k, w)-derivatives of nonlinear terms in (Eﬁé) as
-1

well as gradients of the given tensor (d)

I shall not enter into a discussion of appropriate boundary or initial con-
ditions for this equation which must be supplied for a well-posed problem. In
fact, for the followiﬁg reasons, I shall proceed to introduce another type of phase

space representation.

The primary advantage of this Ordinary Symbol description is the natural
way in which it extends the familiar diﬂ'erentialv operator to the concept of a
pseudodifferential operator: Furthermore, the computations required to obtain
the rules for translating operétions on abstract operators into corﬁresponding
Symbol operations (the 'Symbol calculus) are perhaps the simplest with regard
to alternative representations. Again, possibly for thése reasons, this type of
Symbol is perh#ps the one most often studied in the mathematical literature

and it has been used in several previous treatments of eikonal theory. |
In my view, these advantages are far outWeighed by the following drawbacks:

1) While the product rule was fairly easy to derive, it appears to result in an
unsymmetrical treatment of z and k in the integral form (I1.38) and of (3., k)
in the differential form (I1.43). In itself, this is not a serious deficit; yet, besides
its aesthetic aspect, this point has another consequence. One would desire to
develop a formalism which could make contact with the usual WKB treatment
involving the identification of the local dispersion relation as a Hamiltonian
governing the evolution of the ray trajectories. This Hamiltonian ray theory
treats z and £ on a rather equal footing and one would expect that a phase space
wave description with this property would provide a more direct connection with

the rays.
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2) A further aesthetic difficulty is illustrated with the calculation of the
Symbol d”(z, k) of the adjoint operator D*. The rule for computing d* from the
Symbol ¢ is also an element of the Symbol calculus and may be obtained as

follows:

Begin with the definition of d* in terms of the adjoint kernel

d'(z, lc) = /da D¥(z,z ~ s)e-‘k' (11.48)
and the adjoint condition
DY(z,2') = D™ (', z) (I1.49)
so that one has _ _
di(z, k) = /ds D*(z — 8, z)e~*** (I11.50)
' Now from (I1.19), |
D*(z —s,z) /ﬂi d*(z — s, k’)e‘kl' (I1.51)

with which (I1.50) becomes - |
di(z, k) = /da?: d*(z — s, k')e™ "k oik's
/ 2 o =1 =0 4 (2, K (IL52)
_/_dsez(k'—k)c e_.-é",,g; & (z, k) v

where the intermediate steps are similar to those used in deriving the product

rule (I1.39-11.42). The integrals are easily performed to give
! .ﬁ._—.' .
dt(z, k) = fi;f-a(k' ~ k)e= k02 g*(z k!
T

—_— —P !
— —i0k0z f_f)%m,_k)d*(z,k,) (I1.53)

d'(z, k) = e=0k0z 4=z )
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Here the exponentxal operator has been moved to the left of the integral (and the
‘arrow on the k- dlﬁerentlatlon accordingly reversed) since the only k& dependence

is in the delta function.

This result has two implications. First, it is apparent that the Symbol d*
~ of the adjoint operator Dt is not simply the adjoint of the Symbol d of D. Thus,
for scalar Symbols one does not have in general df = d*; for tensor Symbols the

relation analogous to (I1.53) is

dt (2.t k w) = -"9h 5z , iz, t, k, w) (I1.54)
so that d'{w £ dj,,. These observations are true unless the Symbol d contains
no products of “conjugate” variables z.k;, (1 = 1,4). The second point follows
from the first: if the operator D is self-adjoint then (I1.53,11.54) imply that its

Symbol is not self-adjoint if it contains zk products.

These are serious considerations in most applications to plasma wave physics.
As the discussion of the example (I1.22-1I1.25) indicates, the local dispersion tensor
as well as other phase space functions of interest in geheral do involve zk
products. In addition, many of these operatofs are self-adjoint; for instance, one -
often uses just the hermitian partv of the dispersion tensor to define the dispersion
relation. Thus, the cerrespondence between self-adjoint operators and their

Ordinary Symbols is somewhat complicated.

These deficiencies have, of course, been addressed in the mathematical
literature and, as one might expect, the z& product problem is deeply rooted in
the fundamental non-commutativity of the position and momentum operators
of quantum mechanics. There is no ultimate resolution of this diﬂ'ereﬁce be-
tween wave/quantum mechanics and ray/classical mechahics; no unémbiguous
correspondence between operators and phase space functions has been developed

with a Symbol calculus which preserves the basic operator commutation properties.
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With regard to the Ordinary Symbol formulation, these issues have been success-
fully treated in the eikonal approximation with the introduction of the con-

cepts of principal and subprincipal Symbols? 10 but I shall not discuss these here.

3) Let me cite another example of the complications which arise in this
Ordinary Symbol description and which also emphasizes its unequal treatment of
z and k. Throughout the development of the concept of the Symbol (II.10-II.20)
[ have concentrated on the relationship between the phase space Symbol and the
z-space kernel representation. As pointed out earlier, however, one should be
able to begin with the k-space expression of the basic equation (I1.8), consider its
form for a differential operator and extend this to a natural definition of a phase
space Symbol representation. A brief calculation will reveal that this procedure

leads to a different definition of the Symbol.

‘According to (I1.21), the z-space kernel of a differential operator has the

form

M
D(z,2') = _ dm(z)DTé(z — 2') | (I1.55)
which, by (II.9), produces a k-space kernel \

M
b(k, k) = Z / dz dz' e—*k= dm(2)D™6(z — zl)eik’z'
M | -
= Z / dz e~ %= d,, (z)D™e'* =

/dzd (z)e —ilk—k')z

(I1.56)

mlk — &)

M
m
M
m
Here the Fourier transforms of the coeflicients d,, have been introduced; if the

dm are polynomial in z the final form may be expressed
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M
D(k, k') =" dm(Dr)E'™6(k — k)

~ (11.57)
Dy =18
Thus, the action of the k-space kernel becomes
/ ﬂ‘—o(k EVE(K) = / k' Zd (D )E'™6(k — k') E(K')
= dm(D k™ E(k
; (Dr)k™ B (k) 1L58)

2 1 a
= D(Dy, k)E(k)
Al 2 &
= D(k, Dr)E(k) _
where (II.10) provides the basis for the use of D. Of course this notation is only
symbolic if the dm are not polynomial in z, in which case these operations are to
be understood in terms of (I1.56). One might expect that the k-space description
of the action of a differential operator would be obtained by the replacement
D, — k and z — Dji; note, however, that the order of multiplication and

differentiation has been inverted.

Now, in a manner similar to the steps in (II.14-11.18), one may use (II.56)

to define a Symbol by rewriting E(k) in terms of E(z):

ik, Do)tk = [ % Bk, )

=/ ?;[E ¢ [ de! d(t)em et ] [ dz Bz

' . o .

—/dz [/ £dz de(z')k'me'“‘,-k"""' ]e_'k" E(z)
m

= / dz d(k, z)e=*= E(z) .
(IL.59)

The Symbol &(/c, z) has been defined in analogy to the definition (I1.15). To see

that this is a consistent procedure, observe that the reason for introducing E(z)
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in (I1.59) (or £(k) in (IL.14)) is to simplify the action of Dy (D) by allowing it to
operate on the Fourier transform kernel e~*** (¢**2). Now, whereas the result

in (II.15) was strightforward, the expression

E(z) ~ (I1.80)

Al 2 a .
D(k, Dx)E(k) = / dz [E don(Di ) k™™=
m
is somewhat more complicated by the ordering and requires the treatment of
(I1.59) to move the exponential factor outside the brackets to the right.

The important point here is that if one begins with the k-space kernel
representation of a wave problem, then the natural definition of a phase space

Symbol which obtains is

A &(k,z) =/d2idz [Zd (z kl"‘] (k! k)2’ —z)

—/d—k'dz dz kl)e:(k'-k)(z’—:)

(IL.61)

The identification of the term in brackets with the usual Symbol of a differential
operator has been made and evidently the two types of Symbols are not equal..

Indeed, using (I1.20) to express &(k, z) in terms of the z-space kernel, one has
d(k, z) /gk—'dz fda D(z, 2 - s)e“"" ef“‘"""’""
= /dz' ds D(2, 2 — 8)e=*='=2) §(z! — 7 — s) (11.62)
| == /da D(z + 8, z)e~"**

This “uncentered” transform should be contrasted with (I1.20) which defines

d(z, k).

As in the derivation of the product rule, the integral relation (II.61) may be

converted into a more compact differential form. The steps should be familiar:
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A . ! .
d(k,z) = / 5‘2—':?48 d(z + 8, K')e'E —*)e

k' k' —k)e DD, - (1163
= | = dg etk —k)e 0k 2d(z, k') (11.83)
2r _
'—#—-»
= k0247 k)
Once again, the z& product ambiguity is seen to be resp‘onsible for the difference
between these Symbols. Furthermore, if one of the Symbols is real with z&

- products, the other vmay be complex.

4) While the previous three points apply to Ordinary Symbols in general,
there is one particular'class of operators which suffers additional h.andicaps in this
representation. The field correlation or spectral opefator (EE") is an example
of an operator whose Symbol necessarily contains zk products; from v(II.33) the

“unaveraged” spectral tensor Symbol is

*

(EuE})(z, k) = Eu(2)E," (k)%= (IL.84)

The operator is manifestly seif-adjoint whereas this expression clearly is not.

Moreover, by either (I1.61) or (I1.62) the Symbol of the k-representation is
(ELEL) (k. 2) = Eu(k)Eu(2)e’®2 (IL85)

which is the adjoint of (II.B4). These observations illustrate the drawbacks
described above in that 1) one usually prefers a self-adjoint spectral tensor, and

2) the formalism seems to present the choice of two equally good Symbols for

the field.

A more serious difficulty is met when one attempts to use this phase space
description of the field in the geometric optics limit. Even without considera-
tion of the equation (II.46) gdverning (EE"), it is evident from (I1.64) that the

asymptotic eikonal form of the spectral tensor will be
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(M*)(z’ &) ~ E(&)e'¢(£)e-'.k_£ /d4z' E_*(gl)e—-i¢(£’) eg'lﬁ-i,
(11.66)

~ E(Q)EA* (&)eiélzl—é’(kl e~k z
Here, #(z) and E(z)-are the WKB phase and amplitude of E(z). The Fourier
transform integral has been evaluated in the stationary phase approximation!!-!2
| such that the local wavevector relation is satisfied
Vé(z) = &(z) =&

= zo(k)
in terms of which the phase of the k-representation is defined by Legendre

(IL.67)

transform
(k) = d(zo(k)) — k- zo(k) (IL.88)

The amplitude £(k) is proportional to E(z,(k)) with a multiplicative factor

resulting from the residual gaussian-like integral.

A

It is the amplitude factor E(_z_)E*(lc_) which is troublesome in this limit.
The discussion of WKB (or EBK) techniques in Part I indicated that E(z) has
singularities at caustics (or multidimensional turning points) arising from the
projection of the ray phase space Lagrangian manifold onto z-space. Similarly,
the projection of that manifold onto k-space will produce k-caustics!? and as-
sociated singularities in é(&). Therefore, this Symbol representation (11.68) of
short wavelength fields will have singularities near all points (z, k) in phase space
where esther £(z) or ﬁ(!g) is singular. Figure 30 illustrates this phenomenon with

a simple example.

Of course if the Symbol (EE")(z, k) is computed either from the exact fields
or as the solution of (II.48) these singularities would be replaced by finite but
large amplitudes in the same regions of phase space. Nevertheless, the usefulness
of this description now becomes questionable. As discussed at the beginning of

Part II, one would desire a phase space representation which “adheres” to the
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Figure 30. Schematic illustration of the singularities in phase space characteriz-

ing the Ordinary Symbol of the spectral tensor (Eﬁ*)(;, k) when it is evaluated in
the geometrical optics approximation. These singularities are simply the linear

extension into phase space of the singularities present in both E(z) and E(k)

due to the caustic catastrophes in the projection of the ray manifold onto z- or
k-space. '
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rays, s.e., one that is of large amplitude (ixi some sense) near the ray manifold
and small amplitude off of it. Obviously, this expectation is not fulfilled with
this type of Symbol.

5) The final objection to be mentioned here is agéin of an aesthetic quality.
It has beén seen that the method of naturally extending the action of differential
operators with the introduction of the Ordinary Symbol has led to z& product
difficulties and an unsymmetrical treatment of z and £. In addition to this “phase
space effect”, however, there is the result that the definition of the Symbols in
terms of either the z-space or lc-spacé kernel (II.20,I1.62) representation is via an
“uncentered” transform. It would seem that a transform which symmetrically
involves both arguments of the kernel might provide a more aesthetic definition of
a phase space representation, even though it would not be a natural extension of
differential operator formalism. Thus, while the Ordinary Symbél is a legitimate
candidate for a phase space representation, many of its intrinsic qualities are
unf’ ;ivorable and discourage its further development here as a phase space theory

of wave fields.
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3. WEYL SYMBOLS

The .dis_advantag\'es of the Ordinary Symbol description of operators and
fields listed at the end of Chapter 2 motivate the introduction of a representétion
which is more symmetrical in the treatment of z-space (z, z'), k-épace (k, k') and
phasé space (z, k) variables. Such a Symbol does exist and thié Chapter will
explore its properties, its calculus and its potential as a suitable phase space

representation for plasma wave fields.

[ shall refer to the symmetrized» Sjmbol defined by
D(z, k) = /ds D(z + s,z — Fa)e™** : (11.69)

as the Weyl Symboll® of the operator D. Like the definition of the Ordinary
Symbol (II.20), this expression is a type of Fourier transform on the separation
8 of the two arguments in the z-space kernel D; however, unlike (II.20),. the
transform is “centered” around the poiht z and involves both arguments. The

inverse of (I1.89) may be verified to be
dlc

D(z,z') = D(3(z + 7'), k)e ik(z=a') (11.70)

This kind of Symbol has réceived somewhat less attention in the math-
ematical literature, possibly due to its tenuous connection to the theory of
p'seudodiﬂ'erential operators.!? It has, however, been taken as the definition of
the local dispersion tensor in several treatments of conventional eikonal methods
for plasma waves!%18 and in fact was presented in that role in Chapter 2 of
Part I. As in the case of the Ordinary Symbol, these techniques do not exploit
the full potential of the phase space representation induced by this construc-
tion. The Weyl Symbol has also been used by many authors!7:18:19 to define an

operator-phase space function correspondence in quantum mechanics.

With the definition of the Weyl Symbol of an operator, the object now is
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to determine the associated phasé space representation of the abstract equation
(I1.3) or, more precisely, its operator form (I1.30). This of course entails the
derivation of the product rule for Weyl Symbols. It will be most efficient in the
calculation of this and other elements of the Weyl Symbol calculus to make use
of an intimate relationship between Weyl Symbols and .Ordinary Symbols. This
connection is readily obtained upon substitution of the inverse formula (II.19)

into the definition (II.89)

dk’ 1, itk! —k)e
D(z,k) = d82— d(z + L3,k )e’
- 4 - | (I1.71)

—_ 2/dz";—1:5 d(zl’kl)e%(k'-—k)(z'—-z)

The factor of 2 arises from the change in variables 2’ = z + }s and becomes
2V in the N dimensional form of (I1.71) which is immediately apparent. This
relation is an integral ovér all phase space similar to the Fourier type integrals
already encountered in the previous Chapter, the difference being the factor of 2
in the exponent (which remains 2 in IV dimensions). Although it was not stated
in that Chapter, such relations are invertible (assuming all integrals exist) so

that one also has

!
d(z, k) = 2 / dz’zi D(z', k')e=2Hk' =)= ~z) (IL.72)
T

It was also seen in Chapter 2 that phase space integrals like this may be
cast in a compact differential form which sometimes provides insights into the

properties of the relationship. Thus, the manipulations of (I1.71) proceed
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| -
D(z, k) = / d.s%f‘; ek =kle 80z 4z k1)

dk' ke 13730 .
/ds-— etk —kle (30k0z gz k) ‘
LU : (11.73)

e dad /]
= ¢30k0- /ds%lc— e‘“‘""” d(z, k")
T

D(z, k) = ¢39%92 4(z k) |
Similar operations on the inverse integral (II.72) reveal that the obvious inverse

of relations of the form (II.73) also holds
) . —,—>
d(z, k) = e~ 39%9: p(z k) | (IL.74)

The interpretation of these expressions is that if neither type of Symbol contains

zk products then they are equal.

As an example of the application of these exponential operators, consider
the case where d(z, k) is the Ov'rdinar.y Symbol of a differential operator (II.16).
The Weyl Symbol of the differential operator.may be computed using (11.73) in

its pOWGl‘ series expansxon

" (IL75)
— 1
=3 3 {30, dmi)]0pk™
n!
The k-derivatives reduce the exponents of £™ so that terms in the power series

0% vanish for n > m. Thus, with

—ml__gm—n <
{‘m—"" n=m . (IL76)

"0 n>m

%
(I1.75) becomes

Zzn' — /c"'-"(w)d (z)

m =0 . LT

= (k+40,)"dm(z) -



I1.3 Weyl Symbols o '198

having recognized the form of the binomial expansion. This formula may be

verified with the integral relations (I1.71). It also suggests that Weyl Symbols, -

although symmetrized for several reasons, do not provide a natural extension of

differential operators as do Ordinary Symbols.

The inverse (I1.74) may be applied to (11.77) in order to illustrate the way . |

in which it “undoes” the operation of (II.73,I1.75). Begln with

—$010, Z(k +48,) Z Z 8k (k+4082)" (—40:)"dm(z)

n—O
_ (11.78)
expand the binomial and use (I1.78) to find
a"(/c++a —akZ( ) ($9,)™"
=0 (I1.79)

=T (M) e, <o

{==0
Now (II.78) is

-3 ( ) ™! (k= $9.) dm(2)

m (=0

so that the derivatives of d,, cancel when the binomial theorem is used once

again

Z(w +k— £8,) Z k™ (11.80)

m

and the form of the Ordinary Symbol d(z, k) is recovered.

Having demonstrated that the Weyl Symbol is indeed obtainable from the

. Ordinary Symbol with this exponential operator method, one may exploit the

technidue for a new and short derivation of the product rule in the Weyl calculus.

Recalling that the rule (I1.43) which translates the operator composition into the
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Ordinary Symbol product is

C=AB
55 (IL.81)
= c(z, k) = a(z, k)e™ %2 b(z, k)

one may immediately use (II.73) and (II.74) to introduce the Weyl Symbols of

the operators into this expression:
i-—»—» . i—»—» — —b —>
e=30k02 O(z, k) = (e~ $0k9= A(z, k))e=i0%0z (= 40k02 Bz k) (11.82)
The exponential operator on the left hand side may be inverted to give
Clz, k) = RN (e=29%9=z A(z, k))e=Ok0z (¢~ 30k0z Bz, k))|  (I1.83)

The term in brackets may be viewed as nothing more than the multiplicative
product of two functions of z and k (albeit, not A and B; ¢f. Eq.(II.44)) so that

the action of the operator from the left on this product must be determined.

It should suffice to’ state that the easily verifiable formula

o21(zlata) = 3 (7 Jooz ntora)

me=( (11.84)
— —n
= f(2)(9z + 9:)"9(z)
generalizes to two variables as
nan — ——p n = —— n
050z f(z, k)g(z, k) = f(z, k)(Ok + Ok)™(92 + 02)"g(z, k) (11.85)
(and indeed to 2N independent commuting &eriva.tives) \
0% - 92 (2, k)o(z, &) = (2, )[(Bx + B8 - (32 + 3)|"3(2, &) (1L.86)
to assert that
Oz f(z, k)g(z, k) = f(z, )" O+ INOat0a) gz ) (11.87)

Consequently, with (II.87), the product rule (II1.83) becomes

C’(:z:,lc) —_— (e—fakaz A(z,k))ef(ak-fak)(azﬂ-az) —cdkd ( “;dk z B(z,lc))
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which may be rewritten .

C(z, k) = Alz, k)e~$9x0z ($(0k+0k)102+82) —iOkdz (~40k0z Bz k) (IL89)

where the arrows have kept track of the correct functions to be differentiated by
each operator. Now, since the z and & derivatives commute, the exponentials

can be combined

‘and again all manipulations may be verified by means of power series expansions.

Therefore, the product rule for Weyl Symbols is

R d
Clz, k) = A(z, k)e3 L B(z, k) (1L91)
L =0,;0k-0Id,

Of course, this formula could have been derived with only the definition
(I1.89) and its inverse (II.70) in a manner similar to that presented for Ordinary
Symbols although the calculation is much longer.!®  The integral form of (I1.91)

‘may also be obtained by combining (I1.71), (II.72) and the integral form of the

Ordinary Symbol product (I1.38). The resulting exbression is

Clz, k) = 4 / dz, dz, TLIE2 —2il(ky—k)(za—21—(ka—k)(z1 3]
(2 . (I1.92)
X A(zl) kl )B(zﬁy k?.)

from which (I1.91) may be derived using the familiar Taylor series arguments.

Both (I1.91) and (I1.92) are similar to (II.43) and (II.38) in that they in-
volve exponential bi-directional operators or nonlocal integral relations, but they
differ in two significant aspects. In the Weyl Symbol products, z and k are
treated on an equal basis, ostensibly because of the symmetric z-space definition
(I1.69). Perhaps more importantly, the symmetrized definition has led to the

bi-directional operator T of (I1.91) which is reminiscent of the Poisson bracket
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of Hamiltonian ray theory' (see Chapter 3, Part I). In fact, expanding (I1.91) in
powér series the first two terms are |
C(z, k) = A(z, k)B(z, k) + A(z, k) LB(z, k) + . ..
= A(z, k)B(z, k) + $((3:4)(0 B) — (0x4)(8.B)) + . .. (11.93)
= A(z, k)B(z, k) + ${A, B} + ... |
although the higher terms cannot be expressed so simply by means of the Poisson
bracket. Thus, not only has fhe Weyl Symbol rectified the z-space and phase
space synimetry deficiencies found in the Ordinary Symbol formalism, there is

also the suggestion of a possibly closer connection to geometric optics.

The Weyl product rule is straightforwardly extended to many dimensions
and tensor operators. Hence, the Weyl Symbol or phase space representation of

the basic operator wave equation (IL.3, II.30) is

Diz, bt L (BEY iz, k) = (1,3 )wlz D3 L - (DD (5,k) (1199

——

where

(az;ak = agl_—'ahakr aW) ’ . (11.95)

/2 _ anDu.u an(EUE:)W
> oy xt ( )" S e

ne=) m==0 J1172..dn v=1

/2 m "Guilw ™MD,
-£3% v »t () ) 3 )okm) 8= )a(a™)

nes() m==0 31.759,...0n u-—l

(11.96)
with the notation for the derivatives being
an _ an
d(zn=m)3(k™) ~ 02;,02Z)5 0T jn_m Ok; -9k,
(2" )8(k™) ~ 02, 9%jy Dsm s Ohip_pry - OF; 1e7)
9 9 |
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The elements of this equation are the Weyl Symbols of the dispersion tensor
D, the electric field and current source spectral tensors (EE"w and ( I, l:)w, and
the inverse adjoint dispersion tensor (Q*’)'1 . The Weyl Symbol D is given by
the tensor analogy of (II.89) in terms of the dispersion kernel D and is the same
as that used in Egs.(I.20,1.21); the form of its adjoint and inverse adjoint (which

may be computed in terms of D(z, £)) will be discussed shortly.

The field spectral tensor (Eﬂ*)w is obtained from (II.69) by

(EENw(z, t, b w) = f dsdr E(z + $s,t + dr)E*(z — $s,t — br)e~kerior
(11.98)
and similarly for (-l.l:)w This definition .should be familiar from Part I; evi-
dently, the.symmetrized Weyl form.alism has led to the _‘identiﬁ_cation of the
Wigner function (here, altensor Wigner function) as the Symbol or phase space
representation of the field. Consequently, (II.94) is-an equation governing the |
evolution of the Wigner function constructed from the electric field with a source
due to the Wigner function of the nonlinear currents. Because of this connection
- with the Wigner function, the Weyl Symbol description is often referred to as

the Wigner-Weyl correspondence between operators and phase space functions.

~ Several properties of the Wigner function were enumerated in Chapter 8 of
Part I. Among these were the important relationships Bétween this phase space
distribution and statistical measures of the field. Thus, from (II.70) with D —
(EE")w, one has both

(I1.99)

and similar projection rules may be verified for k-space



0.3 Weyl Symbols S 208

E(k+30)E (k- k) = /d4z‘(_E_E_+)w(z, k)e™ i3
| (1.100)

B = [ 4tz (EE Wiz, b

As in the Ordinary Symbol description (for which, incidentally, formulas similar
to (I1.99,11.100) also hold) these relations indicate that the Weyl Symbol of
the field correlation operator is an “unaveraged” local spectral tensor and its

projections are “unaveraged” (yet “centered”) intensities and correlations.

The short wavelength eikonal form of the Wigner function was also con-
structed in Part I. It was seen that for stationai'y, bound integrable ray sys- |
tems this phase space "distribution is sharply localized (ih fact, asymptotically |
a delta function) in the neighborhood of the appropriate corresponding ray
Lagrangian manifold. This was also seen to be the case for general propagat-
ing (unbound, time-dependent) waves. For chaotic rays, it was hypothesized
(though not verified) that the'Wigner-function would still “adhere” to the réys
in some sense and in fact provide a basis for determining the ray manifold-wave
correspondence. This asymptotic character of the Wigner function should be
contrasted with that of the Ordinary Symbol of the field. The promise of such a
close relationship with the geometric optics solution of the wave equation, along
with .the-appeara.nce of the Poisson bracket, enhances the desirability of this

representation over the Ordinary Symbol.

There are two imporﬁant properties of Weyl Symbols in general that also
contribute to its usetulness. Due to the symmetry of the z-space kernel definition

(I1.69), the Symbol of the adjoint operator is simply
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D+(Z, IC) = /d8 D*(.’L' - 'J-;s’ T+ )_{8)8_‘*‘

= /ds D*(z + %3,z — La)e'™

| (I1.101)
= [/ ds D(z + 48,z — 33)e=**
= D*(z, k)
The relation for a tensor Symbol is also easily derived:
(DY) (2, k) = Dup(z, k) (11.102)

Therefore, in the Weyl representation one has the fortunate circumstance that
the Symbol of the adjoint operator is just the adjoint of the Symbol. For scalar
Symbols then, a self-adjoint operator is associated with a real Symbol. The
manifest hermiticity of the spectral 'opex;atOr (EE+) implies that the Wigner
tensor is self-adjoint. Most significantly, these assertions are valid irrespective of

the presence of zk products which plague the Ordinary Symbol representation.

Another characteristic of Weyl Symbols not only provides further motivation
for their use as a suitable phase space representation, but it will be needed in
the next Chapter as well. This property concerns the ezpectation value of the
measurement of some wave attribute A in the field £. From the representation-
free abstract point of view, this is interpreted as the action of the operator A
(which represents the attribute) on the field E with subsequent projection onto
E. Such a concept will be seen to be important here although it is perhaps more
familiar in the context of quantum mechanics. Therefore, with the help of the

Dirac notation, the expectation value is

(A)g = E*AE or (E|A|E) (11.103)

[n terms of the z-space representation this is
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(Als = [ dzdy (BlzXelAlyKy1B)

= /dz dy E*(z)A(z,y)E(y) (I1.104)

= [ dzay 4z )EEN, 2)

= Tr A(EE") | |
which defines the trace of an operator. Thus, the field spectral operator may be
interpreted as a demnsity operator against which the observable A is weighted in

the wave field E.

The phase space representation of (II.104) is obtained with the use of (I1.70):

dky dky g iamu) iko(vm | . -
(Ao = [ doay T2 b= hor=2) (42 +4), I JEE W (42 + ), )

/dkl dk‘z d ds :(kl—kgjl A(r, kl)(EET)W(r, k2)

—/—-—dzA (z, E(EED)w(z, k)
_ : (11.105)
It may be shown by means of the integral form of the Weyl product (I1I.92) that

this expression is equivalent to

(A)g = TrA(EE") = f dz [A(EEY)|(z, k) (I1.106)

This result is reminiscent of the classical expression for the expectation value
of the phase function A(z, k) with respect to a phase space density (EE™)w(z, k).
The fact that a similar relation does not obtain .for the Ordinary Symbol descrip-
tion marks another advantage for the Weyl representation. Nevertheless, there
is a non-classical aspect to (I1.105); while (EE")w(z, k) is real (for scalar fields),
it was seen by example in Part [ that it is not necessarily nbnnegﬁtive. Indeed, it
may be shown?? that any phase space re'presenta.t,ion which satisfies the projec-

tion relations (I11.99,11.100) and (I1.105) cannot be positive for all functions E(z).
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In the discussion of Part I, however, it was indicated that under a suitable lo-
cal averaging of the Wigner function a positive phase space density might be

expected.?!

With these observations, it seems that the Weyl phase space representation
offers enough satisfactory characteristics to warrant vits further developmeﬁt
and, in particular, the investigation of the phase space equation (II.94). In
many respects, this equation presents a much more difficult problem than the
underlying wave equation (II.1). It will be seen, however, that under certain
assumptions it provides a direct connection between the geometric optics solution
of (I.1) and the Liouville Theorem of classical mechanics. Thus, this formalism
enables a clear and concise derivation of the wave kinetic equation governing the

wave action density.

In the spirit of the eikonal method for obtaining the geometrical optics
approximation (see Part I) to the wave solution of (II.1), I shall postulate an
ordering of the derivatives of the various elements in (I1.94). To this end, consider

the power series expansion of (I1.94)
D1+ 4L +-)- (EEW = (15w + 4L +-)- 2N (1107)

The exponential expression (rather than the integral formula, cf. (I1.92)) per-
mits the straightforward identification of the relative orders of variation involved
in the evolution of (EE")w. Consistent with the assumption of a weakly in-
homogeneous medium (compared to a typical short wavelength \ of the waves),

one requires

1
azD N — II.IOS
0.0/~ 1 (L.108)

where L is the scalelength (timescale) of the plasma variation. As a quadratic
function of the wave field £, one might expect (EE") to also exhibit only this

slowly varying behavior; therefore, I shall look for solutions which satisfy
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0 (EE W~ 7 (I1.109)

‘For order of magnitude estimates, I shall also take the k-derivatives to be
0k D| ~ |0:(EE W] ~ N (11.110)

These assumptions imply that terms on the left hand side of (I1.107) have relative
scale given by

DO EE W] ~ (%) | L

which provides a small expahSion parameter for wavelengths (periods) short

compared to scé.lelengths (timescales).

[n addition to this space-time scale ordering, I shall also restrict attention to
that region of phase space for which the wave system is only slightly dissipative
and nearly linear and undriven. Thus, the anti-hermitian part of D and the

current sources are assumed to be small in the sense that
P=30+DY)  D'=-4D-DY
127 <1 (II.112)
1D’ | '
(2,i)w! < IDPI(ZE w]
While these ordering arguments are common to traditional WKB treatments, an
actual form for the solution has not been postulated. Naturally, the justification
for these assumptions must eventually be based on the p;operties of the solutions

which emerge.

With (I1.108-11.112) providing estimates of the relative order of terms in
(I1.107), one finds the lowest order equation to be

D'(z,t,kw) (EEw(z tkw)=0  (I1.113)

This condition is similar to the usual result of conventional WKB methods

at lowest order (see Chapter 2, Part I). The structure of (II.113) is more
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complicated, however, in that it is a matrix equation (at each point (z,t, k, w))
and must be satisfied for each element. Fortunately, since the spectral tensor is
self—_adjoint in the Weyl representation and because only the hermitian part of
the dispersion tensor is involved, the adjoint of (I1.113) implies
D' (EE")w]' = (EEN - (D)} = (EE"Ww - D' =0

= D' - (EE"w = (EE"w - D’

In this approximation, the dispersion tensor and the spectral tensor are repre-

(I1.114)

-sented by commuting hermitiar matrices and can therefore be simuitaneously
diagonalized. This property is not only important at lowest order, but it will al-
low the equation generated in the next order to be decoupled so that the inherent

tensor nature of (I11.94,11.107) can be treated by scalar equations.

Taking advantage of this result, it is simplést to view (I1.113) in the basis
in which both matrices are diagonal. This basis is that of the eigenvectors of D’
D'(z,t,k,w)- el‘\’(g:_, tk,w)= D"(g, t, k, w)ez'(g, t, k,w)

for a=12,3

(I.115)

The vectors e are also called the local polarization vectors as they give the
local direction of the field just as in the traditional WKB treatment. It must
be pointed out, however, that the polarization vectors defined in WKB methods
are not functions on phase space; in those theories it is assumed that a solution

k = k(z,t) can be found so that
&(z,t, k,w) — &(z,t, k(z, 1), w(z, t, k(z, 1)) — é(z, ) (I1.118)
On the contrary, in this presentation (z,¢, £, w) are independent variables.

As Q' is hermitian, it can be shown that the polarization vectors are or-
thogonal and satisfy a completeness relation

A

A 3 3
e = @l =6 and Y el =4, (IL117)
]
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The overbar notation here signifies the complex conjugate transpose vector (the
left eigenvectors of 12’ ) and all vectors have been normalized. The superscripts
label the eigenvector while the subscripts denote components with respect to the

usual Cartesian basis.

The local eigenvalues D= of D’ are real and are the components of D' in its
diagonal representation J. The unitary transformation which effects this change

of basis is weil known to be

(- S, § \h —
S, =¢, (S ¥ = 65
= af ‘ +
D" =) s°p (s =) D
“z_; WD () — i o | (I1.118)
= Tt = 0o
s

where (II:115,I1.117) have been used. It is easy to show that the inverse of this .

transformation is
Z °'D"’9 s = ZD" = Z Ps,D* (IL.119)

which defines the projection operators P onto the eigenvector subspaces. These

expressions indicate that the eigenvalues D%(z, ¢, k, w) are the same local scalar

dispersion functions as those encountered in traditional WKB theories (when the
" Weyl transform is used to construct the local dispersion tensor): the difference
again, is that the usual condition that the determinant of D' vanish (= D' D2D%
= 0) is not required by (II.113). Nevertheless, it will be seen shortly that

these eigenvalues do determine the local dispersion relations which govern the

propagation of waves with the corresponding polarizations.

- As previously remarked, the transformation (II.118) also diagonalizes the
local spectral tensor (_E_E"')w so that with respect to the polarization basis it will

be represented as in (II.119)
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(EuE,)w = ZP" we (I1.120)

This defines the real diagonal elements W“(:_z:_, t, k, w) which will be interpreted as
the scalar Wigner functions of the waves with each polarization. Now, inserting

(I1.119) and (I1.120) into the lowest order equation (II.113), one obtains
D' (EE YWl =D Y P D*PEWP =0

e af

(II.121)

= Z P, DOW™ =
having used the “orthogonaiity of the projection operators
Z P2, P8, =P pa, - (IL122)

which follows from (I1.117). The result (I1.121) sunply expresses the fact that
in the polarization basis (II.113) is an equation for a diagonal matrix, being the
product of two diagonal matrices. Therefore, each diégonal element of (I1.121)

must satisfy
D%*(z,t, k, w)W*(z,t, k,w) =0 (11.123)

at each point (z,¢, k,w) of phase space.

Y =9

The relationship between this phase space method and the rays of geometri-
cal optics begins to emerge with this equation. Under the approximation scheme
in which (II.123) represents the lowest order term of (I1.94), one has the.condi-
tion that at each point in phase space either D* or W2 (or both) must vanish.
The restriction D*(z,t,k,w) = 0 is equivalent to the usual WKB condition

detQ' == 0 and in the same way implicitly defines the local dispersion relation

D*(z,t, k,w)=0 = w® = N%(z,k,t) (11.124)

More generally, the vanishing of a single eigenvalue D* may yield multiple
solutions (or branches) for w®, all corresponding to the same polarization. In

addition, more than one eigenvalue D® may vanish at a point (or on some
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manifold) in phase space; this possibility introduces coupling between the linear
modes at the next order and requires special treatment.22 I shall not consider

such a degeneracy in this presentation.

The frequency manifold defined by (II1.124) is the surface on which the rays
generated in conventional WKB methods propagate. According to (I1.123) it is
also the only region of phase space where W%(z, ¢, k, w) is allowed to be nonzero.

While this result is satisfactory in that it draws a connection between the Wigner

function and the rays, two points must remain clear:

1) As explained in Chapter 2 of Part [, the dispérsion relgtion (I1.124) as it
arises in traditional WKB techniques is in reality a partial differential (Hamilton- -
Jacobi) equation for the eikonal phase; that is k, w = V¢, —3:¢. Thus, the rays
are introduced as thé characteristic trajectories for solving this equation. In this
treatment, however, &, w are independént of z,t; therefore, while (II.124) defines

the same frequency manifold, it does not induce the ray trajectories.

2) The discussion of Part I also indicated that in many cases the rays are
confined to evolve on lower dimensional submanifolds of the frequency surface
(e.g., the Lagrangian manifolds of integrable ray systems). This situation is not
precluded by the condition (I1.123), however, as W is not required to be nonzero
everywhere that D* vanishes. Hence, the Wigner function may be concentrated

on subsets of the frequency surface.

[n view of these considerations, an apparently appropriate form for the

solution of (II.123) is

W(z,t, k,w) = J%(z, k, t) 6(D%(z, t, k, w)) (11.125)

where again, by (I1.118) .
Wo(z, b,k w) = 7%(z,t, k,w) - (EEW(z, t, £, w) - e*(2, ¢, k, w)
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The assertion (I1.125) exhibits the desired behavior of vanishing where D is
nonzero and allows for a variation of additional structure on the frequency
manifold itself. I shall use this expression at next order, as representing the °
information contained in the lowest order equation (I1.113), to derive the equation

governing the “amplitude” J(z, &, t).

In this approximation, the next higher order terms of (I1.107) are

iD'T - (EENw +iD" - (EENw = (,7)w - (D)™ (IL127)

Here [ have assumed that the inequalities (I1.112) indicating the relative sizes
of D" and (1’1:)w imply that the dissipation and sources enter at this order
~ (A/L). Now derivatives of thé hermitian dispersion tensor and the spectral
tensor appear; in analogy with (I1.93) and with (II.95), the first term of (I1.127)
may be written as _ : '
dD' J(EE"Yw D' A(EE"w
Ow at at ow

= (D', (EE")w] |
This deﬁnes the extended Poisson bracket (to include time) and the “dot”

D'C-(EE"w = +{D', (EE")w}

(IL.128)

notation signifies the intended matrix product.

. As was the case aﬁ lowest order, this equation simplifies when expressed in
the basis of the polarization vectors. The introductiop of this basis, however,
~ initially increases the complexity of the Poisson bracket term; therefore, in order
to clarify the ensuing discussion I shall treat this term first and then return to the
source and dissipation terms later. In component form and using (I1.119,11.120),
the Poisson bracket in (I1.127) becomes

2D, (ELESw] = ZZ [D=P2,, WP P, (I1.129)

174 v

Thus, since the projection operators P* are functions on phase space by their

definition (II.119) in terms of the polarization vectors, the bracket on the right



1.3 Weyl Symbols : 7 218

contains many more terms than the one on the left.

The ﬁrst.simplifying assumption I shall make is that only one polarization |
is in the system; that is,VOnly W* is nonzero (W? = 0 everywhere for 3 5% s3).
_Also, because of (I.125), not only does W* vanish where D® 3£ 0, but so do
its derivatives; this is in contrast to the derivatives of D? itself which may not
vanish even where D* does. As previously remarked, I assume that where W*
is nonzero (D* = 0) there is no degeneracy of eigenvalues (D* 3 0 for a # s).

Under these conditions, (I1.129) is

> [pepPs, WP, | = Z {D*w°[P2,, P:, ]| + P2, P:, (D™, W’

uvt ve
va _ (11.130)
| +D*(Py, W |P,, + P [D*, P, JW"}
where the rule for differentiating a product has been used to expand the bracket

in the usual fashion..

The first and third terms on thg right hand side of (I1.130) reduce to sums
over orﬂy a 7 ¢ since either D° .or W?* vanishes. Contracting the projéct.ion
éperators in the second term and using their orthogonality (I1.122), only the
@ = 3 contribution survives. Thus, the uo component of the bracket is

P:, (D", W*]+ Z D={w*|Pa,, P.,] +
v.agks

(P2, W*|P,} +EP [D=, P: W*

(I1.131)
Although this expression is written in terms of quantities in the polarization
basis, the uo index refers to the component with respect to the Cartesian basis;
one must yet perform the transformation (II.118) in order to obtain matrix

elements of ([I.131) in the polarization basis. F‘ortunétely, however, not every

component of (I[.131) in the new basis will be required.

The evolution of W* will be obtained by extracting the ss component of

(I.131). According to (I1.118), this is accomplished by the premultiplication of
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€,, postmultiplication by e} and contracting. This operation yields

([0 AEEW])™ = Y 2D, (BLES)wle;

uro .
= [D*, W'] +wW* Z D"" [P“,,, et
. pro.agks
+ Y DUE[Ps, Welel + WY _E[D", Pl el
pr.apks ) : ve .

(I1.132)
The third and fourth terms of the result vanish identically on inserting polariza-
tion vectors for the projection dperators, expanding the brackets and using the

orthogonality properties (I1.117) as follows

> DeE(Ps, Wilel = D D{Eleales, W’lel +2)[e2, W’lEze,
pU. vke po.,ayhs : ‘
= Y D*§**{z,[eX, W] +cc}=0
v.ages .

Z [D*, P:_les =Z"’ v [D®, € les +€,[D?, e, ]e%ce,,

= Z[D',-: s1=0
(I1.133)
In the last step I have used the fact that the polarization vectors are normalized
to a constant everywhere; thus, derivatives of their norm vanish. Finally, the ss
diagonal component of the bracket in the polarization basis is
(D', (EENW)™ = (D*, W]+ W* 3 D°E[Pg,, Plle;  (IL134)
pro.avks
It will also be necessary to consider the trace of the matrix (I[.131). Setting

# == o and summing one has

Tr([D', (EE")w]) = [D*, W*|+W* > D°*[P3,,P.,]
pv.aves
+ > DeIPS, WP, +W* Y [D*,P

pr.aghe ura

(I1.135)
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With expansion of the brackets in terms of polarization vectors similar to that
used in (I1.133), it is easily shown that the last two terms of this expression are
also 1dent1cally zero. The trace is then given by
- Te([D'- EE)w]) [D‘,W'] +W* > De[P%,, Pl (I1.136)
po,avke
It is interestin.g to compare this expression with the result (11.134) for the
single diagonal ss component of the bracket matrix. Again resorting to the
substitution of eigenvect&'s ¢ for projection operators 13, the only piece of the
second term in (I1.134) which survives is V
> Degl[Ps,, Pt Z DEl 2 (e2, el (11.137)
pro.avks pyv.ayes ‘
The similar summation in (I1.1368) becomes ‘
Y D[P, P = Y D{eiEles, ,,] +edellea,e)}  (IL138)
pr.aés py, e s '
Evidently, the trace (I.136) exceeds the 88 component by
3" DeeserfedEl] (I1.139).
pyv.aghe :
- This is the complex conjugate of (I1.137) and, as expected, is easily shown to be
the sum of the other two diagonal (@ 7 s) components of the bracket matrix
(I1.131). This observation will be of use when I return to the bracket; for now,

however, [ wish to focus attention on the other terms in (II.127)'.

The damping and source contributions to the O(\/L) evolution equation for
W* are much easier to transform into the polarization basis than was the Poisson -
bracket because they contain no derivatives. Quickly then, the ss component of

the dissipation term is simply

(Q” . (Eﬁ+)w)‘. — (D").’.'W' ,(11'140)
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since (EE )w has only one nonvanishing element in this basis. For the same

reason, this expression is also the value of the trace
(D" - (EE"W)" = Te(D" - (EE W) (IL.141)

The source term of (II.127) requires a little more care since 1 have not
discussed the meaning of the inverse Symbol; that is, it must be realized that
the Weyl Symbol of the inverse operator (lm)f)‘l is not simply the inverse of the
Wey! Symbol of ]?T. Due to the Weyl product rule (II.91), (12?)‘1 (z,t, k,w) must

satisfy the differential equation
D' (@) =1
R (I1.142)
= DYz, t,k,w)ett - (D) (gt bw) = I
Fortunately, the source contribution enters at first order (due to the assumed
magnitude of (Lﬁ)w) so that considering the estimates (II.108-11.112), the
derivatives in (II.142) may be ignored. Therefore, consistent with these ap-

proximations one may take

D¥(z,t,k,w) - (DN} (2, t, k,w) = [ N (I1.143)

The dispersion tensor has been separated into its hermitian and anti-hermitian
parts with relative magnitudes assumed to be as in (II.112). It is easily verified

that the standard formula

(DY) = (D' —iD")"! ~ (D)t +4(D)7H D" (D) 4 (IL144)

satisfies (I1.143) to O(\/L). In the polarization basis this expression is just
(Df-l )aﬂ g‘(D/—l )aﬂ +3 Z(Dl—l_)a‘r(pn)%(pl—l )kﬂ
5aﬂ .(D")“ﬂ
e +1
D= D= D#
Here .| have used the fact that the hermitian part Q' (and hence (Q’)“) is

(I1.145)

diagonal in this basis. From (II.145), both the s3s component of the source -
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contribution in (I1.127)

1,1,)w - (D

a' “\ss sa( N (11146)

(7e73) (7075)3 (D)

~ De = ﬁ+ g E Da Ds
and the trace .
Trl(3,)w - (D)7 ] = D (G (DT 71 )P
‘ oy
o (I1.147)
(Fod?) (77 5)5 (D) P
~ Z gﬁ: DaDﬂ

may be obtained.

The discussion of the lowest order equation and the Poisson bracket at this

order has empha.smed that the manifold on which the Wigner functlon W? (or,

.. more precxsely, its amplitude J*) evolves is the surface on which D® = 0 Taking

note of this, it would seem that a few terms in both (I.146) and (I1.147) are much
larger than the others as D® appears in the denominator in these expressions. To
demonstrate that these terms are in fact not singular, consider the 38 component

(I1.148); the largest term in the sum is produced when a = s:

(Gt N {Jog, ) (D")"

(2w - (D)) ~

Le=e De 1' (Da)Z
G (D) |
5] —D'_(l + tT) (11148)
(Je73)%

De — i(DH)n
In view of the vanishing of D*, the approximation here that (D")** <« D* which
permits the final step of (II.148)) is questionabie. It should be borne in mind,

however, that the same approximation was invoked in the derivation of the

inverse formula (II.144,I1.145) so that the result of (II.148) is justified. The fact
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that the denominator now has a small imaginary part removes the apparent

singularity as D* — 0 and is the appropriate expression.

A similar argument can bé made for the trace formula (II.147) where the
largest terms are obviously those for whicha =g =3
; _G)w  Geab (D)
Tr((7 7w - (D)™ ~ .  —*
r[(‘zalo)w (Q ) ] Dc +1 (Da)'l
G
Da — .i(DH)ao

(I1.149)

As to be expected from (I1.145), the nondegenerate vanishing of D* (De7e 3£ 0)
makes the 38 element of the diagonal much larger than the others so that it is

also equal to the trace in this approximation.

Inserting the ss component results for the Poisson bracket (I1.134,11.137),
the dissipation i('II.140) and the sources (I1.148) into the first order equation
(I1.127), it is found that the evolution of the Wigner function W?* expressed in

the polarization basis must obey

21 (7,730 |
Dc W' W' a= a—a — VAY ] ] e __ s 150
[D*, J+ ‘wg;. D% [e“, v 2ADT) W De —i(D")ee (II )

The corresponding trace expressions (I1.136,11.138,11.141,11.149) require
2 (5.7%)%
Dl —_ ’i(D")"
(I1.151)

[D*, W]+ W* Y D*{zle[ed, el] +c.c.} = —2(D")*W* -

proaves

Comparison of these two equations implies that if W* is to satisfy both, one
must have that the polarization vector coupling in the Poisson bracket must at
least be of higher order. That is, it cannot be shown that these terms vanish
identically due to their orthogonality; instead, this is a dynamical result of the
evolution equaiion to this order and in this approximation. In view of this, both

(I1.150) and (I1.151) agree and the evolution equation is finally
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aD* 8W*  9D* OW* - 2% (o7 )2
— Y ] W. —_ /i\se '_ L
B0 Bt ot ow T DLW = SUD)IW - e e

where I have used (I1.128) to write the bracket [, -] in terms of the usual time-

(11.152)

independent bracket {-,-}.

This equation governs the evolution of the Wigner distribution for the
.polarization 3 on the manifold defined by D® = 0. Therefore, the quantities
(7073)i0(z, t, &, w) and (D")**(z,¢, _/g,‘w) as well as all derivatives of D* and W?*
must be evaluated on this surface by setting w = 2°(z, £,t). This information
can be incorporated into (II.152) to some extent by introducing the solution
(I1.125) of the lowest order equation which explicitly exhibits this restriction.

Thus, recognizing that
[D*,W?*] = [D*,J*§(D*)] = [D*,J*] 6(D*) - (11.153)

follows from the antisymmetry of the bracket, the substitution of (1I.125) into
- (I1.152) yields

aalz’. aJ'%t’ 2, 07y (07) = 20y J*5(D*) - Dzz.(Jz(Jpg'v)v
(IL.154)

Note that [ have dropped the term proportional to (3J°/dw) since by its definition
(I1.125) the amplitude J*(z, &, t) is independent of w on the fi'equency manifold.
The appearance of delta functions in (II.154) means that this expression must be
interpreted as a density which requires integration; the delta functions are
removed by integrating with respect to D*. Performing this operation, which im-
plies a direction of integration tranmsverse to the frequency surface given by

D* =0, the result is
oD®oJ? + aD° ' aJe _ aD* . aJ* — _9
dw Bt dz Ok Ok 8z

having explicitly written out the terms in the Poisson bracket. In arriving at

(D) J* + 2x(5,50)0  (I1.155)

this expression, [ have taken the limiting form of the integral over the source
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term with (D"”)** tending to zero in the denominator; hence, I have used??

/dD' D,(j'],");" - P/ dD'M+i7r/dD'5(D')(JaJ )y (1.156)

— ‘I,(D")” Do
The principal value integral vanishes v
P/ dD* —— "’ --P/ dw( L 9D )(';,);;@):0 (I1.157)

because the 1ntegrand is antisymmetric in w: that is, both D* and (7,7;)}¢ are
real (diagonal components of hermitian matrices) and hence symmetric in w by
definition (II.98) (in terms of real z-space representations) so that the factor in

parentheses is antisymmetric under w — ~w.

As in (I1.152), the derivatives in (I1.155) must be evaluated at D* = 0. Thus,

D aD*\  [00*\
( 3z ),,,M ‘( duw )m( oz )&,,
(ap-) _(aD') (arz') | (IL158)
9k /40 dw /., \ ok .
for D*(z,t,k,2°(z,k,t)) =0
in (I1.155) and dividing by (8D°/dw), the evolution of J* is given by

using the standard relations

aJ%(z, k,t) An* aJ* 8n* 8J* 27(7e70) 0 (2, £, 8, 02°)
- . . = 9~*(z k . s
ot oz 9k T ok oz = @b =G 50
| | (IL.159)

Here, the local growth rate 4°%(z, k,¢) is defined as the imaginary part of the

frequency in the usual manner by
#(z,k,t,02°) - D"(z,k,t,2°) - e*(z, k, 1, 2°)
(ﬁ;[é\' ) Q’ z,k, 1“) ’ eh.])u—f)c

and the notation of £2° as an argument implies the substitution of the dispersion

7 (z, £, ) (11.160)
relation 2°(z, k,t) for the argument w.

In contrast to the lowest order condition (I1.123), this result at first order

does, to some extent, introduce the notion of the ray trajectories in phase space.
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Defining
dz _ an° dk _  00°
dt ~ Ok dt —  dz
dJ*(z, k, t) 8 dz 8 dk 9 (IL.161)
__&', =! = | — _g' . — —_— . — s '
and it ot ta vz @ ok @k

it is clear that (I1.159) gives the total time derivative of the quantity J* along
paths in phase space generated by (II.161). Of course, these are immediately
recognized as the usual Hamiltonian ray equations introduced at lowest order
in traditional WKB methods in order to solve the eikonal equation. In this
treatment, however, the rays appear not for the determination of the z- or k-
space eikonal phase of the wave, but for the propagation of the “amplitude” of

the wave along the frequency manifold in phase space.

In the absence of dissipation and sources, f;he evolution equation (I1.159)
simply states that J* is éonstanfc along the ray ti'ajectories. In analogy with a
vsimilar result of classical mechanics, this suggests that the “amplitude” J* should
be interpreted as a kind of Liouville phase space density for the propagation of
waves in the short wavelength regime. Allowing for dissipation, the solution of
(I1.159) is | |
T (2(t), k(1), 8) = J*(zg, by, 0)2 TN gy
which explicitly conveys the non-Hamiltonian damping (or growth) of this phase
space density from its initial value depending on the local value of +°. The
factor of two is appropriate as J is quadratic in the field amplitude, yet it arises
naturally here from the gf in (I1.127) and the approximation scheme (I1.108-
[1.112) that has been used.

As was the case in the Ordinary Symbol description, the source contribution
(-Z..l:)W may represent given external currents, discreteness effects, nonlinearly

generated currents,etc. If this term is independent of J*, then (I1.159) is a
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linear inhomogeneous equation for J*. If, however, the current j (z,¢) depends
nonlinearly on the field E(z, t), then using (II.69,11.70) the source (_Ll':)w may be
written as a nonlinear functional of J*; in this case, (II.lSQ)_becomes a nonlinear

- equation.

All these properties of the evolution equation (II.iSQ) stimulate further
examination of the properties of J°. Aside from its interpretation as a “wave
Liouville density” evoked by the homogeneous form of (I1.159), the identification
of J* as an “amplitude” arose {rom its definition in the solution (II.125) of the
lowest order equation. Indeed, that relation may be used to determine J* in

terms of W* by integrating with respect to D*

J(z,k,t) = /dD' We(z,t k,w)

= / dw aaD (g:.) ty .lgr w)W'(g, t’ lc-’ (d)
w (11.163)

a’i} (;,t,lc_,ﬂ‘)/dw W*(z,t, k,w)

aD°*
dw .
The approximation here is that (8D*/dw) is slowly varying (consistent with

(I1.110)) and W?* is

~

(2,1, k,2°)W°*(z, k;t)

"~

~ A A

We(z, k;t) = e*(z, k,t,02°) - / d*sE(z+4s,t)E*(z—}s, t)é"h -e*(z,k,t,02°)
(11.164)

where the Weyl projection formula (II.99) has been used.

In a stationary uniform plasma, the combination of (11.163,I1.164) reduces
to the usual expression for the energy of the mode at (k,w) divided by the

frequency®
aD*(k,w)
Jw

S k)= IE'(&)F( ) | ~ L) (11.165)
w==w?(k)

w*(k)

As this formula is reminiscent of the classical relation between the energy and
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the action of a harmonic oscillator, the quantity J(k) is known as the wave action
denajity in k-space for the normal mode w(k). This concept is supported by the
- fact that in the absence of dissipation or sources, the action is invariant under
the flow of the rays; allowing for weak dissipation and/or sources (interactions),
J is an adiabatic constant of the motion. Because of the uniform medium resuit
(11.185), it would appear that J(z, k,t) is an appropriate extension of the wave

action to nonuniform, nonstationary plasma as a density on (z, £) phase space.

The equation (II.159) which governs the evolution of the wave action den-
sity is known as the wave kinetic equation because of its resemblence to the
Vlasov equation of particle kinetic theory. This equation has been derived by
others with quite different approaches although it is usually only treated in the
uniform medium case. The most common method of derivation?* proceeds from
the quantum field-theoretic concept of the occupation number nj of a mode
and the changes in that number due to nonlinear interactions with other modes;
the classical limit then assumes large occupation numbers with smooth (as op-
pbsed to discrete)-vﬁriation in time. As ng is proportional to the square of the
amplitude of the wave, the connection between the classical relation (I1.165)
and the usual quantum electrodynamic model of modes as oscillators provides
the identification of the occupation number as the wave action in the classical
limit. Although the classical, irreversible aspect of diséipat.ion is geﬁérally’ just
inserted into the kinetic equations which appear, it must be stated that the
primary focus of these methods is the form of the source terms which are taken
to represent nonlinear couplihgs among modes and the approximations which
can be made to simplify them. In this regard, the extension to nonuniform non-
stationary plasma is typically achieved by assuming local spatial dependence of
the occupation numbers and postulating?® the replacement of (8/3t) by the full

convective oper'.atbr (I1.161).
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"Other non-quantuin mechanical derivations have been given based on tradi-
tional WKB treatments of wave propagation. As such, these approaches intro-
duce the ray trajectories at lowest order and, as in Part I, arrive at an evolution
equation for the amplitude of the wave at next order. This equation, which .
adequately describes the transport of wave energy, momentum -and action in
nonuniform vdissipative plasma (including external sources), is of course set in z-
space (or k-space) and these quantities are densities on z- or k-space. In order to
obtain an equation on phase space, the z-space action density has been lifted into
a phase space density using various procedures. One technique!® is to label the
contribution to the amplitude at a point due to a single ray by the initial value -
of the wavevector of that ray; in this way the amplitude becomes an implicit
function of &. Anbther method?® relies on the asymptotic form of the Wigner
function given in Eq.(I.81) for a sum of eikonal wavelets; thus, a transformation
is effected in the transport equation from the Lagrangian variable labelling the
wavelet to the value of k£ appearing in the delta function. Both of these schemes
for introducing pha.sé spaée representations into fundamentally z-space equa-
tions tacitly assume a relationship £(z) (either through initial conditions or the
eikonal phase) and this poses difficulties in each case: either quantities appearing
in the resulting equations are tied to initial conditions (requiring the inversion
of all trajectories) or the eikonal phase label may be continous (invalidating the
assumption ﬁsed_for the Wigner function). In addition, neither method incor-

porates the possibility of nonlinear sources.

The procedure employed in the present derivation of the wave kinetic equa-
tion therefore has several advantages. In contrast to the conventional WKB ap-
proaches, this is inherently a phase space method from the outset so that z,¢ and
k,w are independent variables and all functions on phase space are well defined

by the Weyl transform. No assumption has been made on the form of the Wigner
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distribution (s.e., it is not based on the eikonal description of the wave) yet the
exact equation (I1.94) whiéh governs its evolution has been solved under an or-
-dering hierarchy compatible with the customary WKB approximations. This
leads to a natural definition for the wave action density as the “amplitude” of
the Wigner function on the frequency manifold, an identification which leads to
a reasonable extension of the wave action in a uniform plasma. The form of the
exponential operator in (I.94) in conjunction with the .approximation scheme
used not omnly produces the Poisson bracket as the time advancement operator
(the phase space total time derivative (II.1861)) but it also allows one to proceed

to higher order in a straightforward manner.

Once again, the steps in the development of this equation were as follows:
It is assumed that one is given the form of the linear dispersion operator D from
which one constructs the local dispersibn tensor D in the Weyl representation
(I1.69) as a function on phase space (z,t,k,w) and its hermitian (D') and anti-
hermitian (D") parts are identified. In the Weyl formalism, the wave field is
represented by the local spectral tensor (EE")w which is re‘late'd to the field by
(I1.98); a similar definition is used to construct the phase space representation
of the current source contributions (2'.__1_'1')w not included in the usual linear
treatment of wave propagation. The general form of the wave equation in
configuration space (II.1) is then translated directly (using the Weyl calculus) into
the equation in phase space (I1.94) which connects these phase space functions.
At lowest order (under the ordering assumptions (I1.108-11.112)) the basis of the
local polarization vectors is introduced in order to simplify the tensor equation
and the local dispersion relation (although not the rays) emerges along with the
solution (II.125). This solution defines the quantity J(z, k,t) which is shown to
be the wave action density on (z, £) space in nonuniform plasma. Substitutidn

of the lowest order solution into the next higher order equation results in the
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wave kinetic equation which governs J (and also serves to define the rays in
this treatment). Dissipation (due to D”) and general sources are included while
linear mode coupling (degenerate eigenvalues of D’) is not for simplicity; this
situation could be treated in much the same manner as used in traditional WKB.

methods.

As previously remarked, this formalism permits the treatment of nonlinear
interactions among waves. If j (z,t) can be written as a nonlinear functional of
E(z,t), then the Weyl transform produces the current spectral tensor which is
now also a nonlinear functional of E. These factors of £ can be paired and,
using the inverse Weyl transform, replaced by (EEw so that (7, ] )w is a
nonlinear functional of the field spectral tensor. Introduction of the polanzatlon
basis and use of the lowest order solution allows this term to be expressed as a
nonlinear functional of wave action densities (typically evaluated at different k,
yet local in z). Thus, it seems reasonable that the manipulations involved in the
simplification of these nonlinearities in uniform plasma could be carried over to

this description.

In summary, the derivation presented here offers a classical wave (as opposed
to plasmon) phase space (instead of z-space) treatment which results in the wave
kinetic equation in nonuniform nonstationary plasma as-an approximation to the
exact tensor phase space equation governing the local spectral tensor of the wave
field in the presence of dissipation and sources. In spite of the improvements over
previous work that have been discussed here, there are, however, several aspects

of the development and of the formalism in general which require attention:

1) The first criterion for determining the validity of the ordering scheme,
and indeed of the solution itself, is to verify that the solution satisfies the

approximations. _Speciﬁcally, the solution (I1.125) of the lowest order equation
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and the result (11.159) at next order should be cdmpared with the assumptions
made in (I1.108-I1.110) which specify the magnitude of f.he (z,t)- and (k,w)-
~derivatives of the spectral tensor (E,_E')w(g, t,k,w). Thus, one should consider
the size of . ; IR
8z, 8e)(EE )W| ~ (L™° , T ") (IL166)
0k, 90 ) EE w| 4 (671, w™t)

with | _ -
(EENw(z,t, k,w) = W*(z,t, k, w)e’d(z, t, k, w)

We(z,t,k,w) = J°(z,k,t)6(D*(z, ¢, k,w)) (11.167)

The de_;ivatives in (I1.166) consist of contributions from diﬂérentiating the
action density J, the polarization vectors ¢ and the delta function. The presence'
of the delta function, howe‘}ér, would appear to render all of these terms to be
singular so that (II.1v66) is violated. Therefore, in order to justify this solution, I
wish to impoée the following interpretation: Since only a one dimensional delta
function appears here, restricting the support of W*® to the seven-dimensional
frequency manifold in the eight-dimensional extended phase space, local coor-
dinates in the neighborhood of this surface may be constructed so that one
“direction” (evidently, the D* direction) is “perpendicular” to the surface. It is
along this direction that the solution has singular derivatives while derivatives in
the other directions (lying “in” the manifold) act only on the amplitude of we,
th;t is, on the action J. Thus, the derivatives which appear in the wave kinetic
equation should be understood as the pieces of those derivatives “parallel” to
the surface D* = 0. In fact, this has already been incorporated into (I1.159)
with the substitution of (II1.158) into (II.155): the trajectories which convect J

evolve on this manifold.

Of course, now the question arises as to the order of the derivatives on the
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action density. By the hypothesis of a weakly dissipative plasma with weak
sources (or coupling), the right hand side of (II.159) drives changes in J which
are of a magnitude consistent with the assumed order 6f the derivatives of J
on the left side. Now, the foregoin.g argunient requires the action density to be
somewhat smooth on the frequency manifold and in particular, this assumption
“would be violated if J were concentrated on a submanifold of this surface; in that
case, the pieces of the derivatives in (I1.159) along directions “perpendiéular” to
that submanifold would be large. In this regard, it was shown in Part I that the
rays of time-independent integrable systems as well as those of monochromatic
propagating waves evolvé on Lagrangian manifolds which are three-dimensional
surfaces in (z, k) phase space. Since J is convected by the rays, it must in
these cases vanish everywhere except on these submanifolds of the frequency
-surface, in contradiction to the smoothness assumbtion stated above. In the
case of prbpagating waves, however, the possibility exists that the Lagrangian
manifold may become so Aconvoluted that it nearl.y fills the frequency surface;
allowing for a small wave-like spreading or broadening of the action density off
the manifold (due to higher order lcorrections), a smooth variation of J on the
frequency surface may be achieved as these “diffraction edges” fr‘om neighboring
“leaves” of the Lagrangian manifold coalesce. This circumstance would imply
the existence of many leaves “above” each point in z-space and hence, in terms
of the traditional eikonal description of the wave, many contributions to the
field at that point; the convoluted nature of the rays also might be expected
to produce a decorrelation of the phases of each contribution. In view of these
considerations, it would seem that the smoothness assump-tions on the action
density imposed in the present derivation require that the wave system under
consideration be incoherent. ~With these qualifications then, the derivation given

for the wave kinetic equation is a justifiable procedure for approximating the
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exact equation governing the local spectral tensor.

2) As a consideration relevant to the preceding discussion, it is interesting to
compare the results (I1.125) and (I1.159) with the statements presented in Part
I concerning the properties lof the spectral tensor or Wigner function. Clearly,
these sdlutions'illustrate the analogy between this wave phase space density
and the Liouville density of classical mechanics and therefore substantiate to
an extent the approximations given for the Wigner function correspdnding to
integrable and chaotic wave systems. However, ii was pointed out in Part 1
that a true Wigner function exhibits oscillations in phase space (even for short
wavelength fields) and that the singular delta function approximation to this
distribution requires the stipulation of some averaging procedure in order to
eliminate this purgly wave attribute. Neveftheless,‘such singular behavior has
emerged in the course of this derivation even though no local smoothing was
imposed; in many ways, this is similar to the outcome of the construction of.
the Wigner functioﬁ for an eikonal wave. In addition, the lack of an averaging
" procedure hinders the identification of (EE")w as the local spectral tensor since
the definition of this quantity (as well as its z-space counterpart, the two-
point correlation tensor) generally demands some averaging (usually an ensemble
average so that the random phase approximation can be invoked). Thus, while
the Weyl formalism seems to provide many of the desired results expected of a
suitable phase space representation, the Wigner function may be in some respects
inadequate for making a connection with similar quantities which are typically

of interest in plasma wave theory.

3) Finally, the singular nature of the result (II.125) has a further conse-
quence. In spite of the fact that the present dérivation appears to be valid only

for incoherent waves (in order for (11.159) to follow coﬁsistently from (I11.125)), let
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me consider for a moment the extension of the wave kinetic equation to the case
of coherent waves within the Weyl repreéentation context. In the simple case
of a monochromatic wave propagating into a stationary plasma, the evolution
of the rays in phase space ge_ﬁerates the three-dimensional Lagrangian manifold
upon which the wave action is defined. This property of the action density can
be expressed by using the form given in Eq.(1.81) for the Wigner function of »a

coherent wave:

T,k t) ~ S (2, &, 2z, &) Bz O 5(k ~ k() (IL.168)

Here k(z) is the gradient of the eikonal phase and £ is the amplitude of the wave
(appropriately projected by the polarizvation vectors).

The wave kinetic equation with no dissipation or sources can be written in
- the form

Tk (J )+ (J g) =0 (I11.169)

since the flow in '‘phase space given by ;(g;,&), and k(z,k) is divergenceless.
Integrating over £ and using the Weyl projection relations (I1.99), the z-space

action density is defined and found to satisfy

dJ.(z,t) +i,/ d’k J(z, k, t)z(z, k) = 0

at oz (27)3
Ju(z,t) = / (;’;')‘3 Iz k) (IL.170)
~ 22 (2, k(z), 2z, k) Bz, O

The k derivative in (I1.169) vanishes with the divergence theorem and (II.168)
has been used in the final step. This expression for the wave action density in
z-space conforms to the usual definition as the energy density divided by the
frequency. Inserting (I1.168) into the remaining ‘integral in (I1.170) involving z,

one has
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3J:(z,t)
at

Evidently, J; is convected along the ray trajectories in z-space with the ap-

+ 2 (Jula Dalz, £(2) = 0 (1L171)

propriate ray velocity obtained from the projection of Hamilton’s equations.

While (I1.171) is written in a form which implieé that the total action (the
integral of the density J, over all space) is conserved; it is'easy to show that J,

is not constant along these z-space orbits. Thus, (II.171) is rearranged to give

2, (z, £(z)) - a%] J2(z,t) = =Jz(2,2) 4

pr - £(z, k(z))

_ ' (11.172)
—J (6 z) L(292) . 9k()
— "*\oz TJ, \ok/, oz
This expression should be familiar as it is similar to the usual energy transport
equation which arises at first order in conventional WKB methods. The point
I wish to make here is that, as discussed in Part I, the rays in z-space are not |
in general divergence-free; they may intersect and focus (producing the caustic
phenomenon). Hence, not only is J, not constant along z-space trajectories but

‘it may become singular at caustics (near where the last term on the right in

(I1.172) tends to infinity).

This result followed directly from the form (II.168) assumed for the action
density associated withAa coherent wave; that is, the.asymptotic form of the
Wigner function being so singularly concentrated on the Lagrangian manifold
(with no broadening) is responsible for the singular behavior of its projection onto
z-space. Although it is assumed that higher order corrections to the solution of
(I1.94) would “soften” this effect, in practice these may be difficult to include.
This criticism of the Weyl formalism along with those raised in the previous two
points emphasizes the importance of incorporating some averaging or smoothing
procedure when constructing a sensible phase space representation of a wave

field.
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4. THE COHERENT STATE REPRESENTATION

In this Chapter I shall introduce yet another phase space represéntation
for a wave field and the equation corresponding to (II.1) which governs its
evolution’. Motivated by the necessity of imposihg an averaging structure on the
construction of a suitable phase space density so that it be smooth .(as discussed
in the last Chapter), this Symbol formalism incorporates a 1ocal spatial average of
a single realization of the field (as opposed to an average over an entire ensemble).

The definition in one dimension is
E(z,k)=r"10-% / dz' E(z)e=¥ = /20% g—ikia'=a) (11.173)

which may be called a local Fourier transform of the field; that is, the field £ in
z-space is multiplied by a gaussian “window” of width o centered at the point z
and then Fourier transformed around z. Expressing E(z) in terms of its Fourier .

transform E‘(k) the definition of £ may also be written

l 95 .
(z, k) = 2%7r4a’f/i"°— B(R)e= 3P W=k ikls (I.174)

The construction of & (z, k) is fundamentally different from that prescribed
in either the Ordinary or Weyl Symbol methods because it is linear (not quad-
ratic) in the field amplitude E. However, even though £ will be the primary
quantity of interest in this Chapter, it may itself be viewed as the amplitude”
of a proper phase space density; thus, being inherently complex, the absolute
square |€(z, k)[? will form the smooth positive probability distribution which
will be related to previous field Symbols and to physically meaningful objects
as well. Not only is |£(z, k)|? positive, it is easily verified with (I1.173) that its

integral over all phase space is

/dzf—"- 1E(z, B)* = /dz |E(z)]? (I.175)
-ll

independent of the smoothing lengih .
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The definition (I1.173) is easily generalized to many dimensions (including
time) in an obvious way. Therefore, for simplicity of notation, the discussion of
this Chapter will generally consider only one spatial dimension, although time
may be included explicitly in some calculations. In addition, only scalar fields
will be treated; the techniques of the preceding Chapter should indicate the

extension of the following development to vector fields.

At this point the width o, which designgtes the meaning of “local” in
this construction, is arbitrary and most of the results of this Chapter will be
independent of its value. In specific cases, however, a judicious choice of the
width may greatly Simplify the mathematical analysis. For the purpose of future
application to short wavelength fields in weakly inhomogeneous plasma, it will
be convenient to think of & as intermediate between the' wavelength and the
- scalelength; this provides a method for determining a local w#veléngth as well
as allowing & to reflect the slow amplitude variation of the field in z-space. In
this regard, (II.173) has two. interesting limiting forms

€(z,k)-»2g-’7r%a%E(z) as o—0
L ia (11.178)
E(z, k) » x4 a_%E(k) as o0 — o0
which are easily understood: ¢ — 0 signifies an extremely narrow window

sampling only the value of E at z, whereas ¢ — co is the usual infinite window
encompassing the entire field which produces the Fou‘rier, transform. In this
sense, the finite o local Fourier transform can be thought of as an intermediate

representatio’n of the field.

The use of a gaussian window function with constant width for the im-
plementatlon of local averaging can in principle be generalized to a gaussian
with a spatially dependent or anisotropic width (in many dimensions), and even
to a non-gaussian window. Different window shapes have been studied in ap-

plication to signal theory and nonstationary spectral anélysis” and quantum
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mechanics.2®8 The results of this Chapter, however, are heavily dependent on
the choice of a constant-width gaussian; the manipulations involved in many
calculations are specific to this selection and may have to be drastically altered

for application to other window shapes.

 As in the previous examples of phase space representations of a field, the

definition (I1.173) is invertible:

—7r4a /—-—c‘,'z/c

(I1.177)

| E’(Is) =9 trig /dz E(z, ke~ k=
The first of these is just a simpie projection onto z-space while the second is
similar to a Fourier transform; the difference is that the same value of k£ appears
both in the phase and in the argument of £. These relatlons are unlike the
inversion formulas for Ordinary and Weyl Symbols in that since ¢ is linear in

the field, phase 1nformat10n is retained in its construction and projection.

In order to demonstrate this 1mportant. feature and to provide an illustration
of the character of this local Fourier transform, take E(z) to be a plane wave

with wavenumber k9. The simple calculation of (11.173) yields
E(z, k) = 2%W}U%Eoe""o“e‘%‘#“‘v—j‘o’z | (11.178)

which exhibits the underlying plane wave structure in the z-direction modulated
by a gaussian along k. This amplitude £ in turn produces a phase space density

of the form

1E(z, k)] = 2nEa|Egj2e=" (k=ko)? (11.179)

which should be compared with the corresponding form of the Wigner function
given in Eq.(1.73); obviously, this probability density is much smoother (for finite
o) than the singular delta function behavior found in that representation. This

expression also manifestly conforms to the Fourier uncertainty principle: the
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width in k-space (¢™1) is inverseley proportional to the localization length & of

the wave in z-space.

Before proceeding to develop the structure of this phé.se space method, two
further examples of & shoul.d serve to convince the reader of the advantages of
this description which follow from its smoothing property. As a generalization of
the plane wave construction given above, consider an eikonal wave with rapidly

irarying phase and slowly varying amplitude. The local Fourier transform is
E(z, k) = rto-t /dz' E’(z’)e"""’)e—"k"'—” g~ a' =21 /207
~rTo3 E(z)e'= /dx' e ilk=k(z)a' =2} o=(a'~2)%/20° (11.180)

~ 23 Wi'o"]"E(Z)eid’("e"-]‘-"'?'”‘-""”:

(2, k)P m 2ndo|B(z)2emdot kmkizn?

Here, the phase ¢ has beenA expanded in a Taylor series around the point z keep—
ing only the first derivative term and using the usual eikonal definition P'(z) =
k(z); this truncation requires that the quadratic term ~ (z/ — z)2¢"”(z) be much
smaller than the linear term. Thus, since the gaussian window effectively cuts
off the integral at |z' — z| & o, this approximation is justified if |
23_:'(“) X:z).» )\(t::)L (IL.181)
= oL L '

(' = 2)k(z) > (&' ~ 2)

‘where the second derivative of the phase has been estimated in keeping with
the conventional WKB ordering. In the same spirit, the amplitude £ has
been evaluated at z and its Taylor expansion neglected. The condition (I1.181)
reiterates the notion that for short wavelength fields in a weakly nonuniform
medium, the windovy should be narrow compared to the scalelength. The fact
that the result (II.180) is similar to that found for a plane wave implicitly suggests

that o be large enough to include sufficiently many wavelengths in order that -
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| the appropriate local wavelength be represented in £(z, k). Again, this exercise
serves to emphasize the smoothness of this phase space description when (II.180)

is compared with Eq.(L.81).

Another case for which £(z, k) may be explicitly and exactly constructed
is provided by the quantum mechanical harmonic oscillator. As presented in

Eq.(1.74), the eigenfunctions for this system are -

¥n(z) = CaHalaz)e 2% ' (11.182)

where C,, is a3 normalization constant, H, is the nth Hermite polynomial and
a = \/mw/h combines the oscillator mass and frequency with A to form a
~ characteristic inverse length. Inserting (11.182) into (II.173) for E, one has |

£z, k) = —2n / dz' H, e~da’s? i o) 20 mirta'—a) (g 183)
7['40’-

This integral may be evaluated?® for any smoothing length o in terms of Hermite
polynomials; unfortunately, the result does not provide immediate insight into
the structure of £ in phase space. For the special choice of ¢ = a~!, however,

an extremely transparent expression is obtained:

En(z, k) = Cnn‘%a-% e~ tla?z?+k?/a%) 'kz(az _ ey
, @

1 1.2 1.2 .. .
=C’,.7r4a"l’ e~ AT edvr smzarne—me

\ 11.184)
. 1 2.2 .2, 2 5 o k- (
|£n(2,k)|2 — 2nn!e—%(a z°+k“ /a”) (a-z- + ;)n
| S T
TN c——— P e 2
2nn!

where polar coordinates (r, ) in phase space have been defined in terms of the
dimensionless variables az and k/a and the actual value of C, has been used.

! is rather special, but it is

Again, this choice of the smoothing length 0 = a™
easy to show that this value represents the geometric mean of the characteristic

wavelength and the scalelength of the oscillator in the nth mode. That is, the
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wavelength at z = 0 and the amplitude for the nth state are

REO _ e
2m Y
tmw?l? = nhw = L~ V2na! (II.185)

oo AL~ L/k ~a"? ~o?

Unlike. the Wigner function for this example (see Eqs.(1.76,1.77)), the density
|€.(z, k)| exhibits no oscillations in phase space; instead, it rises as a power of
the radiusto a gauséian peak at r, = v/2n which, for large n, is the radius of the
classical torus. Applying Stirling’s formula, one determines that the height of
the peak at r, scales as n'% while its width approaches unity (in dimensionless
units); these values are in agreement with the fact that |£2| is normalized over
phase space by (I1.175) so that the volume under it is unity. Thus, in the classical
limit (n — oo), the peak shrinks in height although it becomes more localized

around the classical orbit in the sense that the ratio of the width to the radius

r. decreases.

?

Now that the typical behavior of lé'(:r:,lc).|2 has been elucidated to some
extent, an important connection with the Weyl representation will be made. To
begin, observe that with the use of (11.173,11.174) |€(z, k)|* may be written

2 dk A
|€($,k)" == 2%/(12712—7: (:Bl)E

x

“(k e—iklzl
(k1) (11.186)

% gitk1—k)z1=2) ev-—(zl-—z)?'/‘.’ag e—.l_;a?(kl-kﬁ
Since the product of the factors of £ and the phase on the first line are recogniz-
able as the Ordinary Symbol of the field (I1.64), one may use the transformation
(I.72) to introduce the Wigner function (Wey! Symbol)

dka

, .3 dk,
E(z, k) = 22 /dza— EE )w(z2, k2 /dz —L gilk1—klzy=2)
1€ (z, k)] 25> (EE )w( ) 15, _ (IL187)

X el—in(kg—kl)(zg;zl) e—(::l—::).'z/'ltr.‘2 e—-i)'ar.‘ztlc]—lc)2

The k, .and z, integrals may be readily evaluated to give
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' T 2,2 __2 2
(2, )P =2 / a2 & (BB Yw(e! k)t =77 =Wk (111gs)

“This relation explicitly shows that |€[? is a local gaussian-weighted phase space
average of the Wigner function over an area which respects the Fourier uncer-
tainty principle. As a result, the square of the local Fourier transform may be
called a “coarse-grained” Wigner function and thus it is a more suitable model

for the local spectral function.

Unlike the phase space integrals'(II.7l,II.72) encountered previously which
transform one Symbol representation into another, this connection between |&|?
and (EE*)w is noninvertible. This fact is not wholly because (I1.188) involves a
~ smoothing procedure (note that the definition of & itself is invertible); instead,
it is a fundamental property of this representation which has its basis in an
underlying abstract». theory. Indeed, the deﬁnition'(II.173) was not chosen simply
because of its appealing physical qualities and the interesting smooth phasé space
density it generates. In most discussions of this formalism, tle quantity £(z, k) is
referred to as the cbherent state representation? and it has its primary application
in quantum theories of radiation and optics. Indeed, this representation (and

30,31 recently with application

variations of it) have been used by several authors
to quantum mechanics; the intent and results of the present treatment, however,
will be seen to be quite different. For use in this classical wave theory, I shall

now give a brief outline of the relevant features of this underlying structure.

The basic idea here is that £(z, k) is an actual representation of the field £
rather than a representation of the operaﬁor EE" which was used to deﬁne the
Ordinary and Weyl Symbols. In this sense, it is more closely related to E(z) or
é’(/c) because it describes the field by its projection on some set of basis vectors
in the abstract function space. Let a member of this set of basis functions be

called ¢ so that in Dirac notation one has the transformation
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($|E) = / dz' ($|2'z'|E) S (11.189)

Comparing this to (I1.173) with (z’|E) = E(z') and (¢|z') = ¢*(2'), it is apparent

that the z-space representation of these basis states ¢(z’) is given by
1 _L 2, 2

) ="t e"““"” e-("—” /20 - (I1.190)

Evidently, each function ¢ has two labels, the values of z and £. Thus, each

@k can be thought of as representing a point in phase space just as the quantity

|z) represents a point in z-space; a difference is that while the z/-representation

of |z) is a delta function, the z’-representation (II.190) of ¢, x is a gaussian

-around z (and it is easy to show that its &’-representation is a gaussian around

k). Indeed, these elements ¢, i are often called3! “gaussian basis stétes” since
their projection onto either z- or k-space is gaussian.
Before discussing other properties of these basis elements, it may be observed v

that the function @ x(y) satisfies the following differential equation

[§+qd—dg} buily) = [§+wk] bly) (1o

With the identification of —1(d/dy) as the z-representation of the operator k, it

is seen that ¢, . is an eigenstate of the operator

8l¢xi) = (= +iok)|$xi)

(I1.192)

X .

- +10k

o

This operator a is manifestly non-hermitian and consequently its eigenvalues
are complex with real and imaginary parts given by z/o and ok respectively.
Moreover, the form of a should be familiar from quantum mechanics where it
is often introduced (with a factor of 9=% and ¢ = Vh/mw) as the lowering
operator in the analysis of the harmonic oscillator. In that application, however,

the eigenstates ¢, of a are usually neglected in favor of the eigenstates of the



.4 The Coherent State Representation ‘ l 240

Hamiltonian, aa®. The quantum electrodynamic theory of radiation treats the
electromagnetic field as a collection of harmonié oscillators and thus extends the
concept of raising and lowering opebrators to creation and anmnihilation operators
and their product, the occupation number operator (although in the field quan-

tization method, a is no longer expressed in terms of x and k).

It may be shown? that the basis states Pz.k are-not orthogonal for different
labels (z, k£); however, the overlap intégral of ¢;,k(y) and @1 xs(y) does diminish
exponentially as (z/ — z)?/o® + o*(k' — k)? increases. It is also a fact that the
set ¢, x is overcomplete? and this property is responsible for the noninvertibility .

of (I.188).

With this brief account of the basic framework of the coherent state repre-
sentation, one may proceed to a more elegant derivation of (I1.188); in addition,
this approach provides insight into the origin of this relationship between |& |
and (EE")w. Consider the Weyl Symbol of the spectral operator |, xX@z.x],-or

in other words, the- Wigner function associated with the eigenstate ¢, :

&t | * 0 —ik's
(Gerolaw( ) = [ ds doale’ + 300004l - Fa)e=
—_— ”—% U—l /ds e—(z';z+%t)2/202 e—(z'—z—:l;alz/Zaz

i gkl =2+t —ik(a/—z=La) —ikls

—_ 26—(:’-—2)2/02 e--ag(lc’—k)2

(I1.193)
This formula explicitly illustrates the notion that the state ¢ x represents the
point (z, /c) in phase space. Now the results of (II.103-11.105) of Chapter 3 may
be directly applied by forming the trace of the operator product
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Tr(1¢2 X624 1EXE]) = (64 B = |E(2, K)°.
1€ (z, k)|2 = /dz -di’ (2. kd’z Ow (z',lc') (EE.L)W(ZI,/C')

/dz d2k (EE+) (zl’kl)e—(zf—zjz/az e—aQ(k'—k)z
(I1.194)
and (I1.188) is recovered.

The interpretation of this expression developed in the preceding Chapter
is that it is the expectation value of the operator |¢, xX¢:.k| in the field .
Conversely, it may also be construed to express the expectation value of the
operator |EYE| in the state ¢, ;. This latter translation of (II.194) implies that
|E(z, k)|? is the measure of the mean amount of field in the unit-area cell in

phase space centered at (z, k).

In addition to being a smooth phase space density, |£(z, k)[* induces lo-
cally averaged statistical quantities as well. Projecting (11.194) onto z-space by

integrating over k, one obtains

dk / R N - Y /dk —o2 (kK —k)?
folg(z’k)l =2 [ dz' — (EE) (', K')e oy € .

Eaaniils fdk (EENw(Z, K)

zI)IQe—(z’-—z)Q/a"

(E(2)])s

Vro
(I1.195)

where (I1.99) has been used for the projectionv of (EE")w. The result is the
locally averaged (over length o) field intensity in z-space. The Fourier transform

of (II. 194) gives
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! 2, 0
/_ Ig(.’l! /C)l' ko — 2/d2 dEIE— (E’E"f') (zl,kl)e—(z'—-z)'/a'\ eck’a

X/dk —l(k —k)eo —a (k' k]"
‘ : 27

—02/40.'2 5 9 ! oy
= — /dz' e~t=' =21/ /‘;’; (BE W (&, K)e™”
Ve W

9D 2]
e—a'/4o'

= ———/dz' E(z + Ls)E* (2 — %8)6—(1’—::)2/02

ll
&
—
3]
+
&
ty

A
—
3]

I
K-
=
b

- (I1.196)
again with the use of (I1.99). Thus, the local o-averaged spatial autocorrelation
function is o
(E(z + $8)E™(z — 33))s

- (E(=)*)s
2 1s0? LAk 1€z, B)Pee
[ dk |E(z, k)2

Evidently, the Fourier transform of |€(z, k)| in (I1.196) has an inherent exponen-

CE(Z, 3) =

(IL.197)

tial decay in s which must be corrected for in (I1.197).

Similar formulas for the local k-space average intensity and correlation
function are obtained by integrating and Fourier transforming (I11.194) over z

and using the k-projection rules for (EE")w in (11.100). The results are

/dz[f(z k) —2ﬁa(|E( /e

x

/dz|5(z,/c)|‘-’e-*~= = ovmoe 37 (Bk + 1) B (k = 1K) /0

‘(*A—(k))l/,E/dk f( )_,‘.‘.(k/_k)g

1,22 [dz |E(z, k)|Pe ==
J dz |E(z, k)2 |
Expressions (I1.195-11.198) explicitly illustrate the result of Wigner2? that any

(I1.198)

Cg(k,x) =
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nonnegative phase space density cannot yield the exact z- or k-space intensities
upon projection; here, locally averaged intensities are obtained although (II.177)
may be used to compute the exact intensities from the “density amplitude”

£(z, k). )

Having discussed some of the important'genel"al propertiés of the coherent
state representation £(z, k) and its associated phase space density |€(z, k)|?, [
shall now turn to the derivation of the equation (corresponding to (II.l)) which
governs the evolution of £. Asin preceding Chapters, this is most easily achieved
in a rather indirect fashion, although unlike the methods used previously, I shall -
not introduce a “coherent state Symbol calculus”. Instead, [ shall first derive

yet another relai;ionship between this representation and the Weyl formalism so

that the Weyl Symbol calculus may be immediately applied.

To this end, consider the form of the definition (II.173) when ¢ is evaluated
at (2z, 2k):

£(22,2k) = T o~ % / dz' B(2)e~(%—22%/20% g~2ikia'=22) (11 199)

which, although unmotivated and somewhat artificial, can be manipulated with

the change of variables z/ = z + }s to become

£(2z,2k) = %x-} o=} g2ika / ds E(z + %s)e"‘"’%"?/z’g e~ ke (I1.200)

The form of this integral is much like that used in the definition of Weyl Symbols
(11.69,11.98) except that two different functions appear-in the integrand. Indeed,

recalling the definition (II.190) of the coherent state basis functions, this is the

Weyl Symbol or mized Wigner function associated with the operator and kernel
: + 1 _1 —e /202
|EX¢o.o| =  (Edpo)z,y)=7n"1072% E(z)e ¥ /? ~ (I1.201)

which is composed of the field £ and the “ground state” of the coherent basis

representing the origin in phase space. Therefore, (I1.200) may be written
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28(2z,2k)e” 2% = (Egg o)w(z, k) (11.202)

Now_ that the local Fourier transform has been identified as the Weyl Symbol
of some operator (albeit, with a nonlocal correspondence), the .Weyl product rule
- can be invoked to transiaté the operator equation which governs (E¢g.0) into a
phase space equation for £(z, k). The abstraéf-representation-frée equation for
the field is again, from (I1.3)

| DIE) = |s) | (11.203)

where D is the dispersion operator and |j,) is the field of current sources. Multiplying

this equation from the left by (¢¢ 9|, one has

DIEX¢o,0l = |76Xd0.0] " (11.204)

A similar step was taken in the derivation of the equation (I1.30) for the field.
spectral operator |EXE|, followed by the introduction of the adjoint of (II.203).
That step was crucial because it specified that the adjoint or dual element
introduced in the ﬁlultiplication was indeed the dual element of the field (E].
Here, in order to complete the specification of the representatidn, one must
supply an operator equation for |¢g ). This is not too difficult since ¢0;0 is the
ground state in the coherent basis; thus, (I1.192) holds with eigenvalue z = k£ =

0
algo.0) =0 (11.205)

and its adjoint is
. o X . .
($o.0la" = (¢o.o|(; —ick) =0 (11.206)

Now, multiplying (I1.206) by |E) from the left, one finds that the mixed density

operator must satisfy

: |EX¢0.ol(§—iUk)?0 o (11.207)
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with a similar expression for the current source |7,Xd0.0|- The entire set of
operator equations which correspond to (11.203) for this representation are there-

fore

D|EX¢o.0] = l7.Xb0.0 -
IEX¢o.ol(:—( —iok) =0 (I1.208)
kool (S —iok) =0
These operator relations can be‘immediately written as phase space equa-

tions for the corresAponding Weyl Symbols using the product or composition rule

(I1.91) from the previous Chapter. The result is

R g
5 3
2

D(z, ke L(Egh o )w(z, k) = (.68 0)w (2, &)
(Eb o)w(z, k)e L(-E—icrk) =0 (I1.209)

(s ahwlz, ke L% —iak) = 0
where the Weyl Syrﬁbol of the operator a is simply given by its scalar form since
it involves no zk products. Finally, the equations for the mixed Wigner functions
(E¢3‘0)W and (j,d:g'o)w become equations for the corresponding coherent state
representations £ and J, with the use of (I1.202). Thus, the first of (I1.209) may

be written

D(z, k)ed L £ (22, 2k)e=2%= = J,(2z, 2k)e=2k= (11:210)

which is subject to the conditions provided by the last two of (I1.209)

+—>

£(2z, 2k)e= 2= e’};ﬁ'(f —ick) =0
| 7 (IL.211)
. N N
Jo(2z, 2k)e k= eﬁL(; —iok) =0

These are the equations which govern the local Fourier transform or coherent
state representation of the field £(z, k), defined in (I1.173). The primary equa-

tion (I1.210) is driven by theelocal Fourier transform J, of the current source
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field which is also defined by (I1.173) in terms of j,(z). The local dispersion
function D(z, k) which appears here is not the coherent state representation
of the operator D (indeed, such a quantity has not even been defined in this
presentation); instead, it is the usual Weyl Synibol of D constructed from the
two-point dispersion kernel under the “centered” Weyl transform (11.69). This.
is a (possibly infinite order) partial differential equétion for &(z, k) with the
opefator e'gf defined by (I1.91).

While (I1.210) is the basic equation of interest since it contains the informa-
tion about the plasma in D(z, k), it must be solved subject-to the conditions
given in (I1.211). Naturaliy, from the procedure which was used to devélop these
equations, these conditions should be automatically satisfied; that is, if £ or
Js is constructed from E and Js by (I1.173), then direct computation verifies
that (II.211) are satisfied identically. However, if the field E is unknown and
(I1.210) is used to determine £ (and hence E, by (11.177)) these conditions must
be solved in conjunction with (I1.210). More generally, if time is included so that
(II.210) describes the propagation of £ in the plasma from initial conditions, the
subsidiary equations might have to be applied in order that £(z, &; t) remains of

the form of a local Fourier transform (I1.173).

The discussion of the properties of £(z, k) and iis density |€(z, k)|* en-
courage the investigation of this set of equations; the primary motivation lies in
the observation that this representation holds the promise of producing a much
smoother phase space density, or local spectral function, than found in previous
formalisms. Thus, if the solution of these equations could be computed in a
way which involves the geometric optics rays yet did not generate singularities -
at caustics, this analytical or numerical scheme might find application to short

wavelength wave problems in inhomogeneous plasma (as well as other media)
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if conventional methods frequently suffer thesé singularity difficulties. As this
formulation is inherently a phase space technique, the reliance on the eikonal
description (and thus, the identification of k(z)) is absent; the possibility exists
then of applying this method to the construction of chaotic wéve fields. In
addition, this representation offers closer contact with experimentally measured
quantities (such as the local field intensity, the field correlation and spectral func-
tions) since these measurements can always be considered to be coarse-grained

in some sense, and usually refer to a single realization of the field.

In an effort to develop a method for solving (I1.210), it would be convenient to
cast £ in a form which automatically satisfies (II.211) so that these conditions can
be discarded. That this is indeed poésible will now be demonstrated; however,

this simplification is made at the expense of introducing the complex variables

1,z 1,z
z=—(= +1iock) 7= —(= —iok)
Ve - Ve (11.212)
z= (2 +73) k= ——(z—3)

V3 o

Here, Z denotes the complex conjugate of z and these two variables have been
made dimensionless with appropriate use of the smoothing length o. Now,

substituting (z,Z) for (z, £) in the definition (II.173) of £(z, k), one has
~ —i( =)z )2 - (243
E(z, k) = €(2,2) = io3 /dz' E(z)e GupleaE =gt
» e—«z'—-j.__;uﬁn'-/-za’- (11.213)
= 7r"'} o'_Jf e]ﬂ‘_;)z /da:' E'(:z:')e—(“,'°‘/§”;)2/2"‘2

Interesﬁingly, the integral really only involves the combination Z of z and k.
Furthermore, the basic equation (I1.210) and the conditions (I1.211) include the
multiplicative phase factor e~2%*= with £(2z,2k) so that one should consider

the form of
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= _i 2_22 =2 ' 5 =12 /02
E(z,2)e 2k = Pk Tt Pt e I S /dz' E(z')e~ ¥ =V2eD7 /20

I
5

-1 a—% e-'J."‘;e'Jf"-2 /dz'E(z')e_(z'_ﬁ“;)z/?"g

fl
13y
|
o
N
Y}
“\
——
Y]
p

- (IL.214)
Thus, the only dependence on the combination of z and & given by z is in
the gaussian factor exp(—%|z{?) and the remainder of &(z, k)e= %= has been

assembled in the definition of 7(%).

In order to see how these complex coordinates simplify the conditions (11.211),
the bi-directional operator T should be expressed in terms of (2,Z). The form of

the derivatives with respect to (2, z) follow from (II.212)

8, = ——(8, + 33) Ok = ~2(9, - 83)
, V2 ‘? (IL.215)
0; = —(00, — 1o~ 1 k) 0 = —(008, + Tk 3x)
V2 | V2
and it is easily verified that T becomes
L =0,0k — 0x0; = (050 — 0:03) (11.216)

As ? has been previously identified as the classical Poisson bracket operator,
this result implies that the change of variables (z, k) — (%, —iz) is a canonical

transformation on phase space, even thdugh it is a complex one.

Recognizing that the right operand of the requirement (I1.211) on ¢ is just
Z, the substitution of (I1.214) and (11.216) into this equation produces

——  —
e—!z? }'(2-2-) e—%(a;az—aza?) z2=10 (11217)

Expanding the exponential operator in power series, only the first two terms

survive since the right operand is linear in Z; (11.217) becomes

‘a;] 7 = e—‘_’z? f(?E)(E - E) = (11218)
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Hence, expressing £ in terms of (z,Z) in the form (I1.214) identically satisfies the-
condition (I1.211) on £ and the same treatment of the current source would of

course relieve the condition on J,.

Having dispensed with these subsidiary conditions, attention may now be
focused on the basic equation (II.210) which governs £. In complex coordinates

(z,Z) and with the definition (I1.214) this is

- ——

- .
- 10.07-059,) e—2%7 7(27) = e—22% j’(23) (11.219)

D(z,Z)e2

where the functions of complex variables are defined by
D(z,Z) = D(z, k)
e~3k2 gz k) = e 37 J,(3)

For simplicity in the following analysis of this equation I will continue to consider

-~ (11.220)

only one dimensional scalar fields and I shall now also make the following

assumptions

1) D(z, k) is real (corresponding to a real eigenvalue of the hermitian part

of the dispersion tensor)
2) Jo(z, k) =0, i.e., no sources are present

Both of these assumptions as well as the stipulation of scalar fields in one
dimension could be relaxed in the ensuing discussion although somewhat tedious
calculations similar to those detailed in Chapter 3 would be required. As the
procedure to be developed will again involve ordering arguments, the inclusion of

weak damping and sources should be straightforward at the appropriate order.

From the outset, the method I shall employ to solve this phase space
equation differs from that used in the previous Chapter for the Wey! Symbol
(EE")w. In that technique, no assumption was made as to the form of the

solution and only ordering arguments were invoked to estimate the magnitude
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of the derivatives involved in the expansion of the exponential operator. Being
qua.dratic in the field, it was assumed that (EE¥)y would exhibit only a slow
variation in phase space; similar to the vafiation of D, so that only the first two
‘terms in the expansion of eXp(é‘Z) were retained. Here, this assumption is not.
valid: inspection of the examples given in (I1.178,I1.180,11.184) of the form of
&(z, k) indicate that it displays the same rapid phase behavior as the field in z-
space from which it was constructed. It must be remembered that the equation
under consideration (I1.210,I1.219) governs the “amplitude” & of the spectral
density and not |€(z, k)|? itself which exhibifs a much smoother, positive and

non-oscillatory behavior in phase space.

Although a different approach will be used in the following development, the
application is intended to be the same; that is, I consider short wavelength solu-
tions to (I1.219) in-a weakly inhomogeneous plasma. Therefore, the conditions |

on the variation of D are again
|0:.D(z, k)| ~ L™} |8k D(z, k)| ~ X (I1.221)

where the scalelength L is to be much larger than a typical local wavelength X.
For use in (I.219), these estimates should be written in terms of the complex
variables (z,Z) and this is accomplished with (I1.215): 7
-4 - P | | - x
10:D(2,Z)| ~ [(68; + 107" 3x)D(z, k)| ~ |+ +1—]
Lo (11.222)

~ A
10=D(2,%)| ~ |(002 — io™" 34)Dl(z, k)| ~ |7 — i

L o

Thus, the variation of D with respect to either of the dimensionless complex

variables is the same. Furthermore, I will now take the smoothing length o to

be intermediate between the two length scales

Ao L L (11.223)
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and for concreteness, [ shall choose it to be approximately the geometric mean

o~ VIN = ‘%~§<<1 - (11.224)

As a consequence, the terms in the magnitude of 8,0 and 8zD in (I1.222) are

roughly equal and both quantities ére much less than unity.

Since it has been pointed out that £(z, k) exhibits a rapidly oscillating wave
structufe on phase space, I propose to solve (I1.219) in a manner very similar to
conventional eikonal methods. That is, the (z, £) plane will be treated as a two-
dimensional configuration space (since in this formalism z and k are independent)
and the usual WKB techniques will be applied. In this spirit, I assume a solution -

of the form
F(2) =GP (IL.225)

and define the “local wavenumber” in phase space to be
db(z)

dz
In terms of the ansatz (I1.225), it should be recalled from (II.214) that the desired

K(z) = (IL.226)

solution &£(z, k) is
E(z, k) = &(2,3) = e3k2e~1% 7(3)
ToIToIEE A gz © (11.227)

WA= (Z—iok))
e V2 G(F5(3-iok)
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As in the traditional eikonal procedure, one should first postulate the ex-
pected relative ordering of the derivatives of the wavenumber K(Z) and the
amplitude §(z). Fof' this, [ am guided by the forms of K and'g found in the
exact solutions (I1.178) and (II.184). For the plane wave example (I1.178), it is
easily shown that &(z, k) expressed in terms of (2,Z) is |

L 2,2

E(z,3) ~ eVEokoT+{s7 4 1T~ Fam- o7 (I1.228)
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Setting this equal to the second line of (I1.227), the phase ®(Z) is determined to
be

B(z) = VIokoE — §7° — §ok2 (IL229)
so that by (II.226) K(Z) is
K(Z) = V20ky — iz  (11.230)

These formulas indicate that unlike the usual application of the WKB
method, the eikonal phase and its derivative will in general be complex in this
formalism;, this could have been expected from the examples given for ¢ in
which the gaussian waveforms require an'imaginary part of the phase. That
these contributions should be included in the phase (as opposed to being in the
~amplitude §) can be justified by noting the relative sharpness of the gaussian
peaks in the examples compared to theif location in phase space. In the plane
wave case, inspection of (II.178) reveals a gaussian peak at £ = ko of width
1/0 so that this modulation has relative scale o/X\¢ > 1; this rapid variation
therefore is appropriately included in the phase rather than in the slowly'varying

amplitude. Indeed, in this case the amplitude § is constant = Ej.

The magnitude of K in (I1.230) is ~ /X whiéﬁ, again, is to be much
greater than unity by choice of . In order for both terms which constitute K
to be of similar order, one must have that |Z| ~ |z/o —t0k| ~ o/Xg; or, by
(I1.224), the coordinate z is to be macroscopic ~ L and & should also be large
~ ko. Thus, this plane wave example suggests that both ¢ = K(Z) and (z,2)
be taken as O(o/X\ ~ L/o). .

These conclusions are supported by a similar analysis of the harmonic

oscillator result (I1.184). Expressing ¢ again in terms of (2,Z) one has

- 1L.2_132_1.%
E(z,3) ~ eis - 17 —4:7

[N}

n (11.231)
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and settiné this equal to the second line of (I1.227), the phase & and the local

phase space wavenumber K are found to be simply

b(z) = —inlnz =  K@EF)=— (I1.232)

If K and Z are to be of the same order as suggested by the previous example, this
relation implies that both have magnitude ~ n?. Indeed, this estimate is consis-
tent with the estimates given in (II.185‘), which may be translated into conditions
on Z, as well as the fact that the variation scale of (I1.231) in the radial direction
s ~ n=3 ~ K1 (as givén by the width of t,hve gaussian peak to the radius
of the classical orbit). Further inspection of the solution (II.184) reveals that
the oscillations of & in the angular direction have wavelength r=! 84&(r,0) ~

1 o . . ~ :
n/r ~ n~2 which is also consistent with the assumed magnitude of X.

These arguments therefore suggest that in the following‘eikona'l treatment

of (11.225) in (I1.219), one should take

¥(z) = K(Z) ~ 7 ~ (1.233)

~

>1q
Q |t~

1
€
Once this scale has been set, the variation of K and § may be asserted to be of
lower order (in the usual WKB spirit)

02T K|~ |67 825l ~¢* >0 (11.234)

Observe that K/ ~ O(1), as substantiated by (I1.230) and (I11.232). These es-
timates are accompanied by the weak inhomogeneity assumptions on the plasma

which follow from (I1.222)
|87 D(2,%)| ~ |82D(2,2)| ~ " (11.235)
Now (I1.225) can be substituted into (II.219) to obtain

—_—— ——
D(z,3)e210207-0302) g(oz)e7o271-2:7 — (11.236)

-
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where J, has been ‘discarded as previously discussed. The eXponential operator is
to be expanded in power series (without truncation, as was done in the preceding
Chapter), the derivatives applied and the relative order of the resulting terms

to be assessed. The first few terms in the expansion are
b(z,2)6(22) + {Dz(z,s)[(m(zz) — 2)6(25) + §'(25) + Dz, ?)59(23)} |
+ %{f)z;[(zf — 2§ + 26K — 2)§' +iK'G + §"]
+2'D,,;[(u< — )26+ 25 + 1G]+ b=z'g }

+ g,-{f),,,[(u( — 236 + 36K ~ 22§ + 36K — 26iK'G
+3(iK - 2)G" + 3K'G' +iK" G + §"]
+3D,5[(6K = 2236 + (iK — 2)G + 2iK — 225’ + FK'G
+6' + "z'g"] |
+3D,5[(iK - 2226 +26 + §') + 1");,—,239} + .-
(I1.237)

It should be noted that since the right operand of (I1.236) is evaluated at the
double argument 2%, K and § as well as their derivatives should be evaluated
at 2Z everywhere they appear in this expansion, just as in the first line. The
derivatives denoted by primes therefore indicate differentiation with respect to
the proper argument (here, 2?) and the factors of 2 from the chain rule have
been incorporated in the numerical coefficients as they appear. The arguments
of D are, of course, still (2,Z) and the subscripts denote partial derivatives. In

addition, the multiplicative phase factors exp(i® — 2zZ) have been divided out.

Applying the ordering assumptions (II.233-11.235) to the terms in the ex-

pansion (I1.237), the lowest order collection is O(1):
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{D(z,z) +[(iK — 2)D, +2D5]

+A~iK~zéﬁ,z+2iK—zED,z;+22DE : ,
5 ) g ( ) D ] B (I1.238)
+ (K = 2)®Doze + 3(6K — 2)°2D, 3 + 34K — 2)7° D5z |
+7* Doz +} G(22) =0
where again, K is meant.to be K(2Z). The dots indicate that although terms
only through the third derivatives have been retained, a familiar pattern seems

to be suggested; that pattern is evidently the Taylor series expansion of the

dispersion function

D+ (iK = 2),7 +7) = D(iK (23), 23) (I1.239)

and hence all the terms in (I1.238) can be re-summed and expressed in closed

form. The lowest order equation may then be written

- D(EK(22), 22)6(23)
or D(K(z),2) =

0
(I1.240)
0

Here, since only 27 appears as an argument, it has been replaced by just =.

Inspection of (11.237) shows that under the ordering (11.233-11.235) only even
powers of ¢ are represented in the expansion. It is interesting to note that this
fact implies that the true expansion parameter is the physical quantity €* ~
(¢/L)(\/o) ~ (A/L) which does not involve the value of the arbitrary smoothing
length o (although the inequality (11.223) must still apply). Assembling the next
higher order O(¢*) terms of (11.237), one has



II.4 The Coherent State Representation 256

{ﬁz(z,i) +[((K = 2)D,. + 2D 5]

~

+3[(iK = 2)2D s + 206K = 2)ED 0z + 2D 1ma] + - } G'(23)
+'§{D,, + [(6K = 2)D,.c + zD,,;] + - } iK'(22)6(22)

+ 1Dzt 6K =)Dz + D]+

_ (I1.241)

As in the lowest order equation, the terms have been arranged to suggest the
appearance of the Taylor series for D., D.. and D,z around the point (z,_E).

Thus, these can be re-summed as before to give

D.(iK(22),22)6'(22 +1;[1,K'(2z) D.:(iK (27), 22)

(11.242)
_ +D,,(z}((2z) 2z)]9(2z =0
which, since all quantltxes are evaluated at 23, becomes
. dg(z) — 8D, 8D, daK(Z)| .
D.(:K,z = '1;[( 37 ) +( P ); 1z 4(%)
_ (11.243)

The results at the lowest two orders of this perturbation method seem to
imply that the nonlocal nature of the exact equation (I1.238) might 'just be
an artifact of the ldiﬂ'eren.t,ial representation. That is, although the left and
right operands of (I1.236) are evaluated at different points in phase.space, the
technique of expanding the exponentxal operator, assuming a solution of the
form (I1.225), differentiating and re-summing terms at each order (assummg
convergence) finally produces the local equations (11.240,11.243). In this regard, it
is crucial that all terms in the expansion of the exponential operator be retained
because the ordering (11.233) generates low-order contributions at each power of

‘Z., This is quite different than the truncation procedure employed in Chapter
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3, although, of course, the phase space density being treated there was different
than in the present case. Nonetheless, the relative magnitude of higher order

derivatives on either & or thé Wigner function (EET)y in the context of an

.exponential operator expression such as (II.236) has never been investigated

(above second order) in exactly solvable problems; this is because the examples
given of the plane wave and harmonic oscillator exhaust the cases for which
either of these phase space representations can be explicitly constructed. The
quadratic Hamiltonian of thebharmonic oscillator admits no higher than second
derivatives when inserted in (I1.236) or (I1.94) (although, being a polynomial in z
and k, the techniques involving the Taylor series re-summation apply exactly).
The evidence provided by the uniform medium. example, in which D is only a
function of £ so that only z-derivatives act on &, gives 7& ~ kf. The ultimate
jbustiﬁcation of the ordering imposed in this anaiysis, however, must come from

examining its validity for solutions determined by this method.

The application of “conventional” eikonal cdnceptsvto the phase space equa-
tion (I1.236) appears to have succeeded thus far; indeed, the lowest order equa-
tions (I1.240) and (I1.243) turn out to be exactly analogous!®2 to the one dimen-
sional equations derived at lowest orders in traditional z-space WKB methods.
The ordering assumptions (II.233) are slightly different than in the customary
WKB formulation (although it was shown that the true expansion parameter
turns out to be the same (\/L)), and of course the Taylor series re-sum is unique.
Most significant however, is that the final equations are one complex-dimen‘sional

describing a wave in the two-dimensional phase space.

True to the usual lowest order equation, (I1.240) is in actuality the Hamilton-
Jacobi differential equation for the phase ®(Z). To be sure, the one spatial

dimension analysis has neglected the time dependence of the wave and the
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dispersion kernel; thus, in this model of a stationary plasma, the field £ (and
consequehtly, €) has an overall exp(—iwt) time dependence (which factors out
of the equations) and D(z, k) should be parameterized by the frequency w.
Accounting for this in (I.240), the eikonal equation is '

~

D(EK,z;w) =0 = w = 2(z, K) - (11.244)
By its construction, this is just the expected local dispersion relation
D(z, k;w) = D(z,Z;w) =0 =  w=02z k) =102z —iz) (I1.245)

except with z replaced by 1K. The reason for expresSing 2 in terms of —iz is so
that the dispersion relation is defined in terms of canonical variables; the usual

Poisson bracket on (z, k) phase space of these variables is

(2, —iz} = (8,3)(—i0xz) — (—i8,2)(0xZ) = 1  (IL248)

as can be verified from the definitions (II.212)V.
Following the formalism of Hémilton-Jacobi theory and conventional WKB .
methods, the differential equation (II.244) may be solved by introducing charac-

teristic trajectories. In view of the analogy between (I1.244) and (I1.245), these

trajectories are generated by Hamilton’s equations in canonical form

_———— T e —— .a47
¢ 9K K 9% (I1.-247)

With the introduction of these “rays”, it is essential to recognize the imp'lications
of applying eikonal methods to wave equations in phase space. The traditional
WKB analysis of z-space wave equations generates ray trajectories in (z, k) phase -
space and the properties of this low and its projection onto z-space is responsible
for the form of the short wavelength field in z-space. The phase space in which
the rays evolve is now the “configuration space” for the present wave equation

(I1.210,11.236) and, to avoid confusion with the rays generated by (I1.247), I
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shall refer to them as the “underlying” or “physical” trajectories. The concept
-of a “local phase space wavenumber”, induced by the eikonal phasé & and its
derivative K, therefore necessitates the consideration of a (Z, K) phase space
above the physical (z,k) or Z phase space. It is in this “doubled” phase space
that the trajectories governed by (II.247) evolve. For clarity, I shall refer to the
(z, k) phase space as U (“underlying”) and the “doubled” phase space as P; a
schematic illustration of this structure is given in Fvig. 3.

Other authors have introduced the concept of a “doubled” phase space33:34

in connection with equation (I1.94) for the Wigner function (EE*)w(z, k). The
space P considered here, in relation to the coherent state representation, has the
property that, although it is four-dimensional (for an underlying one-dimensional
wave problem with a two-dimensional physical phase space U)? a complex struc-
ture has naturélly arisen so that it may be treated as a ‘tw.'vo complex-dimensional
space; this is an advantage in both analytical and numerical investigations. A
logical question may be raised, however, as to the relationship between the trajec-
' tories generated by (I1.247) in P and the physical rays which evolve in 4. More -
precis.ely, one should examine the projection of the trajectories in P onto U in

order to discover any possible correspondence with the physical rays.

Consider, for example, points in P given by (Z, K) = (Z, —1z). Observe that
these points are indeed elements of P (because both z and K are dimensionless
complex variables) but it is the rather special set above the Z plane (4) for which

K = (iZ)*. Now it is easily shown that the Hamiltonian flow (11.247) preserves

this relationship, f.e., that K(¢) = —12(t) satisfies these equations.; Thus, one
has for K = —iz |
k(7 K = —iz) = ~22EK) _ _90E —m) (11.248)
' 0z i 0z '

which, when ([1.215) is applied, becomes’
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Figure 31. Schematic illustration of the “doubled phase space” P induced by the
eikonal solution of the phase space equation (I1.219). The familiar “underlying”
phase space U is coordinatized by either real variables (z, k) or the complex
variable Z; this is to be viewed as the “configuration space” of P with the
complex-valued variable K being the momentum conjugate to Z (“local phase
space wavenumber”). Orbits in P are projected onto U in order to determine
their relationship to “physical” ray trajectories.
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~

12z, —12)

1 ( 8z, k) | id0z,k)
B 0z ——ﬁ\(a Oz ‘+a dk ) |

1 : L

= —E(-—ak(z, k) + ;z(z, lc)) (11.249)
(3, K = —iz) = (228 | ioka b)) = —ix(z, iz
K(z, K z) = \/E( —— + ak(z,k)) | (z,—i2)

Furthermore, at these points % is given by

s . 802(z,K) _80(z,—iz)
C2(Z, K =—1z2) = 3% Rt T
Kom—iz
.00z, —iz) (11.250)
= j———
0z
£ .. f 0z, k) iaﬁ(z,k))
o ok = z(a Oz o Ok

The logical interpretation of this calculation is then as follows: at all points
in P where K = —iz the flow is given by K — —13(Z, —1z) and 7 = 2(z, —12)
so that by the uniqueness of solutions of Hamiltons equations, K(t) = ;iz(t)
along trajectories which pass through these points. Moreover, identifying the
real and imaginary parts in the last line of (I.250) shows that the projection z(t)

of these rays onto the Z plane U reproduces the physical trajectories.

The conclusion to be drawn here is that all of the “physical” orbits in the
underlying phase space U (generated by the usual dispersion relation {2(z, k)) are
contained in the projec'tion onto U of all trajectories in the “doubled” phase space
P generated by 2(Z, K). The special class of trajectories in P which participates
in this correspondence are t‘hvose which lie on the two-dimensional manifold given
by K(2) = (42)" or |
z ImE=—orlc | ReK——-_a—k- Im K = —=

[n other words, the projection onto U of the flow in P restricted to this manifold

Rez

(I1.251)

produces a flow in U; this should be compared with the projection onto z-space
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of the flow in phase space U, which does not result in a flow. Therefore, one
would expect that the construction of £ along the “physical” trajectories in
U should be free of singularities because these “configuration-space” orbits are

divergenceless.

The projeéti_on of all othér trajectories in P (i.e., those for which K 5
—tz) onto U are “unphysical” in the sense that they do not correspond ‘to
possible orbits in U generated by f2(z, k). One may conclude from the foregoing
discussion of the “physical” trajectories that these “unphysical” paths in U are
important for the construction of £ in the “non-classical” regions of (z, /c) phase
space off the classical orbit. That 1s, at a fixed value of the frequency w, the
projection of the frequency surface w = 2(z,K) in P onto U will produce the
“physicél” orbits, which lie 6n the frquency manifold w = 2(z,k) in U, as
well as “unphysical” trajectories which are not on this manifold. Naturally, all
“physical” and “unphysical” orbits are importaﬁt since ¢ should be constructed
everywhere in phase space U in order to reconstruct the field E in z- or k- space
by yet another projection. However, the examples given indicate that in the
short wavelength limit, £ decays rapidly away from the classical orbit so that in
practice, perhaps only the “physical” rays and nearby “unphysical” trajecibries

(for broadening) need be considered.

One further point should be made in regard to the lowest order equation
(I1.240). As this equation determines a Hamiltonian system of rays in the
(Z, K) phase space P, it is worthwhile to observe that these rays have the same
integrability properties as the underlying Hamiltoniaﬁ system on (z, k) phase
space. From a practical analytical standpoint this means that, for a wave
problem in more than one dimension, if a set of invariants {/} can be found so

" that in the traditional eikonal method the branches k(z|/) may be determined
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(at least implicitly), then in terms of the complex variables on (z, k) phase space,
one may also determine z(Z|/) in principle. Since the system in P is related to
the system in U by just replacing z by 1K, these relations imply that K(Z|I) and
hence #(Z|/) may be constructed without following trajectories as discussed in

Part I. Indeed, this is the method which will be used in the examples that follow.

As previously remarked, the equation derived at next order for the amplitude
G(Z) is very similar to the corresponding equation typically found in conventional
z-space WKB treatments. Indeed, (I1.243) may be rearranged and more com-

pactly expressed as )
%[92(?)(%)(1'}((2),2‘)] =0 (11.252)

The notation here for the partial derivative D, means the derivative of D(z,z)

with respect to z evaluated at z = ¢K(Z); thus, this is simply

al ,_ 8D . . | |
— z)—(1K(2),2)| = 11.253
ﬁ[g 35 K(zK(z),z)} 0 (28
Being subject to the lower order solution, the usual relation |
aD(iK, % w) 901(z, K)) (613(2'}(,2; w)) , n
bl WA Kot Rt} = - 11.254
( oK )?.w ( 0K Jzw - Ow 7K ( )
applies so that (I1.253) may be written
21533 k() Dk @) 325 K@) =0 (1259)

where (I1.247) has been used to introduce .

Evidently, the solution of the amplitude equation is
_% ’
80~ [363, K(2) Duli ()7 65, K 2) (11.256)

which has an intuitive physical interpretation when compared to the amplitude

solution for traditional i-space ‘WKB in one dimension. In that formalism, it

. . . . . . P
is typically found that the z-space amplitude is proportional to [Z(z, k(z))]™ =
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which diverges near turning points where the z-space ray velocity vanishes.
Similarly, the expression in (II.256) tends to infinity near fixed points in phase

space where the phase space velocity vanishes:
2(Z,K@EZ) ~ (0"t —i0k) =0 ' (11.257)

In view of the foregoing diécussion of the “physical” and “unphysical”
trajectories in the (z,k) phase space U which result from the projection of
the rays in the (Z, K) space P, there are two categories of points Z in U for
which (II.257) is satisfied. The “physical” fixed points are where £ = k=0
as determined .by the underlying dispersion relation (2(z, k) (the same points
given by #Z(Z,K) = 0 with K = —iz) and are unique, separate phase spacé
trajectories (¢.e., not points visited by other orbits). This is quite different than
the case of traditional WKB, where turning points (responsible for divergent
amplitudes) are experienced by almost all orbits in z-space. Therefore, if ¢
is to be constructed along classical ray orbits in phase space, thg fixed point
trajectories could be neglected and the worst case would be that the amplitude §
would grow (remaining bounded) as an orbit passes near a fixed point. A further
consideration is th_at, since the phase & is complex, the amplitude singularity
at and near a fixed point may in practice be eliminated automatically by the
behavior of exp(i®) in that region of phase space. An example of this is provided
by the harmonic oscillator £(z, k) which is finite (even for n = 0) at the fixed

point at the origin.

The existence of fixed points among the “unphysical” trajectories could
provide trouble for numerical applications of this method. Again, however,
the examples given indicate that & is quite small in magnitude away from the
classical orbits so that one should not expect singularity difficulties in the non-

classical regions of phase space. In addition, it was pointed out previously that in
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the short wavelength regime, it may suffice to construct £ only in the immediate
neighborhood of the “physical” trajectories in order that the projection onto

z-space be reasonable.

To illustrate the techniques introduced to this point, I will apply them to

two examples. The first is the simple case of a plane wave in a uniform plasma

D(z,k;w) = D(k,w) =1 - (W*/k*) = 0
= W= tko = 2(k) =k

with a local dispersion relation given by
(I1.258)

where the phase velocity of the wave is taken to be unity. In order to begin, the
| dispersion‘ relation {2 must be expressed in terms of the complex variables (z, Z);
using (I1.212) and choosing the positive frequency wave, this is.

—1
oV/2

Now the Hamiltonian in the “doubled” phase space (z, K) is obtained by

(z %) - (I1.259)

/Co = ﬁ(E, —iZ) ==

just replacing —1z by K in (I1.259):

-

(iK - 3) (I1.260)

ko = 2(z,K) = 2(z, —iz = K) =
. a\/§

which generates the trajectories

E=?_‘Q_—___.l ;‘(=_E_""

aK o2 33".0\/5

Translating the first of t.hesé into terms of (z, k) and identifying real and imagi-

(I1.261)

nary parts, the usual trajectories in phase space are recovered

= t=1 k=0 (11.262)

Thus, since Z evolves independently of K, the projection of all trajectories in P

onto U are “physical”. The solution of (I1.261) for K(t) is simply

K(t) = Ko — —+ (11.263)

o2 L S
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which may be used to show that if Ko = —izg then

KE) = T3 sioky) — = = L E) | o) = —iz(t)  (11.264)

e VAN
by (I1.262), as expected. )

In order to construct &, first use (I1.260) to determine K(Z) and then in-

tegrate to compute the phase &:

K(E) = ovTko —i7 = 20

, | (I.265)
#(z) =f dZ K(Z) = oV2 koZ — 472 |

Comparison of these expressions with (II.229,II.230) reveals that these are the

exact forms of K and & which are obtained by constructing £ as a local Fourier
transform of the plane wave (note that sincezis a constant (I1.262), the amplitude
G is also constant according to (I1.258)). Therefo’re, apart from a multiplica-
tive constant, it is apparent that this eikonal method of computing & will

produce the exact expression (II.178).

The success of the phase space eikonal method in this simplest of examples
is not surprising, although it does demonstrate two ifnportant points: so far,
the theory seems to have no glaring errors, and it is capable of constructing a
smooth waveform in two dimensions (complexified phase space) Which exhibits
oscillations along the phase space ray with gaussian modulation transverse to
the ray. Of course, conventional WKB methods experience no difficulty when
applied to this problem and also produce the exact solution; there are no caustic
singularities since all z-space trajectories are straight lines which do not focus.
For this reason, the appiicat’ion of the phase space analysis seems inordinately

cumbersome and unnecessary.

An example in which this technique is able to display its possible relevance

and application is provided by the following problem. Consider the one dimen-
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sional dispersion function

w2(z) k202
kbw=1-—"— - —=
Dz kiw) =1-=5= =5 =0  (11.266)

= w? = 2%(z, k) = k*c* +wi(2)

which describes the propagation of an electromagnetic wave in a stationary

plasma with local plasma frequency w.(z). Specifically, let w.(z) be given'by‘
5 dre*n.(z) _ o, 22 -
W, (:‘B) = ——r'n:—— = u(;(l + F) (11267)
which models a dAensity depression in the plasma as a quadratic well with scalelength
- L. Inserting this definition into (II.266), the local dispersion Telation is

WP = (2, k) = wf + B2+ D (1.268)

The local wavenumber k(z) of the geometric optics rays may be determined

from the dispersion relation (I1.268)

1
2

ck(z) = £[(w?® — w}) — (wiz?/L?)] (11.269)

which is real only for |z| < zg, zo = ;fg(w:' -—wg)%; thus, the rays are trapped

in z-space between the turning points +zg.

Evidently, as there are no zk products in (II.268), the dispersion function
D(z, k;w) with (I1.267) is the Symbol of a differential operator which in the

z-space representation is

d? wi ., w—wi
D(z,kiw) & - e + SR T T g (11.270)
This operator implies that the underlying wave equation (II.1) is
(£ _(;d—(-)_,zg)E(z) =T g (IL271)
dz-= c*L° c-

which is the eigenvalue equation for the normal modes corresponding to the
bound ray t,raject'ories. More than that, this wave problem and the associated

ray Hamiltonian (I1.268) are formally equivalent to the quantum and classical
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mechanical harmonic oscillator problems. The correspondence can be made by

identifying the quantum oscillator length parameter a as

2 MWoge Wo
Q= —— —

— 11.272

h cL ( )

and therefore, the familiar results may be carried over directly: the eigenvalues
Wy are

2, w2 — w?
2a’(n + ) = 2—2 (11.273)
2
while the eigenfunctions are given in (I1.182) with the appropriate value of «

from (I1.272).

Again, in order to implement the phase space eikonal method of solving this
problem (or more precisely, the corresponding phase space equation (11.210)), the
first step is to perform the complex canonical transformation (z, k) — (Z, —12)

on the local dispersion relation (I1.268). The result is

777, —iz) = w2 + be?at[(2? + 2)(e%0? — a2 o ?) (274
+2zZ(a’0® + 2”2 07?)]

The next step in the procedure is to replace z by K in this expression to obtain

the Hamiltonian on the (Z, K) phase space P. However, since the smoothing

length o is arbitrary (within the limits (II.-223) for the theory to be vaiid), a

suitable choice here will extremely simplify the algebra. Thus, specifying

P =a"? = =L~ XL - (I1.275)
wo

not only provides a smoothing length which is the geometric mean of the wave
and density scalelengths (as desired by (I1.224)), but also allows the Hamiltonian

to be written simply

(7, —iz) = wi + 2c%atez (11.276)
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Now in P, the i'ay Hamiltonian is
WP =0 (z, K) = w2 + 2icta®zK (11.277)

which may be promptly solved for the local phase space wave number K(Z)

_ i w? —w?
K@) = -5~ - (I1.278)
and hence, the phase &(z) is
I S fw? —wp)
_ - 11.279
() dz K(Z') PYOPE Inz ( )
The amplitude §(Z) requires
zZ(z, K(Z)) = on = 2ic’a’3 .
Ik N  (1280)
oD w3(z) + k3 ¢? _ 2 . :
dw wd W
and is, by (I1.258),
G(z) ~ 3D~ ~z% (w281

Finally, collecting (I1.279) and (I1.281), the solution for 7(Z) is
| 7(2) = §(z)e""

P PO el S |
Z72 exp| e n Z] (11.282)
> il
o PE T Ty

The form of this result is interesting from the standpoint of the theory of
analytic functions of a complex variable: in order that 7(Z) be single-valued on -
the complex phase space, the exponent p in (I1.282) must be an integer. In effect,
this requirement plays the role of a phase space quantization condition for this

system and yields

(11.283)
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From the definition (I1.227), the phase space density amplitu'de &(z, k) is there-

fore

Enlz, k) = Enlz,7) ~ ed 5 — 17 =437 3n ©(11.284)

This is a striking result in f;ha}, it is exactly the form which would be
computed by direct local Fourier fransform (I1.173) of the exact eigenfunctions
(the multiplicative constant in (I1.284) cé.n be determined from the normalization
condition (II.175) if desired). This in turn implies that the exact eigenfuhctions
are obtained when (I1.284) is projected by (II.177) onto either z- or k-space;
indeed, the integral which is involved serves as an integral definition of the

-Hermite polynomials.2®

Evidently, the phase space eikonal technique has again demonstrated that
it is.capable of treating a two-dimensional (phase space) wave equatidn with a
one complex-dimensional formalism. In fact, it provides the solution for £ not
only in the “classical” region of phase space explored by the rays, but in the
“nonclassical” region off the tr‘ajectories as well. Moreover, these two regions are
treated on the same footing (as opposed to the piecewise formulation of tradi-
tional WKB) so that, at least in these examples, no “boundary layer” matching
analysis is required; in part, this feature is due to the use of a coinplex phase
& defined on the complexification of phase space. The result in this harmonic

oscillator example, however, suggests several new'a_.spects of the method:

1) The most remarkable feature of the solution (I11.284) is of course the fact
that it i_s exact. This should be compared with the results of conventional WKB
techniques applied to the same problem, where the spectrum is obtained exactly
but the eigenfuctions are determined in their asymptotic form, and then only
piecewise due to the caustic singularity at the turning boint. The construction

of & in phase space, true to what might be expected of a phase space method,
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encountered no singularites except the existence of a branch point at the origin, .
which is also a fixed point for the ray systein. Thus, since the exact phase space
representation of the wave function is computed in this procedure, its projection
onto z-space produces the exact z-space representation over all z, complete with
decaying amplitude outside the turning points, oscillations between them and
significantly, maximum amplitude (but no singularity) in the neighborhood of
the turning points. In this respect, the phase space eikonal technique is more

accurate and more complete than conventional WKB methods.

Natﬁrally, one should not place too much emphasis on a result obtained in
the example of the harmonic oscillator. This is especially true with regard to
the present formalism as it is based on the introduction of complex variables
which (for suitable choice of o) are intimately related to the harmonic oscillator
Hamiltonian. Indeed, the entire coherent state representation is generated by the
eigenstates of the lowering operator which, together with its he‘rmitian conjugate,
permits the e]egant factorization method of solution of the quantum mechanical
harmonic oscillator 'i)roblem. However, it may be significant to recall that the
phasé space technique also provided the exact solution to the plane wave (free
particle) problem for which the Hamiltonian is not so nicely expressed in terms

of these fundamental operators.

2) The specification of the smoothing length (II.275) in order to simplify
the calculation raises a question as to the generality of the results even within
the context of this single example. In the plane wave case there is no need to
specify o and the method of solution, as the well as the functional form of the
result, is independené of its value; however, in that example there is only one
scale (the wavelength) whereas in the harmonic oscillator there are two (A and

L). This difference also affects the construction of £ by local Fourier transform
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of the z-space waves in both cases: the plane wave integral (I1.178) proceeds
independently of the smoothing length whereas, even though the functional form
(I1.183) of the exact £ for the harmonic oscillator may be computed for any value

of o, it is simplest to make the identical choice (11.275).

The phase space eikonal method can be carried through for arbitrary ¢ in
this case since (I1.274) is only quadratic. Now however, K(Z) has two branches
and the question of which to use (possibly both) is in this instance settled by the
fact that when the corresponding phases @ are computed, one branch causes &
to diverge as the radius in phase space |Z] — oo. Keeping just the finite branch
produces a solution which is. not equal to the exact constructed form for the
same value of o. In fact, the functional form is complicated enough so that it is
not immediately clear that applying the analytic condition of sil.lgle-value'dnessv :
will result in a quantization condition, much less the correct one obtained in
(I1.283). Without such a quantization condition it is difficult to compare the

eikonal solution with the exact expression.

Of course, .for this theory to be accepted as a reliable method fory solving
short wave problems, it should produce certain physical results independent of
the choice of smoothing length 0. As illustrated in the case of the 'harmonic
oscillator, a system with mofe than one scalelength caﬁ be expected to possess
wave fields whose phase space representation (local Fourier transform) depends
on o both in form and in method of construction. However, in the sense that
the projection rule (II.177) is independent of ¢, this may not be a physically
significant defect if the desired resul£ is the form of the wave field in z-space.
Thus, different values of ¢ can be expected to produce different forms of &
when the phase space eikonal technique is applied, and these will be in general

just approximations to the exact form for each value of ¢. The projection of
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these o-dependent approximations to £ can be expected to provide o-dependent
approximations to E(z) and in practice one would like to develop some rule for
| choosing a smoothing length so that this approximation is optimized. Such an
optimum value for the harmonic osciilator is apparently the one chosen in the
preceding discussion, and it represents the geometric mean of the two natural
scalelengths of the system. Evidently, the compétibility of the smoothing length
with the disparate scalelengths present in a system and its influence on the
-construction of the best approximate solution for the wave ﬁéld, both in phase
space and z-space, is an issue which will require closer attention before this

method is successful.

- 3) Related to the preceding point, one may question whether the projection
of an approximately constructed phase space function £ with arbitrary o will
produce a uniforni approximation to the z-space wave, or will the projection
produce singularities at the turning points (as does the asymptotic Wigner
function) or perhaps elsewhere. This possibility has not been investigated for the
general case and I rely only on the evidence presented here by the examples; that
is, in those cases the phase space eikonal technique demonstrates the capability
for determining a phase spacé density which is smooth and which incorporates
the wave-like broadening off the ray manifold on an equal footing with the
oscillatory behavior on the manifold. It is thivs “nonclassical” wave broadening in
phase space which will prevent projection singularities at caustics and thereby
permit the uﬁiform description of the z-space field without this interruptiori.
Again, however, the existence of this feature of the representation should be

verified in other cases before one places much confidence in this eikonal method.

4) In spite of these questions of interpretation and épplication of the phase

space eikonal method, it may be verified that, at least in the present harmonic
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oscillator example, the ordering hierarchy (I1.233,11.234) is justified. Of course,
the reason for choosing @ = K ~ ¢~! in the first place was in part based on
the exact result in this case, so that it is no surprise that (I1.278,I1.279) satisfy
this estimate. However, the amplitude §(Z) given in (I1.281) is easily shown to

be more slowly varying
1
g

as expected, and all higher derivatives similarly follow the assumed ¢™ behavior.

~ € -~ (I1.285)

Rl
{
W | -

5) The relationship between the quantization condition for the harmonic 0s-
cillator and the analytic single-valuedness criterion is another remarkable result
of the application of this method to the harmonic oscillator. It would be inter-
esting to explore its generality, although of course it should first be investigated
in regard to the arbitrary-o solutions for the same problem. Thus, while the. form
of £ is to an extent understandably dependent on the smoothing length (even for
an eigenfunction), the quantization condition is an example of a physical result

which should be independent of o.

Another curious aspect of this derivation of the quantization rule is the
way in which the ground state correc\tion factor of 1 arises. In the usual WKB
analysis this factor appears because of phase matching conditions. at the two
turning points, while in the modern EBK theory, it is the Maslov index (due
to the matching of alternate z and k representations of the wave around the
classical ray orbit in phase space, t.e., the irreducible circuit of the torus). Here,
however, the factor of } arises as the contribution of the amplitude §(z) ~
(E)-i’" to the exponent of Z in the final form (11.282) of 7(Z). It may be that
there is a connection between the standard interpretation of this factor in terms

~

of the influence of caustics and the effect here of the phase space amplitude &

~

which has a square root singularity at the fixed point encircled by the classical
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orbit.

Since the contribution of the amplitude G to the quantization condition is
negligibble as (n — 00), a possible practical implication for this method is that the
~ amplitude might Be ignorable altogether. In the case of the harmonic osciilator,
the single-valuedness condition would still apply (resulting in the quantization
condition (II.283) without the &) while the form of £ would remain the same
~ Zz". That both the oscillatory and modulated features of the phase space
representation £ are present, even without including the amplitude §, is of
course due to the complex-valued phase #. Now, however, no singularities will
be encountered in the construction of & since these arise as the effect of fixed

points on §.

8) Finally, it should be noted that the method of'solution employed here did
not in either example rely on the construction of the “physical” or “nonphysical”
trajectories generated by.the Hamiltonian f2(Z, K). This is because in the simple
one-dimensional models examinéd, the dispersion relation was easily inverted | ‘
to determine K(Z) and subsequently the phase &(Z) by integration. However,
due to the complications introduced by the complex canonical transformation
(z,k) — (Z,—1z), this inversion cannot be performed explicitly even for other
simple one-dimensional systems (consider the penduluni Hamiltonian, for which
a transcendental equation for K(Z) results). For most systems then, these trajec-
tories will have to be introduced in order to determine the phasé ®. Now, im-
portant issues are raised in regard to appropi'iate initial conditions in the (%, K)
phase space (for unbouhd systems) or the determination of quantization rules
- (for bound systems) in terms of the orbits either in the “doubled” phase space or
in the physical one. Furthermore, since any practical application of this method

to the investigation of wave propagation (or normal modes) in plasma would
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entail the use of much more complicated dispersion relations (ray Hamiltonians)
than considered here, the translation of these ideas into a tractable numerical

procedure will be necessary.
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5. CONCLUSION

The purpose of Part II was to develop the concept of the phase space
representation of a wave field and to discuss its possible application to the study
of short wavelength waves in nonuniform plasma. The motivation for introducing
this formulation of plasma wave ﬁheory is provided by the recogﬁition that
certain features of a short wavelength field E(z) in z-space (or F:’(lc) in k-space)
can be understood in tef'ms of the properties of the .ray trajectories generafed by
the geometrical optics solution of the wave equation. The rays evolve according
to Hamilton’s equations (with the local dispersion felation for the Hamiltonian)
in the ray phase space (z, Ic) and, in the cases where eikonal theory is valid, it
is the projection of these rays onto z-space which is responsible for the spatial
variation of field intensity. More precisely, the properties of the z- or k-space
representation (E(z) or E(lc)) of short wavelength fields for regular normal modes
(bound, integrable ray systems) and propagating waves are determined by the
manifold in (z, k) space upon which the rays evolve and its projection onto either

z- or k-space.

The phase space representation of a wave is a method for constructing a joint
function W(z, k) on the ray phase space from E(z) or E’(lc) Such a description
of the wave is not unique, and Part II has explored three possible candidates.
Along with the development of each formalism has evolved a set of criteria which
an appropriate represent,atioﬁ should be expected to satisfy in order that it be

useful in the investigation of short wavelength fields:

A) A suitable representation ¥(z, k) should, in some sense, be supported
by the rays in phase space. In other words, the magnitude of ¥(z, k) should be
large in the region of phase space explored by the rays associated with the wave

(e.g., in the neighborhood of the ray manifold) and small in other regions. This
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is to ensure the faithfulness of the representation in accurately describing the

local spectrum, i.e., the values of k present in the wave at the position z.

B) The preceding condition should be softened to the extent thét V(z, k)
i1s a smooth function on phase space. Thus, although its support should be
dominated by the rays, ¥(z, £) should exhibit a wave-like broadening. into the
“non-classical” regions of phase space near ‘the rays. This is the difference
between the classical Liouville density associated with the rays and a useful
phase space representation of the wave: the projection of the .pvurely classical
ray manifold onto z-space produces the purely classical résult with caustic sin-
gularities in the amplitude as encountered in the geometric optics solution. For a
proper non-singular description of the wave field in the short wavelength regime,

the broadening of the ray manifold in phase space muét be included.

C) Of course, an important requirement on any phase space representation is
that it may be given a physical interpretation. The most closely related quantity
of physical interest is the spectral tensor S(k,w) commonly defined for waves in
a homogeneous, stationary plasma, and it is the extension of this concept to a
nonuniform medium for which the various candidates ¥(z, ¢, k, w) are intended.
Indeed, it is just the definition of what is meant by “local spectral tensor”
which is ambiguous and which leads to the introduction of different phase space
representations of the wave field. Certain features of the uniform spectral tensor
should be retained under this extension to the nonuniform case: it is a hermitian
tensor, quad_ratic in the field, and its definition generally involves some sort of
averaging procedure (usually, an ensemble average). Among other things, these
imply that for scalar fields, the spectral function is a positive density on phase

space.

An integral part of the formalism for each phase space representation is
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the derivation of its governing equation based on the underlying wave equation.
Then., if the properties of the representation are compatible with the preceding
requirements, one may investigate whether the phase space equation it satisfies
is amenable to solution, especially in the short wavelength limit. Because of
conditions A and B, one hopes that a method of solution can be found so
that W¥(z, k) is constucted in terms of the ray trajectories in phase space; if
this is possible, it might be expected that this procedure would encounter no
singularities since the rays in phase space do not focus. In other words, the
projection onto z-space for the determination of E{z) would be subsequent to the
construction of a W(z, k) which, in a sense, represents the wave-broadened ray
manifold. Such a descriptioh of the wave provblem'could then have the following

applications:

1) Construction of short wavelength wave ﬁélds in z-space with traditional
WKB techniques will in general encounter caustic singularities and therefore
it must be dvone in a piecewise fashion in separate regions with matching. In
more than one dimension, the nature of the boundary layer solution in thev
neighborhood of these éingularities may become much more complicated than the
typical Airy function behavior of one dimensional turning.points; an abundance
of these singular events might drastically reduce the efficiency and practicality |
of numerical application of conventional eikonal methods. In these cases it may
prove feééible to compute the phase space representation ¥(z, k) in order to
avoid singularities and possibly produce a uniform .approximatio_n to the field
everywhere upon projection onto z-space. In addition, this technique would

supply both z and k£ information.

2) On a more fundamental level; it may be recalled from Part | that the

relationship between short wavelength normal modes and rays is unknown for
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a system whose rays are bound but nonintegrable; there is no theory for the
asymptotic quantization conditions for such irregular modes. In these cases, it
may be that the construction of a suitable phase space representation ¥(z, k)
from its own governing equation will shed some light on these questions. In
the same spirit, the investigation of the nature of ¥(z, k) may prove useful for

propagating wave systems whose rays separate exponentially.

The first example of a phase space representation introduced in Part II
was called the Ordinary Symbol (EE™)(z, k) of the wave field. This terminol-
ogy acknowlédges the mathematical formalism surrounding the treatment of
pseudodifferential operaﬁors, and it was shown that such operators naturally
appear in wave -theory for a nonuniform plasma. "The calculus of Ordinary
- Symbols was derived as the translation of the abstract operator algebra into the
corresponding operations on phase space functions. In this method, (EE*)(z, k)
is the Ordinary Symbol of the abstract spectral or density operator |EYE| and is
thereby quadratic in the field, as desired by condition C above. Application of
the Symbol calculus to the abstract representa{:ion-free operator expression of the

wave equation provided a rapid derivation of the exact equation for (EET)(z, k).

As discussed at the end of Chapter 2, however, this representation has
serious difficulties in meeting the other suggested criteria for a suitable spectral
density. For example, the Symbol (EE*)(z, k) is non-hermitian (inherently
complex for scalar fields) by its very definition in terms of the field E(z). The
entire Ordinary Symbol calculus has many features which render it unacceptable
for application to plasma wave theory; most of these are due to the use of an
“z-uncentered” transform which produces an unsymmetrical treatment of z and
k not compatible with a Hamiltonian ray theory. In addition, the asymptotic

form of (EE*)(z,k) exhibits the caustic singularities of both the z- and k-
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space representations, and hence remains large far into non-classical regions of
phase space (Fig. 30). This formalism therefore violates the intuitive physical
expectations A and C set forth above, although it does provide the simplest

introduction to the methodology of phase space descriptions..

An improffement over the Ordinary Symbol is achieved by considering the -
related formalism of Weyl Symbols. The Weyl Symbol of the field (EE™)w(z, k)
is again based on the spectral operator |EYE| (quadratic in E') but it is con-
structed with an “z-centered” transform of the field £(z); this was immediately
recognized as the temsor generalization of the Wigner function introduced in
Part I. The “centered” transform leads to a spectral density which is hermitian
and to a much more symmetrical treatment of z and k; in fact, the familiar

Poisson bracket of Hamiltonian ray theory appears naturally in the Weyl Symbol

~ calculus.

These promising qualities thus encouraged the further investigation of the
exact phase space equation which governs (EE)w(z, k) and, under ordering
assumptions compatible. with conventional eikonal theory, this equation was ex-
panded and sélved at t‘he lowest two orders. The lowest order result demonstrated
that, in the short wavelength limit, the Weyl phase space representation of the
field is confined to the frequency surface in phase space. The next order equation
was manipulated to provide a concise derivation of the wave kinetic equation
| governing the propagation of the wave action density along the rays in phase

“space.

These consequences of the Weyl Symbol formalism have mixed implications
for the suitability of the Wigner function as a useful phase space representation.
Evidently, (EE")w(z, k) is supported by the rays in phase space and the wave

kinetic equation provides a method for constructing its “amplitude” along the
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rays without singularities. In this approximation, however, the formalism per-
mits the computation of the Wigner function only in the “classical” region of
phase space (that explored by the rays) and, therefore by B above, will produce
singularities in E(z) upon projection onto z-space. Short of including higher
order “wave-like” corrections to this prescription (if practical), this phase space
representatioh is almost “too classical” ;' that is, it is not naturally adaptable for
a proper wave-broadening of the ray manifold so that singularities in z-space

may be avoided.

The final candidate for a phase space representation discussed in Part II
was introduced as a smoothed local Fourier transform and was later identiﬁedv
as the coherent state or Glauber representation of_thé field. Unlike the previous
Symbol formalisms, this phase space description &(z,k) is linear in the field
(a true representation of the field) although it should be thought of as the
complex amplitude of the real non-negative phase space density |&[*(z, k). It
was shown that |£|?(z, k) is the local phase space average of the Wigner function
(EE*)w(z, k) and therefore already promises compatibility with conditions B
and C above: it manifestly incorporates an averaging procedure (albeit, not a
field ensemble average) and its coafse-gra.ining of the Wigner function provides

broadening of the ray manifold.

A further connection with the Weyl Symbol formalism permitted the use of
that Symbol calculus for the derivation of the equation which governs &£(z, k).
In this case, a generalization of the conventional eikonal method applied to this
phase spaceAequation supplied a prescription for solution: the crucial ingredients
of the technique are the use of a complex eikonal phase and the imposition of a
complex structure on phase space. The result of these measures is a procedure

for constructing &(z, k) which treats the “classical” and “non-classical” regions
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of phase space on the same footing and at the same order; £(z, k) is computed in
terms of the rays Aon the ray manifold and in terms of “unphysical” trajectories
off the manifold. In special ex‘amples, the approximate technique produces exact
results with no singularitiés in phase space and therefore exact results with no -

singularities when projected onto z-space.

As encouraging as the indications of Chapter 4 are, the coherent state repre-
sentation also presenté several problems with interpretation and implementé’cion.
The apparent arbitrariness of the spatial smoothing scale seems to cast doubt
on the robustness of the results and no prescription is given for its optimization.
The full implications of the “doubled phase space” and the “unphysical”‘ trajec-
tories in regard to actual coméutation of &(z, k) have not been investigated here;
they certainly requireAa deeper understanding to be useful in a numerical scheme.
Nevertheless, the pos-sibil‘ity exists that with the use of this technique (or perhaps
a numerical adaptation of it) both (1) and (2) above might be achieved.
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APPENDIX A -

NUMERICAL TECHNIQUE

The numerical.results presented in Part I for solutions of the two dimen-
sional Helmholtz equation in the stadium-shaped boundary were obtained with
a computational procedure adapted from a method developed by Riddell and

1

Lepore.® This technique is based on the reformulation of the differential equa-

tion for the eigenfunction ¥n(z) in the interior region §

V2 4+ k2)pa(z) =0 allze S
( n)¥n(2) (A1)
Ya(z) =0 forz € boundary 3S
into an integral equation "
yn{g) (¢ —3) : : :
Br(s)=%kn P ds 7 — 3] K(2,4; kn)Bnlg) =0 3,8 €05 (A.2)

for an auxiliary béundary dipole distribution f,(s). In this expression, ¢ and ¢
range over points on the closed boundary 3S (where 8 is defined) and n(s') is t,‘he
outward normal to the boundary at 8. This is a boundary eigenvalue equation
for the distribution B,(s) in terms of which the corresponding eigenfunction

¥n(z) is constructed by an integral over the boundary
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(22 K(z,8'; kn)Bn(s) z€$§,8e€ds
8
(A.3)
once (A2) is solved. The theoretical framework for this and other more general
i_ntegral formalisms has been systematically investigated by Kleinman and Roach.2
It may be shown! that in this description the kerpel K(z,z';k) is the

derivative (with respect to |z’ — z|) of the free-space Green function for the

two dimensional Helmholtz equation:

K(z,2'; k) = Y1(k|z' — z|) + aJi (k]2 — z]) (A.4)

The Bessel function Y;(k|z' — z|) is singular at £’ = z and alone is sufficient
for the kernel; axi arbitrary component of the regular Bessel function J; may be
included (with coefficient a), how_ever, véithout disturbing physical resuits. The
significance of this poi‘nt lies in the fact that a certain relationship between the
“interior” Dirichlet problem (A.1) and the corresponding “exterior” Neumann
problem lmplles that the integral equation (A 2) possesses spurious solutions;?
indeed, fully half of the eigenvalues which satisfy (A.2) should not be associated
with this proble.‘m. These extra eigenvalues depend on the value of a so that a

variation of this coefficient produces a shift in the spurious eigenvalues while the

real ones remain unchanged.!

The procedure for computing the solutions of (A.1) in a two dimensional

bounded region is then as follows: first, discretize the boundary as a set of

N points g, at which the boundary function takes on values §;. The integral
equation evaluated at the tth point is then expressed as a matrix equation
N
> M(k); =0 for all 4
1) J :

MZ(/C) = (5,']' - ‘_E/CI?;(/C)

Here, I'7; represents some discretized form of one dimensional integration (around
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the boundary, beginning and ending at the ¢th point) and this depends parametri-
cally on the eigenvalue £ and the coefficient « in the kernel. In general, I
may be written

ny - (8; — 8;)

I3(k) = Acy— [(V1(kls; — 8.]) + aJi(klg; — 2])) (A.6)

~J
|i,' -3 :
where A is the boundary point spacing and c;; is a numerical coefficient depend-
ing on the choice of discrete integration. The matrix ‘equati'on (A..S) has non-
trivial solutions if |

detM*(k) =0 | (A.7)

It is important to note that each element of M dei)ends on k (in a com-
plicated manner) so that the usual simple routines for deterinining eigenvalues
which appear only in diagonal elements cannot be used. This'musﬁ be the case,
of course, since M is an N X N matrix which possesses ‘ax.l infinite number of
eigenvalues (as opposed to just V). Thus, the procedure for determining a single
eigenvalue £, from (A.7) relies on trial and error: one must select a sequence of
trial k-values (k%,k2,k2,...) in the neighborhood of k, such that detM*(kT)
approaches zero (i.e., satisfies some condition of smallness for some £7'). 1 have
used a method which follows the graph of detM (k) for values of k equally
separated by ék until a sign change is encountered, and then a Newton-secant

method is employed for rapid convergence to an approximate value for k,.

When a value of k£ has been found which satisfies (A.7) to some desired
accuracy, one must determine whether this is indeed a true eigenvalue of the
“interior” Helmholtz problem or one of the spurious eigenvalues mentioned pre-
viously. This can be accomplished by repeating the same steps outlined above
with a different value of the coefficient a in the kernel. Experience indicates that
a true eigenvalue will remain within the accuracy limits quoted below while a

spurious eigenvalue will be displaced by ten to a hundred times as much. Thus,
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the procedure for determining an eigenvalue must be done twice in order to

- compare the zeros of two functions det M (k) with different a.

With a true eigenvalue k,, the matrix equation (A.5) may be inverted using
standard methods to obtain the eigenvector 3%, the elements of which are the
values of the eigen-boundary function 8%(s) at the discrete boundary points s,. |
Translating (A.3) into a discrete form, the value of the eigenfunction ¥,(z) at
any single point z in the interior of the stadium may then be computed by the
discrete boundary integral

, N
Yn(z) = —1kn D I5(z;kn)B7 | (A.8)

j=1

where the form of I?(_:z_:; k) is the same as in (A.8) with s. replaced by z and

j
k evaluated at the eigenvalue k,. This expression will not yield a normalized
eigenfunction; however, a subsequent standard two-dimensional numerical in-

tegration may be performed if desired.

For the purpose of investigating the ray-wave relationship in the asymptotic
spectrum of the stadium Helmholtz equation, it is significant ’that the integral
formulation and procedure given above permit, in principle, the determination of
a singie eigenvalue anywhere in the spectrum independently without reference to
any other eigenvalue. That is, the fﬁnction det M (k) may be computed for any
value of £ and followed in order to obtain its zeros in any range of the spectrum;
one does not have to begin at £ = 0. This is in sharp contrast with the usual
numerical me‘thods based on the differential equation which generally produce
the lowest N? eigenvalues from the consideration of an N> X N2 matrix. In
those methods, the fundamental matrix arises from a discretization of the two-
dimensional z-space by an N X N grid; here, a much smaller matrix results
from the pairwise interactions of all NV points on the one-dimensional boundary

by (A..2,A.5). Furthermore, with this method only the accuracy of the numerical
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evaluation of an eigenvalue (and the corresponding eigenfunction) depends on

the choice of N, not the number of solutions possible.

The computer code FOLLOW uses a maximum of 100 boundary points
and is dedicated to the boundary shapes of the stadium family given by v =
a/R > 0 (which includes the circle ¥ = 0). Due to the fact that the four-
fold symmetry of the eigenfunctions '1/;,,(;_)' (with respect to reflection across
both axes) is shared by the corresp;)nding boundary distributions £,(g), the
discrete boundary points need only be situated in one quadrant (z,y > 0). The
actual number of boundary points which should be used naturally depends on
the region of the spectrum to be investigated, although I have found that the
crucial consideration in this regard is the “angular” (as opposed to “radial”)
variation of the particular eig'enfunction being determined. In the case of the |
circle where Both i/},, and S, have angular period 27 /n, the use of N equally
spaced boundary points (in one quadrant) will provide 4N /n points per period;
for adequate resolution then, one should use N =& n points. For example,
since the first zero ks9., of Js0 is 57.117, ﬁftj boundéry points are sufficient to |
explore the spectrum near & = 60 where eigenfunctions with n & 50 begin to
appear. In this region, eigenfunctions with much slower angular variation (such
as Ja(k2.197)sin 26) are more cofnmon and are much more accurately determined:
the boundary point spacing is much less sensitive to rapid radial oscillations in
¢n(g:_j. While the simple ruie N =~ n is useful, I have studied the accuracy
of solution versus N for a fixed region of the spectrum and have found that
‘the optimum number of boundary points (taking into account computer time
and storagev). is slightly less than the rule suggests; that isv, N = 50 is adequate
for 80 < k < 75 where n < 68. These arguments can be extended to the
general stadium boundary with appropriate interpretation of “angular” (along

the boundary) and “radial” (transverse to the boundary) oscillations of ¥n(z).
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Selecting a value of a for the kernel (A.4) and an initial trial value £°, the
subroutine MATRIX of FOLLOW constructs the matrix M*(k°) by (A.5,A.6).
Care must be taken to account for the principal value of the singularity which
arises in the diagonal elements (the endpoints of the integral s; = 3,), especially
for the point which is nearest the boundary break between straight segment and
arc (due to the limiting form of the outward normal dot product). FOLLOW
then uses a simple trapezoidal integration scheme (c;; = 1 in (A.8)) of the closed
line integral (A.2,A.5) and, since M represents the entire boundary in terms of
| just one quadrant, each element is the signed sum of four symmetry dependent
contributions. The determinant of M*(k°) is computed by a standard routine

and saved.

A new trial value is then selected by k! = k° + 6k, where 6k is an increment .
chosen to be much smaller than the mean _separ.ation of eigenvalues in this region
of the spectrum, and the determinant of M>(k') is computed as above. This
process is repeated as k is stepped by &k and several checks are applied after each
determinant is computedjin order to determine whether a possible eigenvalue
has been detected. The simplest indication of this event is a change of sign in
det M *(k), although the existence of closely spaced eigenvalues (separated by
much less than ék) requires a more careful analysis of the behavior of the graph
of the determinant. Therefore, the second derivative is approximated by each
sequence of three consecutive determinant evaluations in order to determine
if the graph is convex away from the k-axis; such an event might signal a
double crossing (pair of eigenvaiues) or even a higher order even-multiple near

degeneracy. In both cases, FOLLOW returns to the trial value of k preceding

an event and temporarily reduces the step size 6k by a factor of five.

Again, the code increments k& (with the finer step) and applies the same
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criteria outlined above in the search for a sign change in det M*(k). If this is
detected under the finer search, a Newton method is immediately invoked for
rapid convergence; the condition for convergence is that Newton generated trial
values remain stationary to within |[£"+! — k™| < 107% . This approximate zero
of det M (k) is saved and then the fine increments continue through the original
interval in search of multiple axis-crossings; finally, the preceding routine is re-

entered with the original value of 6k.

After examining a portion of the spectrum and obtaining a set of consecutive
zeros {k3}, the entire procedure must be repeated with a different value o in
the kernel in order to shift the spurious eigenvalués. The new set {k‘,’;l} is
compared with the old set, and values which agree to within |k* — /c“’] <1073
~ are retained. This criterion is compatible with a mean eigenvalue separatibn
(Ak) =~ .08 (for £ = 100) and the numerical accuracy reported below; tests have
shown that a true eigenvalue will change by |k* — k"'l ~ 10~* with the larger
value of « yielding consistently the more accurate numerical computation of the

actual eigenvalue.

This system for determining eigenvalues evidently has the drawback that
it may omit good eigenvalues or even mistakenly include spurious ones. Inde.ed,
in thé case of the circle, I found that out of 451 eigenvalues in the range 50 <
k < 100 computed by the code FOLLOW, 16 eigenvalues were omitted and 13
were erroneously counted (the true number is 454). In order to detect a good
eigenvalue, both the @ and ' run must succeed in finding a zero of det M (k) and
this may fail for several reasoné: closely-spaced multiple crossings are difficult
to treat without error and the existence of .spurioué zeros only complicates this
problem. Furthermore, for a given number N of boundary points, the function

det M (k) may not be determined accurately enough for some mode (especially
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one with rapid angular variation) so that the numerical approximation of t.hat
function does not even possess a zero in the neighborhood of the true eigenvalue.
Even if both runs detect a zero which corresponds to a true eigenvalue, thé
comparison process may discard this case if the change'vin' a has shifted this
eigenvalue by more than the criterion 0.001; this has been observed in the case
of high angular momentum modes with insufficient boundary points. Spurious
eigenvalues are apparently included when the change of kernel shifts a spurious

zero to within 0.001 of a zero detected with the previous value of a.

As to be expected, these disadvantages can be reduced at the expense of
more computer time and storage capacity. The sevarch increment dk can be
decreased in the attempt to treat multiple zeros, although a particular segment
of tﬁe spectrum will then require much more time to 'invest,igate; moreover, even .
though the mean eigenvalue spacing {Ak) ~ 8/k (for a single symmetry class)
provides a basis for selecting 6k, the graph of detM (k) may exhibit arbitrarily
-complicated local behavior as & increases, so that probably no choice of increment
will be completely satisfactory. The number of boundax‘j points can be increased
in the attempt to increase accuracy at the expense of retaining a larger array M
in core, and this too slows the execution time as N? elements must be computed
at each trial value of k with fairly complicated Bessel function evaluations.
Finally, if the accuracy and reliability of the zero-finding routine can be increased
with these changes, the a — o' compé.rison criterion can be decreased so as to

reduce the number of spurious eigenvalues included.

The numerically determined list of eigenvalues for the v = 0 (circular)
case is shown in Table I for the values of 50 < k£ < 100 (odd-odd parity
only). Comparison with the exact list in Table II (generated with a Bessel

function routine) produces the following empirical absolute error statistics: 97%
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of the eigenvalues are correct to within +0.001 while 90% have error less than
+0.0005. The maximum error detected was 0.023 for an extremely high angular
momentum mode (Jg2, kgo.; = 90). In point of fact, the numerical eigenvalue
is consistently larger than the exact one so that a study. of error versus kernel
coefﬁci.ent‘a could be employed. to improve accuracy by extrapolation. A list of
stadium eigenvalues is given in Table III (Appendix B) although, of course, no
comparison with ex#ct eigenvalues is possible; it has been assumed, therefore,
that the error limits (~ +0.001) determined for the case of the circle can be

applied to the v > 0 case as well.

With a numerically computed éigenvalue k., the matrix M(k,) may be
inverted (¢f. Eq.(A.5)) with standard routines in order to obtain the eigen-
boundary distribution £,(s;). The N-element one-dimensional array g, and the
eigenvalue k, are the only two crucial ingredients necessary for the construction
of the eigenfunction ¥,(z) in the interior by (A.3,A.8); the code FOLLOW stores
this information in a binary file to be read‘ subsequently by the program PIX for
this purpose.

The separation of eigenvalue computation and eigenfuction construction is
a great advantage of this numerical technique based on the integral formulation
(A.2,A.3). For example, since the N-element vector‘ﬂn contains almost all
the information necessary to reconstruct the-eigenfuﬁction ¥n, this information
for a large number of eigenfunctions requires much less computer storage than
the standard methods based on the differential equation (A.l) where the actual
values of each ¥ at each z must be stored. A far greater advantage provided
by this technique, howew}er, is its capability for constructing the values of~an
eigenfunction over ariy subset of the interior (or even just at a single point); this

should be contrasted with the standard methods, which must always determine
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50.8447 51 58.5997 191 65.9671

1
2 59.6783 52 58.6021 182 65.1593
3 57.8448 - 53 §8.6748 103 65.2418
4 50.9378 54 58,7709 . 194 65.3815
5 51.8123 ) 55 58.8731 105 65.4504
6 51.6533 . 56 58.8776 106 65.4625
7 51.8122 7 59,2024 197 65.5004
.8 51.8601 58 59,2954 108 65.5885
9 52.00877 59 59,4051 109 65.8564
19 52.0162 60 59.5008 1lg 66.3080
11 52.1999 61 59.8999 ' 111 66.3945
12 52.2795 ; 62 60.3531 112 66.5877
13 52.3026 : 63 60.3871 113 66.7927
14 . 52.4716 64 60.4195 114 66.8606
15 52.6589 65 60.6579 115 67.0897.
16 52.9375 66 68.7658 116 67.1265
17 53.3484 67 60.8619 117 67.2582
18 53.3738 68 60.9448 118 67.3120
19 53.4207 69 61.0998 119 . 67.5291
29 53.9387 78 61.1917 129 67.5906
21 54.1835 71 61.2393 121 67.6976
22 54.3955 72 61,2877 122 67.7112
23 54.4327 73 61.5278 123 67.8595
2 54.4378 74 61.7569 124 67.8786
25 54.7162 75 61.8741 125 67.9819
26 54.8517 _ 76 61.8830 126 . 68.8670
27 55.0285 7 61.9193 127 68.2143
28 55.1848 78 61.9323 128 68.5340
29 55.2466 79 62.0163 129 68.8383
20 55.4406 . 8g 62.5837 139 - 68.9295
© 31 55.6217 81 62.7842 121 69.1160
32 55,7227 82 62.80739 132 69.2268
33 55.7297 83 62.8761 123 69.2367
34 55.8851 . 84 63.1525 134 69.6829
35 55.9885 85 63.1832 135 69.6061
36 56.3460 86 63.2072 136 69.6267
37 56.3967 87 63.2982 137 69.7078
38 56.6319 88 63.3790 138 69.890:
39 56.6584 v 89 63.5250 139 69.953¢8
49 . 56.90993 90 63.6442 140 70.8700
41 57.1152 91 63.7597 141 79.3448
42 57.1171 2 64 .8630 142 79.3642
43 57.1858 93 64.2361 143 70.4487
44 57.6539 94 64.345: . 144 78.4885
45 57.8146 . 95 64.4123 145 78.7654
4 58.8436 ' 96 64.5453 146 71.822%
2 58.096072 97 64.6949 147 71.1878
48 58.332 , 98 64.9126 148 71.2282
49 58.3579 99 64.9542 149 71.2622
58 58.5040 199 65.9123 158 71.3521
Table I. List of numerically determined eigenvalues for circular v = 0 case

(odd-odd parity).
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151 71.3618 201 76.6480 283 82.9158
152 71.3733 . 202  76.8178 252 82.9380
152 71.4451 283 77.1868 253 82.9572
154 71.6486 204 77.1333 254 82.1348
155 71.6816 285 77.3184 255 82.3181
156 ° 71.8115 206  77.3421 256 82.3751
157 71.8884 : 207 77.4528 257 82.4826
158 72.2783 298 77.5239 258 B2.5269
159 72.1996 . © 289  77.6531 259 82.8087
168  72.2618 219  77.6884 260 82.8537
161 72.3645 211 77.7304 261 82.9611
162 72.7362 - 212 77.7648 © 262 83.0786
163 72.8952 213 77.7664 263 83.1721
164 72.8546 214 - 77.8993 264 83.2156
165 73.0818 215 78.2117 265 83.2812
166 73.2732 216 78.2125 266 83.2984
167 73.5878 217 78.3305 267 83.4393
168 73.5865 218 78.6187 268 83.5985
169 73.6347 219 78,7024 269 83.6565
170 73.7556 228 78.8063 279 83.7129
171 73.8198 221 78.8339 ‘ 271 83.7168
172 73.8587 222 78.8475 272 83.8244
173 73.9374 223 78.8693 273 83.9439
174 74.9587 . 224 79.08254 274 84.2154
175 74.1661 225 79.2777 275 84.1056
176  74.1829 226  79.5733 276 84.1371
177 74.2489 227 79.6645 277 84.1629
178  74.2623 228  -79.7634 278  84.2935
179  74.3725 229  79.7974 279  84.4635
1289  74.4219 239. - 79.8249 289 - 84.7987
181 74,4832 231 79.8923 231 84.3117
182 74.5972 232 °79.9693 282  84.9312
183 74.5878 - 233 79.9960 283 84.9697
184 74.7974 234 82.1129 234 85.0977
185 75.0764 235 88.2741 285 85.1274
18 75.9986 . 2386 89.4316 286 85.2741
187 = 75.2528 237 89.4999 287 85.4644
183 75.6833 228 84.5135 283 85.5066
189 75.6380 239 88.6745 239 85.6827
199 75.6552 - 240  80.7542 299 85.7078
191  75.7966 241 88.7916 291  85.7946
192  75.8281 242 88.7987 292  85.9612
192 75.9928 243  80.E728 293 . 86.£393
194  76.8673 246 80.96.7 294  86.1721
195 76.3351 o245 Bl.g34d 295  86.2564
196 76.4874 - 246 B1.0B6: 296 86.3456
197  76.4318 247 8l.2274 297 86.3794
198  76.4373 2+8  81.2853 . 298 86.6028
199  76.4582 249  B1.5753 299 86.7899
208 76.4711 258  81.6021 308  86.7868
(
Table 1. List of numerically determined eigenvalues for circular v = 0 case

(odd-odd parity).
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391 86.8119 351 91.6988 491  95.9165
302 86.9738 352. 91.6506 492  96.9123
393  86.9985 353  91.6915 493 96.0610
394 87.0889 354  91.7608 494 96.9847
365 87.1578 355  91.938: 495  96.2124
396 87.2676 356 92.9702 4096  96.2729
397  87.2907 357  92.0906 407 96.4187
308 87.3262 3568 . 92.1083 408 96.4593
399  87.3887 359  92.1731 409  96.4928
310  87.5434 368  92.1822 419  96.5226
311  87.5484 361  92.3266 411 96.5848
312 87.79082 362  92.4914 412  96.6393
313  87.7109 363  92.4492 413 96.7551
314 88.0418 364  92.6823 414  96.7642
315 88,1246 365 92.6623 415  96.8249
316  88.2377 366 92.6861 416  96.8579
317 88.2954 367 92.9254 417  97.9395
318 88.3168 368  92.9449 418  97.2480
319 88.3184 369  93.9837 419  97.5942
329  88.3735 378 93.1201 428  97.6646
321 88.4853 371 92.2618 421  97.6927
322 88.5764 72 93.2709 422  97.7241
323  88.8215 372 93.2782 423  98.9669
324 88.8784 37.  93.4918 424 98.9918
325  89.9236 375+ 93.442% 425  98.1858
326 89.1918 376  93.4944 426  98.1932
327 89.2218 377  93.5085 427  98.2733
328  89.2413 1378  93.5786 428  98.3945
329  B9.4511 379  93.7146 429 98,3478
339 89.5169 388  93.7639 439  98.4295
331  89.658i 381 94.0198 421  98.4440
332  89.6677 . 382  94.1971 432  98.6145
333 89.7125 383 94.2618 433  98.6795
334 89.7255 384 94,3019 434 98.7168
335 89,7648 385 94.4128 435 98,7531
336 89.9114 386 94.4610 436  98.8621
37 89.9474 367  94.48098 437  98.8981

338  89.9664 388. 94.6109 438 99,9191
339 99.1123 389  94.7142 439 99,1799
34  99.1226 399  94.7785 440 99.2428
341  99.2337 391  94.8932 441 99.2494
342 90.2540 392 94.9684 442 99,4250
343 S¢.380°2 393 §5.1993 443 99,4481
344  90.3823 394 95,2587 444 99.4593
345 90.4888 395 95.3374 445 99,4712
346  90.6634 396 95.5784 446 99.5662
347 99.9139 397 95.6176 447 99.6668
348  9£.9936 398  95.7288 448 99.7270
349  91.2637 399  95.8415 429  99.9654
350 91.4112 498  95.8534 450 99.9858
451  99.9946

7
Table I. List of numerically determined eigenvalues for circular ¥ = 0 case

(odd-odd parity).

Al
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mn mn mn

1. 16 9: 50.04%000 51. 28 7:58.332024 101, 52_2: ©%.95399%
2o YI0 T 5u. 078237 52. 8 15:53.35780% 102. 40 5: 65.012199
3. 44 1:50.543868 53. 46 2:58.503897 103, 4 19; 65.066995
4.2 7: 50.937762 S4T6 16:56.599605 104. 2 20: 65.155273
5. 28 5:51.012230 55. 20 10: 53.002021 105. 20 12;: ©2-2%178a
6. 12 11: £1.211967 56, 38 AT 5o.0ln7>01 106. 28 9. ©5.381l4le6
7. 10 12: 51.653251 57. 4 17:54.770835 107. 58 1: ©0.450T40
8. 32 4:5L.812158 38—'278“58 8§73Ci5 108. 44 4. ©2.%02376
9. 20 B:51.8600z0 59, 1 58.877508 " To9 48 3. ©5-5002%5
10. 8 13: 52.007051 60. sz : 59.203234 110, 34 7: ©65.538282
11. 40 2:52.G16147 61. 18 11: 59.295370 TII 18 13, 55-856308
12. 36 3: 52.199781 62, 26 8: 59.405008 112. 26 10. 662307922
13. 6 14: 52.279454 63. 32 6: 39+5GUT01L T3 06 16: 562394409
14. 26 6:52.302503 64. 16 12: 59.898978 4. 38 6. ©6.587538
15. 4 15: 52.471551 65. 24 9: 6U.352966 15 52 8, 0. 752507
16. 2 16: 52.5606023 66. 36_5: 60.386965 116, 14 15: 0800533
17. 18 9: 52.658883 67. 14 13: 604413410 117 54 2. 67 C5685¢
18. 46 1:52 «937376 68, 48 2. 00.657746 118. 24 11: 136395
19. 16 10: 53.3483512 69. 30 7: 0V.164870 119. 12 16: ,_',7"2,521,4
20. 30 5:53.373732 70. 12 14: 60.861804 120. 42 5: 67.311894
21. 24 7: 53.42J685 71,40 4: 60.544700 121. 60 1: 67.228785
22, 14 11: 53.538666 72. 44 3: 61.090625 129+ 10 17: ©7.550471
23. 34 &4: 54.109690 73. 22 10: 61.151054 123. 50 3: ©7-0974us
26, 42 2: 54.183413 74. 10 15: £1.230198 67.711090
25, 22 8:54.395428 75. 5% T 61.267472 125. 8 18: 67859427
26. 38 3:54.432579 76. 8 16: 61.527735 %2_6_._10_3_“'_3_7_02&
27. 12 12: 54457777 77, 6 17: 61.756825 27. 22 12: o©7.875968
28. 28 6: 54.716125 78. 3 6: 61.874020 128: 36 '7: 67.981747
29. 10 13: 54851619 79. 28 87 61.582942 129.77619: 084006550
30. 48 1:55.028330 80. 4 18: 61.919240 130. 4 20: 68.214174
31, 8 14:55.184748 BT 20117 61.532273 131. 2 21: 68.3U2189
32, 20 9: 55.246575 82. 2 19: 62.016222 132. 20 13: 68.533911
33, 6 15: 5540552 83. 18 12: 6£2.583604 133. 28 10: 63.838234
34, 4 16: 554621051 B4 I8 57 62.704100 134, 40 6: 08.929325
35, 32 5:55.722647 85. 50 2: 6£2.807699 135. 18 14: 69.115918
36. 2 17:55.729627 86. 26 J: 62.816057 136, 34 8: 69.2267i68
37. 26 7:55.885059 87. 16 13: 53.152428 137. 56 2: 69'23?"7"
35 18 T0: 55.555447 88, 37 77 63.133003 138. 44 5: 69.6U3750
39. 44 2: 56.345886 89. 42 4: §£3.207068 139. 62 1: §9-°057°6
‘ 70. 36 4:50.396635 YO 48 3: 63.298075 140. 16 15: ©Y.L20050
41. 16 11: 55.0631876 91. 56 1: 63.369737 141, 26 11: 69.707745
27. 40 3: 56.055213 92, 14 14: ©3.044117 142, 52 3: 69.88%922
43. 24 8:56.909747 93. 24 10: 63.759616 143. 48 4: 69.953628
72,30 6 57- 11510z . 94, 12 15: ©4.062938 144, 16 16: TU.U09800
45. 50 1:57.116899 95. 36 6: 64.236018 145. 32 9: T70.34%717
%6, 14 127 57.18%858 96, 30 8: 64<345037 146. 38 7: TU-3640-6
47. 12 13: 57.653844 97. 10 1h; 64.412272 147, 12 17: 70.448608
78,77 9: 57-.810491 98. 22 11: ©6%<55207 148. 24 12: T0.48b420
49. 10 14: 55.043588 | 99, 8 17: 64.6G4781 149. 10 18: 70.765235
30 % 51 55.C00004 100, 6 18: 04.91251% 150. 819 71.0215%3

Table II. List of exact eigenvalues for circle (odd-odd parity only).
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m n mn mn
151. 22 13: 71.18B700% 201. 40 8: 76.4>57955 251. 30 13: 81.601899
152. 6 20: J1<2200c7 202. 14 18: 76.4710320 252, 68 2: 824013210
153. 42 6: 71.262045 203. 54 4: 16.647776 253, 74 1: 82.037056
154. 30 10: 71.352012 204. 12 19: 76.816920 254. 18 18: B2.UDTUZ6
155. 4 21: 71.36938u0 205. 10 20: 77.106734 255. 48 7: 82.133751
156. 58 2: 11.373033 206. 24 14: (1.133179 256. 36 11: 32.317668
157. 2 22: 71.444989 207. 32 11: 77.318214 257. 28 14: 82.374938
158. 36 8: 71.648425 208, 8 21: 77.341955 258. 16 19: 62.482482
159. 64 1: 71.6811e8 209, 44 7. 17.451818 259. 42 9: 82.526692
160. 20 14: 71.811361 210. 6 22: (1.5251748 260. 52 6: 02-0U0%15
161. 46 5: 11.833269 211. 4 23: 77.652991 261. 14 20: 82.8535060.
162. 54 3. 72.078039 212. 38 9: 17.085z17 262. 64 3: 82.960580
163. 50 4: {Zelwdsoo 213. 2 23: 717.730297 263. 26 15: 83.078393
164, 28 11: T2.26U%03 214. 22 15: 17.764705 264. 12 21: 83.171988
165. 18 15: 12.50+370 215. 64 2: 77-.765918 265. 56 5: 83.215297
166. 40 7: 72.73604> 216. 70 1: 7T7.898660 266. 3% 12: B2.281010
167. 34 9: 12.805076 217. 48 6: f8-2llac? 267. 60 4: 63.297980
168, 16 16: 72.850543 218. 30 12: 78.212388 268. 10 22: 83.439189
169. 26 12: (>.udU93¢ 219, 20 16: (8330415 269.. 46 8: 33.595246
170. 14 17: 73.273097 220. 60 3: 78.613263 270. 8 23: 63+656317
171. 60 2: T713.5J6o0Y94 721. 52 5: 13.702136 271. 40 10: 83.71208%
172. 46 6: T3.586289 222. 36 10: T78.800165 272. 24 16: B5.7l0640
1737 12 18: 737634042 273. 18 17. 718-3833760 273. 6 24: B3.824284
174, 66 1: T73.755070 224. 42 8. 73.847318 274. &4 25;: 83.543775
175. 24 13: 12.019051 225. 56 4: 18865040 275. 2 26: b4.015286
176. 32 10: 73.8'5\)533 226. 28 13: 19.025295 276. 76 1: B4.104450
1777710 19:  73.937299 227. 16 18: 19.2776006 277. 70 2: 04.130%22
178, 38 8: 74.058587 228. 14 19: T79.664331 278. 32 13: B4.1627G2
179. 48 5: T14.1659006 229. 26 14; V9706372 279. 22 17;: 844295352
180. 8 20: T*+.1827¢7 230. 46 79.750754 280.. 50 7: 84.463253
181. 56 3: 714.262004 W) 824734 281. 38 11: 84.1798460
182. 6 21: 74.372373 232. 66 2 79.891745 282. 20 18: 84.811577
183. 52 4: 7"-"2§°f7 233,72 1: 719.6568478 283. 446 9: 09«93US10
184, 22 14: 74.483151 234, 12 30. 79..995906 284. 30 l4: 84.969521
185, 4 22: 744507115 235. 40 9: 9YU.I1I17073 285. 54 6: 65.U97329
186. 2 23: 74.587687 236, 10 21: 6V0-27394% 286. 66 3: 65.120814
187. 30 11; 74.7973¢0 %37.724715: 80.431503 387, 18 19: 65.2735C1
188. 20 15: 15.076308 238, 8 22: 80.499152 1288, 58 5: 85.46398%
189. 42 7:75.098431 239. 50 6: 80.513239 289 62 4: 83-5J5109
©190. 36 9: 15.252615 240, _6 23; 80.074356, 290. 16 20: 85.082+55
191. 18 16: 75.0032206 241, 32 12: 80.753987 291 58 15: S5 7U0E6]
192. 62 2: 15.637610 242 &7 3. 80.791150 292, 36 12: 854794430
193. 28 12: 75.655117 243, 4 24: 9UG.798534 597 25 8. 35.950922
194, 68 1: 12827545 264, 2 25: 80.872826 204. 14 21. 66.039140
195. 46 6: 75.902589 245, 56 5: 80961444 795, 42 10; 06-T=5%73
196. 16 17: fo-0o7z13d 246, 22 16: 8l.034264 %' 78 1: Bo.170708
197, 34 10; 76.354919 247. 58 4: B1.085u57 e 55475
198 26 13: To-431671 248. 44 8: Bl.227216 ?,28 Z, 23 36305490
199. 50 5. 70.437072 249. 38 10: 81.205158 299. 26 16: 86. 37919
200. 58 3: 10.442044% 250. 20 17: 81i.575115 : o 198

300.

10 23: 86.602668

Table II. List of exact eigenvalues for circle (odd-odd parity only).
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301. 34°13: 86.708784 351, 20 20: 91.2635438 401. SO 10: 95.801103
302. 52 7:86.735075 352, 56 7: 9l.4l0758 %02. 12 25: 95.8551838
303. 8 24: Bo.B8ll78/ 353, 72 3. 91.637769 4073. 76 3: 95.914377
304. 6 25: 86.973606 354. 30 10: 9l.650424 404. 60 7: 9o.ullood
305. 24 17: 80990277 355. 18 21: J4.05912C0 405. 36 15: 96000706
306. 4 26: 87.088761 356. 38 13: 91.76uU550 %406. 10 26: 99.004450
107. 2 27: 67157683 35760 6: 91.929599 407. 26 19: 90.212160
308. 40 11: 87.261362 353._16 22: 92.070055 408. 8 27: 90.272712
309. 68 3: 87.290000 159, 50 -9: $2.09uU274 409. 6 28: 90.418534%
310, 46 Q: 37325805 2360. 68 4:92.1075006 %10. 64 6: Jo-wso3al2
311, 56 6. 67.380297 361. 44 11: $2.17275% 411, 88 1. Y0.486512
312. 22 1B: 87593250 362. 64 S: 92.181532 217 72 4 99-4%050Y
313, 32 4. 87.548216 363. 28 17: 92320347 413, 4 29: 96.522379
4. 60 S: 671707760 364, 84 1;92.3063120 6. 2 30, 95.584501
315, 66 4: 37.710285 365. 14 23: 92.401167 15 68 5. J0-G365<1
316. 20 19: 68.040781 366, 78 2: 92.600048 416. 24 20: 647324900
317. 80 1: 88.235879 367. 36 14: 92.002074% T17 2 13: 96763813
318. 38 12: 88-255140 368. 12 24: 92085572 418. 82 2: 9u.821501
319. SO _8: B8.315711i 369. 10 25: Y4.923172 419. 54 9: 96.823403
320. 30 15: 86.318220 370. 26 18; 92.944712 420. 34 16: 96.85760%
321, 74 2: 63.372480 371, 54 8:; 93.0U3300 421, 48 1l: 97.035043
322. 18 20: 63.485125 372. <8 26: 93.119890 422, 22 21:97.247735
323, 44 10: 88.5756l40 373. 42 12: 95.261459 %23, 32 17: 97.593965
324. 16 21;: 88618197 374. 6 27: 93.270681 424. 58 B8:97.00401%
325. 28 16: 89.023304 375. 4 28:93.370J3d %25, 20 22: 97.692480
326. 54 7: 69.1uis94 376. 48 10: 95.401457 426. 40 14:97.723770
327. 14 22: 89.221607 377. .2 29: 934442510, %27. 78 3:98.064707
328.° 36 13: 89.241111 378. 34 15: 93.494154 478, 18 -23: 94.050725
329. 70 3: 8B9.4503275 379, 24 19: 93.508328 A;; 46 12: 98.180400
330. 12 23: 89.516710 380. 58 7: ¥3.7l%Uc4 430, 52 10: 93.192662
331. 58 6: 89.657627 381. 74 3: 93.76259% 431, 30 18:98.273047
332. 26 17: 89.007417> 382, 22 20: 94.01960y 432. 62 7:98.303772
333: 48 9: 89.712200 383. 62 6: 94.1964567 %33, 16 24: 98.445792
334 ..42 11: 89.725270 384, 32 16: 94.261517 414, 00 1:98.546847
335, 10 24: 89.764629 385. 40 .13: 94.267882 %35 38 15: 96.614130
336. 66 4: 89.910694 386. 70 4: J4.320Ubac 436, 74 4:58.677907
337, 62 5. 89.946870 387. 66 5: 94.4116953 %37, 66 6:98.715831
338. 8 25: 87.9606276 388. 86 1: 94.4252063 438. 14 25:58.752b840
339, 34 14: 90.112082 389. 52 9: 94.460562 %39. 70 5.98.86U815
340. 6 26: 90-122330 390. 20 21: 9+.430505 440, 28 19: 98.897845
141, 4 27. 90.233500 391, 46 11: 94-610543 %41, 84 3:.98-929472
342. 24 18: JU-253752 392. 80 2: I+.711975 442. 12 26:99.018841
343, 82 1: 90.300004 393. 18 22: 94.893028 443, 56 9:99.179345
344, 2 28: YU.ou0ULS 394, 30 17: 94.59638139 6&14. 10 27: 99.24201 0
345. 76 2: 99.4871578 395. 38'14: 95.199040 “5' w0 13:99.248982
346. 52 8: 90.663u41 396, 16 23: 95.258470. 446, 8 28:99.424816
347. 40 12: 90.7339[1 397. 56 8: 95.336843 45‘7. 36 16:‘99.4397&1
WK, 22 19, 9J.735029 398. 14 24: ¥2«570lov 458. 50 11:99.458793
3649, 32 15: 9v.913037 399. 28 18: 95.617394 549‘ 26 20:99.47056-;
350. 46 10: 90.993294 400. 44 12: 95.7<8420 450, 6-29:99.565993
451, 4 30:99.0060540

452, 2 31:99.720765

453, 60 8:99.9835102

454, 24 21:99.994343

Table II. List of exact ei.genvalues for circle (odd-odd parity only).
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the eigenfunction everywhere (and oﬁly at the fixed grid points). A much higher
resolution of the spatial structure of short wavelength modes is therefore possible,
as the interior of the region may be broken up into many smaller areas which can
be treated independently; this is ‘important for computing statistical measures

of the eigenfunctions such as the locally averaged spatial correlation function.

Since ¥,(z) can be constnicﬁed on an arbitrarily fine grid, it is possible to
check the accuracy of the numerical eigenfunction by directly computing (A.1)
with a finite difference approximation for the Helmholtz operator. In this way
[ have found that eigenfunctions constructed by (A.3,A.8) from the boundary
distributions locally satisfy the Helmholtz equation to within an error of IVO"4
almost everywhere in the interior for values of k = 65 and for both v = 0
and ~ = 1. The error is greater when % is evaluated wi_thin a band around
the- boundary of 'Qvidth apprdxixhately given by the discrete bo’undai'y' point
separation; therefore, points within this band are generally not included in the

analysis of the statistical properties of the eigenfunctions.
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*SELECT BOX=B63.ACCOUNT=950LBA,TTYECHO=YES
*FILE NAME=MASTER
CALL LINK {("UNIT59=TERMINAL ,UNITS5=(INPUTFOL,OPEN),&
UNIT6=(0QUTPUTFOL.CREATE) ,UNIT9=(SAVTAP,CREATE,SEQ)//")
DIMENSION EKVEC1(580),EKVEC2(5088) ,E(508)
COMMON/NUMBS/AB,PI ,R.D,N,EK,EPS
COMMON/SHIFT/ISHIFT,BITJ
COMMON/DIP/D1(188)
CRIT=1.8E-3
VEPS=1.0E-8
ISHIFT=1
NVEC=509
PEAD(5,3008) AOJ,DA ,NA,SHIFT]1,SHIFT2,N,EKO,DEK,ISX,ISY,NIT,INVERT
300 FORMATI(F6.4,F7.4.13,2F4.1,14,F13.8,F6.4,212,15,12)
WRITE(6,301) AO,DA,NA,SHIFTY,SHIFT2,EK8 . DEK,N,ISX,ISY,NIT,INVERT
WRITE!59,381) A9,DA,NA,SHIFT]1,SHIFT2,EKA,DEK,N,ISX,ISY.NIT,INVERT
381 FORMAT(" AP,DA,NA=",2{(F6.4,3X),I13.5X," SHIFTS=",2F5.1,/," EKB,DEK=",
.F14.8,F10.4,/," N,ISX,ISY.NIT,INVERT=",516) ’
WRITE(9) AQ,DA,NA,SHIFT!,SHIFT2,H,EK@,DEK,ISX,ISY.NIT,INVERT

(e XeXp]

DO 18 I=1,NA

AsAG+{I1-1)*DA

WPITE(6,383) I,A

11=2*1-1

WRITE(6,302) I1,SHIFT1

BITI=SHIFTI

KFX=g

ILOK=1

1SPC=1

IWRIT=1

CALL EIGA(A,1.,EKE,DEK,ISX,ISY,NIT,KFX,ILOK, ISPC,EKVEC],NVALL, IWRITY
c VRITE(6,408) KFX,ILOK,ISPC,IWRIT,NVALI
400 FORMAT(" KF,ILOK.ISPC,IWRIT,NVAL=",5I4)

I1=2*1
WRITE(6,3082) II,SHIFT2
BITJ=SHIFT2
KFX=0
ILOK=1
ISPC=1
IWRIT=0
CALL EIGA(A,1.,E¥O,DEK,ISX,ISY,NIT,KFX,ILOK,ISPC, EKVECZ NVAL2 ., IWRIT)
c WRITE(6,4089) KFX ILOY ISPC IWRIT NVAL2
362 FORMAT(///," CALL““ 13,5X, SHIFT‘".F3 1)
363 FORMAT(///7//7," ITERATION=".I3,5X,“ A=" F5.3}

KK=2

DO 38 J=1,NVALI

IF{J.EQ.1) GO TO 25

EDIF=EKVEC1(J)-EKVEC1{J-1)

ADIF=ABS(EDIF)

IF(ADIF.LE.VEPS) GO TO 38
25 CONTINVE

DO 29 K=1,NVAL2 -

IF(K.EQ.1) GO TO 28

EDIF=EKVEC2(K)-EKVEC2(K=~1)

ADIF=ABS(EDIF)

F(ADIF.LE.VEPS) GO TO 29
28 CONTINUE

DELEK=EKVEC1{(J)~-EKVEC2(K)

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz
equation in stadium-family boundary.
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ADEL=ABS{DELEK)
IF(ADEL.GT.CRIT) GO TFO 29
KK=KK+1
E(KK)}=EKVEC2(K)
29 CONTINUE
39 CONTINUE
WRITE{(6,304) KK
304 FORMAT(////.," GOOD EIGENVALUES, NUMBER=",15,//)
DO 31 K=1,KK
WRITE(6,305) K,E(K)
3285 FORMAT(2X,14,F28.8)
31 CONTINUE
WRITE(59,3086) I,KK
306 FORMAT(" GOOD ONES FOUND: I,KK=",215)
WRITE(9) KK,E

IF(INYERT.EQ.8) GO TO 1#
WRITE(6,387)
387 FORMAT(/////,” DISTRIBUTIONS =-==°,///)
DO 48 J=1.KK
DEKN=DEK/2
EKX=E{(J)~-DEKN
KFX=1
ILOK=1
- 1SPC=8
IWRIT=9 )
CALL EIGA{A,1.,EKX,DEKN,ISX,ISY,18,KFX,ILOK,ISPC,EKVEC2,NVAL2,IWRIT)
WRITE(6.388) J,EK |
323 FORMAT(///,14," K=*,F20.8,//)

‘B0 35 JJ=1,N
WRITE(6,289) 3J,01(3J)
3 CONTINUE
389 FORMAT(2X,14,5X,F12. 8)

c
40 CONTINUE
c
1 -CONTINUE
CALL EXIT
END

SUBROUTINE EIGA(GG,RP,EKZ,DEK,ISX,ISY,NIT,KF,ILQOOK, ISPEC,
.EKVEC ,NVAL ,IWRITE)
c PROGRAM EIGENV(IHPUT QUTPUT, TAPES TAPES=INPUT,TAPEE=0UTPUT)
COMMON/NUMBS/AB,PI,R,D,N,EK,EPS
COMMON/VECTS/X(I%B) Y(lﬂﬁ) L(lﬁﬂ)
COMMON/DETT/ DETX
COMMON/SHIFT/ISHIFT,BITJ
DIMENSION AXY(1£0.184)
DIMENSIOH EKVEC(508)
DIMENSION EGVAL{5008),DEVAL(5800) )
c PEAD{(5,15) N,GG,R,EK,DEK,ISX,ISY,NIT,KF,ILOOK,ISPEC,ISHIFT,LEFT,
C .BITY
15 FORMAT(15.4F12.8,212,15,412,16,F4.1)
EPS=.0000000081
iA=109
PI=3.141592653589
C EKZ=EK
ARG=1.+{4 .*GG/P1)
DENOM=SQRT(ARG)
c RA=R
R=R&Z/DENOM
AB=RZ*GG/DENOM

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz
equation in stadium-family boundary.
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WRITE(6.16) N,GG.R,EKO,DEK,ISX,15
c WRITE(59.16) M,GG.R,EK,DEK,ISX,IS
16 FORMAT(1Hi,* N=".I5," G=",Fl2. R=",F12.8," EK=".,F12.8,
.*  DEK=",F12.8./." SYMMETRY? ".214," NIT=".16,
."  R@=".F5.2." A=",F12.8," INVERT?",14," ILOOK,ISPEC,ISHIFT=",
L314,/7)
WRITE(6.17) BITJ
WRITE(59,17) BITJ
17 FORMAT(" BITJ= *,F5.3)
c DO GEOMETRY AND SET UP MATRIX ELEMENTS
c WRITE{(6.779) IWRITE,KF,ILOOK,ISPEC
779 FORMAT(" IWRITE.KF,ILOOK,ISPEC=",414)
v CALL RCETRK(IWRITE)
WRITE(6,35)
35 FORMAT(1H1)
IF=9
INVERS=9
INEWT=0
ISWP=9
EXSTRT=EKZ
EX=EKD
IRET=9
IRETA=8
1KROS=8
KONV=g
CONV=1.9E-6
IKLBL=1
KLBL=1
IFLAG=9
NFINE=5
DEKB=DEK _
IF(ISPEC.EQ.1) ILOOK=8"
LIMRET=2

fT.Rﬁ,AB,KF.ILOOK.ISPEC.ISHIFT
IT,RP,AB ,KF,ILOOK.ISPEC,ISHIFT

22 Z

Y
Y
8

’
’
]
.

P

DO 68 IK=1,NIT
EKL=EKM .

EKM=EK

DETL=DETM

DETM=DETX !
IF(ILOOK.EQ.8) INEWT=8@
IF{ILOOK.EQ.1) GO TO 79

HERE IF SWEEPING

KaXsXs!

EX=EKSTRT+ISWP*DEKZ
GO TO 83

HERE IF INTERPOLATING

[eXe K9]

79 CONTINUE :
IF{INEWT.EQ.Q) GO TO 88
TF(INEWT.EQ.1) GO TO 81

SLOPE=(DETM-DETL)/(EKM-EKL) |
EK=EXM-{DETM/SLOPE)
CHNG=EK-EKM

CHNGA=ABS (CHNG)
IF(CHNGA.LT.CONV) KONV=1

GO TO 83

) 89 CONTINUE
EK=EKSTRT
GO TO 83

' FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz
equation in stadium-family boundary.
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B! CONTINUE

EK=EX+DEKZ

C

C

c

83 CONTINUE - ]

CALL MATRIX(AXY,IA,ISX,ISY)

c

o DO DETERMINANTS

c

« CALL DETERM{AXY,IA,ISX,ISY,JF)
IF(INVERS.EQ.1) GO TO 63
IF(KLEL.GT.5088) GO TO 218
EGVAL (KLBL)=EK
DEVAL(KLBL)Y=DETX
KLBL=KLBL+1]

210 CONTINUE
IF{ILOOK.EQ.1) GO TO 211
IFC(ISWP.GT.@8) GO TO 211
DETL=DETX
DETM=DETX

211 CONTINUE
DPROD=DETX*DETM

c .
c . .
C  evennn WRITES. . ovvnnn _ _
c WRITE(6.878) EKL.EKM,EK,EKSTRT,EKBEG,EKEND,EKPREV,EKSAY
c WRITE(6,879) DETL,DETM,DETX,DTEND,DETSAV
c WRITE(6,83@) ILOOK,ISWP,INEWT,IFLAG,IRET,IRETA,DEKZ,DPROD
€378 FORMAT(/." EKL,EKM,EK=",3(2X,F18.6),/," STRT,BEG,END,PREV,SAV=",
c .5F7.3)
C879 FORMAT(/," DETL,DETM,DETX,END,SAV=",5E8.1)
C88F FORMAT(/," LOOK,SWP,NEWT,FLAG,RET,RETA,DEK®,DPROD=",614,2X,
c .F6.4,E8.1,/7)
c
c
C TEST FOR CROSSING OR CURVAWAY?
c
IF(IFLAG.EQ.1). GO TO 95
IF(ILOOK.EQ.8) GO TO 86
IF(KONV.EQ.8) GO TO 95
GO TO 98
c
C  HERE IF SWEEPING....TEST FOR CROSS OR CURVAWAY
< _

86 CONTINUE
IF(ISPEC.EQ.8) GO TO 85
IF(DPROD.LT.®) GO TO 92

SLPA=DETM-DETL
SLPB=DETX-DETM
FROD=SLPA*SLPB
: CURV=SLPB*DETM
c ..., SLOPES WRITE ..
IF(PROD.GE.®.) GO TO S5
IF(CURV.LT.Z.) GO TO S5

HERE IF CURVED AWAY

o000

IF{IRETA.GE.LIMRET) GO TO 292
IF(IRETA.GE.1) GO TO 2491
EKRITE=EK

DTRITE=DETX

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz
equation in stadium-family boundary.
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201 CONTINUE
EKSTRT=EKL
EX=EKL
EKM=EKL
DETX=DETL
DETM=DETL
DEKB=DEKZ/NFINE
IRETA=IRETA+]
ISWP=g
ILOOK=g
GO TO 95

HERE IF RETURNED TOO MANY TIMES

O0O00

292 CONTINUE
EXSTRT=EKRITE
EK=EKRITE
EKM=EKRITE
DETX=DTRITE
DETM=DTRITE
ISWP=g
ILOCK=g
INEWT=9
DEK@=DEK
IRETA=g
WRITE(6,300) IK,EK

38 FORMATI/,"--==--=-=- CANNOT FIND ZERO----- IK,EK =",18,F15.8)
GO TO 95 ‘

HERE IF CROSSED AXIS

'sXeXsks!

92 CONTINUE
IFCIRETA.GE.1) GO TO 85
IF(IRET.EQ.1) GO TO 85

'HERé IF THIS IS FIRST TIME CROSSED AND NOT CURVAWAY SWEEPING
GO BACK TO LAST POINT AND SWEEP FINER

O00On0

EKEND=EK
EKBEG=EKM
EKSTRT=EKM
EK=EKM
EKM=EKL
DTEND=DETX
DETX=DETM
DETM=DETL
DEKO=DEK/NFINE
IRET=1
ISwp=1
INEWT=1

GO TO 684

C HERPE IF CROSSED UNDER FINER SWEEP

85 CONTINUE
EKPREV=EKM
EKSAV=EK
DETSAV=DETX
INEWT=]
IRET=1
ILOOK=1
GO TO 95

FOLLOW. Fortran computer code for determmlng eigenvalues of Helmholtz
equation in stadium-family boundary.
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HERE IF CONVERGED

ap CONTINUE
....... NCVTON CONVERGED WRITE .......
KONV=9 — :
IF(IKLBL.GT.589) GO TO 97
EKVEC{IKLBL)=EK
INLBL=1KLBL+1
97 CONTINUE
IF{ISPEC.EQ.1) GO TO 48
INVERS=1
JF =KF
GO TO 83
48  CONTINUE
IF(IRETA.GE.1) GO TO" 96
IF(EK.GE.EKBECG.AND.EK.LE.EKEND) GO TO 96

O 000

C HERE IF OUTSIDE OF BRACKET AND IRETA = &

ILOOK=92
EKSTRT=EKEND
EK=EKEND :
EXKM=EKEND
DETX=DTEND
DETM=DTEND

" ISWP=g
DEK@=DEK
IRET=0

GO TO 95

OO0

HERE IF IN BRACKET AND IRETA =8 OR IRETA#%

96 CONTINUE -
ILOOK=9
EK=EKSAV
CETX=DETSAV
EKSTRT=EKSAV
EXM=EKSAV
DETM=DETSAV
ISWwP=g

HERE FOR INCREMENT

[eXeXe]

S5 CONTINUE
ISWP=1SWP+1
ITNEWT=INEWT+1
IF(IPETA.EQ.Z.AND.IRET.EQ.Z) GO TO 69
IF{IPETA.GT.®) GO TO 294

HEPE IF JUST RETURNED FOR CROSSING

OO0

EKDIF=EK~-EKEND
. IF(EXDIF.LE.EPS) GO TO 68
c IF(EIN.LE.EKEND) GO TO 6%
EKSTRT=EKEND
EK=EKEND
EKM=EKEND
DETX=DTEND
DETM=DTEND !
DEK@=DEK
ISwp=1
IRET=0
1LOOK=9

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz
equation in stadium-family boundary.
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GO TO 68
C
C HEPE IF IRETA # 0
C

200 CONTINUE
IF(EK.LE.EKRITE) GO TO 6%
EKSTRT=EKRITE
EK=EKRITE
EKM=EKRITE
DETX=DTRITE
DETM=DTRITE
1SWp=1
DEK@=DEK
1LOOK=2
IRET=9
IRETA=9

60 CONTINUE
350 CONTINUE

(eXe] O OO0

IF(ISPEC.EQ.®) GO TO 47
NVAL=IKLBL-1.
WRITE(6,35)
DO 61 II=1,NVAL
WRITE(6,183) I1.EKVECI{II)
182 FORMAT(4X.14,4X,F28.12)
61 CONTINUE
62 CONTINUE
HSORT=KLBL-1
c WRITE{6,777) NVAL.NSORT
777 FORMAT(" HNVAL,NSORT=",215)}
CALL SSORT(EGVAL.DEVAL,NSORT,2)
WRITE(6,35)
c DO 62 I1I=1,NSORT
c WPITE(6,104) I1,EGVAL{I1),DEVAL(II)
62 CONTINUE
164 FORMAT(4X.16,4X.F18.6,E20.6)
WRITE(9) NVAL,NSORT,EGVAL,DEVAL,EKVEC
7 CONTINUE
RETURN
END
SUBROUTINE RCETRK{IWRITE)
COMMON/NUMBS/AB ,PI1,R.D,N,EK,EPS
COMMON/VECTS/X(185),Y(188),L{189)
c WRITE(6,788) IWRITE
780 FORMAT(" IWRITE(RCETRK)=",14)
ALGTH=AB+(PI*R/2.)
D=ALGTH/N

CHECK FOR CIRCLE

[sXeXaXe!

IF(AB.GT.EPS) GO TO 34
GAM=AB/R
GCRIT=PI/(2*(2*N-1.))
IF{GAM.GT.GCRIT) GO TO 38

NB=1

GO TO 46
3 X(1)=Ds2.

Y{1l})=R

Li1)=1

FOLLOW. Fortran computer code for determmmg eigenvalues of Helmholtz
equation in stadium-family boundary.
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DO 59 IX=2,N
PIX=1X
P=PIX-9.5
PX=D*P

c CHECK IF POINT PAST END OF AB

IF(PX.GT.AB) GO TO 45
X(IX)=PX
Y{IX)=R
L{IX)=1

5S¢ CONTINUE

45 NB=IX

46 Q=D/R
X(N)=AB+R*COS(Q/2.)
Y(N)=R*SIN(Q/2.)
LIN)=@
NMAX=N-NB
D0 47 1S=1,NMAX
PIS=IS
QT=(PIS+g.5)*Q
M=N-1S
X{M)=AB+R=COS(QT) '
Y{M)=R*SIN(QT)
L{M)=g

47 CONTINUE
IF(IWRITE.EQ.@) GO TO 56
WRITE(6,51)

51 FORMAT(® RESULTS OF RACETRACK GEOMETRY  *)
WRITE(6,52) ALGTH,D,NB,Q

52 FORMAT(" LENGTH= ",F12.9," D= ",F12.9,* NB=",I4," '0=",F12.9)
DO 53 KK=1,N -
WRITE(6,54) KK,X{KK),Y(KK),L{KK)

54 FORMAT(16,2F15.9,16)

3 CONTINUE

56 CONTINUE
RETURN
END
SUBROUTINE MATRIX{AXY,IA,ISX,ISY)
COMMON/NUMBS /AB,PI,R.D,N,EK,EPS
COMMON/VECTS/X(188),Y(188),L(188)
DIMENSION AXY(IA,1) -
GAM=AB/R
GCRIT=PI/(2%(2*N-1.))
DO 28 1=1,N
11=1
DO 28 J=I1,N

CALCULATE Al .........
CHECK FOR DIAGORAL ELEMENT

0O000

XTRA=D/(2.*R*P1)
IF(3J.NE.II) GO TO 1

J).EQ.8) GO TO 18
JJ+1) EQ.1) GO TO 5
=(D/2.)+XI-AB
{XLD.LE.Z.) GO TO 5
ADD=XTRA*XLD/D

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz
equation in stadium-family boundary.



Appendix A 1 811

A11J0=A110+ADD
GO TO 5
10 Al1IJ=AlIJ+XTRA

IF{GAM.LE.GCRIT.AND.JJ.EQ.1}) Al11J3=A113-(AB*XTRA/D)

1IF(JJ.EQ.1) GO TO 5
IF(L{JJ-1).EQ.0) GO TO 5
XLD=AB-X(JJ-1)-(D/2.
IF{(XLD.LE.@.) GO TO &
ADD=XTRA*(XLD/D)
A113=A11J-ADD

5 B11J=A11J

GO TO 2

17 XJ1=X(JJ)

YIl=Y(Jd)

KXJ1=1

KYJ1=1

CALL FUNC(XI,YI,XJ1.,YJ1,LI,LJ,KXJ!1,KYJ1,A1J,BIJ)

Al1J=AI1J

B11J=B1J

CONTINUE

~

rJ

CALCULATE A2 ...... .0 .

Oo00

X32=X{33)

YJd2=-Y{JJ)

KXJd2=1

KYJ2=-1"

CALL FUNC(XI,Y!l,XJ2,YJd2,L1,LJ,KXJ2,KYJ2,A13,BIJ)
A21J=A10

B21J=B1J

CALCULATE A3 .vvvuevnnnnn

OO0

XJ3==-X{(JII)

¥YJ3=-Y(J2I)

KXJ3=-1

KYJd3=-1

CALL FUNCIXI, YI,HJ3 vyJ3,L1,LJd,KXJ3,KYJ3,A19,B13)
A31J3=A1J

BE31J=B1J

CALCULATE A4 ....... Joe e

OO0

XJ4=-X{(JJ)

¥Y34=Y{JJ)

KXJa=-1

KYJ4a=1

CALL FUNCI(XT,Y1,XJ4,YJ04,L1,LJ,KXJ4,KYJ4,A17,8B130)
Ad41J=A1J

B4IJ=BIJ

CALCULATE 'APP,APM ,AMP ,AMM. .. ... .. ..

[aXeXe]

A219 ~1)**ISY)*A21J

={{
E2IJ=((-1)»**ISY}*B21J
A3TIJ=({=1}**ISX)*{(-1)*"ISY)*A3I1J
B3IJ=((~1)1**ISX)*((-1)**ISY)*B3IJ
AdII=((~-1Y**ISX)*A4IJ
B4IJ=((-1)**ISX)*B4[J

AXY(JJ,11)=B11J+B21J+B31J+B41J
AXY(II.JJ)=A1IJ*AZIJ+A3IJ+A41J'
21 CONTINUE

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz
equation in stadium-family boundary.

/
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58 RETURN
END
SUBROUTINE FUNC{X1,Yl.X2.Y2,LPI,LPJ,KPX,KPY, AIJ,BI1J)
COMMOI/NUMBS/AB,PT,R.D,N,EK,EPS
COMMON/SHIFT/ISHIFT,BITJ
DIMENSION BJ{(2),BY{2)
SX=X2-X1
SY=Y2-Y1 .
S=SQRT{(SX**2+5Y**2)

CHECK IF POINT 2 ON CURVE

[aXeXe]

IF{(LPJ.EQ.Q) GO 70O 1
VXJ=0.

VYJ=KPY

GO TO 2
VXJI={(X2-(KPX*AB)})/R
VYJ=Y2/R

2 TI={SX*VXJI)+(SY*VYJ)

fo

CHECK IF POINT ! ON CURVE

[gXeXe]

IF{LPI.EQ.Q) GO TO 3
VX1=9. .
VYI=1.

GO TO 4

3 VXI=(X1-AB)/R
VYI=Y1l/R

4 TI=-(SX*VXI)-{SY*VVYI)
Z=EK*S

c FBES=BESY1(Z)
FBES=BESYZ1(Z,1,BSJ1)
IF{ISHIFT.EQ.Q) GO TO 29

C FEXT=BESJ1(Z) o
FEXT=BSJ1
FBES=FBES+BITJI*FEXT

20 CONTINUE
FUNX=-D*EK*FBES/(2.*S)
ATJ=FUNX*TJ
BIJ=FUNX*TI

10 RETURN
END
SUBROUTINE DETERM{AXX,IA, ISX ISY,KF)
COMMON/NUMBS/AB,PI,R. D N.EK, EPS
COMMOH/VECTS/X(153).V(1Zﬂ).L(lBH)
COMMON/DETT/ DETX
COMMON/SHIFT/ISHIFT,BITJ
COMMON/DIP/D1(188)
DIMENSION AXX{IA,1)
DIMENSION DUM2(1088,180)
DIMENSION Z1(184)
DIMENSIOHW SCR{208)
DIMENSION A(4)
DATA A/3HAPP,3HAPM,3HAMP ,3HAMM/
IM=2*ISX+1SY+1
NM1=N-1
DO 28 KK=1,IA
DI(KK)=-AXX{KK,.,1)
Zl(KK)=X(KK)
DO 15 tL=2,1IA
DUM2 (KK, LL 1)=AXX(KK,LL)

15 CONTINUE

FOLLOW. Fortran computer code for determmmg eigenvalues of Helmholtz
equation in stadium-family boundary.
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20 CONTINUE

DET=49.

CALL LINV3F{AXX,Z1,4,N,1A,DET, EXP SCR,IER)
DETX=DET*{2**EXP)

IF(KF.EQ.Q8) GO TO 100

OTHERWISE INVERT

OO0

DET1=0. :
CALL LINV3F(DUMZ2.D1,3,NMI,IA,DET?,EXP1,SCR,IER)
DETX1=DETi*(2**EXP1)

DO 75 II=1,NMl1
1J=N-11+1
IL=N-11
D1(1J)=D1(IL)
75 CONTINUE
DiI{1)=1.0

Ooo0n0n
<
]
—
—_
m
N
—
=
~

WRITE(6,185) DETX!

1
1
DCOMPA=ABS(DCOMP}
IF(DCOMPA.GT.DMAX) DMAX=DCOMPA
77 CONTINUE :
DO 78 I11=1,N
D1{(II)=D1{(11)/DMAX
73 CONTINUE
DO 36 II=1,N
WRITE(6,186) I1,DI(II)}
26 CONTINUE

WRITE(9) ISX,ISY.N,L,ISHIFT,AB,PI,R,D,EK,EPS,BITJ.X,Y,Dl

O 000 O0O00

180 RETURN

161 FORMAT(1H1)

162 FORMAT(1HZ)

185 FORMAT(2%,* INVERT--DET=",E15.8,///)

106 FORMAT(2X,14,5X,F12.8}

107 FORMAT(2X,"RESULTS OF LIRIT INVERSION--D1",///)

END

*FILE NAME=INPUTFOL
g.8050 £.8958 1 3.5 5.9 54 65.009090900008 .8958 11 120 1
*CHATR I1=MASTER,BOX=B63.LIB=(I"',F',BESLIB},S=84,G0

FOLLOW Fortran computer code for determining elgenvalues of Helmholtz

equation in stadium-family boundary. -
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*SELECT BOX=B63,ACCOUNT=952LBA,TTYECHO=YES,P=NONE

*FILE

17

776

777

779
778

999
281

12
991

NAME=PIX

CALL LINK ("UNITS59=TERMINAL,UNITS=(INPUTPIX,0PEN), &
UNITE=(OUTPUTPIX,CREATE),UNIT9=( TAPMASFUN,CREATE,SEQ),&
UNIT8=(TAPD,QOPEN.SEQ)//")

DIMENSION DV(180) ,F(188)

DIMENSION XGRID(181),YGRID(181)

DIMENSION C({181,181)

DIMENSION CLEV{(18)

DIMENSION Z1(181,101),22(101,181)

DIMENSION E(590)

"COMMOI{/NUMBS/AB,PI ,R,.D,N,EK,EPS

COMMON/VECTS/X{180),Y(1@80).LU198)
COMMCH/LIMITS/XL ,XH.,YL,YH,LIMIT
COMMON/SHIFT/ISHIFT,BITJ.

CALL KEEPBS(1,3)

CALL FRSOID(1BHXEROX+FILM)

CALL KEEP8Q(1,2)

CALL DD8OID

CALL DDERS({(-1) -

READ(5,17: XL,XH,YL,YH,LIMIT,IDIM,ILEV ,MX,MY,IOPT
FORMAT(4F8.4,614)

READ(
WRITE
WRITE
WRITE
FORMA

NGROUP
) NGROUP
9,776) NGROUP
,776) NGROUP
* NUMBER OF A VALUES",15,///)

8)
(39
(5
{b
T

DO 751 JGRP=1,NGROUP

READ{(B) A,NKV,E

WRITE(S) A,NKV,E

WRITE(6,777) NKV,A

VRITE(59,777) NKV,A

FORMAT(" EIGENFUNCTIONS FOR",I5," EIGENVALUES FOLLOW A=Y,

.F8.5,7)

DO 778 IKV=1,NKV
WRITE(6,779) IKV,E{IKV
WRITE(59,779) IKV,E(IK
FORMAT(I5,F12.6)
CONTINUE

)
V)

DO 758 IKV=1,NKV

READ(8) ISX,ISY,N.L,ISHIFT,AB,PI.R,D,EK,EPS,BITJ.X,Y,DV
WRITE(9) ISX,ISY.H,L,ISHIFT,AB,PI.R,D,EK,EPS,BITJ ,X,Y,DV
WRITE(S59,990) EK.BITJ :
FORMAT(//," EK,SHIFT=",F15.198,4X,F6.3)

FORMATI(2X,2514)

GG=AB/R

IF(LIMIT.NE.Z) GO TO 12

XH=AB+R

XL=84.

YH=R

YL=8.

CONTINUE

WRITE(59,991) XL.XH,YL,YH

FORMAT(" XL,XH,YL,YH=",4(2X,F6.3)}

WRITE(6,101)

PIX. Fortran computer code for constructing eigenfunction from boundary dis-
tribution.

o
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19

57
18

25
54

76
19

PIX. Fortran éomputer code for constructing eigenfunction from boundary dis-

. AND EIGENVALUE =",F28.15,//," AB =",F14.8," R =" ,F
LIGSX," N =" 16,770 -

WRITE(6,19) ISX.ISY,GG,EK,AB,R,N
FORMAT(2X,"EIGENFUNCTION FOR SYMMETRY *,212," WITH A =",F6.3
1

WRITE(6.,57) ISHIFT,BITJ
FORMAT(2N,"ISHIFT,BITJ =",14,F6.2,//)
WRITE(6.18) XL.XH.YL,YH,LIMIT,MX ,MY,IOPT

FORMAT(" X FROM".F12.8," TO",F12.8,18X,"Y FROM",Fl12.8," TO",

.F12.8," LIMITED?",14,/," DIVISIONS(X,Y)",214,
. 10PT =",14,///7/7)

WRITE(59,19) I1SX.ISY,GG,EK,AB,R,N
WRITE(59,18) XL,XH,YL,YH,LIMIT ,MX ,MY,IOPT

DO 25 K=1,N

WRITE(6,54) K, X(K),Y{K),L{K)},DV(K)
CONTINUE
FORMAT(16.2F15.9.16,F20.8)
WRITE(6,101) .
SMALL=,001

MDIM=101

MX1=MX+1

MY1=MY+1

DELX=(XH=-XL)/MX
DELY=(YH-YL)/MY

X@=XL

Y@=YL

DO 18 I1I=1,MX]

DO 18 JJ=1,MYl
XR=X@+(I1-1)*DELX

- XGRID(II)=XR

YR=YQ+(JJ-1)*DELY
YGRID{(JJ)=Y¥YR

IF{IOPT.EQ.1) GO TO 15
IF{(XR.LE.AB) GO TO 13
DIST=XR-AB
RR2=DIST**2+YR**2
RSQRT=SQRT(RR2Z)
RLIM=R-SMALL
IF(RSQRT.GE.RLIM) GO TO 184

GO TO 15

YT=R-SMALL
IF{YR.GE.YT) GO TO 18
CONTINUE

CALL FVEC{XR,YR,ISX,ISY.F,KLOS)
IF(KLOS.EQ.1) GO TO 75
SUM=g.

DO 5 KK=1,N
SUM=SUM+(DVIKK)*F (KK)}
CONTINUE

GO 7O 76

CONTINUE
C(11,33)=C(11,39-1)

GO TO 19

CONTINUE

C(IT,30)=SUM

CONTINUE

WRITE(6,101)

. WRITE(6,102)

DO 42 JJ=1,MVY1
KK=MY+2~-3JJ -

tribution.
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WRITE{(6,118) KK,YGRID(KK)

119 FORMAT{" LINE,Y=",14,F8.4)
WRITE(6.106) (C{II,KK),II=1,MX1)}
WRITE(6,104)

40 CONTINUE
WRITE(6,101)
WPITE(6,107) YGRID
WRITE(G6,.104)
WRITE(6,107) XGRID
CMIN=1.9E182
CMAX=-1.0E18
DO B8gH I=1,MX1
DO 880 J=1,MY1
CMIN=AMINI{CMIN,C(I,J))

CMAX=AMAX1(CMAX,C(1,J))

8880 CONTINUE
CFRAC={CMAX-CMIN)/182
CONMIN=CMIN+CFRAC
CONMAX=CMAX-CFRAC

C WRITE(59,996) CMIN,CONMIN,CMAX,CONMAX
WRITE(6,996) CMIN,CONMIN,CMAX,CONMAX

996 FORMAT(2X,"CMIN,CONMIN, CMAX CONMAX‘".ZX 4(2%,F7.3))
GC ToO (391 352). IDIM :

381 CONTINUE

YMI=_38
XMI=.2
XMA=.8
YLINE=.32%42

: GO TO 3945

302 CONTINUE
yMI=f: 38
XM1=.026
XMA=.94

YLINE=.32*42
395 CONTINUE
YMA=YMI+{YH-YL)}*(XMA=-XMI})/{XH-XL)

WRITE(59,992) XMI,XMA,YMI,YMA
CALL SETCRT(P.9,£.215)

CALL LINE(Z.P,£.215,1. B,B.ZIS)
CALL LINE(1.,.215,1.,1.)

CALL LINEC(1.,1..0. .1 )

CALL LINC(®.,1.,0.,0.215)

CALL SETCRT(.142,.285) :

CALL LINEP(.142,.285,.858,.285,3)
CALL LINEP(.B58,.285,.858,1.,3)
CALL LINEP(.858, 1. ,.142,1.,3)

00000 OMONO0

CALL LINEP(.142,1.,.142, 285 3)
CALL MAPS{XL,XH,YL, YH XMI XMA YMI, YMA)
GO TO (401,482 453 404) ILEV
481 CONTINUE
C HERE FOR NODAL LINES
Kl=1
K2=1
NLEV=1
CLEV(1)=0.0
GO TO 419
492 CONTINUE
C HERE FOR NODAL AND MIN,MAX
K1=3 .
K2=2
NLEV=3
CLEV{(1)=CONMIN
CLEV(2)=0.90
CLEV(3)=CONMAX

PIX. Fortran computer code for constructing eigenfunction from boundary dis-
tribution.
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GO TO 418
493 CONTINUE
C HERE FOR 1£ CONTOURS
Kl=-18
=6
NLEV=18
CLEV{1)=CONMIN
CLEV(2)=CONMAX
GO TO 418
492 CONTINUE
C HERE FOR OTHER CONTOUR CHOICE...
GO TO 41g _
4189 CONTINUE
CALL RCONTR(K!,CLEV,K2,C,MDIM,XGRID,1 ,MX1,1,YGRID,1,MY1,1)
CALL SETCH{(5.,YLINE,1.,8,1,8)
WRITE(180.780) GG.EK.ISX.ISY.R.N.MX.MY.BITJ
WRITE(180.701) (CLEV(J),J=1,NLEV)
700 FORMAT("A=" F6.4,2X,“K=",F18.5,2¥%,"PARITY=",212,2%,"R=",
JFA.2,2X, "N, MX,MY=", 314 ,2 L'SHIFT=",F4.2)
781 FORMAT(“LEVELS=".18F7.2)
c WRITE(59.995) CLEV
WRITE(6.,995) CLEV
995 FORMAT(2X,“CLEV=",18(2X,F7.3))
952 FORMAT(“ MAPLIMITS=",4(2X,F6.3))
: CALL FRAME
XW=180% (XMA-XMI)
YW= (YMA=-YMI)* 188
XV=XW/2
YV=-vW
ZV=2%xXW
CALL PICTURE(C,Z1,22,MX1,MY1,MDIM XW,YW,XV,YV,2V,
.CMIN,CMAY ,1.,~-2,8,1,1,MX1,1,MY1,XMI, XMA, K YMI,YMA)
CALL FRAME
XV=175%XW
YV=1.5%YW
CALL PICTURE(C,Z1.Z2,MX1,MY1,MDIM, XW,YW,XV,YV,2V,
.CMIN,CMAY,1.,-2,0,1,1,MX1,1,MY1, XMI,XMA,YMI,YMA)

CALL FRAME

WRITE(9) MX,MY.,AGRID.YGRID,C,XL,XH,YL,YH,XMI XMA ,YM] ,YMA CMIN, K CMAX
750 CONTINUE
751 CONTINUE

O O 0O o0o0o0 00

141 FORMAT(1HI1)

162 FORMAT(2X,"HERE IS EIGENFUNCTION",///)
163 FCRMAT(F5.2,4X,11F9.6)

194 FORMAT(1HZ)

185 FORMAT(F5.2,7X, 11(2X F5.2,2X))

166 FORMAT{(2X, lﬂFll 7)

187 FORMAT(ZX.15F7.3)

CALL EXIT

END

SUBROUTINE FVEC(XR,YR,ISX,ISY, FSYM KLOS)
DIMENSION FSYM{188)
COMMON/VECTS/X{(100),Y(128),L(129)
COMMON/NUMBS/AB,PI.R.D.N.EK,EPS
TINY=.808001

KLOS=g8

DO 28 J=1,N

PIX. Fortran computer code for constructing eigenfunction from boundary dis-
tribution.
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3=
S LI=L(I)

CALCULATE F1

aon

XJ1=X{JJ)
YJ1=Y{(JJ) -
RX=XR-XJ1
RY=YR-YJ1
R2=RX**2+RY**2
RR=SQRT(R2)

“ IF(RR.LE.TINY) GO TO 5S¢
KXJ1=1
KyJdl=1
CALL FUNC{XR,YR,XJ1,YJ1.,2,LJ,KXJ1,KYJ1,Al2,8B1d)
Fl1=A1lJ

CALCULATE F2

aon:

XJ2=X{(J3J)

¥J2=-Y{JJ)

KXJ2=1

KYJ2=-1

CALL FUNC(XR,YR,XJ2,YJ2,2,LJd, KXJZ KYJ2,A1d, B1J)
F2= AIJ*((—I)**ISY)

CALCULATE F3

o000

XJ3=-X{JJ)

YJ3=~Y{(JJ)

KXJ3'-1

KYJ3= :

CalLl FUNC(XR YR ,XJ3,YJ3,2,LJ,KXJ3,KYJ3,A1J,B1J}
F3= AIJ*((—I)*‘ISX)*((—I)**ISY)

CALCULATE F4

(e XeXe]

XJ4==X{JJ)

YJ4=Y{(JJ)

KXJ4=~1

KYJ4=1

CALL FUNC(XR,YR,XJ4,YJ4,2,LJ,KXJ4, KYJA AlJ,BIJ)
F4= AIJ*((—I)**ISX)

CALCULATE FSYM

OO0

FSYM(J3J)=F1+F2+F3+F4
20 CONTINUE
30 CONTINUE
RETURN
50 CONTINUE
KLOS=1
GO TO 39
END
SUBROUTINE FUNC{X1,Y1,X2,Y2,LPI,LPJ,KPX,KPY,AI1J,BIJ)
COMMON/NUMBS/AB,PI,R, D N,EK,EPS
COMMON/SHIFT/ISHIFT BITJ
SX=X2-X1
Sy=Y2-Y1
S=SQRT(SX**2+SY**2)

CHECK IF POINT 2 ON CURVE

[eXeXg]

IF(LPJ.EQ.Z) GO TO 1

PIX. Fortran computer code for constructing eigenfunction from boundary dis-
tribution.
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VXJ=g.

VYJ=KPY

GO TO 2
& 1 VHJI=({XZ2-(KPX*AB))/R
VYJ=Y2/R
TI={SX*VXJI)I+{(SY*VYJ)

r

CHEZK IF POINT ! ON CURVE

(s XeXe]

IF(LPI.EQ.®) GO TO 3
VXI=9.-
VYI=1.
GO TO 4
3 VXI=Z{X1-AB)/R
VYI=Y1/R o
4 TI==(SX*VXI)={SY*VYI)
Z=EK*S
FCES=BESYQ1{(Z,1,BESJ1)
IF(ISHIFT.EQ.Z) GO TO 24
FEXT=BESJ!
FBES=FBES+BITJ*FEXT
20 CONTINUE
FUNX=-D*EK~FBES/(2.*S)
ATJ=FUNX*TJ
BIJ=FUNX*TI
c
10 RETURN
END
*FILE NAME=INPUTPIX
€.2509 £.7580 £.5000 £.768 S 1 1 89 89 @
*CHATR 1=PIX,BOX=863.L18=(I1',F',T",BESLIB),S=89,G0

PIX. Fortran computer code for constructing eigenfunction from boundary dis-
tribution. '
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APPENDIX B

STADIUM EIGENVALUES

In this Appendix I report 445 consecutive eigenvalués of the Helmholtz

equation
(V2 + k3)¢n(z) =0 allz€ S
¥n(z) =0 forz € boundary 3§

in the stadium § (see Fig. 1 of Part I) with v = 1 (halflength of straight section
= radius of semicircle) and area = x. These values of k, were obtained with
the numerical method described in Appe'ndiﬁc A, for which the accuracy has
been determined to be +0.001 in this range of the spectrum. The eigenvalues
correspond to odd-odd parity eigenfunctions only and lie approximately 150 —

600 levels above the ground state in this class.
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1 58.1577 51 57.5523 191 64.1775
2 50.2316 52 57.7897 192 64.3891
3 50.4902 53 57.8214 103 64.4875
4 50.4642 54 58.091590 194 64.5981
5 50.6335 55 58.1839 105 64.6796
6 59.8851 56 58.2803 166 64.8741
7 50.9904 57 58.3497 197 65.0359
8 51.0682 58 58.4369 108 65.3255
9 51.1825 59 58.5393 109 65.4124
18 51.3023 60 58.7819 119 65.5563
11 51.4856 1 58.9450 111 65.6559
12 51.7699 62 59,9574 112 65.7362
12 52.9097 63 59,2994 113 65.9054 .
14 52.0663 64 59.4168 114 65.9578
15 52.2547 65 59.6620 115 66.1195
16 52.3816 66 59,7257 116 66.2921
17 52.6171 67 59.8478 117 66.4289
18 52.6237 68 59.9922 118 66.4439
19 52.6676 69 60.16081 - 119 66.5317
20 52.8629 70 609.2437 128 66.70872
21 52.9842 71 68.2451 121 66.7842
22 53.1684 72 68.4069 122 66.9839
23 53.3191 73 65.4802 123 67.0552
24 53.4258 74 60.6835 124 67.1825
25 53.5147 75 60.8798 12 67.3284
26 53.8782 76 61.8716 - 126 67.3426
27 53.9845 77 61.1523 . 127 67.6281
28 54.1148 - .78 61.3884 128 67.6486
28 54.2248 79 61.5843 129 67.6764
349 54.3286 30 61.6944 : 130 67.8470
21 54.4939 ) 81 61.7895 131 67.9313
32 54.6399 82 61.7379 132  68.1852
3 54.8679 23 sz.az34c; 123 68.2187
34 54.9957 ol 62.0829 134 68.3442
35 55.2249 85 62.1909° 135 68.4201
36 55.3673 86 62.13017 136 68.5259
37 55.4894 87 62.4323° 137 68.7852
38 55.6584 88 62.52197 . 138 £8.8126
39 5§5.8931 89 62.6821° 12 68.9913
4 56.0822 9g0 62.7423 148 69.1012
4 56.2589 91 '62.7689/ 41 6€9.2536
42 56.3623 g2 62.9631Y 142 69.31982
43 56.4084 93 63.2308 143 69.5189
44 56.5936 2 63.4090 144 69.6135
45 56.7393 g5 6£3.4859 145 69.7584
46 56.9736 96 63.6132 146- 69.882%9
47 56.9994 a7 63.728: 147 79.9135
48 57.2949 98 63.7660 . 148 79.8473
49 57.3478 99 64.009! 149 78.2842

5g 57.3934 190 64.9776 159 79.3046

Table . List of numerical eigenvalues for stadium (y = 1, odd-odd parity
only).
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151  78.3657 " 201 . 75.8968 251  81.2992

152 78.4813 2082 75.9940 252 81.3625
153 - 78.5732 203 76.1282 . 253 °81.4178
154 709.7418 204 76.1477 254 81.4549
- 155 79.8659 285 76.3425 255 81.5193
156 71.8912 v 286 76.43309 256 81.5661
157 71.15680 207 76.6633 257 81.7967
158 71.2373 . 283 76.7812 258 81.8317
‘ 159 71.2864 299 76.7286 259 81.9850
b 160 71.3613 210  76.9498 268 82.0533
161 71.4995 211 76.9954 261 82.9824
162 71.55%49 212 77.09809 262 82.1623
163 71.5972 213 77.1718 : 263 82.3625
164 71.8528 214 77.3468 264 82.5194
165 71.9382 215 77.4875 265 82.5925
166 72.0014 216 77.4437 266 82.7257
167 72.0661 217 77.6727 267 82.7846
163 72.2837 218 77.69508 263 82.8611
169 72.3219 219 77.8167 269 82.9566
178  72.4814 228  77.9763 278 83.9396
171 72.6509 221 78.90637 271 83.2012
172 72.7299 222 78.1764 272 83.312:
173 72.7569 223 78.2648 273 83.4999
174 72.8303 224 78.3385 274 83.5515
175 73.8269 225 78.5199 275 83.6192
176 73.1365 226 78.6044 276 83.6623
177 72.2875 227 78.6614 277. 83.7397
178 73.3567 228 78.8475 278 83.8857
179 73.4954 229 78.9445 279 83.9658
18¢ 73.6199 . " 238 79.8575% 288 84.8279
181 73.6940 231 79.1800 " 281 84.2724
182 73.8818 232 79.2681 282 84.3758
183 . 73.98940 233 79.3995 283 84.4462
184 74.8719 234 79.5214 234 84.5605
185 74.1483 : 235 79.5593 235 84.6706
186 74.3684 : 236 79.6593 286 84.7587
1587 74.3918 237 79.8565 287  84.7849
183 74.5668 238 89.0826 288 84.8147
189 74.6873 239 80.0887 289 84.9838
190 74.7892 249 88.1763 299 85.00939
191 74.9893 241 80.2760 291 85.2136
192 74.9536 242 80.3164 292 85.3312
193 75.1221 243 89.5165 293 85.3552
134 75.24548 244 80.5719 294 85.4567
195 75.3600 245 80.6243. . 295 85.5878
196 - 75.3825 246 89.6999 296 85.6314
197 . 75.6327 247 88.8641 297 85.6523
195 75.7074 248 80.8963 298 85.8771
199  75.7533 249 80.92C7 " 299  85.9471
200 75.8376 258  8i.1712 389  85.9942

Table II. List of numerical eigenvalues for stadium (v = 1, odd-odd parity
only).



Table III. List of numerical eigenvalues for stadium

only).
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301 86.08282 351 99.8130 491 95.98326
382 86.1234 352 S0 .8654 492 95.0995
393 86.24901 353 S0.9874 493 95.2211
304 86.2689 354 | 99.9791 494 95.3742
305 86.4153 355 91.1138 405 95.4658
3£6 86.6345 356 91.1718 406 95.5065
387 86.6965 357 91.3272 487 895.5618
398 86.7323 358 91.3848 408 895.6727
399 86.783949 359 91.47989 4099 95.7815
319 87 .0098 3680 91.5638 419 95.8385
311 87.08363 361 91.6442 411 95.8577
312 87.1972 362 91.6657 412 95,9757
313 87.2181 363 91.6837 413 96.0554
314 87.33954 364 91.8497 414 96.1194
315 87.4492 365 91.985: 415 S6.2334
316 87.4994 366 92.8737 416 96.3149
317 87.5532 367 92.1586 417 96.4934
318 87.6460 368 92.1875 418 96.4640
319 87.7603 369 92.2459 419 96.6197
328 87.8502 374 92.3995 424 96.7498
321 87.8923 371 92.5785 421 96.7888
322 88.9727 372 92.6104 422 96.8292
323 88.2041 373 92.8698 423 96.9193
324 88.2259 374 92.8716 424 97.8296
325 88.3387 37% 92.8755 425 97 .9636
326 88.4528 376 93.0194 426 97.324:
327 88.6959 377 93.8473 427 97.3665
328 88.7453 37¢ S3.1462 428 97 .4686
329 88.7781 379 93.212: 429 87.5482
330 88.8558 380 92.3626 430 97.6964
331 88.9877 . 381 92.5027 431 97.7266
332 89.1639 382 93.5665 432 97.8223
333 89.2822 383 93.6698 433 97.8823
334 89.3173 334 93.6884 4234 97.9126
335 89.3738 385 83.7884% 435 98.4352
336 89.4253 386 93.9918 426 98.0775
337 89.5138 387 93.9988 437 98.2708
338 89.6738 308 94.0653 438 98.3558
339 89.7129 389 94.1854 428 98.4611
348 89.8555 390 94.3127 449 98.4942
341 89.9616 391 94.4762 441 98.6659
342 95 .08521 392 84.5243 442 98.744:
343 98.9862 393 94.5555 443 98.8169
344 98.1914 394 94.5652 444 98.9987
345 98.2690 395 94.7183 445 98.9504
346 94.3089 396 94.8161

347 Sg.3798 3387 94.8675

348 99.4369 398 94.9360

349 99.5872 399 94.9860

3589 99.6989 409 95.0149

(y = 1, odd-odd parity
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