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ABSTRACT 

The method of geometrical optics has become a popular tool in the analysis 

of short wavelength wave propagation in inhomogeneous plasmas. Recent numeri

cal ray tracing studies for the purposes of radio frequency heating have indicated 

that in many plasma profiles with two-dimensional nonuniformity the ray trajec

tories can become chaotic. In addition, other investigations have shown that 

bound ray systems may also exhibit varying degrees of ergodic ray behavior. 

Indeed, there is reason to believe that chaotic rays are a characteristic of most 

wave/ray systems with more than one degree of freedom. 

In this work I concentrate on the relationship between waves and rays, and 

specifically how this relationship is affected when the rays are chaotic. For 

the case of well-behaved (integrable) ray trajectories, modern eikonal theory 

and the Einstein-Brillouin-Keller method of quantization (for normal modes) 

have provided the correspondence between properties of the waves and certain 

structures in the ray phase space. These theories and associations fail, however, 

for the case of nonintegrable or chaotic rays. 



In order to investigate general relationships between waves and rays in 

· chaotic systems, I study the eigenfunctions and spectrum of a simple model, 

the two-dimensional Helmholtz equation in a stadium boundary, for which the 

rays are ergodic. Statistical measurements are performed so that the apparent 

"randomness" of the stadium modes can be quantitatively contrasted with the 

familiar regularities observed for the modes in a circular boundary (with in

tegrable rays). The local spatial autocorrelation of the eigenfunctions is con

structed in order to indirectly test theoretical predictions for the nature of the 

Wigner distribution corresponding to chaotic waves. A portion of the large

eigenvalue spectrum is computed and reported in an Appendix; the probability 

distribution of successive level spacings is analyzed and compared with theoreti

cal predictions. The two principal conclusions are: 1) Waves associated with 

chaotic rays may exhibit randomly situated localized regions of high intensity; 

2) The Wigner function for these waves may depart significantly from being 

uniformly distributed over the surface of constant frequency in the ray phase 

space. 

These results suggest that a phase space representation of a wave (such 

as the Wigner function) is crucial to the understanding of the correspondence 

between rays and waves. In addition, the amplitude transport equations of 

geometrical optics (expressed in terms of configuration space) suffer singularity 

difficulties in regions where rays focus (caustics); the use of a phase space 

description may provide a method of avoiding these singularities. In view of 

this, I consider three types of phase space formalisms: the Ordinary Symbol, the 

Weyl Symbol, and the coherent state representation. Starting with a general 

linear wave equation in configuration space, I derive the equations which govern 

each of these quantities in phase space. From the equation for the Weyl Symbol 

of the wave (the Wigner function), I give a concise derivation of the wave kinetic 



equation. Finally, I apply a generalized phase space eikonal analysis of the 

coherent state equation which results in a method for constructing a smooth 

representation of the wave along rays in phase space. This procedure produces a 

uniform approximation of the wave when "projected" onto configuration space 

(without singularities or matching). Therefore, this method may be useful for 

avoiding caustic singularities and may also provide a basis for constructing an 

asymptotic theory of chaotic waves. 
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INTRODUCTION 

A program for heating a confined plasma with radio frequency waves has 

been. extensively developed in recent years. 1 From a. theoretical standpoint, it 

has been of prime concern to determine the conditions under which a particular 

wave, launched from the exterior of the plasma, is able to propagate into a region 

where an effective conversion of wave energy to particle thermal energy can be 

achieved. With a view toward application to real experimental and reactor 

devices, it has become necessary to consider increasingly more realistic plasma 

profiles; the effect of asymmetries, toricity and other complications found in 

actual three dimensional plasma prohibit the use of simplified one dimensional 

models. Due to the fact that over most of the plasma the relevant parameters 

such as density and temperature vary on a scale much larger than the short 

wavelength of these waves (such as lower hybrid waves), it is popular to apply 

the techniques of geometrical optics in order to analyze the propagation of 

the wave. The analytical .difficulties imposed by the complexity of the plasma 

dispersion relations usually considered (especially in more than one dimension), 

have necessitated the use of numerical ray tracing codes. In many cases, 1•2•3 

these codes have succeeded in resolving the circumstances for the wave energy 
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(carried along the rays) to reach the desired resonant region, as well as providing 

a general picture of the behavior of these trajectories. 

At this point there are two observations to be made. First, depending on the 

model,2•4 ray trajectories may appear to be very "regular looking" or they may 

be "chaotic"; these descriptions are not only qualitative and visual, but they 

have been connected with precise mathematical ideas. Secondly, the theory of 

geometrical optics in a plasma5•6 includes the rules for constructing the wave 

phase and asymptotic wave amplitude along the rays; however, even numerically 

these equations are laborious to integrate and therefore the structure of the wave 

supported by the rays has not been determined. While it may be argued that 

this information is secondary to ascertaining the path of the wave energy in 

the plasma, amplitude and phase are important for both linear and nonlinear 

processes which may occur due to the presence of the wave. These two points 

are related in the following question: How are the features of .the asymptotic 

wave form related to and affected by the "regular" or "chaotic" properties of 

the corresponding ray trajectories? 

This question also arises in the context of plasma eigenmode problems.7•8 

Here, instead of being externally launched, the rays supporting the eigenfunction 

are confined to a region of the plasma. Again, depending on the model, the 

trajectories may be qualitatively characterized as "regular" or "chaotic" in more 

than one dimension. Quantization of the ray system is accomplished in the 

geometrical optics limit with the Einstein-Brillouin-Keller (EBK)9 method when 

the rays are integrable. In these cases the question has been answered: the 

relationship between ray and wave properties relies on the structure of the ra.y 

pha&e &pace. 

The purpose of this thesis is twofold and it is in two Parts. In Part I, I shall 
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review the basic ideas of the EBK quantization procedure for plasma eigenmodes 

and present the pertinent formulas with discussion but without derivation. The 

aim here is to point out how various properties of regular modes and spectra are 

related to phase space quantities when the geometrical optics rays are integrable. 

In the case of bound chaotic rays, I shall attempt to analyze irregular eigenmode 

structures in terms of possible phase space associations and to provide an intui

tion for how the EBK ideas break down and become inadequate for the treatment 

of these systems. Many authors have given qualitative and quantitative predic

tions concerning statistical properties· of the eigenfunctions and eigenvalues in 

this case; I shall discuss and test several of these theories. 

In order to illustrate these ideas I have chosen a model which, although 

extremely simple and rather removed from a realistic plasma mode problem, 

contains the basic ingredients necessary to indicate the features one might expect 

irregular waves to exhibit. I consider the scalar Helmholtz equation inside a 

bounded two dimensional region, 10 with the condition that the wave function 

vanish on the boundary. Thus this model is directly applicable to the modes of 

a drumhead, the quantum mechanics of a particle in a two dimensional infinite 

well, or the transverse modes in an electromagnetic cavity or waveguide. The 

boundary has the shape of a racetrack or 8tadium (two semicircles connected 

by parallel lines) and is parameterized by the length of the straight sections at 

constant area; the wave equation is to be solved at fixed value of this parameter. 

When the parameter is zero, the boundary is a circle and the Helmholtz equation 

is solvable analytically; in this case, short wavelength modes are obtainable in 

the EBK approximation because the ray trajectories {free motion with specular 

reflection from the boundary) are integrable. However, for any length of the 

straight sections greater than zero, no analytic method of exact solution is 

available and EBK quantization fails because almost all ray orbits are ergodic. 
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Therefore, in order to examine how this property of the rays is manifested by the 

eigenfunctions, I have solved the wave equation numerically. The investigation 

of this relationship requires the analysis of many short wavelength eigenmodes 

(i.e., high eigenvalues), so that a novel numerical procedure is used. 

Several features distinguish the difference between the regular modes of the 

circle and the irregular modes of the stadium. Qualitatively, the distribution of 

wave intensity for a typical mode in the circle is readily explained in terms of 

the ray trajectories. The existence of two invariants of the motion (frequency 

and angular momentum) restricts a given orbit to an annulus of the circle. 

Consequently, the corresponding eigenfunction is found to be evanescent in the 

region of the circle which is inaccessible to the ray. Furthermore, the intensity of 

the mode is greatest along the interior rim of the annulus where the rays focus; 

this is the well-known ca.utic phenomenon. In contrast, the ergodicity of the 

rays in the stadium would suggest that irregular modes in the stadium should 

exhibit a fairly uniform distribution of intensity; however, this is not observed. 

Instead, in the region of the spectrum studied, a typical mode is characterized 

by small regions of high intensity interspersed almost randomly among regions 

of low intensity. In fact, a fraction of the modes are observed to be quite regular 

in appearance, displaying many features one would associate with integrable 

rays. These apparently nonintuitive attributes indicate that the correspondence 

between rays and waves for chaotic systems requires further study, and I proceed 

to investigate several quantitative characteristics of this relationship. 

Based on a sense of randomness in a chaotic trajectory, Berry11 has predicted 

that an irregular mode is a ga.u&ian random function at every point; that is, the 

probability that the eigenfunction has a certain value at any point should be dis

tributed as gaussian. This prediction is verified by constructing the probability 
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distribution for the amplitude of many stadium modes and this result is con

trasted with the extremely non-gaussian distributions found for the regular 

modes in the circle. 

Other statistical properties of regular and irregular modes can be deduced by 

considering the nature of the Wigner function associated with these modes. This 

is an example of a phcue &pace repre&entation (or joint (z, k) representation) of the 

wave function and can be regarded, in some se~se, as the wave-optical analogy of 

the classical Liouville density in phase space. As the EBK method fails for non

integrable ray systems, several authors11•12 have used the Wigner function as a 

basis for predicting the character of irregular eigenmodes. Moreover, examina

tion of the Wigner function has led some to a quantitative definition of what has 

become known as quantum or wave dochcuticity. For regular eigenfunctions, the 

Wigner function is concentrated in the same region of phase space occupied by 

the corresponding rays; consequently, for irregular modes it is predicted to spread 

over the constant frequency surface just like the corresponding ergodic Liouville 

density. I have tested these ideas by constructing the local spatial autocorrelation 

function of representative modes (the Fourier transform of the Wigner function) 

and conclude that while the theory for regular modes is confirmed, the Wigner 

function for. irregular modes probably exhibits considerably more structure than 

the Liouville density. 

Besides the fairly obvious correspondence between spatial characteristics of 

the eigenfunctions and the associated ray motion, properties of the eigenvalue 

spectrum have also been related to the integrability of the ray system. Among 

these is the tendency for the regular &pectrum to cluster, while the irregular 

spectrum is expected to exhibit a more uniform arrangement of eigenvalues. For 

both the circle and the stadium I construct the distribution of neighboring level 
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spacings over a range of the spectrum; in both cases I find fairly good agreement 

with theoretical models of this distribution. 

These experimental results demonstrate the relationships between ray phase 

space quantities and various wave phenomena as well as the need for constructing 

an asymptotic theory of short wavelength waves associated with nonintegrable 

or chaotic rays. Furthermore, even though the usual eikonal theory of geometri

cal optics is generally successful in treating regular or integrable ray systems, 

it suffers from amplitude singularities at caustics (turning points) where rays 

focus. The discussion of the eikonal method in Part I emphasizes that caus

tics are properly interpreted in terms of the projection of the phase space ray 

trajectories onto configuration space. While these singularities can be treated 

with stand.ard boundary layer techniques or more modern mehods, they may 

pose serious problems from a numerical standpoint if they occur frequently in 

actual applications. The possibility of constructing a representation of the wave 

in phase space where rays do not focus (as opposed to in either configuration or 

wavevector space separately) holds the advantage of avoiding these singularities 

completely. 

In view of these considerations, I devote Part II of this thesis to the develop

ment of phase space representations of waves. A phase space representation is 

not a unique quantity and, as previously mentioned, the Wigner function is an 

example of such a joint (z, k) description. The modern theory of geometrical 

optics13 is based on the theory of p&eudodifferential opt:rCltor& and their Ordine1ry 

Symbol&, which are indeed phase space representations of the operators. In these 

formulations of wave theory, the operator which describes the field will be the 

abstract bilinear spectral or correlation operator; consequently, the phase space 

representations (or Symbols) of the wave are related to the spectral and correla-
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tion functions (tensors) of the field. I shall provide a brief description of the 

concept of the Ordinary Symbols and their mathematical properties in order to 

establish a basis for developing other Symbol formalisms. 

The Weyl Symbol of an operator is closely related to the Ordinary Symbol 

but it is much more useful in this study of the correspondence between rays 

and waves. In fact, the Wigner function is the Weyl Symbol of the spectral 

operator and the Weyl calculus has properties which are reminiscent of the 

classical Poisson structure on the ray phase space. Application of the Weyl 

theory to the general electromagnetic equations for wave propagation in a weakly 

inhomogeneous plasma permits a concise derivation of the wave kinetic equation 

governing the wave action demity in phase space. · 

Yet another phase space representation of waves, knownin quantum mechanics 

as the coherent date repre1entation, can be viewed as a locally smoothed Fourier 

transform of the spatial representation of the wave. One of the advantages of this 

description is that it is linear in the wave field while the earlier Symbol quantities 

are quadratic. Both the spatial and wavevector representations are obtainable. 

from this quantity via projection integral1 which retain phase information. One 

may relate this new representation to the previous Symbols so that the Weyl cal

culus may be used to derive a wave equation in phase space. Thus, beginning 

with Maxwell's equations coupled to a hermitian linear plasma response in a 

coordinate-free operator representation, I derive the equation governing the 

coherent state representation of the wave. Treating this equation with a general

ized WKB method allows the construction of the wave along the usual ray orbits 

in phase space (as opposed to the space-time paths of traditional WKB). The 

resulting amplitude transport equations along the rays encounter no singularities 

as the rays do not focus in phase space. 
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The primary reason for the introduction of this phase space representation 

is that, due to the smoothing i~corporated in its definition, it provides a uniform 

appro::imation everywhere to the asymptotic form of the wave when projected 

onto physical space (with no singularities or matching). This is illustrated in a 

simple one dimensional example for which the traditional WKB method requires 

special attention at turning points (caustics), whereas this theory yields not 

only a uniform representation of the wave function but the exact result. For 

real multidimensional plasma problems however, the nature of the phase space 

method may prohibit analytic calculations so that a numerical method is desired. 

For application to chaotic ray systems, the computation of this phase space 

representation may be superior to numerical codes based on traditional WKB 

wave amplitude equations if caustic singularities are frequently encountered; 

indeed, this method may be instrumental in the development of an asymptotic 

wave theory for such systems. 
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1. INTRODUCTION 

The propagation of linear waves in a plasma is in general governed by 

an integrodifferential equation for the fields (commonly expressed in space and 

time variables) which couples a linear plasma response to either the Maxwell 

or Poisson differential operator. A great deal of progress has been made by 

making the simplest assumption that the plasma is uniform in space and sta

tionary in time; translational symmetry then implies that the plasma suscep

tibility depends only on the space-time separation of the field and response 

points. In this case a change of representation (Fourier transform from space

time to wavevector-frequency) provides the method of solution in terms of plane 

waves which obey the familiar basic dispersion relations. The requirements of 

special geometries and boundaries begin to complicate this picture iri that simple 

plane waves may not be the appropriate choice for the basic modes of the sys

tem. Finally, allowing for spatial inhomogeneity and temporal non-stationarity 

prevents the use of this method altogether; the susceptibility now depends on 

the field and response points separately. 

In many cases, it may be assumed that the plasma parameters (density, 

temperature) vary slowly in space and time over most of the region of interest. 

These assertions however must be made with respect to an estimate of the scale 

of variation exhibited by the desired wave solution; thus, the concepts of phase, 

wavevector and frequency must be borrowed from the uniform plasma solutions 

and expanded somewhat to generate the concept of a local plane wave. Short 

wavelength solutions will then be those for which the scale of variation of the 

weakly inhomogeneous plasma parameters is large compared with the scale of 

oscillation of the local plane wave in both space and time. Such solutions are 

usually difficult to obtain numerically (especially in more than one dimension) 



I.l Introduction 19 

due to the disparity of the scales involved. 

Geometrical considerations and the existence of symmetries may allow separa

tion of the real thre~dimensional problem, simplifying the applica~ion of analyti

cal and numerical techniq':les~ If the plasma is assumed to vary in only one dimen

sion or if the problem is separable so that this is effectively the case, the tradi

tional technique for obtaining short wavelength solutions is known as the WKB; 

or eikonal, method. While probably more familiar in the context of quantum 

mechanics, this method has been rigorously applied to a wide class of problems 

where it has been placed on firm theoretical foundations. The essence of this pro

cedure is to convert the integrodifferential equation for the wave field ·into a set 

of ordinary differential equations governing· the so-called ray trajectories. In 

quantum mechanics, these are the classical particle trajectories in phase ·space 

generated by Hamilton's equations, with the classical Hamiltonian corresponding 

to the Hamiltonian operator in the Schrodinger equation. In the present wave

optical problem, these paths are the rays of geometrical optics generated by the 

loc~l dispersion relation in the ray phase space, where wavevector and· position 

are conjugate variables. Thus, it is the eikonal method that lies at the heart- of 

the connection between geometrical optics (classical mechanics) and wave optics 

(quantum mechanics). 

The WKB technique is applicable to two types of wave problems of interest 

in plasma physics: the propagation of an externally launched wave into a plasma 

( eg., for heating purposes) or the determination of plasma eigenmodes. The 

first case (scattering) presents an initial value problem: the rays travel from the 

edge of the plasma, are typically refracted and eventually are either completeley 

absorbed, transmitted through, or are reflected back out (as in the case of the 

propagation of radio waves in a ~tratified ionosphere). In the second case (bound 
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states), the rays are trapped in a region of the plasma and in one dimension 

execute closed orbits. In both cases the wave (in the space-time representation) 

is constructed along the projection of the phase space trajectories onto physical 

space. In the scattering problem, the wave is subject to the boundary conditions 

provided by the wave form on the edge of the plasma (which also provides 

the initial conditions for the rays), while the bound problem requires single

val uedness of the wave. 

When the wave problem is not reducible to one dimension many new issues 

arise. The straightforward attempt to apply the eikonal method naturally leads 

to the consideration of a Hamiltonian system of rays with more than one de

gree of freedom and if, as in one dimension, the wave is to be supported by 

these trajectories, then the structure of the phase space should be examined. 

Two developments in recent years have important implications in this regard: 

l)The discovery of the relationship between certain ray phase space objects and 

properties of the asymptotic wave field constructed with the eikonal method, 

and 2)The realization that even ray systems of only two degrees of freedom may 

be nonintegrable and chaotic, thus tremendously complicating the nature of the 

phase space. 

For the trapped wave or bound (eigenvalue) problem in N > 1 dimensions, 

the extension of the WKB technique which has emerged is known as the Einstein

Brillouin-Keller (EBK) method. 1 This procedure recognizes the fact that the 

orbits of an integrable bound Hamiltonian system with N degrees of freedom 

are constrained to lie on N dimensional tori in the 2N dimensional phase space. 

The N conserved actions which label the tori are quantized in this asymptotic 

scheme, generalizing the Bohr-Sommerfeld rules; this provides a complete set 

of N mode numbers. A single mode of the system corresponds to the entire 
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family of trajectories which constitute a single member of the discrete set of 

tori. The construction of a regular mode (in any representation) is accomplished 

by means of path integrals on the torus (not necessarily along orbits) which are 

then projected onto the appropriate-variable subspace. Therefore, the principal 

classical quantity of interest in this multidimensional asymptotic quantization 

method is the torus in phase space, an example of a Lagrangian manifold. 

When the bound ray system is nonintegrable a complete set of N conserved 

actions does not exist everywhere in phase space and the orbits may explore sur

faces of higher dimension. In the extreme case, the Hamiltonian (the frequency, 

or the numerical value of the local dispersion relation) is the only invariant 

under the fiow so that almost every trajectory eventually ergodically wanders 

over the entire 2N- 1 dimensional surface of constant frequency. When the· 

bound system is non-integrable, the entire phase space is not foliated by invariant 

Lagrangian manifolds (although some may exist). Yet even though this is why 

the method of EBK quantization fails, the underlying wave problem doe1 possess 

a discrete spectrum; here, the connection between the structure of phase space 

and these irregular eigenfunctions and eigenvalues is not known. 

The propagation of a wave given an initial phase surface in N dimensions 

should also be interpreted in terms of a geometrical object in phase. space. 

Constructing the local wavevector at each point on the initial N- 1 dimensional 

wavefront produces an N - 1 dimensional surface of initial conditions in phase 

~pace. The N dimensional manifold composed of the family of trajectories 

generated by these initial conditions under the fiow (the outflow) is also an 

example of a Lagrangian manifold. As in the bound problem, the wave supported 

by these trajectories is constructed by (path-independent) line integrals along 

this manifold and then projected onto physical space (if this is the representation 
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desired). Singularities m the projection of this manifold are responsible for 

the optical phenomenon of amplitude enhancement at caustics. These occur, 

for example, when a family of trajectories are refracted or reflected; in phase 

space the manifold "bends" or turns parallel to the "wavevector directions" so 

that the projection onto ·physical space produces focusing. Such singularity 

difficulties occur in the bound problem as well and give rise to the Stokes 

pheno_menon. The modern treatment recognizes the fundamental role played 

by the Lagrangian manifold: in the neighborhood of a caustic the projection of 

the manifold onto the wavevector space (or a combination of some coordinates 

and the remaining wavevector variables) will be non-singular. The structure of 

the wave in the caustic region may be determined in the wavevector (or possibly 

mixed) representation, and then in physical space via Fourier transform.2 

Since the geometry of this Lagrangian manifold is central to the construction 

of a propagating wave, it is again important to study the evolution in time of the 

rays. The concepts of integrability are not appropriate in this context because 

either the surface of constant frequency may be unbounded or the wave may 

be damped by some process so that it becomes unnecessary to follow a ray 

beyond several damping times. However, numerical integrations of lower hybrid 

rays in realistic plasma profiles have demonstrated that trajectories in an actual 

plasma may be urutable in the sense that initially neighboring rays separate 

exponentially in time (a behavior shared by ergodic rays of bound Hamiltonian 

systems). If this is the case, the manifold generated by the outflow of a family of 

initial conditions may prove to be extremely convoluted and the projection of this 

manifold onto configuration space may involve many singularities. Therefore, 

in spite of the formal understanding provided by the. concept of the relation 

between a short wavelength wave and a Lagrangian manifold in phase space, 

the analytic or numerical computation of the wave structure may be extremely 
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difficult in these cases. 

Part I of this thesis will be concerned with the concepts and implications 

of the correspondence between rays and waves. For the case of integrable 

bound trajectories I intend to demonstrate the ideas that have been developed 

in association with the EBK method; for "chaotic" orbits, I hope to provide an 

intuition for how these ideas break down and for how one should perhaps view 

the ray-wave correspondence. The extent to which these conclusions (in both 

cases) can be applied to the propagating wave system will be given attention. 

In Chapters 2 and 3, I shall discuss the method of EBK quantization, 

omitting the details of the transformation of the underlying wave equation 

into a set of ordinary differential equations constituting the Hamiltonian ray 

system. I shall immediately introduce the extremely simple stadium model in 

order to illustrate this procedure. This two dimensional eigenvalue problem has 

a geometrical parameter '1 such that when '1 = 0 the resulting ray system is 

integrable, while for '1 > 0 it is chaotic (in fact, ergodic). The model wave 

equation is exactly solved (numerically) for large eigenvalue and the regular wave 

solutions for '1 = 0 are qualitatively compared with the EBK results in Chapter 

4. Numerical solutions for '1 > 0 are presented in Chapter 5 and the striking 

features of these irregular modes are qualitatively discussed with regard to the 

properties of the chaotic ray system. As an initial attempt at understanding the 

apparent "randomness" of these mode structures in terms of the "randomness" 

of the ray orbits, I compute in Chapter 6 the probability distribution of wave 

amplitude for several modes and verify the prediction that this quantity should 

be a gaussian. In Chapter 7, the evolution of eigenvalues and eigenfunctions is 

examined as the parameter '1 is increased from zero. 

A quantitative description of the relationship between the ray phase space 
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and the characteristics of short wavelength waves is facilitated by the inves

tigation of the Wigner function. In Chapter 8, I discuss this distribution, its 

properties and its interpretation as a phase space representation of the eigen

function. In the regUlar case, the asymptotic form of the Wigner function is 

related to the EBK result; for the case of irregular waves, I motivate the predic

tion of Berry3 and Voros4 in terms of the relationship of the Wigner function to 

the classical Liouville density. These expressions for the Wigner function may 

be used to compute the local spatial autocorrelation of a mode; the predictions 

are given in both the regular and irregular cases and compared with numerical 

results. 

The spectrum of eigenvalues is analyzed statistically in Chapter 9 by con

structing the probability distribution of successive level spacings. The results 

for the regular and irregular cases are contrasted and compared with theoretical 

predictions of Berry and Tabor5 and Zaslavskii.6 Concluding in Chapter 10, I 

summarize the essential distinctions between regular and irregular waves, how 

these may or may not be understood in terms of the properties of the correspond

ing integrable and nonintegrable. ray systems, and the general implications these 

results may have for chaotic propagating waves. 
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2. THE EIKONAL :METHOD IN NONUN1FORM PLASMA 

The existence of a linear wave in a plasma involves the coupling of Maxwell's 

equations for the wave electromagnetic field to a model of the interaction of the 

field with the plasma. In spac~time variables, this is represented by 

i(._, t) =I d3 z' d( q(._, t;i, ( I p) · E.(i, t) (I.l) 

which relates the current i at the response point(~, t) to the wave electric field E 

at the field point (i, t'). The linear coupling is mediated by the plasma conduc

tivity kernel q(~, t; t, t' I p) which depends on some set of plasma parameters 

{p} such as density, temperature or magnetic field. This real, possibly non

symmetric tensor is determined by the plasma model chosen (i~e., kinetic, fluid, 

etc.) and in general it will depend on each spac~time point separately. The in

tegral over the field points encompasses the entire plasma (in this ri.onrelativistic 

treatment) whereas only earlier times (t' < t) are considered (due to causality). 

When (I. I) is inserted into Maxwell's equations, the magnetic field can be eliminated 

so that the linear wave equation governing the electric field may be written 

I d3 z'd( ~(._, t;i, tIp)· E.(~', t') = 0 (!.2) 

The integral is to be performed as in (I.l) and the equation is to hold at all 

points ( .. , t). Depending on the circumstances, appropriate boundary conditions 

must be specified for a well-posed problem. In terms of the Maxwell operator 

and the conductivity kernel, the dispersion kernel f) in (!.2) is ... 

~(~. t;~'. t' 1 p) = [(c~ :t:- v~)! + vv]a(~- i)a(t- t) 

.· 47r a ( ' t' I ) 
+ c2 at q ... t; ~ ' p 

(!.3) 

Due to space and time translational invariance, the vacuum terms in (!.3) 

depend only on the separation of the spac~time points. When the assumption 
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is made that the plasma is uniform in space and stationary in time, then the 

conductivity depends only on this separation as well, and the parameters {p} 

are constant. If this is the case, a change of variables allows (1.2) to be written 

in the form 

(1.4) 

where 

f)(~, t;;!, t' I p) = Du(~- ~1 , t- t' I p) ... ... (1.5) 

defines the kernel /) u for the uniform plasma. Now, introducing the Fourier .. 
transform of E.(~, t) 

.l!.:(z., t) 3 / (::~3 :: i;_(&_, w) ei(!;<-wtl (1.6) 

the .wave equation (1.4) may be expressed in the wavevector-frequency repre-

sentation as 

I dale dwei~&:.J.-wt) Du(&,wlp)·E(&,w)=O 
(27r)3 271' .. 

(I. 7) 

with the uniform plasma dispersion tensor b u defined by ... 

~u(&,w I p) =I d3 sdr ~u(l.,T I p)e-i~~·.!-wr) (1.8) 

Owing to the orthogonality of the Fourier plane wave modes, the solution to 

(1.7) is simply 
A A 

Du(k, W I p) ·E.(&, w) = 0 ... (1.9) 

which in turn requires 

det ~u(&,w I p) = 0 (1.10) 

The same results are obtained with the assumption that a single plane wave 

or Fourier mode is present in the system and that the boundary conditions are 

to be satisfied by considering a linear superposition of the waves. Substitution 
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of the form 

(1.11) 

into (1.4) immediately gives (1.9) and hence (1.10). Thus, equations (1.9) and (1.10) 

define the polarizations and dispersion relations of the linear waves in the given 

uniform model of the plasma. These waves are labeled as different branches 

{ b} or roots of the characteristic equation for (1.10) and depend on the uniform 

plasma parameters {p }. 

When the plasma is nonuniform and nonstationary this familiar method 

fails. When space-time translation is not a symmetry, the conductivity kernel 

q; does not simply depend on the separation (~, r); instead, it depends on the 

field and response points individually and the simplifications made in equations 

(1.4-1.10) are not possible. However if the inhomogeneities are in some sense 

small so that the parameters {p} are nearly uniform over most of the plasma, 

one would expect waves similar to those that exist in the uniform case. This is 

reasonable if the waves satisfying the uniform plasma dispersion relations (1.10) 

have wavelengths short compared with the scale of variation of the plasma (of 

course, there may be several such scales but for the present discussion it is 

assumed there is only one). In this case, one would expect that over a suitably 

small region of the plasma the wave would have a form similar to (1.11), i.e., 

locally a plane wave with constant wavevector and amplitude. However, over a 

region the size of several wavelengths the plasma parameters would change and 

on this scale the wavevector and amplitude should vary also. The wave equation 

being linear, the desired solution at a point would be a superposition of such 

primitive wavelets. 

This reasoning is embodied in the basic tenets of the eikonal procedure. 

Quantifying the foregoing statements, one assumes the form of the solution to 
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(1.2) to be a local plane wave 

E.(~, t) = E(~, t)ei t/1(=., tl (1.12) 

which generalizes the phase of (1.11) and allows for spatial amplitude variation. 

In keeping with the usual ideas of wavevector and frequency being measures of 

phase oscillation, these quantities are defined by 

£(.:., t) = V¢>(.:., t) w(~, t) = -8t¢>(~, t) (1.13) 

Now the conditions for 8kort wavelength solutions to (1.2) in a weakly inkomogeneou8 

pla6ma are 

l.&IL > 1 wT> 1 (1.14) 

where L and T. are respectively the scales of the spatial and temporal variation 

of the unperturbed medium. Th~ large quantities in (L14) are assumed to be of 

the order of a large parameter A. The amplitude E is written in a formal power 

ser1es 
OQ 

E(.:_, t) = L A-n En(~, t) (1.15) 

with the following ordering 

(1.16) 

where aJc is a kth order combination of space and time derivatives. Thus, the 

amplitude is slowly varying compared with the phase and the wavevector and 

frequency are assumed to change on the same scale 

(I.17) 

When the form (1.12) is substituted into the wave equation (1.2) and separated 

by the ordering scheme above, asymptotic solutions are obtained as A -+ oo. I 

shall omit the details of this calculation and refer to the derivation of Bernstein 

and Baldwin 7 for an example of the usual treatment;8·g· 10 I intend to perform a 
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similar computation in Part II. The result to lowest order O(A0 ) is similar to (1.9), 

-D(~, t, &., w) ·Eo(~, t) = 0 ,. 

and is solved by 

det{>(~, t, &., w) = 0 

Here, the local di8per&ion ten1or {> is related to the dielectric kernel J?. by 

{>(~,t,i,w) = J d3 sdre_,·(l£:.!.-w"l J?.(~+ t.!,t+ tr;~- t,!,t- tr) 

and in terms of the definition (1.3) it is 

( 
·) w2 ) 41riw ., 

D(~, t, Js., W) = k- - ~ f- kk - -.)-q;loc(~, t, Js., W) 
,. · c"' ,. c-

(1.18) 

(1.19) 

(1.20) 

(1.21) 

The local conductivity flloc is defined in terms of the conductivity kernel q; by 

the same centered transform as in (1.20). 

The set of local dispersion relations labelled by { b} obtained as the roots 

of the characteristic equation in (1.1 9) are related to the local frequency and 

wavevector by 

w(~, t) = il(~, t, i(~, t)) (1.22) 

and as such, this is to be interpreted as an equation for the phase ¢>(~7 t) of the 

eikonal wave. Thus, inserting the relations of (1.13) into (1.22), one obtains 

-Bt¢>(~, t) = il(~, t, V ¢>(~, t)) (1.23) 

as the equation to be solved in the lowest order of the eikonal method. Although 

a procedure has been outlined here for arriving a.t these local dispersion relations, 

the common method of obtaining them is to generalize the uniform dispersion 

relations {wb(!s. I p)} of (1.10) by allowing the plasma parameters {p} to have 

weak spatial-temporal dependence. 

Equation (1.23) is known in classical mechanics as the Hamilton-Jacobi 

equation when the eikonal phase ¢>(~, t) is interpreted as the action function with 
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the local dispersion relation n playing the role of the classical Hamiltonian. 11 

Thus the solution to (1.23) is given in terms of the characteristic trajectories 

governed by Hamilton's equations 

d~ an 
-=-
dt a& 

d&. an 
dt =-a~ 

dw an 
-=-
dt at 

(1.24) 

These trajectories evolve in the six dimensional phlUe space of the independent 

variables (&., ~) and are the rays of geometrical optics. This is a slight generaliza

tion of the usual nomenclature which refers to the physical ~-space projection 

of these orbits as the light ray1 of electromagnetic theory. .. 

Before proceeding with the discusion of the method in which these trajec

tories are used to determine the eikonal phase, I shall begin to introduce an 

extremely simple example so that the following development may be illustrated 

. at each point. Thus consider the local dispersion tensor (1.21) in vacuum (tz = 0) 

with transverse waves (&.·E. = 0). The local dispersion relation (1.19) is then 

the familiar expression 

(1.25) 

where I have set c = 1 and have restricted the problem to two dimensions. At 

first glance, it would seem that. this exam pie does not require the application of 

the eikonal method at all; however I shall impose a boundary on the region of 

interest, thereby removing the appearance of spatial uniformity and justifying 

the dependence of the dispersion relation on ~-

The shape of the boundary as shown in Fig. 1 is that of a racetrack or 

stadium: two semicircles connected by parallel lines. It is to be parameterized 

by 1, the ratio of the halfiength of a straight section to the semicircle radius, 

so that when 1 = 0 the boundary is a circle. In addition, for reasons to be 

explained later, the area is to remain at the constant value 1r as 1 is varied. 
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Therefore, the semicircle radius is a function of 1 and is given by 

( ) 

-1/2 

R(l) = 1+; (1.26) 

Comparing (1.25) with (1.3), it is apparent that the underlying wave equation 

for this system is the Helmholtz equation in two dimensions 

(1.27) 

where 1/J is any component of E.. The boundary condition is taken to be 1/J = 0 · 

and hence this is the problem of transverse modes in an electromagnetic cavity 

or waveguide. On a broader level, this problem is also that of the modes of a 

drumhead and is the Schrodinger equation for a particle in a two dimensional 

infinite well of this shape; in some instances it may be useful to think in terms 

of these interpretations. Equation (1.27) is to be solved at a fiXed value of 1; this 

is not a time-dependent problem, but rather an investigation of the solutions 

as 1 is varied. With these considerations, (1.27) is an eigenvalue problem which 

possesses an infinite discrete spectrum for all values of "Y. 
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Figure 1. Stadium boundary for the Helmholtz equation. This family of bound~ 
ary shapes is governed by the parameter /, the ratio of the halflength of the 
straight segment a to the semicircle radius R. The area is to remain constant . 
(== 1r) as 1 is varied. . 
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3. EBK QUANTIZATION 

Returning now to the discussion of the equation for the eikonal phase, it is 

known11 that- boundary conditions must be specifted in order for (1.23) to be a 

well-posed problem. These can be of two types depending on the nature of the 

solution desired: 

1) A propagating eikonal wave is evolved in space-time from initial data (at 

t = 0) of the form 

E.(~, 0) = K(~, O)ei.Po(&) (1.28) 

This- supplies an initial condition ¢>0 for (1.23) and hence initial conditions for 

the rays in phase space via the definitions (1.13). 

2) A normal mode of a time-independent wave system is required to be 

single-valued in space. 

An example of the first case is a wave launched into a plasma from an 

external antenna. An initial wavefront (¢>0 (~) = constant = ¢>g) serves as the 

initial condition for a family of rays which propagate into the plasma (governed 

by (1.24)), are typically refracted and may eventually emerge from the plasma. 

The wavefront evolves in space-time as a line integral along the rays11 

~(;., t I ~g) = ~g +f.' dt! [ &.(t! I ~gl · i(t! I ~gl ~ w(t! I ~g)] (1.29) 

where ( &(t I ¢>g), ~(t I ¢>g), w(t I ¢>g)) are the solutions of (1.24) with the initial 

conditions on ¢>g. In three dimensions, the phase surface ¢>g is two dimensional so 

that with a given initial value of&(~ I ¢>g) at each point on the surface by (1.13), 

this wavefront determines a two dimensional surface of initial conditions in the 

ray phase space. As this family of initial conditions evolves under (1.24), a three 

dimensional surface in phase space is generated. This surface is an example of 

a Lagrangian submanifold11 of phase space; that is, one may show that because 
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of the definitions (1.13) which are satisfied at every point on the manifold, the 

line integral in (1.29) is path-independent when interpreted as an integral along 

the manifold. This property of Lagrangian manifolds will be useful shortly. 

The construction of the full asymptotic solution for .E.(~, t) for the propagating 

wave is deeply involved with the structure of the Lagrangian manifold and in 

this respect, the method bears many similarities to the treatment of the normal 

mode case. Therefore, I shall proceed to discuss efgenmodes and return to the 

propagating wave when the nature of this infiuence has been elucidated. 

When the wave problem has normal mode solutions, the rays are confined 

to a region of ~-space which may encompass either the entire plasma or just 

a small part of it. For example, one could imagine a localized mode due to 

a large scale inhomogeneity in ~he plasma profile (such as an electromagnetic 

wave "trapped" in a density minimum, a model to which I shall return in Part 

II) .. The plasma is assumed to be stationary in time, or so slowly varying that 

it is effectively so; otherwise, the concept of normal mode has no meaning In 

addition to confinement in physical space, I shall also assume that the region of 

interest contains no resonances, or points where the local wavenumber becomes 

infinite. Under these conditions, the local dispersion relation il(&., ;.) is time

independent and the surface of constant frequency, or frequency surface, defined 

by 

w = constant ~ il(~, &.) (1.30) 

IS compact in phase space. In N dimensions, this is a 2N - 1 dimensional 

surface in the 2N dimensional phase space. Since the value of the frequency 

(or Hamiltonian) is invariant along a phase space trajectory (as guaranteed by 

(1.24)), every orbit is confined to the frequency surface determined by the initial 

point. 
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Studies12•1 of recent years have indicated that two basic types of motion 

exist in multidimensional Hamiltonian systems; the recognition of this fact has 

many important consequences for the construction of the modes in terms of the 

rays. 

A time-independent Hamiltonian system with N degrees of freedom is said 

to be integrable13 if there exist N independent, global constants of the motion. 

This set of invariant functions on phase space {1(!, ~)} must also be in involution, 

· or form a set of "commuting observables"; in terms of the usual Poisson bracket 

on phase space, this condition is .. 

where 

{!,, lj} = 0 

aF aG aF aG 
{F(~,&.), G(;.,!)} =a· ak- ak · lh 

~ - - -

(1.31). 

(1.32) 

These functions {1} are the coruerved actioru; when they exist a canonical trans

formation may be performed so that they and their conjugate angle variables 

U.} coordinatize phase space. It may be noted 13 that in some cases a set of N 

action variables might exist in some regions of phase space while not in others; 

even these cases ar~ referred to as nonintegrable. 

When the transformation to action-angle variables is possible, the Hamiltonian 

in the new variables is a function of the actions alone. The new Hamiltonian 

IS 

li(L(~, &)) = n(~, &) (1.33) 

in terms of which the equations governing the ray trajectories are 

dO ali d; = aL = ~(1) 
dl =_ali= 0 
dt au.. (1.34) 

which shows the actions to be invariant along orbits and defines the constant 

angular frequencies ~(1). The existence of these N invariants constrains a 
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trajectory to lie on an N dimensional surface (instead of the previous requirement 

of the 2N -1 dimensional frequency surface); it may be shown that this surface 

in phase space has the geometry of an N-torus. 11 

When the ray system is completely integrable, the entire phase space 1s 

foliated by these N-tori, each labelled by the values of the N actions on the 

torus. An N-torus has N irreducible closed curves; that is, each "way around" 

the torus which cannot be continuously deformed into another. Thus, every path 

between two points on the torus can be continuously deformed into any other 

path modulo a number of irreducible closed curves. In fact, \hese closed curves 

{C} serve to define the invariant actions themselves by1 

(1.35) 

In order to see how this works; consider the example introduced in (1.25). 

The rays governed by this Hamiltonian are freely propagating (straight lines 

in ~-space) and undergo specular reflection at the boundary. In the case of a 

circular boundary ('-y = 0), the trajectories are confined to an annulus and may 

or may not be closed; an example of a single initial condition is shown in Fig. 

2. In the circle the orbits are integrable, and although the motion in the four 

dimensional phase space cannot be displayed, one may imagine it by "inflating" 

the annulus into a torus so that the rays travel from the interior of the annulus 

to the boundary along the top of the torus, reflect, and then proceed back to the 

interior along the bottom. Naturally, the restriction of the orbit to an annulus 

and the existence of the torus in phase space is due to the fact that angular 

momentum is conserved in the circularly symmetric geometry. The angular 

momentum is one of the conserved actions, as can be seen by expressing (1.25) 

in polar coordinates (a canonical transformation) 
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L.2 
~ 2 . ~ ~g 

w- = n ( r 1 k,. 1 kg) = k; + 2 
r 

91 

(1.36) 

and then computing (1.35) along Cg, a concentric circle being one of the ir

reducible circuits around the torus. Since (1.36) is independent of 0, kg is con- -

stant and the integral is 
c, 

211' . 

/g = J._ f kgdO = kg 
21r lo (1.37) 

The inner edge of the annulus, or radial turning point, is given by (1.36) 

with lc,. = 0 and it depends on [g and w, 

. [g 
a(w,/g) =

w 
(1.38) 

Now, the "short" wa.y around the torus may be taken as C,., a radial path from 

a(w,Jg) toR and back. Therefore, the radial ac~ion /,. is 

I,. = _!_ 1 k,.(r; [g, w)dr 
21r !c,. 

_ 1 1R dr [ 2 2 r2] 1/2 
-- - w r -19 

7r 11(w,lg) r 
(1.39) 

- 1 {·r 2R2 f.2J 1/2 l -l [g } - - w - 9 - g cos -
1r wR 

Although this form for the radial action 1,.(/g, w) cannot be explicitly inverted, 

it is the implicit definition of the new Hamiltonian w = fi(I,, /g) in action-angle 

variables. 

It can be shown 11 that each torus of an integrable Hamiltonian system is a 

Lagrangian submanifold of phase space. A Lagrangian manifold is simply any 

N dimensional surface in the 2N dimensional phase space on which the phase 

integral 

fjJ .. I&.. d~ (1.40) 

gives the same value along curves continuously deformable into one another. 

Thus, the integral (I.40) vanishes around a closed curve which may be deformed 
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a(w, Ie) 

XBL 828-11095 

Figure 2. ,Single trajectory in the (1 = 0) circle. Due to conservation of angular 
momentum Io, an orbit with frequency (or wavenumber) w is confined to the 
annulus between r = a(w, Io) = lofw and r = R. 
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to a point; the integral around other closed contours not shrinkable to a point 

(such as the irreducible curves on a torus, cf. Eq.(l.35)) may not vanish. There 

are many examples of Lagrangian submanifolds in the phase space of any system, 

as their definition depends only on the structure of phase space and not the 

Hamiltonian of the system; simple examples are the N dimensional planes of 

either constant &. or constant ~· The N -tori of integrable Hamiltonian systems 

are special, however, in that like the manifold generated in phase space by the 

propagating wave described earlier, they are invariant under the flow of the 

Hamiltonian; s.e., an orbit remains on the manifold determined by its initial 

condition. 

In view of the multivaluedness of the phase due to these irreducible circuits, 

the conditions for single-valuedness have been shown14 to be 

m=0,1,2, ... (1.41) 

This is the result of the Einstein-Brillouin-Keller (EBK) 1 quantization procedure 

for smooth, bound Hamiltonian systems; they generalize the usual one dimen

sional Bohr-Sommerfeld rules to nonseparable multidimensional problems. The 

integers m. can be understood in terms of the desired single-valuedness of the 

wave function of the form exp(i4> ), but the corrections g_ require a careful analysis 

of the relationship between the torus {1 = m.} and t~e wave function in both 

the ~and&. representations. For a good discussion of these Keller-Ma&lo" indice& 

and how they depend on the structure of the torus, I refer to the excellent review 

article of Percival. 1 In the example (1.36) of rays in a circle, the conditions (1.41) 

become 

m, n = 0, 1, 2, ... (1.42) 

Keller15 has shown that the quantization rules (1.41) must be amended when 

non-smooth Hamiltonians are considered, as is the case with this example due 
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to the infinite potential at the boundary; thus, the factor of i in the radial action 

is partially due to effects produced by this "hard wall" which are not included 

in the usual EBK treatment. 

With the actions quantized, it is a simple matter to derive the frequency 

spectrum for the normal mode problem. Expressing the integrable Hamiltonian 

in action-angle variables, the eigenfrequencies are 

{1.43) 

Thus, the N actions provide the labelling of the eigenvalues with N mode 

numbers. In the example, the conditions (1.42) inserted into (1.39) gives the 

implicit equation for the eigenvalues {wm,n} of the Helmholtz equation in the 

circle (1.27). Of course, this problem is analytically solvable in terms of Bessel 

functions; Keller15 has shown that the eigenfrequencies obtained from {1.39) by 

numerical means compare favorably with the exact values (zeros of the Bessel 

functions) even down to low mode numbers. 

In general, the asymptotic form of the ;,-space representation of the wave 

is a superposition of eikonal "wavelets" {1.12), each of which might be thought 

of as being due to a trajectory passing through the point ;.. However, since the 

phase integral (1.40) is independent of path on the torus, it is more correct to 

think of each contribution in the superposition as coming from different points 

on the torus with the same ;, coordinate. Thus, the wave at a point ~ is the 

sum of contributions of the form {1.12), each term representing a point on the 

Lagrangian manifold {torus) which projects to the point ~· These points are 

determined by 

1(;., £) = lm (1.44) 

. In the example of rays in a circle, thinking of the torus as the "inflated" 

annulus allows one to visualize that in this case there are two such points on the 
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torus, "above" and "below" each point in the interior of the annulus. However, 

for each point on the inside rim of the annulus there is only one point on the 

torus; this exception will give rise to an important effect later. 

Now, the phase ¢i for each contributing wavelet at a point ~ can be ex

pressed as 

(1.45) 

where .&1(;. I Im.)is the point on the torus lm above ~ generating the jth con

tribution to the wave. The integral is performed along any path on the torus 

beginning at a consistent arbitrary point (leading to an overall constant phase 

factor) to the point (,&i, ~). In the example problem, the two b.ra.nches of !(;.) 

are most easily obtained from (1.36): 

(::!::) ( 
. 1 [ ') •) ')] 1/2 lc r I m w ) = ±- w- r- - m-r ' m,n r m.n (1.46) 

which is degenerate on the inside rim of the annulus (r = a.(w, I,) = mfwm.n = 
aw,m)· Taking the phase to be zero at the point (r, 8) = (aw,m 1 0), the two phases 

¢1±1 are computed by (1.45) to give 

~(+l (r,81 m,wm.n) = mD+ Jw2,.,,nr2 -m2 -mcos-1 ( rn ) 
Wm,nr 

,~,.(-) (r 8 I m w ) = m8- Jw2 . r. 2-m2 
o/ ' ' m.n m.n . 

The amplitude factor for a scalar eikonal wave is simply related to the phase. 

The leading term in the amplitude expansion for the jth wavelet can be shown 1 

to be 

(
82"',·(;.11))· 1/2 

~~il(;.llm)= det ;z8/ . 
- - l-l - -m. 

(1.48) 

With (1.47), the amplitudes of the wavelets in the example are 

.. ( +) .. (-) ( •) •) ,) ) - l/4 
1/J0 (r I m, Wm.n) = 1/Jo (r I m, Wm.n) "-J w~.nr- - m- (1.49) 
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( 
') ') ) -1/4 

'""J r- - aw,m 

j96 

-(1.50) 

These formulas complete the solution of the wave equation to O(A-1 ) over most 

of the region of interest (i.e., at all points for which they are real and do not 

violate the eikonal assumptions). Combining equations (1.45) and {1.48), the 

asymptotic eikonal form for the normal modes of a scalar wave equation is 
1'1 

1/Jm.(_;.) '""J L ~~j)(.;_ jlm_)/~i(~llm) + O{A-2) (1.51) 
j-1 

This of course assumes that the time-independent Hamiltonian ray system is 

integrable so that the actions {l} exist; these are quantized by the EBK rules 

(!.41) to obtain the eigenfrequencies (1.43). The sum in (1.51) is over the finite 

number of values {&j(*. lim)} given by (1.44). These relationships indicate that 

a normal mode of a wave system labelled by mode numbers { m} corresponds 

asymptotically (l&l, Wm,n -+ oo) to the entire family of orbits on the torus lm. in 

the phase space of the associated integrable ray system. 

Using (1.47) and (1.49), the expression (1.51) for the example of the circle 

becomes 

cos(- fw2 ·. r2 - m2 - mcos-1 (m/w r)- Jt) . 
1 

y m.n m,n 4 

1/Jm,n(*.) '""J e' m ( 2 2 2)1/4 (1.52) 
wm.nr - m 

In the reference cited above, Keller was the first to derive this formula for 

eigenmodes of the circle. Holding only in the annulus (aw.m < r < R), Keller 

has shown that (1.52) is indeed an asymptotic representation of the appropriate 

Bessel function solutions16 in that region. The exponentially decaying solutions 

in the inner disk (r < aw.m) may also be obtained, but I shall not discuss 

that here; I have used this example only in order to clarify the correspondence 

between the classical torus and the wave eigenmode. I shall now describe one of 

the dominant consequences of this relationship. 
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4. REGULAR RAYS AND WAVES 

. The singular behavior of the amplitude near r = aw,m in the case of the 

circle (1.50,1.52) illustrates a quite general feature of the formula (1.48). This 

feature is known as a ctJtutic and it is characterized by the focusing of rays in 

physical space, as can be observed in Fig. 2 along the inside of the annulus; the 

term caustic means "bright spot" and refers to the high intensity (due to the 

focusing) in this region. A caustic is the multidimensional version of a turning 

point for the rays, and like the wave phase, it is properly ipterpreted in terms 

of the projection of the Lagrangian manifold onto ;.-space. As discussed earlier, 

when the "inflated" annulus is projected back down to configuration space each 

point in the interior of the annulus possesses two branches of &.(~), whereas 

points on r = aw,m have only one. This is a symptom of the fact that this 

projection is singular on r = aw,m; thus, a small two dimensional region on the 

torus projects to a small region of the same dimension except near aw,m where 

the projection becomes one dimensional. This particular projection singularity 

is known as a fold ca:ttl6trophe and in more dimensions more exotic singularities 

can occur. 17 It can be shown3 that (1.48) tends to infinity near all points in 

~-space where this projection is singular, with some exponent characteristic of 

the type of catastrophe involved. Naturally, the exa:ct solution of the wave 

equation does not become singular at caustics, but the intensity of the wave is 

large in those regions. It is only this asymptotic approximation to the wave in 

the coordinate representation which fails at caustics; in view of the assumptions 

(1.16) on the slow variation of the amplitude, one should not expect a good 

asymptotic solution in the neighborhood of a caustic. 

The traditional method9 of dealing with these singularities (which appear 

even in one dimensional problems) involves the solution of a differential equa-
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tion which approximates the one under consideration near the caustic, and the 

matching of exterior, interior, and boundary layer solutions. However, recogni

tion of the role played by the Lagrangian manifold in the construction of the 

wave function and especially in the formation of caustics allows one to make full 

use of phase space concepts in order to determine the asymptotic behavior of 

the wave in the singular regions. 

It can be shown2•18 that when the projection of some part of the Lagrangian 

manifold onto ~-space is singular, the projection of that part onto either £-space 

or possibly some mixed coordinate-wavenumber space (e. g., ( k:a: dl)) will be non

singular. Thus there is a procedure for constructing the mode in this "good" 

representation which will be nonsingular, and then the wave in the ~ repre

sentation in the neighborhood of the caustic is obtained by Fourier transforming 

on the appropriate If variables. Each basic type of caustic catastrophe has its 

own characteristic17•19 function which describes the behavior of the diffraction 

pattern near the caustic, and these may be derived by this method; the fqld 

catastrophe found in the example is distinguished by the familiar Airy func

tion pattern. In order to construct the complete asymptotic solution valid in 

all regions accessible by the rays, one must match these caustic solutions onto 

the eikonal form {I.51). This technique will not be developed further here, but 

it is introduced in order to impart an intuition for these modern phase space 

methods. 

Having briefly reviewed the theory of the asymptotic method for obtaining 

normal modes in more than one dimension, it is useful at this point to actually 

exhibit an example of a short wavelength mode in order to visualize some of 

the aspects of the ray-wave correspondence upon which the method is based. 

Of course, the asymptotic nature of all of these results restrict the validity of 
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their comparison with any mode of finite wavelength, but this must be balanced 

by the limitations imposed by numerical analysis. Thus, I have attempted to 

concentrate on a range of the spectrum which seems to provide a reasonable basis 

for interpretation of wave properties in terms of the rays yet computationally 

manageable. When unexpected features arise; I shall consider modes of shorter 

wavelength in order to gauge the trend and to determine whether these aspects 

persist as opposed to being artifacts of the location in the spectrum. This will 

be a very important point and I shall often return to it. 

For the continuing model of the Helmholtz equation (1.27) in the circle ( "f = 
0 in the more general boundary of Fig. 1 ), a typical eigenfunction is displayed in 

Fig. 3; this is J4o(k40 ,sr) sin 408 (angular action m = 40, radial action n = 5). 

The eigenvalue k4o,s is the fifth zero of J4o and has the value of 65.012; it is also 

the value of w since by (1.27) and (1.25), w2 = k 2 . This mode is approximately 

200 levels above the ground state, and since the radius of the circle is unity, the 

eikonal conditions are satisfied to the extent that kR ~ 65 > 1. 

Here it is important to understand the mode of display to be used throughout 

this thesis. Figure 3a shows the nodal pattern of this eigenfunction in the positive 

quadrant (z, y > 0) with the boundary of the circle clearly visible. The ir

regularity in the boundary and the odd behavior of the nodal lines near crossings 

and near the origin are due to the computer routines which generated the contour 

plot. Figure 3b is a perspective view of the intensity ltPI2 in the positive quadrant 

looking in the direction of the positive y axis. The behavior of the nodal lines 

near the origin in Fig. 3a is explain~d by the extremely small amplitude of the 

wave in that region, as indicated in Fig. 3b. 

Another point to be remembered is that due to the reflection symmetries of 

both the circle and stadium boundaries across both axes, the normal modes (for 
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Figure 3. a) Nodal structure of a "high angular momentum" eigenfunction in 
the positive quadrant (x, y > 0) of the (1 = 0) circle. This mode is 1/Jm.n = 
1/J4o .. s = J4o(k4o .. sr) sin 400 with eigenvalue k4o,s = 65.012. The coordinate axes 
are nodal lines (odd-odd parity). The irregular behavior of the nodal lines near 
the origion are due to imperfections in the contour plotting routine where the 
amplitude of the mode is extremely small. 
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Figure 3. b) Intensity distribution I1/JI 2 (x, y) in positive quadrant for the same 
eigenfunction. This perspective view (along the positive y direction) clearly 
shows the large evanescent region (the disk r ~ .7) and the high intensity caustic 
around the interior rim of the annulus (r ~ .7). . 
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any value of --y) may be categorized by four definite parities. For simplicity (and 

other reasons to be explained later), I shall restrict attention to just one parity 

class; only modes which are odd under both z and y reflection will be considered. 

Thus, in the quadrant displays of the eigenfunctions both axes are nodal lines.· 

The mode under present consideration is· 200 levels above the ground state in the 

odd-odd parity class alone (or 800 levels above the ground state when all modes 

are considered); however, I shall usually refer to the number of levels without 

such a caveat, implying only modes of the same parity. 

Comparing the perspective view of the intensity of Fig. 3b with the ray 

trajectories in Fig. 2, two features are immediately apparent. First, the wave 

is vanishingly small in the interior disk, an inaccessible region for the. rays 

due to the conservation of angular momentum. This is a satisfactory and 

expected consequence of the picture that the wave is supported by the rays and 

hence confined to the annulus. The second quite noticeable aspect is the large 

amplitude of the wave function along the inside rim of the annulus. This of 

course is the caustic region and corresponds to the focusing of the rays in this 

vicinity as discussed above. Naturally the wave is not singular here (as is the 

projection of the torus or "inflated annulus" onto con~guration space), but 'the 

intensity is enhanced. In fact, the juxtaposition of these two features dominates 

the appearance of the eigenfunction and both can be explained in terms of the 

projection of the phase space structure of the Lagrangian manifold. 

The next higher mode in the spectrum (of the same parity) is rather different 

and is shown in Fig. 4. This is J4 (k4 .u~r) sin 40 with k4 .1o = 65.067 and thus 

has angular action m = 4 and radial action n = 19. Wbereas the "high angular 

momentum" mode of Fig. 3 is concentrated away from the origin (extreme cases 

of this are termed whi&pering gallery modes), this "low angular momentum" 
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mode is distributed over almost the entire interior of the circle. Although the 

correspo~ding ray motion is not shown, the trajectories are still confined to an 

annulus with a very small value of aw,m as this mode_ represents almost diametric 

oscillations of the rays. The interior disk is nearly washed out by the surrounding 

caustic and this region of high intensity again dominates the structure of the 

wave. The amplitude peak appears higher in this figure than in the previous one, 

but the scales in which they have been depicted are not necessarily the same. 

These two examples begin to indicate that, at least qualitatively, this region 

of the spectrum is sufficiently "asymptotic" to use for an investigation of wave 

properties with regard to the ray phase space. This will be made firmer when 

more quantitative analyses are made of these circular modes and interpreted in 

terms of predictions based on the EBK results. The main purpose here, however, 

is not to dwell on the well-known solutions of this problem in a circular boundary, 

but to establish a basis for discussing the properties of the modes in the more 

general problem of the stadium. In that case, the relationship between rays and 

waves is not known (as will be seen below) and it will be important to have 

confidence that when these new modes are studied, they are suitably located in 

the spectrum to provide insights into this correspondence. 
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Figure 4. a) Nodal structure of the "low angular momentum" circular eigen
function '1/Jm.n = 1/J.ug = J.l{k.u{lr) sin 48, with k4 ,u1 = 65.067. 
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Figure 4. b) Intensity distribution of the same mode. Note that the caustic 
region is extremely near the origin, obscuring the evanescent inner disk. 
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S. CHAOTIC RAYS AND· WAVES 

Returning then to the definition of the model problem, consider the Helmholtz 

equation (1.27) inside the stadium boundary of Fig. 1 with "' > 0 and 1/J = 0 on 

the boundary. In the attempt to obtain short wavelength solutions, the substitu

tion of an eikonal waveform into (1.27) yields to lowest order (under the assum

tions beginning at (1.14)) the vacuum dispersion relation (1.25), irrespective of the 

geometry of the boundary. Again, the interpretation of (1.25) in terms of the 

Hamilton-Jacobi equation (1.23) leads to the consideration of the ray trajectories 

governed by (1.24) in order to hopefully construct the phase and amplitude of the 

solution. Figure 5 shows the typical evolution of a single initial condition, for the 

case "'= 1. 

Comparison of Fig. 5 with Fig. 2 immediately demonstrates the fact that 

the trajectories in the stadium are much more complicated than those in the 

circle. Even when an orbit is not closed in the circular case so that it completely 

fills the annulus, it is still restricted to that annulus in configuration space and to 

the surface of the torus in phase space. A single initial condition in the stadium, 

however, will eventually pass arbitrarily close to every point in •-space infinitely 

many times. In phase space, the trajectory is not constrained to lie on a torus or 

any other two dimensional manifold; instead, it passes ~rbitrarily close to every 

point on the entire three dimensional frequency surface infinitely many times. 

These properties have not only been indicated20 in numerical studies, but in 

fact, it has been shown21 analytically that the ray system inside the sta~ium 

(sometimes known as a billiard problem) is mizing13•22 for all "' > 0. 

Not every trajectory in this system has this property; there is a small class 

(technically, a set of measure zero) of periodic orbits, each of which lies on a 

one-dimensional (disconnected) manifold in phase space. Examples are the orbit 
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Figure 5. Typical example of a single trajectory in the "'! = 1 stadium bound
ary with specular reflection~ This computer computer-generated picture was 
produced and provided to me by Dr. J. Meiss. 
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which travels between the midpoints of the semicircles, the diamond-shaped 

orbit which connects the midpoints of the straight sides and the midpoints 

of the semicircles, and the entire family of orbits which oscillate between the 

straight sections with lc:r. = 0. However, each of these orbits is unstable in that 

almost any infinitesimal perturbation in the initial condition will produce an 

ergodic orbit. Chaotic orbits themselves ~re also umtable in the closely related 

sense that infinitesimally close initial conditions separate exponentially20 in time 

(asymptotically, as t-+ oo ). 

In view of these observations on the phase space of the ray system in the 

stadium, it is apparent that the next step in the EBK procedure is not possible. 

The only constant of the motion is the value of the Hamiltonian or frequency; 

the action invariants required for quantization do not exist and thus there is no 

Lagrangian manifold upon which to construct a correspondence between phase 

space and normal modes. The stadium problem is not unique in this respect 

and in fact it is the integrable system which is uncommon. A more generic 

Hamiltonian with N degrees of freedom is one which is merely nonintegrable, i.e., 

one for which there are between zero and N invariant actions depending on the 

region of phase space; these systems cannot be quantized by the EBK technique. 

Actually, Einstein23 (who was the first to observe that the quantization of 

the quantities {1.35) is the correct way to extend the Bohr-Sommerfeld rules) 

recognized the difficulty if a complete set of actions does not exist. 

And yet, the Helmholtz equation does have solutions in the stadium geometry. 

Do the eigenfunctions reflect any properties of the ray system? Are there any 

dominant or distinguishing aspects of these waves such as the caustics of in

tegrable ray systems? Is there any object in phase space (corresponding to the 

Lagrangian manifold of integrable systems) in terms of which one can understand 
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these features? 

I do not intend to provide complete and conclusive answers to these ques

tions· nor shall I offer a scheme for quantizing nonintegrable ray systems. However, 

I do hope to supply some insight into the ray-wave ~orrespondence in these cases 

and to point out general properties one might expect to characterize waves 

supported by unstable rays. The example of the stadium is particularly suited to 

this endeavor because for "Y > 0 the rays are ergodic; thus the phase space is not 

complicated by the presence of tori in some regions indicating the existence of an 

additional invariant. 

To begiri., a typical eigenmode for the stadium with 1 = 1 is depicted in 

Fig. 6; the nodal curves and the perspective view of intensity are shown in the 

positive quadrant as for the circular case, except that now the boundary is a 

quarter-stadium. This and all other modes (including those shown in Figs. 3 and 

4 of the circle) were obtained by numerically solving the Helmholtz boundary 

value problem using a novel technique developed by Riddell and Lepore.24 A . 

discussion of this method and the details concerning its use, accuracy, etc., are 

deferred to Appendix A. At this point however, I should point out several matters 

to be borne in mind when viewing these diagrams. 

First, the eigenvalue of the mode shown is k = 65.326 and, as in the case of 

the circle, this mode is approximately 200 levels above the ground state in the 

odd-odd parity class. This would not have been true if the area were not held 

constant as 1 was increased, since the lowest order estimate of the asymptotic 

density of eigenvalues in two dimensions is inversely proportional to the area. 

Therefore, modes in this range of the spectrum (/c ~ 65) are the same elevation 

above the ground state and have the same average density for all 1; it is on this 

basis that the properties of the modes will be compared. 
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Figure 6. a) Nodal structure of a typical 1 = 1 stadium eigenfunction in the 
positive quadrant, with k = 65.326. Again, the coordinate axes are nodal lines 
for this odd-odd parity mode. · · · 
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Figure 6. b) Perspective of intensity distribution of the same mode in the positive 
quadrant, looking along the positive y-axis. The quarter-circular part of the 
stadium boundary is visible in the upper right-hand corner. 
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Secondly, the novelty of this numerical method lies in the fact that it 

does not rely on a discretization of the interior of the two dimensional region 

under consideration in order to compute eigenvalues or the eigenfunctions. Not 

only does this allow for extremely accurate determination of large eigenvalues 

(associated with short wavelength modes), but once the eigenvalue is known, the 

eigenfunction may be computed over the entire region or any 1ubregion of any 

lize, shape or 8Cale. This capability permits the "magnification" of a very small 

domain in order to more closely investigate the mode structure or to check the 

accuracy of the solution. 

A third point concerns just this subject of accuracy. Among the standards 

discussed in Appendix A upon which the statements of accuracy are based is 

the assumption that the precision of the numerical method in the circular case 

(where comparisons can be made with exact results) extends to the eigenvalues 

and eigenfunctions in the stadium, for modes in the same range of the spectrum. 

This proposition has been partially tested, and in every instance has led to 

satisfaCtory agreement with theory. Therefore, I rely on an absolute accuracy 

of ±.001 in the eigenvalues and a relative error of 10-4 in the values of the 

eigenfunctions for the two circular modes presented, and these estimates are to 

be applied to the stadium modes near k = 65 as wei~. 

With these preliminaries designed to instill confidence m the numerical 

solutions, I shall proceed to point out some features of the "'f = 1 stadium 

mode in Fig. 6 with k = 65.326. The seemingly random weaving of the nodal 

contours in (a) is in striking comparison with the rigidly geometric patterns 

found for circular modes or for almost every other textbook example. Smooth, 

boundary conforming nodal curves are the usual expectation, although Courant 

and Hilbert25 demonstrate how superpositions of degenerate modes can produce 

• 
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rather more interesting patterns. Those examples and others are still very 

regular (maybe predictable?) in appearance when contrasted with these contours, 

however, although this is a subjective conclusion. 

One peculiarity of this pattern is a considerable avoidance of nodal crossings. 

Although a similar behavior is noticeable in the circular displays, those very near 

misses are due to the contour plotting routine whereas most of the non-crossings 

in this stadium mode are real; this may be verified with the· "magnification" 

capability of the numerical method. At one time, such avoided intersections were 

taken as a mark of (and almost a criterion for) the wave analogy of ray stochas

ticity.26 Somewhat like Hamiltonian integrability, however, the preponderance 

of nodal crossings found in the usual textbook examples is extraordinary and due 

to the separability of the wave function in some coordinate system. There are 

crossings in stadium nodal patterns but these are almost always accidental. It is 

also shown in Ref.[25] that an intersection of two nodal lines of a solution to the 

Helmholtz equation must occur perpendicularly; this property is reflected in the 

special intersections of the interior nodal lines with- the axes and the boundary. 

The most important information contained in this diagram concerns the 

local wavevector. As a contour plot, one may deduce from it a qualitative 

(though incomplete) picture of the general direction of the gradient of the wave 

function around the stadium. For short wavelength modes with slowly varying 

amplitudes, this gradient is proportional to the local wavevector &.(~) in the sense 

as defined for eikonal waves (1.12,1.13). Thus, the random behavior of the nodes 

in the stadium indicate a fairly i1otropic distribution of the direction of &.(.~), 

whereas the circular modes convey a definite anisotropy. Now this could be 

interpreted in terms of a similar behavior of the rays in both cases: The infinite 

number of directions taken by a trajectory passing near a given point infinitely 
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many times in the stadium as com pared with the finite number of branches ( k~ ) 

of the Lagrangian manifold above each point in the circular annulus. These 

inferences will be made more quantitative in the next Chapter. 

The perspective view of the intensity 1'¢12 in the positive quadrant (Fig. 6b) 

also presents a quite_ different structure than that found for circular modes. It 

appears that this mode is characterized by small regions (several wavelengths) 

of high intensity interspersed randomly among low amplitude regions. At first 

this feature seems appealing when one considers the random or chaotic behavior 

of the rays in the stadium; however, another line of reasoning results in an 

apparent contradiction. The ergodic nature of the the rays implies that almost 

every trajectory will spend an equal amount of time in every neighborhood of 

the frequency surface as t....., oo, so that time averages are equal to phase space 

averages. Another way of stating this is that the classical Liouville density in 

phase space covers the frequency surface uniformly in this limit. Projecting 

down from phase space to configuration space, the conclusion is that every orbit 

will eventually "uniformly cover" the entire interior of the stadium. Thus, a 

naive correspondence between rays and waves would lead to a prediction of 

a uniform intensity distribution over the stadium. This would be the natural 

conclusion if one interpreted the rays as classical particle orbits and the intensity 

11/JI~ as the quantum mechanical probability distribution which should approach 

the uniform classical quantity as the wavelength (of order h) goes to zero. 

This expectation has also been formulated mathematically by Shnirelman. 27 

Apparently, however, this is not what is exhibited by the mode in Fig. 6. 

A reaction might be to question whether this mode is really typical and 

representative of the modes in this range of the spectrum, and whether this range 

contains modes which are of short enough wavelength for comparison with the 

··-
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ray picture. In order to partially answer both of these objections, I present in 

Fig. 7 several successive modes in the spectrum near k ~ 65 and near k ~ 100. 

In the case of the circle, the lower range at about 200 levels above the ground 

state seemed adequate for interpretation in terms of rays. As this Figure shows, 

the features indicated above are common to most stadium modes in this range as 

well as in the higher section which is approximately 600 levels above the ground 

state. These higher modes represent the present limit of my numerical method, 

but they do not seem to indicate a trend toward the more expected uniform 

intensity distribution. 

Among the eigenfunctions displayed in Fig. 7, the ones at k = 65.556 and 

100.202 are conspicuously unlike their neighbors. These modes resemble standing 

. waves in the rectangle formed by the straight sections of the stadium and are 

vanishingly small in the semicircular ends. The fact that the wavelength is 

shorter in the y direction than in the z direction ( k, > k~) seems to indicate that 

these modes correspond to rays which primarily oscillate between the straight 

sections; hence, for lack of a better name, they are referred15 to as bouncing 

ba./1 modea. It is a mystery why there should exist modes which are associated 

with an isolated family of unstable periodic orbits, although about 10% of .the 

modes found in both ranges of the spectrum studied are of this type. It is also a 

curious note that the eigenvalues of these modes are quite accurately predicted 

on the basis of the familiar formulas for rectangular modes, even though there 

is no boundary condition that requires 1/J = 0 in the semicircular ends. Thus, 

for the rectangle spanned by the straight sections of length 2a( "f) and the circle 

diameters 2R("f) (remember, Fig. 7 shows only a quarter of this rectangle, a X R) 

the quantization condition for the eigenvalue k is 

[ 
•) •) ]1 /2 1r m- n-

k =- -+-m.n 2 a2 R~ 
m,n = 0, 1,2 ... (1.53) 
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Figure 7. a) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 65.036 
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Figure 7. b) Nodal structure and intensity distribution in "Y = 1 stadium mode 
with eigenvalue k = 65.326 
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Figure 7. c) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 65.412 
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Figure 7. d) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 65.556 (bouncing ball mode) 
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Figure 7. e) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 65.656 
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Figure 7. f) Nodal structure and intensity distribution in "f = 1 stadium mode 
with eigenvalue k = 65.736 (whispering gallery mode?) 
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Figure 7. g) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 100.107 (whispering gallery or "diagonal orbit" mode?) 
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Figure 7. h) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 100.144 · 
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Figure 7. i) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 100.202 (bouncing ball mode) 
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Figure 7. j) Nodal structure and intensity distribution in "Y = 1 stadium mode 
with eigenvalue k = 100.269 
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Figure 7. k) Nodal structure and intensity distribution i~ 1 = 1 stadium mode 
with eigenvalue k • 100.297 
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Figure 7. I) Nodal structure and intensity distribution in 1 = 1 stadium mode 
with eigenvalue k = 100.386 



1.5 ·Chaotic Rays and Waves 68 

Here, _the quantum numbers m and n are the numbers of half-wavelengths of the 

mode in the distance 2a (z direction) and 2R (y direction) respectively. Since 

a = 1R and using (1.26), this condition can be expressed entirely in terms of "f 

( 
4 

) 

1/2 ., 

lc 1f' 1 "' ( ') ,, ')) 1 2 = - + -· m- + ...,-n- · m.n 21 1f' 1 
(1.54) 

Now the bouncing ball mode at lc = 65.556 has 13 half-wavelengths in the y 

direction in the quadrant and about 5 or 6 in the z direction; therefore, using 

m = 10 and n = 26 in (1.54) with 1 = 1, one obtains lc1o.26 = 65.97. Such 

good agreement is also found for the mode at lc = 100.202; with m = 6 and 

n = 42, lc6,22 = 100.48. 

Two other modes in Fig. 7 deserve special atten.tion. The eigenfunction 

at lc = 65.736 exhibits an intensity structure which is almost entirely con

centrated around the stadium boundary. This is very reminiscent of the whi&per

ing gallery5 or high angular momentum circular modes and could similarly cor

respond to rays skipping around the boundary. Although Keller15 has predicted 

that both bouncing ball and whispering gallery modes should exist for the two 

dimensional Helmholtz problem in an arbitrary convex domain, he assumes that 

the associated ray trajectories are stable (i.e., continually being refocused upon 

reflection so as to remain in the bouncing ball or whispering gallery regions). 

In that reference, Keller also expects whispering gallery modes to obey a one 

dimensional quantization rule around the perimeter L (which for the stadium is 

1-dependent) 

21f'm m1f'I/2(1f' + 41)1/2 
lcm = -- = ---.:..--..;..:._-

L("t) ( 1r + 21) 
m=0,1, ... (1.55) 

This is just the condition for m full wavelengths around the boundary. The 

mode at lc = 65.736 has m ~ 64 so that /c64 = 58.96. The fact that the 

mode does have some interior structure could explain this discrepancy. The 

mode at ic = 100.107 is similar, but it also appears to have a high intensity 
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"ridge" running from the lower right (midpoint of semicircle) to the upper left 

(midpoint of straight segment). Altho~gh it is just speculation, this feature 

could correspond to the diamond-shaped closed ray trajectory which follows the 

same path in this quadrant. Again, like the whispering gallery and bouncing ball 

classes, this orbit is unstable and there is no theoretical basis for constructing a 

mode corresponding to it. 

The modes of the "f - 1 stadium are then of two types: most can be 

described as being "random" or "chaotic" (in a quite different sense as these 

terms refer to rays), whereas a small class of modes (bouncing ball, whispering 

gallery, etc.) seem to correspond naively to a definite set of "special" ray orbits. 

Percival1 has introduced the terms regular and irregular to differentiate between 
( 

modes of systems whose rays are integrable and nonintegrable respectively. Thus, 

the circular modes are categorized as regular while the stadium modes should 

all be irregular since almost all ray trajectories are ergodic. Unfortunately, the 

small class of "special" modes does not seem to fit into this scheme and appear to 

be almost regular. One might be led to expect that this class of modes represents 

a set of measure zero in the full spectrum (as their associated rays are likewise 

unique) so that as k ....., oo fewer would be present; I can only report that this is 

not what I have observed. 
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6. INTENSITY DISTRlBUTION P(,P) 

As an initial quantitative measure for distinguishing between regular and 

irregular eigenfunctions, Berry3 has proposed a simple test based on the concepts 

of eikonal theory. If one were to attempt to construct the wave at a point in 

the stadium, for example, an idea might be to follow a trajectory and keep 

track of the accumulated phase as computed by (1.40). Now in this example the 

rays freely propagate between reflections so that the phase integral between two 

P?ints is just proportional to the length of the path: 

¢>(;.1 *o) = 1& £ · d;. = I&.IL~ 
~ 

.. 
(1.56) 

Setting the phase ¢>(*o) = 0 and initiating a ray at~ which passes through the 

point ;., the phase integral in (1.56) gives the first contribution ,_ exp ii&IL0 to 

the wave at the point ;.. Since almost all trajectories in the stadium are ergodic, 

this ray will eventually return arbitrarily close to the point ;. after traversing a 

length 5 Lt; thus, the_ next contribution to the wave at ;. is ,_ exp ii&IL1 ·where 

£1 = L0 + 5£1 is the total pathlength from the initial point ~. The point ;. 

will in fact be "nearly" visited an infinite number of times so that the wave at 

;. will be of the form 
00 

,P(;.) ,_ L A;ei I!IL; (I. 57) 
;-o 

Since this system is mixing, the L; 's may be considered to be independent 

random variables and so the same is true for ea~h term in the sum. With these 

assumptions, one concludes on the basis of the central limit theorem that '¢(~) is 

a gauuian random variable for all ~· Thus, the probability of finding the value 

'1/J at any given point inside the stadium, without knowledge of the surrounding 

values, is distributed as a gaussian 

(I. 58) 
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There have been many shortcuts and assumptions in arriving at this result. 

The amplitude as well as phase contributions due to boundary reflections have 

been ignored, and nothing has been said about quantization. In fact, this is 

probably not even a correct interpretation of a stadium mode at all. However, 

· it does serve to convey this general idea: if an irregular wave supported by 

stochastic rays may indeed be represented by a superposition of a large number 

(possibly infinite) of eikonal wavelets,· then the chaotic paths of the rays could 

produce a phase decorrelation of the individual contributions. Then the final 

argument yields the prediction that an irregular wave function is a gaussian 

random variable at each point. 

This is a simple statistical test to perform. Evaluating a single normaiized 

eigenfunction ,P at approximately 5000 points in the interior of the quadrant, 

the probability distribution P( 1/J) is constructed as a normalized histogram with 

100 bins. For eigenfunctions normalized to unity in the quadrant of area 1r /4, 

the width rr· of the numerical distribution P( 1/J) is .V4j; because ., I 2 I 2 ciJ. z 1 4 rr- = ,P P(.,P)d.,P == 1/J - = - = -
A A 1r 

(1.59) 

This is true for all modes at all values of "1. Therefore, each numerical P( ,P) at 

any value of "f may be compared with the same standard normalized gaussian 

prediction 
1 ( 7r,P'].) -Pa(,P) = -exp ..,...-

2¥'2 8 
(1.60) 

The result for the.stadium mode of Fig. 6 at lc = 65.326 is displayed in Fig. 

8. Despite the rough form of the numerical data, it seems that the general shape 

of the probability distribution is fairly well described by the gaussian prediction. 

Actually, the jagged peaks are due to the finite wavelength of the mode as e~ch 

peak in the distribution represents a local minimum or maXimum in the wave 

(a wave peak). When the wavelength is shortened (larger eigenvalue) each mode 
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contains more waves and the peaks in P( 1/J) tend to coalesce. Figure 8 is typical 

of the general agreement with this theory found for all of the "chaotic" type of 

"f = 1 stadium modes examined. 

The bouncing ball modes, however, possess a somewhat different charac

teristic probability distribution as shown in Fig. 9. While the "wings" of the 

numerical P( 1/J) seem to fit the gaussian prediction, there is a definite disagree

ment near 1/J = 0. Of course, this central peak is readily explained upon con

sideration of the bouncing ball mode structure shown in Fig. 7: it reflects the 

large semicircular ends of the stadium where these modes are evanescent. In 

fact, with this con~ection, the distribution for bouncing ball modes is similar to 

those found for circular modes. 

Figure 10 shows P('f/J) for both the high and low angular momentum circular 

eigenfunctions previously discussed. In (a) the effect of an evanescent region is 

overwhelming and of course corresponds to th~ large interior disk where the high 

angular momentum mode has very low amplitude (see Fig. 3). Although the fit 

to the gaussian comparison seems better in (b) for the low angular momentum 

mode, there is still a central peak due not only to the comparatively small interior 

disc but also to the decaying amplitude toward the circle boundary. In fact, this 

Figure clearly points out the effect of the high intensity caustic region as the 

distribution is stretched out to large values of 1/J. Thus, one could conclude that a 

regular mode is characterized by a non-gaussian probability distribution; in this 

case, P(¢) displays a balance between the extremes of high and low amplitude 

regions (since the width of P(,P) is constant) and in this way it describes the 

dominant features of this type of mode. On this basis, stadium bouncing 

ball modes with very similar distributions should probably be categorized as 

being regular even though the nature of the ray-wave correspondence which -this 
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Figure 8. Probability distribution P('l/l) for 1 = 1 stadium mode with eigenvalue 
k = 65.326 and comparison to gaussian prediction (1.60). Each jagged peak in 
the numerical data is due to a wave "crest" or "trough" in the eigenfunction. 
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Figure 9. Probability distribution P('I/J) for 1 = I bouncing ball stadium mode, 
k = 65.566. Large central peak is due to the large number of small values of 1/J 
sampled in the semicircular ends of the stadium. 
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Figure 10. b) Probability distribution P('l{J) for 1 = 0 low angular momentum 
mode of Fig. 4. 
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Figure 11. Variation of "goodness of fit" parameter R. with "'{. Dots at each 
value of "'f denote separate measurements on different individual eigenfunctions; 
squares denote measurements on bouncing ball modes; crosses denote superposi
tion averages. 
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association entails remains unexplained. 

In order to quantify this observation, for each mode studied I have measured 

the fit to the proposed gaussian (!.60) by computing the residual defined by 

R. = .!. L [P( 1/Ji) - Pc( ¢;)] 2 

{ 

n }1/2 
ni-l 

(1.61) 

Here, n is the number of bins in the histogram P(1/1) (I have used n = 100). This 

quantity was evaluated for sample eigenfunctions with 60 < k < 70 at both 

"f = 0 and "f = 1; in addition, I have also investigated the trend in R. as "f takes 

on intermediate values. The results are shown in the graph of R. vs. "f in Fig. 11. 

At "1 = 0, this "goodness of fit" parameter varies over a wide range from 

the worst fit (large R.) for high angular momentum modes to the best for low 

angular momentum modes; this is plausible in view of Fig. 10. Almost all modes 

examined for "f > 0.25 exhibit a uniformly better fit to the predicted gaussian by 

an average factor of about four. The obvious exceptions to this general behavior 

(denoted by the squares) are the bouncing ball modes, which have values of R. 

typical of low angular momentum circular modes; this again is consistent with 

earlier remarks. The intermediate value of "f = 0.125 represents the case where 

the wavelength of the modes in this' range of the spectrum is comparable to the 

irregularity in the boundary (the length of the straight section) and thus marks 

a transition between systems with regular and irregular modes (at least as far as 

this measurement is concerned). If this transition is truly a wave effect (the mode 

"sensing" the irregularity) then the threshold should decrease to lower values of 

"f as the wavelength is shortened as in the ray limit (where rays are ergodic for 

all "f > 0). However, I shall soon exhibit a phenomenon which casts doubt on 

the existence of such a "wave threshold". 

These data tend to substantiate the prediction that irregular modes can 
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be characterized as gaussian random functions. They also point out that in 

terms of P(,P) as a criterion, the classification of regular and irregular waves 

based on corresponding ray properties may need refinement (at least for this 

system) in order to account for the anomolous properties of bouncing ball modes. 

Moreover, while most stadium modes are irregular by this standard, they go not 

manifest the uniform intensity expected Jrom a primitive concept of ray-wave 

correspondence. As previously argued, these are also aspects of higher eigenvalue 

ranges so that they do not appear to be finite wavelength effects. 

Besides providing a few insights into the relationship between rays and waves 

in irregular wave systems, these initial observations have potential practical ap

plication. As the boundary value Helmholtz problem in two dimensions governs 

cylindrical electromagnetic cavity modes, the stadium results might be extrapo

lated to short wavelength modes of any irregularly shaped cavity. When such 

cavities are operated at frequencies far enough above the fundamental (so that 

a typical wavelength is much smaller than the irregularity scalelength), modes 

with properties similar to chaotic stadium eigenfunctions may be present. An 

example of this situation is in millimeter wave devices being developed for use 

in gyrotrons. 28 

With a view toward these applications, Manheimer29 points out that when 

cavities are operated at high frequencies ( overmoded) it may be difficult to attain 

high mode purity due to the close spacing of the eigenvalues. Indeed, in the 

range of the spectrum near lc = 65, the average separation of the levels is about 

~lc I lc ~ w-3 . Thus, in the interest of determining the. effect of mode mixing, I 

have considered the statistics of a linear superposition of two neighboring levels 

tPt and 1/J2 

(1.62) 
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where a is a random relative phase and 1/Jo is to be properly normalized. The 

average probability distribution 

11"' P('t/J) = - P('I/Ja)da 
1r 0 

(1.63) 

is then computed by constructing the histogram P(..Pa) at 13 values of a between 

0 and 1r and averaging. This procedure is intended to simulate a time average 

over one period of the field oscillation. 

In the circular case, the neighboring levels chosen were the high and low an

gular momentum modes of Figs. 3 and 4, for which ~/c = 0.055. An example of 

the superposed mode structure at a single value of a is shown in Fig. 12; although 

the nodal and intensity patterns for this combination appears "irregular", they 

are not quite as random as those found for chaotic stadium modes. 

The average P( 1/J) is displayed in Fig. 13 and the residual R. of the fit to 

the standard gaussian is plotted in Fig. 11 as the cross at "Y = 0. The fit is 

now better than for any pure state, including that for irregular stadium modes, 

despite the fairly ordinary appearance of the wave function. One reason for this 

is the smoothing out of the "wings" of the probability distribution due to the 

better statistics involved in the averaging: the jagged peaks have coalesced with 

the varying amplitude of the wave peaks at different values of a. Note that the 

central peak of P( 1/J) near 1/J = 0 persists. 

For the "'f = 1 stadium, I have studied the superposition of /c1 = 65.326 and 

/c2 = 65.412 (~k = 0.086). A typical individual mixture of these two modes 

is pictured in Fig. 14, which appears just as random as any of the pure modes. 

The averaged distribution· P( 1/J) shown in Fig. 15 is now an extremely good fit 

due to the averaging process and this is confirmed by its value of R. in Fig. 11 

(the cross at "'f = 1). It seems that the net result of averaging over the relative 

phase of two superposed modes is about a factor of three in the "goodness of 
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Figure 12. a) Nodal structure of superposition of neighboring low and high 
angular momentum circular modes k _..:. 65.012, 65.067 (see Figs. 3, 4). 
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Figure 12. b) Intensity dist"ribution of same superposition. 
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Figure 13. Averaged probability distribution P(,P) for the superposition of 
low and high angular momentum circular modes with standard gaussian com
panson. 
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fit" to a gaussian. The superposition of·many modes and subsequent averaging 

may produce better gaussian statistics even for the circular case. 

In practical applications one may also be interested in the power either 

dissipated in the walls of a cavity with finite conductivity or output through 

a window. If ,P is taken to be E:, then the local power flux into the wall is 

proportional to IB'f/1 1 a11 1
2 where 81/J 1 a,., = 1/J, is the normal derivative at the 

boundary.30 The actual problem of power through an output window is of 

course much more complicated, but it may be that in the neighborhood of the 

window Ez (which is zero on the walls) is principally determined by Hto.n. (which 

is not zero on the walls, and is proportional to 1/J, there). Therefore I have also 

studied the statistics of the normal derivative for regular and irregular modes. 

As a comparison, both Berry31 and Manheimer and Ott30 have suggested 

that the mean square value of the normal derivative of an irregular mode should 

satisfy 

{1.64) 

where the average on the left is over the boundary and that on the right is over 

the interior (i.e., by (I.59) it is equal to the width tr2 = 411r). I have tested 

this hypothesis and have examined the distribution P('I/J,). Numerically, I could 

sample the normal derivative at only 50- 100 points along the one-dimensional 

boundary, as opposed to the approximately 5000 interior sample points available 

for constructing P( '¢ ). In order to increase the statistics, and in the spirit of high 

frequency mode mixing, I have considered the superposition 

(I.65) 

and have allowed 01 and 82 to vary. independently between 0 and 1r (keeping 

.,p! properly normalized). The averaged distribution of normal derivative is thus 

constructed in analogy with {1.63) 



•• 

•• 

•• 
'~ 

•• 

• a 

.a 

I 

• - .. • 
" • • 

1.6 Intensity Distribution P( 'if') 

• • .. ,,. 
• • • • • .,; 

r 
.,; 

85 

• 

XBL 828-11126 

Figure 14. a) Nodal structure of 1 = 1 stadium superposition of modes at k = 
65.326, 65.412 (see Figs. 7b, 7c). · 
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Figure 14. b) Intensity distribution for same superposition. 
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Figure 15. Averaged probability distribution P(?/J) for 1 ~I stadium superposi
tion and gaussian comparison. 



!.6 Intensity Distribution P( 't/J) 88 

(1.66) 

For the case of regular modes at 1 = 0, I again examined the combination 

of the low and high angular momentum modes previousJy introduced. The 

distribution P('t/J,) shown in Fig. 16a has a root mean square of 61.87, which is to 

be compared with the value k R:l 65.0 (for both modes) to be used in (1.64). The 

distribution for the superposition of the two irregular modes at 1 = 1 (kt = 

65.326, k2 = 65.412) is shown in Fig. 16b, where the width is 61.07. In both 

cases the root mean square is near the predicted value (althaugh (1.64) does not 

apply to regular modes) and , perhaps surprisingly, P('t/J,) for the superposition 

of two irregular modes is fairly well approximated by a gaussian. 

These results on the probability distributions P('t/J) and P('t/J,) and their 

averages over superposition phases have several implications for the design of 

electromagnetic cavities. If the cavity is of an irregular or nonseparable geometry 

and is to be operated at high frequencies, it may possess normal modes with 

properties similar to the irregular stadiUm. modes; in that case, it may be difficult 

to compute the actual mode structure. However, one could use the fact that such 

modes obey gaussian statistics in the design of output windows or instrumenta

tion which is to be contained inside the cavity. The knowledge that the prob

ability of measuring a particular value of the field amplitude at any given point 

is distributed as a gaussian allows one to estimate the tolerance with which the 

apparatus should be constructed. In fact, these results seem to indicate that 

a superposition of several regular modes could also produce gaussian statistics 

so that this simple estimation procedure might apply to overmoded regularly 

shaped cavities as well. It should be remembered that while irregular modes 

may be described statistically in this manner, they are also characterized by a 

nonuniform and random or unpredictable spatial intensity distribution which 
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provides the prospect of unexpected intensity -peaks ("hot spots") within the 

cavity or on the walls. 
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Figure 16. a) Averaged normal derivative probability distribution ?(1/111 ) for 
superposition of low and high angular momentum circular modes, and gaussian 
comparison with same numerically determined width (= 61.87). 



.819 

.eaa 

.096 

• 994 

• 002 

e 

0 
~ 
I 

1.6 Intensity Distribution P( 1/J) 

~. 
I 

~ 
r! 

_/); .:!'=, 
:' =. !1 • . 

. 
! 
; 

~ :, ; 

i\F1 \:! 
.: ~: ~! 

\j . 

CD 

91 

0 0 
0 "' -

XBL 828-11100 

Figure 16. b) Averaged normal derivative probability distribution P('I/J,.,) for 
superposition of 1 = I stadium modes k = 65.326, 65.412, and gaussian com
parison with same numerically determined width (= 61.07). 
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'1. EVOLUTION OF MODES WITH '1 

Before proceeding to further quantitative investigations of irregular waves, 

it is of interest to look at another qualitative aspect of the contrast between 

stadium and circular modes in terms of the differing properties of th~ correspond

ing rays. As previously stated, almost all orbits· in the stadium are ergodic for 

all values of '1 > 0 whereas the graph of R. us. '1 in Fig. 11 seems to indicate that 

in order for wave functions to become irregular, '1 has to be large enough for 

the wavelength to "sense" the change in the boundary. This is a quite intuitive 

result based on general principles of wave optics and in fact is consistent with 

the behavior of the rays in the geometrical optics limit. Thus, even though the 

modes in the range of the spectrum near lc = 65 meet the eikonal condition for 

"f ~ 0 (!cR("t) ~ 65, R/A ~ 10), the values of lea = "{kR or a/A = "{R /A are 

a factor of 1 smaller (where a, the hal.fiength of the straight section and R, the 

radius of the semicircle, are both "{-dependent since the area is held constant). 

For these modes, the threshold "f for irregularity should be such that, using (1.26) 

a("t) = "{R("f) = 1(1 + 4"{) -1/2 ~ 1 (1.67) 
A A A ~ 

which for lc ~ 65 gives '1 ~ .1 as observed in Fig. 11. 

In an attempt to observe this wave transition, I have followed the evolution 

of several eigenfunctions and eigenvalues as '1 is increased slightly above zero. 

Figure 17 is a graph of the trajectories of six eigenvalues as a function of "f for 

0 < "f < 0.07. The parenthetical number labelling each curve refers to the 

value of m (angular momentum) of that mode at '1 = 0. Immediately obvious 

is the quite disparate behavior of the high and low angular momentum modes, 

the latter displaying much greater sensitivity to the change in boundary shape 

even at very small '1· A similar sensitivity of low angular momentum modes to 

perturbation has been noticed by Tabor32 in a different problem, but here these 
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modes seem to be "feeling" the straight section in a regime much lowerthan the 

threshold. 

Equally striking is the evolution of the eigenfunctions of the low angular 

momentum modes. The pictures in Fig. 18 depict the changes inJ2 (k2,20 r) sin 20 

at 0.01 intervals for 0 < "f < 0.07. Particularly interesting are the mode 

structures at "f = 0.02 and "f = 0.05. Further analysis shows that near "f = 

0.05, the eigenvalue of this mode is very near another eigenvalue (although not 

shown in Fig. 17) so that this fairly chaotic pattern may be due to the mixing 

of nearly degenerate modes. This effect of the crossing of eigenvalue trajectories 

will be discussed below. 

The structure of the mode in Fig. 18c is very reminiscent of that found in 

stadium bouncing ball modes. In the interval 0 < "f < 0.02, the nodal line 

which at "f = 0 was the positive z axis has swung radially leaving behind a 

large section of the quadrant with very small amplitude. In a way, this could 

almost be interpreted as an effect of spontaneous circular symmetry breaking 

and this is compatible with the ray picture: the low angular momentum mode 

represents almost diametrically oscillating rays (with aw,m. ~ 0.03) so that as "f 

is increased slightly the most stable family of rays with nearly this property are 

the ones bouncing between the straight sections. Altho_ugh there is no rigorous 

theory for this correspondence since even the low angular momentum ray torus 

in phase space is destroyed when "f differs from zero, it would be interesting to 

determine if the bouncing ball modes observed at "f = 1 do indeed originate 

from small m modes at "f = 0. I have not followed the evolution of eigenvalues 

over the entire interval 0 < "f < 1, for reasons which will be explained below. 
( 

The rather insensitive behavior of the high angular momentum eigenvalues 

m Fig. 17 is accompanied by a slight change in the eigenfunctions. Figure 
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Figure 17. Evolution of six eigenvalues as "Y is increased from zero. Numbers 
in parentheses denote angular mode number m at "Y = 0. The inset illustrates 
schematically the possibility of an avoided eigenvalue degeneracy at the several 
trajectory intersections indicated in the main figure. 
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Figure 18. a) Nodal and intensity structure of 1 = 0 circular mode l:!(k2.::wr) sin 20. 
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K= 65.26609 

Figure 18. b) Nodal and intensity structure of the same mode at 1 = 0.01 
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Figure 18. c) "Y = 0.02 
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K= 65.71790 

Figure 18. d) 1 = 0.03 
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K= 65.98013 

Figure 18. e) 1 = 0.04 
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Figure 18. f) 1 = 0.05 
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Figure 18. g) 'Y = 0.06 
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K= 66.81640 

Figure 18. h) ""f = 0.07 
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19 shows that the rapidly oscillating angular structure of an m = 48 mode 

is modulated so that the amplitude is diminished near 0 = 7r/4 (although the 

caustic peak seems unaffected). These whispering gallery type modes may persist 

and evolve into similar structures such as the modes at k = 65.736 and lc ::::::::: 

100.107, but again this connection has not been investigated. 

In a later Chapter the spectrum of eigenvalues will be analyzed statistically 

at different "fin terms of the probability distribution of neighboring level spacings 

P(tJ.k). The graph of eigenvalue evolution in Fig. 17 has a bearing in this regard .. 
as it reveals several instances of apparent eigenvalue trajectory crossings. Such 

an intersection implies a degeneracy of modes at that value of "(, and as such 

is an important contribution to P(~lc) at ilk = 0. It is fairly common lore 

that eigenvalues generically do not cross under perturbation and that such a 

degeneracy marks a symmetry of the system. Although there has been much 

discussion33 of this phenomenon and its relation to the integrability of the 

corresponding ray system, I do not intend to address the general question of 

eigenvalue crossings for the present system except in the light of Fig. 17 and 

the computation of P(~k). It is well known that there is a two-fold degeneracy 

of modes in the circle (sin mO and cosmO) and although this is a result of the 

continuous angular symmetry, the degeneracy is removed when the modes are 

separated into reflection parity classes.· This is the reason for concentrating on 

only one parity; crossings or near degeneracies due to this effect will not appear 

in Fig. 17 or in P(~/c) . 

Considering the wide range of eigenvalue sensitivity to boundary perturba

tion exhibited in Fig. 17, it is natural to expect the several crossings indicated. 

However, it is difficult to determine numerically whether these trajectories ac

tually intersect or narrowly avoid each other as schematically illustrated in the 



1.7 Evolution of Modes with 1 104 

·" 

.8 

.7 

.6 

.6 

.4 

.3 

.2 

.1 

N • 0 

ai ai -
XBL 828-11112 

Figure 19. a) Nodal structure of t.he mode at. 1 = 0.0125 which evolves from 
t.he circular high angular momentum mode J.u~(k-is,3r) sin 480 at. 1 = 0. 
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Figure 19. b) Intensity distribution of the same mode. Note the diminished 
amplitude at the rim of the circle near 0 = 1r /4. 
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inset; the numerical error in the eigenvalue produces an uncertainty in both 

trajectories in a small neighborhood of the apparent crossing. Even the com

putation of the eigenfunctions of the two modes involved at values of '1 before 

and after the intersection is not necessarily a good test because In the vicinity 

of the near degeneracy there· is considerable mixing and the identity of the 

eigenvalue-eigenfunction association is lost.· 

The behavior of the. eigenvalues as a function of '1 near '1 = 1 is similar to 

that found for small '1i that is, most modes are fairly insensitive to changes in 

the boundary, but there are exceptions. The eigenvalues of bouncing ball modes 

in this regime follow trajectories which can be understood in terms of the fact 

that they are quite accurately given by the rectangle quantization formula (1.54). 

Thus the first derivative is 
die 2k k . '1n2 k -- --+~~-~~ 
d'1 - 4'1 + 1r '1 m2 + 12,2 

2/c 
(1.68) 

~---
4'Y + 1r 

where the approximation n > m has been made corresponding to these modes 

with large ky. From this it is clear that both the first and second derivatives are 

of the order of k. Other authors34 have used the second derivatives of eigenvalue 

trajectories to classify the regular and irregular spectrum, noting that irregular 

modes are generally more sensitive to perturbation. This result is contradictory 

in that respect; bouncing ball modes (which seem to share more of the properties 

of regular modes) are very sensitive whereas the chaotic irregular stadium modes 

are stable and insensitive to perturbation. 

Whispering gallery modes on the other hand are much less sensitive. Considering 

the approximate perimeter quantization rule (1.55), one has the derivative 

~~ = 
2:[(~ + :rr,,. _ (~ + ~) 1 (1.69) 
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At 1 = 1, the numerical factor in brackets is· about 0.052 which greatly diminishes 

the dependence on k. In fact, for very small "'/, 

dk 4k"'!2 

- "-J --

d"'f 7r3 

which explains the insensitivity of high angular momentum modes near "'/ = 0. 
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8. THE WIGNER DISTRIBUTION 

Up. to this point, the discussion has centered on the general features of 

asymptotic normal modes manifested by the ~-space representation of the wave 

and their interpretation in terms of the prop~rties of corresponding ray system 

in phase space. Integrable ray systems are characterized by the existence of tori 

(invariant Lagrangian manifolds) in phase space and each mode of the associated . 
wave system corresponds (as the wavelength A -+ 0) to a single torus quantized 

by the EBK method. It has been demonstrated that perhaps the most dominant 

spatial features of a regular wave function (such as caustics) can be understood 

by considering the projection of the torus from phase space onto configuration 

space. In fact, this projection operation (and variations of it) lies at the heart 

of both the eikonal solution and the quantizatio~ procedure; nevertheless, the 

basic association of a wave with a ray phase space object is required before the 

projection can be effected. In other words, on the basis of the wave structure 

it is usually impossible to infer the geometry of the corresponding phase space 

manifold (if indeed one exists). 

This difficulty has been emphasized in the discussion of the widely varying 

properties of the stadium eigenfunctions. Here, the corresponding ray system 

is nonintegrable; consequently, there is no theoreticai basis for associating a 

given mode with a phase space object. Thus, while it is tempting to interpret 

the structure of the more regular stadium modes (bouncing balls, whispering 

galleries, etc.) as projections of periodic orbits or families of trajectories which 

remain "close together" in some sense for a "long time", this has been only 

speculation. The irregular modes espec~ally illustrate the difficulty of deducing 

a ray manifold from exact wave features intermediated by a projection. One 

might expect these modes to represent the projection of the frequency surface 
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onto ~-space; but instead of exhibiting a uniform intensity, distribution, they 

seem to be composed of small, randomly situated caustic regions. And yet, the 

identification of these localized high intensity domains as caustics necessitates the 

introduction of some convoluted phase space manifold with singular projection 

onto all these regions. Unfortunately, no such invariant manifolds exist for this 

system. 

The problem of associating a phase space object with an asymptotic normal 

mode, based on its spatial representation, could be eliminated by considering 

a phase space repre&entation of the wave. That is, insteaCl of attempting to 

infer this relationship from the structure of the wave '¢'(~), one might examine 

a representation w(~, &. I .,P), suitably constructed from '¢'(~), which would be a 

function on phase space. Hopefully one could define '1{1 so that in some sense it 

is concentrated in the neighborhood of the associated ray manifold. 

In fact, many such representations have been constructed and studied; it 

is not a unique quantity. Several examples will be discussed further in Part II, 

and each has properties which might compel or preclude its use depending on 

the application. The important feature of all of them is that each conveys both 

the &. and~ information of the wave simultaneously. In this way, considering 

the Hamiltonian nature of the ray system, such a representation should provide 

a most natural description of the relationship between waves and rays. 

Perhaps the most common example of a phase space representation is the 

Wigner function. Originally introduced by Wigner35 in 1932 in the field of quan

tum thermodynamics, it has recieved much attention of late with application to 

just this topic of regular and irregular waves. Defined by 

W(~,.&_) = 100 

dNs.,P(~+ t~).,P*(~- t~)e-i~:!. 
-oo 

(1.70) 

in N dimensions, it is a real, bilinear functional of the wave function 1/J. Many of 
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its properties will be discussed here, as they are required, and in Part II; for more 

complete details, the references of Berry,36 Voros37 and Leaf38 are suggested as 

well as others contained in Ref.[39). 

The definition (I.70) is a centered local Fourier transform of the quantity 

'1/J'I/J* so that it is readily invertible, 

. 1oo dN!c . 
'1/J(;. + !~)'1/J"' (~- !~) = -oo (21r)N W(~, .&) e•li·.f. (1.71) 

The projection of the Wigner function onto configuration space is simply ob

tained by integrating over the .& dependence 

2 1oo dNk 
1'1/J(~)I = -oo (21r)N W(~,.&) (1.72) 

Similar expressions may be derived in terms of the .& representation of the mode 
A 

'1/J(.&). The relation (1.72) implies that the integral of the Wigner function over 

phase space is unity for wave functions normalized in RN. Besides providing the 

transformations between the various representations, these equations indicate 

that the correspondence between wave functions and functions on phase space is 

not one-to-one; not every function of(~,.&) transformed by (1.71) is factorable. 

Two examples may serve to illustrate the properties of the Wigner function. 

For the sim pie plane wave 

the definition (1.70) trivially yields 

(I. 73) 

In this case, the Wigner function is indeed concentrated in the desired region of 

· phase space: that is, the rays corresponding to the plane wave all propagate on 

the N dimensional surface & = &o in phase space (a Lagrangian manifold) and 

W0 is nonzero only on that surface. In this case the Wigner function is singular 

which emphasizes the fact that it is to be regarded as a density on phase space. 
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In addition, Balasz40 has shown that the Wigner function can be a delta function 

only on N dimensional planes in the 2N dimensional phase space. 

A more general behavior of the Wigner function is exemplified by the 

following problem from quantum mechanics. The eigenfunction solutions for 

the one dimensional Schrodinger equation in the harmonic oscillator potential 

are 

(1.7 4) 

where C, is a normalization constant, H, is the nth Hermite polynomial and 

a = J mw jh combines the oscillator mass and frequency with h into a charac

teristic inverse length. The energy levels are the familiar 

E, = (n+ !)hw n= 0, 1,2 ... (1.75) 

Substituting (1.74) into (1.70), the integral may be explicitly evaluated41 to give 
? t) •) 2 

Wr~(z,lc) = 2( -1)"' L,(2(a2 z2 + Jc2 ja2 ))e-a-z--lr.- fa 

= 2( -1)"' L, ( 4hho(z,lc)jhw )e-2/r.ho(z.lc)/hw (1.76) 
. 2 

W,(r) = 2( ...:..1)"' L,(2r2 )e-r 

Here, L, is the nth Laguerre polynomial, hho(z, /c) is the classical harmonic 

oscillator Hamiltonian with p = hie and r is the radius in phase space in 

dimensionless variables (ax, lc /a): 

( ) 
h2 lc2 1 ·) •) 

hho z, lc = - + -mw-z-
2m 2 

= !(a2 z2 + lc2 ja2 )hw 
lh .. , = ~ wr-

(1.77) 

Setting (1.77) equal to the value of the energy (1.75), the radius of the one 

dimensional torus in phase space corresponding to the nth level is 

(1.78) 
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The Wigner function (1.76) for n = 20 is shown in Fig. 20; it is plotted only 

as a function of r since, by (1.77), it is azimuthally symmetric in the reduced 

variables. Including the large peak at the origin, 'W2 0 (r) is oscillatory out to 

a radius ~ 6.0 where there is a final, somewhat broader peak and then rapid 

decay. The position of this final peak is just inside the classical radius r2o = 

vTI ~ 6.40. 

This example illustrates two significant points. First, in general the Wigner 

distribution is an oscillatory function on phase space (with wavelength similar 

to that of the underlying wave function) and it is not necessarily positive; its 

interpretation as a probability density suffers from this drawback. Secondly, 

even for this "large" value of n, the exact W" does not appear to be localized 

about the appropriate ray torus in phase space (and, except for more oscillations 

out to larger radius, not much change is observed for larger n). The only feature 

which encourages this expectation is the fact that even though the outer peak 

is not the largest in amplitude, it is the broadest. Thus, if the Wigner function 

were averaged locally in phase space (or coarse-grained) over several wavelengths, 

the rapidly oscillating behavior would disappear and only this last peak would 

survive (in nearly the correct position). 

One further useful propery of the Wigner function deserves to be mentioned. 

In Part II, the equation governing W(~, &.) will be derived from the equation 

for '¢'(~) in the general case (i.e., not restricting to the Schrodinger equation 

or scalar waves, but for a general vector integral wave equation as in (1.2)). It· 

will be shown that under assumptions which roughly correspond to the eikonal 

approximation (1.14), this equation can be reduced to the form of the Liouville 

equation of classical mechanics generated by the ray Hamiltonian il(~, .&,). This 

fact has enhanced the interpretation of the Wigner function as the wave analogy 

.. 
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Figure 20. Wigner function for the quantum mechanical harmonic oscillator 
state with n = 20 plotted as a function of radius in phase space (see Eq.(1.77)). 
The Wigner function (1.76) is azimuthally symmetric in these reduced variables, 
and the final (broadest) peak is just inside the radius of the classical torus with 
the same action at r20 = J4l ~ 6.40. 
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of the usual Liouville density of the associated ray system. On the basis of that 

perturbation scheme then, W(.~, !), despite its oscillatory nature, is expected to 

approach the Liouville density in the geometrical optics limit. 

Proceeding from the exact results ·above, consider now the case of a scalar 

· wave described by the eikonal form 

Inserting (1.79) into (1.70), one has 

w~~~£) . £: d3s¢(~7 t~J¢*c~.- t~)eif~(s+!.!)-~fs-t.!)-~·.!) (1.80) 

Assuming the amplitude to be slowly varying and expanding the phase ¢J around 

the point ~~ this is to lowest order 

W(.~, !) ~ 1¢(~)12 /_: da s ei(V~(s)-~l·.! 

~ (2"ll¢(~)12 5(k- V¢J(~)) 

~ (2,rll¢(~)12 5(k- !(~)) 

(1.81) 

where the definition of the local wavevector !(~) = V ¢J(~) has been introduced. 

This approximate result for the local plane wave is reminiscent of that for 

the true plane wave (I.73), except that here the Wigner function is confined to 

a more arbitrary Lagrangian manifold ! = !(~) in phase space. While this is 

reasonable, the fact that W is singular on a nonlinear manifold contradicts the 

general theorem of Balasz mentioned above. Thus, although the approximations 

involved in (1.81) are responsible for this result (such as keeping only the linear 

term in the phase expansion), the final expression in (1.81) should not be con

sidered to be the first term in an expansion of W in the eikonal parameter; it is 

difficult to see how higher order terms could "soften" this singular behavior so 

as to produce a smooth Wigner function in the neighborhood of the manifold, 
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as it must be. Nevertheless, this form is plausible as a rough description of the 

Wigner function based on its interpretation in terms of the ray Liouville density. 

As discussed previously, the eikonal approximation of a wave is generally 

composed of a sum of wavelets (1.79) due to a mult.iplicity of points on the phase 

space manifold ("branches") which project onto a single point in configuration 

space. For example, the normal mode expression for integrable ray systems (1.51) 

when inserted into (1.70) produces a sum of integrals 

W ta(~, &.) = t /_: d3 s ~ i(~ + ! ~ llmJ;j,; (~ - ! l1 11m) 
I,J (1.82) 

X 
i [41i(&+t~l.lmJ-~;(.~-t~llmJ-5:~J e - -

Making the same assumptions which led to (1.81), this becomes 

" 
W n(~, &.) ~ L ;j, l~ I Im_);p; (~ I lm) 

i.; (1.83) 

foo da 
8 

e i l!!~i(&llm.)+~;!&llmH-~1·~ 
J_oo 

If W ta is to be evaluated at a point in phase space near the manifold lm = 

1(~, &.) and the manifold is not too convoluted (i.e., the point (~, &.) is near only 

one branch (&.l~ llm), ~)) then all cross terms in (1.83) are rapidly oscillating 

and may be ignored. In that case, one has 

(1.84) 

for points near the ith branch of the torus lm· Berry36 derived these results and 

has shown that with the formula (1.48) for ~i(~ I lm), this expression for Wm 

may be cast in a more symmetric form 
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~i1 (x lc) ~ (21r)3 det(a
2

<Pi(~ 11)) 6(1c -lc.(z I I )) 
m. _, - a a I - -· - -m. 

~ - r-r - -m. 

~ {21r)3det( a&i~~ 11)) 6(&- &A~ 11m)) 
- r-r - -m. 

(1.85) 

Wm(~, £) ~ 5(Ln -1(~, £)) 

The determinant and the factor of(21r)3 constitute the Jacobian of the trans

. formation&.(~ 11) ~ 1(~, &.). The final expression is evidently valid in these new 

variables near all branches &i and is correctly normalized: 

(I.86) 

The singular behavior of (I.85) in the neighborhood of the torus l = lm 

again contradicts the result of Balasz. Berry, however, has provided a more 

detailed analysis which indicates that the delta function is indeed softened in the 

geometrical optics approximation; in one dimension, W(~, &.) has Airy function 

behavior near the torus. This appears to be verified in the exact result for the 

harmonic oscillator in Fig. 20 where the last peak does resemble an Airy function. 

The most important aspect of (1.85) is that even though it is a rough ap

proximation, it does match the invariant Liouville density on the torus. Allowing 

for a degree of oscillatory or exponential broadening, one may conclude that the 

Wigner function for an asymptotic normal mode of an i~tegrable ray system (i.e., 

for a regular mode) is concentrated in the desired appropriate region of phase 

space. For these systems then, the computation of the Wigner function from an 

exact wave f~nction should reveal the correct wave-ray manifold correspondence. 

Since the eikonaJ solution for nonintegrable ray systems does not exist, the 

calculations leading up to (I.85) cannot be performed. In the case of ergodic 

systems, even if an infinite sum of eikonal wavelets were inserted into (1.70) 

one could not justify ignoring the cross terms because the "branches" lfi are 
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continuously distributed and hence are not isolated. Therefore, the analytic 

examination of (1.70) for an irregular wave does not indicate the phase space 

manifold to be associated with the mode . 

Nevertheless, based on the satisfactory result {1.85) for regular modes and 

arguments concerning the asymptotic relationship between the Wigner function 

and the ray Liouville density, Voros37•4 and Berry3 have predicted that for 

ergodic ray systems on~ should expect 

1 
W,l~, &) ,_ n" 5(wn- il(~, &)) (1.87) 

Here, Wn is the frequency eigenvalue of the nth level, n(.,, &) is the ray Hamiltonian 

and, for normalization, n" is the volume of the nth frequency surface 

On= I (::~3 d3 z5(wn -il(;.,&:)) (1.88) 

Expression {1.87) 1s of course the invariant ergodic Liouville density on the 

frequency surface. Therefore, this prediction embodies the concept that each 

mode of an irregular wave system corresponds to an entire frequency surface. In 

fact, this is a conjecture which could be considered a criterion for what might 

be referred to as wave stoch.a&ticity. 

It would be interesting at this point to test both the regular (1.85) and 

irregular (1.87) expressions against the respective types of modes found ·in the 

model problem developed in previous Chapters. The difficulty is that for a two 

dimensional problem, the Wigner function depends on four variables (~, &); it 

would have to be numerically computed by (1.70) as a two dimensional Fourier 

integral over numerical eigenfunctions as a function of these four parameters. In 

addition to problems of display, it has unfortunately been numerically infeasible 

to compute the exact Wigner functions for circular and stadium modes. 

Taken as crude postulates for the Wigner function in these ca.ses however, 
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Berry3 has shown that (1.85) and (1.87) have implications for the spatial features 

of regular and irregular eigenfunctions. Due to the inverse (1.71) and projection 

(1.72) relations, one may define statistical measures of a wave '¢(~) in terms of 

a local spatial average of the Wigner function. Thus, the local average intensity 

ll(~) . J dNfc-
ll(~) := 1'¢1(~)1 2 = (

2
1r)N W(~, !) (1.89) 

and the local spatial autocorrelation C(~, .!!.) 

C(~,.!!.) = 1/J(J;. + !.!!.)1/l*(~- !.!!.) jll(~) 

1 J dNfc - ilc·• = ll(~) (21r)N W(~,£)e --
(1.90) 

are determined by the locally smoothed Wigner function 

1 l~+t~ 
W(z k) = - dN z' W(z' k) _,_ AN 1 _,_ 

~ ~-:r~ 
(1.91) 

The integral in (1.91) also serves to define the overbar in (1.89) and (1.90); it 

is a simple local spatial average to be performed over a region of dimension ~ 

which encompasses many wavelengths yet small compared to the characteristic 

variation of the medium or wave amplitude. This procedure is intended to 

eliminate the short wavelength oscillations in these quantities constructed from 

an asymptotic wave 1/J(~). 

In the case of the Wigner function, this spatial averaging will reduce the 

wave or "diffraction" effects and produce a distribution which will perhaps more 

clearly emphasize the region of phase space that corresponds to the wave. This 

expectation was made plausible above in the discussion of the harmonic oscillator 

Wigner function, although there it was noted that a local phase space average 

might be more suitable. Nevertheless, Berry3 has conjectured that in the limit 

of extremely short wavelength modes \A ~ 0) under a spatial average such that 

with 
A --o 
~ 

(1.92) 
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(so that infinitely many wavelengths are locally included), the smoothed Wigner 

function W may be crudely approximated by the expressions (1.85) and (1.87) in 

the regular and irregular cases respectively. 

The substitution of (1.85) and (1.87) into the definitions of II (1.89) and 

C (1.90) leads to general formulas for regular and irregular waves which may 

be found in Ref.[3J. Instead of reproducing these here, I shall again specialize 

to the stadium model problem in order to directly illustrate the calculations 

involved. In the case of the circle then, the hypothesis is that the smoothed 

Wigner function for asymptotic regular modes can be approximated by (1.85) 

(1.93) 

The quantized values of the actions (/m, In) are given in (1.42) while the angular 

and radial actions ( [g,f,.) themselves are defined in terms of the polar variables 

by (1.37) and (1.39) 

19 =kg 

J,.(r,k,.,kB)= :{Rr[k;r2+ki(l-Rr22)]1/2 -kBcos-1 kgr ·} 
" R.jk;r2 + ki 

(1.94) 

The local average density II m.n for this regular circular mode is thus deter

mined by (1.93) inserted into (1.89) 

·j d
2

k IIm.n(r) = (21f')2 o(m- kB) o(In- J,.(r, k,., kB)) 

= ( \-> f d/c9 dk,. O(m- k9) 0(/n- f,.(r, k,., kB)) 
21f' -r 

(1.95) 
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The partial derivatives required here are to be evaluated at the two branches 

of lc,. (1.46) and may be computed using (1.94). Then, in terms of the EBK 

eigenvalue Wm..n, one obtains 
'> 

1 - w~.n 
II m. n ( r) = - -;=;::===;r:=~r=.:~:;:::::::==;;= . 2-v', ·> R... ·) v' ·) ·> ·> " w- ... - m- w- r- - m-. m..n m..n 

(1.96) 

This expression has several very interesting and reasonable properties. It is 

defined only in the annulus between the radial turning point aw.m. = mfwm..n 

and the boundary of the circle R. In the vicinity of r ~ aw. m., II tends to 

infinity corresponding to the caustic in that region; this behavior is due to the 

singular nature of the assumption (1.93) for W and would be "softened" if one . 

used a smoother approximation describing the behavior of the Wigner function 

in the neighborhood of the torus 1 = lm: The purely radial variation of II in 

the annulus is the same as that of the square of the amplitude of the EBK wave 

function given in (1.49); the radial and angular oscillations of the asymptotic 

solution (1.52) have been eliminated by the local averaging. 

The calculation of the local autocorrelation function proceeds in much the 

same manner. Beginning with (1.93) inserted in (1.90), one has 

Cm.n(.l:., .t) = IIm~(r) I (::~2 5(m- kg) 5(In- I.(r, k., kg)) ei!·• 

= ( 2 ,..)2 r~m.n(r) I dk. 5(In- I.(r, k., m)) ei!·! 

Expressing ~ and ~ in polar coordinates 

x = rcos8 y = r sin 8 

8z = 8 COS ¢J sy = ssin¢J 

and with the transformation (kz, Icy) ~ (k,., /cg) given by 

k:e = k,. cos 8- !kg sin 8 
r 

ky = k,. sin 8 + ! kg cos 0 
r 

(1.97) 

(1.98) 

(1.99) 

(1.100) 
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the scalar product &. · ~ is . 

&. · ~ = krs cos(¢>- 0) + ms sin(¢>- 0) 
r 

Now the integral (1.97) can be evaluated as 
' i .m.a sinl~-8) a l . . (±) c (r 0· 8 A.)= e r "'""",_r ,-1 (r) eilcr (r)ecosf~-8) 
m.n 1 1 1 

'I' (2~)2 rllm.n(r) ~. Bkr ± . 

= e' l1J4 5in(~- 8) cos [lkr i(r )s cos( 4> - 0)] 

= eil1J4sinl~-8) cos[~- fw2 r2- m2 cos(¢>- o)] r V m.n 

121 

(1.101) 

(l.102) 

Although the general behavior of this correlation is somewhat hidden in 

its fairly complicated structure, a few simplifications will serve to illustrate 

its important features. At fixed ~ (r, 0 constant), this expression exhibits a. 

pronounced dependence upon the angle 4> of ~· Thus, along the radial direction 

( 4> = 0) the correlation is determined by the local radial wavenumber .C = 
cos kr(r)s, whereas for~ in the angular direction (4> = D±f) the variation is that 

of the angular wavenumber C = exp(±imsjr) (for small s, sfr ~ the angular 

deviation from the point ~). For intermediate angles 4>- 0, the behavior is more 

complicated; the important conclusion here is that the correlation function, and 

hence the wave, exhibits a high degree of local anisotropy. As a function of 

position~' the most visible property of (1.102) is the very slow (almost ~onstant) 

dependence on s in the radial direction near r = aw.m = mfwm.n which 

indicates a high degree of wave correlation transverse to the caustic due to the 

focusing of rays. Both of these features (anisotropy and caustic correlation) 

have been shown to be properties of the more general formulas for C derived by 

Berry.3 

A numerical test of the formulas for IIm.n (1.96) and Cm.n (1.102) against 

actual circular eigenfunctions is an indirect test of the hypothesis (1.93) for 

the asymptotic smoothed Wigner function in the specific circular model and 
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to some extent the formula (1.85) for general regular modes. However, in order 

to compare the expression (1.102) for C with numerical data based on the study 

of eigenfunctions of the form Jm(km.nr) sin mO (as shown in Figs. 3 and 4), a 

slight adjustment must be made. Being complex("" expi(ms/r)sin(~- 0)), 

formula (1.102) refers to asymptotic modes of the form (1.52) produced in the 

EBK analysis ( """'J exp imO) or, in other words, the superposition of parities 

Jm(km.nr)(cos mO+i sin mO). Since (1.102) depends only on radius rand relative 

angle ~-0 (instead of absolute angle 0), one may convince oneself that the actual 

numerical local correlation functions of both parities cos mfJ.. and sin mO are the 

same and correspond to the real part of (1.102). This is also justified by the 

consideration that one must have C(~, ~ = 0) = 1 whereas ImC{~, ~ = 0) = 0. 

Thus, numerical computations of the correlation function should be compared 

with 

Cm.n(r, 8; s, ~) =cos [ :• sin(~- 8)] cos [;Jw;..nr2 - m2 cos(~- 8)] (l.!03) 

I have studied the correlation function of circular modes and in particular 

have given attention to the nature of the local averaging process described by 

(1.91) with the condition (1.92). Since it is numerically impossible to meet the 

requirement of vanishing wavelength, I have relied on the the results previously 

reported which indicate that the range of eigenvalues near k = 65 is sufficiently 

asymptotic for the comparison of wave properties with predictions based on the 

EBK approximation. Consideration of finite wavelength modes then necessarily 

requires by (1.92) the local average to be performed over some finite area which 

is, however, of dimension small compared with the wave amplitude variation. 

With these limitations, I have found that for circular modes a local average over 

an area encompassing approximately two wave minima and maxima provides 

the best results. It should be noted that this process automatically introduces 
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anisotropy in the correlation function due to the influence of just one or two 

local waves. The local average was computed numerically as 

C _ JP~If!.,f.l d2 x' '1/Jm,n(;! + !.t)'I/Jm.n(;!- !Jt) 
m.n(~, .4.) - J d2 x' ~1.2 (x') 

P~(f!.,f.l 'Ym.n-
(1.104) 

P ~ (~, Jt) is a square "patch" of area ~ 2 centered at ~; this area is reduced, 

however, for values of J1 such that all points ;! ± iJt lie inside the circle. The 

integrals in (1.104) were computed numerically with standard two dimensional 

integration routines; the fact that they may be accurately evaluated is largely 

due to the novel technique (see Appendix A) which allows for the determination 

of 1/J over any arbitrarily small or dense grid. 

For the circular mode with m = 40, n = 5 shown in Fig. 3, a typical com

putation of the numerical correlation function is graphed in Fig. 21. For these 

examples, the center of the local smoothing area is at ~ = (r, 0) = (.866, .877) 

and C4o,s is plotted as a function of 8 for three angles ¢> = 0, 7r/4, 1rj2 .. The 

numerical results at discrete values of 8 denoted by crosses seem to accurately 

track the theoretical asymptotic formula (1.103). As similar good agreement is 

found for other positions (r, 0) and other modes in the same range (as well as for 

ones studied near lc = 100), two conclusions emerge. First, the use of the singular 

distribution (1.93) as a crude approximation to the smoothed Wigner function 

in the case of the circle appears to be extremely well" justified, implying that 

the Wigner function for a short wavelength circular mode is very concentrated 

in the neighborhood of the corresponding torus in phase space. Extending this 

to the general case of integrable systems, it appears that the formula (1.85) for 

W is verified, which justifies to an extent the manipulations which produced 

it based on the well-understood EBK theory of regular waves. Secondly, the 

confidence that asymptotic expressions such as (1.103) are applicable to modes 

in the eigenvalue range near k = 65 is again reinforced; this is important so that 
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numerical computations performed on stadium modes in the same range of the 

spectrum can be reliably regarded as tests of predictions of asymptotic theories 

for irregular waves. 

Focusing attention now on the ergodic stadium ( 1 > 0) case, the hypothesis 

(1.87) for the smoothed Wigner function specialized to the free Hamiltonian 

(dispersion relation) (1.25) is 

- 1 v' •) ? 
Wn(k) =On a(wn- k; + k;) (1.105) 

Again, the normalization constant On is the volume of the nth frequency surface 

expected to correspond to the mode at w = Wn = kn. The implications of this 

assumption for the statistical properties of the modes are easily calculated since 

W depends only on the magnitude of&_. Thus, the local average density is 

I 1;:rr a(wn- 1&.1) 
lin(.*.)= 2 I d2 z I 1 g,..t~ a(wn -ltD (1.106) 

1 1 1 
- =-=-

fA d2z A 7r 

where A again is the constant area of the stadium. This expression is correctly 

normalized and simply reiterates the expectation of uniform intensity over the 

interior corresponding to the ergodic nature of the ray trajectories. As previously 

noted, qualitative visual inspection of many stadium modes already tends to cast 

doubt on this aspect of the assumption (1.105). 

The local autocorrelation function is also easily determined 

(1.107) 

Using polar coordinates in k space 
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·Figure 21. Locally averaged spatial autocorrelation function C(~, ~) for circular 
(I = 0) mode J4o(k.w.sr) sin 408, with k4o.s = 65.012. The point ~ is fixed 
(r, 8) = (0.866, 0.867) and the correlation is plotted as a function of l2.l for three 
different angles ¢ of !!_. Crosses denote numerical measurements, dotted line is 
theory based on Eq.(1.103). a)¢- 0. b)¢= 7rj4. 
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Figure 21. c)¢= 1rj2. d) Nodal structure of eigenfunction in "patch" P~ used 
for local smoothing of correlation function. 
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k~ = k cos '"' (1.108) 

and (1.99) for !!.,, (1.107) becomes 

I k dk dOle 5(kn- k) e,; le.cos(tJle-<PI C (s) - ~-....,.....;.___;........;.;..____;.,. ___ _ 
n- - I kdkdOle 5(/cn- /c) 

2w 
= { dOle eilen.cos(tJle-<PI 

lo 21r 

(1.109) 

This is evaluated as a usual Bessel integral to give 

(1.110) 

This expression is at once quite different from the cor..responding one for 

the circle (1.103). Not only is it independent of position .;. (a reflection of the 

constant value of IIn), but it is also isotropic in the angle¢> of.!· In contrast with 

the apparent disagreement noted for the expected uniform intensity distribution 

II, casual observation of the nodal patterns of stadium modes has hinted at 

this isotropic behavior. Indeed, this correlation isotropy is also a feature of 

the expression derived by Berry3 for general ergodic ray Hamiltonians in N 

dimensions. 

A numerical test of (1.110) using finite wavelength stadium modes, and with 

the same local averaging procedure described above for the circular case, must 

necessarily fail. This is because such a finite local average is influenced by only a 

few local waves and hence the correlation function so c-omputed will reflect this 

anisotropy. This can be seen in Fig. 22 which graphs a typical local correlation 

function for the stadium mode at k = 65.326 shown in Fig. 6. The correlation 

was computed by (1.104) over a "patch" P~(~,.!) centered at .;. = (.:z:, y) = 

(. 76, .46) with the same area as that used for the circular mode with roughly the 

same wavelength. The numerical data is not only in obvious disagreement with 

the theory (1.110), but it also varies with the angle¢>= 0, K/4, 1rj2 of.!· 

In order to remove these local fluctuation effects it is necessary to include 



Figure 22. Locally averaged spatial autocorrelation function for "f = 1 
stadium mode at k = 65.326. The point ~ is fixed (x, y) = (0.76, 0.46) and 
C(~, !!) is plotted against l!!l for three angles ¢> of {!. Crosses denote numerical 
measurements, solid line is theory based on Eq.(l.llO). a)¢>= 0. b)¢>= 7rj4. 
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more waves in the average. Increasing the size ~ of the "patch", however, 

violates the requirements of local averaging by sampling regions over which II 

appears to vary. If the intensity II were truly uniform as predicted by (1.106), 

the local average (1.104) could be replaced by an average over the entire interior 

of the stadium thereby including a large number of wavelengths. This is in fact 

the procedure I have used despite the apparent nonuniformi~y of II; thus, the 

test of a possible ~ dependence of the correlation is discarded in deference to 

a crude test for its dependence on ~· The numerical computation is therefore 

taken to be 

(1.111) 

Here, A(~) is the portion of the entire interior of the stadium such that all points 

i ± :t ~ lie inside the boundary. 

The result of the measurement (1.111) for the same mode studied in Fig. 22 

(k = 65.326) is plotted in Fig. 23. While these data seem to fit the prediction 

(1.110) better than those produced by the local average, it is apparent that even 

the global average over all the waves does not yield a close agreement with 

theory. This judgement is made in regard to the standard set by the degree of 

success found for circular modes of roughly the same wavelength. Although the 

nodal curves in Fig. 6 seem to indicate a fairly random orientation of the local 

wave vector as a function of position, this isotropy is not convincingly reflected 

in the correlation function even when averaged over the entire interior. 

The disagreement in this case is supported by the computation of the 

correlation function shown in Fig. 24 for the mode at k = 100.386 (see Fig. 7(1)). 

Here again, neither the expected isotropy nor the dependence on the magnitude 

of .1 is confirmed as well as the theory in the circular case. In fact, there does 

not even seem to be an obvious trend toward verification with the decrease in 
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Figure 23. Globally averaged spatial autocorrelation function for 1 = 1 stadium 
mode at k = 65.326 (using Eq.(l.111)) plotted against 1~1 for three angles ¢' of 
!J... Crosses are numerical measurements, solid line is theory (1.110). a) ¢' = 0. 
b)¢'=rrj4. 



1.0 

0.8 
C(s) 

0.6 

0,4 

0.2 

-0.0 

-0.2 

-0.4 
0 N 

0 

1.8 The Wigner Distribution 

.v 
C) 

<.0 
0 

00 
0 

Figure 23. c)¢= 1rj2 

192 

N s -



1.8 The Wigner Distribution 199 

1.0 

0.8 

C(s) 
0.6 

+ 
0.4 

0.2 

a) -0.0 

-0.2 

-0.4 
.. 

0 N ~ ..r Lr.> tO ,..._ 00 
s 

~ 0 0 ~ 0 0 0 0 

1. 0 

0.8 
C(s) 

0.6 

0.4 + 
0.2 

b) -0.0 

+ 
-0.2 

-0.4 

+ 
0 N ..., ..r Lr.> tO ,..._ 00 s 

~ 0 0 0 0 0 c.: c.: . 

Figure 24. Globally averaged spatial autocorrelation function for 1 = 1 stadium 
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wavelength as one would expect for an asymptotic conjecture. 

Based on these numerical tests, a modest conclusion would be that the 

formula (1.110) for the correlation function is not accurate for typical stadium 

modes of finite wavelength. This evaluation is made with respect to the issues 

involved in the requirements for local averaging; even under global averaging, 

however, the simple form of (1.110) is not substantiated. The standard against 

which these results were appraised was the comparatively precise vindication 

of the integrable circular theory (1.103) and its evident applicability to regular 

modes in the same finite wavelength range of the spectrum. In addition, the 

validity of (1.110) as an asymptotic approximation seems to be doubtful con

sidering the almost undiminished degree of disagreement when the eigenvalue is 

nearly doubled. 

As an indirect investigation of the nature of the Wigner function, these 

findings can only cast doubt on the proposition (1.105) from which the expression 

(1.110) for the correlation function was derived. The foregoing remarks on the 

spatial smoothing procedure and the extent of applicabiltity to finite (but large) 

wavenumber stadium modes are relevant to the acceptibility of this conjecture 

for the Wigner function as well. The nonuniformity of the projection II and 

the anisotropy of the Fourier transform C appear to indicate that the Wigner 

function for these short wavelength modes exhibits somewhat more structure 

than the uniform distribution over the frequency surface represented in (1.105). 

This additional structure could either be on the frequency surface or in the 

immediate neighborhood of it. While the latter possibility could be ascribed 

to phase space "diffraction" effects due to finite wavelength (and thus almost 

inconsequential), the existence of detail in the frequency surface might imply a 

correspondence of the wave with a subset of that manifold (as in the case of 
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regular waves). Short of actually computing the Wigner function (as the Fourier 

transform of the correlation function), it is difficult to determine the source of 

the discrepancy. 

Naturally, it would be presumptuous to extend these conclusions to the 

conjecture (I.87) for the general case of a Hamiltonian (dispersion relation) 

characterized by ergodic rays since the stadium system is in many respects 

non-generic. Nevertheless, while this proposition seems extremely plausible, the 

evidence provided by the intensity distributions and correlation functions of 

several stadium modes over a wide range of the spectrum indicates that this 

facet of an asymptotic theory of irregular waves is not entirely correct. Thus, 

it remains an outstanding probl~m to determine, perhaps through the study of 

the Wigner function (or some other phase space repr.esentation), the appropriate 

correspondence between an irregular mode and a ray phase space manifold. 

I 
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9o STATISTICS OF THE SPECTRUM: P(~E) 

The previous Chapters have examined qualitative and quantitative differences 

between spatial features of regular and irregular waves with respect to the 

properties of their corresponding ray systems. Statistical characteristics of eigen

functions were compared with predictions based on the structure of the ray phase 

space; that is, a proposed correspondence between. a mode of the wave system and 

a submanifold of the phase space was exploited in an attempt to explain and 

predict definite spatial properties of the waves. This procedure implicitly as

sumed that a stationary state of the wave system is associated with almost all the 

points on the corresponding manifold or, in other words, the entire "infinite time" 

evolution of any typical single trajectory on that manifold. This is true for both 

the integrable and the ergodic case: even in the integrable case, a phase space 

torus implicated in this correspondence is generically one on which the fre

quencies are incommensurate so that almost every trajectory is ergodic on the 

torus. 

Many of the concepts of integrability and ergodicity of ray systems, however, 

are related to the actual temporal evolution of trajectories. Therefore, many 

authors have considered the evolution of initial (mixed) states of the complemen-. 

tary wave systems in order to discern properties which might distinguish the 

difference between regular and irregular wave systems and which may hopefully 

be related to ray quantities. Since the initial state of a bound wave system 

may be decomposed in terms of the normal modes, its subsequent evolution is 

governed by the frequencies of each independently oscillating component. In this 

respect, the properties of the spectrum become important and there has been 

considerable interest42•43•44 in characterizing the nature of wave JtochaJticity by 

contrasting the spectra of integrable and ergodic systems . 
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For the model of the Helmholtz equation in the stadium, I have computed 

the eigenvalues at 1 = 0 (circle) and 1 = 1 (stadium) in the range 50 < 
lc < 100 (for the odd-odd parity case); these are listed in Appendix A (1 = 
0) and Appendix B (1 = 1). Before presenting the details of the numerical 

accuracy and the analysis of the results, I present in Fig. 25 an almost schematic 

comparison of the circle and st.adium spectra over a small region containing 

about 30 eigenvalues. Each slash -mar-ks the -approxim-ate position-of-a- single------

eigenvalue; these were all computed numerically using the method of Appendix 

A even though those for the circle could be determined more accurately by other 

means. If it is not immediately apparent,. I would like to draw attention to the 

rough distribution of the eigenvalues along the number lines and submit that 

whereas the stadium spectrum seems to be fairly evenly arranged, the circular 

levels tend to be clustered. This behavior for large eigenvalues of the circular 

problem is well known since the zeros of Bessel functions are given asymptotically 

byl6 

lcm.n. ,_ (n + !m- t)1r (1.112) 

Thus, even within this one parity class(,_ sin mO, m even) there is a high degree 

of near degeneracy at large lc (note that the exact degeneracy of sin mO and 

cosmO has been removed). 

According to recent work by Berry and Tabor,5 level clustering in the 

asymptotic part of the spectrum is expected to be a feature of wave systems 

corresponding to generic integrable ray Hamiltonians. The opposite behavior, 

the tendency for the eigenvalues to "regularize" or "repel" each other, has been 

predicted by several authors6•45 to be a hallmark of irregular wave systems. 

More than just qualitative observations, these statements are expressed in terms 
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Figure 25. Schematic comparison of segments of the circular (left) and "'f = 1 
stadium (right) spectra. Each slash represents one eigenvalue k. Note the high 
degree of clustering in the circular spectrum as opposed to the relatively uniform 
distribution of the stadium eigenvalues . 
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of the probability distribution of neighboring level separations. Thus, a clustered 

spectrum would be characterized by a peak in the distribution near zero separa

tion (indicating a high probabilty for near degeneracies), whereas a more uniform 

spectrum would be described by a distribution which is peaked at a nonzero 

(nearly the mean) separation. 

I have compiled this probability distribution from the eigenvalue data men-

tioned above over- the raiiie of t.he-spectruin-so_.(_/C -<-fooror bothThe-circle---·----

and the stadium. Naturally, the true distribution is dominated by the contribu-

tion from asymptotic eigenvalues (due to the infinite spectrum) and so these are 

only partial results (as to be expected from any finite computation). It is hoped, 

however, that this part of the spectrum is far enough above the ground state 

and is large enough to provide suitable statistics so that the ge:r;a.eral features of 

the full distribution emerge. One advantage of the numerical method employed 

is that, in effect, any region of the spectrum can be studied without computing 

all lower eigenvalues; therefore, these results do not contain the extremely non-

asymptotic separation data from the lower levels (approximately 200 states). 

The construction of a probability distribution P( tJ..k) from a finite set of 

eigenvalues {lc:i} is simple and straightforward. However, one would like to 

remove the lowest order effect of the dependency of the density of eigenvalues 

n( lc:) OQ. position in the spectrum. For two dimensionai "free" motion confined 

to an area A, this asymptotic density is 

A 
n(k)dk = (2"")2 2""/c dk = !k dk (1.113) 

The area has been set equal to ""' the area of both the circle and the stadium; as 

previously mentioned, the area has been held constant as 1 was varied so that 

this density would remain unchanged. Expression (1.113) obviously indicates 

that the average separation of eigenvalues (tJ..Ic) diminishes as k increases 
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(1.114) 

In order to examine level separation data from different parts of the spectrum 

·(e.g., near k ~50 and k ~ 100) on the same basis, one should consider instead 

the set of the squares of the eigenvalues {len which has uniform density. Thus, 

defining the quantity 

(1.115) 

in an obvious connection with the energy of the classical free particle, the density 

and mean separation of the set {Ei} are 

dk 1 
n( E) = n( k) - = -

dE 4 

(AE) = n- 1 (E) = 4 

(I.116) 

The estimates (I.ll3-L116) of course describe the entire spectrum, i.e., they 

include the contributions from all four parity classes when applied to the present 

model with reflection symmetries. In order to use these formulas in the analysis 

of the single parity spectral data, one must divide the density by four (assuming 

each parity contains the same number of levels). Thus, for one parity the density 

and mean spacing are 

(AE)p = 16 (I.l17) 

Strictly speaking, the odd-odd parity class that has Been studied throughout this 

work contains fewer eigenvalues since them= 0 modes do not appear (sin m8 = 

0). Although the correction to the asymptotic density due to the absence of this 

measure zero set of modes is negligible, the effect is noticed at finite k as seen 

below. The distribution of successive level spacings P(AE) within a single parity 

class is the object to which the foregoing predictions properly refer. 

In the circular ('y = 0) case, my numerical procedure computed 451 odd

odd parity eigenvalues between k = 50 and k = 100. This was compared with 
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the true set of 454 eigenvalues obtained using Sandia Library Bessel function 

routines. The discrepancy is due to the omission of 16 eigenvalues and the 

inclusion of 13 spurious ones; this drawback of my computational method is 

discussed in Appendix A. For the levels correctly identified, a direct comparison 

of individual values of lc revealed an absolute error of less than ±0.001 in 97% 

of the eigenvalues, less than ±0.0005 in 90% and a maximum error of 0.023. 

Therefore, I have taken as a reliable err-or-estimatein tllecompute<rvalues or-----
E = Jc'2 to be ±0.2 and I assume this to be valid even when 1 ::;rf 0. 

The probability distribution for successive level separations P(~E) was 

constructed from the eigenvalue data in the form of a histogram. Various bin 

sizes ~BE = 1, 2 and 4 were used in the attempt to strike a balance between 

bin statistics and histogram detail; the choice ~BE = 2 seemed to provide 

the optimum display. The histogram was normalized by its area so that it 

represents a probability distribution over the values of 0 < ~E < ~Ema.:r. 

observed. Figure 26 shows the results in the circular case for both the numerically 

obtained eigenvalues and the exact ones. It is evident that despite the errors in 

the former list, most of the structure in the exact histogram is retained by the 

"experimental" one. 

For this integrable system the expected property of a clustered spectrum is 

unmistakably illustrated in these histograms. The obvious high probability of 

extremely small spacings is balanced by the presence of very large values so that 

the average is (~E) = 16.7 numerically (compared to the exact (~E) = 16.544 

due to the absence of the m = 0 modes). The smallest separation computed 

was 0.138 (although there is a near degeneracy of ~E = 0.003 in the exact 

spectrum which was missed by the numerical method) with 15 observed spacings 

of ~E < 1; the largest value determined was ~E = 71. 
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Figure 26. Histograms representing P(~E) for circular eigenvalue (E = k2
) 

spacings, with bin size ~B = 2. Smooth curve is best exponential fit determined 
by examining the cumulative distribution N(~E). a) Numerically obtained 
eigenvalues. 
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Figure 26. b) P(AE) with exact circular eigenvalues. 
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Quite different are the numerical results obtained for the 1 = 1 stadium 

spectrum. In the same interval 50 < k < 100 I computed 445 eigenvalues with 

average separation (AE) = 16.4. Here, of course, there is no exact spectrum 

for comparison, but as stated previously, it is assumed that the error in an 

individual value of E is ±0.2 as in the circular case. This list contains nine less 

eigenvalues (about 2%) than the exact count in the circle over the same interval, 

and the same flaw of omitting real eigenvalues and including spurious ones can 

be expected. Just as in the circle, however, it is assumed that the effect of these 

inaccuracies in identifying valid eigenvalues will be spread fairly evenly over the 

entire distribution P(AE). 

The histogram constructed from the separation data with bin size ABE= 

2 is shown in Fig. 27. The maximum of the distribution near AE "= 12 ex

presses the "repulsion" of neighboring levels and the tendency toward a uniform 

spectrum. While the minimum spacing computed was 0.175, only four separa

tions less than AE = 1 were detected in contrast with the much larger number 

in the circle. The largest value_ observed was only AE = 50 in keeping with 

the more compact distribution centered near (AE) = 16.4. It is very difficult to 

see how a reasonable omission and/or inclusion of about ten eigenvalues could 

alter the shape of this histogram enough to indicate anything other than level 

repulsion. 

As previously stated, several authors have provided theories which· attempt 

to explain this observed difference between regular and irregular spectra in terms 

of the corresponding integrable and ergodic ray systems. In Ref.[5], Berry and 

Tabor not only predict clustering for integrable systems in general, but with 

arguments based on the EBK formalism deduce that the distribution P( AE) 

should be of exponential form 
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Figure 27. Histogram of P(~E) for 1 = 1 stadium eigenvalue spacings, with bin 
size ~BE= 2. TLe smooth curve gives the best fit of the form (~E)a exp(-,B(~Ef) 
determined by examining the cumulative distribution N(~E). 
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(1.118) 

Here P(A.E) is normalized over all A.E > 0 with average value (A.E) = a- 1 . 

While the graph in Fig. 26 certainly appears to be of this form, it is difficult 

to actually verify by means of a numerical fit. This is because the shape of the 

histogram (with a finite amount of data) depends to a large extent on the choice 

of the bin size. 

Casati suggested to me that one way to circumvent this effect of incomplete 

data is to consider instead the cumulative distribution 

. r~E 

N(A.E)= lo P(s)ds (1.119) 

which measures the fraction of separations less than A.E. Even for a data set 

{A.Ei} with only the order of 400 values this function is much more continuous 

than the histogram P(A.E) and does not depend on the bin size. It is also just 

as straightforward to construct; the only difficulty is that it must be compared 

with the integral of the prediction for the probability distribution. This is easily 

accomplished in the circular case, however, as (1.118) may be integrated to give 

simply 

N(A.E) = 1- e-aQE (1.120) 

Figure 28 shows the "experimental" tabulation of the cumulative distribu

tion in comparison with the best numerical least squares fit of the form (1.120). 

While it appears that there is only one free parameter a available for the fitting 

procedure, another overall multiplicative factor in (1.120) was introduced in or

der to compensate for the undetermined normalization of the experimental data. 

The data were subsequently divided by the best-fit value of this parameter so 

that normalized curves could be compared. The general shape of the prediction 

seems to be fairly well substantiated although the data indicates a somewhat 
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longer tail on the distribution P(~E) than the theory would suggest. Perhaps a 

more serious result is that the optimum value of a was found to be a= 1/20.77; 

this indirectly implies a failure in the theory (1.118) which requires a to be the 

inverse of the average separation a = (~E)- 1 = fg (or close to it). There are 

two possible explanations for this disagreement: (1) either the present integrable 

Hamiltonian is too special or does not meet the genericity requirements of Ref.[5] 

or (2), P(~E) for this system is truly not of the simple form (1.118) (perhaps,_ 

exp( -a(~E).8)). This problem is not resolved here and clearly requires further 

investigation. 

There have been several approaches toward understanding and predicting 

this statistical property for irregular spectra and specifically for billiard sys

tems like the stadium. In the recent review article on quantum stochasticity, 

Zaslavskii6 discusses the form of P( ~E) for both limits ~E ~ 0 and AE ~ oo 

in terms of the mixing property of the ray Hamiltonian and the measure of this 

behavior known as the Kolmogorov entropy. He and Casati and Guarneri 45 

also attempt to relate the observed level repulsion and general shape of the 

distribution to similar results found for the eigenvalues of random matrices as 

studied by Wigner, Porter and Dyson.46 Based upon the generic behavior of 

eigenvalues under parameter variation as formulated by Arnold, 11 Berry47 has 

given a prediction for P(~E) at small ~E. Without further elaboration of these 

theories, I shall simply state that in all of them the expected form of the prob

ability distribution is 

(1.121) 

Thus, the repulsion of neighboring levels is described by 

P( ~E) "" ( ~E)01 for (1.1!:!2) 

and the fact that .(1.121) is maximum at a nonzero value of ~E. 
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Figure 28. Cumulative distribution N(tJ.E) of circular eigenvalue spacings. Solid 
smooth curve is best numerical fit of the form I- exp(-atJ.E) based on an 
exponential form for P(tJ.E). The optimal value for a is 1/20.77 .. 
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The histogram in Fig. 27 appears to have this form, but again a direct 

numerical test is hampered by the incomplete data effects mentioned above. 

The cumulative distribution N(AE) is shown in Fig. 29 compared with the 

theoretical curve determined by the integral of (1.121). Unfortunately, the 

result of this indefinite integral is not analytically transparent; therefore, it was 

computed numerically at each value of the parameters (a, a, /3) as required by 

the fitting procedure. All three of these parameters were allowed to vary (even 

though normalization provides a relation among them) and the amplitude of the 

experimental curve was adjusted as in the circular case. However, the availability 

of the extra degree of freedom (three parameters instead of two) obviously allows 

for a much closer fit to the data than that found in Fig. 28. The optimal values 

found for the two shape parameters were a = 0.71, /3 = 0.0025. The average 

value (AE) of the normalized theoretical curve with these parameters is 16.1 

compared with the data average 16.4. 

Perhaps.the most important (or controversial) aspect of this distribution is 

the value of the exponent a and its relation to other properties of either the 

wave or ray system. For example, Zaslavskii6 has given an interpretation of this 

small AE behavior in terms of the Kolmogorov entropy K of the ray system; 

specifically, he predicts simply 

. a= CjlnK ( !.123) 

where C is some constant depending on the system. The value of K for the 

stadium billiard has not been measured, but using extremely simple formulas 

provided in Ref.[6] one obtains K = 21. Thus, with K = 2 and a = 0.71 the 

constant C is determined by (1.123) to be 0.49; this is in remarkable agreement 

with the value of about l/2 calculated by Zaslavskii and Filonenko48 for an 

entirely different system. The significance of this result is miniinaL however, 

J 
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since one should really investigate the dependence of a on K (or on ;) in order 

to determine the validity of (1.123). 
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10. CONCLUSION 

The intent of Part I of this thesis was to illustrate and attempt to inter

pret the prominent features of short wavelength wave fields with regard to the 

corresponding ray trajectories of geometrical optics. In order to properly estab

lish these relationships for systems with more than one degree of freedom, Jt is 

necessary to consider the Hamiltonian fiow of the rays in the natural setting of 

phase space. The spatial features of the waves were then discussed in terms of 

the projection of the ray phase space onto configuration space. 

For N dimensional wave systems which admit stationary state solutions, the 

rays associated with the normal modes remain. in a bounded region of the 2N 

dimensional phase space. In this case the solvability of the wave equation in the 

eikonal approximation then -hinges upon the question of integrability of the ray 

Hamiltonian. Integrable rays are characterized by the existence of N constants 

of the motion and are restricted to lie on N dimensional tori in phase space. 

The correspondence between integrable rays and regular waves is constructed in 

terms of these Lagrangian manifolds; this is the basis of the EBK quantization 

procedure. 

The identification of some of the more conspicuous consequences of the 

normal mode - ray torus correspondence was facilitated by the introduction of 

a familiar simple model. For normal modes of the two dimensional Helmholtz 

equation in the circle, the-existence of high intensity caustic regions juxtaposed 

with low amplitude evanescent regions were clearly seen to be the result of 

the projection of the torus onto ~-space. Thus, caustics are associated with 

singularities in the projection. Evanescent regions are the projection of parts of 

phase space not accessible for rays on the particular torus involved. While these 

. observations are by no means novel, the development of the implications of the 
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EBK technique for integrable rays/regular waves provides a foundation for the 

investigation of waves associated with nonintegrable rays. 

The essential new results reported in Part I concern both the qualitative 

and quantitative investigation of irregular waves. These are normal modes of a 

wave problem for which the eikonal approximation produces a ray Hamiltonian 

characterized by ergodic trajectories. Specifically, the system is a modification of 

the integrable problem described above; the circular boundary is stretched into 

a stadium shape by the introduction of straight sides with length governed by 

a parameter "'. For all values of "' > 0 almost all ray orbits ergodically explore 

the entire three dimensional frequency (Hamiltonian = constant) surface; in 

addition, initial co"nditions separate exponentially in time (unstable) and the 

system is mixing. A measure zero set of orbits are closed (not ergodic) but 

still unstable to initial perturbation; an example is the family of bouncing ball 

trajectories. 

The absence of invariant Lagrangian manifolds (tori) defeats the application 

of the EBK method and thus motivates the search for other theories of normal 

mode - ray manifold correspondence (assuming one exists). Casual inspection 

of numerically constructed eigenfunctions has yielded two conclusions: 

(1) Most irregular eigenfunctions appear to be composed of localized regions 

of relative high intensity randomly interspersed among larger areas of low amplitude. 

These are reminiscent of caustics, although there is no evidence of their relation

ship to projection singularities from the ray phase space. This wave structure ap

pears to differ considerably from the uniform intensity distribution over the inte

rior of the stadium which would be expected on the basis of the ergodic nature of 

the rays. 

(2) Many eigenfunctions are quite regular m appearance and share many 
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of the features of circular modes. Moreover, most of these modes display an 

obvious relationship with underlying closed ray trajectories. This is especially 

so for the largest class of this type which correspond to the family of bouncing 

ball orbits. Also in this category are the whispering gallery modes which appear 

to have been identified. 

These qualitative remarks contrasting the wide variety of eigenmode struc

tures found in the stadium with the comparatively ordinary circular modes have 

been substantiated to a degree with a statistical analysis. The construction of 

the probability distribution P( '1/J) has provided one method for distinguishing 

between circular and the apparently regular stadium modes on the one hand 

and the irregular, random or chaotic stadium modes on the other. The principal 

conclusion is 

(3) Irregular eigenfunctions may be described by gaussian statistics (i.e., 

P(,P) and P(B,P/8"1) are well approximated by a gaussian distribution). This 

result supports the idea that a wave constructed from many contributions at. a 

point due to the multiple random passages of mixing ray trajectories is phase 

decorrelated. Like circular modes, the regular-appearing stadium eigenfunctions 

(such as bouncing ball modes) possess extremely non-gaussian distributions. 

In this respect, the chaotic nature of most stadium modes seems to be_ 

related to the similar behavior of the corresponding rays despite the fact that 

the eigenfunctions do not exhibit uniform intensity over the interior. 

It remains an enigma that bouncing ball modes should represent a modest 

fraction of the spectrum, and one which seems to persist as the eigenvalue is 

increased. Although the association of a class of modes with an unstable family 

of rays has not been placed on theoretical grounds, there are two points which 

make this seem reasonable. As Casati 49 points out, even though an ergodic orbit 
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"covers" the entire stadium uniformly as t -+ oo, it will be trapped in nearly 

a bouncing ball fashion (k:~: arbitrarily close to zero) for long periods of time 

(long enough to traverse the length of the straight sections) and this will occur 

infinitely many times. Thus, perhaps these modes represent the fraction of time 

all orbits (not just the bouncing ball family) spend in this region of phase space .. 

When viewed in phase space however, these periodic bouncing ball orbits are 

very special. Consider the family of initial conditions positioned along a straight 

section with k:~: = 0, ky = w =J: 0. As the rays evolve, a Lagrangian manifold is 

generated in phase space, just as for the outflow of any one dimensional family of 

initial conditions. The difference is that this manifold (though disconnected be

cause of the hard walls) continues to repeat itself; ail other Lagrangian manifolds 

so generated will become extremely convoluted (due to the exponential separa

tion of orbits) and eventually fill the frequency surface. The bouncing ball modes 

might correspond to the quantization of this manifold much like the quantiza

tion of tori for integrable systems. However, the finite value of kz exhibited by 

these modes remains to be explained, and this may require consideration of the 

uncertainty principle. 

In a speculative manner, one could extend this line of reasoning to the 

Lagrangian manifold generated in phase space by almost any one dimensional 

family of initial conditions. As the manifold evolves, a piece of it may return close 

enough to an earlier piece so that, within the error introduced by the uncertainty 

principle, this part of the manifold could be considered to have "repeated". 

From this point on at least part of the manifold (with a degree of "fuzziness") 

is like the bouncing ball manifold in that it will continue to repeat itself (even 

though the actual traJectories are not necessarily periodic). With the uncertainty 

principle, one might expect such "fuzzy" manifolds surrounding periodic orbits 
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and possibly modes corresponding to them; this may . be the explanation not 

only for the bouncing ball modes {with small kz) but also for the mode which 

resembles the diamond-shaped periodic orbit. It may be that almost every orbit 

is embedded in some ·"fuzzy" Lagrangian manifold which, although probably 

extremely convoluted and multiply connected, eventually repeats itself (in the 

above sense). In this way, modes of nonintegrable. systems may correspond to 

objects in the ray phase space generated after only a finite time (because of 

the uncertainty principle) and which therefore do not fill the entire frequency 

surface. 

These ideas, while not providing concrete quantization rules, would explain 

the structure of the "regular" modes in the stadium (bouncing ball, whispering 

gallery and other "nearly periodic" modes) as well as the more common chaotic 

irregular modes which do not exhibit a uniform intensity distribution. As 

a consequence, they also imply the possibility of the existence of caustics in 

the irregular modes; that is, the projection of these "fuzzy manifolds" onto 

configuration space may be singular over small regions due to their convoluted 

structure. In fact, if the manifolds so constructed become extremely convoluted 

then one would expect many such regions; thus, it may be that caustics should 

be more prevalent in irregular waves than in regular waves. This seems to be 

what is observed for most chaotic stadium modes, but again, the connection 

between the modes and the rays is still unknown. 

In order to further illuminate this connection I have attempted to study the 

Wigner function as an example of a phase space representation of the wave. ').'his 

was done indirectly by numerically computing the local spatial autocorrelation 

of an eigenfunction and comparing the result with theoretical predictions derived 

from rather crude assumptions for the Wigner function. The numerical evidence 
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seems to support the following conclusions: 

( 4) The Wigner function associated with a short wavelength regular mode 

of. an N dimensional integrable ray system can be fairly well approximated by 

an N dimensional delta function in phase space which is· nonzero only on the 

torus which corresponds to the mode in the eikonal (EBK) theory. 

This conclusion was inferred from the extrem.ely accurate matching of the 

numerical correlation function of sample circular modes with the prediction 

based on this singular behavior of the Wigner function. In this way, the Wigner 

function provides a realization of the correspondence between regular modes and 

integrable rays. 

(5) The Wigner function constructed from asymptotic irregular modes is 

probably not described as simply by a one dimensional delta function on the 

frequency surface corresponding to the frequency eigenvalue. It may have more 
-

complicated structure either within this surface or in the transverse direction off 

the manifold. 

Again, this is a judgement inferred from the comparison of the numerical 

correlation data with theory based on just such a delta function assumption; here 

the agreement was not as clear as in the circular case. Since the Wigner function 

was not determined, the actual correspondence between irregular modes and 

ch.aotic rays remains uncertain. Perhaps there is no general rule of association; 

it may be that a different model such as the "finite time", uncertainty-principle

fuzzy Lagrangian manifolds is required. I believe that the determination of 

this correspondence for general ray systems is a significant outstanding problem, 

and that the examination of the Wigner function or some other phase space 

representation of the wave is an important tool. 

One reason for this is provided by the propagation into a plasma of exter-



1.10 Conclusion . 159 

nally launched short wavelength waves. The evolution of the rays in phase space 

generates a Lagrangian manifold, the projection of which governs the ~-space 

eikonal structure of the wave. According to numerical experiments50 , these rays 

may separate exponentially asymptotically in time (just as the chaotic stadium 

rays). Even if the waves are only present for a finite time (due to damping, 

conversion, etc.) so that exponential separation is not achieved, one might ex

pect the Lagrangian manifold to become extremely convoluted depending on 

the degree of ray instability. If this were indeed the case, the projection of 

the manifold onto configuration space may be singular over many small regions 

implying the existence of many caustics (as might be observed in the stadium 

modes). Therefore, any numerical computation of the amplitude of the waves 

based on the transport equations of eikonal theory would encounter frequent sin

gularities necessitating the use of patching and matching subroutines. Extreme 

ray instability may render such a computation impractical. 

It is important to note that the foregoing is quite speculative. To this point, 

there have been no actual computations of familie8 of ray trajectories in order 

to observe the evolution of the Lagrangian manifold in phase space: does it 

become convoluted for unstable rays and after how long? In addition, there are 

no results on the numerical evaluation of the transport equations in more than 

one dimension even for the case of well-behaved regular rays. 51 Therefore, to my 

knowledge there is no experience of the numerical effect of caustic singularities, 

let alone the consequences of possibly frequent ones as suggested above. It would 

certainly be enlightening to perform these computations. 

If the foregoing speculation indeed proves correct, one might consider m

stead the possibility of constructing a phase space representation of the wave and 

numerically analyze its evolution as the wave propagates into the plasma. Such 
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a distribution, for which the Wigner function is a candidate, would be localized 

in phase space near the ray Lagrangian manifold (for short wavelength waves). 

Additionally, since the caustic phenomenon is a consequence of the projection 

procedure, one would not expect singularities in the. evaluation of this quan

tity. In a sense, the Hamiltonian nature of the rays impels the consideration 

of a phase space representation as the natural one for waves in inhomogeneous 

media. In general, either the ~- or £-space representations are obtainable from 

these phase space distributions; however, it would perhaps be more desirable to 

cast the relevant wave-plasma interaction processes in terms of the phase space 

representation itself. A systematic exploration of wave phase space distributions 

is the subject of Part II. 
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1. Il'lTRODUCTION 

Central to the elucidation of the relationship between geometric ray optics 

and physical wave optics is the development of the concept of the ray phase 

space. Formally, the eikonal method of solution of a wave equation provides a 

bridge which transforms that- problem into the Hamilton-Jacobi ·equation for the 

eikonal phase. While this phase is properly a function ori space-time (as is the 

wave field), it is determined by analyzing the characteristic ray trajectories in 

phase space generated by the local dispersion relation via Hamilton's equations. 

Thus, the rays evolve in phase space on some manifold and the structure of the 

wave in physical space-time is (in this asymptotic scheme) dependent upon the 

projection of this manifold onto configuration space. 

This procedure consists then of liftl~ng the space-time (or wavevector-frequency) 

problem into the joint phase space (.,, t, &, w) for. proper interpretation· and 

analysis with subsequent projection back down to the appropriate space. In Part 

I, it was demonstrated that this lifting and projection process has two undesirable 

consequences: 

1) The Einstein-Brillouin-Keller (EBK) theory is invalid when the ray system 

Is nonintegrable. Thus, the relationship between wave field and phase space 

manifold is unknown and furthermore, it cannot be determined solely from -.. 

observation of the wave in either the (.,, t) or (&, w) representation. 

2) Even if the appropriate correspondence may be determined, the construc

tion of the wave field under the eikonal prescription may suffer. complications 

due to singularities in the projection procedure. While modern eikonal theory 

provides a clear understanding and treatment of these caustic singularities, they 

may present serious practical difficulties in more than one dimension. 
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The introduction of the ray phase space provides two important clarifications. 

Lying at the heart of the Hamiltonian formalism, it is in this space that the ray 

trajectories of geometrical optics are most naturally described and investigated. 

In phase space there is a unique fiow determined by the Hamiltonian (local disper

sion relation) which preserves volume: rays do not cross or even focus as they may 

in configuration .space .. In addition, when eikonal.theory is .valid the ray phase .. 

space is crucial to the understanding and determination of the wave field in space

time. It would seem, however, that a more natural description of the wave would 

be gained by constructing a phase 1pace representation of the field.. Thus, 

viewing the wave as a function on phase space may perhaps provide a more 

direct association with the ray trajectories. More importantly, perhaps the 

simplifications achieved by lifting the rays into phase space will have correspond

ing consequences for the properties of such a phase space representation of the 

wave. 

There are many schemes for defining what is meant by a phase space 

representation of a field. 1 In Part II, I shall discuss three examples. Each 

method has advantages and drawbacks which may affect its application to any 

particular problem, although certain physical results should be independent of 

the description· chosen. 

Associated with the phase space representation of a field is the concept of the 

phase space representation of an operator. In the mathematics literature, this 

object is usually given the generic name Symbol, and I shall use that terminology 

interchangeably with "phase space representation". Thus, each phase space 

method described will concern Symbols of operators and fields, although the 

Symbols will have different definitions and will be given different names. 

An important ingredient in each scheme is the derivation of the equation 
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governing the phase-space representation of the field. This is accomplished in 

the most direct fashion by viewing the originai wave equation for the field in an 

abstract (representation-free) operator form. The phase space representation of 

this equation is then immediately obtained by introducing the Symbols of both 

the operator and the field and by invoking the corresponding Symbol calculus. 

This is nothing more than the rules which translate the abstract operations (e.g., 

compositions of operators, adjoints, etc~) into operations on the corresponding 

Symhols; these rules are specific to the method chosen and will be derived . 

. 
In Chapter 2, I shall define perhaps the simplest example of a Symbol and 

briefly discuss its properties. As mentioned above, there is a relatively large and 

growing assemblage of mathematical literature which concerns the classification 

of pseudo differential operators on the basis of the properties of their· associated 

Symbols; the particular type of Symbol introduced in this Chapter will be the 

one most often considered in the literature. I shall present a simplified definition 

of a pseudodifferential operator but I do not intend to provide a rigorous or ~?ven 

satisfying discussion of the mathematical foundations of this theory. However, 

it should become clear that such operators arise quite naturally in plasma wave 

theory, and the specific type of Symbol developed here illustrates the way in 

which the more common concept of partial differential operator is extended. In 

order to keep track of Symbol types, I shall refer to this example as an Ordinary 

Symbol. The calculus of Ordinary Symbols is easily derived and the suitability 

of this phase space method for the purposes described above will be discussed. 

A second, perhaps more advantageous, phase space representation will be 

the subject of Chapter 3. The Weyl Symbol of an operator will be defined and will 

be seen to be intimately related to the Ordinary Symbol. Indeed, this relationship 

may be exploited to give a new derivation of the Weyl Symbol calculus. The 
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familiar Wigner function of Part I will emerge as a special case of this phase 

space representation: it is, in a sense, the Weyl Symbol of the field. Thus, in this 

scheme, the Weyl Symbol of the abstract operator equation governing the field 

directly provides the equation for the Wigner function. This result permits the 

opportunity to study the Wigner function from a quite different point of view: 

instead of constructing it from the field, the equation governing this phase space 

distribution may be analyzed and, in some cases, solved. 

That these abstract concepts imply physically meanin~ul and important 

consequences (for plasma wave theory in particular) can now be demonstrated. 

The Weyl Symbol of the wave electromagnetic field (a tensor Wigner function) 

will be related to the more familiar notions of the local 1pectral tensor and 

the wave action den1ity. .The Weyl calculus provides an exact equation for 

the spectral tensor in terms of the local dispersion tensor and sources which · 

account for discreteness and nonlinear effects. When eikonal-like assumptions 

are made, this exact equation is reduced to the wave kinetic equation for the wave 

action density. Thus, the Weyl Symbol formalism permits a direct derivation 

of this important equation in a way which can easily be extended to include 

nonlinearities. 

The remainder of Part II will concern a third and somewhat different type 

of phase space representation. In Chapter 4, I consider the coherent state 

repre3entation of the electromagnetic wave field. Although this quantity is 

perhaps more familiar in the context of quantu;m field theory,2 it will be seen 

to provide a useful description of the classical field as well (especially in the 

short wavelength regime). In fact, this representation will be shown to be closely 

related to the Weyl formalism and this association is exploited in order to derive 

the phase space equation governing it. This equation may be directly treated 
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with a phase space version of the eikonal method; the result is a procedure 

for determining both the phase and the leading order amplitude of the short 

wavelength wave along rays in phase space. 

These ideas are applied to the simplified example of an electromagnetic 

wave trapped in a quadratic density well. While traditional WKB methods 

provide the correct spectrum for this problem, the WKB eigenmodes suffer 

from caustic singularities at the turning points. In contrast, the solution of 

the phase space WKB equations for the coherent state representation yields not 

only the exact spectrum but the exact eigenmodes as well. Thus, the advantage 

of this description is that it provides a method of constructing the field in 

phase space to avoid caustics (rays do not foc~s .in phase spa~e) and gives a 

uniform approximation of the field over all space when projected back down 

onto configuration space. 
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2. SYMBOLS 

In this Chapter I shall introduce the notion of the Symbol of an operator 

and give a brief discussion of its usefulness and its properties. Since there is 

a considerable body of mathematical literature devoted to this concept 1 •3 and 

its relation to the study of p8eudodif!erential operators, I shall not. strive for 

mathematical precision or completeness. However, even though modern eikonal 

theory is increasingly being described in terms of these ideas,4 I shall attempt 

to maintain a closer association with the application to plasma wave theory and 

other physical implications than generally available in these references. 

The motivation is to develop a phase space representation ofthe basic wave 

equation introduced at the beginning of Part I: 

I d3 :~/ dr ~(;.,t,t,r) ·E.(t,r) = o (ILI) 

Again, E. is the wave electric field and !) is the two-point dispersion kernel ... 
composed of the vacuum Maxwell operator and a linear response model of the 

plasma. In order to somewhat simplify the notation, I shall usually deal with 

the similar one dimensional scalar problem 

I dz' D(z, .z')E(z') = J~(z) (II.2) 

as the extension to vector fields and many dimensions will either be apparent at 

each step or explicitly noted. I have also allowed for a source term on the right 

hand side of (11.2) which may be taken to account for any departures from the 

usual linear treatment of plasma waves (such as external sources, discreteness 

effects or higher order nonlinear wave processes). 

The dispersion kernel D(z, z1) is the configuration space (or in many dimen

sions, space-time) representation of the abstract dispersion operator D. Similarly, 

E( z) and j.( x) are the x-space representations of the abstract fields E and j •. It 
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will be important for the following discussion to view (11.2) as just the z-space 

description of the abstract equation 

DE=j. (IL3) 

This statement may perhaps be made more reasonable by using the Dirac 

notation of quantum mechanics. Equation (11.3) _projected onto the basis states 

jz) of the position operator is 

(zjDE) = (zjj.) (11.4) 

Now, with the projection operator (or completeness) identity familiar from quan

tum mechanics,5 

jdx' lz'Xz'l =I 

this becomes 

f dx' (ziDiz'Xz'jE) = (ziJ~) 

Defining the configuration space representations as 

equation (11.2) is recovered. 

(ziDiz') = D(x, x') 

(z'IE) = E(x') 

(ziJ~) = J~(x) 

(II.5) 

(II. B) 

(II. 7) 

I have stressed the difference between the abstract representation-free ex

pression (11.3) and its z-space representation (II.2) because the abstract form will 

be the starting point for developing the phase space equations. As an example 

of the fact that other representations of (11.3) are possible, the wavenumber- or 

k-space description is often used 

I dk' ~ ~ A 

- D(k, k')E(k') = J~(k) 
27r 

( 11.8) 



n.2 . Symbols 

where the k-space quantities are related to their z-space counterparts by the 

usual Fourier transform 

E(k) =I dz1 E(z')e-ih' 

D(k, k') = I dz dz' e-ih O(z, z')eilc' :r.' 

(II.9) 

Consider for a moment the case where (11.2) can be expressed as a finite 

order differential equation for E(z). That is, 

I e 1 
dz' O(z, z')E(z') = D(z, D:r.)E(z) 

M (11.10) 

E L dm(z)D:' E(z) 
m 

(II.ll) 

Here, the superscript notation above the arguments of D denotes the order of 

the differentiation and the multiplication by the z-dependent coefficients dm(z) 

as shown. The definition of the derivative operator D:r. incorporates the factor of 

-i for purposes to be seen shortly. InN dimensions, the obvious generalization 

for the form of D(z, D:r.) is 

(11.12) 

where m = (mt, m2, .. . ,mN), m = m1 + m2 + · · · + mN, and 

nm = a~ 
:r. a ml a ml) a mN 

Zt z2 - ... ZN 

(11.13) 

The sum is over all possible combinations of derivatives with respect to the 

variables z.; which may include time. 

Writing E(z) in terms of its Fourier transform, (11.10) becomes 

L dm(z)(-·i8:~:)m J ~: eilc:r.E(k) = j.(z) (11.14) 
m 
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J ~~ [~ dm(x)A:m ]-'" k(A:) = j,(x) 

I~~ d(z, k)eilcz E(k) 

d(z, k) = L dm(z)km 
m 

' 
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(11.15) 

(II.l6) 

Expressions (II.l5) and (II.l6) define the quantity d(z, k), which may be 

referred to as the Symbol of a (partial) differential operator. Simply stated, 

an operator whose action in the z-representation may be written as in (11.10) 

is associated with a Symbol obtained by replacing the differentiation D-r. by 

k. Hence, the differential operator being a polynomial in D-r. with z-dependent 

coefficients is represented by a Symbol which is the same polynomial in k 

e 1 
O(z,Dz) d(z, k) = O(z, k) (II.17) 

Comparing the action of the operator in terms of its kernel (II.2) and its 

Symbol (II.15) one has 

I I dk · A . 

dz' D(z,z')E(z') = -d(z,k)e'hE(k) 
2n- . 

I dk ·1c ·1c I = - dz' d(z, k)e' ze-• 7. E(z') 
2n- . 

which implies 

I dk "lei 'l D(z, z') = . - d(z, k)e' 1 -r.-7. 

2n-

(11.18) 

(II.19) 

This relation just involves a Fourier transform which is assumed to be invertible 

to give 

d(z, k) =Ids D(z, z- s)e-ilc• (II.20) 

These expressions show that the Symbol d(z, k) may be obtained directly 

from the kernel D(z, z') by a kind of Fourier transform on just one of the 
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arguments of the two-point function. Taken together, I shall use these formulas 

to extend the definition of the Symbol for any operator in terms of its z-space 

kernel representation. Since I shall be introducing other definitions of Symbols in 

the next Chapters, I shall refer to this particular object as the Ordinary Symbol. 

Being a joint function of (z, k) it is a candidate for a physically useful phase 

space representation of the· operator. 

It is not difficult to see that the definition (11.20) coincides with the expres

sion found for the Symbol in the case of a differential operator. From (11.10) one 

concludes that this type of operator is represented by a ker:ael of the form 

1 M 

D(~,D:~:) = L dm(z)D: D 
m 

(11.21) 
M 

D(z, z') = L dm(x)D:a(z- z') 
m 

When this is inserted into (11.20) the polynomial of (11.16) is obtained. Thus, the 

extension of (11.20) to operators with kernels that are not of the simple form of 

(II.21) implies the construction of Ordinary Symbols which are not polynomial 

in k. Such an operator cannot be written down in the z-representation in the 

familiar form (11.10) of a differential operator even though its action may be 

defined in terms of its kernel (or Symbol). This more generaltype of operator is 

called a p&eudodif!erential operator. 

Much of the discussion in the mathematical references concentrates on the 

meaning of integrals like those in (11.19,11.20), especially in regard to their con

vergence. Thus, the behavior of the differentiability properties of Symbols (with 

respect to both arguments) is examined; in this way pseudodifferential operators 

are classified according to the form of their Symbols. While such investigations 

are obviously necessary, they are beyond .the scope of this presentation. I shall 

assume that the requirements of convergence are met (or can be dealt with) when 
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the formalism is applied to the physically meaningful operators involved in this 

treatment of plasma wave theory. 

As an illustration of the preceding development, consider the dispersion 

operator with the kernel given in equation (L3): 

[( 
1 az ·>) ] . ~(~, t; ~I 1 t') . C'}. atz - v- ! + '\1'\1 0(~- i)o(t .._ t') 

4;r a ( 1 ') + c2 at rz ~' t; ;. ' t 
(11.22) 

Obviously, the first part of this kernel (due to the vacuum Maxwell equations) 

represents a partial differential operator. In order to see what type of operator 

the conductivity kernel rz represents, assume a uniform and stationary plasma 

so that this two-point function depends only on the space-time separation. In 

this case, the integral (11.20) which produces the Symbol from the kernel reduces 

to the usual Fourier transform; therefore, the Symbol associated with (II.22) is 

the familiar uniform plasma dispersion tensor 

') 4 . 
( ) 

A 2 w- ( ;r~ • )) 
~ ~' t, If, w = ~(£, w) = (k £ -li)- c2 ! + -::;rz(k, w 

•) 
(11.23) 

= (k21- Is..&.)- w.~ ~1k, w) 
... C* 

As expected, the partial differential operator piece of (11.22) is transformed 

into the (k, w )-polynomial piece of (11.23). Focusing on just the longitudinal 

component of this expression for example, one has the scalar dielectric function 
•) 

c-· " " " • " " "-~ k . d(k, w) . k = k . ~(£, w) . k = t:(k, w) 
w- ... 

(11.24) 

In the Vlasov model of an unmagnetized plasma in thermal equilibrium the 

dielectric function € has the form 6 

( 11.25) 
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Here the dependence on (!, w) through the plasma dispersion function Z is much 

more complicated than just polynomial; this implies that even in uniform plasma 

the dispersion operator is generally a pseudodifferential operator . 

. Naturally, in a nonuniform plasma the integral in the definition of the 

Symbol (II.20) does not reduce to the usual Fourier transform so that without 

a more specific model for the two-point conductivity kernel the Symbol cannot 

be computed. However, one might expect that if the plasma is only weakly 

nonuniform then the dispersion operator D would be only slightly modified and 

that the Symbol of the longitudinal component, for example, would be similar in 

form to (II.25). In fact, this is often the method used to obtain the local plasma 

dispersion tensor; allowing for weak spatial dependence in the temperature of 

a species produces a slowly varying Debye length Ae and thermal velocity v. 

so that in this way the dielectric function becom.es a function of both (!, w) 

and (~, t). Evidently, the Symbol £(~, t, &,, w) remains non-(!, w )-polynomial in 

this approximation, supporting the premise that the dispersion operator D is in 

general a pseudodifferential operator in nonuniform plasma. 

The foregoing discussion indicates that the study of pseudodifferential operators 

and their Symbols (or phase space representations) is indeed appropriate as they 

arise quite naturally in plasma wave physics. As further substantiation, it may be 

pointed out that the definition of the Symbol (II.20) has been used by several 

authors4•7•8 for constructing the local dispersion tensor 1.2(~, t, &,, w) in traditional 

eikonal treatments of plasma wave propagation; this is usually a matter of con

vention and without recognition of the more general application of these ideas. It 

is not the purpose here, however, to describe these techniques nor to dwell on this 

particular aspect of the theory of Symbols. 

Having defined and discussed the concept of the Symbol of an operator, 
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the remainder of this Chapter will be devoted to the derivation of an equation 

governing the phase space representation of the wave fit~ld. This is most directly 

effected by beginning with the representation-free abstract operator expression 

of the wave equation (11.3) 

DE=j. (11.26) 

Now whereas D is an operator with a well-defined Symbol, the electric field 

E and source current j. are not operators. These quantities should be viewed 

as elements of some function space upon which operators act to produce other 

elements; this is in analogy to the action of the Hamiltonian operator on the 

wave function in the Hilbert space of quantum mechanics. Naturally, these 

ideas require more mathematical rigor than I present here; however, I shall only 

attempt to justify the following manipulations on the basis of this analogy with 

the perhaps more familiar context of quantum mechanics. 

In order to construct an operator representing the field, multiply (11.26) on 

both sides by the adjoint or dual element E+ of the field 

(11.27) 

In Dirac notation, this equation would be written 

DIEXEI = li.XEI (11.28) 

Now consider the adjoint of (11.26): 

E+nt = i! 
(EIDt = (i.j 

(11.29) 
or 

Finally, assuming ntis invertible and substituting (11.29) into (11.28) one obtains. 

or 

D(EE+) = (j.j:)(Dl-
1 

' -1 
DIEXEI = IJ~Xi.I(Di) 

(II.30) 
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This equation now involves only operators. The operator representing the field 

E is the bilinear quantity 

(or IEXEI) (Il.31) 

which is usually known in quantum mechanics as the projection or density 

operator. In the plasma physics context it will be convenient to call expression 

(II.31) the correlation or apectral operator of the field. Similarly, {j.j:) is the 

operator associated with the correlaton of the current sources. 

Throughout the remainder of Part II, operators of this type will appear and 

will be important in the development of the various phase space methods I shall 

introduce. To get a feeling for the operator (EE+) it should suffice to give its 

x-space "kernel" representation and to compute its Ordinary Symbol. In Dirac 

notation. and using the definitions (11.7) one has simply 

(EE+)(x, x') = (xlEXEix'} = E(x)E*(x') 

The Symbol is now given by (11.20): 

(EE+)(x, k) =Ids (EEt)(x, x- s)e-ik• 

= E(x)e-ib I dx' E*(x')e'h' 

= E(x)E* (k)e-ih 

(Il.32) 

(Il.33) 

The connotation "correlation operator" is due to the result (II.32) for the x-

space description of (EEJ.); the autocorrelation function of the field is defined 

as an average (usually an ensemble average) of this expression. Thus, since the 

Symbol of the field is a type of Fourier transform of the "unaveraged" correlation 

function, it may be interpreted as an "unaveraged" local spectral function. In 

addition, as the form in (11.33) is the product of the x and k representations, 

it is almost what one might expect for a phase space representation. In fact, 

apart from the multiplicative phase factor this definition is just the mixed kernel 
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(ziEXEik). Similar relations are obtained of course for any field (such as j,) and 

these are easily extended to many dimensions and vector fields. 

The basic representation-free equation (11.3) has now been manipulated into 

equation (11.30) which involves only operators. Each side of (11.30) is an operator 

(being the· product of two operators) so that the phase space representation of 

this equation is simply 

+ .. .j. • -1 
[D(EE )](z, k) = [(J,J ~)(D') ](z, k) (11.34) 

The equality of the two operators implies the equality of their Symbols. However, 

in order to derive an equation for the field correlation Symbol ( E Et)( z, k) one 

must determine the rule for expressing the Symbol of the product of two operators 

in terms of the Symbols of the individual operators. This rule is an element of 

. the · calcult.U of the Ordinary Symbols; the calculation requires only a short 

digression and will be instructive of the manipulations involved in many of 

the other derivations to follow. 

Consider the product of two operators in terms of their kernels 

C=AB 

C(z, y) ~ I dz' Jl(z, z')B(z', y) 

The Symbol of C is by (11.20) 

c(z, k) =Ids C(z, z- s)e-i1 • 

= I d~ dz' A(z, z')B(z', z- s )e-ik• 

(11.35) 

(II.36) 

Now, using (11.19) to express the kernels Jl and B in terms of their Symbols, 

(11.36) becomes 

(11.37) 
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The integrals over s and /c2 yield immediately 

c(z, /c)= [AB](z, /c) 

= ldz' die' e-i(lc'-lc)(.z'-.zl a(z,lc')b(z',lc) 
- 2?r 

(Il.38) 

Thus, the Symbol of the product of two operators at the point (z, /c) in 

phase space is not simply given by the product of the Symbols at that point. 

The product Symbol is given by this generalization of the convolution rule to 

a nonuniform medium; in uniform plasma, the Symbols a, b and c would be 
A 

functions of k only, and this integral would reduce to the product a(k)b(k). 

The relation (II.38) may be cast in a more compact and perhaps more useful 

form as follows: change variables in the integral to z' = z + s, 

c(z, /c)= Ids dk' e-i(lc'-kl• a(z, k')b(z + s, /c) 
2?r 

and Taylor expand the Symbol b around z 

I dk' . ' a c(z, /c) = ds- e-t(.k -lcl• a(z, k')e• .z b(z, /c) 
2?r 

(11.39) 

(II.40) 

The exponential operator here is a shorthand way of writing the Taylor expan

sion; it is to be interpreted in terms of its power series and questions of conver

gence are ignored for simplicity. Now that b(z, /c) is independent of the integra

tion variables, it may be taken outside of the integral to the right; the integral 

is now an operator (of z-differentiation) acting on b. The relation -e-i(lc1 
-lei• a(z, k')e•a.z = e-ilk' -kl• a(z, k')e-i8~c8.z (II.41) 

holds since a is independent of k, and it also may be verified by power series 

expansiOn. The left-pointing arrow above the k-derivative indicates that it 

operates on all functions of k (not k') standing to the left (i.e., not on b). With 

these steps, (11.40) becomes 

[I dk' . , ] ·a a c(z, /c)= ds 
2

;or e-t(lc -kl• a(z, k') e-' 1c :z b(z, /c) (11.42) 
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The integrations are now trivial and one finally has 
+---+ 

[AB](z, k) = a(z, k)e-iB1r.B% b(z, k) (II.43) 

This is the desired compact form of (11.38); it is to be interpreted in terms 

of that integral form or its power series: 

(.. k) -i~B; b( k) = ~ ( -i)" 8"a(z, k) 8"b(z, k) 
a z, e z, ~ n! 8k" 8z" 

n-o 
(11.44) 

From this it is apparent that if a is the Symbol of a partial differential operator 

(i.e., it is an Nth degree polynomial in k), then this is a finite series of z

differentiation on b (of order N). Furthermore, the earlier result for a uniform 

medium is recovered in that if the Symbols are independent of position (specifically, 

b not a function of z), then the Symbol of the product is the product of the 

Symbols (only the first term of.the power series== 1 contributes). 

Returning to the wave operator equation (11.30) and its Symbol (11.34), one 

may immediately apply the rule (11.43) to obtain 
+- --+ . +- --+ 

d(z, k)e-iB1r.B% (EET)(z, k) = (J~iZ)(z,.k)e-i8 A: 8% (dt)-
1 

(z, k) (11.45) 

This is the desired phase space equation for the Symbol of the field correlation 

operator (EE+)(z, k). The four dimensional analog for the correlation tensor 

Symbol is simply 

(11.46) 

The rather complicated structure of this tensor equation may be somewhat 

clarified if expressed in explicit component form: 

f:o. t t (-~!"a;::· an~;nEtJ 
n- 1-1 v-1 I 1 

(11.47) 

8k~ 
I 

az~ 
I 
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Due to the usual Fourier transform convention with opposite signs for space and 

time (eilh-wtl) this equation is correct for (z4 ,k4 ) = (t,w) but (B:e 4 ,8~c 4 ) = 
(-Be, Bw)· In addition, it must be remembered that this is an expression relating 

two tensors and must be satisfied for all components (J.£0'). 

Let me reiterate the meaning of this equation. It is a (possibly infinite 

order) partial differential equation (or integral equation, cf. Eq.(ll.38)) for the 

"unaveraged" local spectral tensor defined in (11.33) (or its analogous vector 

form). The left hand side involves (k, w )-derivatives of the local dispersion tensor 

~(~, t, k, w), defined in the space-time tensor form of (11.20), and(~, t)-derivatives 

of (E.E.+)(~, t,,k, w). It is important to remember that in this formalism(~, t,k, w) 

are all independent variables. If the dispersion tensor is only a polynomial in 

(k, w) ( cf. Eq.(II.l6)) then the left hand side reduces to a finite order differential 

action on (E..E.•). 

The right hand side can be viewed in two ways, depending upon the meaning 

of the current field j . Taken as a given source field (such as an externally -· . 

supplied current), it represents an inhomogeneous term in an otherwise linear 

equation for (E..E.+). In this case, the right hand side is a function on phase space 

composed of (k, w) derivatives of the "unaveraged" current spectral tensor and 

space-time gradients of the inverse adjoint dispersion tensor (the calculation of 

·the Symbol (cf)- 1 in terms of~ will be discussed shortly). Thus, the entire right 

hand side is a known source for the left hand side at each point in phase space. 

The possibility exists, however, (due to the form of the basic equation (11.2)) 

that this term may be extended to include nonlinearly generated currents so that 

i. could be considered a functional of E. Of course, this might have significant 

implications for the nature of the abstract vector space in which the operator 

equation (11.3) is to be viewed, but it seems as if this circumstance could be 
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treated from the standpoint of either (11.2) or (11.46). In this case, then, the 

right hand side would contain (.&, w )-derivatives of nonlinear terms in ( E E ... ) as 

well as gradients of the given tensor (c(i')-1 
. 

I shall not enter into a discussion of appropriate boundary or initial con

ditions for this equation which must be supplied for a well-posed problem. In 

fact, for the following reasons, I shall proceed to introduce another type of phase 

space representation. 

The primary advantage of this Ordinary Symbol description is the natural 

way in which it extends the familiar differential operator to the concept of a 

pseudodifferential operator: Furthermore, the computations required to obtain 

the rules for translating operations on abstract operators into corresponding 

Symbol operations (the Symbol calculus) are perhaps the simplest with regard 

to aiternative representations. Again, possibly for these reasons, this type of 

Symbol is perhaps the one most often studied in the mathematical literature 

and it has been used in several previous treatments of eikonal theory. 

In my view, these advantages are far outweighed by the following drawbacks: 

1) While the product rule was fairly easy to derive, it appears to result in an 

unsymmetrical treatment of~ and.& in the integral form (11.38) and of (8z, ale) 

in the differential form (11.43). In itself, this is not a serious deficit; yet, besides 

its aesthetic aspect, this point has another consequence. One would desire to 

develop a formalism which could make contact with the usual WKB treatment 

involving the identification of the local dispersion relation as a Hamiltonian 

governing the evolution of the ray trajectories. This Hamiltonian ray theory 

treats ~ and & on a rather equal footing and one would expect that a phase space 

wave description with this property would provide a more direct connection with 

the rays. 
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2) A further aesthetic difficulty is illustrated with the calculation of the 

Symbol ct(x, k) of the adjoint operator nt. The rule for computing d~ from the 

Symbol d is also an element of the Symbol calculus and may be obtained as 

follows: 

Begin with the definition of dt in terms of the adjoint kernel 

cJi"(z, k) =Ids Dt(z, z- s)e-ilc• 

and the adjoint condition 

DT(z, z') = D"'(x', z) 

so that one has 

dt(:z;, k) =Ids D*(:z;- s, :z;)~-ilce 

Now from (II.19), 

D*(:z;- s, z) =I~~ d*(:z;- s, k')eiJc'• 

with which (II.50) becomes 

t I die' 'lc 'Jc' 
d (z, k) = ds 

2
"' d*(:z;- s, k1)e-• • e' • 

=I dk' ds eillc'-kl• e-·o~ d*(x, k') 
27r 

=I dk' dseilk'-kl• e-i~B; d"'(z, k') 
27r 

(II.48) 

(II.49) 

(11.50) 

(II. 51) 

(II. 52) 

where the intermediate steps are similar to those used in deriving the product 

rule (11.39-11.42). The integrals are easily performed to give 

cJi"(z, k) =I~~ 6(k'- k)e-i~8; d*(:z;, k') 

= e-i~B; I dk' 6(k1 - k)d*(x, k') 
27r --dt(:z;, k) = e-iOicOz d"'(z, k) 

(11.53) 
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Here the exponential operator has been moved to the left of the integral (and the 

arrow on the k-differentiation accordingly reversed) since the only k dependence 

is in the delta function. 

This result· has two implications. First, it is apparent that the Symbol dT 

of the adjoint operator ntis not simply the adjoint of the Symbol d of D. Thus, 

for scalar Symbols one does not have in general ~ = d"'; for tensor Symbols the 

relation analogous to (11.53) is 

(II. 54) 

so that c£tv :;rf d:". These observations ar~ true unless the Symbol d contains 

no products of "conjugate" variables x,k,, (i = 1, 4). The second point follows 

from the first: if the operator D is self-adjoint then (II.53,11.54) imply that its 

Symbol is not self-adjoint if it contains xk products. 

These are serious considerations in most applications to plasma wave physics. 

As the discussion of the example (11.22-Il.25) indicates, the local dispersion tensor 

as well as. other phase space functions of interest in general do involve xk 

products. In addition, many of these operators are self-adjoint; for instance, one 

often uses just the hermitian part of the dispersion tensor to define the dispersion 

relation. Thus, the correspondence between self-adjoint operators and their 

Ordinary Symbols is somewhat complicated. 

These deficiencies have, of course, been addressed m the mathematical 

'literature and, as one might expect, the zk product problem is deeply rooted in 

the fundamental non-commutativity of the position and momentum operators 

of quantum mechanics. There is no ultimate resolution of this difference be

tween wave/quantum mechanics and ray /classical mechanics; no unambiguous 

correspondence between operators and phase space functions has been developed 

with a Symbol calculus which preserves the basic operator commutation properties. 
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With regard to the Ordinary Symbol formulation, these issues have been success

fully treated in the eikonal approximation with the introduction of the con

cepts of principal and subprincipal Symbols9•10 but I shall not discuss these here. 

3) Let me cite another example of the complications which arise in this 

Ordinary Symbol description and which also emphasizes its unequal treatment of 

x and k. Throughout the development of the concept ofthe Symbol (11.10-11.20) 

I have concentrated on the relationship between the phase space Symbol and the 

x-space kernel representation. As pointed out earlier, however, one should be 

able to begin with the k-space expression of the basic equation (II.8), consider its 

form for a differential operator and extend this to a natural definition of a phase 

space Symbol representation. A brief calculation will reveal that this procedure 

leads to a different definition of the Symbol. 

·According to (II.21), the x-space kernel of a differential operator has the 

form 
M 

D(x, x') = L dm(x)D:'5(x- x') (11.55) 
m 

which, by (II.9), produces a k-space kernel 

b( k, k') = I: I dz d:/ e -ih dm( z )D;' 5( z - z')e••' •' 
m 

=I: I dz ,-ih dm(x)D;'e'•'• 
m 

(11.56) 

=I: k'm I dx dm(x)e-ilk-k')z 
m 

M 

= L k1m dm(k- k') 
m 

Here the Fourier transforms of the coefficients dm have been introduced; if the 

dm are polynomial in x the final form may be expressed 



11.2 Symbols 189 

M 

D(k, k1
) = L dm(D~c)k1m6(k- k1

) 

m 
(11.57) 

D~c = i8~c 
Thus, the action of tlie k-space kernel becomes 

j ~~ D(k, k')E(k1
) ~ I dk' L dm(D~c)k1m 6(k- k')E(k1

) 

m 

m (11.58) 

e 1 A 

= D(D~c, k)E(k) 
A 1 f! A = D(k, D~c)E(k) 

where (11.10) provides the basis for the use of D. Of course this notation is only 

symbolic if the dm are not polynomial in z, in which case these op~rations are to 

be understood in terms of (11.56). One might expect that the k-space description 

of the action of a differential operator would be obtained by the replacement 

Dr. ...... k and z ...... D~c; note, however, that the order of multiplication and 

differentiation has been inverted. 

Now, in a manner similar to the steps in (11.14-11.16), one may use (11.56) 
A 

to define a Symbol by rewriting E(k) in terms of E(z): 

A 1 f A J dk' A A 

D(k,D~c)E(k) = 
2
"' D(k, Jc')E(k') 

= j ~~ [ ~>'"' j dz' d.,( zl)e -i(k->'l•' ] j dz E( z )e -;•' • 

A 

= j dz [f ~~ dz' ~ d.,(z')k'"' e•I•'-•H•'-•l }-;>s E(z) 

= j dz d(k, z)e-ilc:z E(z) , 

(11.59) 

The Symbol d(k, z) has been defined in analogy to the definition (11.15). To see 

that this is a consistent procedure, observe that the reason for introducing E(z) 
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A 

in (11.59) (or E(k) in (11.14)) is to simplify the action of D1c (D:.:) by allowing it to 

operate on the Fourier transform kernel e-ih (eih). Now, whereas the_ result 

in (11.15) was strightforward, the expression 

(11.60) 

is somewhat more complicated by the ordering and requires the treatment of 

(11.59) to move the exponential factor outside the brackets to the right. 

The important point here is that if one begins with .• the k-space kernel 

representation of a wave problem, then the natural definition of a phase space 

Symbol which obtains is 

d( k, z) = J ~~ dz1 
[ ~ dm( z')k' m} ;1•'-•11.' -•1 

=-I dk' dz' d(z'' k')ei(Jl -kH:.:' -:.:1 
211' 

(11.61) 

The identification of the term in brackets with the usual Symbol of a differential 

operator has been made and evidently the two types of Symbols are not equal.· 
A 

Indeed, using (11.20) to express d(k, z) in terms of the z-space kernel, one has 

d(k,z) =I~~ dz' Ida D(z',z' _ s)e-illl• eilk
1
-kl(z

1
-zl 

=I dz' da D(z',_z'- a)e-ik(:.:'-zl 5(z'- z- s) 

=Ida D(z +a, z)e-ik• 

(11.62) 

This "uncentered" transform should be contrasted with (11.20) which defines 

d(z, k). 

As in the derivation of the product rule, the integral relation (11.61) may be 

converted into a more compact differential form. The steps should be familiar: 
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(II.63) 

-+-+ 
= ei81c 8:zd(z, k) 

Once again, the zk product ambiguity is seen to be responsible for the difference 

between these Symbols. Furthermore, if one of the Symbols is real with zk 

products, the other may be complex. 

4) While the previous three points apply to Ordinary Symbols in general, 

there is one particular class of operators which suffers additional handicaps in this 

representation. The field correlation or spectral operator (E.E.t) is an example 

of an operator whose Symbol necessarily contains zk products; from (11.33) the 

"unaveraged" spectral tensor Symbol is 

(II.64) 

The operator is manifestly self-adjoint whereas this expression clearly is not. 

Moreover, by either (11.61) or (II.62) the Symbol of the k-representation is 

(11.65) 

which is the adjoint of (II.64). These observations tllustrate the drawbacks 

described above in that I) one usually prefers a self-adjoint spectral tensor, and 

2) the formalism seems to present the choice of two equally good Symbols for 

the field. 

A more serious difficulty is met when one attempts to use this phase space 

description of the field in the geometric optics limit. Even without considera

tion of the equation (11.46) governing (EE+), it is evident from (11.64) that the 

asymptotic eikonal form of the spectral tensor will be 
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(11.66) 
. A 

"-J E(~)E.* (k)ei.;l~l-~1!.1 e-i!.·:. 

Here, cP(~) and E.(~)-are the WKB phase and amplitude of E(~). The Fourier 

transform integral has been evaluated in the stationary phase approximation 11 •12 

such that the local wavevector relation is satisfied 

v cP(~) = ~.(~) = &. 

=> ~(&.) 
(11.67) 

m terms of which the phase of the k-representation IS defined by Legendre 

transform 
A 

cP(!) = cP(~ (!)) - &. . ~ (!) (II.68) 
A 

The amplitude E(!) is proportional to E(~(k)) with a multiplicative factor 

resulting from the residual gaussian-like integral. 
A 

,. -* It is the amplitude factor E.(~)E. (!) which is troublesome in this limit. 

The discussion of WKB (orEBK) techniques in Part I indicated that E..(~) has 

singularities at caustics (or multidimensional turning points) arising from the 

projection of the ray phase space Lagrangian manifold onto z-space. Similarly, 

the projection of that manifold onto k-space will produce k-caustics12 and as-
A 

sociated singularities in E(t). Therefore, this Symbol representation (II.66) of 

short wavelength fields will have singularities near all points (~, t) in phase space 
A 

where either E(-*.) or E(t) is singular. Figure 30 illustrates this phenomenon with 

a simple example. 

Of course if the Symbol (.E_gt)(~, !) is computed either from the exact fields 

or as the solution of (II.46) these singularities would be replaced by finite but 

large amplitudes in the same regions of phase space. Nevertheless, the usefulness 

of this description now becomes questionable. As discussed at the beginning of 

Part II, one would desire a phase space representation which "adheres" to the 
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Figure 30. Schematic illustration of the singularities in phase space characteriz
ing the Ordinary Symbol of the spectral tensor (E.E..t)(~, &.) when it is evaluated in 
the geometrical optics approximation. These singularities are simply the linear 

A 

extension into phase space of the singularities present in both E(~) and E(k) 
due to the caustic catastrophes in the projection of the ray manifold onto~- or 
if-space. 
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rays, i.e., one that is of large amplitude (in some sense) near the ray manifold 

and small amplitude off of it. Obviously, this expectation is not fulfilled with 

this type of Symbol. 

5) The final objection to be mentioned here is again of an aesthetic quality. 

It has been seen that the method of naturally extending the action of differential 

operators with the introduction of the Ordinary Symbol has led to xk product 

difficulties and an unsymmetrical treatment of x and k. In addition to this "phase 

space effect", however, there is the result that the definition of the Symbols in 

terms of either the x-space or k-space kernel (11.20,Il.62) representation is via an 

"uncentered" transform. It would seem that a transform which symmetrically 

involves both arguments of the kernel might provide a more aesthetic definition of 

a phase space representation, even though it would not be a natural extension of 

differential operator formalism. Thus, while the Ordin~ry Symbol is a legitimate 

candidate for a phase space representation, many of its intrinsic qualities are 

unfavorable and discourage its further development here as a phase space theory 

of wave fields. 

• 
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3. WEYL SYMBOLS 

-
The disadvantages of the Ordinary Symbol description of operators and 

fields listed at the end of Chapter 2 motivate the introduction of a representation 

which is more symmetrical in the treatment of x-space (x, r'), k-space (k, k') and 

phase space (x, k) variables; Such a Symbol does exist and this Chapter will 

explore its properties, its calculus and its potential as a suitable phase space 

representation for plasma wave fields. 

I shall refer to the symmetrized Symbol defined by 

D(x, k) =Ids D(x + !s, x- !s)e-•Jc• (11.69) 

as the Weyl Symbol13 of the operator D. Like the definition of the Ordinary 

Symbol (11.20), this expression is a type of Fourier transform on the separation 

s of the two arguments in the x-space kernel D; however, unlike (11.20), .the 

transform is "centered" around the point x and involves both arguments. The 

inverse of (11.69) may be verified to be 

D(z, z') =I:: D( t(z + z'), k)eilc(:z-z') (II. 70) 

This kind of Symbol has received somewhat less attention in the math

ematical literature, possibly due to its tenuous connection to the theory of 

pseudodifferential operators. 14 It has, however, been taken as the definition of 

the local dispersion tensor in several treatments of conventional eikonal methods 

for plasma waves15•16 and in fact was presented in that role in Chapter 2 of 

Part I. As in the case of the Ordinary Symbol, these techniques do not exploit 

the full potential of the phase space representation induced by this construc

tion. The Weyl Symbol has also been used by many authors17•18•1g to define an 

operator-phase space function correspondence in quantum mechanics. 

With the definition of the Weyl Symbol of an operator, the object now is 
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to determine the associated phase space representation of the abstract equation 

(11.3) or, more precisely, its operator form (11.30). This of course entails the 

derivation of the product rule for Weyl Symbols. It will be most efficient inthe 

calculation of this and other elements of the Weyl Symbol calculus to make use 

of an intimate relationship between Weyl Symbols and .Ordinary Symbols. This 

connection is readily obtained upon substitution of the inverse formula (11.19) 

into the definition (11.69) 

D(z, /c) = Ids die' d(z + :\-a,lc')eiUc'-kl• 
21r' - ' 

= 21dz'dlc' d(z',Jc')e2iiA:'-Ii:H:i-:~:l 
21r' 

(11.71) 

The factor of 2 arises from the change in variables z' = z + ! s and becomes 

2N in the N dimensional form of (11.71) which is immediately apparent. This 

relation is an integral over all phase space similar to the Fourier type integrals 

already encountered in the previous Chapter, the difference being the factor of 2 

in the exponent (which remains 2 inN dimensions). Although it was not stated 

in that Chapter, such relations are invertible (assuming all integrals exist) so 

that one also has 

d(z, /c)= 2 I dz1 die' D(z',Jc')e-2 i(A:'-Ii:H:i -:~:1 
21r' 

(11.72) 

It was also seen in Chapter 2 that phase space integrals like this may be 

cast in a compact differential t'orm which sometimes provides insights into the 

properties of the relationship. Thus, the manipulations of (11.71) proceed 
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(II.73) 

.~-+ 

D(z, /c) = ef8~c 8 :~: d(z, /c) 

Similar operations on the inverse integral (11.72) reveal that the obvious inverse 

of relations of the form (11.73) also holds 
.~-+ 

-d(z, /c)= e-!8~c 8 :~: D(z, /c) (II. 7 4) 

The interpretation of these expressions is that if neither type of Symbol contains 

zlc products then they are equal. 

As an example of the application of these exponential operators, consider 

the case where d(z, /c) is the Ordinary Symbol of a differential operator (11.16). 

The Weyl Symbol of the differential operator-may be computed using (11.73) in 

its power series expansion: 

m 
(II. 75) 

The /c-derivatives reduce the exponents of /em so that terms in the power series 

8f: vanish for n > m. Thus, with 

(II. 75) becomes 

n < m 

n> m 

m I 

D(z, /c) = L L '( m~ )' lcm-n (tazrdm(z) 
0 

n. m n. 
· m n- · . 

= L(lc + 1B:~:)m dm(z) 

(II.76) 

(II. 77) 
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having recognized the form of the binomial expansion. This formula may be 

verified with the integral relations (11.71). It also suggests that Weyl Symbols, 

although symmetrized for several reasons, do not provide a natural extension of 

differential operators as do Ordinary Symbols. 

The inverse (11.74) may be applied to (11.77) in order to illustrate the way 

in which it "undoes" the operation of (11.73,11.75). Begin with 

.-+-+ 00 1 
e-!ch,B:z: L(k + fB:z:)m dm(z) = L L n! Bj;(k + fB:z:)m(-fB:z:)ndm(z) 

m m n-O 
(11.78) 

expand the binomial and use (11.76) to find 

Bj;(k + fB:z:)m = 8j; t (7)k'(f8:z;)m-l 
. . l-0 

= ~ (m) l! kl-n ( i(J )m-l 
i~ l (l- n)! z :z: ' 

(11.79) 

(n < l) 

Now (II.78) is 

L t (7)(:fB:z:·)m-l t (!)kl-n (-fB:z:)ndm(z) 
m l-o n-o 

= L t (7 )eta.)"'-' (.1:- fa.)' d,.(z) 
m l-0 

so that the derivatives of dm cancel when the binomial theorem is used once 

a gam 

(II. SO) 
m m 

and the form of the Ordinary Symbol d(z, k) is recovered. 

Having demonstrated that the Weyl Symbol is indeed obtainable from the 

Ordinary Symbol with this exponential operator method, one may exploit the 

technique for a new and short derivation of the product rule in the Weyl calculus. 

Recalling that the rule (11.43) which translates the operator composition into the 

/ 
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Ordinary Symbol product is 

C=AB 
~-

c(z, k) = a(z, k)e-i0k 0l: b(z, k) 
(II.81) 

one may immediately use (11.73) and (11.74) to introduce the Weyl Symbols of 

the operators into this expression: 
. -+-+ . -+-+ ~- . -+-+ 

e-f8~col: C(z, k) = (e-! 0Tc 0 z A(z, k))e-i0Tc 0z (e-! 0Tc 0z B(z, k)) (II.82) 

The exponential operator on the left hand side may be inverted to give 

C(z, k) = ef~B:[ (e-f~B: A(z, k))e_;J.O: (e-f~B: B(z, A:))] (11.83) 

The term in brackets may be viewed as nothing more than the multiplicative 

product of two functions of z and k (albeit, not A and B; cf. Eq.(II.4;4)) so that 

the action of the operator from the left on this product must be determined. 

It should suffice to state that the easily verifiable formula 

a:f(z)g(z) = t (:}a:-m !)(8';'g) 
m-o (11.84) 

~ -+ = f(z)(ol: + 82:)"g(z) 

generalizes to two variables as 

(II.85) 

I 

(and indeed to 2N independent commuting derivatives) 

(II.86) 

to assert that 
~ ·-+ ~ -+ 

eiOir.Oz f(z, k)g(z, k) = /(z, k)eiiO~c+Oir.)(Ol:+Ol:l g(z, k) (II.87) 

Consequently, with (II.87), the product rule (II.83) becomes 
. -+-+ . ~ -+ ~ - ~- . -- . 

C(z, k) = (e-! 0k 0z A(z, k))e!1 81r.+O~.;HB2:+8zl e-iihoz (e-! 0k 0z B(x, k)) 

(11.88) 
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which may be rewritten . 
. +-+- . +- ~ +- ~ +-~ -~~ 

C(x, k) = A(x, k)e-f8k8.z efi8k+8kll8.z+B.zl e-i8k8.z e-!8k8.z B(x, k) (II.89) 

where the arrows have kept track of the correct functions to be differentiated by 

each operator. Now, since the x and k derivatives commute, the exponentials 

can be combined 

. +-~ +-~ 
= A(x, k)eiiB%8k-8k8%i B(x, k) 

(II.90) 

and again all manipulations may be verified by means of power series expansions. 

Therefore, the product rule for Weyl Symbols is 
.+-+ 

C(x, k) = A(x, k)eiL B(x, k) (II.91) 
+-+ . +-~ +-~ 

L = a.zak -- aka.z 

Of course, this formula could have been derived with only the definition 

(11.69) and its inverse (11.70) in a manner similar to that presented for Ordinary 

Symbols although the calculation is much longer. 19 . The integral form of (11.91) 

may also be obtained by combining {II.71), (11.72) and the integral form of the 

Ordinary Symbol product (11.38). The resulting expression is 

C( k) 4 I d d dkt dk2 -2i{(l:l-kl(.z<>-%)-lk<>-kl(%1-.zll 
X, = X 1 X2 ( 2n-)2 e • • • (11.92) 

X A(x1, kt)B(x-2, k2) 

from which (11.91) may be derived using the familiar Taylor series arguments. 

Both (11.9 1) and (11.92) are similar to {11.43) and (11.38) in that they in

volve exponential bi-directional operators or nonlocal integral relations, but they 

differ in two significant aspects. In the Weyl Symbol products, x and k are 

treated on an equal basis, ostensibly because of the symmetric x-space definition 

(II.69). Perhaps more importantly, the symmetrized definition has led to the 
+-+ 

bi-directional operator L of (11.91) which is reminiscent of the Poisson bracket 
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of Hamiltonian ray theory (see Chapter 3, Part I). In fact, expanding (11.91) in 

power series the first two terms are 
.+-+ 

C(x, k) = A(x, k)B(x, k) + A(x, k)tLB(x, k) + ... 

= A(x, k)B(x, k) + f((a:~:A)(akB)- (akA)(a:~:B)) + ... 

= A(x, k)B(x, k) + f{A, B} + ... 

(11.93) 

although the higher terms cannot be expressed so simply by means of the Poisson 

bracket. Thus, not only has the Weyl Symbol rectified the· x-space and phase 

space symmetry deficiencies found in the Ordinary Symbol formalism, there is 

also the suggestion of a possibly closer connection to geometric optics. 

The Weyl product rule is straightforwardly extended to many dimensions 

and tensor operators. Hence, the -Weyl Symbol or phase space representation of 

the basic operator wave equation (11.3,11.30) is 
.+-+ .+-+ . 

_q(x, k)e!L · (EK+)w(x, k) = (i.i:)w(x, k)efL · (.lJt)-1 (x, k) (11.94) 

where 
(x, k) = (~, t, .&_, w) 

(a:~:, a~c) =(as_, -at, af!., a~.~~) (II. 95) 
+-+ +- - +- - +-- +--+ 
L = as.· a!!.- at· a*-+ a~.~~at- ata~.~~ 

In expanded component form this is 

:.o n 
4 3 

( '/2)" ( · ) a" D a"(E E+) 
""" """ """ """ t n ( _ 1) m 1w " rr W 
L- L- · . /- . L- n! m a(xn-m )a(km) a(kn-m )a(xm) 
n-o m-o Jt .12 .... Jn v-1 

:.o n " 3 ( '/2)" ( ) an( . -t) an(Dt)-1 
_ """ """ """ """ t n ( l)m J~J" W vrr 
- L- L- . /- . L- n! m - a(xn-m )a(km) a(kn-m )a(xm) 

n-O m-0 11·12 , ... Jn v-1 

(II.96) 

with the notation for the derivatives being 
an an 

a(x"-~ )a(km) - axit axi2 · · .azin-m ak;n-m+t ··.akin 
(11.97) 

a a 
at 
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The elements of this equation are the Weyl Symbols of the dispersion tensor 

D 1 the electric field and current source spectral tensors (E.E..t)w and (j /")w 1 and 
.,. . . -·-· 
the inverse adjoint dispersion tensor (Dt)-1 . The Weyl Symbol D is given by .. .. 
the tensor analogy of (11.69) in terms of the dispersion kernel /) and is the same ... 
as that used in Eqs.(I.20,I.21); the form of its adjoint and inverse adjoint (which 

may be computed in terms of Q(z, k)) will be discussed shortly. 

The field spectral tensor (E..E.t)w is obtained from (II.69) by 

(EE+)w(~, t,£1 w) =I d3 s dr E(~ + t~, t + !r)E·(~- t~, t- !r)e-i&·.t+iwr 

(Il.98) 

and similarly for (j jt)w. This definition should be familiar from Part I; evi--•-• . 

dently 1 the symmetrized Weyl formalism has led to the identifi~ation of the 

Wigner function (here, a tensor Wigner function) as the Symbol or phase space 

representation of the field. Consequently, (11.94) is an equation governing the 

evolution of the Wigner function constructed from the electric field with a source 

due to the Wigner function of the nonlinear currents. Because of this connection 

with the Wigner function, the Weyl Symbol description is often referred to as 

the Wigner-Weyl correspondence between operators and phase space functions. 

Several properties of the Wigner function were enumerated in Chapter 8 of 

Part I. Among these were the important relationships between this phase space 

distribution and statistical measures of the field. Thus, from (11.70) with D -+ 

(E..E.+)w, one has both 

. I d4 k t ·~c 
E.(z + !s)E."'(z- !s) = (

2
n-)4 (E.E. )w{z, k)e' • 

·} I d4k + IE.(x)l- = (
2

n-) 4 (EE )w(x, !c) 

(11.99) 

and similar projection rules may be verified for k-space 
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E(k + !~t)E* (k- !~t) = J d4 z (EEt)w(z, k)e-i~e2: 

IE(kW~ = J d4 z (E.Et)w{z, k) 

(II.lOO) 

As in the Ordinary Symbol description (for which, incidentally, formulas similar 

to (II.99,II.l00) also hold) these relations indicate that the Weyl Symbol of 

the field correJation operator is an "unaveraged" local spectral tensor and its 

projections are "unaveraged" (yet "centered") intensities and correlations. 

The short wavelength eikonal form of 'the Wigner function was also con

structed in Part I. It was seen that for stationary, bound integrable ray sys

tems this phase space distribution is sharply localized (in fact, asymptotically 

a delta function) in the neighborhood of the appropriate corresponding ray 

Lagrangian manifold. This was also seen to be the case for general propagat

ing (unbound, time-dependent) waves. For chaotic rays, it was hypothesized 

(though not verified) that the Wigner function would still "adhere" to the rays 

in some sense and in fact provide a basis for determining the ray manifold-wave 

correspondence. This asymptotic character of the Wigner function should be 

contrasted with that of the Ordinary Symbol of the field. The promise of suc·h a 

close relationship with the geometric optics solution of the wave equation, along 

with the appearance of the Poisson bracket, enhances the desirability of this 

representation over the Ordinary Symbol. 

There are two important properties of Weyl Symbols in general that also 

contribute to its usefulness. Due to the symmetry of the z-space kernel definition 

(11.69), the Symbol of the adjoint operator is simply 
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D+(z, k) = Ids D* (z- !s, z + !s)e-ik• 

=Ids D*(z + !s, z- !s)eik• 

= [/ da D(z + t•, z- !•l•-""] ' 
= D*(z, k) 

The relation for a tensor Symbol is also easily derived: 

t * (D )1w(z, k) = Dv,.(z, k) 
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(II.lOI) 

(II.l02) 

Therefore, in the Weyl representation one has the fortunate circumstance that 

the Symbol of the adjoint operator is just the adjoint of the Symbol. For scalar 

Symbols then, a self-adjoint operator is associated with a real Symbol. The 

manifest hermiticity of the spectral ·operator (E.E.t) implies that the Wigner 

tensor is self-adjoint. Most significantly, these assertions are valid irrespective of 

the presence of zk products which plague the Ordinary Symbol representation. 

Another characteristic of Weyl Symbols not only provides further motivation 

for their use as a suitable phase space representation, but it will be needed in 

the next Chapter as well. This property concerns the e:~:pectation value of the 

measurement of some wave attribute A in the field E. From the representation

free abstract point of view, this is interpreted as the action of the operator A 

(which represents the attribute) on the field E with subsequent projection onto 

E. Such a concept will be seen to be important here although it is perhaps more 

familiar in the context of quantum mechanics. Therefore, with the help of the 

Dirac notation, the expectation value is 

or (EIAIE) (11.103) 

In terms of the z-space representation this is 
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{A}E = f dz dy (EizXziAIYXYIE) 

= I dz dyE* (z)A(z, y)E(y) 

= I dz dy A(z, y)(EEt)(y, z) 

= TrA(EEt) 
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(11.104) 

which defines the trace of an operator. Thus, the field spectral operator may be 

interpreted as a density operator against which the observable A is weighted in 

the wave field E. 

The phase space representation of (II.104) is obtained with the use of (11.70): 

(A)e = J dz dy dt;,..~:• ,;•tl•-•1 ,;•z(•-•1 A( Hz+ y), kt)(EEt)w(!(z + y), kz) 

I diet diet) "( lc lc ) . • = (
2

1r)2- dr ds e' 1- 2 • A(r, /c1 )(EET)w(r, lc2) 

I die t = 
2
"'dzA(z,lc)(EE )w(z,lc) 

(11.105) 

It may be shown by means of the integral form of the Weyl product (11.92) that 

this expression is equivalent to 

(11.106) 

This result is reminiscent of the classical expression for the expectation value 

of the phase function A(z, /c) with respect to a phase space density (EEt)w(z, /c). 

The fact that a similar relation does not obtain for the Ordinary Symbol descrip

tion marks another advantage for the Weyl representation. Nevertheless, there 

is a non-classical aspect to (11.105); while (EE"'")w(z, /c) is real (for scalar fields), 

it was seen by example in Part I that it is not necessarily nonnegative. Indeed, it 

may be shown20 that any phase space representation which satisfies the projec

tion relations (II.99,ll.l00) and (11.105) cannot be positive for all functions E(z). 
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In the discussion of Part I, however, it was indicated that under a suitable lo

cal averaging of the Wigner function a positive phase space density might be 

expected.21 

With these observations, it seems that the Weyl phase space representation 

offers enough satisfactory characteristics to warrant its further development 

and, in particular, the investigation of the phase space equation (11.94). In 

many respects, this equation presents a much more difficult problem than the 

underlying wave equation (II.1). It will be seen, however, that under certain 

assumptions it provides a direct connection between the geometric optics solution 

of (II.1) and the Liouville Theorem of classical mechanics. Thus, this formalism 

enables a clear and concise derivation of the wave kinetic equation governing the 

wave action density. 

In the spirit of the eikonal method for obtaining the geometrical optics 

approximation (see Part I) to the wave solution of (!1.1), I shall postulate an 

ordering of the derivatives of the various elements in (11.94). To this end, consider 

the power series expansion of (11.94) 

....... t t ....... t 1 
_q(1 + !L + · · ·) · (E.E. )w = (i.i.)w(1 + ~L + · · ·) · (_q )- (11.107) 

The exponential expression (rather than the integral formula, cf. (II.92)) per

mits the straightforward identification of the relative orders of variation involved 

in the evolution of (E.E.+)w. Consistent with the assumption of a weakly in

homogeneous medium (compared to a typical short wavelength >. of the waves), 

one requires 

(11.108) 

where L is the scalelength (timescale) of the plasma variation. As a quadratic 

function of the wave field E, one might expect (EE+) to also exhibit only this 

slowly varying behavior; therefore, I shall look for solutions which satisfy 
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t 1 
IB:.:(U )wl ".J L (11.109) 

For order of magnitude estimates, I shall also take the k-derivatives to be 

(11.110) 

These assumptions imply that terms on the left hand side of (11.107) have relative 
·' 

scale given by 

(11.111) 

which provides a small expansion parameter for wavelengths (periods) short 

compared to scalelengths (timescales). 

In addition to this space-time scale ordering, I shall also restrict attention to 

that region of phase space for which the wave system is only slightly dissipative 

and nearly linear and undriven. Thus, the anti-hermitian part of 12 and the 

current sources are assumed to be small in the sense that 

D' = HD + Dt) D" = -~(D- nt) 
,. --,.. - ---

ID"I 
112'1 < 

1 (11.112) 

l(i.i:)wl < 1121 2 1(£Et)wl 
While these ordering arguments are common to traditional WKB treatments, an 

actual form for the solution has not been postulated. Naturally, the justification 

for these assumptions must eventually be based on the properties of the solutions 

which emerge. 

With (11.108-11.112) providing estimates of the relative order of terms in 

(II.107), one finds the lowest order equation to be 

D'(~, t, &., w) · (EE+)w(~, t, if, w) = 0 ... (II.l13) 

This condition is similar to the usual result of conventional WKB methods 

at lowest order (see Chapter 2, Part I). The structure of (11.113) is more 
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complicated, however, in that it is a matrix equation (at each point (~,t,&,,w)) 

and must be satisfied for each element. Fortunately, since the spectral tensor is 

self-adjoint in the Weyl representation and because only the hermitian part of 

the dispersion tensor is involved, the adjoint of (II.113) implies 

[D' · (E.E.+)w ]t = (Ut)W · (D')t = (EE.+)w · D' = 0 
* * * 

=> D' · (E.E.t)w = (E..E.t)w · D' 
* * 

(II.l14) 

' 
In this approximation, the dispersion tensor and the spectral tensor are repre

sented by commuting hermitian matrices and can therefore be simultaneously 

diagonalized. This property is not only important at lowest order, but it will al

low the equation generated in the next order to be decoupled so that the inherent 

tensor nature of (II.94,II.l07) can be treated by scalar equations. 

Taking advantage of this result, it is simplest to view (11.113) in the basis 

in which both matrices are diagonal. This basis is that of the eigenvectors of 12' 
A A 

12'(~, t, &_, w) · ea(~, t, &,, w) = Da(~, t, &,, w)ea(~, t, &,, w) 
(II.115) 

for a=1,2,3 
A 

The vectors ea are also called the local polarization vector& as they give the 

local direction of the field just as in the traditional WKB treatment. It must 

be pointed out, however, that the polarization vectors defined in WKB methods 

are not functions on phase space; in those theories it is assumed that a solution 

&. = &.(~, t) can be found so that 

e(~, t, &., w) ~ e(~, t, &.(~, t), w(~, t, &.(~, t))) ~ e(~, t) (II.116) 

On the contrary, in this presentation {~, t, &,, w) are independent variables. 

As 12' is hermitian, it can be shown that the polarization vectors are or

thogonal and satisfy a completeness relation 

and (11.117) 
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The overbar notation here signifies the complex conjugate transpose vector (the 

left eigenvectors of D') and all vectors have been normalized. The superscripts .... 
label the eigenvector while the subscripts denote components with respect to the 

usual Cartesian basis. 

The local eigenvalues Da of D' are real and are the components of D' in its 
"' . "' 

diagonal representation[}. The unitary transformation which effects this change 

of basis is well known to be 

Sa =..,.ae 
/A- /A 

D .. a~ - ~ saD' (S+)~ - ~-,.aD' fJ - L..J ~A lA" , - L..J e ~A ~A" e, 
(11.118) 

where (IL115,11.117) have been used. It is easy to show that the inverse of this 

transformation is 

D' = ~ ea!Ja~ efJ = ~ Daeaeor = ~ pa Da 
~A" L..J /A "' L..J /A "' - L..J lA" 

(11.119) 
a,fJ a a 

which defines the projection operators pa onto the eigenvector subspaces. These 
"' 

expressions indicate that the eigenvalues Da (~, t, &_, w) are the same local scalar 

dispersion functions as those encountered in traditional WKB theories (when the 

Weyl transform is used to construct the local dispersion tensor): the difference 

again, is that the usual condition that the determinant of D' vanish ( ~ D1 D2 D3 

"' 
= 0) is not required by (II.113). Nevertheless, it will be seen shortly that 

these eigenvalues do determine the local dispersion relations which govern the 

propagation of waves with the corresponding polarizations. 

As previously remarked, the transformation (11.118) also diagonalizes the 

local spectral tensor ( E E+)w so that with respect to the polarization basis it will 

be represented as in (11.119) 
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(II.l20) 
or 

This defines the real diagonal elements W01 (.~, t, &_, w) which will be interpreted as . 
the scalar Wigner functions of the waves with each polarization. Now, inserting 

(II.119) and (11.120) into the lowest order equation (II.113), one obtains 

r.12' · (E.E.+)wl~" =I: I: P:trnar P~" w,8 = o 
(II.l21) 

or 

having used the "orthogonality" of the projection operators 

~par p,8 _ r.ar,8par 
L..J ~tr trV - U ~V (11.122) 

which follows from (11.117). The result (11.121) simply expresses the fact that 

in the polarization basis (11.113) is an equation f?r a diagonal matrix, being the 

product of two diagonal matrices. Therefore, each diagonal element of (11.121) 

must satisfy 

(TI.I23) 

at each point (~, t, /i, w) of phase space. 

The relationship between this phase space method and the rays of geometri

cal optics begins to emerge with this equation. Under the approximation scheme 

in which (11.123) represents the lowest order term of (II.94), one has the~condi

tion that at each point in phase space either D01 or war (or both) must vanish. 

The restriction nor(~, t, &_, w) = 0 is equivalent to the usual WKB condition 

detD' = 0 and in the same way implicitly defines the local dispersion relation .. 
D01 (~, t, &_, w) = 0 W

01 = il01 (~, &_, t) (II.124) 

More generally, the vanishing of a single eigenvalue D01 may yield multiple 

solutions (or branches) for w 01
, all corresponding to the same polarization. In 

addition, more than one eigenvalue nor may vanish at a point (or on some 
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manifold) in phase space; this possibility introduces coupling between the linear 

modes at the next order and requires special treatment. 22 I shall not consider 

such a degeneracy in this presentation. 

The frequency manifold defined by (II.124) is the surface on which the rays 

generated in conventional WKB methods propagate. According to (11.123) it is 

also the only region of phase space where wa(~, t, £, w) is allowed to be nonzero. 

While this result is satisfactory in that it draws a connection between the Wigner 

function and the rays, two points must remain clear: 

1) As explained in Chapter 2 of Part I, the dispersion rela:tion (I1.124) as it 

arises in traditional WKB techniques is in reality a partial differential (Hamilton

Jacobi) equation for the eikonal phase; that is£, w = V ¢>,-Be¢>. Thus, the rays 

are introduced as the characteristic trajectories for solving this equation. In this 

treatment, however, !, w are independent of~~ t; therefore, while (11.124) defines 

the same frequency manifold, it does not induce the ray trajectories. 

2) The discussion of Part I also indicated that in many cases the rays are 

confined to evolve on lower dimensional submanifolds of the frequency surface 

(e.g., the Lagrangian manifolds of integrable ray systems). This situation is not 

precluded by the condition (11.123), however, as wa is not required to be nonzero 

everywhere that na vanishes. Hence, the Wigner function may be concentrated 

on subsets of the frequency surface. 

In view of these considerations, an apparently appropriate form for the 

solution of (11.123) is 

(11.125) 

where again, by (11.118) 
A ~ A 

wac~,t,!,w) = ea(~,t,!,w). (E.E. )w(~,t,!,w). ea.(~,t,!,w) 
(II.l26) 
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The assertion (11.125) exhibits the desired behavior of vanishing where Da is 

nonzero and allows for a variation of additional structure on the frequency 

manifold itself. I shall use this expression at next order, as representing the 

information contained in the lowest order equation (11.113), to derive the equation 

governing the "amplitude" J(z., k, t). 

In this approximation, the next higher order terms of (11.107) are 

(11.127). 

Here I have assumed that the inequalities (11.112) indicating the relative sizes 

of 12" and (l~i:)w imply that the dissipation and sources enter at this order 

"J ()../ L). Now derivatives of the hermitian dispersion tensor and the spectral 

tensor appear; in analogy with (11.93) and with (11.95), the first term of (11.127) 

may be written as 

D'L. (E.E.+)w = ?!!._. a(E.E.+)w _ ?.!!_. a(E .. E."~)w + {D' {E..E.+)w} 
... aw at at aw ... ' (11.128) 

- [D', ·(E.E.+)w] ... 
This defines the extended Poisson bracket (to include time) and the "dot" 

notation signifies the intended matrix product. 

_ As was the case at lowest order, this equation simplifies when expressed in 

the basis of the polarization vectors. The introduction of this basis, however, 

initially increases the complexity of the Poisson bracket term; therefore, in order 

to clarify the ensuing discussion I shall treat this term first and then return to the 

source and dissipation terms later. In component form and using (II.l19,1I.120), 

the Poisson bracket in (11.127) becomes 

(II.l29) 

Thus, since the projection operators ~a are functions on phase space by their 

definition (11.119) in terms of the polarization vectors, the bracket on the right 
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contains many more terms than the one on the left. 

The first simplifying assumption I shall make is that only one polarization 

is in the system; that is, only w• is nonzero (W.8 = 0 everywhere for ~ ;':- 8). 

Also, because of {II.125), not only does w• vanish where D• ;':- 0, but so do 

its derivatives; this is in contrast to the derivatives of D• itself which may not 

vanish even where D• does. As previously remarked, I assume that where' w• 
is nonzero (D• = 0) there is no degeneracy of eigenvalues (D 01 :rf 0 for a;':- 8). 

Under these conditions, (11.129) is 

2)D01 P:,, w· P~lr] ~ L { D01 w• [ P:,, P~lr] + P:,P~Ir [D 01 
, w· J 

(Il.130) 

+ D01 
[ P:,, w· ]P~Ir + P:, [DOl, P~lr J w· } 

where the rule for differentiating a product has been used to expand the bracket 

in the usual fashion. 

The first and third terms on the right hand side of (11.130) reduce to sums 

over only a :rf 8 since either D• or w• vanishes. Contracting the projection 

operators in the second term and using their orthogonality (II.122), only the · 

a = 8 contribution survives. Thus, the J.&t7 component of the bracket is 

P~lr[D•, w•]+ L D01 {w•[P:,, P~~rl + [P:,, w•]P~Ir} +I: P:,[D 01
, P~lr]w• 

V ,Ol.,.. VOl 
(11.131) 

Although this expression is written in terms of quantities in the polarization 

basis, the J.&t7 index refers to the component with respect to the Cartesian basis; 

one must yet perform the transformation (11.118) in order to obtain matrix 

elements of (11.131) in the polarization basis. Fortunately, however, not every 

component of (11.131) in the new basis will be required. 

The evolution of w• will be obtained by extracting the 88 component of 

(11.131). According to (11.118), this is accomplished by the premultiplication of 
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e~, postmultiplication by e: and contracting. This operation yields 

([Q'' ·(E.Et)wl) .. = L e;[D~"' (EvE:)w]e~ 

= [D• / w•] + w· L D01e;[P:"' P:~Je: 
1£"~. a"1' • . 

+ ~ Dae•[pa w•je• + w•~e•[n• p• ]e• L..J 1£ ~£"' v L..J v ' v~ ~ 
1£v.a"1'• v~ . 

(II.132) 

The third and fourth terms of the result vanish identically on inserting polariza

tion vectors for the projection operators, expanding the brackets and using the 

orthogonality properties (II.117) as follows 

~ D01e•[pa w•]e• = ~ D01 {e•e 01 [ea w•je• +.e•[e01 w•]eae•} L..J 1£ ~£"' v L..J 1£1£ "' v 1£ ~£' v v 
1£". 01"1' • 1£", a"1' • . 

= L D01 a 01•{e:[e~, w•] + c.c.} = 0 
V,Ot.,..e 

~ -• [D• p• ] • ~ -• • [D• -•] • -• [D• •j-• • L..J eV / V~ e~ = L..J eVeV I e~ e~ + eV . / eV e ue~ 

= L:rn·,~e:J ~ o 
v 

(II.133) 

In the last step I have used the fact that the polarization vectors are normalized 

to a constant everywhere; thus, derivatives of their norm vanish. Finally 1 the ss 

diagonal component of the bracket in the polarization basis is 

([Q' I ·(llt)wl)·· = [D•, w•] + w· L D01e;[P:"' p~~Je: (11.134) 
~£"~ .a"1' • 

It will also be necessary to consider the trace of the matrix (11.131 ). Setting 

J.' = u and summing one has 

Tr([Q',·(EE+)wl) = [D•, w•j + w• L D01 [P:",P:~£1 
1£11.01,.. 

+ L Da [P:"' w•jp~l£ + w· L [D 01 ' p~I£]P~v 
1£V. 01"1' t1 ~£VOl 

(11.135) 

.. 
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With expansion of the brackets in terms of polarization vectors similar to that 

used in (11.133), it is easily sho~n that the last two terms of this expression are 

also identically zero. The trace is then given by 

Tr([~'. ·(U+)wl) = [D•, w•j + w• L Da[p~",P:,J (11.136) 
~v,a,-• 

It is interesting to compare this expression with the result (11.134) for the 

single diagonal 88 component of the bracket matrix. Again resorting to the 

substitution of eigenvect~s e for projection operators ~. the only piece of the 

second term in (11.134) which survives is 

(II.137) 

The similar summation in (II.136) becomes 

L Da[p~"' P:~J = L Da{e~~[e~, e~] + e~e~[e:, e;]} (II.138) 
~v.a,-. ~.a,-• 

Evidently, the trace (II.l36) exceeds the 88 component by 

(II.l39) 

This is the complex conjugate of (11.137) and, as expected, is easily shown to be 

the sum of the other two diagonal (a =;tf s) components of the bracket matrix 

(II.l31). This observation will be of use when I return to the bracket; for now, 

however, I wish to focus attention on the other terms in (11.127). 

The damping and source contributions to the O('A/ L) evolution equation for 

w• are much easier to transform into the polarization basis than was the Poisson 

bracket because they contain no derivatives. Quickly then, the 88 component of 

the dissipation term is simply 

(11.140) 
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since (E.E.. .. )w has only one nonvanishing element in this basis. For the same 

reason, this expression is also the value of the trace 

(II.141) 

The source term of (11.127) requires a little more care smce I have not 

discussed the meaning of the inverse Symbol; that is, it must be realized that 

the Weyl Symbol of the inverse operator (Dt)- 1 is not simply the inverse of the .. 
Weyl Symbol ofDT. Due to the Weyl product rule (11.91), (DT)- 1 (~,t,&,w) must .. .. 
satisfy the differential equation 

ot. (Dt)-1 =I .. .. .. 
. +-to 

=> nt(~,t,£,w)e!L ·(Dt)- 1 (~,t,£,w) =I .. .. .. 
(11.142) 

Fortunately, the source contribution enters at first order (due to the assumed 

magnitude of (2~.i!)w) so that considering the estimates (11.108-11.112), the 

derivatives in (11.142) may be ignored. Therefore, consistent with these ap

proximations one may take 

(11.143) 

The dispersion tensor has been separated into its hermitian and anti-hermitian 

parts with relative magnitudes assumed to be as in (11.112). It is easily verified 

that the standard formula 

(Dt)- 1 = (D' - iD")- 1 ~ (D')-1 + i(D')- 1 
• D" · (D')- 1 + · · · .. ,. ~ .. ,. - ,. 

(11.144) 

satisfies (II.l43) to O(>..J L). In the polarization basis this expression is just 

(nt-1 ttJ ~·(u-1 ttJ + i I)n'-lti(D"f>-(n'-1 )>-tJ 

Here. I have 

;>. 

6°fj . (D11 ) 0 fj 
~ - + 1. -'-----'--~ 

Dcr naDiJ 
used the fact that the 

(11.145) 

hermitian part f2' (and hence (Q')- 1 ) is 

diagonal in this basis. From (11.145), both the 88 component of the source 
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contribution in (11.127) 

[(i.i!)w. (J2t)-l ]•• = L(j.j:)w(Dt-1 ru 
a 

(11.146) 

and the trace 

Tr[(i.i:)w. (J2')-I] = LU.i!)~(Dt-1 )a~ 
a~ 

(11.147) 

may be obtained. 

The discussion of the lowest order equation and the Poisson bracket at this 

order has emphasized that the manifold on which the Wigner function w• (or, 

more precisely, its amplitude J•) evolves is the surface on which D• = 0. Taking 

note of this, it would seem that a few terms in both (11.146) and (11.147) are much 

larger than the others as D• appears in the denominator in these expressions. To 

demonstrate that these terms are in fact not singular, consider the ss component 

(II.146); the largest term in the sum is produced when a= s: 

( . "t)•• ( . "t)•• (D")•• 
[( · ·t) . (Dt)-lj•• ~ 1•1• w + i 1•1• w 
~.l. w .. D• (D•)2 

(3~J~)w ( . (D")••) 
~ D• 1 + t D• (II.l48) 

u.J1)w 
~--~~-

D•- i(D")•• 

In view of the vanishing of D•, the approximation here that (D")•• ~ D• which 

permits the final step of (11.148)) is questionable. It should be borne in mind, 

however, that the same approximation was invoked in the derivation of the 

inverse formula (li.144,II.145) so that the result of (11.148) is justified. The fact 
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that the denominator now has a small imaginary part removes the apparent 

singularity as D• -+ 0 and is the appropriate expression. 

A similar argument can be made for the trace formula (II.147) where the 

largest terms are obviously those for which a = f3 = 8 

Tr(( . ·t) .. (Dt)-1 
1 
~ (i.;1)w + i (i.iZH¥(D")•• 

2.1... w .. D• (D•)2 
(11.149) 

(i.;1)w 
~ _...;._......;;..;...;.;._..;..__ 

D•- i(D")••. 

As to be expected from (11.145), the nondegenerate vanishing of D• (Da1*• :;6- 0) 

makes the 88 element of the diagonal much larger than the others so that it is 

also equal to the trace in this approximation. 

Inserting the 88 component results for the Poisson bracket (II.134,II.137), 

the dissipation (II.l40) and the sources (II.148) into the first order equation 

(II.127), it is found that the evolution of the Wigner function w• expressed in 

the polarization basis must obey 

[D• w•j + w• """ Dae•ea'[ea e•J = -2(D")••w•-
2
i (j.;1)w (11.150) 

I ~ ~ v "'' v D• - i(D")•• 
p.va"l*• 

The corresponding trace expressions (II.136,11.138,II.141,II.149) require 

= -2(Du.) .. w• - 2i (j.;1)w 
D• - i(D" )•• 

[D•, w•j + w· L D0 {e~~[e~, e:J + c.c.} 
1-'Va"l*• 

(11.151) 

Comparison of these two equations implies that if w• is to satisfy both, one 

must have that the polarization vector coupling in the Poisson bracket must at 

least be of higher order. That is, it cannot be shown that these terms vanish 

identically due to their orthogonality; instead, this is a dynamical result of the 

evolution equation to this order and in this approximation. In view of this, both 

(II.150) and (11.151) agree .and the evolution equation is finally 



11.3 Weyl Symbols 219 

an• aw• - an• aw• + {D· w·} = -2(D") .. w•- 2i (i.J~)w (II.152) 
aw at at aw ' . D• - i(D")•• 

where I have used (11.128) to write the bracket [-, ·] in terms of the usual time-

independent bracket { ·, ·}. 

This equation governs the evolution of the Wigner distribution for the 

polarization s on the manifold defined by D• = 0. Therefore, the quantities 

(j.J!)tv(~, t, &,, w) and (D")••(~. t, &., w) as well as all derivatives of D• and w• 
must be evaluated on this surface by setting w = n·(~, &,, t). This information 

can be incorporated into (11.152) to some extent by introducing the solution 

(11.125) of the lowest order equation which explicitly exhibits this restriction. 

Thus, recognizing that 

' (Il.153) 

follows from the antisymmetry of the bracket, the substitution of (11.125) into 

(11.152) yields 

[ 
aD• oJ•(~, &,, t) + {D• J•}]a(D•) = -2(D")•• J• 5(D•)- 2i (j.J!)w 
ow ot ' D• - i(D") .. 

(11.154) 

Note that I have dropped the term proportional to (a J. I ow) since by its definition 

(11.125) the amplitude J•(~, &,, t) is independent of w on the frequency manifold. 

The appearance of delta functions in (11.154) means that this expression must be 

interpreted as a density which requires integration; the delta functions are 

removed by integrating with respect to D•. Performing this operation, which im-

, plies a direction of integration transverse to the frequency surface given by 

D• = 0, the result is 

an· aJ• an• a.J• an· aJ• 2(D")•• J• '> ( .• .:.) •• ---- + --.-----.-- =- + .. 7r J.J· w aw at a~ a&. a&. a~ • 
(Il.155) 

having explicitly written out the terms in the Poisson bracket. In arriving at 

this expression, I have taken the limiting form of the integral over the source 
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term with (D")•• tending to zero in the denominator; hence, I have used23 

I dD· u.;1H¥ ~ PI dD· u.~}w +i1r I dD· 6(D·)u./.)w (11.156) 
D• -i(D")•• 

The principal value integral vanishes 

PI dD· U.it)w = Pj d (-I aD·)(. ·"!")••( ) = o D• w D• aw JeJ • w w (11.157) 

because the integrand is antisymmetric in w: that is, both D• and (j.;1)w are 

real (diagonal components of hermitian matrices) and hence symmetric in w by 

definition (II.98) (in terms of real z-space representations) so that the factor in 

parentheses is antisymmetric under w ~ -w. 

As in (11.152), the derivatives in (11.155) must be evaluated at D• = 0. Thus, . 

using the standard relations 

( aD•) (aD•) (an·) 
a;. t.lc r.J = - aw ~ t.lc a~ lc t _, _, - _, 

( aD·) (aD•) (an·) 
a&. .s,,t.r.J = - aw ~.t.~ a&. ~.t 

(11.158) 

for D• (;., t, .&, n• (.~., &., t)) = 0 

in (II.155) and dividing by (aD• jaw), the evolution of J• is given by 

aJ·(~,.&. t) an· aJ• an• aJ• 
2 

.( k ) J• 27r(i.;1)l¥(~,.&. t,n•) ___ ;,;__;_ - -- . -- + --. -- = 1 ;_ t + _...;..._~~----at a~ a&. a&. a~ ,_, (aD• ;aw)o•-o 
(11.159) 

Here, the local growth rate 1·(~, !, t) is defined as the imaginary part of the 

frequency in the usual manner by 
A A 

e•(~, &., t, n•) · D"(~. &., t, n•) · e•(~. &., t, n•) 

(~[i• ·f2'(~. &_, t, w) · e~Jt-a• 
(11.160) 

and the notation of n• as an argument implies the substitution of the dispersion 

relation n·(~. &_, t) for the argument w. 

In contrast to the lowest order condition (11.123}, this result at first order 

does, to some extent, introduce the notion of the ray trajectories in phase space. 
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Defining 

dz an• dfi an• -= = -- -- - ---
dt - a£ dt a;. 

dJ•(;., /i, t) = [!... d~ . !_ dfi . _!_] J•(x lc t) 
dt at + dt a~ + dt a & _, _, 

(11.161) 

and 

it is clear that (11.159) gives the total time derivative of the quantity J• along 

paths in phase space generated by (11.161). Of course, these are immediately 

recognized as the usual Hamiltonian ray equations introduced at lowest order 

in traditional WKB methods in order to solve the eikonal equation. In this 

treatment, however, the rays appear not for the determination of the z- or /c

space eikonal phase of the wave, but for the propagation of the "amplitude" of 

the wave along the frequency manifold in phase space. 

In the absence of dissipation and sources, the evolution equation (11.159) 

simply states that J• is constan~ along the ray trajectories. In analogy with a 

similar result of classical mechanics, this suggests that the "amplitude" J• should 

be interpreted as a kind of Liouville phase space density for the propagation of 

waves in the short wavelength regime. Allowing for dissipation, the solution of 

(II.l59) is 

(11.162) 

which explicitly conveys the non-Hamiltonian damping (or growth) of this phase 

space density from its initial value depending on the local value of 1•. The 

factor of two is appropriate as J is quadratic in the field amplitude, yet it arises 
.+-+ 

naturally here from the ! L in (II.127) and the approximation scheme (11.108-

II.112) that has been used. 

As was the case in the Ordinary Symbol description, the source contribution 

(j /')w may represent given external currents, discreteness effects, nonlinearly -·-· 
generated currents,etc. If this term is independent of J•, then (11.159) 1s a 
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linear inhomogeneous equation for J•. If, however, the current i.(~, t) depends 

nonlinearly on the field E(~, t), then using (11.69,11.70) the source (i.i:)w may be 

written as a nonlinear functional of J•; in this case, (11.159) becomes a nonlinear 

equation. 

All these properties of the evolution equation (11.159) stimulate further 

examination of the properties of J•. Aside from its interpretation as a "wave 

Liouville density" evoked by the homogeneous form of (11.159), the identification 

of J• as an "amplitude" arose from its definition in the solution (11.125) of the 

lowest order equation. Indeed, that relation may be used to determine J • in 

terms of w• by integrating with respect to D• 
. . 

J•(~, &., t) = I dD· w·(~, t, &., w) 

I an· · = dw aw (~, t, &_, w )W·(~, t, £, w) 

~ 88~· (~, t, &., n•) I dw w·(~, t, &., w) 

~ a:w· (~, t, &., n•)w·(~, &.; t) 

(11.163) 

The approximation here is that (an· I ow) is slowly varying (consistent with 

(11.110)) and w· is 

w·c~., £; t) = e"-(~, &., t, n•). I d3 
8 E.(;.+ t~, t)E.* (~- t~, t)e-i~·.! . eA·(~, &_, t, n•) 

(11.164) 

where the Weyl projection formula (11.99) has been used. 

In a stationary uniform plasma, the combination of (11.163,11.164) reduces 

to the usual expression for the energy of the mode at (£, w) divided by the 

frequency 6 

J•(&.) = IE•(&w~(aD•(£, w)) ~ u:(;) 
OW w-w•(~) W (_) 

(11.165) 

As this formula is reminiscent of the classical relation between the energy and 
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the action of a harmonic oscillator, the quantity J(if) is known as the wave action 

denaity in &,-space for the normal mode w(lf). This concept is supported by the 

fact that in the absence of dissipation or sources, the action is invariant under 

the flow of the rays; allowing for weak dissipation and/or sources (interactions), 

J is an adiabatic constant of the motion. Because of the uniform medium result 

(II.l65), it would appear that J (z., &_, t) is an appropriate extension of the wave 

action to nonuniform, nonstationary plasma as a density on (,z., k) phase space. 

The equation (II.l59) which governs the evolution of the wave action den

sity is known as the wave kinetic equation because of its resemblence to the 
. / 

Vlasov equation of particle kinetic theory. This equation has been derived by 

others with quite different approaches although it is usually only treated in the 

uniform medium case. The most common method of derivation24 proceeds from 

the quantum field-theoretic concept of the occupation number n5.. of a mode 

and the changes in that number due to nonlinear interactions with other modes; 

the classical limit then assumes large occupation numbers with smooth (as op

posed to discrete) variation in time~ As n5.. is proportional to the square of the 

amplitude of the wave, the connection between the classical relation (II.l65) 

and the usual quantum electrodynamic model of modes as oscillators provides 

the identification of the occupation number as the wave action in the classical 

limit. Although the classical, irreversible aspect of dissipation is generally just 

inserted into the kinetic equations which appear, it must be stated that the 

primary focus of these methods is the form of the source terms which are taken 

to represent nonlinear couplings among modes and the approximations which 

can be ·made to simplify them. In this regard, the extension to nonuniform non

stationary plasma is typically achieved by assuming local spatial dependence of 

the occupation numbers and postulating25 the replacement of (8 j at) by the full 

convective operator (11.161). 



11.3 Weyl Symbols 

Other non-quantum mechanical derivations have been given based on tradi

tional WKB treatments of wave propagation. As such, these approaches intro

duce the ray trajectories at lowest order and, as in Part I, arrive at an evolution 

equation for the amplitude of the wave at next order. This .equation, which 

adequately describes the transport of wave energy, momentum ·and action in 

nonuniform dissipative plasma (including external sources), is of course set in x

space (or k-space) and these quantities are densities on x- or k-space. In order to 

obtain an equation on phase space, the x-space action density has been lifted into 

a phase space density using various procedures. One technique15 is to label the 

contribution to the amplitude at a point due to a single ray by the initial value 

of the wavevector of that ray; in this way the amplitude becomes an implicit 

function of k. Another method26 relies on the asymptotic form of the Wigner 

function given in Eq.(l.81) for a sum of eikonal wavelets; thus, a transformation 

is effected In the transport equation from the Lagrangian variable labelling the 

wavelet to the value of&. appearing in the delta function. Both of these schemes 

for introducing phase space representations into fundamentally x-space equa

tions tacitly assume a relationship &.(.~) (either through initial conditions or the 

eikonal phase) and this poses difficulties in each case: either quantities appearing 

in the resulting equations are tied to initial conditions (requiring the inversion 

of all trajectories) or the eikonal phase label may be continous (invalidating the 

assumption used for the Wigner function). In addition, neither method incor

porates the possibility of nonlinear sources. 

The procedure employed in the present derivation of the wave kinetic equa

tion therefore has several advantages. In contrast to the conventional WKB ap

proaches, this is inherently a phase space method from the outset so that~. t and 

&_, w are independent variables and all functions on phase space a.re well defined 

by the Weyl transform. No assumption has been made on the form of the Wigner 
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distribution (i.e., it is not based ·on the eikonal description of the wave) yet the 

exact equation (II.94) which governs its evolution has been solved under an or

dering hierarchy compatible with the customary WKB approximations. This 

leads to a natural definition for the wave action density as the "amplitude" of 

the Wigner function on the frequency manifold, an identification which leads to 

a reasonable extension of the wave action in a uniform plasma. The form of the 

exponential operator in (II.94) in conjunction with the approximation scheme 

used not only produces the Poi~:~son bracket as the time advancement operator 

(the phase space total time derivative (II.161)) but it also allows one to proceed 

to higher order in a straightforward manner. 

Once again, the steps in the development of this equation were as follows: 

It is assumed that one is given the form of the linear dispersion operator D from 

which one constructs the local dispersion tensor D in the Weyl representation .. 
(11.69) as a function on phase space (.~, t, &., w) and its hermitian (D') and anti-.. 
hermitian (D") parts are identified. In the Weyl formalism, the wave field is .. 
represented by the local spectral tensor (E.E.+)w which is related to the field by 

(11.98); a similar definition is used to construct the phase space representation 

of the current source contributions (i /')w not included in the usual linear -·-· 
treatment of wave propagation. The general form of the wave equation in 

configuration space (ILl) is then translated directly (using the Weyl calculus) into 

the equation in phase space (II.94) which connects these phase space functions. 

At lowest order (under the ordering assumptions (II.l08-II.112)) the basis of the 

local polarization vectors is introduced in order to simplify the tensor equation 

and the local dispersion relation (although not the rays) emerges along with the 

solution (11.125 ). This solution defines the quantity J(~, &,, t) which is shown to 

be the wave action density on (~, ,&) space in nonuniform plasma. Substitution 

of the lowest order solution into the next higher order equation results in the 
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wave kinetic equation which governs J (and also serves to define the rays in 

this treatment). Dissipation (due to D") and general sources are included while ... 
linear mode coupling (degenerate_ eigenvalues of .12') is not for simplicity; this 

situation could be treated in much the same manner as used in traditional WKB 

methods. 

As previously remarked, this formalism permits the treatment of nonlinear 

interactions among waves. If f.(~, t) can be written as a nonlinear functional of 

E(~, t), then the Weyl transform produces the current spectral tensor which is 

now al~o a nonlinear functional qf E_. These factors of E. can be paired and, 

using the inverse Weyl transform, replaced by (EEt)w so that (j /)w is a -·-· 
nonlinear functional of the field spectral tensor. Introduction of the polarization 

basis and use of the lowest order solution allows this term to be expressed as a 

nonlinear functional of wave action densities (typically evaluated at different &., 

yet local in~). Thus, it seems reasonable that the manipulations involved in the 

simplification of these nonlinearities in uniform plasma could be carried ov~r to 

this description. 

In summary, the derivation presented here offers a classical wave (as opposed 

to plasmon) phase space (instead of z-space) treatment which results in the wave 

kinetic equation in nonuniform nonstationary plasma as·an approximation to the 

exact tensor phase space equation governing the local spectral tensor of the wave 

field in the presence of dissipation and sources. In spite of the improvements over 

previous work that have been discussed here, there are, however, several aspects 

of the development and of the formalism in general which require attention: 

1) The first criterion for determining the validity of the ordering scheme, 

and indeed of the solution itself, is to verify that the solution satisfies the 

approximations. Specifically, the solution (11.125) of the lowest order equation 
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and the result (11.159) at next order should be compared with the assumptions 

made in (11.108-11.110) which specify the magnitude of the (~, t)- and (!, w )

derivatives of the spectral tensor (.EKt)w(~, t, _&, w ). Thus, one should consider 

the size of 

with 
(.EE+)w(~, t, .&, w) = w·(~, t, .&, w )e"-e"•(~, t, .&, w) 

w·(~,t,_&,w) = J•(~,_&,t)5(D·(~,t,&,w)) 

J2'(~,t,_&,w) = LD01 e~e~(~,t,.&,w) 
a 

(II.l66) 

(11.167) 

The derivatives in (ll.166) consist of contributions from differentiating the 

action density J; the polarization vectors ~ and the delta function. The presence 

of the delta function, however, would appear to render all of these terms to be 

singular so that (11.166) is violated. Therefore, in order to justify this solution, I 

wish to impose the following interpretation: Since only a one dimensional delta 

function appears here, restricting the support of w• to the seven-dimensional 

frequency manifold in the eight-dimensional extended phase space, local coor

dinates in the neighborhood of this surface may be constructed so that one 

"direction" (evidently, the D• direction) is "perpendicular" to the surface. It is 

along this direction that the solution has singular derivatives while derivatives in 

the other directions (lying "in" the manifold) act only on the amplitude of w•, 
that is, on the action J. Thus, the derivatives which appear in the wave kinetic 

equation should be understood as the pieces of those derivatives "parallel" to 

the surf~ce D• = 0. In fact, this has already been incorporated into (II.l59) 

with the substitution of (11.158) into (II.155): the trajectories which convect J 

evolve on this manifold. 

Of course, now the question arises as to the order of the derivatives on the 
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action density. By the hypothesis of a weakly dissipative plasma with weak 

sources (or coupling), the right hand side of (11.159) drives changes in J which 

are of a magnitude consistent with the assumed order of the derivatives of J 

on the left side. Now, the foregoing argument requires the action density to be 

somewhat smooth on the frequency manifold and in particular, this assumption 

· would be violated if J were concentrated on a submanifold of this surface; in that 

case, the pieces of the derivatives in (11.159) along directions "perpendicular" to 

that submanifold would be large. In this regard, it was shown in Part I that the 

rays of time-independent integrable systems as well as those of monochromatic 

propagating waves evolve on Lagrangian manifolds which are three-dimensional 

surfaces in (.~, &.) phase space. Since J is convected by the rays, it must in 

these cases vanish everywhere except on these submanifolds of the frequency 

·surface; in contradiction to the smoothness assumption stated above. In the 

case of propagating waves, however, the possibility exists that the Lagrangian 

manifold may become so convoluted that it nearly fills the frequency surface; 

allowing for a small wave-like spreading or broadening ·of the action density off 

the manifold (due to higher order corrections), a smooth variation of J on the 

frequency surface may be achieved as these "diffraction edges" from neighboring 

"leaves" of the Lagrangian manifold coalesce. This circumstance would imply 

the existence of many leaves "above" each point in z-space and hence, in terms 

of the traditional eikonal description of the wave, many contributions to the 

field at that point; the convoluted nature of the rays also might be expected 

to produce a decorrelation of the phases of each contribution. In view of these 

considerations, it would seem that the smoothness assumptions on the action 

density imposed in the present derivation require that the wave system under 

consideration be incoherent. With these qualifications then, the derivation given 

for the wave kinetic equation is a justifiable procedure for approximating the 
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exact equation governing the local spectral tensor. 

2) As a consideration relevant to the preceding discussion, it is interesting to 

compare the results (11.125) and (11.159) with the statements presented in Part 

I concerning the properties of the spectral tensor or Wigner function. Clearly, 

these solutions illustrate the analogy between this wave phase space density 

and the Liouville density of classical mechanics and therefore substantiate to 

an extent the approximations given for the Wigner function corresponding to 

integrable and chaotic wave systems. However, it was pointed out in Part I 

that a true Wigner function exhibits oscillations in phase space (even for short 

wavelength fields) and that the singular delta function approximation to this 

distribution requires the stipulation of some averaging procedure in order to 

eliminate this purely wave attribute. Nevertheless, such singular behavior has 

emerged in the course of this derivation even though no local smoothing was 

imposed; in many ways, this is similar to the outcome of the construction of. 

the Wigner function for an eikonal wave. In addition, the lack of an averaging 

procedure hinders the identification of (E.E..+)w as the local spectral tensor since 

the definition of this quantity (as well as its z-space counterpart, the two

point correlation tensor) generally demands some averaging (usually an ensemble 

average so that the random phase approximation can qe invoked). Thus, while 

the Weyl formalism seems to provide many of the desired results expected of a 

suitable phase space representation, the Wigner function may be in some respects 

inadequate for making a connection with similar quantities which are typically 

of interest in plasma wave theory. 

3) Finally, the singular nature of the result (11.125) has a further conse

quence. In spite of the fact that the present derivation appears to be valid only 

for incoherent waves (in order for (11.159) to follow consistently from (11.125)), let 



ll.3 Weyl Symbols 230 

me consider for a moment the extension of the wave kinetic equation to the case 

of coherent waves within the Weyl representation context. In the simple case 

of a monochromatic wave propagating into a stationary plasma, the evolution 

of the rays in phase space generates the three-dimensional Lagrangian manifold . 

upon which the wave action is defined. This property of the action density can 

be expressed by using the form given in Eq.(l.81) for the Wigner function of a 

coherent wave: 

( aD - 2 1 ~' £, t) "' aw (~, £, il(1;., &.))IE(2;., t)l 6{£- &_(2;.)) (II.l68) 

Here &_(2;.) is the gradient of the eikonal phase and E is the amplitude of the wave 

(appropriately projected by the polarization vectors). 

The wave kinetic equation with no dissipation or sources can be written in 

the form 
a1 a . a . 
8t + a1;. . ( 1 ~) + a& . ( 1 &.) = 0 (II.I69) 

since the flow in ·phase space given by i(~, &.). and k(2;., £) 1s divergenceless. 

Integrating over &. and using the Weyl projection relations (II.99), the 2;.-space 

action density is defined and found to satisfy 

a 1% (~, t) a I dale . 
at + a1;. . (21r)a 1(1;., &., t)~(~, &.) = o 

I dale 
1%(1;., t) = (21r)a 1(1;., &., t) (11.170) 

aD - 2 ,..... aw (1;., &.( x), il(1;., &.(2;.))) IE(2;., t) I 

The &. derivative in (II.l69) vanishes with the divergence theorem and (II.l68) 

has been used in the final step. This expression for the wave action density in 

2;.-space conforms to the usual definition as the energy density divided by the 

frequency. Inserting (11.168) into the remaining integral in (11.170) involving Z., 

one has 



II.3 Weyl Symbols £91 

lJJ~(1f.., t) + !.__. (J (x t)±(x k(x))) = o lJt 8 ~ ~ _, - _,- - (11.171) 

Evidently, J~ is convected along the ray trajectories in 1f..-space with the ap

propriate ray velocity obtained from the projection of Hamilton's equations. 

While (II.171) is written in a form which implies that the total action (the 

integral of the density J ~ over all space) is conserved; it is easy to show that J -z 

is not constant along these 1(.-space orbits. Thus, (II.171) is rearranged to give 

[ :t + i(1f.., £(1f..)). :1(_] J-z(1f.., t) = -J-z(1f.., t) :1(_ . i(1f.., £(1f..)) 

= -J-z[(!._. 1:) + (Bi) : 8k(1f..)] 
81f.. i 8£ ~ 81(. 

(11.172) 

This expression should be familiar as it is similar to the usual energy transport 

equation which arises at first order in conventional WKB me~hods. The point 

I wish to make here is that, as discussed in Part I, the rays in 1(.-space are not 

in general divergence-free; they may intersect and focus (producing the caustic 

phenomenon). Hence, not only is J~ not constant along 1f..-space trajectories but 

-it may become singular at caustics (near where the last term on the right in 

(11.172) tends to infinity). 

This result followed directly from the form (II.168) assumed for the action 

density associated with a coherent wave; that is, the asymptotic form of the 

Wigner function being so singularly concentrated on the Lagrangian manifold 

(with no broadening) is responsible for the singular behavior of its projection onto 

1(.-space. Although it is assumed that higher order corrections to the solution of 

(11.94) would "soften" this effect, in practice these may be difficult to include. 

This criticism of the Weyl formalism along with those raised in the previous two 

points emphasizes the importance of incorporating some averaging or smoothing 

procedure when constructing a sensible phase space representation of a wave 

field. 
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4. THE COHERENT STATE REPRESENTATION 

In this Chapter I shall introduce yet another phase space representation 

for a wave field and the equation corresponding to (ILl) which governs its 

evolution. Motivated by the necessity of imposing an averaging structure on the 

construction of a suitable phase space density so that it be smooth (as discussed 

in the last Chapter), this Symbol formalism incorporates a local spatial average of 

a single realization of the field (as opposed to an average over an entire ensemble). 

The definition in one dimension is l ll I 2 2 ·I !(z, k) = 7r- 4 u- 2 dzl E(zl)e-l:t -zl /2tr e-•kl:t -z) (II.I73) 

which may be called a loc.al Fourier transform of the field; that is, the field E in 

z-space is multiplied by a gaussian "window" of width u centered at the point x 

and then Fourier transformed around z. Expressing E(x) in terms of its Fourier. 
1\ 

transform E(k), the definition of! may also be written 

~ l 1 I dk1
. 1\ 1 2 I 2 . I !(x,k)=22'7r4u2 27r E(kl)e-!tr (k-kl e•k:t (II.I74) 

The construction of !(z, k) is fundamentally different from that prescribed 

in either the Ordinary or Weyl Symbol methods because it is linear (not quad

ratic) in the field amplitude E. However, even though ! will be the primary 

quantity of interest in this Chapter, it may itself be -yiewed as the amplitude 

of a proper phase space density; thus, being inherently complex, the absolute 

square j!(z, k)l 2 will form the smooth positive probability distribution which 

will be related to previous field Symbols and to physically meaningful objects 

as well. Not only is l!(z, k)l 2 positive, it is easily verified with (II.l73) that its 

integral over all phase space is 

I dx :! l!(z, k)l
2 =I dx IE(x)l

2 (II.I75) 

independent of the smoothing length u. 
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The definition (II.173) is easily generalized to many dimensions (including 

time) in an obvious way. Therefore, for simplicity of notation, the discussion of 

this Chapter will generally consider only one spatial dimension, although time 

may be included explicitly in some calculations. In addition, only scalar fields 

will be treated; the techniques of the preceding Chapter should indicate the 

extension of the following development to vector fields. 

At this point the width f7, which designates the meanmg of "local" m 

this construction, is arbitrary and most of the results of this Chapter will be 

independent of its value. In specific cases, however, a judicious choice of the 

width may greatly simplify the mathematical analysis. For the purpose of future 

application to short wavelength fields in weakly inhomogeneous plasma, it will 

be convenient to think of f7 as intermediate between the wavelength .and the 

scalelength; this provides a method for determining a local wavelength as well 

as allowing l to reflect the slow amplitude variation of the field in :z:-space. In 

this regard, (11.173) has two interesting limiting forms 

l(:z:,k)-+ 2~1r"tf7!E(:z:) as 
(11.176) 

as f7-+ oo e(x, k)-+ 1r-t (7-! E(k) 
which are easily understood: f7 -+ 0 signifies an extremely narrow window 

sampling only the value of E at :z:, whereas f7 -+ oo is the usual infinite window 

encompassing the entire field which produces the Fourier. transform. In this 

sense, the finite f7 local Fourier transform can be thought of as an intermediate 

representation of the field. 

The use of a gaussian window function with constant width for the im

plementation of local averaging can in principle be generalized to a gaussian 

with a spatially dependent or anisotropic width (in many dimensions), and even 

to a non-gaussian window. Different window shapes have been studied in ap

plication to signal theory and nonstationary spectral an~lysis27 and quantum 
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mechanics.28 The results of this Chapter, however, are heavily dependent on 

the choice of a constant-width gaussian; the manipulations involved in many 

calculations are specific to this selection and may have to be drastically altered 

for application to other window shapes. 

As in the previous examples of phase space representations of a field, the 

definition (11.173) is invertible: 

.l .l f"dk . E(z) = 7r4 u2 - E(z, k) 
21r 

. E(k) = 2-t it'-t u-! j dz E(z, k)e-ih 
(11.177) 

The first of these is just a simple projection onto z-space while the second is 

similar to a Fourier transform; the difference is that the same value of k appears 

both in the phase and in the argument of E. These relations are unlike the 

inversion formulas for Ordinary and Weyl Symbols in that since E is linear in 

the field, phase information is retained in its construction and projection. 

In order to demonstrate this important feature and to provide an illustration 

of the character of this local Fourier transform, take E(z) to be a plane wave 

with wavenumber k0 • The simple calculation of (11.173) yields 

(11.178) 

which exhibits the underlying plane wave structure in the z-direction modulated 

by a gaussian along k. This amplitude E in turn produces a phase space density 

of the form 

(11.179) 

which should be compared with the corresponding form of the Wigner function 

given in Eq.(I.73); obviously, this probability density is much smoother (for finite 

u) than the singular delta function behavior found in that representation. This 

expression also manifestly conforms to the Fourier uncertainty principle: the 
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width in k-space (0'- 1 ) is inverseley proportional to the localization length 0' of 

the wave in x-space. 

Before proceeding to develop the structure of this phase space method, two 

further examples of e should serve to convince the reader of the advantages of 

this description which follow from its smoothing property. As a generalization of 

the plane wave construction given above, consider an eikonal wave with rapidly 

varying phase and slowly varying amplitude. The local Fourier transform is 

l l J I .. I ".J.I I) "lc( , I I , ,2 /'' 2 e(x, k) = ?r- 4 0'-'I dx E(x )e'Y"I~ e-• ~ -:~:, e-,.:t -:~:, -l7 

~ 1r-t 0'-i E(x)e',PI:zl J dxl e-illc-lc(.:~:lH:z1 -:zl e-(:z
1
-:zl

2
/217

2 

(II.l80) 
1 l l- . l 2 2 

~ 2'1 ?r4 0''2 E(x)e•,PI.:~:le-!17 (lc-lcl.:~:l) 

le(x, k)l2 ~ 2?rt O"jE(x)l2e-:-t172(lc-lcl:zll2 

Here, the phase ¢> has been expanded in a Taylor series around the point x keep

ing only the first derivative term and using the usual eikonal definition ¢>' ( x) = 
k(x); this truncation requires that the quadratic term l""'ooJ (z1

- x)2 ¢>"(x) be much 

smaller than the linear term.· Thus, since the gaussian window effectively cuts 

off the integral at lx' -xi ~ 0', this approximation is justified if 

(x1
- x)k(x) ~ (x'- x)2 dk (x) 

. dx 

=> O'~L 

·") 

0' 0'-
-->>-
>.(x). >.(x)L (11.181) 

where the second derivative of the phase has been estimated in keeping with 

the conventional WKB ordering. In the same spirit, the amplitude E has 

been evaluated at x and its Taylor expansion neglected. The condition (II.l81) 

reiterates the notion that for short wavelength fields in a weakly nonuniform 

medium, the window should be narrow compared to the scalelength. The fact 

that the result (11.180) is similar to that found for a plane wave implicitly suggests 

that 0' be large enough to include sufficiently many wavelengths in order that 
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the appropriate local wavelength be represented in t(x, k). Again, this exercise 

serves to emphasize the smoothness of this phase space description when (II.l80) 

is compared with Eq.(I.81). 

Another case for which G ( x, k) may be explicitly and exactly constructed 

rs provided by the quantum mechanical harmonic oscillator. As presented in 

Eq.(l.7 4), the eigenfunctions for this system are 

l •) •) 
( ) C H ( ) - ·) a• :z:• 1/Jn X = n n ax e • (II.l82) 

where Cn is a normalization constant, Hn is the nth Hermite polynomial and 

a = .J mw jh combines the oscillator mass and frequency with h to form a 

characteristic inverse length. Inserting (II.182) into (11.173) for E, one has 

Gn(x, k) = ~n l I dx' Hn(ax')e-!a2:z:t2 e-(:z:'-:z:l2/2~r2 e-ik~:z:'-:z:l 
~4U2 . · 

(11.183) 

This integral may be evaluated2g for any smoothing length u in terms of Hermite 

polynomials; unfortunately, the result does not provide immediate insight into 

the structure of G in phase space. For the special choice of u = a-1 , however, 

an extremely transparent expression is obtained: 

l 1 l. 2 2 2 2 1 · ik n 
Gn(x, k) = Cn~4 a-~ e- 4 ~a :z: +k fa ) e!•k:t(ax- -) 

. a 
l. 1 l. 2 l . 2 . 2" ... = Cn~4a-~ e-4r e4•r sln "r"e-'"" 

I C' ( k)j2 _ 1 _ ~~a2:z:2+k2 /a2) ( •) •) k
2 

)" 
~" x, - -

2
" 

1
e - · a·x· + -.) 

n. a-

(II.l84) 

1 •) 1 2 = -- r·"e-!r 
2"n! 

where polar coordinates ( r, 0) in phase space have been defined in terms of the 

dimensionless variables ax and k/ a and the actual value of Cn has been used. 

Again, this choice of the smoothing length u = a- 1 is rather special, but it is 

easy to show that this value represents the geometric mea·n of the characteristic 

wavelength and the scalelength of the oscillator in the nth mode. That is, the 
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wavelength at z = 0 and the amplitude for the nth state are 

h2 k2 (o) _ ___;,._;.. = nhw => k ~ J2n a 
2m 

1 •) •) 
:zmw- L- = nhw 
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(II.185) 

Unlike the Wigner function for this example (see Eqs.(I.76,I.77)), the density 

!En(z, k)J 2 exhibits no oscillations in phase space; instead, it rises as a power of 

the radius to a gaussian peak at rn = J2n which, for large n, is the radius of the 

classical torus. Applying Stirling's formula, one determines that the height of 

the peak at rn scales as n-! while its width approaches unity (in dimensionless · 

units); these values are in agreement with the fact that IE~! is normalized over 

phase space by (11.175) so that the volume under it is unity. Thus, in the classical 

limit ( n ~ oo), the peak shrinks in height although it becomes more localized 

around the classical orbit in the sense that the ratio of the width to the radius 

rn decreases. 

Now that the typical behavior of IE(z, k)l2 has been elucidated to some 

extent, an important connection with the Weyl representation will be made. To 

begin, observe that with the use of (II.173,II.174) IE(z, k)l 2 may be written 

JE(z, k)J 2 = 2! I dz1~; E(zt)E* (kt)e-ilctzl 
(II.l86) 

. •) •) 1 •) ·) 
X e•llc1-lc){z1-z1 e-fz1-zl- ;z~- e-:z~·t~e 1 -k)-

Since the product of the factors of E and the phase on the first line are recogniz-

able as the Ordinary Symbol of the field (II.64), one may use the transformation 

(II.72) to introduce the Wigner function (Weyl Symbol) 

IE(z,k)l2 . 21 I dz2 ~k: (EE+)w(z2 ,k2 ) I dx 1 ~k: eifkt-kllzt-:~:1 
(11.187) 

The k1 and z 1 integrals may be readily evaluated to give 
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(II.l88) 

This relation explicitly shows that I e 12 is a local gaussian-weighted phase space 

average of the Wigner function over an area which respects the Fourier uncer

tainty principle. As a result, the square of the local Fourier transform may be 

called a "coarse-grained" Wigner function and thus it is a more suitable model 

for the local spectral function. 

Unlike the phase space integrals (II.7l,II.72) encountered previously which 

transform one Symbol representation into another, this connection between I e 12 

and (EE+)w is noninvertible. This fact is not wholly because (II.188) involves a 

smoothing procedure (note that the definition of e itself is invertible); instead, 

it is a fundamental property of this representation which has its basis in an 

underlying abstract theory. Indeed, the definition (II.l73) was not chosen simply 

because of its appealing physical qualities and the interesting smooth phase space 

density it generates. In most discussions of this formalism, the quantity e(z, k) is 

referred to as the coherent Btate repre6entation2 and it has its primary application 

in quantum theories of radiation and optics. Indeed, this representation (and 

variations of it) have been used by several authors30•31 recently with application 

to quantum mechanics; the intent and results of the present treatment, however, 

will be seen to be quite different. For use in this classical wave theory, I shall 

now give a brief outline of the relevant features of this underlying structure. 

The basic idea here is that e(z, k) is an actual representation of the·field E 

rather than a representation of the operator EEt which was used to define the 

Ordinary and Weyl Symbols. In this sense, it is more closely related to E(z) or 
A 

E( k) because it describes the field by its projection on some set of basis vectors 

in the abstract function space. Let a member of this set of basis functions be 

called ¢> so that in Dirac notation one has the transformation 

• 
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(tPIE) = / dx' (tPiz'Xz'IE) . (II.l89) 

Comparing this to (1[173) with (z'IE) = E(z') and (tPix') = tP*(x'), it is apparent 

that the x-space representation of these basis states tP(x') is given by 

(II.190) 

Evidently, each function tP has two labels, the values of x and k. Thus, each 

tP:z.Jc can be thought of as representing a point in phase space just as the quantity 

jx) represents a point in x-space; a difference is that while the x'-representation 

of jx) is a delta function, the x1-representation (11.190) of tP:z.Jr. is a gaussian 

around x (and it is easy to show that its k'-representation is a gaussian around 

k ). Indeed, these elements tP:z.Jc are often called31 "gaussian basis states" smce 

their projection onto either x- or k-space is gaussian. 

Before discussing other properties of these basis elements, it may be observed 

that the function tP:z.Jr.(Y) satisfies the following differential equation 

[ ~ + rr :Y] <Ji.,.(y) - [ ~ + irrlc] <Ji ••• (Y) (11.1 91) 

With the identification of -i(djdy) as the x-representation of the operator k, it 

is seen that tP:z.Jc is an eigenstate of the operator 

a ltPz.Jr.) = ( ~ + iO"k)ltP:z.Jr.) 
0' 

X . k a=-+ 1.0' 

(11.192) 

0' 

This operator a. IS manifestly non-hermitian and consequently its eigenvalues 

are complex with real and imaginary parts given by xjO' and O"k respectively. 

Moreover, the form of a should be familiar from quantum mechanics where it 

is often introduced (with a factor of 2-! and 0' = vhfmw) as the lowering 

operator in the analysis of the harmonic oscillator. In that application, however, 

the eigenstates ¢z.Jc of a. are usually neglected in favor of the eigenstates of the 
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Hamiltonian, aat. The quantum electrodynamic theory of radiation treats the 

electromagnetic field as a collection of harmonic oscillators and thus extends the 

concept of raising and lowering operators to creation and annihilation operators 

and their product, the occupation number operator (although in the field quan

tization method, a is no longer expressed in terms of x and k). 

It may be shown2 that the basis states ¢J:z.Jc are not orthogonal for different 

labels (x, k); however, the overlap integral of ¢J:dc(Y) and 1/J:r.'.Jc'(y) does diminish 

exponentially as ( x' - x )2 / 0'2 + (1~ ( k' - k )2 increases. It is also a fact that the 

set 1/J:z.Jc is overcomplete2 and this property is responsible for the noninvertibility . 

of (11.188). 

With this brief account of the basic framework of the coherent state repre

sentation, one may proceed to a more elegant derivation of (11.188); in addition, 

this approach provides insight into the origin of this relationship between I c 12 

and (EE+)w. Consider the Weyl Symbol of the spectral operator li/J:z.JcXI/J:z.Jcl, or 

in other words, the Wigner function associated with the eigenstate 1/J:z,/c: 

(¢J:z.lc¢J~.Jc)w(x', k') =Ids 1/J:z.lc(x' + !s)¢J:.Ic(x'- !s)e-ik'• 

1 I I .l 2 . 2 I .l 2 2 = 1r-! 0'-1 ds e-l:z -:z+ 2 •1 /2tr e-1~ -:z- 2 •1 /2tr 

X eilcl:z1-:z+!•l e-ilc(:z1-:z-!•l e-ilc'• 

= 2e-l:z'-:zl2/tr2 e-tr:21Jc'-Jcl2 

(11.193) 

This formula explicitly illustrates the notion that the state 1/J:z.Jc represents the 

point (x, k) in phase space .. Now the results of (11.103-11.105) of Chapter 3 may 

be directly applied by forming the trace of the operator product 
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Tr(!¢:~:.kX¢:~:.kliEXEI) = !(¢:~:.k!E)I 2 = jc(x, k)l2 

jc(x, k)j 2 = j dx' ~~ ( ¢:~:.k¢::k)w(x', k') (EE.)w(x' 1 k') 

= 2 f dx'~~ (EEt)w(x',k')e-(:~:'-:~:121~2 e-~2!k'-klz 
(II.l94) 

and (II.l88) is recovered. 

The interpretation of this expression developed in the preceding Chapter 

is that it is the expectation value of the operator l¢:~:.kX¢:~:.kl in the field E. 

Conversely, it may also be construed to express the expectation value of the 

operator IEXEI in the state ¢:~:.k· This latter translation of (II.l94) implies that 

!c(x, k)j 2 is the measure of the mean amount of field in the unit-area cell in 

phase space centered at ( x 1 k). 

In addition to being a smooth phase space density, jc(x, k)! 2 induces lo

cally averaged statistical quantities as well. Projecting (II.l94) onto x-space by 

integrating over k 1 one ·obtains. 

j :~ !c(x 1 k)l2 = 2 J dx'~~ (EE+)w(x',k')e-f:~:'-:~:12 1~2 J :~ e-~2 !k1 -kl2 

= _l_jdx' e-f:~:'-:~:12/~2 f dk' (EEt)w(x'~k') 
~(/ 2n- . 

=_I_ f dx' IE(x')j2e-f:~:'-:~:12/~2 
~(/ 

= -1-(!E(x)l2 )~ 
~(/ 

(11.195) 

where (11.99) has been used for the projection of (EE+)w. The result is the 

locally averaged (over length Cl) field inten~ity in x-space. The Fourier transform 

of (11.194) gives · 
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(II.l 96) 

again with the use of (II.99). Thus, the local 0"-averaged spatial autocorrelation 

function is 

( ) 
_ (E(x + !8)E*(:z;- !s))~r 

CE x, 8 - . . (IE(z)l2)~r 

= e•2 14112 f dk IE(z, k)l 2 eik• 
f dk IE(x, k)l 2 

(II.l97) 

Evidently, the Fourier transform of IE(x, k)l 2 in (II.l96) has an inherent exponen-

tial decay in 8 which must be corrected for in (Il.l97). 

Similar formulas for the local k-space average intensity and correlation 

function are obtained by integrating and Fourier transforming (Il.l94) over z 

and using the k-projection rules for (EEt)w in (II.lOO}. The results are 

I d:z; IE(z, k)l 2 = 2y";rO"(IE(k)l 2 hJ~r 

I d:z; IE(z,k)l 2 e-;~e;:~: = 2v'1rue-t~r2 ~e; 2 (E(k + !~t)E"'(k- !~t)h;~r 

-(J-(k)h;~r =I dk' f(k')e-~r2(Jc'-Jcl2 
2n-

l 2 2 f dz IE(z, k)i 2 e-i~e;:~: 
CE(k ~t)=e-' 11 

IC 

' fdzl!(z,k)l 2 

(11.1 98) 

Expressions (II.l95-ll.198) explicitly illustrate the result of Wigner20 that any 
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nonnegative phase space density cannot yield the exact z- or k-space intensities 

upon projection; here, locally averaged intensities are obtained although (II.l77) 

may be used to compute the exact intensities from the "density amplitude" 

E(x, k). 

Having discussed some of the important general properties of the coherent 

state representation E(z, k) and its associated phase space density IE(z, k)l 2 , I 

shall now turn to the derivation of the equation (corresponding to (II.l)) which 

governs the evolution of E. As in preceding Chapters, this is most easily achieved 

in a rather indirect fashion, although unlike the methods used previously, I shall 

not introduce a "coherent state Symbol calculus". Instead, I shall first derive 

yet another relationship between this representation and the Weyl formalism so 

that the Weyl Symbol calculus may be immediately applied. 

To this end, consider the form of the definition (II.173) when E is evaluated 

at (2z, 2k): 

(II.199) 

which, although unmotivated and somewhat artificial, can be manipulated with 

the change of variables z' = :c + !s to become 

l 1 I 12 ') E(2z, 2k) = !~r- 4 (]"-! e2 ilc:z: ds E(:c + !s)e-(;z-!~1 f 2a- e-ilu (II.200) 

The form of this integral is much like that used in the definition of Weyl Symbols 

(II.69,Il.98) except that two different functions appear in the integrand. Indeed, 

recalling the definition (II.190) of the coherent state basis functions, this is the 

Weyl Symbol or mixed Wigner function associated with the operator and kernel 

IEX<Po.o I (11.201) 

which is composed of the field E and the "ground state" of the coherent basis 

representing the origin in phase space. Therefore, (11.200) may be written 
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2£(2x, 2k)e-2
ih = (E<P~.o)w(x, k) (Il.202) 

Now that the local Fourier transform has been identified a8 the Weyl Symbol 
I 

of some operator {albeit, with a nonlocal correspondence), the Weyl product rule 

can be invoked to translate the operator equation which governs (E<P6.o) into a 

phase space equation for l'(x, k). The abstract representation-free equation for 

the field is again, from (11.3) 

DIE)= IJ~) (11.203) 

where Dis the dispersion operator and li.) is the field of current sources. Multiplying 

this equation from the left by (<Po.o I, one has 

DIEX<Po,o I = !J~X<Po.o I . (11.204) 

A similar step was taken in the derivation of the equation (11.30) for the field 

spectral operator IEXEI, followed by the introduction of the adjoint of (11.203). 

That step was crucial because it specified that the adjoint or dual element 

introduced in the multiplication was indeed the dual element of the field (EJ. 

Here, in order to complete the specification of the representation, one must 

supply an operator equation for 1</>o,o). This is not too difficult since <Po.o is the 

ground state in the coherent basis; thus, (11.192) holds with eigenvalue x = k = 
0 

ai<Po.o) = 0 (11.205) 

·and its adjoint is 

"' . X . 
(<Po.olai = (<Po.ol(-- tO'k) = 0 

0' 
(II.206) 

Now, multiplying (11.206) by IE) from the left, one finds that the mixed density 

operator must satisfy 

. IEX<Po.ol(~- iCik) = o 
0' . 

(11.207) 
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with a similar expression for the current source lj. X <Po.o 1. The entire set of 

operator equations which correspond to (11.203) for this representation are there

fore 
DIEX<Po.o I= lj.X<Po.o I 

IEX<Po.o I(~ - io-k) = o 
0' 

lj.X<Po.ol(~- io-k) = 0 
0' 

(II.208) 

These operator relations can be immediately written as phase space equa

tions for the corresponding Weyl Symbols using the product or composition rule 

(II. 91) from the previous Chapter. The result is 
. .-. ' 

D(z, k)e!L(E<P~.o)w(z, k) = (j.<P~.o)w(z, k) 
. .-. 

(E<Pb, 0 )w(z, k)efL(;- io-k) = 0 (II.209) 

. .-. 
(J~<P~.o)w(z, k)e!L(;- io-k) = 0 

where the Weyl Symbol of the operator a is simply given by its scalar form since 

it involves no xk products. Finally, the equations for the mixed Wigner functions 
,:, .&. 

(E<P0.0 )w and (j.<P0.0 )w become equations for the correspondii?-g coherent state 

representations E and J. with the use of (II.202). Thus, the first of (11.209) may 

be written 
. .-. 

D(x, k)e'fL E(2z, 2k)e-:2ih = J.(2x, 2k)e-:2ik.:z (IL210) 

which is subject to the conditions provided by the last two of (11.20.9) 
. .-. 

E (2x, 2k )e""'Zik.:z e! L ( .:_ - io-k) = 0 
0' (II.211) . .-. 

J.(2z, 2k)e-:2ik.:z e!L(.:_- io-k) = 0 
0' 

These are the equations which govern the local Fourier transform or coherent 

state representation of the field E(x, k), defined in (11.173). The primary equa

tion (11.210) is driven by the local Fourier transform J. of the current source 



II.4 The Coherent State Representation 

field which is also defined by (II.173) in terms of j.(x). The local dispersion 

function D(x, k) which appears here is not the coherent state representation 

of the operator D (indeed, such a: quantity has not even been defined in this 

presentation); instead, it is the usual Weyl Symbol of D constructed from the 

two-point dispersion kernel under the "centered" Weyl transform (11.69 ). This 

is a (possibly infinite order) partial differential equation for c(x, k) with the 
. .+-+ 

operator e!L defined by (11.91). 

While (11.210) is the basic equation of interest since it contains the informa

tion about the plasma in D(x, k), it must be solved subject· to the conditions 

given in (11.211). Naturally, from the procedure which was used to develop these 

equations, these conditions should be automatically satisfied; that is, if c or 

J. is constructed from E and j. by (11.173), then direct computation verifies 

that (11.211) are satisfied identically. However, if the field E is unknown and 

(11.210) is used to determine c (and hence E, by (11.177)) t,hese conditions must 

be solved in conjunction with (11.210). More generally, if time is included so that 

(11.210) describes the propagation of c in the plasma from initial conditions, the 

subsidiary equations might have to be applied in order that c(x, k; t) remains of 

the form of a local Fourier transform (11.173). 

The discussion of the properties of c(x, k) and its density lc(x, k)i 2 en

courage the investigation of this set of equations; the primary motivation lies in 

the observation that this representation .holds the promise of producing a much 

smoother phase space density, or local spectral function, than found in previous 

formalisms. Thus, if the solution of these equations could be computed in a 

way which involves the geometric optics rays yet did not generate singularities 

at caustics, this analytical or numerical scheme might find application to short 

wavelength wave problems in inhomogeneous plasma (as well as other media) 



II.4 The Coherent Sta.te Representation 

if conventional methods frequently suffer these singularity difficulties. As this 

formulation is inherently a phase space technique, the reliance on the eikonal 

description (and thus, the identification of k( x)) is absent; the possibility exists 

then of applying this method to the construction of chaotic wave fields. In 

addition, this representation offers closer contact with experimentally measured 

quantities (such as the local field intensity, the field correlation and spectral func

tions) since these measurements can always be considered to be coarse-grained 

in some sense, and usually refer to a single realization of the field. 

In an effort to develop a method for solving (11.210), it would be convenient to 

cast£ in a form which automatically satisfies (II.211) so that these c~nditions can 

be discarded. That this is indeed possible will now be demonstrated; however, 

this simplification is made at the expense of introducing the complex variables 

z = -
1 

(.:. + iO' k) 
y'20' 

0' 
x = -·-(z + z) 

V2 

_ 1 (X . k) z =-- -10' 
y'20' 

(11.212) 
-f. 

k = -(z-z) 
uv'2 

Here, z denotes the complex conjugate of z and these two variables have been 

made dimensionless with appropriate use of the smoothing length 0'. Now, 

substituting (z, z) for (x, k) in the definition (II.173) of c(x, k), one has 

.. l t I d"'' E("'')e-i( --~-)(z_:z)(:e'-~_'>(z+zll £(x,k)=c(z,z)=1t'- .. O'-:.. .., .., uv;: y;: 

(II.213) 

Interestingly, the integral really only involves the combination z of x and k. 

Furthermore, the basic equation (11.210) and the conditions (II.211) include the 

multiplicative phase factor e-'J.ik:z:. with £(2x, 2k) so that one should consider 

the form of 
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= e-!zz J(z) 
(11.214) 

Thus, the only dependence on the combination of x ·and k given by z is in 

the gaussian factor exp(-!izi 2 ) and the remainder of c(x, k)e-fh has been 

assembled in the definition of J(z). 

In order to see how these complex coordinates simplify the conditions (II.211),-
+-+ 

the bi-directional operator L should be expressed in terms of (z, z). The form of 

the derivatives with respect to (z, z) follow from (II.212) 

1 ~u 
Bz = --(8z + Bz-) 81c = .-(8z- Bz-) 

uv'2 . v'2 
(11.215) 

+-+ 
and it is easily verified that L becomes 

(11.216) 

+-+ 
As L has been previously identified as the classical Poisson bracket operator, 

this result implies that the change of variables (x, k) -+ (z, -iz) is a canonical 

transformation on phase space, even though it is a complex one. 

Recognizing that the right operand of the requirement (II.211) on c is just 

z, the substitution of (II.214) and (11.216) into this equation produces 

(11.217) 

Expanding the exponential operator in power series, only the first two terms 

survive since the right operand is linear in z; (11.217) becomes 

e-~zz J(2z)[l + ;tJ:B;J z = e-"lzz J(2z)(z- z) = 0 (11.218) 
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Hence, expressing c in terms of ( z, z) in the form (II .214) identically satisfies the 

condition (I1.211) on c and the same treatment of the current source would of 

course relieve the condition on J •. 

Having dispensed with these subsidiary conditions, attention may now be 

focused on the basic equation (11.210) which governs c. In complex coordinates 

(z, z) and with the definition (II.214) this is 

+-~ +-~ 

D(z, :z) et(aza-z-a-zaz, e-zz-z J(2:z) = e-2z-z j.(2:z) 

where the functions of complex variables are defined by 

D(z,z) = D(x,k) 

e-fh J(x, k) = e~!zz j.(z) 

(II.219) 

(11.220) 

For simplicity in the following analysis of this equation I will continue to consider 

only one dimensional scalar fields and I shall now also make the following 

assumptions 

1) D( x, k) is real (corresponding to a real eigenvalue of the hermitian part 

of the dispersion tensor) 

2) J.(x, k) =.0, i.e., no sources are present 

Both of these assumptions as well as the stipulation of scalar fields in one 

dimension could be relaxed in the ensuing disc.ussion although somewhat tedious 

calculations similar to those detailed in Chapter 3 would be required. As the 

procedure to be developed will again involve ordering arguments, the inclusion of 

weak damping and sources should be straightforward at the appropriate order. 

From the outset, the method I shall employ to solve this phase space 

equation differs from that used in the previous Chapter for the Weyl Symbol 

(EE ... )w. In that technique, no assumption was made as to the form of the 

solution and only ordering arguments were invoked to estimate the magnitude 
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of the derivatives involved in the expansion of the exponential operator. Being 

quadratic in the field, it was assumed that (EE''")w would exhibit only a slow 

variation in phase space, similar to the variation of D, so that only the first two 
-~ 

terms in the expansion of ex p( ~ L) were retained. Here, this assumption is not 

valid: inspection of the examples given in (II.178,II.180,II.184) of the form of 

£ ( x, k) indicate that it displays the same rapid phase behavior as the field in x

space from which it was constructed. It must be remembered that the equation 

under consideration (11.210,II.219) governs the "amplitude" £ of the spectral 

density and not j£(x, k)j 2 itself which exhibits a much smoother, positive and 

non-oscillatory behavior in phase space. 

Although a different approach will be used in the following development, the 

application is intended to be the same; that is, I consider short wavelength solu

tions to (11.219) in· a weakly inhomogeneous plasma. Therefore, the conditions 

on the variation of D are again 

(11.221) 

where the scalelength L is to be much larger than a typical local wavelength >... 

For use in (11.219), these estimates should be written in terms of the complex 

variables (z, z) and this is accomplished with (11.215): 

IBzD(z,z)i "-'i(ua~ +iu- 1 B~c)D(x,k)l"' ~~·+i~j 

IB:zD(z, z)l,..... i(ua%- iu- 1 B~c)D(x, k)i"' I (j - i~l 
L r7 

(II.222) 

Thus, the variation of D with respect to either of the dimensionless complex 

variables is the same. Furthermore, I will now take the smoothing length G" to 

be intermediate between the two length scales 

(11.223) 



11.4 . The Coherent State Representati6n 251 

and for concreteness, I shall choose it to be approximately the geometric mean 

(II.224) 

As a consequence, the terms in the magnitude of a)) and 8-zD in (II.222) are 

roughly equal and both quantities are much less than unity. 

Since it has been pointed out that c(x, k) exhibits a rapidly oscillating wave . 

structure on phase space, I propose to solve (II.219) in a manner very similar to 

conventional eikonal methods. That is, the (x, k) plane will be treated .as a two

dimensional configuration space (since in this formalism x and k are independent) 

and the usual WKB techniques will be applied. In this spirit, I assume a solution 

of the forin 

and define the "local wavenumber" in phase space to be 

K (z) = dtp(z) 
dZ 

(II.225) 

(II.225) 

In terms of the ansatz (II.225), it should be recalled from (II.214) that the desired 

solution c(x, k) is 

c(x, k) = l(z, z) = eihe-tzz J(z) 
l :! l-:l l - ·m~-J = e4z -4z -2zz e•..-,z .9(z) (II.227) 

i l' 2 2 :2 2 i<l>( -L( ;.-i.,-k)) ' 
= eihe-4(.:z: ;.,- +.,. lc l e .../2 .9(-j:z(;-i.,-kl) 

As in the traditional eikonal procedure, one should first postulate the ex

pected relative ordering of the derivatives of the wavenumber K (z) and the 

amplitude .9(z). For this, I am guided by the forms of K and .9 found in the 

exact solutions (II.l78) and (II.l84). For the plane wave example (1!.178), it is 

easily shown that c(x, k) expressed in terms of (z, z) is 

(11.:.!28) 
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Setting this equal to the second line of (II.227), the phase 4>(z) is determined to 

be 

(II.229) 

so that by (II.226) K (z) is 

K(z) = v2 a-ko- iz (II.230) 

These formulas indicate that unlike the usual application of the WKB 

method, the eikonal phase and its derivative will in' general be complex in this 

formalism; this could have been expected from the examples given for l in 

which the gaussian waveforms require an imaginary part of the phase. That 

these contributions should be included in the phase (as opposed to being in the 

amplitude g) can be justified by noting the relative sharpness of the gaussian 

peaks in the examples compared to their location in phase space. In the plane 

wave case, inspection of (II.178) reveals a gaussian peak at k = ko of width 

1/a- so that this modulation .has relative scale a-j)..0 ~ 1; this rapid variation 

therefore is appropriately included in the phase rather than in the slowly varying 

amplitude. Indeed, in this case the amplitude g is constant =Eo. 

The magnitude of K in (11.230) is "" a- f>..o which, again, is to be much 

greater than unity by choice of a-. In order for both terms which constitute K 

to be of similar order, one must have that lzl"" lxfa- -·ia-kl ""a-f>..o; or, by 

(II.224), the coordinate x is to be macroscopic "" L and k should also be large 

"" k0 . Thus, this plane wave example suggests that both 41 = K(z) and (z, z) 

be taken as O(a- j>.. "" L/a-). 

These conclusions are supported by a similar analysis of the harmonic 

?scillator result (11.184). Expressing l again in terms of (z, z) one has 

(11.231) 
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.. 

and setting this equal to the second line of (II.227), the phase <P and the local 

phase space wavenumber K are found to be simply 

<P(z) = -in ln z 
-tn 

K(z) =--=--z 
(II.232) 

If K and z are to be of the same order as suggested by the previous example, this 

relation implies that both have magnitude.-.... nt. Indeed, this estimate is consis

tent with the estimates given in (II.l85), which may be translated into conditions 

on z, as well as the fact that the variation scale of (II.231) in the radial direction 

is .......... n-! .-.... K- 1 (as given by the width of the gaussian peak to the radius 

of the classical orbit). Further inspection of the solution (II.l84) reveals that 

the oscill~tions of c in the angular direction have wavelength r- 1 as c ( r, 8) .......... 

njr .......... n-t which is also consistent with the assumed magnitude of K. 

These arguments therefore suggest that in the following· eikonal treatment 

of (II.225) in (II.219), one should take 

u L 1 
~ (z) = K (z) .......... z .......... - .......... - = -

~ (7 € 
'(11.233) 

Once this scale has been set, the variation of K and 9 may be asserted to be of 

lower order (in the usual WKB spirit) 

n>O (11.234) 

Observe that K' .-.... 0(1), as substantiated by (11.230)' and (II.232). These es

timates are accompanied by the weak inhomogeneity assumptions on the plasma 

which follow from (II.222) 

(Il.235) 

~ow (I1.225) can be substituted into (II.219) to obtain 

(11.236) 
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where J. has been discarded as previously discussed. The exponential operator is 

to be expanded in power series (without truncation, as was done in the preceding 

Chapter), the derivatives applied and the relative order of the resulting terms 

to be assessed. The first few terms in the expansion are 

D(z, z).9(2z) + { Dz(z, z)[(iK(2z) ~ z).9(2z) + .9'(2z)] + D-z(z, z)z.9(2z)} 

+ t{ Dz~[(iK - z)2 .9 + 2(iK- z).9' + iK' .9 + .9"] 

+2D z-z[(iK- z)zg + :zg' + ! .9] + Dz::z2 g} 
+ !{ Dzzz[(iK - z)3 .9 + 3(iK - z)2 .9' + 3(iK- z)iK' .9 

+ 3(iK - z).9" + 3iK' .9' + iK" g + .9"'] 
-f. 3Dzz-z[(iK- zfzg + (iK- z).9 + 2(iK- z)z.9' + ziK' g 

+ .9' + :zg"] 

+3Dzz::[(iK- z)z2 .9 + :zg + .9'] + Dzzzz3 .9} + · · · 
(1!.237) 

It should be noted that since the right operand of (II.236) is evaluated at the 

double argument 2:Z, K and g as well as their derivatives should be evaluated 

at 2:Z everywhere they appear in this expansion, just as in the first line. The 

derivatives denoted by primes therefore indicate differentiation with respect to 

the proper argument (here, 2:Z) and the factors of 2 from the chain rule have 

been incorporated in the numerical coefficients as they appear. The arguments 

of D are, of course, still (z, z) and the subscripts denote partial derivatives. In 

addition, the multiplicative phase factors exp(i<P- 2zz) have been divided out. 

Applying the ordering assumptions (II.233-II.~35) to the terms in the ex

pansion ( 11.~37), the lowest order collection is 0 ( 1 ): 
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{ D(z, z) + [(iK- z)Dz + zDz-] 

+ t((iK- z)2 Dzz + 2(iK- z)zDzz + z2 Dz-z] 

+ !({iK- z)3 Dzzz + 3(iK- z)'lzDzzz + 3(iK- z)z2 Dzz-z 
(II.238) 

+z3 Dz-zz] + ... } .9(2z) = o 

where again, K is meant. to be K (2z). The dots indicate that although terms 

only through the third derivatives have been retained, a familiar pattern seems 

to be suggested; that pattern is evidently the Taylor series expansion of the 

dispersion function 

D(z + (iK - z), z + z) = D(iK(2z), 2z) (II.239) 

and hence all the terms in (II.238) can be re-summed and expressed in closed 

fo.rm. The lowest order equation may then be written 

D(iK(2z), 2z),9(2z) = o 
or D(iK(z), z) = o 

(11.240) 

' 
Here, since only 2z appears as an argument, it has been replaced by just z. 

Inspection of (11.237) shows that under the ordering (II.233-Il.235) only even 

powers of E are represented in the expansion. It is interesting to note that this 

fact implies that the true expansion parameter is the physical·· quantity E:.:! I"'<.J 

(r7 / L)('>..jr7) I"'<.J (>..j L) which does not involve the value of the arbitrary smoothing 

length r7 (although the inequality (11.:!23) must still apply). Assembling the next 

higher order 0 (E:.?) terms of (11.237), one has 
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{Dz(z,z) + [(iK -z)Dzz+ZDzz] 

+t[(iK- zr~ Dzzz + 2(iK- z)zDzzz + z2 Dzul + · · ·} .9'(2z) 

+ t{ Dzz + [(iK- z)Dzzz + zDzzz] + · · ·} iK'(2z),9(2z) 

+ t{.Dzz + [(iK- z)Dzzz + zDzu] + .· · ·} .9(2z) = o 
(11.241) 

As in the lowest order equation, the terms have been arranged to suggest the 

appearance of the Taylor series for Dz, Dzz and Dzz around the point (z, z). 

Thus, these can be re-summed as before to give 

Dz(iK(2z), 2z).9'(2z) + ![iK' (2z)Dzz(iK(2z), 2z) 

+ Dzz(iK(2z), 2z)].9(2z) = o 
(11.242) 

which, since all quantities are evaluated at 2z, becomes 

Dz(iK,z)d,9(z) = -:\-[(aD_z) +(aDz) diK(z)].9(z) 
a-z - az )( az -z a-z 

(11.243) 

= -t(dDz)g(z) -a-z 

The results at the lowest two orders of this perturbation method seem to 

imply that the nonlocal nature of the exact equation (11.236) might just be 

an artifact of the differential representation. That is, although the left and 

rig~t operands of (1!.236) are evaluated at different points in phase space, the 

technique of expanding the exponential operator, assuming a solution of the 

form (11.225), differentiating and re-summing terms at each order (assuming 

convergence) finally produces the local equations (II.240,II.243). In this regard, it 

is crucial that all terms in the expansion of the exponential operator be retained 

because the ordering (Il.233) generates low-order contributions at each power of 
+-+ 
L. This is quite different than the truncation procedure employed in Chapter 

..... ;. 
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3, although, of course, the phase space density being treated there was different 

than in the present case. Nonetheless, the relative magnitude of higher order 

derivatives on either c or the Wigner function (EEt)w in the context of an 

, exponential operator expression such as (II.236) has never been investigated 

(above second order) in exactly solvable problems; this is because the examples 

given of the plane wave and harmonic oscillator exhaust the cases for which 

either of these phase space representations can be explicitly constructed. The 

quadratic Hamiltonian of the harmonic oscillator admits no higher than second 

derivatives when inserted in (II.236) or (11.94) (although, being a polynomial in x 

and k, the techniques involving the Taylor series re-summation apply exactly) . 

The evidence provided by the uniform medium example, in which D is only a 

function of k so that only x-derivatives act on G I gives a~ G '"'"" k(i. The ultimate 

justification of the ordering imposed in this analysis, however, must come from 

examining its validity for solutions determined by ~his method. 

The application of "conventional" eikonal concepts to the phase space equa

tion (1!.236) appears to have succeeded thus far; indeed, the lowest order equa

tions (II.240) and (1!.243) turn out to be exactly analogous15•32 to the one dimen

sional equations derived at lowest orders in traditional x-space WKB methods. 

The ordering assumptions (II.233) are slightly different than in the customary 

WKB formulation (although it was shown that the true expansion parameter 

turns out to be the same (X/ L)), and of course the Taylor series re-sum is unique. 

Most significant however, is that the final equations are one complex-dimensional 

describing a wave in the two-dimensional phase space. 

True to the usual lowest order equation, (11.240) is in actuality the Hamilton

Jacobi differential equation for the phase <P(z). To be sure, the one spatial 

dimension analysis has neglected the time dependence of the wave and the 
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dispersion kernel; thus, in this model of a stationary plasma, the field E (and 

consequently, £) has an overall exp{-iwt) time dependence (which factors out 

of the equations) and D(x, k) should be parameterized by the frequency w. 

Accounting for this in (II.240), the eikonal equation is 

D(iK,z;w) = o w = fi(:z, K) (II.244) 

By its construction, this is just the expected local dispersion relation 

D(x, k; w) = D(z, z; w) = 0 w = il(x, k) = ii(z, -iz) (II.245) 

except with z replaced by i K. The reason for expressing fi in terms of -iz is so 

that the dispersion relation is defined in terms of canonical variables; the usual 

Poisson bracket on (x, k) phase space of these variables is 

{II.246) 

as can be verified from the definitions (II.212). 

Following the formalism of Hamilton-Jacobi theory and conventional WKB . 

methods, the differential equation (11.244) may be solved by introducing charac

teristic trajectories. In view of the analogy between {II.244) and (II.245), these 

trajectories are generated by Hamilton's equations in canonical form 

~ aii(:z, K) 
z= aK 

k = _ aii(:z, K) 
a-z (II.247) 

With the introduction of these "rays", it is essential to recognize the implications 

of applying eikonal methods to wave equations in phase space. The traditional 

WKB analysis of x-space wave equations generates ray trajectories in (x, k) phase 

space and the properties of this flow and its projection onto x-space is responsible 

for the form of the short wavelength field in x-space. The phase space in which 

the rays evolve is now the "configuration space" for the present wave equation 

(11.~10,11.236) and, to avoid confusion with the rays generated by (11.247), I 

.. 
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shall refer to them as the "underlying" or "physical" trajectories. The concept 

·of a "local phase space wavenumber", induced by the eikonal phase fJ> and its 

derivative )(, therefore necessitates the consideration of a (z, K) phase space 

above the physical (:z:, k) or z phase space. It is in this "doubled" phase space 

that the trajectories governed by (II.247) evolve. For clarity, I shall refer to the 

( x, k) phase space as U ("underlying") and the "doubled" phase space as P; a 

schematic illustration of this structure is given in Fig. 31. 

Other authors have introduced the concept of a "doubled" phase space33•34 

in connection with equation (II.94) for the Wigner function (EE+)w(x, k). The 

space P considered here, in relation to the coherent state representation, has the 

property that, although it is four-dimensional {for an underlying one-dimensional 

wave problem with a two-dimensional physical phase space U), a complex struc

ture has naturally arisen so that it may be treated as a two complex-dimensional 

space; this is an advantage in both analytical and numerical investigations. A 

logical question may be raised, however, as to the relationship between the trajec

tories generated by. (II.247) in P and the physical rays which evolve in U. More · 

precisely, one should examine the projection of the trajectories in P onto U m 

order to discover any possible correspondence with the physical rays. 

Consider, for example, points in P given by (z, K) --:- (z, -iz). Observe that 

these points are indeed elements of P (because both z and )( are dimensionless 

complex variables) but it is the rather special set above the z plane (U) for which 

)( = (iz)*. Now it is easily shown that the Hamiltonian flow (II.247) preserves 

this relationship, i.e., that K(t) = -iz(t) satisfies these equations.· Thus, one 

has for )( = -iz 

K(z, )( = -iz) = aii(:z, K) 
a:z 

1:=-iz 

which, when (11.215) is applied, becomes 

aii(z, -iz) 
- a:z (IL248) 
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Figure 31. Schematic illustration of the "doubled phase space" P induced by the 
eikonal solution of the phase space equation (II.219). The familiar "underlying" 
phase space U is coordinatized by either real variables (x, k) or the complex 
variable z; this is to be viewed as the "configuration space" of P with the 
complex-valued variable }( being the momentum conjugate to z ("local phase 
space wavenumber"). Orbits in P are projected onto U in order to determine 
their relationship to "physical" ray trajectories. 
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aii(z, -iz) = __ 1 (u an(x, k) + i an(x, k)) 
az v'2. ax . (j ak 

1 ( . i ) = -- -uk(x, k) + -x(x, k) v'2 (j . 

K. (....: K . ) i (±(X' k) . k. ( k)) .. (- . ) z, = -~z = -- +tu x, = -tz z,-tz 
v'2 (j 

Furthermore, at these points ~ is given by 

~(z, K = -iz) -
aii(z, K) 

aK 
K--iz 

. aii(z, -iz) 
=t-~-__;_ 

az 

aii(z, -iz) 
-

a( -iz) 

± . 
-- iuk 
(j 

= i(u an(x, k) _ i.. an(x, k)) 
ax (j 8k 
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(II.249) 

(II.250) 

The logical interpretation of this calculation is then as follows: at all points 

in P where }( = -iz the flow is given by K = -iz(z, -iz) and~= ~(z, -iz) 
' 

so that by the uniqueness of solutions of Hamiltons equations, K(t) = -iz(t) 

along trajectories which pass through these points. Moreover, identifying the 

real and imaginary parts in the last line of (II.250) shows that the projection z( t) 

of these rays onto the z plane U reproduces the physical trajectories. 

The conclusion to be drawn here is that all of the "physical" orbits in the 

underlying phase space U (generated by the usual dispersion relation D(x, k)) are 

contained in the projection onto U of all trajectories in the "doubled" phase space 

P generated by ii(z, K). The special class of trajectories in P which participates 

in this correspondence are those which lie on the two-dimensional manifold given 

by }( (z) = ( iz)* or 

- X Rez = --
uv'2 

-uk 
lmz= --

v'2 
Re K = uk 

v'2 
-X 

Im K = - (11.251) 
o-V2 

In other words, the projection onto U of the flow in P restricted to this manifold 

produces a flow in U; this should be compared with the projection onto x-space 
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of the flow in phase space lJ., which does not result in a flow. Therefore, one 

, would expect that the construction of c along the "physical" trajectories in 

lJ. should be free of singularities because these "configuration-space" orbits are 

divergenceless. 

The projection of all other trajectories m P (i.e., those for which K :;i: 

-iz) onto lJ. are "unphysical" in the sense that they do not correspond to 

possible orbits in lJ. generated by fl(x, k). One may conclude from the foregoing 

discussion of the "physical" trajectories that these "unphysical" paths in lJ. are 

important for the construction of c in the "non-classical" regions of (x, k) phase 

space off the classical orbit. That is, at a fixed value of the frequency w, the 

projection of the frequency surface w = fi(z, K) in P onto lJ. will produce the 

"physical" orbits, which lie on the frquency manifold w = il(x, k) in U., as 

well as "unphysical" trajectories which are not on this manifold. Naturally, all 

"physical" and "unphysical" orbits are important since c should be constructed 

everywhere in phase space lJ. in order to reconstruct the field E in x- or k- space 

by yet another projection. However, the examples given indicate that in the 

short wavelength limit, c decays rapidly away from the classical orbit so that in 

practice, perhaps only the "physical" rays and nearby "unphysical" trajectories 

(for broadening) need be considered. 

One further point should be made in regard to the lowest order equation 

(II.240). As this equation determines a Hamiltonian system of rays in the 

(z, K) phase space P, it is worthwhile to observe that these rays have the same 

integrability properties as the underlying Hamiltonian system on (x, k) phase 

space. From a practical analytical standpoint this means that, for a wave 

problem in more than one dimension, if a set of invariants {I} can be found so 

that in the traditional eikonal method the branches k(xjl) may be determined 
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(at least implicitly), then in terms of the complex variables on (:z:, k) phase space, 

one may also determine z(zll) in principle. Since the system in P is related to 

the system in U by just replacing z by iK, these relations imply that }( (zil) and 

hence P(zll) may be constructed without following trajectories as discussed in 

Part I. Indeed, this is themethod which will be used in the examples that follow. 

As previously remarked, the equation derived at next order for the amplitude 

.9(z) is very similar to the corresponding equation typically found in conventional 

:z:-space WKB treatments. Indeed, (11.243) may be rearranged and more com

pactly expressed as 

.!!_[g2 (z)(
8

jj)(iK(z), :z)] = o 
dZ· . 8z 

(11.252) 

The notation here for the partial derivative Dz means the derivative of D(z, z) 

with respect to z evaluated at z = iK(z); thus, this is simply 

![ g2 (:z) :~ (iK(z), z)] =0 

Being subject to the lower order solution, the usual relation 

(
BD(iK,z;w)) = -(aii(z, K)) (aD(iK,z;w)) 

8}( 'i.r.~ 8}( 'i.r.~ · ow 'i.X 

applies so that (11.253) may be written 

~ [ g2 (z) z(z, }( (z)) Dr.~(iK (z), z; ii(z, K (z))) l = 0 

where (11.247) has been used to introduce z. 
Evidently, the solution of the amplitude equation is 

[ ]
- :\-

. .9(z) ,_ z(z, K(z)) Dr.~(iK(z), z;ii(:z, K(z))) -

(1!.253) 

(11.254) 

(11.255) 

(11.256) 

which has an intuitive physical interpretation when compared to the amplitude 

solution for traditional :z:-space WKB in one dimension. In that formalism, it 
l 

is typically found that the x-space amplitude is proportional to [i:(:z:, k(:z:))]-:.! 



II.4 The Coherent State Representation 

which diverges near turning points where the z-space ray velocity vanishes. 

Similarly, the expr~ssion in (11.256) tends to infinity near fixed points in phase 

space where the phase space velocity vanishes: 

~(z, K(z)),....., (u- 1 x- iuk) = o (II.257) 

In VIew of the foregoing discussion of the "physical" and "unphysical" 

trajectories in the (z, k) phase space U which result from the projection of 

the rays in the (z, K) space P, there are two categories of points z in U for 

which (II.257) is satisfied. The "physical" fixed points are where x = k = 0 

as determined by the underlying dispersion relation n(x, k) (the same points 

given by ~(z, K) = 0 with K = -iz) and are unique, separate phase space 

trajectories (i.e., not points visited by other or bits). This is quite different than 

the case of traditional WKB, where turning points (responsible for divergent 

amplitudes) are experienced by almost all orbits in z-space. Therefore, if c 
is to be constructed along classical ray orbits in phase space, the fixed point 

trajectories could be neglected and the worst case would be that the amplitude g 
would grow (remaining bounded) as an orbit passes near a fixed point. A further 

consideration is that, since the phase P is complex, the amplitude singularity 

at and near a fixed point may in practice be eliminated automatically by the 

behavior of exp(iP) in that region of phase space.· An example of this is provided 

by the harmonic oscillator c(x, k) which is finite (even for n = 0) at the fixed 

point at the origin. 

The existence of fixed points among the "unphysical" tr:ajectories could 

provide trouble for numerical applications of this method. Again, however, 

the examples given indicate that £ is quite small in magnitude away from the 

classical orbits so that one should not expect singularity difficulties in the non

classical regions of phase space. In addition, it was pointed out previously that in 
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the short wavelength regime, it may suffice to construct c only in the immediate 

neighborhood of the "physical" trajectories in order that the projection onto 

x-space be reasonable. 

To illustrate the techniques introduced to this point, I will apply them to 

two examples. The first is the simple case of a plane wave in a uniform plasma 

with a local dispersion relation given by 

D(x,k;w) = D(k,w) = 1-(w2 jk2
) = 0 

::} w = ±ko = il(k) = k 
(II.258) 

where the phase velocity of the wave is taken to be unity. In order to begin, the 

dispersion relation n must be expressed in terms of the complex variables (z, z); 

using (II.212) and choosing the positive frequency wave, this is 

.. -t 
ko = il(z, -iz) = -(z- z) 

uv'2 
(11.259) 

Now the Hamiltonian in the "doubled" phase space (z, K) is obtained by 

just replacing -iz by K in (II.259): 

,. ,.. -t 
ko = il(z, K) = il(z, -iz- K) = -(iK- z) 

uv'2 
(II.260) 

which generates the trajectories 

. aii 1 
z=-=--

aK uvlz 
. aii -i 
K=--=-

oz . u\1'2 
(II.261) 

Translating the first of these into terms of (x, k) and identifying real and imagi

nary parts, the usual trajectories in phase space are recovered 

. 1 x . 1 
z= -(- -iuk) = --

\1'2 u u\1'2 
±=1, k=o (11.262) 

Thus, since z evolves independently of K, the projection of all trajectories in P 

onto U are "physical". The solution of (II.261) for K(t) is simply 

it 
K(t) = Ko--

uvlz 
(11.263) 
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which may be used to show that if K0 = -iz0 then 

K ( ) -i ( x0 . k ) it -i ( x( t) . k ) . ( ) t = - - + u7 0 - -- = - - + u:r 0 = -tz t 
v'2 (f (f v'2 v'2 (f 

(II.264) 

by (II.262), as expected. 

In order to construct £, first use (II.260) to determine K (z) and then in

tegrate to compute the phase <P: 

K (z) = uv'2 k0 - iz = d<P(z) 
. dZ 

<P(z) = jr: d.? K (z') = uv'2 k0 z - f z2 

(11.265) 

Comparison of these expressions with (II.229,II.230) reveals that these are the 

exact forms of K and P which are obtained by constructing £ as a. local Fourier 

transform of the plane wave (note that since 'Eisa constant (11.262), the amplitude 

g is also constant according to (II.256)). Therefore, apart from a. multiplica

tive constant, it is apparent that this eikona.l method of computing £ will 

produce the exact expression (11.178). 

The success of the phase space eikona.l method in this simplest of examples 

IS not surprising, although it does demonstrate two important points: so far, 

the theory seems to have no glaring errors, and it is capable of constructing a. 

smooth waveform in two dimensions (complexifi.ed phase space) which exhibits 

oscillations along the phase space ray with gaussian modulation transverse to 

the ray. Of course, conventional WKB methods experience no difficulty when 

applied to this problem and also produce the exact solution; there are no caustic 

singularities since all x-spa.ce trajectories are straight lines which do not focus. 

For this reason, the application of the phase space analysis seems inordinately 

cumbersome and unnecessary. 

An example in which this technique is able to display its possible relevance 

and application is provided by the following problem. Consider the one dimen-

• 
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sional dispersion function 

w;(x) k2 c2 

D(x k· w) = 1 - -- - -. - = 0 ' ' •) •) w- w- (II.266) 

=} w2 = il2 (x, k) = k2c2 + w;(x) 

which describes the propagation of an electromagnetic wave in a stationary 

plasma with local plasma frequency we(x). Specifically, let we(x) be given by 

(II.267) 

which models a density depression in the plasma as a quadratic well with scalelength 

· L. Inserting this definition into (II.266), the local dispersion ''relation is 
•) ') 

., 2 ( ) ., 2 ., W(j x-
w- = fl X k = w- + k c- + --

' 0 £2 
(II.268) 

The Joe~! wavenumber k(x) of the geometric optics rays may be determined 

from the dispersion relation (II.268) 

[( ., ., ) ( ., ., I ., ) l ~ ck( X) = ± w- - Wo - Wo x- L- 2 (II.269) 

which is real only for lxl < xo, xo = iQ(w2
- w~) ~;thus, the rays are trapped 

in x-space between the turning points ±xo. 

Evidently, as there are no xk products in (II.266), the dispersion function 

D(x, k; w) with (II.267) is the Symbol of a differential operator which in the 

x-space representation is 

D(x,k;w) +-+ 

.rl w2 w2 _ w2 
a· o '> 0 

- -d -., + -.,-L-'' x- - ---:-.,--'-
x- c- "' c-

(II.270) 

This operator implies that the underlying wave equation (ILl) is 

-- + - 0 x2 E(x) = 0 E(x) ( 
d2 w2 ) w2 - w2 

dx2 c2 £2 c2 
(II.271) 

which is the eigenvalue equation for the normal modes corresponding to the 

bound ray trajectories. More than that, this wave problem and the associated 

ray Hamiltonian (1!.268) are formally equivalent to the quantum and classical 
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mechanical harmonic oscillator problems. The correspondence can be made by 

identifying the quantum oscillator length parameter o: as 

wo 
cL 

(11.272) 

and therefore, the familiar results may be carried over directly: the eigenvalues 

Wn are 
•") •) 

2( l)- w~- Wi) 2o: n + ., - ·) 
- c-

(11.273) 

while the eigenfunctions are given in (11.182) with the appropriate value of o: 

from (11.272). 

Again, in order to implement the phase space eikonal method of solving this 

problem (or more precisely, the corresponding phase space equation (11.210)), the 

first step is to perform the complex canonical transformation (x, k) - (z, -iz) 

on the local dispersion relati<;m (11.268). The result is 
•) 

fi-(z, -iz) = w~ + !c2o:2[(z2 + :z2)(o:2 112 _ o:-2 11-2) 

+ 2zz(a2 u2 + o:-2 u-2 )] 

(11.27 4) 

The next step in the procedure is to replace z by iK in this expression to obtain 

the Hamiltonian on the (z, K) phase space P. However, since the smoothing 

length u is arbitrary (within the limits (11.223) for the theory to be valid), a 

suitable choice here will extremely simplify the algebra. Thus, specifying 

•) -·) c 
u- = o: - = -L r-v AoL (11.275) 

wo 

not only provides a smoothing length which is the geometric mean of the wave 

and density scalelengths (as desired by (11.224)), but also allows the Hamiltonian 

to be written simply 

•) 

fi- (z, -iz) = wg + 2c2 o:2 zz (11.:!76) 
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Now in P, the ray Hamiltonian is 

•) 

w2 = fi-("z, K) = wg + 2ic2 a 2 zK (11.277) 

which may be promptly solved for the local phase space wave number K (z) 
. •) •) 

1. w-- w0 K (z) = - = -
2
-.) -.,..::._ 

z c-a-

and hence, the phase <P(z) is 

The amplitude ,9(z) requires 

. ( ( ) a fi . ., ·) z z, K z) = BK = 2?.c-a.-z 

8D w;(z) + k2 c2 2 
- = -2 = --ow w3 w 

and is, by (IL256), 

Finally, collecting (II.279) and (11.281), the solution for l(z) is 

l(z) = .9(z)ei<f>izl 
. •) •) ! w-- w-

'"'-J z- exp( 
2 

., .,0 In z] 
c-a-

') •) 

w-- w0 1 
p = 2c2 a 2 -.2 

(11.278) 

(11.279) 

(11.280) 

(11.281) 

(11.282) 

The form of this result is interesting .from the standpoint of the theory of 

analytic functions of a complex variable: in order that l(z) be single-valued on 

the complex phase space, the exponent pin (11.282) must be an integer. In effect, 

this requirement plays the role of a phase space quantization condition for this 

system and yields 
·') ·) 

w-- w0 1 

2 
.• •) c-a- 2 

=n 
(11.~83) 
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From the definition (II.227), the phase space density amplitude E(x, k) is there

fore 

(1!.284) 

This is a striking result in that it is exactly the form which would be 

computed by direct local Fourier transform (II.l73) ofthe exact eigenfunctions 

(the multiplicative constant in (II.284) can be determined from the normalization 

condition (11.175) if desired). This in turn implies that the exact eigenfunctions 

are obtained when (11.284) IS projected by (II.177) onto either x- or k-space; 

indeed, the integral which IS involved serves as an integral definition of the 

·Hermite polynomials.2g 

Evidently, the phase space eikonal technique has again demonstrated that 

it is capable of treating a two-dimensional (phase space) wave equation with a 

one complex-dimensional formalism. In fact, it provides the solution for E not 

only in the "classical" region of phase space explored by the rays, but in the 

"nonclassical" region off the trajectories as well. Moreover, these two regions are 

treated on the same footing (as opposed to the piecewise formulation of tradi

tional WKB) so that, at least in these examples, no "boundary layer" matching 

analysis is required; in part, this feature is due to the use of a complex phase 

<P defined on the complexification of phase space. The· result in this harmonic 

oscillator example, however, suggests several new· aspects of the method: 

1) The most remarkabie feature of the solution (11.284) is of course the fact 

that it is exact. This should be compared with the results of conventional WKB 

techniques applied to the same problem, where the spectrum is obtained exactly 

but the eigenfuctions are determined in their asymptotic form, and then only 

piecewise due to the caustic singularity at the turning point. The construction 

of E in phase space, true to what might be expected of a phase space method, 
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encountered no singularites except the existence of a branch point at the origin, 

which is also a fixed point for the ray system. Thus, since the exact phase space 

representation of the wave function is computed in this procedure, its projection 

onto x-space produces the exact x-space representation over all x, complete with 

decaying amplitude outside the turning points, oscillations between them and 

significantly, maximum amplitude (but no singularity) in the neighborhood of 

the turning points. In this respect, the phase space eikonal technique is more 

accurate and more complete than conventional WKB methods. 

Naturally, one should not place too much emphasis on a result obtained in 

the example of the harmonic oscillator. This is especially true with regard to 

the present formalism as it is based on the introduction of complex variables 

which (for suitable choice of u) are intimately related to the harmonic oscillator 

Hamiltonian. Indeed, the entire coherent state representation is generated by the 

eigenstates of the lowering operator which, together with its hermitian conjugate, 

permits the elegant factorization method of solution of the quantum mechanical 

harmonic oscillator problem. However, it may be significant to recall that the 

phase space technique also provided the exact solution to the plane wave (free 

particle) problem for which the Hamiltonian is not so nicely expressed in terms 

of these fundamental operators. 

2) The specification of the smoothing length (II.275) in order to simplify 

the calculation raises a question as to the generality of the results even within 

the context of this single example. In the plane wave case there is no need to 

specify u and the method of solution, as the well as the functional form of the 

result, is independent of its value; however, in that example there is only one 

scale (the wavelength) whereas in the harmonic oscillator there are two (>.. and 

L). This difference also affects the construction of l by local Fourier transform 
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of the x-space waves in both cases: the plane wave integral (II.l78) proceeds 

independently of the smoothing length whereas, even though the functional form 

(11.183) of the exact E for the harmonic oscillator may be computed for any value 

of <7, it is simplest to make the identical choice (11.275). 

The phase space eikonal method can be carried through for arbitrary a in 

this case since (11.27 4) is only quadratic. Now however, K (z) has two branches 

and the question of which to use (possibly both) is in this instance settled by the 

fact that when the corresponding phases if! are computed, one branch cau'ses E 

to diverge as the radius in phase space lzl -+- oo. Keeping just the finite branch 

produces a solution which is. not equal to the exact constructed form for the 

same value of <7. In fact, the functional form is complicated enough so that it is 

not immediately clear that applying the analytic condition of single-valuedness 

will result in a quantization condition, much less the correct one obtained in 

(11.283). Without such a quantization condition it is difficult to compare the 

eikonal solution with the exact expression. 

Of course, for this theory to be accepted as a reliable method for solving 

short wave problems, it should produce certain physical results independent of 

the choice of smoothing length a. As illustrated in the case of the harmonic 

oscillator, a system with more than one scalelength can be expected to possess 

wave fields whose phase space representation (local Fourier transform) depends 

on a both in form and in method of construction. However, in the sense that 

the projection rule (11.177) is independent of a, this may not be a physically 

significant defect if the desired result is the form of the wave field in x-space. 

Thus, different values of a can be expected to produce different forms of E 

when the phase space eikonal technique is applied, and these will be in general 

just approximations to the exact form for each value of a. The projection of 
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these u-dependent approximations to E can be expected to provide u-dependent 

approximations to E( x) and in practice one would like to develop some rule for 

choosing a smoothing length so that this approximation is optimized. Such an 

optimum value for the harmonic osciilator is apparently the one chosen in the 

preceding discussion, and it represents the geometric mean of the two natural 

scalelengths of the system. Evidently, the compatibility of the smoothing length 

with the disparate scalelengths present in a system and its influence on the 

construction of the best approximate solution for the wave field, both in phase 

space and x-space, is an issue which will require closer attention before this 

method is successful. 

3) Related to the preceding point, one may question whether the projection 

of an approximately constructed phase space function E with arbitrary u will 

produce a uniform approximation to the x-space wave, or will the projection 

produce singularities at the turning points (as does the asymptotic Wigner 

function) or perhaps elsewhere. This possibility has not been investigated for the 

general case and I rely only on the evidence presented here by the examples; that 

is, in those cases the phase space eikonal technique demonstrates the capability 

for determining a phase space density which is smooth and which incorporates 

the wave-like broadening off the ray manifold on an equal footing with the 

oscillatory behavior on the manifold. It is this "nonclassical" wave broadening in 

phase space which will prevent projection singularities at caustics and thereby 

permit the uniform description of the x-space field without this interruption. 

Again, however, the existence of this feature of the representation should be 

verified in other cases before one places much confidence in this eikonal method. 

4) In spite of these questions of interpretation and application of the phase 

space eikonal method, it may be verified that, at least in the present harmonic 
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oscillator example, the ordering hierarchy (11.233,11.234) is justified. Of course, 

the reason for choosing ifl = K "' E- 1 in the first place was in part based on 

the exact result in this case, so that it is no surprise that (II.278,II.279) satisfy 

this estimate. However, the amplitude g (z) given in (11.281) is easily shown to 

be more slowly varying 

1 d,9 1 
--l'""o.J-I'""o.Jf 
gaz z (II.285) 

as expected, and all higher derivatives similarly follow the assumed En behavior. 

5) The relationship between the quantization condition for the harmonic os

cillator and the analytic single-valuedness criterion is another remarkable result 

of the application of this method to the harmonic oscillator·. It would be inter

esting to explore its generality, although of course it should first be investigated 

in regard to the arbitrary-a- solutions for the same problem. Thus, while the form 

of E is to an extent understandably dependent on the smoothing length (even for 

an eigenfunction), the quantization condition is an example of a physical result 

which should be independent of O". 

Another curious aspect of this derivation of the quantization rule is the 

way in which the ground state correction factor of ! arises. In the usual WKB 

analysis this factor appears because of phase matching conditions at the two 

turning points, while in the modern EBK theory, it is the Maslov index (due 

to the matching of alternate x and k representations of the wave around the 

classical ray orbit in phase space, i.e., the irreducible circuit of the torus). Here, 

however, the factor of J arises as the contribution of the amplitude ,9(z) f'"Oo.J 

(z)-! to the exponent of z in the final form (11.282) of l(z). It may be that 

there is a connection between the standard interpretation of this factor in terms 

of the influe.r;J.ce of caustics and the effect here of the phase space amplitude 9 
which has a square. root singularity at the fixed point encircled by the classical 
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orbit. 

Since the contribution of the amplitude g to the quantization condition is 

negligible as (n ~ oo), a possible practical implication for this method is that the 

amplitude might be ignorable altogether. In the case of the harmonic oscillator, 

the single-val uedness condition would still apply (resulting in the· quantization 

condition (11.283) without the ! ) while the form of [ would remain the same 

,...,_, zn. That both the oscillatory and modulated features of the phase space 

representation [ are present, even without including the amplitude g, is of 

course due to the complex-valued phase <P. Now, however, no singularities will 

be encountered in the construction of [ since these arise as the effect of fixed 

points on g. 

6) Finally, it should be noted that the method of solution employed here did 

not in either example rely on the construction of the "physical" or "nonphysical" 

trajectories generated by the Hamiltonian fi(z, K). This is because in the simple 

one-dimensional models examined, the dispersion relation was easily inverted 

to determine )( (z) and subsequently the phase <P(z) by integration. However, 

due to the complications introduced by the complex canonical transformation 

( x, k) ~ (z, -iz), this inversion cannot be performed explicitly even for other 

simple one-dimensional systems (consider the pendulum Hamiltonian, for which 

a transcendental equation for )( (z) results). For most systems then, these trajec

tories will have to be introduced in order to determine the phase <P. Now, im

portant issues are raised in regard to appropriate initial conditions in the (z, K) 

phase space (for unbound systems) or the determination of quantization rules 

·(for bound systems) in terms of the orbits either in the "doubled" phase space or 

in the physical one. Furthermore, since any practical application of this method 

to the investigation of wave propagation (or normal modes) in plasma would 
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entail the use of much more complicated dispersion relations (ray Hamiltonians) 

than considered here, the translation of these ideas into a tractable numerical 

procedure will be necessary. 
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5. CONCLUSION 

The purpose of Part II was to develop the concept of the phase space 

representation of a wave field and to discuss its possible application to the study 

of short wavelength waves in nonuniform plasma. The motivation for introducing 

this formulation of plasma wave theory is provided by the recognition that 
A 

certain features of a short wavelength field E(x) in x-space (or E(k) in k-space) 

can be understood in terms of the properties of the ray trajectories generated by 

the geometrical optics solution of the wave equation. The rays evolve according 

to Hamilton's equations (with the local dispersion relation for the Hamiltonian) 

in the ray phase space ( x, k) and, in the cases where eikonal theory is valid, it 

is the projection of these rays onto x-space which is responsible for the spatial 

variation of field intensity. More precisely, the properties of the x- or k-space 
A 

representation (E(x) or E(k)) of short wavelength fields for regular normal modes 

(bound, integrable ray systems) and propagating waves are determined by the 

manifold in (x, k) space upon which the rays evolve and its projection onto either 

x- or k-space. 

The phase space representation of a wave is a method for constructing a joint 
A 

function 'll(x, k) on the ray phase space from E(x) or E(k). Such a description 
' 

of the wave is not unique, and Part II has explored three possible candidates. 

Along with the development of each formalism has evolved a set of criteria which 

an appropriate representation should be expected to satisfy in order that it be 

useful in the investigation of short wavelength fields: 

A) A suitable representation 'll(x, k) should, in some sense, be supported 

by the rays in phase space. In other words, the magnitude of 'll(x, k) should be 

large in the region of phase space explored by the rays associated with the wave 

(e.g., in the neighborhood of the ray manifold) and small in other regions. This 
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is to ensure the faithfulness of the representation in accurately describing the 

local spectrum, i.e., the values of k present in the wave at the position x. 

B) The preceding condition should be softened to the extent that Ill( x, k) 

IS a smooth function on phase space. Thus, although its support should be 

dominated by the rays, w(x, k) should exhibit a wave-,Jike broadening into the 

"non-classical" regions of phase space near the rays. This is the difference 

between the classical Liouville density associated with the rays and a useful 

phase space representation of the wave: the projection of the purely classical 

ray manifold onto x-space produces the purely classical result with caustic sin

gularities in the amplitude as encountered in the geometric optics solution. For a 

proper non-singular description of the wave field in the short wavelength regime, 

the broadening of the ray manifold in phase space must be included. 

C) Of course, an important requirement on any phase space representation is 

that it may be given a physical interpretation. The most closely related quantity 

of physical interest is the spectral tensor ~ (,&, w) commonly defined for waves in 

a homogeneous, stationary plasma, and it is the extension of this concept to a 

nonuniform medium for which the various candidates w(~, t, If, w) are intended. 

Indeed, it is just the definition of what is meant by "local spectral tensor" 

which is ambiguous and which leads to the introduction of different phase space 

representations of the wave field. Certain features of the uniform spectral tensor 

should be retained under this extension to the nonuniform case: it is a hermitian 

tensor, quadratic in the field, and its definition generally involves some sort of 

averaging procedure (usually, an ensemble average). Among other things, these 

imply that for scalar fields, the spectral function is a positive density on phase 

space. 

An integral part of the formalism for each phase space representation IS 
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the derivation of its governing equation based on the underlying wave equation. 

Then, if the properties ofthe representation are compatible with the preceding 

requirements, one may investigate whether the phase space equation it satisfies 

is amenable to solution, especially in the short wavelength limit. Because of 

conditions A and B, one hopes that a method of solution can be found so 

that 'lf(x, k) is constucted in terms of the ray trajectories in phase space; if 

this is possible, it might be expected that this procedure would encounter no 

singularities since the rays in phase space do not focus. In other words, the 

projection onto x-space for the determination of E(x) would be subsequent to the 

construction of a 'll'(x, k) which, in a sense, represents the wave-broadened ray 

manifold. Such a description of the wave problem could then have the following 

applications: 

1) Construction of short wavelength wave fields in x-space with traditional 

WKB techniques will in general encounter caustic singularities and therefore 

it must be done in a piecewise fashion in separate regions with matching. In 

more than one dimension, the nature of the boundary layer solution in the 

neighborhood of these singularities may become much more complicated than the 

typical Airy function behavior of one dimensional turning points; an abundance 

of these singular events might drastically reduce the e~ciency and practicality 

of numerical application of conventional eikonal methods. In these cases it may 

prove feasible to compute the phase space representation 'lf(x, k) in order to 

avoid singularities and possibly produce a uniform approximation to the field 

everywhere upon projection onto x-space. In addition, this technique would 

supply both x and k information. 

2) On a more fundamental level, it may be recalled from Part I that the 

relationship between short wavelength normal modes and rays is unknown for 
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a system whose rays are bound but nonintegrable; there is no theory for the 

asymptotic quantization conditions for such irregular modes. In these cases, it 

may be that the construction of a suitable phase space representation 'll(x, k) 

from its own governing equation will shed some light on these questions. In 

the same spirit, the investigation of the nature of '1/(x, k) may prove useful for 

propagating wave systems whose rays separate exponentially. 

The first example of a phase space representation introduced In Part II 

was called the Ordinary Symbol (EE+)(x, k) of the wave field. This terminol

ogy acknowledges the mathematical formalism surrounding the treatment of 

pseudodifferential operators, and it· was shown that such operators naturally 

appear in wave theory for a nonuniform plasma. The calculus of Ordinary 

Symbols was derived as the translation of the abstract operator algebra into the 

corresponding operations on phase space functions. In this method, (EE.)(x, k) 

is the Ordinary Symbol of the abstract spectral or density operator IEXEI and is 

thereby quadratic in the field, as desired by condition C above. Application of 

the Symbol calcuius to the abstract representation-free operator expression of the 

wave equation provided a rapid derivation of the exact equation for (EEt)(x, k). 

As discussed at the end of Chapter 2, however, this representation has 

serious difficulties in meeting the other suggested criteria for a suitable spectral 

density. For example, the Symbol (EEt)(x, k) is non-hermitian (inherently 

complex for scalar fields) hy its very definition in terms of the field E(x). The 

entire Ordinary Symbol calculus has many features which render it unacceptable 

for application to plasma wave theory; most of these are due to the use of an 

"x-uncentered" transform which produces an unsymmetrical treatment of x and 

k not compatible with a Hamiltonian ray theory. In addition, the asymptotic 

form of (EE+)(x, k) exhibi.ts the caustic singularities of both the x- and k-

• 
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space representations, and hence remains large far into non-classical regions of 

phase space (Fig. 30). This formalism therefore violates the intuitive physical 

expectations A and C set forth above, although it does provide the simplest 

introduction to the methodology of phase space descriptions. 

An improvement over the Ordinary Symbol is achieved by considering the 

related formalism of Weyl Symbols. The Weyl Symbol of the field (EE+)w(x, k) 

is again based on the spectral operator IEXEI (quadratic in E) but it is con

structed with an "x-centered" transform of the field E(x); this was immediately 

recognized as the tensor generalization of the Wigner function introduced in 

Part I. The "centered" transform leads to a spectral density which is hermitian 

and to a much more symmetrical treatment of x and k; in fact, the familiar 

Poisson bracket of Hamiltonian ray theory appears naturally in the Weyl Symbol 

calculus. 

These promising qualities thus encouraged the further investigation of the 

exact phase space equation which governs (EEt)w(x, k) and, under ordering 

assumptions compatible with conventional eikonal theory, this equation was ex

panded and solved at the lowest two orders. The lowest order result demonstrated 

that, in the short wavelength limit, the Weyl phase space representation of the 

field is confined to the frequency surface in phase space. The next order equation 

was manipulated to provide a concise derivation of the wave kinetic equation 

governing the propagation of the wave action density along the rays in phase 

space. 

These consequences of the Weyl Symbol formalism have mixed implications 

for the suitability of the Wigner function as a useful phase space representation. 

Evidently, (EE+)w(x, k) is supported by the rays in phase space and the wave 

kinetic equation provides a method for constructing its "amplitude" along the 
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rays without singularities. In this approximation, however, the formalism per

mits the computation of the Wigner function only in the "classical" region of 

phase space (that explored by the rays) and, therefore by B abo:v:e, will produce 

singularities in E( x) upon projection onto x-space. Short of including higher 

order "wave-like" corrections to this prescription (if practical), this phase space 

representation is almost "too classical"; that is, it is not naturally adaptable for 

a proper wave- broadening of the ray manifold so that singularities in x-space 

may be avoided. 

The final candidate for a phase space representation discussed in Part II 

was introduced as a smoothed local Fourier transform and was later identified 

as the coherent state or Glauber representation of the field. Unlike the previous 

Symbol formalisms, this phase space description c(x, k) is linear in the field 

(a true representation of the field) although it should be thought of as the 

complex amplitude of the real non-negative phase space density ic 1
2 (x, k). It 

was shown that I c 12 ( x, k) is the local phase space average of the Wigner function 

(EE+)w(x, k) and therefore already promises compatibility with conditions B 

and C above: it manifestly incorporates an averaging procedure (albeit, not a 

field ensemble average) and its coarse-graining of the Wigner function provides 

broadening of the ray manifold. 

A further connection with the Weyl Symbol formalism permitted the use of 

that Symbol calculus for the derivation of the equation which governs c(x, k). 

In this case, a generalization of the conventional eikonal method applied to this 

phase space equation supplied a prescription for solution: the crucial ingredients 

of the technique are the use of a complex eikonal phase and the imposition of a 

complex structure on phase space. The result of these measures is· a procedure 

for constructing c(x, k) which treats the "classical" and "non-classical" regions 
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of phase space on the same footing and at the same order; l(x, k) is computed in 

terms of the rays on the ray manifold and in terms of "unphysical" trajectories 

off the manifold. In special examples, the approximate technique produces exact 

results with no singularities in phase space and therefore exact results with no 

singularities when projected onto x-space. 

As encouraging as the indications of Chapter 4 are, the coherent state repre

sentation also presents several problems with interpretation and implementation. 

The apparent arbitrariness of the spatial smoothing scale seems to cast doubt 

on the robustness of the results and no prescription is given for its optimization. 

The full implications of the "doubled phase space" and the "unphysical" trajec

tories in regard to actual computation of l(x, k) have not been investigated here; 

they certainly require a deeper understanding to be useful in a numerical scheme. 

Nevertheless, the possibility exists that with the use of this technique (or perhaps 

a numerical adaptation of it) both (I) and (2) above might be achieved. 



II. References 284 

References 

1 C. L. Mehta, J. Math. Phys. 5, 677 (1964); F. A. Berezin and M.A. Subin, in 

Colloquia Mathematica Societatis Janos Bolyai, 5. Hilbert Space Operators, 

Hungary (1970) (North-Holland, Amsterdam, 1972); G. S. Agarwal and E. 

Wolf, Phys. Rev. ·D2, 2161, 2187, 2206 (1970). 

2 R. J. Glauber, Phys. Rev. 131, 2766 (1963); W. H. Louisell, Quantum Statistical 

Properties of Radiation (Wiley, New York, 1973); J. R. Klauder and E. C. 

G. Sudarshan, Fundamentals of Quantum Optics (W. A. Benjamin, New 

York, ·1968). 

3 V. P. Maslov, Operational Methods (Mir Publ., Moscow, 1976); L. Hormander, 

Acta Math. 127, 79 (1971); M. Taylor, Pseudo differential Operators, (Princeton

University Press, Princeton, 1981). 

4 V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum 

Mechanics (Reidel, 1981). 

·5 L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968). 

6 S. Ichimaru, Basic Principles of Plasma Physics, A Statistical Approach (W. A. 

Benjamin, Reading, Mass., 1973). 

7 V. G. Polevoi and S.M. Rytov, Sov. Phys. Usp. 21, 630 (1978). 

8 T. Watanabe, H. Sanuki and M. Watanabe, J. Phys. Soc. lap. 47, 286 (1979). 

g J. J. Duistermaat, Comm. Pure Appl. Math. 27, 207 (1974). 

10V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Survey 

(1976). 

1 1 . W. H. Miller, Adv. Chem. Phys. 25, 69 (1974). 

12 I. C. Percival, Adv. Chem. Phys. 36, 1 (1977). 



II. References · 285 

13 H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 

1931), p274. This Symbol is also often referred to as the "symmetrized" 

Symbol in the references in [1]. 

14 L. Hormander, Comm. Pure Appl. Math 32, 359 (.1979). 

1·51. Bernstein, Phys. Fluids 18, 320 (1975). 

16 H. L. Berk and D. Pfirsch, J. Math. Phys. 21, 2054 {1980). 

liM. V. Berry, Phil. Trans. Roy. Soc. A 287, 237 (1977). 

18 E. J. Heller, J. Chern. Phys. 65, 1289 (1976). 

1 g For other references, including applications to other fields, see Refs. [35-39] in 

Chapter I. 

20 E. P. Wigner, in Perspectives in Quantum Theory, Eds. W. Yourgrau and A.· 

-van der Merwe (Dover, New York, 1979), p25. 

21 H. Mori, I. Oppenheim and J. Ross, in Studies in Statistical Mechanics, Vol. 

I, Eds. J. De Boer and G. Uhlenbeck (North-Holland, Amsterdam, 1962). 

22 L. Friedland and I. Bernstein, IEEE Trans. Plasma Sci. PS-8, 90 (1980); Phys. 

Rev. A 22, 1680 (1980). 

23 J. Mathews and R. L. Walker, Mathematical Methods Of Physics, 2nd Ed. (W. 

A. Benjamin, New York, 1970), p481. 

24 R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (W. A. Benjamin, 

New York, 1969). 

2sB. B. Kadomtsev and V.I. Petviashvili, Sov. Phys. JETP 16, 1578 (1963); M. 

Camac, A. R. Kantrowitz, M. M. Litvak, R. M. Patrick and H. E. Petschek, 

Nucl. Fus., 1962 Suppl., 423. 

:.! 6 K. Katou, J. Phys. Soc. Jap. 50, 642 (1981). 



II. References 286 

2iM. B. Priestly, Spectral Analysis and Time Series, Vol. 2 {Academic Press, 

London, New York, 1981); W. D. Mark, J. Sou.nd Vib. 11, 19 {1970). 

28 P. Bertrand, J. P. Doremus, B. Izrar, Nguyen V. T. and M. R. Feix, Phys. 

Lett. 94A, 415 (1983). 

2gi. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products 

(Academic Press, New York, 1980), pps. 837, 1033. 

30 A. J annussis, N. Patargias, A. Leodaris, P. Filippakis, T. Filippakis, A. Streclas 

and V. Papatheou, Lett. Nuovo Cim. 34, 553 (1982); A. Jannussis, A. 

Leodaris, N. Patargias, T. Filippakis, P. Filippakis and K. Vlachos, Lett. 

Nuovo Cim. 34, 433 (1982); F. Soto and P. Claverie, Physica 109A, 193 

(1981); N.D. Cartwright, Physica 83A, 210 (1976); R. F. O'Connell and E. 

P. Wigner, Phys. Lett. 85A, 121 (1981). 

31 E. J. Heller, J. Chern. Phys. 66, 5777 (1977), 67, 3339 (1977); M. J. Davis and 

E. J. Heller, J. Chern. Phys. 71, 3383 {1979); Y. Weissman and J. Jortner, 

J. Chern. Phys. 77, 1469, 1486 (1982); Y. Weissman, unpubl. draft, (1982). 

32 J. Heading, An Introduction to Phase-integral Methods (Methuen, London, 

1962). 

33 T. B. Smith, J. Phys. A 11, 2179 (1978). 

34 M. S. Marinov, J. Phys A 12, 31 (1979). 



.. 

287 

APPENDIX A 

NUMERICAL TECHNIQUE 

The numerical results presented in Part I for solutions of the two dimen

sional Helmholtz equation in the stadium-shaped boundary were obtained with 

a computational procedure adapted from a method developed by Riddell and 

Lepore. 1 This technique is based on the reformulation of the differential equa

tion for the eigenfunction ¢n(~) in the interior region S 

all~ E S 

1/1n(~) = 0 for~ E boundary as 
(A.l) 

into an integral equation 

( ) l i 1 n(.~.1 ) • (l - ~) ( 1. ) ( 1) _ f3n ~ - ·) kn ds I I K ~~ ~ 1 kn f3n ~ - 0 - as §..'- ~ 
~~ i E aS (A.Z) 

for an auxiliary boundary dipole distribution f3n(~). In this expression, ~ and i 
range over points on the closed boundary as (where /3 is defined) and n(§.') is the 

outward normal to the boundary at !i'. This is a boundary eigenvalue equation 

for the distribution f3n(2) in terms of which the corresponding eigenfunction 

·1/Jn(~) is constructed by an integral over the boundary 
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~'· (x) . -lk i ds' n(l). (~ -l) K(x s'· k )R (s') 
'f/n - 4 n I 1 I -1- 1 n JJn -as z.-! 

~ E S,l E BS 

{A.3) 

once (A.2) is solved. The theoretical framework for this and other more general 

integral formalisms has been systematically investigated by Kleinman and Roach. 2 

It may be shown 1 that in this description the kernel }( {~, i; k) is the 

derivative (with respect to I~' - ~I) of the free-space Green function for the 

two dimensional Helmholtz equation: 

(A.4) 

The Bessel function YI(kli -~I) is singular at ~' = ~ and alone is sufficient 

for the kernel; an arbitrary component of the regular Bessel function J 1 may be 

included (with coefficient a), however, without disturbing physical results. The 

significance of this point lies in the fact that a certain relationship between the 

"interior" Dirichlet problem (A.l) and the corresponding "exterior" Neumann 

problem implies that the integral equation (A.2) possesses spurious solutions;2 

indeed, fully half of the eigenvalues which satisfy {A.2) should not be associated 

with this problem. These extra eigenvalues depend on the value of a so that a 

variation of this coefficient produces a shift in the spurious eigenvalues while the 

real ones remain unchanged. 1 

The procedure for computing the solutions of (A.l) in a two dimensional 

bounded region is then as follows: first, discretize the boundary as a set of 

N points fii at which the boundary function takes on values j3,. The integral 

equation evaluated at the ith point is then expressed as a matrix equation 
N 

L M~(k)/3j = 0 for all i 
j..al (A.5) 

M~·(k) = 6ii- !kl~·(k) 

Here, 10· represents some discretized form of one dimensional integration (around 

... 
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the boundary, beginning and ending at the ith point) and this depends parametri

cally on the eigenvalue k and the coefficient a in the kernel. In general, Ii] 

may be written 

n··(s--s-) 
Iij(k) = 6.c;; 

1

l!;-~ ~,.I' [YI(kl!;- ~,.1) + aJ1(kl~i- ~,.!)] (A.6) 

where A is the boundary point spacing and c;j is a numerical coefficient depend

ing on the choice of discrete integration. The matrix equation (A.5) has non

trivial solutions if 

detM 0 (k) = 0 (A.7) 

It is important to note that each element of M depends on k (in a com

plicated manner) so that the usual simple routines for determining eigenvalues 

which appear only in diagonal elements cannot be· used. This must be the case, 

of course, since M is an N X N matrix which possesses an infinite number of 

eigenvalues (as opposed to just N). Thus, the procedure for determining a single 

eigenvalue kn from (A.7) relies on trial and error: one must select a sequence of 

trial k-values (k~, k~, k~, .. . ) in the neighborhood of kn such that detM0 (k~) 

approaches zero (i.e., satisfies some condition of smallness for some k~ ). I have 

used a method which follows the graph of detM0 (k) for values of k equally 

separated by 8k until a sign change is encountered, and then a Newton-secant 

method is employed for rapid convergence to an approximate value for kn. 
' 

When a value of k has been found which satisfies (A.7) to some desired 

accuracy, one must determine whether this is indeed a true eigenvalue of the 

"interior" Helmholtz problem or one of the spurious eigenvalues mentioned pre

viously. This can be accomplished by repeating the same steps outlined above 

with a different value of the coefficient a in the kernel. Experience indicates that 

a true eigenvalue will remain within the accuracy limits quoted below while a 

spurious eigenvalue will be displaced by ten to a hundred times as much. Thus, 
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the procedure for determining an eigenvalue must be done twice m order to 

compare the zeros of two functions detMa(k) with different o:. 

With a true eigenvalue kn, the matrix equation (A.5) may be inverted using 

standard methods to obtain the eigenvector 13n, the elements of which are the 

values of the eigen-boundary function j3n(Jt) at the discrete boundary points :2,1. 

Translating (A.3) into a discrete form, the value of the eigenfunction wn(.~) at 

·any single point ~ in the interior of the stadium may then be computed by the 

discrete boundary integral 
N 

1/Jn(~).= -ikn L lj(~; kn)/3'] (A.8) 

where the form of Ij(~; kn) is the same as in (A.6) with Jtj replaced by ~ and 

k evaluated at the eigenvalue kn. This expression will not yield a normalized 

eigenfunction; however, a subsequent standard two-dimensional numerical in

tegration may be performed if desired. 

For the purpose of investigating the ray-wave relationship in the asymptotic 

spectrum of the stadium Helmholtz equation, it is significant that the integral 

formulation and procedure given above permit, in principle, the determination of 

a single eigenvalue anywhere in the spectrum independently without reference to 

any other eigenvalue. That is, the function detMa(k) ~ay be computed for any 

value of k and followed in order to obtain its zeros in any range of the spectrum; 

one does not have to begin at k = 0. This is in sharp contrast with the usual 

numerical methods based on the differential equation which generally produce 

the lowest N 2 eigenvalues from the consideration of an N 2 X N'2 matrix. In 

those methods, the fundamental matrix arises from a discretization of the two

dimensional ~-space by an N X N grid; here, a much smaller matrix results 

from the pairwise interactions of all N points on the one-dimensional boundary 

by (A.2,A.5). Furthermore, with this method only the accuracy of the numerical 

.... 
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evaluation of an eigenvalue (and the corresponding eigenfunction) depends on 

the choice of N, not the number of solutions possible. 

The computer code FOLLOW uses a maximum of 100 boundary points 

and is dedicated to the boundary shapes of the stadium family given by 1 = 
al R > 0 (which includes the circle 1 = 0). Due to the fact that the four

fold symmetry of the eigenfunctions 1/Jn(Z..) (with respect to reflection across 

both axes) is shared by the corresponding boundary distributions J3n(~), the 

discrete boundary points need only be situated in one quadrant (x, y > 0). The 

actual number of boundary points which should be used naturally depends on 

the region of the spectrum to be investigated, although I have found that the 

crucial consideration in this regard is the "angular" (as opposed to "radial") 

variation of the particular eigenfunction being determined. In the case of the 

circle where both 1/Jn and J3n have angular period 27r In, the use of N equally 

spaced boundary points (in one quadrant) will provide 4N In points per period; 

for adequate resolution then, one should use N ~ n points. For example, 

since the first zero k.;o. 1 of J.5o is 57.117, fifty boundary points are sufficient to 

explore the spectrum near k ~ 60 where eigenfunctions with n ~ 50 begin to 

appear. In this region, eigenfunctions with much slower angular variation (such 

as J2 (k2 .1gr) sin 28) are more common and are much more accurately determined: 

the boundary point spacing is much less sensitive to rapid radial oscillations in 

1/Jn(z..). While the simple rule N ~ n is useful, I have studied the accuracy 

of solution versus N for a fixed region of the spectrum and have found that 

the optimum number of boundary points (taking into account computer time 

and storage) is slightly less than the rule suggests; that is, N = 50 is adequate 

for 60 < k < 75 where n < 68. These arguments can be extended to the 

general stadium boundary with appropriate interpretation of "angular" (along 

the boundary) and "radial" (transverse to the boundary) oscillations of ·lfJn(z..). 
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Selecting a value of a for the kernel (A.4) and an initial trial value k0 , the 

subroutine MATRIX of FOLLOW constructs the matrix Mcr(k0 ) by (A.5,A.B). 

Care must be taken to account for the principal value of the singularity which 

arises in the diagonal elemen~s (the endpoints of the integral ~i = ~i), especially 

for the point which is nearest the boundary break between straight segment and 

arc (due to the limiting form of the outward normal dot product). FOLLOW 

then uses a simple trapezoidal integration scheme (cii = 1 in (A.6)) of-the closed 

line integral (A.2,A.5) and, since M represents the entire boundary in terms of 

just one quadrant, each element is the signed sum of four symmetry dependent 

contributions. The determinant of Mcr(k0 ) is computed by a standard routine 

and saved. 

A new trial value is then selected by k1 = k0 + ok, where ok is an increment. 

chosen to be much smaller than the mean separation of eigenvalues in this region 

of the spectrum, and the determinant of Mcr(k1 ) is computed as above. This 

process is repeated as k is ~tepped by ok and several checks are applied after each 

determinant is computed in order to determine whether a possible eigenvalue 

has been detected. The simplest indication of this event is a change of sign in 

detMa(k), although the existence of closely spaced eigenvalues (separated by 

much less than ok) requires a more careful analysis of the behavior of the graph 

of the determinant. Therefore, the second derivative is approximated by each 

sequence of three consecutive determinant evaluations in order to determine 

if the graph is convex away from the k-axis; such an event might signal a 

double crossing (pair of eigenvalues) or even a higher order even-multiple near 

degeneracy. In both cases, FOLLOW returns to the trial value of k preceding 

an event and temporarily reduces the step size ok by a factor of five. 

Again, the code increments k (with the finer step) and applies the same 

.. 
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criteria outlined above in the search for a sign change in detMa( k ). If this is 

detected under the finer search, a Newton method is immediately invoked for 

rapid convergence; the condition for convergence is that Newton generated trial 

values remain stati~nary to within lkn+l ~ k"l < w-6 . This approximate zero 

of detMa(k) is saved and then the fine increments continue through the original 

interval in search of multiple axis-crossings; finally, the preceding routine is re

entered with the original value of ok. 

After examining a portion of the spectrum and obtaining a set of consecutive 

zeros {k~}, the entire procedure must be repeated with a different value a! in 
I 

the kernel in order to shift the spurious eigenvalues. The new set { k~ } is 

compared with the old set, and values which agree to within lka- ka'i < 10-3 

are retained. This criterion is compatible with a mean eigenvalue separation 

(ilk) :::::::::: .08 (for k = 100) and the numerical accuracy reported below; tests have , 
shown that a true eigenvalue will change by ika - ka 1 r""<.J w-4 with the larger 

value of a yielding consistently the more accurate numerical computation of the 

actual eigenvalue. 

This system for determining eigenvalues evidently has the drawback that 

it may omit good eigenvalues or even mistakenly include spurious ones. Indeed, 

in the case of the circle, I found that out of 451 eigenvalues in the range 50 < 

k < 100 computed by the code FOLLOW, 16 eigenvalues were omitted and 13 

were erroneously counted (the true number is 454). In order to detect a good 

eigenvalue, both the a and o:' run must succeed in finding a zero of detMa(k) and 

this may fail for several reasons: closely-spaced multiple crossings are difficult 

to treat without error and the existence of spurious zeros only complicates this 

problem. Furthermore, for a given number N of boundary points, the function 

detM(k) may not be determined accurately enough for some mode (especially 
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one with rapid angular variation) so that the numerical approximation of that 

function does not even possess a zero in the neighborhood of the true eigenvalue. 

Even if both runs detect a zero which corresponds to a true eigenvalue, the 

comparison process may discard this case if the change in a has shifted this 

eigenvalue by more than the criterion 0.001; this has been observed in the case 

of high angular momentum modes with insufficient boundary points. Spurious 

eigenvalues are appar·ently included when the change of kernel shifts a spurious 

zero to within 0.001 of a zero detected with the previous value of a. 

As to be expected, these disadvantages can be reduced at the expense of 

more computer time and storage capacity. The search increment 8k can be 

decreased in the attempt to treat multiple zeros, although a particular segment 

of the spectrum will then require much more time to investigate; moreover, even 

though the mean eigenvalue spacing (.Da.k) .........- 8/ k (for a single symmetry class) 

provides a basis for selecting ok, the graph of detM(k) may exhibit arbitrarily 

·complicated local behavior ask increases, so that probably no choice of increment 

will be completely satisfactory. The number of boundary points can be increased 

in the attempt to increase accuracy at the expense of retaining a larger array M 

in core, and this too slows the execution time as N 2 elements must be computed 

at each trial value of k with fairly complicated Bessel function evaluations. 

Finally, if the accuracy and reliability of the zero-finding routine can be increased 

with these changes, the a -a' comparison criterion can be decreased so as to 

reduce the number of spurious eigenvalues included. 

The numerically determined list of eigenvalues for the 1 _.:... 0 (circular) 

case IS shown in Table I for the values of 50 < k < 100 (odd-odd parity 

only). Comparison with the exact list in Table II (generated with a Bessel 

function routine) produces the following empirical absolute error statistics: 97% 
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of the eigenvalues are correct to within ±0.001 while 90% have error less than 

±0.0005. The maximum error detected was 0.023 for an extremely high angular 

momentum mode (Js2, ks2.1 ~ 90). In point of fact, the numerical eigenvalue 

is consistently larger than the exact one so that a study. of error versus kernel 

coefficient a could be employed to improve accuracy by extrapolation. A list of 

stadium eigenvalues is given in Table III (Appendix B) although, of course, no 

comparison with exact eigenvalues is possible; it has been assumed, therefore, 

that the error limits (""' ±0.001) determined for the case of the circle can be 

applied to the "! > 0 case as well. 

With a numerically computed eigenvalue kn, the matrix M(kn) may be 

inverted ( cf. Eq.(A.5)) with standard routines in order to obtain the eigen

boundary distribution f3n(~i)· TheN-element one-dimensional array f3n and the 

eigenvalue kn are the only two crucial ingredients necessary for the construction 

of the eigenfunction 1/Jn(~) in the interior by (A.3,A.8); the code FOLLOW stores 

this information in a binary file to be read subsequently by the program PIX for 

this purpose. 

The separation of eigenvalue computation and eigenfuction construction is 

a great advantage of this numerical technique based on the integral formulation 

(A.2,A.3). For example, since the N-element vector f3n contains almost all 

the information necessary to reconstruct the eigenfunction 1/Jn, this information 

for a large number of eigenfunctions requires much less computer storage than 

the standard methods based on the differential equation (A.l) where the actual 

values of each 1/J at each ~ must be stored. A far greater advantage provided 

by this technique, however, is its capability for constructing the values of an 

eigenfunction over any subset of the· interior (or even just at a single point); this 

should be contrasted with the standard methods, which must always determine 
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5.0.IJ447 51 58.5997 1IJ1 65 . .0'671 
2 5.0'.6783 52 58.6.0'21 12"2 65.1593 
3 5fl.844fr 53 58.6748 1.0'3 65.2418 
4 5fr.9378 54 58.77fJ9 lfJ4 65.3815 
5 51..0'123 55 58.8731 1JJ5 65.45fJ4 
6 51.6533 56 58.8776 1JJ6 65.4625 
7 51.8132 57 59.2.034 un 65.5fr.G'4 
8 51.86.(3'1 58 59.2954 1.0'8 65.5885 
9 52.fJ.G'77 59 59.42"51 1.09 65.8564 

lfJ 52 • .0162 60 59.52"2"8 1 1.0 66.3IJSO 
1 1 52.1999 61 59.899.0 1 1 1 66.3945 
12 52.2795 62 6fr.3531 112 66.5877 
13 52.3fr26 63 6IJ.3871 113 66.7927 
!4 52.4716 64 6.0'.4195 114 66.86.0'6 
15 52.6589 65 6.0'.6579 115 67.fr97! 
1 6 52.9375 66 6.0'.765fJ 116 67.1365 
17 53.3484 67 6fJ.8619 11 7 67.2583 
18 53.3738 &B 60.9448 118 67.3120 
!9 53.4207 69 61 .fr9fr8 119 67.5291 
2fJ 53.9387 7.0 61.1917 12fJ 67.59fJ6 
2! 54.1835 71 61.23.0'3 12 1 67.6976 
22 54.3955 72 61.2877 122 67.7112 
23 54.4327 73 61.5278 123 67.8595 
24 54.4378 74 61.7569 124 67.87fr6 
25 54.7162 75 61.8741 125 67.9819 
26 54.8517 76 61.883fJ 126 68 . .0'670 
27 55.fJ285 77 61.9193 127 68.2143 
28 55.1848 78 61.9323 128 68.5340 
29 55.2466 79 62.frl63 129 68.8383 
30 55.442"6 8fJ 62.5837 13fr 68.9295 
31 55.6217 81 62.7.0'42 131 69.1160 
32 55.7227 82 62.8.0'79 132 69.2268 
33 55.7297 83 62.8761 133 69.2367 
34 55.8851 84 63.1525 134 69.6£r39 
35 55.9885 85 63.1832 135 69.6fJ61 
36 56.346fJ 8G 63.2072 136 69.6267 
37 56.3967 87 63.2982 137 69.7fJ7B 
38 56.6319 88 63.37.0'0 138 69.89.0! 
39 56.6584 89 63.525JJ 139 69.9538 
4.0' 56.9.0'98 9;0' 63.6442 14fJ 7£r.IJ7f10 
41 57.1152 91 63.7597 14! 7fJ.344B 
42 57.1171 92 64 . .0'630 142 7.0'.3642 
43 57.185fJ 93 64.236! 143 7fJ.4487 
44 57.6539 94 64.345! 144 7fJ. 4885 
45 57.81.06 95 64.4123 145 7.0'.7654 
.:6 58 . .0'436 96 64.5453 146 7 1 . .0'2 2 l 
.:7 58.fJ6ff2 97 64.6949 147 71.1878 
48 58.3327 98 64.9126 148 71.22fJ2 
49 58.3579 99 64.9542 149 71.2622 

SIJ 58.5.0'4fr l£W 65 • .0'123 15.0' 71.3521 

Table I. List of numerically determined eigenvalues for circular 1 
(odd-odd parity). 

296 
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1 51 71.361Xl' 22'1 76.6482' 2!:1 82.Xl'158 
152 71.3733 22'2 76.8172' 252 82.Xl'38.0' 
153 71.4451 22'3 77. 1.068 253 82 . .0'572 
154 71.6486 22'4 77.1333 254 82.1342' 
155 71.6816 2f15 77.3184 255 82.3181 
156 71.8115 2Xl'6 77.3421 256 82.3751 
157 71.8884 2JJ7 77. 4522' 257 82.4826 
158 72.Xl'783 2fJ8 77.5239 258 82.5269 
159 72.19fJ6 22'9 77.6531 259 82.8fJ87 
162' 72.2612' 218 77.6884 26fJ 82.8537 
1 6 1 72.3645 2 1 1 77.732'4 261 82.9611 
162 72.7362 212 77.7648 262 83 . .0'786 
163 72.8Xl'52 213 77.7664 263 83.1721 
164 72.85116 214 77.8993 264 83.2156 
165 73.2'810' 215 78.2117 265 83.2812 
166 73.2732 216 78.2125 266 83.2984 
167 73.5fJ70' 217 78.3385 267 83.4393 
168 73.5865 218 78.6187 268 83.5985 
169 73.6347 219 78.7Xl'24 269 83.6565 
17fJ 73.7556 22Xl' 78.8fJ63 2 78 83.7129 
1 71 73.8198 221 78.8339 271 83.7168 
172 73.8587 222 78.8475 272 83.8244 
173 73.9374 223 78.8693 273 83.9439 
174 74.Xl'587 ' 224 79.8254 274 84.Xl'154 
175 74.1661 225 79.2777 275 84. 1Xl'56 
176 74.1829 226 79.5733 276 84.1371 
177 74.2.!89 227 79.6645 277 84.1629 
178 74.2623 228 79.7634 278 84.2935 
179 74.3725 229 79.797fJ 279 84.4635 
188 74.4219 2.38 79.3249 288 84.7987 
Hll 74.4832 231 79.8923 281 84.3117 
182 74.5872 232 79.9693 282 84.9312 
183 74.5878 233 79.996B 283 84.9697 
184 74.7974 234 8.0'.1129 234 85.fJ977 
185 . 75.JJ764 235 8fJ.2741 285 85.1274 
186 75 . .0'986 236 88.4316 286 85.2741 
187 75.2528 237 8.0'.4999 287 85.4644 
1"n ov 75.6833 238 88.5135 288 85.5.0'66 
189 75.6382' 239 8.0'.6745 289 85.6827 
192' 75.6552 248 88.7542 298 85.7878 
191 75.7966 241 8.0'.7916 291 85.7946 
192 75.8281 242 8.0'.7987 292 85.9612 
193 75.9fJ28 243 8.0'. 8732' 293 86 . .0'393 
194 76 . .0'673 244 82'.96:7 294 86.1721 
195 76.3351 2~5 8 1 . £'3 4 ,; 295 86.2564 
1% 76.4fJ74 2~6 81..0'86:!. 296 86.3456 
197 76.4318 247 81 . 2 2 7 ·t 297 86.3794 
198 76.4373 2~8 81.2653 298 86.62'28 
199 76.4582 249 81.5753 299 86.7898 
2JJ8 76.47_11 258 81.6.0'21 3.0'8 86.7868 

Table I. List of numerically determined eigenvalues for circular "{ - 0 case 
(odd-odd parity). 
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3.01 86.8119 351 91.6.0'88 4.01 95.9165 
302 86.9738 352. 91.65.0'6 40'2 96.0'123 
3.03 86.99.0'5 353 91.6915 40'3 96 . .0'610' 
3.13'4 87 . .(}'889 354 91.76.0'8 4.0'4 96.0'847 
3.0'5 87.1578 355 91.93.0': 40'5 96.2124 
3.0'6 87.2676 356 92 . .0'70'2 4.(}'6 96.2729 
3.0'7 87.29.0'7 357 92.0'90'6 4.(}'7 96.4187 
3fY8 87.3262 358 92. 1.(}'83 4.(}'8 96.4593 
3fY9 87.38.0'7 359 92.1731 409 96.4928 
3l.D' 87.5434 36.0 92.1822 41.0' 96.5226 
31! 87.5484 361 92.3266 411 96.5848 
312 87.70'82 362 92.4.0'14 412 96.6393 
313 87.71.13'9 363 92.4492 413 96.7551 
314 88 . .0'41.0' 36.1 92.6.0'23 414 96.7642 
315 88.1246 365 92.6623 415 96.824.0 
316 88.2377 366 92.6861 416 96.8579 
317 88.2954 367 92.9254 417 97 • .0'395 
318 88.316.0' 368 92.9449 418 97.2480' 
319 88.3184 369 93 . .0'.0'37 419 97.5942 
32.0' 88.3735 37.0' 93.12.0'1 42.0' 97.6646 
321 88.4853 371 93.2618 421 97.6927 
322 88.5764 372 93.27,0'9 422 97.7241 
323 88.8215 3-.., 93.3782 423 98 . .0'669 I_, 

324 88.8784 37.: 93.4.0'18 424 98 . .0'9UJ 
325 89 . .0'236 375 ' 93.4425 425 98.1858 
326 89.1.0'18 376 93.4944 426 98.1932 
327 89.2218 377 93.5.(}'85 427 98.2733 
328 89.2413 378 93.57.0'6 428 98.3.0'45 
329 89.4511 379 93.7146 429 98.3478 
33.0' 89.5169 38.0' 93.7639 43.0' 98.4295. 
331 89.6581 381 94 . .0'198. 4">' 98.444.0 ..... 
332 89.6677 382 94.1971 432 98.6145 
333 89.7125 383 94.2618 433 98.6795 
334 89.7255 384 94.3D'l9 434 98.7168 
335 89.7648 385 94.4128 435 98.7531 
336 89.9114 386 94.461.0 436 98.8621 
3">' "'' 89.9474 387 94.48,0'8 437 98.8981 
338 89.9664 388 94.610'9 438 99 . .0'191 
339 9.0'.1123 389 94.7142 439 99.1799 
34.0' 9.0'.1226 39.0' 94.7785 44.(J 99.2428 
341 9.0'.2337 391 94.8932 44! 99.2494 
342 9.0'.254.0 392 94.9684 442 99.425£1 
343 9.0.3.0'.(}'2 393 95.1993 443 99 .. 44.0'1 
344 9JJ.3.0'23 394 95.2587 444 99.4593 
345 9JJ.4888 395 95.3374 445 99.4712 
346 90'.6634 396 95.5 78·~ 446 99.5662 
347 9.0'.9139 397 95.6176 447 99.6668 
348 9.0'.9936 398 95.7288 448 99.727£1 
349 91.2637 399 95.8.0'15 449 99.9654 
35.0' 91.4112 4.0.0' 95.8534 45.0 99.9858 

451 99.9946 

Table I. List of numerically determined eigenvalues for circular 1 - 0 case 
(odd-odd parity). 

@ 
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m n m n m n 
l. 16 9: :iO.J<t-.oUo 51. 28 7: 58.332o24 ..lQ..L._2_2 2: 64.95399c. 
T.1411lTsu. o 7 tl2 31 52. 8 ts: 5a~!Jul1 102. 40 5: 6r.-oi2T99 
3. 44 1: ~v. t:s<t3!l68 53. 46 2: S8.5038-17 103. 4 12; 65.066995 
4. 22 7: !;U.9377o2 54. 6 tG: 5 o-:-59-9bUS" 104. 2 20: 0::>.15'1273 
s. 28 5:51.012280 55. 20 10: Sd.o02U2l 105. 20 12: o 5 • z--;;rr 0o 
6. 12 11: 51.21196 7- 56. 33 ..:;,o.o/-.hl 106. 28 9: 65.38141o 
7. 10 12: 51.6532,1 57. 4 17: so. 770835 107. 58 1: o5.45.:JTQ 
8. 32 4:51.813158 58. 2 rs: s t3--:-b7 3 -urr lOR. 44 4; o::>.-'to2376 
9. 20 8: 51.860U2u 59. 42 3: 58.877508 109. 48 3: o::..5uu22::. 

10. 8 13: ::>~.007o<;l 60. 52 1: 59.203234 110. 34 7: o5.588::082 
11. 40 2: 52.016147 61. 18 11: 59.2<tS3-70 111. 18 13: o s-:-a 563 oa 
12. 36 3: 52.19971$1 62. 26 8. 59.405008 112. 26 10: 66.307922 
13. 6 14: 52.279454 63. 32 6: jc,.scu7ul. Ti)-. -1~()6~39440-1 
14. 26 6: 52.3G~5u3 64. 12 12. 59.!!98971$ 114. 3R f>: o6.58753d 
15. 4 15: 52.471551 65. 24 9: ou.3529oo 115. 32 8: co. 7CJ25u7 
16. 2 16: 52.::.bc.023 66. 36 5; 60.306965 116. 14 15: 66.CloOS33 
17. 18 9: 52-~658tlti3 67. 14 13: 60.4l'hlu T17~S42_: __ 67 ~ 1.)<;685~ 
18. 46 1:52.937376 68 48 ? • o0.657746 11R. 24 11 : o?.LJ63~5 

19. 16 10: 53.348::.12 69. 30 7: ou. 764d 7u 119. 12 16: o7.2~t:l2u4-
20. 30 5: 53.373732 70. 12 14: 60.861804 120. 42 5: o7.3llt:1<~4 
21. 24 7: 53.42Jod5 71. 40 4: o0.944700 ~a-1:-~ 1--:,2 d 71$ s 
22. 14 11: 53.938066 72. 44 3: 61.090o25 12 7

• l Q l z. o7.5'7047l 
23. 34 4: S't.l 09b'i0 73. 22 10: ol.191o34 123. 50 3: o7.o'-174vl:l 
24. 42 2: 54.183413 74. 10 15: 61.230198 ]2£1 £16 t.· o7. 711U90 
25. 22 8: 54.395428 75. :>4 1: 61.267472 125. 8 18: 

0 7. J 5_9_4_2_7_ 

26. 38 3:54.432579 76. 8 16: 61.52773S 12g, 30 9· o7.870540 

27.- 12 12: '"· "-' 7777 71. 6 17: 61.7568.25 12 7. 22 12: o7.875988 
28. 28 6: 54.716125 78. 34 6: 61.87402() 12S, 36 ·'7: 67.981747 

29. 10 13: .S4.8::.1619 79. 28 8: o1.d82942 129. 6 19: -o8. Oo6&9u 

30. 48 1: 55. 0 2 83 3 i.) 80. 4 18: o1.91924o 130. 4 20: 68.214174 

31. 8 14: 55.1d4748 81. 20 11: o.l.932273 131. 2 21: 6d.3U21<lY 
32. 20 9: 5~.246575 82. 2 19: '62.0 16222 132. 20 13: 68.533911 

33. 6 15: ::.:>.4 .. u5'i2 83. 18 12: 62.583604 133. 28 10: 6d.838234 
34. 4 16: 55.o62lu51 84. 38 5: t>2.7u41uo 134. 40 6: ob.929325 

35. 32 5":55.722o47 85. 50 2: 62.807699 135. 18 14: 69. 115918 
36. 2 17: 55.729627 86. 26 9: 62.1$760::.7 136. 34 8: 6'1.2267l8 

37. 26 7: 55.865059 87. 16 13: 63.152428 137. 56 2: 69.236'>74 

3b. 18 10: ::.::..'1oU4d7 88. 32 1: 63.1d30o3 138. 44 5: 69.603750 

39. 44 2: 56.345886 89· 42 4: 63.207068 139. 62 1: o9.6057o6 

40. 36 4: 5o.39o635 90. 46 3: o3.293075 140. 16 15: o'i.t.Zoo::>ll 

41. 16 11: s~.63187o 91. 56 1: o3.36'1737 141. 26 11: 69.707745 

42. 4o 3: ::>6.o5iEl3 92. 14 14: o3.o't'>ll7 142. 52 3: 09.88'1922 

43. 24 8: 5t..909747 93. 24 10: 63.759u16 143. 48 4: 69.953628 

44. 30 6: ::.7.lbluL. 94. 12 15: o4.06~938 144. 14 16: 7u.uo9tlo6 

45. so 1:57.116899 95. 36 6: 64.236018 145. 32 9: 70.34'>717 

46. 14 12: ;,7.1848'iCl 96. 30 8: b4.345037 146. 38 7: 7u.3t>40 .. t> 

47. 12 13: 57.6::.3844 97. IQ 1 r,: 64.412272 14 7. 12 17: 70.4486\lb 

48. 22 9: ,7.810491 98. 22 11: o4.:>-.5207 148. 24 12: 70.4tlo42o 

49. 10 14: 5o.0'>3S88 99. 8 lZ; 64.69478i 149. 10 18: 70. 7t>5333 

Su. 34 5: :~o. -.uuuo't 100. 6 18: o4.912514 150. 8 19 71.0219'19 

Table IT. List of exact eigenvalues for circle (odd-odd parity only). 
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m n m n mn 
151. 22 13: 71.1tl7oo4 201. 40 8: 7o.4:>7965 251. 30 13: 81.601899 
152. 6 20: 11. 22JL. 7 202. 14 18: 16. 4 7To:;-;r 252. 68 2·: 82.015<:10 
153. 42 6: 71. 26204~ 203. 54 4. 76.647776 253 0 74 I: 82.037056 
154. 30 10: 71.352012 204. 12 19: 7o.a1o'1ZU 254. 18 18: oL.LJ:l70Lb 
155. 4 21: 71.3oJI3uO 205. 10 20: 77.1J6734 255. 48 7: 82.133751 
156. 58 2: 71.3730:,3 206. 24 14: n.u:ntc, 256. 36 11: J2.31 71368 
157. 2 22: 71.444989 207. 32 11 : 77.3lo214 257. 28 14: 82.374~38 
158. 36 8: 71.648425 208. 8 21: 77.341955 258. 16 19: o2.4i:!Z4o2 
159. 64 1: 71. 6tllTb8 209. 44 7: 77.4:ll818 259o 42 9: 82.526692 
160. 20 14: 71.811351 210. 6 22: 77.523748 260. 52 6: d2.tilld4l',; 
161. 46 5: 71. dd:f269 211. 4 23: 77.652991 261. 14 20: 82.8535oi.l 
162. 54 3: 72.073039 212. 38 9: 7/.oBt~d7 262. 64 3: 82.9605ii"J 
163. so 4: 12.1-.Jjoo 213. 2 23: 77.730297 263. 26 15: 83.078393 
164. 28 7L .L6u9J3 

..• 
77. 7o4-705 83.17198& 11: 214. 22 15: 264. 12 21: 

165. 18 15: 72 do-.37Ti 215. 64 2: 77.7o5'1l!l 265. 56 5: 83.215297 
166. 40 7: 72.73604':> 216. 70 1 : 77.l:l9o66u 266. 34 12: !b.ZdllllO 
167. 34 9: u .. tlu5o7o 217. 48 6: 7u.dhz7 267. 60 4: 83.297980 
11i8. 11i 16: 72.8j0543 218. 30 12: 78.212381:! 268. 10 22: 83.439l!l9 
169; 26 12: t.).vtjU"'i .. :L~ 219. 20 16: 7d.330<tl5 269.· 46 8: 83.59 5246 
170. 14 17: 73.273097 220. 60 3: 7d.6ld363 270. 8 23: 83.o56317 
171. 60 2: 7 3--:-3\loo '7 4- 221. 52 5: 78. ltf2D6 271. 40 10: 83.7l2t>8'> 
172. 44 6: 73.58621:!4 222. 31i 10: 7d.80t>l65 272. 24 16: a,.l1oo .. 6 
T73.12 18: n:c>3 .:.-; .. z- 223. 18 17: ld.d..)37uu 273. 6 24: 83.1324284 
174. lili 1: 73.755070 224. 42 8: 7d.d473lil 274 • . 4 25: 83. '7<t3779 
17 s. 2~ 13: f.>. ol -;o::>l 225. 56 4: 7d.B69m 275. 2 26: b4.0l5286 
176. 32 10: B.85J533 226. 28 13: 79.025295 276. 76 1: 84.10445 0 
nt-:-1o1~7T-"93 729'-J 227. 16 18: 79.277ooo 277. 70 2: O'toJ.jo4.::.:: 
lBL_38__a;_ 70:..(J:)d::.tl7 2280 14 19: 7'1.664331 278. 32 13: 84.162702 

179. 48 5: 74.16590o 229. 26 14: h. 7oJ272 279. 22 17: 84.293352 
180. 8 20: 7.:..lo2.7o7 230. 41i 7: 79. 79t>75d 280 .. so 7: 84.463253 
181. 56 3: 74.2o20v4 231. 34 11: n-:-a2 473 ti 281. 38 11: d4. 7'18460 
182. 6 21: 74.372373 232. f>6 2: 74.tl917-.-;, 282 0 20 18: 1;4.811577 
183. 52 4: 7-. ... 2lo47 "233.'721:-7(r: <;6 947 o 283. 44 9: b'fo'1~1hlO 
.184. 22 14: 7'-.483131 234. 1:? 20: 79.495906 284. 30 14: 1:!4. 9o95Zl 
185. 4 22: 74.507115 2 )5. 40 9: dU.lll.o/J 285. 54 6: o5.J97~ 
186. 2 23: 74.5::17687 236. 10 21: Gi.J.2f3944 286. 66 3: 65.12651-. 
187 0 ~0 11 ; 74.7Y730o -237 ~--24-15-: -fl 0. 4 31503 287. 18 19: o':>.273%1 
188. 20 15: 75.G763vd 2 J9. 8 .,~. 80.4'1'1(":>2 2R8. 58 5: &':>.4o39o~ 
189o 42 7: 75.098431 239. so 6: tl0.5l3239 289. 62 4: o:».;)uolu~ 
190. 36 9: 75.25261~ 240. 6 23: ao.o7<t3:0o . 290. 16 20: d':>.t>82 .. 9:.. 
191. 18 16: 75 .o032Zo 241. 32 12: -u-o-:-t5 39-s 7 

291. 28 15: dS./ubBbT 
192. 62 2: 75.637t>l0 21.2 6" 3. 1;0.7<>115v 

292. 36 1"· i:l5.7'>44~o 19] 0 28 12: 75.655117 243. 4 24: du. 7'1d5:,4 
293. 48 8: o5.9ou9Z2 

194. 68 1: 7:>.627545 244. 2 25: 80.8 7ZS26 
294. 14 :?1: bo.039ldt> 

195. 46 6: 75.902589 24:1, 54 5: ao.9ol44-. 
42 ot>.I .. .., .. /v 295. 10: 196. 16 17: 7o. uo 7 21 d 246. 22 16: tl1.03<t264 

296. 78 1: 1;<...17J708 
197. 34 10: 76.3~4'71'1 2470 58 4: 81.08:>u<i7 

297. 72-T:Oo-. 25547'i 
198. 26 13: 7o.43167l 248. 44 8: 81.22721o 

298. 12 22: d6.34':>496 
1990 50 5: 76.437072 249. 38 10: ol.2o5158 

299. 26 16: !lo • .379198 
200. 58 3: 7o.<t4L044 250. 20 17: 81.57:..115 

300. 10 23~o. o02o68 

Table II. List of exact eigenvalues for circle (odd-odd parity only). 
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m n mn m n 
301. 34 : 1-:3: !l 6. 7 0 3 7 !:l4 ~io 2o: .. r:2o354d 401. so 10: 95.1:lul1Ja 
302. 52 7: tl6. 785u75 352. 56 7: '11.41uTsa 402. 12 25: 9::, • a s-518 ti 
303. 8 24: do.l:ll17U/ 353. 72 3: <JL6J77~;·J 401. 7(, 3: 95.'-114d77 
304. 6 25: 86.973606 3 5'·. 10 10: 'H.o?042 .. 404. 60 7: 'io.Jlluo:> 
305. 24 17: do.9'1027i 355. 18 21: Y ... ol1l..:..:.u 405. 36 15: 96.uuJ7u6 
306. 4 26: 87.0887&1 ].26._3~ 13: 91.7&u5~u 406. 10 26: ""·o·i:l .. 4:.o 
307. 2 27: 67 .1571.>83 357. hO --6:'91.9295{;9 407. 26 19: Yo. Zl21&0 
308. 40 11: d7.2.6D62 .J5!i._l6 2?· '12.070U55 408. 8 27: 9o. 2TI712 
309. 68 3: 137.290000 359. so ·-9: '>2.09u<!74 409. f, 28: 9o. 41-f:!:>3~ 
310. 46 9: 87.3251"05 360. 68 4: 92.1075uo 410. 64 6: 'io ... :>d<.lt. 
311. 56 6: 67.380297 361. 44 11: '12. r7z7<;'i 

411. 88 1: 9o.486512. 
312. 22 18: d7.5-t325u 362. 64 5:92.181532 412. 72 4: '1u. 4 g-:}<;(.,-.; 

~1~, ~2 14; 87.548216 363. 28 17: 92.-32.0347 413. 4 29: 96. 522::,7') 
314. 60 s: d7.7u716u 364. 84 1: 92.3o312o 414. 2 3o0-0.5'a-:.--,zJ.· 
315. 64 4: d7. 71 021:!5 365. 14 23: '12.401167 415. 68 5: •Ju.ujo.).:l 
316. 20 19: 68.04Ll7!:l1 366. 78 2: '12 .6U0&4d 

41f.. 24 20: 9o.7;)4'/UQ 
317. 80 1: 88.2351:l7'J 367. 36 14: 92. &u2074 4ii.-i.2~o-:-7o;,cl;.-3 
318. 38 12: 88.2<;5140 368. 12 24: 92.6!:l51:l72 

418. 82 2: '1u.d215G1 
319. so 8: I:Jd.31571i 369. 10 25: 92..'725172 419. 54 9: 96.82346j 
320. 30 15: l:ld. 318-':ZI.l 370. 26 18: 92.94471<: 

420. 34 16: 9G.d57ou.:. 
321. 74 2: ii8.3 72480 371. 54 8: 93.UU33UJ 

421. 48 11: C.7. Oj 9U4d 
322. 18 20: od.4d5125 372. c8 26: 93.1l'l89u 

422. 22 21: ';7.247735 
323. 44 10: 81:l.576l4o 373. 42 12: <:.::..261459 

423. 32 17: '17.?93':105 
324. 16 21: bB.b78197 374. 6 27: 9:.;. 270681 

!:!'f4. 58 8: 97~9£'!'::!~± 
3~5. 28 16: 89.0233o4 375. 4 28: '7::..J7oU3d 

425. 20 22: 97.b9248o 
326. 54 7: dY.1ul-'94 376. 48 10: 93.401457 

~25. 40 14:97.723770 
327. 14 22: 89.221607 377. 2 29: 93.442-'lo 427. 78 3: ';8.(,64707 
328. 36 13: 89.241111 378. 34 15: <;3.494154 428. 18 23: <>d.oc;o12:;, 
329. 70 3: 89. 45J2 75 379. 24 19: 93.508328 429. 46 12:':ta.1d:><tu:> 
330. 12 23: d9.5l671J 380. 58 7: '13.7l.:.Ud4 

4 30. 52 10: 98 .l926S2 
331. 58 6: 89.657627 381. 74 3: 93. 76259tJ 431. 30 18: 9!l.273047 
332. 26 17: o9.ool47:> 382. 22 20: 94. 01961.)1,) 

432. 62 7: ';d.3Ll3772 
333; 48 9: 8'1. 712200 383. 62 6: 9 4. 1 9 64 6 7 433. 16 24: 98.44TI9?. 
334.-.42 11: 89.725270 384. 32 16: 94.261?17 4 34 . 90 1: 9tl.54&8'<7 
335. 10 24: 89.764629 385. 40 . 13: 94.267HI:l2 4 35. 38 15: '>o.ol413o 
336. 66 4: 89.910694 386. 70 4: 'J4.3JUb<i2 

4 36. 74 4: 96.677'!~7-
337. n2 5: 69.':146870 387. 66 5: 94 ... 11 '1S3 

4 37. 66 6:98.715d3l 
338. 8 25: d':l.'ibOi.lb 388. 86 1: 94.4252b::. 4 38. 14 25: c;a. 752b4u 
339. 34 14: 90.112082 389. 52 9: 94.4o0562 

439. 70 s: 9o. tl6uoi~ 
340. 6 26: 90.122.3do 390. 20 21: '>'<.4d0Sci5 440. 28 19: 9d.897d45 
341. 4 27: ')0.23350& 391. 46 1 1: 94.6iJS43 

441. 84 3: 9o.92Y'<72 
342. 24 18: 9 u. 2-s _,-r;;z- 392. 80 2: ...... 7l!'il? 

442. 12 26:99.018841 
14 3. 82 1: 90.JJuuo.:. 393. 18 22: '14.893038 

44 3. 55 9: 99 .17934s 
344. 2 28: 11u • .ouUU.::> 394. 30 17: 94. '>681::.9 444. 10 27: 99.242o1u 
345. 76 2: 9J.4d75J"o 395. 38' 14: 95.199iJ4.J 

445. 44 13: 9'-J .248<;(;4 
34 6. 52 8: ':10.663U41 396. 16 23: 95.2::>6470 

'44 6. 8 28: <:.9.424816 
34 7. 40 12: 9u.7a341f 397. 56 8: 95.3361:l4d 

447. 36 16: '9 ... 4-' '7 7 d .. 
]!.fl. ::!~ 10: 9J.7il:,u2<J 398. 14 24: ':1:>.?7oluu 

448. so 11: S9.45879d 
34 ':1. 32 15: '1v.'/Uo37 399. 28 18: 95.617394 

44 9. 26 20: 99.470dtio 
350. 46 10: 90.9932'Jd 400. 44 12: ':IS. 7L342o 

450. 6 29: 99. 5659_'?_~ 
4 51. 4 30: 99.ooo54u 
452. 2 31:99.72~>765 
453. 60 8-~-';9.985102 

454. 24 21: 99.9'14343' 

Tahle IT. List of exact eigenvalues for circle (odd-odd parity only). 
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the eigenfunction everywhere (and only at the fixed grid points). A much higher 

resolution of the spatial structure of short wavelength modes is therefore possible, 

as the interior of the region may be broken up into many smaller areas which can 

be treated independently; this is important for computing statistical measures 

of the eigenfunctions such as the locally averaged spatial correlation function. 

Since ~n(~) can be constructed on an arbitrarily fine grid, it is possible to 

check the accuracy of the numerical eigenfunction by directly computing (A.l) 

with a finite difference approximation for the Helmholtz operator. In this way 

I have found that eigenfunctions constructed by (A.3,A.8) from the boundary 

distributions locally satisfy the Helmholtz equation to within an error of I0"-4 

almost everywhere in the interior for values of k ~ 65 and for both 1 = 0 

and 1 = 1. The error is greater when ~ is evaluated within a band around 

the boundary of width approximately given by the discrete boundary point 

separation; therefore, points within this band are generally not included in the 

analysis of the statistical properties of the eigenfunctions. 
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*SELECT BOX=B63.ACCOUNT=95BLBA,TTYECHO=YES 
*FILE NAME=MASTER 

c 
c 
c 

CALL LINK I"UNIT59=TERMINAL,UNITS=IINPUTFOL,OPENJ,& 
UNIT6=10UTPUTFOL.CREATEJ.UNIT9=1SAVTAP,CREATE,SEQJ//") 
D I l-IENS I ON E K V E C 1 I 5HD I . Ef~V EC 2 ( 5.0'.0' l • E ( 5.0'.0' l 
COMMON/NUMBS/AB,PI,R.D.N,EK,EPS 
COMMON/SHIFT/ISHIFT,BITJ 
COMMOti/DIP/01 ( 1.fl'.fl'l 
CRIT=1 . .fl'E-3 
VEPS=1 . .fl'E-8 
ISHIFT=l 
NVEC=5.fl'.fl' 
P.EADI5,3.0.fl'l AH,DA,NA.SHIFTl ,SHIFT2,N,EK13',DEK,ISX,ISY,NIT,INVERT 

300 FORMATIF6.4,F7.4.13,2F4.1,I4,F13.8,F6.4,2I2,15,121 
YRITEI6,3.0ll AO,DA,NA,SHIFTl,SHIFT2,EKB.DEK,N,ISX,ISY,NIT,INVERT 
YR I TE : 59 , 301 l AS, DA, NA, SHIFT 1 • S HI F T2 , E KB. DE K, N, IS X, IS Y, NIT, INVERT 

3Zl FCiRMATI" A.fl',DA,NA,.,",21F6.4,3XJ,I3.5X," SHIFTS=",2F5.1,/," EK.fl',DEK=", 
.Fl4.8,FJ.a.4,/," tl,ISX,ISY.NIT,INVERT=",516l . 
YRITEI91 A.fl',DA,NA,SHIFT1,SHIFT2,N,EK13',DE~.ISX,ISY.NIT,INVERT 

DO 1.0' I=l,NA 
A=A.fl'+{ 1-1 l*DA 
YP.ITEI6,3.0'3l I ,A 
Il=2*1-1 
YRITEI6,3G2l II ,SHIFTl 
BITJ=SHIFT1 
KFX=.fl' 
ILOK=l 
ISPC=1 
IYR IT= 1 
CALL EIGA!A,l. ,EK.fl',OEK, ISX, ISY,NIT,KFX, ILOK, ISPC,EKVECl,l'tVALl, IYR!Tl 

C URITEC6,4B.fl'l KFX,ILOK,ISPC,IYRIT,NVAL1 
4BB FORMAT<" KF,ILOK.ISPC,lYRIT,NVAL=",SI4l 

c 
c 

II=Z*I 
YRITEI6,3B2l II,SHIFT2 
BITJ=SHIFT2 
KFX=.fl' 
!LOK=l 
ISPC=l 
IYRIT=.fl' 
CALL EIGAIA,l.,EKB,DEK,ISX,ISY,NIT,KFX,ILOK,ISPC,EKVEC2,NVAL2.IWRITl 

C YRITEC6,4B.fl'l KFX,ILOK,ISPC,IYRIT,NVAL2 ' 
3f'2 FORMATU//," CALL=",I3,5X," SHIFT=",F3.1l 
3£3 FORMAT(//////," !TERATION=",I3,5X," A=",F5.3l 

c 
c 

KK=.fl' 
DO 3B J=l.NVALl 
IFIJ.EO.ll GO TO 25 
EDIF=EKVEC11Jl-EKVEC11J-ll 
ADIF=ABSIEDIFl 
IFIADIF.LE.VEPSl GO TO 3.0' 

25 CONTINUE 
DO 29 K=1,NVAL2 
IFIK.EO.l l GO TO 28 
EDIF=EKVEC21Kl-EKVEC21K-ll 
ADIF=ABSIEDIFl 
:FIADIF.LE.VEPSl GO TO 29 

28 CONTINUE 
DELEK=EKVEC11Jl-EKVEC21Kl 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 
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ADEL=ABS (DEL EK > 
IF!ADEL.GI.CRITl GO TO 29 
KK=KK+l 
E!KKI=EKVEC2!Kl 

29 CONTINUE 
3fJ CONTINUE 

\./RITE!6,3.()'4) KK 
304 FORMAT!////," GOOD EIGENVALUES, NUMBER=",IS,//1 

DO 31 K=l.KK 
\./RITE!6,3.()'5) K,E!K) 

3Z5 FORMAT!2X.I4,F2H.8l 
31 CONTINUE 

\./RITE!59,3H6> I,KK 
306 FORMAT!" GOOD ONES FOUND: l,KK=",2I5l 

\./RITE!9> KK,E 

307 

IF<INVERT.EO.Bl GO TO lB 
\./RITE< 6, 3B7 l 
FORMAT!/////," DISTRIBUTIONS---",///) 
DO 4B J=l.KK 
DEKN=DEK/2 
EKX=E!Jl-DEKN 
KFX=1 
ILOK= 1 
ISPC=B 
I\./RIT=H 

904 

CALL EIGAiA,l.,EKX,DEKN,ISX,ISY,lH,KFX,ILOK,ISPC,EKVEC2,NVAL2,I\./RITl 
\./RITE!6,3H81 J,EK 
FORMAT!///,14," K~".F2H.8,//) 3Z8 

c 
c 

35 
309 

c 
4{] 

c 

DO 35 JJ=l,N 
\./RITE!6,3fJ9) JJ,Dl!JJI 
CONTINUE 
FORMAT<2X,I4,5X,F12.81 

CONTINUE 

lJJ CONTINUE 
CALL EX IT 
END 
SUBROUTINE EIGA<GG,RB,EKB,DEK,ISX~ISY,NIT,KF,ILOOK,ISPEC, 

.EKVEC,NVAL,I\./RITEI 
C PROGRAI-1 EIGENV! IllPUT,OUTPUT,TAPE9,TAPES=INPUT,TAPE6=0UTPUTl 

COMMOH/NUMBS/AB,PI,R,D,N,EK,EPS 
COMMOH/VECTS/X!lfl.()'>,Y<lBBl,L(lBBI 
COMMON/DETT/ DETX 
COMMON/SHIFT/ISHI>T,BITJ 
DIMENSION AXY<1BB.lHBl 
DIMENSION EKVEC<SBBI 
DIMENSION EGVAL<SBHBl,DEVAL!SBBBl 

C READ!S,15> N,GG,R.EK,DEK,ISX,ISY,NIT,KF,!LOOK;ISPEC,ISHIFT,LEFT, 
C .BITJ 

15 FORMAT!IS.4Fl2.8,2I2,IS,4I2,I6,F4.ll 
EPS=.BBBBBBBBBl 
:A=lBB 
PI =3. 141592653589 

C EKB=EK 
ARG=1.+!4.*GG/PII 
D E N 0 1<1 = S Q R T ! A R G l 

C RB=R 
R=RB/DENOM 
AB=R.B'*GG/DENOM 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 



c 
16 

17 
c 
c 

779 

c 
c 

c 

35 
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~RITE<6.16) N,GG.R,Er.B,DEK,ISX,ISY,NIT,R~.AB,KF,ILOOK,ISPEC,ISHIFT 
~ R I TE ( 5 9 . 1 6 ) . f I , G G . R , E I~ , D E I~ , I S X , I S Y , N I T , R .0' . A B , K F , I L 0 0 K . I S P E C , I S H I F T 
FORr~AT<lHl," N=",IS," G=",Fl2.8," R:.",Fl2.8,'' EK=".Fl2.8, 
" DEr.=",Fl2.8,/," SYMMETRY? ",214," NIT=",I6, 

. R.0'="JS.2," /1=",F12.8," INVERT?",I4," ILOOK,ISPEC,ISHIFT=", 

.3I4,//) 
~R I T E < 6 • 1 7 > B I T J 
~RITE<S9,17) BITJ 
FORMAT<" BITJ= ",F5.3) 

DO GEOMETRY AHD SET UP MATRIX ELEMENTS 
~RITE<6.779> I~RITE,KF,ILOOK,ISPEC 
F 0 R r~A T ( " I ~R IT E . K F , I L 0 0 K , 1 S P E C = " , 4 I 4 ) 
CALL RCETRK<I~RITE> 
\.JRITE<6.35) 
FORMAT< 1Hl > 
JF=B' 
INVERS=kl' 
INE~T=B' 
IS~P=.0' 
EKSTRT=EK.e' 
EK=EK.kl' 
IRET=kl' 
IRETA=kl' 
IKROS=.0' 
KONV=B' 
CONV=1 . .0'E-6 
IKLBL=l 
KLBL=l 
IFLAG=.0' 
NFINE=S 
DEK.kl'=DEK 
IF<ISPEC.E0.1> ILOOK=kl' 
LIMRET=Z 

DO 6.0' IK=l.NIT 
EKL=EKM 
EKM=EK 
DETL =DETM 
DETM=DETX 
IF<ILOOK.E0 . .0') INE\.JT=kl' 
IF<ILOOK.E0.1> GO TO 79 

C HERE IF S~EEPING 
c 

c 

EK:.EKSTRT+IS\.JP*DEK.e' 
GO TO 83 

C HERE IF INTERPOLATING 
c 

c 

c 

79 CONTINUE 
IF<INE~T.EO.kl'> GO TO 8.0' 
IF<INE~T.E0.1> GO TO 81 

SLOPE=<OETM-DETL)/(EKM-EKLl 
EK=EKM-<DETM/SLOPE> 
CHNG=EK-EKM 
CHNGA=ABS<CHNG) 
IF<CHNGA.LT.CONV> KONV=1 
GO TO 83 

SJJ CONTINUE 
EK;'EKSTRT 
GO TO 83 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 
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c 
c 

c 

Appendix A 

81 CONTINUE 
Ek=EK+DEK.0' 

83 CONTINUE 
CALL MATRIX<AXY,IA,ISX,ISYJ 

C DO DETERMINANTS 
c 

c 
c 
c 
c 
c 
c 

CALL DETERM<AXY,IA,ISX,ISY,JFJ 
!F<INVERS.E0.1 > GO TO 63 
!F<KLBL.GT.5.0'.0'.0') GO TO 21.0' 
EGVAL<KLBL>=EK 
DEVAi..<KLBL>=DETX 
I~LBL=KLBL+1 

212 CONTINUE 
IF<ILOOI<.EO.l) GO TO 211 
IF< I SWP. GT . .0' > GO TO 211 
DETL =DETX 
DETM=DETX 

211 CONTINUE 
DPROD=DETX*DETM 

..•... WRITES ......•. 
WRITE<6.878} EKL.EKM,EK,EKSTRT,EKBEG,EKEND,EKPREV,EKSAV 
WRITE<6,879> DETL,DETM,DETX,DTEND,DETSAV 
\./RITE<6,8G.0'> ILOOt:,ISWP,ItlEWT,IFLAG,IRET,IRETA,DEK.0',DPROD 

306 

C878 FORMAT</." EKL,E~M.EK=",3(2X,Fl.0'.6>,1," STRT,BEG,END,PREV,SAV=", 
C .SF7.3) 
C879 FORMAT{/," DETL,DETM.DETX,END,SAV=",5EB.1J 
C88B FORMAT(/," LOOK,SWP,NEWT,FLAG,RET,RETA,DEK.0',DPROD=",6I4,2X, 
C _.F6.4,EB.1,//J -
c 
c 
c 
c 

c 
c 
c 

c 

TEST FOR CROSSING OR CURVAWAY? 

IF<IFLAG.EO.lJ GO TO 95 
IF<ILOOK.EQ.B) GO TO 86 
IFIKONV.EO.B> GO TO 95 
GO TO 9.0' 

HERE IF SWEEPING .... TEST FOR CROSS OR CURVAWAY 

SG CONTINUE 
IF<ISPEC.E0 . .0'l GO TO 95 
IF<DPROD.LT.Bl GO TO 92 

SLPA=DETM-DETL 
Si..PB=DETX-DETM 
PROD=SLPA"'SLPB 
CURV=SLPB"'DETM 

C ..... SLOPES WRITE 

c 
c 
c 
c 

IF<PROO.GE.B. > GO TO 95 
IF<CURV.LT . .0'. > GO TO 95 

HERE IF CURVED AWAY 

IF<IRETA.GE.LIMRET> GO TO 2.0'2 
IF<IRETA.GE.ll GO TO 2.0'1 
EKRITE=EK 
DTRITE=OETX 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 
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c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
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2.0'1 CONTINUE 

2fl'2 

3ez 

92 

EKSTRT=EKL 
EK=EKL 
EKM=EKL 
DETX=DETL 
DETM=DETL 
DEKJ3=DEK.G'/NFINE 
IRETA= IRETA+! 
ISWP=.0' 
!LOOK=£!' 
GO TO 95 

HERE IF RETURNED TOO MANY TIMES 

CONTINUE 
EKSTRT=EKR ITE 
EK=EKR I TE 
EKM=EKR ITE 
DETX=DTRITE 
DETM=DTR ITE 
ISWP=.0' 
ILOOK=.0' 
INEWT=.0' 
DEK.0'=DEK 
IRETA=.@' 
WRITE<6,3.G'.0'l IK,EK 
FORMATI/,"----------CANNOT FIND ZERO----
GO TO 95 

H~RE IF CROSSED AXIS 

CONTINUE 
IF<IRET/\.GE.ll GO TO 85 
IF<IRET.EO.ll GO TO 85 

IK,EK •",I8,Fl5.8l 

HERE IF THIS IS FIRST TIME CROSSED AND NOT CURVAWAY SWEEPING 
GO BACK TO LAST POINT AND SWEEP FINER 

EkEND=Ek 
EKBEG=EKM 
EKSTRT=EKM 
EK=EKM 
EKM=EKL 
DTEND=DETX 
DETX=DETM 
DETM=DETL 
DEKfJ=DEK/NFINE 
IRET=l 
ISWP=l 
I NEWT=! 
GO TO 6.0' 

C HERE IF CROSSED UNDER FINER SWEEP 
c 

85 CONTINUE 
EI-:PREV=EKM 
EKSAV=EK 
DETSAV=DETX 
I NEWT=! 
IRET=! 
ILOOK=l 
GO TO 95 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 
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c 
C HERE IF CONVERGED 
c 

9JJ CONTINUE 
C ....... NC'.FON CONVERGED W'RITE .. , ...• 

KONV=B 
IF!Jf~L8L.GT.S.liJ'..0') GO TO 97 
E f~ V E C ! I K L B L > = E K 
Jf:LBL=IKLBL+l 

97 CONTl NUE 
IF!ISPEC.EO.ll GO TO 48 
INVERS=l 
JF=KF 
GO TO 83 

48 CONTINUE 
IF!IRETA.GE.l l GO TO 96 
IF!EK.GE.EKBEG.AND.EK.LE.EKENDJ GO TO 96 

c 
C HERE IF OUTSIDE OF BRACKET AND IRETA = .0' 
c 

c 

ILOOK=B 
EKSTRT=EKEND 
EK=EKEND 
EKM=EKEND 
OETX=DTEND 
OETM=DTEND 
ISW'P=B 
DEKB=DEK 
IRET=B 
GO TO 95 

C HERE IF IN BRACKET AND IRETA =8 OR IRETA#8 
c 

c 

96 CONTINUE 
ILOOK=B 
EK=EKSAV 
OETX=DETSAV 
EKSTRT=EKSAV 
EKM=EKSAV 
DETM=DETSAV 
ISW'P=B 

C HE~E FOR INCREMENT 
c 

c 

95 CONTINUE 
ISW'P=ISW'P+l 
! r~EW'T= I NEW'T+ 1 
IF!IPETA.E0.8.AND.IRET.E0.8l GO TO 68 
IF!IPETA.GT.81 GO TO 288 

C HEPE IF JUST RETURNED FOR CROSSING 
c 

c 

Ef~D IF =Ek-EKEND 
IF!EKDIF.LE.EPSI GO TO 68 
IF!E~.LE.EKENDI GO TO 68 
EKSTRT=EKEND 
EK=EKEND 
EKM=EkEND 
DETX=DTEND 
DETM=DTEND 
DEKB=DEK 
ISW'P=l 
IRET=8 
ILOOK=8 

808 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 
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c 
c 
c 

2JJ[J 

c 
c 

60 
c 

35ff 
c 
c 

1£'3 
G 1 
6~ 

c 
777 

c 
c 

62 
1.(:; ·! 

47 
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GO TO 6.0' 

HEP.E IF IRETA # .0' 

CONTINUE 
IF<EK.LE.EKRITEI GO TO 
Ef.:STRT=EKRITE 
EK=EKR I TE 
EKM=EKRITE 
DETX=DTRITE 
DETM=DTR ITE 
IS\./P=1 
DEK.0'=DEK 
ILOOK=B 
IRET=B 
IRETA=B 

CONTINUE 

CONTINUE 

IF<ISPEC.EO.Bl GO TO 47 
HVAL=IKLBL-1 
\./RITE<6,351 
DO 61 Il=l,NVAL 

6.0' 

\./RITE<G,l.031 II.EKVEC<IIl 
FORMAT<4X.I4,4X,F2.0'.121 
CONTINUE . 
CONTINUE 
BSORT=KLBL-1 
\./RITEIG,777l NVAL.NSORT 
FORMAT(" HVAL,NSORT=",215l 
CALL SSORT<EGVAL.DEVAL,NSORT~2l 
\.JR I TE ( G, 3 5 I 
DO 62 II=l,NSORT 
\./P. IT E < G , 1 ff 4 l I I , E G VAL ( I I l , DE VAL ( I I l 
CONTINUE 
FORMAT<4X.I6,4X.r-1B.6,E2.0'.61 
\./RITE<91 HVAL,NSORT,EGVAL,DEVAL,EKVEC 
CONTINUE 
RETURN 
END 
SUBROUTirlE RCETRK< 1\./R ITE l 
COMMON/NUMBS/AB.Pl,R.D,N.EK,EPS 
COMMOH/VECTS/X(l.0'.01,Y<lBD'I,L<l.0'.0') 

C WPITE<G,78.0'1 !WRITE 

c 

788 FORMAT(" l\./RITE<RCETRKI=",l4l 
ALGTH=AB+<Pl*R/2. l 
D=ALGTH/N 

C CHECK FOR CIRCLE 
c 
C IF<AB.GT.EPSl GO TO 3.0' 

GAM=AB/R 
GCRIT=Pl/(2*(2*N-1. II 
IF<GAM.GT.GCRITI GO TO 3.0' 

NB=l 
GO TO 46 

3ff X(11=D/2. 
v ( 1 I =R 
L ( 1 I= 1 

r 

S09 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 
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DO 5.0' IX"'2,N 
PIX, IX 
P"'PIX-.0'.5 
PX,D*P 
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C CHECK IF POINT PAST END OF AB 
IF<PX.GT.AB> GO TO 45 
X<IX>,PX 
Y< I X l "'R 
L<IXl=I 

SO' CONTINUE 
45 NB=IX 
46 Q=D/R 

X<NI,AB+R*COS{Q/2. l 
Y<NI=R*SIN(Q/2. l 
!...(Nl=B 
I~MAX=N-NB 
DO 47 IS=l,NMAX 
PIS= IS 
QT=<PIS+B.Sl*O 
M=N-IS 
X<MI=AB+R*COS<OTl 
Y<MI=R*SIN<OTl 
L<Ml=B 

47 CONTINUE 
IF<I~RITE.EO.Bl GO TO 56 
~RITE<6,Sll 

51 FORMAT<~ RESULTS OF RACETRACK GEOMETRY ") 
WRITE<6,521 ALGTH,D,NB,Q 

910 

52 FORMAT<" LENGTH"' ",Fl2.9," D"' ",F12.9," NB"'",I4,"· O"'",F12.9l 

c 

DO 53 KK=l,N 
WRITE<6,54l KK,X<KKl,Y<KKl,L{KKl 

54 FORMAT<I6,2Fl5.9,l6l 
53 CONTINUE 
56 CONTINUE 

RETURN 
END 
SUBROUTINE MATRIX<AXY,IA,ISX,ISY) 
COMMON/NUMBS/AB,PI,R.D.N,EK,EPS 
COMMON/VECTSIX<lBBl,Y<l.0'BI,L<lB.0'l 
D I ME ll S I 0 N A X Y < I A , 1 l 
GAM=AB/R 
GCRIT=PI/(2*{2*N-l. )) 
DO 2.0' I"'l,N 
I I= I 
DO 2.0' J=Il,N 
JJ"'J 
XI,X<III 
YI,Y<IIl 
Ll"'L<III 
LJ=L<JJI 

C CALCULATE Al ..•..•.•.•. 
C CHECK FOR DIAGONAL ELEMENT 
c 

XTRA=D/{2.*R*Pil 
IF<JJ.NE.!Il GO TO 1 
Al IJ=l. 
BliJ=l. 
~F<L<JJl.EO.Bl GO TO 1.0' 
IF<L<JJ+ll.EO.ll GO TO 5 
XLD=(D/2. l+XI-AB 
IF< XL D. L E . .0'. l GO TO 5 
ADD,XTRA*XLD/D 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 

.. 
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c 

c 

Al IJ=Al IJ+AOO 
GO TO 5 

1~ AliJ=AliJ+XTRA 
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IFIGAM.LE.GCRIT.ANO.JJ.EO.ll AliJ=AliJ-IAB~XTRA/Ol 

IFIJJ.EO.ll GO TO 5 
IFILIJJ-1 l.EO.gl GO TO 5 
XLO=AB-XIJJ-1 l-1012. l 
IFIXLO.LE.g. l GO TO 5 
AOO=XTRA*IXLO/Ol 
A11J=A1 IJ-AOD 

5 BliJ=A1IJ 
GO TO 2 
XJ1=XIJJ) 
YJ1=YIJJ) 
KXJ1=1 
KYJ1=1 
CALL FUNCIXI ,VI ,XJl,VJl,LI ,LJ,KXJl,KYJl,AIJ,BIJ) 
AI IJ=AIJ 
BIIJ=BIJ 

2 CONTINUE 

C CALCULATE AZ •••••.••••• 
c 

c 

XJZ=X<JJ) 
VJZ=-YIJJ > 
KXJZ=l 
f~YJZ=-1 
CALL FUNCIXI ,VI ,XJ2.YJ2,LI ,LJ,KXJ2,KYJ2,AIJ,BIJI 
A2IJ=AIJ 
B2IJ=BIJ 

C CALCULATE A3 •••••.••••• 
c 

c 

Xj3=-XIJJ> 
YJ3=-YIJJ> 
KXJ3=-1 
KYJ3=-1 
CAL L F U r~ C c X I • Y I , X J 3 • Y J 3 , LI , L J , K X J 3 , K Y J 3 , A I J , B I J I 
A3IJ=AIJ -
E:3IJ=BIJ 

C CALCULATE A4 ••••..• ; •.•• 
c 

c 

XJ4=-XIJJJ 
YJ4=YIJJ> 
KXJ4=-1 
KYJ4=1 
CALL FUNCIXI ,YI.XJ4,YJ~.LI ,LJ,KXJ4,KYJ4,AIJ.BIJl 
A4IJ=AIJ 
B4IJ=BIJ 

C CALCULATE ~PP,APM,AMP,AMM •••••••.•• 
c 

A2IJ=II-1 l**ISYl*A2IJ 
B2IJ=I 1-1 '**ISYl*B21J 
A3IJ=CI-1 l**ISX>*<<-l>**ISYl*A3IJ 
B3IJ=< 1-1 l**ISXl*l <-1 >**ISYl*B3IJ 
A4IJ=< 1-1 l**ISX>*A4IJ 
B4IJ=I 1-1 l**ISXl*B41J 
AXYIJJ,II >=BIIJ+BZIJ+B3IJ+B4IJ 
AXYC I I ,JJ l=A1 IJ+A2IJ+A3IJ+A4IJ 

2fT CONTINUE 

911 

FOLLOW. Fortran computer code for determining eigenvalues of Helmholtz 
equation in stadium-family boundary. 



c 

c 

Appendix A 

SB' RETURN 
END 
:;UBROUTI NE F UNC <X l, Y 1, X2. Y2, L PI, LPJ, KPX, KPY ,AI J, B I J l 
C 0 M M 0 i U N U f·1 B S I A B • P ! • R • D • N • E K , E P S 
COMMON/SHIFT/ISHIFT,BITJ 
DIMENSION BJ<~l,BY<2l 
SX=X2-Xl 
SY=Y2-Yl 
S=SQRT<SX•*2+SY•*2l 

C CHEC~ IF POINT 2 ON CURVE 
c 

c 

!F<LPJ.EQ.Bl GO TO 1 
VXJ=B'. 
VYJ=KPY 
GO TO 2 
VXJ=<X2-<KPX*ABll/R 
VYJ=Y2/R 

2 TJ=<SX*VXJl+{SY*VYJ> 

C CHECK IF POINT l ON CURVE 
c 

IF<LPJ.EQ.Bl GO TO 3 
VXI=B'. 
VYI=l. 
GO TO 4 

3 V:<J={X1-ABl/R 
VYI=Yl/R 

4 TI=-<SX*VXIl-<SY•VYil 
Z=EK*S 

C FBES=BESY1<Zl 
FBES=BESYul<Z,l,BSJll 
IF<ISHIFT.EO.B'l GO TO 2B. 

C FEXT=BESJl<Zl 

c 

FEXT=BSJ1 
FBES=FBES•BITJ*FEXT 

2fJ CONTINUE 
FUNX=-D*EY.*FBES/{2.*Sl 
AIJ=FUNX*TJ 
BIJ=FUNX*TI 

1fJ RETURN 
END 
SUBROUTINE DETERM<AXX,IA,ISX,ISY,KFl 
COMMOH/NUMBS/AB,PI,R.D,N.EK,EPS 
COMMOH/VECTS/X{188l,Y{18Bl,L{188l 
COMMON/DETT/ DETX 
COMMON/SHIFT/ISHIFT,BITJ 
COMMOtUDIP/D1 < 188> 
D I ME f~ S I 0 N A X X { I A , 1 l 
DIMEfjS10fl DUM2<188,18Bl 
DIMENSION Z1{188l 
DIMENSION SCR<2BB> 
DIMENSION A<4l 
DATA A/3H~PP,3HAPM,3HAMP,3HAMM/ 
IM=2*ISX+ISY+l 
NM1=N-1 
DO 2fJ KK=1,IA 
D1<KK>=-AXX<KK,1l 
ZHKKl=X<KKl 
DO 15 LL=2,IA 
DUM2<KK,LL-1l=AXX<KK,LLl 

15 CONTINUE 
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c 
c 
c 

c 
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213' CONTINUE 

DET=.0'. 
CALL LINV3FIAXX.Z1 1 4,N~IA~DETIEXPISCR~IERl 
DETX~DET*i2**EXPI 
IF ( KF • EO . .0' I GO TO 1.0'.0' 

OTHER~ISE INVERT 

DET1=.0'. 
c A L L L I t l v 3 F ( D u ~~ 2 . D 1 I 3 I N M 1 I I A • 0 E T 1 I EX p 1 • s c R I I E R ) 
DETX1=DET1*12**EXP1l 

DO 75 II=1,NM1 
IJ=N-11+1 
IL=N-II 
Dl< IJ I=D1 < IL) 

75 CONTINUE 
D1111=1..0' 

C ~R I TE < 6 , 1.0' 1 l 
C WRITE<6,1.0'7l 
C WRITEI6 11.0'5l OETX1 

DMAX=l.fJ' 
DO 77 II=!,N 
DCOMP=D1<II> 
DCOMPA=ABS<DCOMPl 
IF<DCOMPA.GT.DMAXI DMAX=DCOMPA 

77 CONTINUE 
DO 78 II=1,N 
Dl<IIl=D11III/DMAX 

73 CONTINUE 
C DO 36 II=!,N 
C WRITEI6,1.0'6l II,D11Ill 
C 36 CONTINUE 
c 

c 
c 
c 

c 

WRITE191 ISX,ISY.N;L,ISHIFT~AB,PI,R,O,EK 1 EPS 1 BITJ.X,Y,01 

1B'JJ' RETURN 

1Zl FORMATI!Hll 
1Z2 FORMATI1H.0'1 
113'5 FORMATI2X,• INVERT--DET=",E15.81///l 
!06 FORMATI2X.I4.5X,Fl2.8) 
107 FORMAT12X."RESULTS OF LINIT INVERSION--D1",///1 

END 
*FILE NAME=INPUTFOL 
.0' . .0'13'5.0' .0' . .0'.0'5.0' 1 3.5 5 • .0' 5.0' 65 . .0'.0'.0'.0'.0'.0'13'.0' .Sff5.0' 1 1 lff.0' 
*CHATR I=MASTER,BOX=B63.LIB=II',F',BESLIBl,S=8.0' 1GO 
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*SELECT BOX=B63,ACCOUNT=95~LBA,TTYECHO•YES,P•NONE 
*FILE NAME=PIX 

CALL LINK ("UNIT59=TER~INAL,UNITS=IINPUTPIX,OPENI,& 
UNIT6=10UTPUTPIX,CREATEI,UNIT9=1TAPMASFUN,CREATE~SEOI,& 
UNITB=CTAPD,OPEN~SEOI//"1 
DIMENSION DV( 1.0'.lJI ,F( 1.0'.0'1 
D I ME N S I 0 r~ X G R I D I 1.0 1 > , Y G R I D I 1.0' 1 I 
DIMENSION Cl1.0'1,1.0'1) 
D I MEf~S I Of~ CLEV ( 1.0' I 
DIMENSION Zll 1.0'1,1.0'1 > ,Z21 1.0'1, 1.0'1 l 
DIMENSION El5.0'.0') 

. C 0 M 1-1 0 r l/ N U M B S I A B , P I , R • D , N , E K , E P S 
COMMOH/VECTS/XI1.0'.lJI,YI1.0'.lJI,LI1SSI 
COMMON/LIMITS/XL,XH,YL,YH,LIMIT 
COMMON/SHIFT/ISHIFT,BITJ 

C CALL KEEP8.0'11,3l 
C CALL FR88IDI1BHXEROX+FILMI 

CALL KEEP8ffl1,21 
CALL DD8.0ID 
CALL DDERSI-11 r 
READI5,171 XL,XH,YL,YH,LIMIT,IDIM,ILEV,MX,MY,IOPT 

17 FORMATI4F8.4,6I4> 
c 
c 

776 
c 
c 

READI81 NGROUP 
\JR ITE I 9 I NGROUP 
\JRITEI59,7761 NGROUP 
\JRITE16,776l NGROUP 
FORMAT<" NUMBER OF A VALUES",IS,///) 

DO 751 JGRP=l,NGROUP 
READI81 A,NKV,E 
\JRITE191 A,NKV,E 
\JRITE:6,777l NKV,A 
URITEI59,7771 NKV,A 

914 

777 FORMAT<" EIGENFUNCTIONS FOR",IS," EIGENVALUES FOLLOW A=", 

c 
c 

779 
773 

c 
c 

c 

c 
99ff 
2.lJl 

.F8.5,1> 

DO 778 IKV=l,NKV 
\JRITEI6,7791 IKV,EIIKVI 
\JRITEI59,7791 IKV,EIIKV> 
FORMATIIS,Fl2.61 
CONTINUE 

DO 75.0 IKV=l,NKV 

READ181 ISX,ISY,N.L,ISHIFT,AB,PI.R,D,EK,EPS,BITJ.X,Y,OV 
\JRITEI91 ISX,ISY.H,L,ISHIFT,AB,PI.R,O,EK,EPS,BITJ,X,Y,DV 
\JRITEI59.99.01 EK.BITJ 
FORMAT!//," EK,SHIFT=",F15.1.0',4X,F6.3> 
FORMAT<2X,25I4> 
GG=AB/R 
IFILIMIT.NE . .0'1 GO TO 12 
XH=AB+R 
XL=S. 
YH=R 
YL=S. 

12 CONTINUE 
c 

991 
\JRITEIS9,991) XL,XH,YL,YH 
FORMAT<" XL,XH,YL,YH=",4<2X,F6.3)) 
WR I T E ( 6 I 1 .0' 1 ) 

PIX. Fortran computer code for constructing eigenfunction from boundary dis
tribution. 
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c 
c 

c 
c 

c 
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~RITEI6,19> ISX.ISY,GG,EK,AB,R,N 
19 FORMATI2X."EIGENFUNCTION FOR SYMMETRY ",2I2," ~ITH A •",F6.3, 

57 

18 

25 
54 

. " A tl D E I G E N VAL U E = '' ,F 2 Z • 1 5 , I I • • A B = " , F 1 4 . 8 , " R = " , F 1 4 . 8 , 

.!5X." N =",I6.11> 
WRITEI6.57> ISHIFT,BITJ 
FORMATI2~."ISHIFT,BITJ =",I4,F6.2,//) 
~RITEI6.181 XL.XH.YL,YH,LIMIT,MX.MY,IOPT 
FORMAT!" X FROW'.Fl2.8," TO",F12.8,1£J'X,"Y FROM",Fl2.8," TO", 

.F12.8," LIMITED?",I4,/," DIVISIONSIX,YI",2I4, 
IOPT =",I4,//////I 

WRITE159,19> ISX.ISY.GG,EK,AB,R.N 
WRITE159,!8l XL,XH,YL,YH,LIMIT,MX,MY.IOPT 

DO 25 K=l,N 
WRITEI6,541 K,XIKl,YIKI,LIKl,DVIKl 
CONTINUE 
FORMATII6.2F15.9.I6,F22.81 
WP. IT E I 6 • Iff 1 > 
SMALL=.ZD'l 
MDIM=1ZI 
MXl=MX+1 
MYl=MY+l 
DELX= I XH-XL > /MX 
DELY=IYH-YLJ/MY 
X2=XL 
Y2=YL 
DO Iff II=l,MXl 
DO 12 JJ=!,MYl 
XR=X2+1II-1l*DELX 
XGRIDIIII=XR 
YR=Y.O+ I JJ-1 I *DEL Y 
YGRID<JJI=YR 
IF<IOPT.EO.l) GO TO 15 
IF<XR.LE.AB> GO TO 13 
DIST=XR-AB 
RR2=DIST**2+YR**2 
RSQRT=SQRT<RR21 
RLIM=R-SMALL 
IFCRSQRT.GE.RLIMI GO TO 12 

GO TO 15 
13 YT=R-SMALL 

IF<YR.GE.YTI GO TO lZ 
15 CONTINUE 

CALL FVEC\XR,YR,ISX,ISY.F,KLOS> 
IFIKLOS.EQ.ll GO TO 75 
SUM=.0'. 
DO 5 KK=l.N 
SUM=SUM+CDVIKKI*F<KKI) 

5 CONTINUE 
GO TO 76 

75 CONTINUE 
Cl I I ,JJ I=C< I I ,JJ-1 > 
GO TO 1.0' 

76 CONTINUE 
C<II,JJI=SUM 

l£J' CONTINUE 
WP.ITEC6,1Z11 
~RITEI6,122> 
DO 42 JJ=1,MY1 
KK=MY+2-JJ 

PIX. Fortran computer code for constructing eigenfunction from boundary dis
tribution. 
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~RITE!G,llZl KK,YGRID!KKl 
llZ FORMAT!" LINE,Y=",I4,F8.4l 

~PITE<6.106l <C<II,KKl 1 II•1,MXll 
~R I T E ( 6 I 1 fJ 4 } 

40 CONTINUE 
~R I T E ( 6 I 1 fJ 1 } 
~PITE!6,107l YGRID 
\JR IT E < 6 • I.a 4 l 
\JPITE!6,107l XGRID 
CMI N= l.fJE 12 
CMAX=-l.OElfJ 
DO 80.0' I=l,MX1 
DO BfJO J=l,MYl 
CMIN=AMIN11CMIN 1 CI l,Jll 
CMAX=AMAXliCMAX,CI I~JJ) 

BfJO CONTINUE 
CFRAC=<CMAX-CMINJ/113' 
CONMIN=CM1N+CFRAC 
CONMAX=CMAX-CFRAC 

C \JRITE!59,9961 CMIN,CONMIN,CMAX,CONMAX 
\JRITE!6,996l CMIN.CONMIN,CMAX,CONMAX 

996 FORMAT<2X,"CMIN,CONMIN,CHAX,CONMAX=",2X,A<2X,F7.3ll 
GO TO !313'1,3B2J, !DIM 

3Bl CONTINUE 
YMI=.38 
XMI=.2 
XMA=. 8 
YLINE=.32,.42 
GO TO 3BS 

313'2 CONTINUE 
YM I=!~ 38 
XMI=.fJ6 
XMA=.94 
YLINE=.32,.42 

3£r5 CONTINUE 
VMA=YMI•<YH-YLl,.IXMA-XMil/{XH-XL> 

C \JRITE<59,9921 XMI.XMA,YMI,YMA 
C CALL SETCRTifJ.fJ,fJ.215) 
C CALL LINE<fJ.fJ,fJ.21S,l.fJ,fJ.2151 
C CALL LINE<l.,.215,1.,1.l 
C CALL LINEI1.,1 .. 0.,1.) 
C CALL LINE\fJ.,l. ,IJ.,fJ.2151 
C CALL SETCRTI.l42,.285l 
C CALL LINEP<.l42 .. 285,.858,.285,3l 
C CALL LINEP<.858,.285,.858,1.,31 
C CALL LINEP1.858,1.,.142,1.,3l 
C CALL LINEP< .142,1., .142,.285,3) 

CALL MAPS<XL,XH,YL,YH,XMI,XMA,YMI,YMAI 
GO TO <4fJ1,4.13'2,4Z3,4fJ4l, !LEV 

4fJ! CONTINUE 
C HERE FOR NODAL LINES 

Kl=l 
K2=1 
NLEV=l 
CLEV< 1 l=fJ.fJ 
GO TO 4lfJ 

422 CONTINUE 
C HERE FOR NODAL AND MIN,MAX 

K1 =3 
K2=2 
NLEV=3 
CLEV< 1 l=CONMIN 
CLEV121=.13'.fJ 
CLEV13J=CONMAX 
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GO TO 41.13' 
4.13'3 CONTINUE 
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C HERE FOR 1.13' CONTOURS 
K1=-1Z 
K2=6 
NLEV=1Z 
CLEVI I l=CONMIN 
CLEVIZ>=CONMAX 
GO TO 41.0' 

4.0'-! CONTINUE 
C HERE FOR OTHER CONTOUR CHOICE ..• 

GO TO 41.13' 
411J CONTINUE 

CALL R CONTR I K 1 , C LEV, K2 . C • MD I M, X GRID , 1 , MX 1 , 1 , YGR I D, 1 , MY 1 , 1 I 
CALL SETCH15.,YLINE,1 • .fJ,1,f5l 
WRITEI11J0,7.fJ1Jl GG,EK,ISX.ISY,R,N,MX,MY,BITJ 
WR I T E I I 0 0 • 71J I > I C LEV I J > , J = 1 , N LEV I 

700 FORMATI"A=",F6.4,2X,"K=".FIJ3';5,2X,"PARITY=•,zi2,2X,"R=", 
.F4.2,2X,"N,MX,MY=",3I4,2X,"SHIFT=",F4.21 

701 FORMATI"LEVELS=".1ZF7.2l 
C WRITE!59,995l CLEV 

WRITEI6;995l CLEV 
995 FORMATI2X,"CLEV=",11JI2X,F7.3ll 
952 FORMAT!" MAPLIMITS=",412X,F6.31) 

CALL FRAME 
XW=1ZO*IXMA-XMil 
YW=<YMA-YMil*lZZ 
XV=XW/2 
YV=-YW 
zv=z•xw 
CALL PICTUREIC,Zl,Z2,MXI,MYl,MDIM,XW,YW,XV,YV,ZV, 

.CMIN,CMAl: ,1. ,-Z,fJ,l, I ,MXl, 1 ,MYl ,XMI ,XMA,YMI ,YMAI 
CALL FRAME 
XV=~ 75*XW. 
YV=1.5,.YW 

C CALL PICTURE(C,ZI.Z2,MXl,MYl,MDIM,XW,YW,XV,YV,ZV, 
C .CHIN ,CMA:< ,1. ,-2,1J, 1,1 ,MXl, 1 ,MY! ,XMI ,XMA, YMI, YMAl 

C CALL FRAME 
c 
c 

j917 

c 
751J 

c 
751 

WRITE19l I~X.MY,XGRID.YGRID,C,XL,XH,YL,YH,XMI,XMA,YMI,YMA,CMIN,CMAX 

CONTINUE 

c 

c 

l1J 1 
1.(;2 
IJJ3 
1.13'4 
lZS 
166 
1.0'7 

CONTINUE 

FORMATilHll 
FORMATI2X,"HERE IS EIGENFUNCTION",///) 
FORMATIF5.2,4X,11F9.6l 
FORMATI1HJ3'l 
FORMATIF5.2,7X,l112X,F5.2,2Xll 
FORMATI2X,lZF11.7l 
FORMATI2X.15F7.3l 

CALL EXIT 
END 
SUBROUTINE FVECIXR,YR,ISX,ISY,FSYM,KLOSJ 
DIMENSION FSYMI1.fJ8l 
COMMOH/VECTS/XI1ZOl,YilZZl,LI1.13'.13'l 
COMMON/NUMBS/AB,PI,R.D,N,EK,EPS 
TINY=.ZZZZl 
KLOS=Z 
DO 2.0' J=l,N 

PIX. Fortran computer code for constructing eigenfunction from boundary dis
tribution. 
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JJ .. J 
LJ""L(JJl 

CALCULATE F 1 

XJ1=X<JJl 
YJl=Y(JJl 
RX=XR-XJ! 
RY=YR-YJl 
RZ=R>(**2+RY**2 
RR=SQRT<RZl 
IF<RR.LE.TINYl GO TO SZ 
KXJ1=1 
KYJ1=1 
CAL L F U tl C ( X R , Y R , X J 1 , Y J 1 , 2 , L J , K X J 1 , K Y J 1 , A I J , B I J ) 
Fl =A I J 

C CALCULATE F2 
c 

c 

XJ2=X<JJ) 
YJZ=-Y<JJ > 
KXJZ=l 
KYJZ=-1 
CALL FUNC<XR,YR,XJ2,YJ2,2,LJ,KXJ2,KYJ2,AIJ,BIJl 
F2=AIJ*((-1l**ISYl 

C CALCULATE F3 
c 

c 

XJ3=-X<JJ> 
YJ3=-Y<JJl 
KXJ3=-l 
KYJ3=-l 
CALL FUNC<XR,YR,XJ3,YJ3,2,LJ,KXJ3,KYJ3,AIJ,BIJl 
F3=AIJ*< <-1 l**lSXl*{ (-1 )**ISYl 

C CALCULATE F4 
c 

c 

XJ4=-X(JJ) 
YJ4=Y<JJ> 
KXJ4=-1 
KYJ4=1 
CALL FUtlC(XR,YR,XJ4,YJ4,2,LJ,KXJ4.KYJ4,AIJ,BIJl 
F4=A1J*( <-1 l**ISXJ 

C CALCULATE FSYM 
c 

c 

FSYM(JJl=F1+FZ+F3+F4 
Z!J CONTINUE 
3!J CONTINUE 

RETURN 
S!J CONTINUE 

KLOS= 1 
GO TO 3Z 
END 
SUBROUTINE FUNC<Xl,Yl,X2,Y2,LPI ,LPJ,KPX,KPY,AIJ,BIJl 
COMMON/NUMBS/AB,PI,R,O,N,EK,EPS 
COMMON/SHIFT/)SHIFT,BITJ 
SX=XZ-Xl 
SY=YZ-Yl 
S=SQRT<SX**2+SY**2l 

C CHECK IF POINT z· ON CURVE 
c 

IF<LPJ.EQ.ZJ GO TO 1 
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c 

VXJ=fJ. 
VYJ=KPY 
GO TO 2 
VXJ=CX2-<KPX*ABII/R 
VYJ=Y2/R 

2 TJ=ISX*VXJI+CSY*VYJI 

Appendix A 

C CHEC~ IF POINT l ON CURVE 
c 

c 

IFCLPI.EO.fJI GO TO 3 
VXI=fJ. 
VYI=l. 
GO TO 4 

3 VXI~CXl-ABI/R 
VYI=Yl/R 

4 TI~-<SX*VXII-{S~*VYII 
Z=EK*S 
FBES=BESYIJliZ,l,BESJl I 
IF<ISHIFT.EQ.ZI GO TO 22 
FEXT=BESJ 1 
FBES=fBES+BITJ*FEXT 

2.0' CONTINUE 
FUNX=-D*EK*FBES/12.*S) 
AIJ=FUNX*TJ 
BIJ=FUNX*TI 

liJ RETURN 
END 

*FILE NAME=INPUTPIX 
fJ.35fJfJ fJ.75fJfJ fJ.SfJfJIJ fJ.7fJIJfJ fJ 1 1 SfJ SfJ fJ 

*CHATP. I=PIX,BOX=B63,LI8=1I',F' ,T',BESLIBI,S=BfJ,GO 
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APPENDIX 8 

STADIUM EIGENVALUES 

In this Appendix I report 445 consecutive eigenvalues of the Helmholtz 

equation 

all~ E S 

1/Jn(~) = 0 for~ E boundary as 
in the stadium S (see Fig. 1 of Part I) with 1 = 1 (halfiength of straight section 

= radius of semicircle) and area = 1\. These values of kn were obtained with 

the numerical method described in Appendix A, for which the accuracy has 

been determined to be ±0.001 in this range of the spectrum. The eigenvalues 

correspond to odd-odd parity eigenfunctions only and lie approximately 150-

600 levels above the ground state in this class . 
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Appendix B 

1 SB'. 1 5 77 51 57.5523 
2 5.0'.2316 52 57.7.0'97 
3 5.0'. 4.0'.0'2 53 57.8214 
4 5.0'.4642 54 58 . .0'15.6 
5 5.6.6335 55 58. UJ3Z 
6 5.0'.8851 56 58.2813'3 
7 513'.9913'4 57 58.3497 
8 51 • .6682 58 58.436.6 
9 51 .1.0'25 59 58.5393 

1.0' 51.3.0'23 6fJ' 58.781.6 
l 1 51.4856 61 58.945.0' 
12 51.769.0' 62 59 . .0'574 
1 3 52 . .0'.0'97 63 59.2994 
14 52 . .6663 64 59.416.6 
15 52.2547 65 59.663.6 
16 52.3816 66 59.7257 
17 52.6171 67 59.8478 
18 52.6237 63 59.9.0'22 
1 9 52.6676 69 6.0'. 16.0' 1 
2.0' 52.862.0' 7.0' 6.0'.2437 
21 52.98.0'2 7 1 6.0'.2451 
22 53.1684 72 6.0'. 4.669 
23 53.3191 73 6.0'.48.62 
24 53.4258 74 6.0'.6835 
25 53.5147 75 6·.0'. 8798 
26 53.8782 76 61 • .0'716 
27 53.9845 77 61.1523 
28 54.1148 . 78 61.3884 
29 54.2248 79 61.5843 
3.0' 54.3286 8.0' 61.6944/ 
31 54.4939 81 61. 7.0'95 
32 54.6399 82 61.7379 
33 54.8679 23 62 • .0'.0'34::::-
34 54.9957 84 62.0822 
35 55.3249 85 62. 1Z0Z-' 
36 55.3673 86 62.13.0'1 ..... 
37 55.4894 87 62.4323"' 
38 55.6584 88 62.521.6"" 
39 55.3931 89 62.6821/ .w 56 • .0'822 9.()' 62.7423 
41 56.2589 91 .62.7689~ 
42 56.3623 92 62.9631/ 
43 56.4.0'84 93 63.23.0'8 
44 56.5936 94 63.4.0'9.()' 
45 56.7393 95 63.4859 
46 56.9736 96 63.6132 
47 56.9994 97 63.728! 
48 57.2949 98 63.766.0' 
49 57.3478 99 64 • .0'091 
5.0' 57.3934 1.0'.0' 64.2776 

Table III. List of numerical eigenvalues for stadium (I 
only). 

922 

1.0'1 64.1775 
1.0'2 64.3891 
1.0'3 64.4875 
1.0'4 64.5981 

" 113'5 64.67ZG 
lfJ'6 64.8741 
1.0'7 65 . .0'359 
1.0'8 65.3255 
1.0'9 65.4124 J 
11.0' 65.5563 
1 1 1 65.6559 
1 12 65.7362 
11 3 65.9.0'54 
114 65.957.0' 
11 5 66.1195 
1 1 6 66.2921 
1! 7 66.4289 
118 66.4439 
1 1 9 66.5317 
12.0' 66.7.0'72 
121 66.7842 
122 66.9.0'39 
123 67 . .0'553 
124 67.1.0'25 
125 67.3284 
126 67.3436 
127 67.6281 
128 67.64.0'G 
129 67.6764 
13.0' 67;847.0' 
131 67.9318 
132 68. 1JJ52 
133 68.2187 
1 34 68.3443 
135 68.42.0'1 
136 68.5259 
137 68.7.0'53 
138 68.812G 
139 68.9913 
140 69.1.0'12 
1 4 1 69.2536 
142 69.31.0'3 
143 69.5189 
144 69.6135 
145 69.7584 
146 69.8829 
147 7.0' • .6135 
148 7.0' • .0'473 
149 7.0'.2842 
15.0' 70.3.646 

.f 

1, odd-odd parity 
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1 51 713.3657 2D'1 75.8960' 
152 713.4813 2.a2 75.9940 
153 713.5732 2£J3 76.1282 
154 70'.7418 204 76.1477 
155 713.8659 2£'5 76.3425 
156 71.£J912 206 76.4330' 
157 71.1560' 20'7 76.6633 
158 71.2373 2fHl 76.71312 
159 71.2864 2139 76.7286 
160 71.3613 2l.cY 76.9498 
I G 1 71.4995 2 1 1 76.9954 
162 71.5549 212 77.08.09 
163 71.5972 213 77.1718 
164 71.852.0' 214 77.3468 
165 71.9382 215 77.41375 
166 7 2. DB 1 A 216 77.4437 
167 72.£J661 217 77.6727 
168 72.21337 218 77.695.0' 
169 72.3219 2:9 77.8167 
17.G 72.4814 2213 77.9763 
1 7 1 72.65£J9 221 78 . .0'637 
172 72.72.0'9 222 78.1764 
173 72.7569 223 78.264.0' 
174 72.83£J3 224 78.3385 
175 73.£J269 225 78.5199 
176 73.1365 226 78.6044 
177 73.2.0'75 227 78.6614 
178 73.356? 228 78.8475 
179 73.4954 229 78.9445 
1813 73.6199 23£J 79 . .0575 
1 a 1 73.694.0' 231 79.18£J.G 
182 73.881.(3 232 79.2681 
183 73.98913 233 79.3995 
184 74.13719 234 79.5214 
185 74.1483 235 79.5593 
186 74.3684 236 79.6598 
187 74.391.0' 237 79.8565 
183 74.5668 238 80".01326 
189 74.6873 239 80".13887 
190 74.7893 2 413 80.1763 
191 74.91393 241 813.276£J 
192 74.9536 242 813.3164 
193 75.1221 243 813.5165 
194 75.245.0' 244 813.5719 
195 75.3613.0' 245 813. 6 2 4 3. 
196 75.3825 246 813.6999 
197- 75.6327 ?47 813.8641 
198 75.70"74 248 80.8963 
199 75.7533 249 8.a.n::7 
2.ao 75.8376 2513 81.1712 

Table ill. List of numerical -eigenvalues for stadium (I 
only). 

251 81.2992 
252 81.3625 
253 '81.4178 
254 81.4549 
255 81.5193 
256 81.5661 
257 81.7967 
258 81.8317 
259 81.985.0' 
26B 82.13533 
2G1 82.13824 
262 82.1623 
263 82.3625 
264 82.51134 
265 82.5925 
266 82.7257 
267 82.7846 
268 82.8611 
269 82.9566 
2 713 83.13396 
271 83.2012 
272 83.3121 
273 83.41399 
274 83.5515 
275 83.6192 
276 83.6623 
277 83.7397 
278 83.8857 
279 83.96513 
2813 84.13279 
281 84.2724 
282 84.37513 
283 84.4462 
284 84.560"5 
285 84.670"6 
286 84.750"7 
287 84.7849 
288 84.8147 
289 84.9838 
29.0' 85.131339 
291 85.2136 
292 85.3312 
293 85.3552 
294 85.4567 
295 85.5878 
296 85.6314 
297 85.6523 
298 85.8771 
299 85.9471 
313£J 85.9942 

1, odd-odd parity 
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31J1 86 . .13'282 351 9.13'.8130 
3£)'2 86.1234 352 9.0'.8654 
3£)'3 86.24.0'1 353 9.0'.9.0'74 
3£)'4 86.2689 354 9.0'.9791 
305 86.4153 355 91.1138 
313'6 86.6345 356 91.1712' 
3£)'7 86.6965 357 91.3272 
3.138 86.7323 358 91.3848 
3.13'9 86.78913' 359 91.4799 
31.0' 87 • .0'.13'9.13' 3613' 91.5638 
31 1 87.£)'363 361 91.6442 
312 87.1972 362 91.6657 
313 87.2181 363 91.6837 
314 87.395.13' 364 91.8497 
315 87.44.0'2 365 91.985~ 
3!6 87.49.0'4 366 92 . .13'737 
317 87.5532 367 92.1586 
318 87.6462' 368 92.1875 
319 87.76£)'3 369 92.2459 
32.13' 87.85£)'2 37.13' 92.3995 
321 87.8923 371 92.57.0'5 
322 88 . .0'727 372 92.61.0'4 
323 88.2.13'41 373 92.8698 
324 88.2259 374 92.8716 
325 88.33.07 375 92.8755 
326 88.4528 376 93 • .0'194 
327 88.6959 377 93 • .13'473 
328 88.7453 37!3 93.1462 
329 88.7781 379 93.212~ 
33.0' 88.8558 380 93.3626 
331 88.9877 38! 93.51J27 
332 89.163.13' 382 93.5665 
333 89.2.13'22 383 93.6698 
334 89.3173 384 93.6884 
335 89.3738 385 93.788£)' 
336 89.4253 386 93.9.13'18 
337 89.5138 387 93.9988 
338 89.6738 388 94 • .0653 
339 89.7129 389 94.1854 
34.13' 89.8555 390 94.3127 
341 89.9616 391 94.4762 
342 9.13'.£)'521 392 94.5243 
343 9.13' . .13'862 393 94.5555 
344 9.0'. 1 9 1 4 394 94.5652 
345 9.13'.2690 395 94.7183 
346 9.13'.3£)'89 396 94.8161 
347 9.0'.37.0'8 397 94.8675 
348 9.13'.4369 398 94.9360 
349 9.0'.5872 399 94.9860 
35.13' 9.13'.6989 4fJ.0' 95 . .0'149 

Table ill. List of numerical eigenvalues for stadium (I 
only). 

4.13'1 95 • .13'326 
4.0'2 95 . .0'995 
4£)'3 95.2211 
4.0'4 95.3742 -~ 
4ff5 95.465.13' 
4ff6 95.51J65 
4£)'7 95.561£)' 
4ff8 95.6727 

) 4.0'9 95.7815 
41.13' 95.8385 
41 1 95.9577 
412 95.9757 
413 96 • .13'554 
414 96.11.0'4 
415 96.233£)' 
416 96.3149 
417 96.4.13'34 
418 96.4640 
41!3 96.61.0'7 
42.0' 96.7498 
421 96.7888 
422 96.8292 
423 96.91.0'3 
424 97 • .13'2.0'6 
425 97 • .0'636 
426 97.324: 
427 97.3665 
428 97.4686 
429 97.5482 
43.13' 97.6964 
431 97.7266 
432 97.8223 
433 97.8823 
434 97.9126 
435 98.£r352 
436 98 . .0'775 
437 98.27.0'8 
438 98.3558 
439 98.4611 
44.13' 98.4942 
441 98.6659 
442 98.741Jl 
443 98.8169 
444 98.9.13'87 
445 98.9504 

-) 

·• 

1, odd-odd parity 
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