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Regularization and Interpolation
of Positive Matrices

Kaoru Yamamoto, Yongxin Chen, Lipeng Ning
Tryphon T. Georgiou, and Allen Tannenbaum

Abstract—We consider certain matricial analogues of optimal mass
transport of positive definite matrices of equal trace. The framework
is motivated by the need to devise a suitable geometry for interpolating
positive definite matrices in ways that allow controlling the apparent
tradeoff between “aligning up their eigenstructure” and “scaling the
corresponding eigenvalues”. Indeed, motivation for this work is provided
by power spectral analysis of multivariate time series where, linear
interpolation between matrix-valued power spectra generates push-pop
artifacts. Push-pop of power distribuion is objectionableas it corresponds
to unrealistic response of scatterers.

I. I NTRODUCTION

The present paper is an attempt to develop a suitable matricial
analogue of optimal mass transport (OMT). The basic problemof
OMT refers to seeking a map or, in other words, a transportation
plan that carries a given probability distribution to another in such a
way that a certain specified transportation cost is minimized [1], [2],
[3]. The original formulation of the problem by Monge in 1871was
motivated by civil engineering considerations, namely to transport
dirt so as to level the ground. The problem achieved significant fame
and notoriety due to inherent technical difficulties which persisted
until the 1940’s, at which time Kantorovich presented a relaxation of
OMT in the form of a linear program. The relevance of this problem
in the broader setting of resource allocation was already widely
recognized and the impact secured a Nobel prize in Economicsfor
Kantorovich in 1975. A new transformative phase of development in
optimal mass transport began in the 1990’s [4], [5], [6], [7]motivated
by multitude of applications in physics, probability theory, image
analysis, optimal control etc. In fact, OMT can be seen as an optimal
control problem and stochastic formulations ensued (see [8], [9], [10]
and the references therein).

In a recent publication [11], a matrix-valued version of OMTwas
put forth motivated by problems in spectral analysis of multivariable
time series. More specifically, recall that the spectral content of scalar
(slowly time-varying) time series is often displayed in theform of a
spectrogram (time-frequency power distribution). While the spectro-
gram is illuminating in reflecting changes, it suffers from the perenial
trade-offs between variability and resolution (uncertainty principle
of Fourier methods) thereby necessitating spatio-temporal smoothing
and regularization. OMT is especially suited for this because the
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corresponding distance between density functions – the Wasserstein
metric, is “weakly-continuous,” in that small perturbations correspond
to small changes in computed moments and vice versa. There has
been no analogue for matrix-valued power spectra in the controls
and signal processing literature. In fact, [11] was perhapsa first
attempt which has its basis in Kantorovich’s idea of seekinga joint
density (matrix-valued in our case) in a suitable product space. In the
present paper we explore alternative versions that are moredeeply
rooted in control ideas. To this end we seek dynamical equations that
allow rotation of eigenvalues as well as scaling of the corresponding
eigenvalues so as to generate paths between end-point matrices. The
goal is to ensure that the optimal trajectory that connects end-points,
promotes either rotation of eigenvectors or the scaling of eigenvalues,
depending on the choice of regularization parameters.

For the development of a “non-commutative” version of OMT, i.e.,
a matrix-OMT, we replace probability density functions by density
matricesρ – the terminology “density matrices” is borrowed from
quantum mechanics; these are positive semidefinite with unit trace.
Now, “transport” corresponds to flow on the space of such matrices
that minimizes a suitable cost functional. The insight and techniques
gained are aimed towards interpolating or regularizing sample covari-
ances as well as matrix-valued power spectral densities of multivariate
time series – they both reflect on how power varies with direction.
In particular, we decompose the tangent space of the cones of
positive definite matrices into two subspaces, one corresponding to
rotating the eigenstructure and another to scaling the eigenvalues. The
dynamics that will allow us to morph matrices from a startingvalue to
an end-point value are inspired by quantum mechanics. Thus,in order
to make the paper self-contained, we include some brief exposition
of basic facts from quantum mechanics upon which we draw insight
for the needed geometry. We also refer the interested readerto [12]
for a parallel alternative formulation of matrix OMT, whichonce
again, draws on the connection with the non-commutative geometry
of quantum mechanics.

The paper is structured as follows. In Section II, we presentcertain
basic ideas of quantum mechanics that inspire the material in the
paper. In Section III we study the tangent space of the cone of
positive definite matrices. This leads to ideas on what are suitable
cost functionals that promote a judicious balance between rotating the
eigenstructure and scaling the eigenvalues (Section IV). Numerical
examples are given and discussed in Sections V and VI. Concluding
remarks are provided in Section VII.

Notation: We denote byH the set ofn×n Hermitian matrices,S the
set ofn×n skew-Hermitian matrices, andH+ the cones of positive-
semidefinite matrices. Since matrices aren×n throughout the paper,
we will not explicitly note dependence onn. The commutator of two
square matricesA,B is denoted by[A,B] := AB − BA and the
anti-commutator by{A,B} := AB +BA.

II. QUANTUM INSIGHTS

The development below draws concepts and insights from quantum
mechanics and, therefore, we begin with a brief expository account
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of relevant basic facts. Detailed accounts can be sought in standard
references, e.g., [13].

A. Schrödinger equation

The evolution of closed quantum systems, i.e., one having nointerac-
tion with external quantum systems, is given by thetime-dependent
Schrödinger equation[13]:

∂ψ

∂t
= Xψ (1)

whereψ ∈ C
n andX is a skew Hermitian matrix1. Equation (1)

describes a unitary evolution for the wave function, in our case, vector
ψ; the quantum system is in a pure state. More generally, a system
in a mixed state is described by the density matrix

ρ =
∑

k

λkψkψ
∗

k

with
∑

k λk = 1 and evolves according to

∂ρ

∂t
= Xρ− ρX =: [X, ρ]. (2)

It is evident that if the system is in a pure state, it remains so, as the
rank of

ρ(t) = e
Xt
ψ(0)ψ(0)∗e−Xt

remains invariant. Likewise, if the system is in a mixed state

ρ(t) =
∑

k

λk(t)ψk(t)ψ
∗

k(t)

= e
Xt

(
∑

k

λk(t)ψk(0)ψk(0)
∗

)

e
−Xt

,

the eigenvaluesλk(t) of the density matrix remain invariant over
time t, i.e., λk(t) = λk(0) for all t. In other words, the evolution
governed by (2) only rotates in the same way the complete set of
eigenvectors of the density matrix without changing the eigenvalues.

B. Evolution of density matrices

Decoherence and changes in the spectrum ofρ are typically modeled
through coupling with anancilla which is another quantum system.
The state of the original system is then obtained bytracing out
the ancillatory component of the joint density operator.Lindblad’s
equationdescribes precisely such an evolution for the component of
the original system. The Lindblad equation has the form

∂ρ

∂t
= [X, ρ]−

∑

k

(
1

2
(Ykρ+ ρYk)− ZkρZ

∗

k

)

whereYk = Z∗

kZk. The presence of−ZρZ∗ ensures thattrace(ρ)
remains constant while both the eigenvalues and the eigenstructure
may change over time. Alternatively, one may consider more gener-
ally

∂ρ

∂t
= [X, ρ] + u (3)

where trace(u) = 0 so as to preserve the trace ofρ. In fact, in
what follows, we will do exactly that and consider flows in directions
corresponding to traceless componentu. Positivity of the flow will be
ensured as an added (convex) condition and will not be intrinsically
encoded inu (as in the Linblad equation where the right hand side
is linear inρ).

1More generally,ψ belongs to a Hilbert space and accordinglyX is a skew
Hermitian operator on that same Hilbert space. TypicallyX is expressed as
−

i
~
H whereH is a Hamiltonian (Hermitian) operator and~ is the reduced

Plank constant.

III. T RACE-PRESERVING LINEAR FLOW ON POSITIVE MATRICES

Consider the set of positive semidefinite matrices that are normalized
to have trace one,

D := {ρ ∈ H+ | trace(ρ) = 1}.

As we noted earlier, we seek flows onD that preserve trace.

The tangent space ofH+ at any pointρ ∈ H+ is H. The subspace
of traceless Hermitian components2

Rρ := {[X, ρ] | X ∈ S},

is responsible for rotating the eigensubspaces ofρ as we have noted
in the previous section.

We now seek to identify the orthogonal complement ofRρ so as
to isolate the two directions that are responsible for rotation of
eigenvectors and scaling of eigenvalues. To this end, consideru ∈ H

such that

trace(u[X, ρ]) = 0 ∀X ∈ S. (4)

Since the trace is invariant under cyclic permutations,

trace([u, ρ]X) = 0 ∀X ∈ S. (5)

But [u, ρ] is already inS, hence it is zero and thereforeu must
commute withρ. Thus, from (4) we have thatu is in the orthogonal
complement ofRρ. We summarize our conclusion as follows.

Proposition 1: The tangent spaceTρ of D := {ρ ∈ H+ | trace(ρ) =
1} at ρ ∈ D can be decomposed as the direct sum

Tρ = Rρ ⊕ Cρ

of orthogonal components

Rρ = {[X, ρ] | X ∈ S} and

Cρ = {u | u ∈ H, [u, ρ] = 0, and trace(u) = 0} .

If X(t) ∈ S and u(t) ∈ Cρ(t) for all t, then trace(ρ(t)) remains
constant witht.

IV. I NTERPOLATING FLOWS BETWEENρ0 AND ρ1

Following on the previous rationale we may seek paths between
density matricesρ0 andρ1, that minimize a suitable cost functional
that allows trading off between the eigenstructure rotation specified
by X(t) ∈ S and the eigenvalue scaling affected byu(t) ∈ H. We
are led to the following optimization problem:

minimize
∫ 1

0

(‖X(t)‖2 + ǫ‖u(t)‖2) dt (Problem A)

subject to ρ̇(t) = [X(t), ρ(t)] + u(t)

ρ(0) = ρ0, ρ(1) = ρ1, ρ(·) ≥ 0

X ∈ S, andu(t) ∈ Cρ(t).

Here ǫ is a choice of weight trading off the two alternative mecha-
nisms for shifting eigenvalues and eigensubspaces to matchthe two
end-point matrices. Also, here “rotation” and “scaling” may vary over
time. Schematically the two operations are shown in the figure below
(for a constantX).

2Note that for X ∈ S and ρ ∈ H, both [X, ρ]∗ = [X, ρ] and
trace([X, ρ]) = 0.
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ρ0 ρ1

rotation:eXtρ0e
−Xt

scaling:ρ0 +
∫ t

0
u(t) dt

Assuming a constant rate of rotation and a constant “drift” of the
spectrum, we formulate a suitable problem as follows:

minimize ‖X‖2 + ǫ‖Z‖2 (Problem B)

subject to ρ̇(t) = [X, ρ(t)] + e
Xt
Ze

−Xt

︸ ︷︷ ︸

u(t)

ρ(0) = ρ0, ρ(1) = ρ1,

X ∈ S, Z ∈ H, [ρ0, Z] = 0, trace(Z) = 0.

(6)

Indeed, rotation and scaling of eigenvalues follow a constant “drift”
and the solution to

ρ̇(t) = [X, ρ(t)] + e
Xt
Ze

−Xt

is given by
ρ(t) = e

Xt(ρ0 + Zt)e−Xt
.

We readily verify thatu(t) in (6) commutes withρ(t) as long asZ
commutes withρ0.

V. EXAMPLE : INTERPOLATION OF DENSITY MATRICES

In this section we highlight how interpolation is effected,via solving
Problem B, as a proof of concept. Starting from two end-point
density matrices, the framework allows constructing alternative paths
connecting the two where one may tradeoff the two possible ways
that the transition from one to the other may take place, i.e., allowing
for the eigenvalues to adjust by “scaling” and the eigenvectors to
“rotate,” respectively.

Consider the two density matrices

ρ0 =
[
1 0

0 0

]

andρ1 =
[
0 0

0 1

]

.

On one end, a choice ofǫ (vanishingly small) in Problem B leads to a
path that displays a fade-in/fade-out effect of scaling theeigenvalues,
so as to connect the two end-points (Fig. 1a). No rotation of
eigenvalues takes place. On the other end, forǫ large, we obtain
a path where “rotation” of the eigenvectors is less costly (Fig. 1b); it
is worth noting that in this case, since both matrices have rank one,
the path remains rank one.

Motivation for our framework stems from multivariable timeseries
analysis where power is often associated (e.g., in sensor arrays or
radar) with the position of dominant scatterers. Fade-in-fade-out
effects when interpolating or smoothing multivariable spectra are
obviously undesirable as they create artifacts. Such fade-in-fade-
out effects may be erroneously interpreted as due to the presence
of additional scatterers beyond those that are present. Theabove
rudimentary example may correspond to the case of two sensors
reading a constant-frequency echo from a scatterer that changes its
relative position with respect to the two. When recorded signals are
correlated, the matrix-valued power spectrum at the corresponding
frequency has (approximately) rank one. Likewise, movement of the
scatterer that corresponds to a path between the two matrices, ought

to have rank one. This exemplifies the need for paths that avoid push-
pop for the corresponding eigenvalues (as linear interpolation would
– one eigenvalue reducing while another increasing at the same time).

We close the section with an example of density matrices of higher
dimension (3 in this case). Figure 2 shows a path between two
matrices

ρ0 =

[
1 0 0

0 2 0

0 0 3

]

andρ1 =

[
3 0 0

0 2 0

0 0 1

]

,

for small ǫ. The solution isρ(t) = eXt(ρ0 + Zt)e−Xt for

X =

[
0 0 2.2

0 0 −2.2

−2.2 2.2 0

]

andZ =

[
1 0 0

0 1 0

0 0 −2

]

.

This once again demonstrates the significance of penalizingrescaling
of the eigenvalues which leads to adaptation of the corresponding
eigenstructure via rotation.

1

0.5

t00

0.5

1

1

0.5

0

(a) Interpolation via adjusting eigenvalues: eigenvectors scaled
according to corresponding eigenvalues.

1

0.5

t00

0.5

1

0.5

0

1

(b) Interpolation via rotating eigenvectors: eigenvectors scaled ac-
cording to corresponding eigenvalues.

Fig. 1: Solutions are obtained by solving Problem B.

VI. EXAMPLE : REGULARIZATION OF NOISY PATHS

Besides interpolation problems, i.e., finding a path forρ(t) connecting
two density matricesρ0 andρ1, the approach allows solving regular-
ization problems where a smooth path is constructed to smooth out
noisy measurements. More specifically, given a noisy data set

{ρ̃(ti) | 0 ≤ t1 ≤ . . . ≤ tN ≤ 1, }

we seek a smooth pathρ(t) that approximately fits the data in
a suitable sense. The key is to parametrize the path in a way
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t = 0

t = 1

Fig. 2: Solutions are obtained by solving Problem B.

consistent with the two “orthogonal” actions of rotating eigenvectors
and scaling eigenvalues (as both may be needed), and penalize
one more (typically, scaling). To this end, we solve the following
extention of Problem B:

minimize
ρ0,X,Z

N∑

i=1

∥
∥
∥e

Xti(ρ0 + Zti)e
−Xti − ρ̃(ti)

∥
∥
∥
2

subject toX ∈ S, Z ∈ H, ρ(·) ≥ 0, [ρ0, Z] = 0

and trace(Z) = 0.

The outcome is shown in Figure. 3. For the purposes of illustration,
the data setρ̃(ti) is generated by adding a symmetric matrix-
valued (uniform) noisew(t) to a nominal flow eXtρ0e

−Xt for
ti ∈ {0.05, 0.1, 0.15, . . . , 1} where

ρ0 =
[
1.0 0

0 0.1

]

andX =
[

0 −1.6

1.6 0

]

.

VII. C ONCLUSIONS

We developed an approach to constructing flows on density matrices.
This allows interpolation and regularization of sample covariances
and estimated power spectra of multivariable time series. The general
approach is control theoretic in that we select the flow (tangent
direction) that minimizes a suitable cost functional. The choice of
functional allows trading off the two basic mechanisms (rotating
eigenvectors vs. scaling eigenvalues). Judicious balancebetween
aligning up the eigenstructure and scaling the eigenvaluesis neces-
sitated by the fact that one of the two mechanisms alone may not
suffice in generic situations.
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