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ABSTRACT 

Methane (CH4) emissions from Arctic polygonal tundra are spatially heterogeneous due to the 

complex soil hydrology. This spatial heterogeneity in CH4 emissions requires a reliable upscaling 

approach to reach accurate regional CH4 budgets in the Arctic tundra. Additionally, Arctic regions 

have been warming two to four times faster than the global average in recent decades. CH4 

emission from the Arctic is increasing under climate warming. However, interactions among 

temperature, soil water table and vegetation complicate a full understanding of emission rates and 

their magnitude in a changing climate. In this dissertation, I applied the CLM-Microbe model to 

examine microtopographic impacts on CH4 and CO2 fluxes across seven landscape types in 

Utqiaġvik, Alaska: trough, low-centered polygon (LCP) center, LCP transition, LCP rim, high-

centered polygon (HCP) center, HCP transition, and HCP rim. Low-elevation and thus wetter 

landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with 

greater seasonal variations than high-elevation and drier landscape types (rims and HCP center). 

Substrate availability for methanogenesis was identified as the most important factor determining 

CH4 emission. Upscaled CH4 emissions at the eddy covariance (EC) domain using an area-

weighted approach were underestimated by 20% and 25% at daily and hourly time steps. 

Combined with three footprint algorithms, I upscaled CH4 fluxes from a plot level to EC domains 

(200 m × 200 m) for three sites in Utqiaġvik (US-Beo, US-Bes, and US-Brw), one in Atqasuk 

(US-Atq) and one in Ivotuk (US-Ivo). Three footprint algorithms are the homogenous footprint 

(HF) that assumes even contribution of all grid cells, the gradient footprint (GF) that assumes 

gradually declining contribution from center grid cells to edges, and the dynamic footprint (DF) 

that considers the impacts of wind and heterogeneity of land surface. DF performed better than HF 

and GF algorithms in capturing the temporal variation in daily CH4 flux in each month, while the 
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model accuracy was similar among the three algorithms due to flat landscapes. Temporal 

variations in CH4 flux during 2013-2015 were predominately explained by air temperature (67-

74%), followed by precipitation (22-36%). Spatial heterogeneities in vegetation and elevation 

dominated spatial variations in CH4 flux for all EC domains despite relatively weak differences in 

simulated CH4 flux among three footprint algorithms. Finally, I projected CH4 emissions during 

2016-2100 for all these five sites under three Shared Socioeconomic Pathways (SSP) scenarios 

derived from three climate models. CH4 emission exhibited a stronger response (630 - 850% 

increase) under SSP5-8.5 than under SPP1-2.6 and SSP2-4.5, likely supported by a simultaneous 

enhanced precipitation-induced expansion of anoxic conditions for methanogenesis. All three CH4 

transport pathways (i.e. diffusion, ebullition, and plant-mediated transport) are increasing by 2100, 

and ebullition contributed most to CH4 emissions under three SSP scenarios across five sites. 

Temperature sensitivity for CH4 emission differed using three climate models (i.e., BCC-CSM2-

MR, CESM2, and EC-Earth3) with a Q10 range of 2.7-60.9 under SSP1-2.6, 3.8-17.6 under SSP2-

4.5, and 5.7-17.2 under SSP5-8.5. This study advanced our understanding of the mechanisms of 

current and future CH4 emissions in the highly heterogeneous Arctic landscape. The CLM-

Microbe model was testified as a powerful tool that can simulate CH4 flux at both plot and 

landscape scales at a high temporal resolution, upscale terrestrial CH4 flux integrated with an 

appropriate algorithm, and project future CH4 emissions in Arctic landscapes under different 

climate scenarios. 
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INTRODUCTION 

Atmospheric methane (CH4), a potent greenhouse gas (GHG) with a 100-year global 

warming potential 28-34 times that of carbon dioxide (CO2), has increased 250% since the 

industrial revolution to 1860 ppb in 2018 (National Oceanic and Atmospheric Administration, 

NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends_ch4/) (IPCC, 2014; Saunois et al., 2016; 

Hopcroft et al., 2017). Variations in CH4 emissions have been explained by soil temperature and 

water table, oxygen, substrate and nutrient availability, thaw depth, soil pH and redox potential, 

and vegetation and microbial communities (Yvon-Durocher et al., 2014; Lipson et al., 2013; Miller 

et al., 2015; Schuur et al., 2015; Ebrahimi et al., 2017; Grant et al. 2017a, 2017b). Arctic soils 

contain a large pool of terrestrial carbon (C) and are vulnerable to climate warming and permafrost 

thaw (Kim et al., 2015; Lynch et al., 2018), and some estimates predicted 92 ± 17 Pg C loss as 

CO2 and CH4 fluxes by 2100 (McGuire et al., 2018; Zheng et al., 2018). Previous studies have 

found that Arctic tundra ecosystems have shifted from net CO2 sinks to sources (Belshe et al., 2013; 

Oechel et al., 1993); whether they behave as sinks or sources of atmospheric CH4 largely depends 

on local microtopography (Jørgensen et al., 2014; Nauta et al., 2015; Oh et al., 2016; Tan et al., 

2015). Minor changes in surface elevation might shift Arctic soils from sinks to sources of 

atmospheric CH4 (Olivas et al., 2010; Zona et al., 2011). Arctic tundra landscapes are highly 

heterogeneous with varying properties of permafrost, topography, hydrology, soil, vegetation and 

microbes (Davidson et al., 2016; Liljedahl et al., 2016; Deng et al., 2017; Wilkman et al., 2018). 

Therefore, it is critically important to understand microtopographic impacts on CH4 emissions and 

dynamics for modeling and predicting the ecosystem C exchange in Arctic tundra ecosystems.  

Spatial heterogeneity in land surface properties has been shown to be a key source of large 

variabilities and uncertainties in CH4 fluxes in the Arctic (Bridgham et al., 2013; Davidson et al., 
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2016; Sturtevant & Oechel, 2013; Xu et al., 2014; Zona et al., 2011), as the production, 

consumption, and transport processes of CH4 are primarily related to hydrology, vegetation, and 

microbial activities (Vaughn et al., 2016). Modeling and predicting the spatial variability of CH4 

emissions at broader scales depend on the upscaling algorithms that consider heterogeneous 

landscapes (Davidson et al., 2016; Xu et al., 2016). Numerous empirical and mechanistic modeling 

studies have attempted to upscale the static chambers measurements (10-2 - 1 m2) to the landscape 

scale (104 - 105 m2) and evaluated against eddy covariance (EC) flux (Baldocchi, 2008; Chen et al., 

2012; Davidson et al., 2017; Xu and Tian, 2012). Yet, these estimates ignored the impacts of the 

spatial variability of CH4 flux within the source area. Accurate regional estimations of CH4 flux 

require an upscaling approach that considers the mechanistic CH4 processes, including the key 

factors that control CH4 flux across time and space (Xu et al., 2016). 

Arctic regions have been warming two to four times faster than the global average in recent 

decades (Hansen et al 2007; Miner et al., 2022). Air temperature in the Arctic has increased at a 

rate of 0.755 °C/decade during 1998–2012 (Chen et al., 2020) and could continue to increase by 

more than 10°C by 2100 relative to present-day, corresponding to about 30% more than the best 

estimate of warming (IPCC, 2021). Field experiments and model simulations for the Arctic found 

that warming increased CH4 fluxes by 15 – 550% or had no effect due to changes in soil water 

table and vegetation (Granberg et al., 2001; Ma et al., 2017; Turetsky et al., 2008; Updegraff et al., 

2001; Verville et al., 1998). However, interactions among temperature, soil moisture status, and 

vegetation complicate a full understanding of CH4 emission rates and their magnitude in a 

changing climate. 

In my dissertation, I sought to better understand the mechanisms of CH4 cycling from the 

plot to landscape scales in Arctic tundra and investigate the responses of future CH4 emission and 
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cycling to climate change. The research questions addressed in my three chapters are: 1) Modeling 

the microtopographic effects on CH4 dynamics in the northern Arctic tundra using the CLM-

Microbe model; 2) Upscaling the plot-level CH4 fluxes to EC domains using three footprint 

algorithms in five Arctic tundra ecosystems; and 3) Projecting the CH4 emission and processes 

under three SSP scenarios from 2016 to 2100 in Arctic tundra. 
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Chapter 1 

Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes 
in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model 

 
This chapter has already been published by Wiley-Blackwell. 

 
Yihui Wang, Fengming Yuan, Fenghui Yuan, Baohua Gu, Melanie S. Hahn, Margaret S. Torn, 
Daniel M. Ricciuto, Jitendra Kumar, Liyuan He, Donatella Zona, David A. Lipson, Robert Wagner, 
Walter C. Oechel, Stan D. Wullschleger, Peter E. Thornton, and Xiaofeng Xu. 2019. Mechanistic 
modeling of microtopographic impacts on CO2 and CH4 fluxes in an alaskan tundra ecosystem 
using the CLM-microbe model. Journal of Advances in Modeling Earth Systems, 11(12), 4288-
4304. https://doi.org/10.1029/2019MS001771 
 

Abstract 

Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and 

CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem 

model, CLM- Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across 

seven landscape types in Utqiaġvik, Alaska: trough, low-centered polygon (LCP) center, LCP 

transition, LCP rim, high-centered polygon (HCP) center, HCP transition, and HCP rim. We first 

validated the CLM-Microbe model against static-chamber measured CO2 and CH4 fluxes in 2013 

for three landscape types: trough, LCP center, and LCP rim. Model application showed that low-

elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 

emissions rates with greater seasonal variations than high- elevation and drier landscape types 

(rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis 

(acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation 

physiological properties largely affect the net ecosystem carbon exchange and ecosystem 

respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic 
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features were upscaled to the eddy covariance (EC) domain with an area-weighted approach before 

validation against EC-measured CH4 fluxes. The model underestimated the EC-measured CH4 flux 

by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in 

reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model-

data integration framework for better understanding and predicting carbon flux in the highly 

heterogeneous Arctic landscape.  

 

Introduction  

Spatial heterogeneity in land surface properties has been shown to be a key source of large 

variabilities and uncertainties in CO2 and CH4 fluxes in the Arctic (Bridgham et al., 2013; 

Davidson et al., 2016; Sturtevant & Oechel, 2013; Xu et al., 2014; Zona et al., 2011). Polygonal 

ground patterns create a complex mosaic of micro- topographic features with poorly drained low-

centered polygons (LCPs) surrounded by high rims and well- drained high-centered polygons 

(HCPs) surrounded by low trough as results of the annual freeze–thaw cycles across the northern 

Alaskan coastal plain (Hinkel et al., 2005; Throckmorton et al., 2015; Zona et al., 2011). 

Microtopography strongly affects soil water content and active layer depth (Atchley et al., 2016; 

Grant, Mekonnen, Riley, Arora, & Torn, 2017a; Grant, Mekonnen, Riley, Wainwright, et al., 

2017b; Lu & Zhuang, 2012), soil temperature and thermal conductivity (Abolt et al., 2018; Kumar 

et al., 2016), soil pH and O2 availability (Lipson et al., 2012; Zona et al., 2011), soil chemistry 

(Lipson et al., 2013; Newman et al., 2015; Semenchuk et al., 2015), vegetation types and canopy 

height (Davidson et al., 2016; von Fischer et al., 2010), and microbial community structure (Tas 

et al., 2018; Wagner et al., 2017). Therefore, the large spatial heterogeneities in microtopographic 

features are critically important for modeling and predicting the ecosystem carbon (C) exchange 
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in Arctic tundra ecosystems.  

Previous studies have found that Arctic tundra ecosystems have shifted from net CO2 sinks 

to sources (Belshe et al., 2013; Oechel et al., 1993); whether they behave as sinks or sources of 

atmospheric CH4 largely depends on local microtopography (Jørgensen et al., 2014; Nauta et al., 

2015; Oh et al., 2016; Tan et al., 2015). Minor changes in surface elevation might shift Arctic soils 

from sinks to sources of atmospheric CH4 (Olivas et al., 2010; Zona et al., 2011). CH4 is produced 

in the poorly drained low-elevation ground with anoxic conditions, whereas atmospheric CH4 can 

be oxidized in well-drained high-elevation ground (Atchley et al., 2016; Grant, Mekonnen, Riley, 

Arora, & Torn, 2017a; Lipson et al., 2012; von Fischer et al., 2010; Zona et al., 2011). 

Microtopography also affects the CO2 flux by altering the soil water content and O2 concentration 

(Olivas et al., 2010). In addition, soil hydrological conditions affect vegetation growth and 

substrate availability, further influencing ecosystem C input and microbial community structure 

and altering the transport and production of CH4, root respiration, and microbial respiration 

(Davidson et al., 2016; von Fischer et al., 2010; Wagner et al., 2017). Thus, accurate quantification 

of the strength of C sinks or sources requires explicit consideration of the microtopographic effects 

on C cycling in Arctic tundra ecosystems (Ebrahimi & Or, 2017).  

To more accurately capture the fine-scale variations in CH4 and CO2 fluxes in Arctic tundra, 

microtopo- graphic effects need to be considered by ecosystem models as microbial functions such 

as fermentation, C mineralization, methanogenesis, and methanotrophy dramatically differ 

between wet and dry polygons (Tas et al., 2018). A number of mechanistic CH4 models have 

incorporated the mechanisms of CH4 production, consumption, and transport pathways (Xu et al., 

2016), such as the ecosys model (Grant, Mekonnen, Riley, Arora, & Torn, 2017a), CLM-Microbe 

(Xu et al., 2015), CLM4Me (Riley et al., 2011), LPJ-WHyMe (Wania et al., 2010), and NEST-
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DNDC (Zhang et al., 2012). However, few CH4 models explicitly simulate microtopography and 

are capable of investigating the microtopographic impacts on CH4 and CO2 fluxes in Arctic tundra 

(Grant, Mekonnen, Riley, Arora, & Torn, 2017a; Kaiser et al., 2017). For example, the ecosys 

model indicates that microtopography determines CH4 and CO2 emissions by regulating soil water 

content, active layer depth, and O2 availability (Grant, Mekonnen, Riley, Arora, & Torn, 2017a). 

The CLM-Microbe model simulates fine-scale thermal and hydrological dynamics and microbial 

mechanisms for CH4 production and oxidation (Xu et al., 2015), which allows investigation of 

Arctic CH4 and CO2 fluxes across multiple scales from a microbial perspective.  

In this study, we used the CLM-Microbe model to simulate the microtopographic effects 

on CH4 and CO2 flux. We aimed to address three questions: (1) How do different microtopographic 

types affect CH4 and CO2 fluxes in Arctic tundra ecosystems? (2) Which processes are more 

important in controlling CH4 and CO2 fluxes among the microtopographic types? (3) How do 

annual estimates of CH4 and CO2 fluxes differ under the microtopographic impacts in the Arctic? 

The field observational data from the U.S. Department of Energy's Office of Science Next 

Generation Ecosystem Experiments (NGEE)-Arctic project were integrated with the CLM-

Microbe model to understand microtopographic impacts on land surface CH4 and CO2 fluxes in 

an Arctic tundra landscape.  

 

Methodology  

Site Description��

Our study area is located within the Barrow Environmental Observatory (BEO), ~6 km 

east of Utqiaġvik (formerly Barrow), Alaska (71.3°N, 156.5°W), operated by the NGEE-Arctic 

project (https://ngee-arctic. ornl.gov/). It has a polar maritime climate with mean annual air 
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temperature of −12.0 °C in winter and 3.3 °C in summer (June–August), and with mean annual 

precipitation of 173 mm and the majority of precipitation falling during summer months (Liljedahl 

et al., 2011). Snowmelt usually ends in early to mid- June and the wind direction is predominantly 

from east to west throughout the year (Wainwright et al., 2017). The dominant plants are mosses 

(Dicranum elongatum, Sphagnum), lichens, and vascular plants (such as Carex aquatilis); plant 

distribution is governed by surface moisture variability (Zona et al., 2011).  

 
Figure 1. (a) The landscape classification map for area C (100 m × 100 m). Red indicates high 
surface elevation and blue indicates low surface elevation. Values on the legend are indexes used 
to identify different landscape types. Diagrams depict the landscape types for (b) low-centered 
polygon and (c) high-centered polygon with internal polygonal feature: center, rim, transition, and 
trough (Yuan et al., 2017).  

The landscapes are highly heterogeneous with polygonal landscape patterns. The NGEE-

Arctic project established four 100 m × 100 m intensively sampled areas within the BEO (Langford 

et al., 2016). The sampled areas are dominated by the LCPs and HCPs with internal features of 

center, rim, transition, and trough (Figure 1a). Accordingly, seven landscape types were classified 

within the study area: trough (35.0% of total area), LCP center (6.9%), LCP rim (12.2%), LCP 
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transition (14.3%), HCP center (13.2%), HCP rim (12.2%), and HCP transition (6.2%). Soil 

organic matter density and plant cover used in model simulations for each landscape type are 

shown in Figure 1.��

Data Availability Statement��

The CH4 and CO2 fluxes were monitored using the static chamber approach on several 

dates during June– September 2012 and 2013 (Torn, 2016). Transparent and opaque surface 

chambers were placed within the study area in the trough, LCP center, and LCP rim. The CO2 

fluxes from the transparent chambers were considered to be the net ecosystem exchange of CO2 

(NEE), and those from the opaque chambers were considered the ecosystem respiration (ER). NEE 

(i.e., ER − GPP) is negative when CO2 uptake via photosynthesis is greater than CO2 release from 

ER. The concentrations of soil dissolved organic carbon (DOC), CH4 and CO2 were measured for 

the trough, LCP center, and LCP rim in 2013–2014 (Herndon et al., 2015a; Herndon et al., 2015). 

An eddy covariance (EC) tower was installed in the center of the study area to measure CH4 and 

CO2 fluxes in 2012; those data are available from the NGEE Arctic project website (Raz-Yaseef 

et al., 2013). It is noted that this data set has been updated to 2012–2016 although we used the 

previous data set for 2012–2013. Daily and hourly fluxes of CH4 and CO2 were calculated based 

on the half-hourly EC data. Detailed information about the measurement protocols is posted in the 

NGEE Arctic archives (http://ngee-arctic.ornl.gov/).  

Model Description and Driving Data� 

The CLM-Microbe model branches from the framework of default CLM 4.5 by developing 

a new representation of CH4 production and consumption (Xu et al., 2015), in association with the 

decomposition subroutines in CLM4.5 (Koven et al., 2013; Thornton et al., 2007; Thornton & 

Rosenbloom, 2005). It incorporates new mechanisms of DOC fermentation, hydrogenotrophic 
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methanogenesis, acetoclastic methanogenesis, aerobic methanotrophy, anaerobic methanotrophy, 

and H2 production based on known processes (Thauer et al., 1989; Thauer et al., 2008) and adopted 

from previous modeling studies (Grant, 1998; Kettunen, 2003; Riley et al., 2011; Segers & Kengen, 

1998; Tian et al., 2010; Walter & Heimann, 2000; Xu et al., 2010; Zhuang et al., 2004). Detailed 

mathematical expressions for CH4 production and consumption processes were organized in Xu 

et al. (2015). The code for the CLM-Microbe model is archived at this site (https:// 

github.com/email-clm/clm-microbe). The model version used in this study was checked out from 

GitHub on 18 June 2018.  

In a previous study, the CH4 module in the CLM-Microbe model was validated for 

simulating the dynamics of CH4 and CO2 emissions from incubation experiments on Arctic soils 

with invariant soil temperature and soil water content (Xu et al., 2015). In this study, we focused 

on the fully incorporated CLM-Microbe model, created separate model runs for each landscape 

type, and modified the soil hydrological setup according to landscapes’ unique soil conditions. 

Three soil hydrological parameters, largely affected by microtopography, were selected: soil water 

content (h2osoi_vol), surface runoff (qflx_surf), and the inundated fraction (finun- dated). Because 

the low-elevation polygonal features, such as trough, LCP center, LCP transition, and HCP 

transition are poorly drained and oversaturated in summer, the parameters for soil water content 

were changed to a maximum of 1.0, and those for the inundated fraction and surface runoff were 

changed to 0.99 and 0, respectively. In contrast, the high-elevation features, such as LCP rim, HCP 

rim, and HCP center, are well- drained in summer. For these features, the parameters for soil water 

content were set at a maximum of 0.3, which is the baseline allowing the gas transport in soil 

profiles due to model structures; and those for surface runoff and inundated fraction were set in 

the default processes with dynamic changes.  
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The model driving data included meteorological, plant, and soil data. The meteorological 

data included shortwave and longwave radiation, air temperature, relative humidity, wind speed, 

and precipitation from 1 January 1991 to 31 December 2014, derived by Xu and Yuan (2016) from 

the Utqiaġvik, AK, station of NOAA/Earth System Laboratory, Global Monitoring Division 

(http://www.esrl. noaa.gov/gmd/obop/brw/ ). The data set is gap-filled and at a half-hour time step. 

The observed plant and soil data for each landscape type—including the composition of plant 

functional types, plant cover, and soil organic carbon density— were supplied by the NGEE Arctic 

project.  

Model Implementation  

To identify the role of microbial functions in CH4 dynamics, we set up model simulations 

using the default CLM4.5 and the CLM-Microbe models separately for each landscape type. The 

model implementation was carried out in three stages. First, the accelerated model spin-up was set 

up for 2,000 years to allow the system to accumulate C. Then a final spin-up for 50 years allowed 

the modeled system to reach a relatively steady state. After the final spin-up, the transient model 

simulation was set up to cover the period of 1850–2014.  

Table 1. Key parameters for model parameterization 

 KAce AceProdACmax k_dom k_bacteria k_fungi fatm_f grperc 
Default value 16 2.4e-06 0.007 0.22 0.22 0.20 0.1652 
Trough 12 6.4e-06 0.014 0.05 0.05 0.15 0.0052 
LCP center 12 1.8e-06 0.007 0.01 0.01 0.12 0.0052 
LCP rim 12 1.2e-06 0.007 0.01 0.01 0.05 0.0052 
LCP transition 16 6.4e-06 0.007 0.22 0.22 0.20 0.0052 
HCP transition 16 6.4e-06 0.007 0.22 0.22 0.20 0.0052 
HCP center 16 2.4e-06 0.007 0.22 0.22 0.20 0.0052 
HCP rim 16 2.4e-06 0.007 0.22 0.22 0.20 0.0052 

Note. LCP = low-centered polygon; HCP = high-centered polygon 

For the default CLM4.5 model simulations, the parameters were set to be the default values 
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for each landscape type. For the CLM-Microbe model simulations, the model parameterization 

was initialized with the default parameters in Xu et al. (2015); it was performed within their ranges 

to determine the optimal values of parameters in the microbial module for simulating the 

observational CH4 and CO2 fluxes for each landscape type. For the trough, LCP center, and LCP 

rim, the observed CH4 and CO2 fluxes in 2012 were used for model parameterization, and the 

fluxes in 2013 were used for model validation. Based on the current knowledge of mechanisms of 

CH4 and CO2 cycling, we primarily focused on the parameters for decomposition and substrate 

availability for methanogenesis (e.g., k_bacteria, k_fungi, KAce, and AceProdACmax) for the CH4 

cycling. For CO2 cycling, we focused on the parameters for plant growth respiration (grperc), 

maintenance respiration (br_mr), and C allocation within biogeochemical cascade (e.g., fatm_f). 

According to the values of parameters reported in the previous studies, the para- meters were 

calibrated empirically in the model parameterization (Table 1). Because of the lack of the 

observational data, most of the parameters for LCP transition, HCP center, HCP rim, and HCP 

transition, were set as the default values; and some parameters were modified according to the 

setup for the trough, LCP center, and LCP rim (Table 1). The transient simulations of 1850–2014 

produced output at both daily and hourly time steps. Simple linear regression was conducted to 

evaluate the modeled CH4 and CO2 fluxes compared with measured fluxes. The error statistics 

were used to distinguish the difference between the modeled and measured fluxes on the platform 

of R Studio platform (version 1.1.456), such as the coefficient of determination (R2).  

Uncertainty Analysis  

The uncertainties of the CO2 and CH4 fluxes for each landscape type were quantified using 

the Markov Chain Monte Carlo method based on Bayesian statistics (Gilks et al., 1998) and were 

determined by a large ensemble of model simulations with different parameter settings. In this 
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study, a total of 100 model simulations with different settings of 15 key parameters were set up for 

each landscape type, separately. These 15 key parameters determine the decomposition of organic 

carbon, methanogenesis, microbial growth, and plant photosynthesis and respiration and therefore 

control the CH4 and CO2 fluxes (Table 2). They varied within a range of 30% of their optimal 

values (Xu et al., 2015). Model simulations were conducted from the transient simulation to cover 

1850–2014 at a daily time step.  

Table 2. Key parameters chosen for uncertainty analysis and sensitivity analysis 

Parameter Ecological meaning 
KAce Half-saturation coefficient of available carbon mineralization 
ACminQ10 Temperature sensitivity of available carbon mineralization 
AceProdACmax Maximum rate of acetic acid production from available carbon 
H2ProdAcemax Maximum rate of H2 production from available acetic acid 
KH2ProdAce Half-saturation coefficient of conversion of H2 and CO2 to acetate 
KCO2ProdAce Assuming it is half of that for H2 based on stoichiometry theory 
KCO2ProdCH4 Half coefficient of CO2 for methane production from H2 
GrowRAceMethanogens Growth rate of acetoclastic methanogens 
YAceMethanogens Growth efficiency of acetoclastic methanogens 
K_dom Decomposition rate constant dissolved organic matter 
K_bacteria Decomposition rate constant biomass of bacteria 
K_fungi Decomposition rate constant biomass of fungi 
flnr Fraction of leaf N in the Rubisco enzyme 
grperc Growth respiration parameter 
br_mr Base rate of maintenance respiration 

Area-Weighted Upscaling  

The modeled CH4 and CO2 fluxes in 2013 for each landscape type were further used for 

upscaling to the EC tower domain based on an area-weighted average approach. Because of the 

limitation of the landscape classification data, the EC domain was confined to an area of 100 m × 

100 m. The area-weighted average approach includes information for landscape heterogeneity in 
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the upscaling process. The upscaled flux was calculated by the following equation:  

! = #$×&'(&$)
$*+            (1) 

where F is the upscaled plot flux for the EC domain, fi is the plot-level CH4 or CO2 fluxes 

for a given land- scape type for a given time period, areai is the fraction of each major landscape 

type within the EC domain (Davidson et al., 2016). In addition, the average fluxes were calculated 

based on the CH4 and CO2 fluxes from the seven landscape types for comparison with the upscaled 

fluxes.  

Sensitivity Analysis  

To identify the most important process and the most sensitive parameters for CH4 and CO2 

dynamics in Arctic tundra, a global sensitivity analysis was conducted for each microtopographic 

type. It focused on the 15 parameters related to plant and microbial processes that were used in the 

uncertainty analysis (Table 2). For each parameter, we set up model simulations with +20% and − 

20% changes and investigated the responses of the modeled CH4 and CO2 fluxes in 2013. The 

index S, comparing the change in the model output relative to the model response for a nominal 

set of parameters, was calculated based on the flowing equation (Xu et al., 2015):  

, = (./0.1)/.1
(4/041)/41

           (2) 

where S is the ratio of the standardized change in model response to the standardized 

change in parameter values. Ra and Rn are model responses for altered and nominal parameters, 

respectively, and Pa and Pn are the altered and nominal parameters, respectively. S is negative if 

the direction of model response opposes the direction of parameter change (Xu et al., 2015).  

 

Results  
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Model-Simulated CH4 and CO2 Fluxes  

 
Figure 2. Simulated (a–c) CH4 fluxes, (d–f) net ecosystem carbon exchange (NEE), and (g–i) 
ecosystem respiration (ER) for trough, low-centered polygon (LCP) center, and LCP rim compared 
with observational fluxes from static chambers (red circles with error bars) from May to September 
2013 (Torn, 2016). The black lines indicate the modeled fluxes simulated by the CLM-microbe 
model, and the blue lines indicate the default fluxes simulated by the default CLM4.5. The blue 
lines are not smooth for CH4 fluxes; the fluxes are negative and are too small to show.  

The CLM-Microbe model was more accurate than the default CLM4.5 in simulating the 

CH4 and CO2 fluxes during the summer of 2013 (Figure 2). The dynamics of CH4 was captured 

well by the CLM-Microbe model for the trough, LCP center, and LCP rim, but those sites were 

simulated as a small CH4 sink in summer by the default CLM4.5 (Figures 2a–2c and Table 3). 

NEE and ER were used to represent the dynamics of CO2 flux. In the summer months, NEE and 

ER had the similar patterns for the trough and LCP center but showed significant differences for 

LCP rim in the default CLM4.5 and CLM-Microbe models (Figures 2d–2i). For the trough and 

LCP center, the CLM-Microbe model simulated the NEE well, whereas the default model under- 
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estimated it by 47–50%; however, both of them overestimated the ER by 28–47% (Figure 3 and 

Table 3). The variations of NEE and ER were not captured by either the default or the CLM-

Microbe models for LCP rim, but the CLM-microbe model performed slightly better than the 

default model (Figure 3 and Table 3).  

 
Figure 3. Scatter plots of observed versus simulated (a–c) CH4 fluxes, (d–f) net ecosystem carbon 
exchange (NEE), and (g–i) ecosystem respiration (ER) for trough, low-centered polygon (LCP) 
center, and LCP rim, with linear lines of best fit (no interception) and 95% confidence interval for 
regression line shaded gray. The black lines and points indicate the relationship between observed 
fluxes and modeled fluxes simulated by the CLM-microbe model. The blue lines and points 
indicate the relationship between observed fluxes and the default fluxes simulated by the default 
CLM4.5.  

For the simulations of the CLM-Microbe model, larger CH4 fluxes with greater variations 

were observed for the trough than that for the LCP center and LCP rim (Figures 2a–2c). 

Additionally, modeled CH4 fluxes were more consistent with the observational fluxes for the 

trough (R2 = 0.7381, p = 0.0001) than for the LCP center (R2 = 0.2820, p = 0.0507) and LCP rim 
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(R2 = 0.3432, p = 0.0277; Table 3). For the dynamics of CO2 fluxes, similar patterns of NEE and 

ER were simulated for the trough and LCP center (Figures 2d and 2e). Modeled NEE was highly 

consistent with the observed data for the trough (R2 = 0.9569, p = 0.0007) and LCP center (R2 = 

0.9194, p = 0.0025); whereas ER was overestimated by 47.3% for the trough (R2 = 0.8316, p < 

0.0001) and 39.2% for the LCP center (R2 = 0.9188, p < 0.0001; Table 3). Compared with the 

trough and LCP center, a slightly higher NEE (lower CO2 uptake) was modeled for the LCP rim 

and it was underestimated by 78.4% (R2 = 0.4080, p = 0.1757; Table 3). However, ER for the LCP 

rim was over- estimated by 64.5% (R2 = 0.88, p < 0.0001; Table 3).  

Table 3. Linear regression analysis for CH4 flux, net ecosystem carbon exchange (NEE) and 
ecosystem respiration (ER) for model validation of the CLM-Microbe model and the default 
CLM4.5 

Site Variable Estimate Std. Error P-value R2 

Trough Modeled CH4 1.0626 0.1827 0.0001* 0.7381 
Default CH4 -0.0027 0.0003 0.0000* 0.8388 

LCP center 
 

Modeled CH4 1.0167 0.4683 0.0507 0.2820 
Default CH4 -0.0090 0.0038 0.0341 0.3226 

LCP rim Modeled CH4 1.0925 0.4363 0.0277 0.3432 
 Default CH4 -0.0309 0.0093 0.0060* 0.4802 
Trough Modeled NEE 0.9961 0.1057 0.0007* 0.9569 
 Default NEE 0.4957 0.0650 0.0016* 0.9356 
LCP center Modeled NEE 1.0572 0.1565 0.0025* 0.9194 
 Default NEE 0.4711 0.1216 0.0179   0.7895 
LCP rim Modeled NEE 0.2160 0.2339 0.4080 0.1757 
 Default NEE -5.1333 0.7907 0.0029* 0.9133 
Trough Modeled ER 1.4729 0.1913 0.0000* 0.8316 
 Default ER 1.2800 0.2028 0.0000* 0.7685 
LCP center Modeled ER 1.3922 0.1195 0.0000* 0.9188 
 Default ER 1.4301 0.1456 0.0000* 0.8893 
LCP rim Modeled ER 1.6449 0.1753 0.0000* 0.8800 
 Default ER 6.4249 0.9320 0.0000* 0.7984 

Note. LCP = low-centered polygon 
* = the significant level < 0.01. 
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Variability and Seasonality of CH4 and CO2 Fluxes across the Landscape Types  

Modeled CH4 and CO2 fluxes exhibited large variabilities among all seven landscape types. 

In the summer months, high CH4 emissions were generally simulated, associated with low NEE 

(i.e., high CO2 uptake) and high ER for all the landscape types (Figure 4). Low-elevation landscape 

types, such as trough, LCP transition, and HCP transition, had higher CH4 emissions with greater 

variation compared with high-elevation types, such as LCP rim, HCP rim, and HCP center (Figure 

4a). However, low-elevation types, including trough, LCP transition, and LCP center showed 

lower NEE (i.e., higher CO2 uptake) than high-elevation types, including LCP rim and HCP rim 

(Figure 4b). ER was roughly higher in the HCP center and lower in the trough and LCP center in 

the summer months (Figure 4c).  

 
Figure 4. Modeled (a) CH4 fluxes, (b) net ecosystem carbon exchange (NEE), and (c) ecosystem 
respiration (ER) for all seven landscapes types in 2013. The black lines indicate the high-elevation 
types, and blue lines indicate the low-elevation types. LCP = low-centered polygon; HCP = high-
centered polygon.  

Larger seasonal variations of CH4 dynamics were modeled in low-elevation landscape 

types (e.g., trough and transitions) than high-elevation types (e.g., rim; Figure 4a). In the early 
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spring, most of the landscape types showed a burst release of CH4 flux, corresponding to the early 

Spring thaw. During the growing seasons, the lower ground of the trough and LCP transition had 

similar seasonality of CH4 and CO2 fluxes, with the highest CH4 emission and highest CO2 uptake 

(Figure 4). The higher ground of rims tended to have smaller variations of CH4 and NEE fluxes 

(Figure 4). A sudden rise was simulated in NEE for the trough, LCP transition, LCP center and 

HCP center, during the late growing seasons; a similar rise simultaneously was simulated in ER 

(Figure 4).  

Annual Estimates of CH4 and CO2 Fluxes Across the Landscape Types  

Annual CH4 fluxes were estimated for all landscape types, resulting in a range of 0.66 to 

3.97 g C·m−2 (Table 4). The HCP transition, as the largest CH4 source, has released 5.06 times 

more annual CH4 fluxes more than the smallest CH4 sources (i.e., LCP rim). Low-elevation types, 

including trough and transition, contributed a larger proportion of CH4 emissions than high-

elevation types in Arctic tundra ecosystems. Based on the areal fractions, the HCPs and LCPs were 

estimated to have comparable annual CH4 fluxes of 2.12 and 2.19 g C·m−2·year−1, respectively, 

both of which were smaller than the annual CH4 fluxes of 3.63 g C·m−2·year−1 from the trough 

(Table 4).  

The landscape types were found to be net sources of CO2, except for the trough, in which 

21.08 g C·m−2·year−1 of CO2 was sequestered (Table 4). Large variations existed in the annual 

NEE, which ranged from −21.08 to 248.22 g C·m−2·year−1 (Table 4). The HCP transition was the 

largest CO2 source to the atmosphere among the landscape types. All the landscape types had 

comparable ERs — ranging from 582.72 to 776.31 g C· m−2·year−1 — except the HCP center, 

which exhibited the greatest ER of 927.98 g C· m−2·year−1. The trough, LCP center, and LCP rim 

with smaller NEE estimates were also estimated to have smallest ER budget.  
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Table 4.  Annual estimates of CH4 fluxes, net ecosystem carbon exchange (NEE) and ecosystem 
respiration (ER) (g C· m−2·year−1) with the uncertainties for all seven landscape types, the average 
and the area-weighted average (AWA) for the EC domain based on modeled daily fluxes in 2013 

Types CH4 NEE ER 
Trough 3.632 (3.403~3.887) −21.083 (−26.187~−16.546) 582.715 (581.149~584.086) 
LCPcenter 1.145 (1.117~1.175) 3.056 (−8.265~10.780) 598.520 (586.288~606.655) 
LCPrim 0.656 ( 0.575~0.678) 19.579 (11.464~22.378) 617.660 (613.992~625.929) 
LCPtransition 3.835 (3.714~3.971) 160.928 (157.811~165.165) 754.986 (752.519~755.857) 
HCPcenter 2.384 (2.296~2.461) 137.940 (130.614~145.714) 927.981 (923.071~930.792) 
HCPrim 1.075 (1.029~1.130) 180.277 (177.880~181.020) 776.309 (774.682~782.879) 
HCPtransition 3.974 (3.839~4.121) 248.219 (246.895~251.471) 759.463 (758.276~761.238) 
Average 2.386 104.131 716.805 
AWA 2.671 73.825 692.855 

Upscaling CH4 and CO2 Fluxes to the EC Domain  

Modeled CH4 and CO2 fluxes were upscaled to the EC domain based on the area fraction 

of each landscape type. High consistency was shown between the upscaled fluxes and EC 

measurements (Figures 5 and 6). The regression analysis showed that more accurate simulations 

of CH4 and NEE fluxes for the EC domain were obtained at daily time steps than at hourly time 

steps (Figure 6). CH4 fluxes were underestimated at daily (R2 = 0.7931, p < 0.0001) and hourly 

(R2 = 0.6135, p < 0.0001) time steps by 20.08% and 24.95%, respectively. NEE was 

underestimated at the daily time steps by 21.44% (R2 = 0.2843, p < 0.0001), but was overestimated 

at the hourly time steps by 30.01% (R2 = 0.3464, p < 0.0001; Table 5).  
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Figure 5. Upscaled (a, b) CH4 fluxes and (c, d) net ecosystem carbon exchange (NEE) comparing 
with measured fluxes from an eddy covariance tower centered in the study area at the daily (a, c) 
and hourly (b, d) time steps in 2013. Black lines indicate the gas fluxes and red points with/without 
error bars indicate measured fluxes. DOY = day of year.  

 
Figure 6. Scatter plots of measured versus upscaled CH4 (a, b) and net ecosystem carbon exchange 
(NEE) (c, d) at daily (a, c) and hourly (b, d) time steps for the eddy covariance domain of the study 
area in 2013, with linear lines of best fit (no interception) and 95% confidence interval for 
regression line shaded gray. 
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Table 5.  Linear regression analysis for CH4 fluxes and net ecosystem carbon exchange (NEE) 
modeled and measured from the eddy covariance (EC) tower at daily and hourly time steps 

Variables Time step Estimate Std. Error P-value R2 

CH4 Daily 0.7992 0.0440 0.0000a 0.7931 
 Hourly 0.7505 0.0204 0.0000a 0.6135 
NEE Daily 0.7856 0.1242 0.0000a 0.2943 
 Hourly 1.3001 0.0546 0.0000a 0.3464 

aThe significant level < 0.01 

Annual CH4 and CO2 fluxes were estimated for the EC domain using the arithmetic average 

and area- weighted average approaches. When the proportions of different landscape types were 

not considered, the annual CH4 flux was underestimated at 2.39 g C·m−2·year−1, compared with an 

annual estimate of 2.67 g C·m−2·year−1 based on the areal fractions. However, NEE and ER were 

overestimated at 104.13 g C·m−2·year−1 and 716.81 g C·m−2·year−1, respectively, compared with 

the annual estimates of 73.83 g C·m−2·year−1 and 692.86 g C·m−2·year−1 for NEE and ER, 

respectively, that considered the heterogeneity of landscapes (Table 4). 

Sensitivity Analysis 

CH4 and CO2 fluxes were sensitive to a portion of the key parameters that are related to 

available carbon mineralization, CH4 production, growth of methanogens, decomposition, 

photosynthesis, plant growth respiration, and maintenance respiration. Specifically, the CH4 flux 

was strongly sensitive to the parameters of AceProdAcemax and ACMinQ10, followed by 

YAceMethanogens, GrowRAceMethanogens, KAce, and k_dom for all landscape types (Figure 7a), 

which suggested that acetate production and available C mineralization were the key controls on 

CH4 dynamics in Arctic tundra ecosystems. Growth of methanogens also regulated CH4 flux by 

influencing CH4 production. Changes in the decomposition rate of the dissolved organic matter 

(DOM) had a positive influence on CH4 flux for all the landscapes except the LCP rim (Figure 7a). 
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In the high-elevation features LCP rim, HCP rim, and HCP center, the CH4 flux was sensitive to 

the fraction of leaf nitrogen in the Rubisco enzyme functioning in photosynthesis (flnr). In the 

HCP rim, CH4 dynamics also responded to changes in the decomposition rate of fungi biomass 

(k_fungi) and plant growth respiration (grcep; Figure 7a). Autotrophic respiration (e.g., plant 

growth respiration and maintenance respiration) and the flnr were also the key controlling factors 

for CH4 flux in low-elevation features but exhibited opposite effects (Figure 7a). 

 
Figure 7. Sensitivity analysis for model response of (a) CH4 fluxes, (b) net ecosystem carbon 
exchange (NEE), and (c) eco- system respiration (ER) to15 parameters (KAce, ACMinQ10, 
AceProdACmax, H2ProdAcemax, KH2ProdAce, KCO2ProdAce, KCO2ProdCH4, 
GrowRAceMethanogens, YAceMethanogens, k_dom, k_bacteria, k_fungi, flnr, grperc, and br_mr) 
for trough (tg), LCP transition (lt), LCP center (lc), HCP transition (ht), LCP rim (lr), HCP rim 
(hr), and HCP center (hc). The symbols “+” and “-” indicate a 20% increase or 20% decrease of 
parameter values. Darker red and darker blue indicate a stronger positive or negative model 
response to parameter change. S is negative if the direction of model response opposes the direction 
of parameter change. LCP = low-centered polygon; HCP = high-centered polygon.  

The most important processes of CO2 dynamics are related to photosynthesis and 

respiration, which control CO2 uptake and release across the Arctic landscape types. The flnr was 

identified as the primary factor for NEE and ER (Figure 7b and 7c). An increase in the flnr lead to 

a rise in NEE in the trough, LCP rim, and HCP rim but a NEE reduction in the LCP center, LCP 

transition, HCP transition, and HCP center. There was a significant decrease in ER for all 

landscapes with increased flnr (Figure 7b and 7c). For high-elevation features, including LCP rim, 
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HCP rim, and HCP center, NEE dynamics showed negative responses to ACMinQ10 and positive 

responses to AceProdACmax, suggesting that acetate production is also important for CO2 uptake 

from the atmosphere (Figure 7b). In the trough, NEE was sensitive to many other parameters 

related to acetate production, decomposition, and respiration (Figure 7b). Beside the flnr, ER 

dynamics was sensible to maintenance respiration (br_mr) in both high-elevation and low-

elevation landscape types (Figure 7c). Additionally, changes in the decomposition rates of bacteria 

and fungi biomass for the LCP center could also result in changes in ER (Figure 7c).  

 

Discussions  

Microtopographic Impacts on CH4 and CO2 Fluxes  

Microtopography determines CH4 and CO2 dynamics in Arctic polygonal tundra by 

affecting the hydrological processes and thereby the soil water content, active layer depth, 

vegetation, and microbial functional groups in ecosystem C exchange (Davidson et al., 2016; Grant, 

Mekonnen, Riley, Arora, & Torn, 2017a; Lipson et al., 2012; Throckmorton et al., 2015; D. Zona 

et al., 2011). Soil water content was greater in the low-elevation ground of trough, LCP transition, 

LCP center, and HCP transition than in the high-elevation ground of the LCP rim, HCP rim, and 

HCP center; this discrepancy largely explained the variability in CH4 fluxes among the 

heterogeneous landscape types in the Arctic (Grant, Mekonnen, Riley, Wainwright, et al., 2017b; 

Lu & Zhuang, 2012). In summer, larger CH4 emissions were observed and modeled in the trough 

than in higher-elevation rims and centers because of the trough's higher soil water content and 

oversaturated soils, which is consistent with previous studies (Grant, Mekonnen, Riley, Arora, & 

Torn, 2017a; Schrier-Uijl et al., 2010). Saturated and oversaturated soils create an anoxic condition 

facilitating methanogenesis to produce CH4 (von Fischer et al., 2010; Von Fischer & Hedin, 2007). 
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Higher CH4 emissions were also modeled for other low-elevation types, including LCP center, 

LCP transition, and HCP transition, a finding that supported the promotion effects of high soil 

water content on CH4 production.  

CH4 flux is strictly produced by methanogens at very low O2 concentration in soils, mainly 

converted from acetate and CO2 + H2 (Nazaries et al., 2013). The sensitivity analysis suggested 

that the substrate availability for methanogenesis resulting from acetate production and DOM 

decomposition was the key constraint for CH4 dynamics in Arctic polygonal landscapes (Xu et al., 

2015). In summer months, higher CO2 uptake (i.e., lower NEE) and stronger photosynthesis (i.e., 

increased flnr) were modeled associated with the higher CH4 emissions in the low-elevation 

ground. The results implied that a positive correlation existed between the CO2 uptake and CH4 

emission. Stronger CO2 uptake refers to a higher amount of plant biomass, which  

facilitates the emission of large CH4 fluxes emitting to the atmosphere via plant-mediated 

transport (von Fischer et al., 2010). Additionally, high CO2 uptake can provide abundant C input 

into soils as litter for microbial decomposition, which in turn produces a high amount of available 

C for methanogenesis. However, the field study reported that no relationship was observed 

between instantaneous GPP (i.e., CO2 uptake) and CH4 fluxes (Davidson et al., 2016), suggesting 

that the processes from decomposition of organic matter to substrates for methanogenesis are very 

complicated and need to be considered cautiously in CH4 models.  

Microtopographic effects on CO2 dynamics are caused primarily by changes in soil 

hydrological conditions and hence CO2 diffusion (Davidson et al., 2016; Olivas et al., 2010). Low-

elevation landscape types, especially the trough and LCP center, were shown by modeling to have 

the largest CO2 uptake in summer. Additionally, the ER via roots and microbial communities was 

suppressed by the low dissolved O2 concentration in the saturated soils (Olivas et al., 2010; Zona 
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et al., 2011). These results suggested that high soil moisture in Arctic tundra promotes the plant 

growth and suppresses the ER, eventually increasing the strength of the CO2 sink in low-elevation 

landscapes. In contrast, lower CO2 uptake and greater ER in summer were simulated for the rims 

and HCP center, confirming that the high-elevation ground in the Arctic acts as a smaller CO2 sink 

(Zona et al., 2011). The ER variations in low-elevation and high-elevation land- scape types in the 

summer months were caused largely by the difference in the availability of soil O2 for microbial 

respiration. The strength of the CO2 sink in Arctic tundra can be biased by the effects of 

microtopography on soil water and O2 conditions. However, most landscape models have not 

incorporated microtopographic effects in simulating CO2 fluxes. Not considering those effects 

might cause large biases; therefore, better simulation of microtopographic impacts is critical for 

model applications to C cycling in the Arctic.  

NEE and CH4 Flux at Daily and Hourly Time Steps  

Biological processes occur instantaneously, on a time scale inconsistent with field 

measurements normally undertaken at hourly or daily scales. Ecosystem functions are more 

apparent at the hourly, daily, monthly, and annual scales, at which the CLM-Microbe performs. 

The model performance was more consistent with observed CH4 and CO2 fluxes for the EC domain 

on the daily than on the hourly scale, indicating that the model did not perform well in capturing 

some pulse fluxes on an hourly scale. Since the “CH4 pulse” in the spring season has been widely 

recognized as an important component for ecosystem models in recent decades (Lu & Zhuang, 

2012; Song et al., 2012; Tokida et al., 2007), an improvement of the CLM-Microbe model for 

better simulation of these outbreak events is needed.  

In general, upscaled CH4 and CO2 fluxes based on modeled plot-level fluxes were able to 

capture most variations of measured EC fluxes at both daily and hourly time steps. We conclude 
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that the CLM-Microbe model can be used to estimate CH4 and CO2 fluxes at landscape scale if 

fluxes are scaled by different landscape types (Schrier-Uijl et al., 2010). Moreover, the dynamics 

of CH4 and CO2 fluxes was modeled more accurately at daily than at hourly time steps. This is 

probably because the key factors or processes controlling CH4 and CO2 dynamics are slightly 

different across the temporal scales; but they are well defined with stable priorities in the model 

according to the extant knowledge, usually from observations at long time scales. Another rea- son 

for the underestimation of CO2 flux might be the unexplained CO2 uptake during the non-growing 

season (i.e., October) in the Alaska tundra ecosystem (Figures 5b and 5d). Until confirmed 

mechanisms are found for the underestimation, it has no clear implications for the model 

performance.  

Model Implications  

This study has three implications for model development and scientific understanding of 

the C dynamic in the Arctic. First, the CLM-Microbe model performed well in capturing the 

variabilities in CH4 and CO2 fluxes among primary polygonal landscapes in Arctic tundra, which 

emphasizes the importance of spatial heterogeneity in simulating CO2 and CH4 fluxes in ecosystem 

CH4 models. The model simulations indicate that the trough and transitions had estimated CH4 

emissions of 3.6 – 4.0 g C·m-2· year-1 annually, and the rims had a smaller annual CH4 emissions 

of 0.7 – 1.1 g C· m-2·year-1. Differences in the annual estimates were likely due to the saturated 

and anoxic conditions in low-elevation ground that promote anaerobic methanogenesis, leading to 

a higher CH4 emission. However, the annual CH4 fluxes for the seven landscape types may be 

greatly underestimated because of the low estimates for the cold season in model simulations. 

Many studies have reported that >50% of annual CH4 emissions occur during the cold season in 

Alaskan tundra (September to May; Kittler et al., 2017; Zona et al., 2016). Moreover, our estimate 
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of annual CH4 fluxes for the entire study area was smaller compared with similar studies in Arctic 

tundra (Reeburgh et al., 1998; Wille et al., 2008). This discrepancy might be explained by the 

lower organic matter density or less plant cover in our study area. For example, the less abundant 

plant cover reduces the plant-mediated transport of CH4 and therefore lowers CH4 emissions 

(Bhullar et al., 2013). The variations in our estimates for seven landscape types were potentially 

biased because they ignored the lateral surface hydrologic and thermal processes. The spatial 

variability in soil moisture and soil temperature can be over-predicted if the lateral subsurface 

hydrologic and thermal processes are excluded (Bisht et al., 2018), and the same is true for the 

spatial variability in CH4 emissions in Arctic polygonal landscapes. By incorporating these surface 

processes, the CH4models can improve the representation of lateral hydrologic and thermal 

transport, and thereby improve the accuracy of estimations (Aas et al., 2019).  

Table 6. The comparison between modeled and observed concentrations of belowground 
dissolved organic carbon (DOC), CO2, and CH4 (g C m-3) along soil profiles for the trough, LCP 
center and LCP rim in 2013–2014 

DOY Site 
Sample 
depth 
(cm) 

Soil 
layer 
(CLM-

Microbe) 

DOC CO2 CH4 

modeled observed modeled observed modeled observed 

183 Trough 28 6 448.11 282.84 16.08 156.60 0.55 0.11 
240 Trough 22 5 478.20 283.92 0.00 33.00 0.08 0.14 
240 Trough 29 6 458.43 222.84 16.15 NA 0.59 NA 
606 Trough 20 5 483.29 118.08 0.00 48.84 0.01 0.50 
606 Trough 37 6 462.32 184.80 16.25 35.16 0.57 2.06 
183 Center 26 5 1419.74 30.60 0.00 NA 0.04 NA 
240 Center 49 6 1422.88 1015.32 13.33 NA 0.28 NA 
606 Center 10 4 1674.68 25.68 0.00 NA 0.02 NA 
183 Rim 29 6 1064.58 NA 4.13 NA 0.09 NA 
183 Rim 7 3 1120.60 29.16 618.30 NA 0.05 NA 
240 Rim 7 3 1178.37 30.72 618.34 NA 0.14 NA 
240 Rim 37 6 1073.85 66.72 4.20 NA 0.20 NA 
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Second, the potential shifts in Arctic tundra ecosystems as C sinks or sources is valuable 

information for climate projections. This study showed that the trough is the only net CO2 sink 

among all landscape types and plays a key role in ecosystem C storage because of its 35% areal 

share of the entire study area. CO2 dynamics in the trough were very sensitive to many processes 

related to photosynthesis, plant and soil respiration, and C mineralization and distribution. It is 

possible for trough shifting to being net C sources from net C sinks, even with a tiny change in 

CO2 processes under climate changes. Annual estimates indicated that the HCPs were 310% 

greater CO2 sources than the LCPs. Additionally, greater ER was estimated in the HCPs than in 

the LCPs. The HCP center, in particular, had an ER of 928.0 g C·m-2, the highest among the 

landscape types. Because LCPs may eventually subside into HCPs, CO2 emissions from Arctic 

soils tend to increase rapidly not only because of the effects of climate changes but also because 

of the changes in landscape patterns.  

Finally, this study advocates the mechanistic modeling of C cycling to better estimate CO2 

and CH4 fluxes across the Arctic tundra ecosystems. It is well known that differences in CH4 and 

CO2 emissions across the Arctic landscapes are directly led by the mechanisms and dynamics of 

microbial activities in relation to C mineralization, decomposition, respiration, methanogenesis, 

and methanotrophy. By including these microbial processes, the CLM-Microbe model allows us 

to understand the mechanisms of Arctic C cycling according to the production and consumption 

processes of CO2 and CH4. Soil DOC, CH4, and CO2 concentrations were modeled and compared 

with the measured concentrations for the landscape types and soil depths for a few data points 

(Table 6). Modeled DOC concentrations were ~1.6 times the measurements at the middle layer of 

soils in the trough on day of year (DOY) 183 and DOY 240 of 2013; these results suggested that 

the model could be useful for simulating the concentrations of C compounds. In Arctic ecosystems, 
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high CH4 emissions in saturated soils were modeled with high CH4 production, which was 

consistent with the large amount of modeled acetoclastic methanogens. CH4 oxidation was 

strengthened by high O2 availability in the topsoil of the rims and HCP center compared with 

saturated trough and transitions. Moreover, differences in CH4 transport via diffusion, ebullition, 

and plant-mediated transport were modeled with seasonal variations. Large CH4 fluxes emitted 

from soils were associated with the fast plant growth in summer. Furthermore, soil microbial 

structure and biomass were simulated to understand the CO2 and CH4 dynamics, which suggested 

the importance of belowground microbial mechanisms in modeling surface CO2 and CH4 fluxes.  

The Way Forward  

The CLM-Microbe model can simulate the belowground microbial processes for surface 

CO2 and CH4 fluxes. Although promising results proved the robustness of the CLM-Microbe 

model in simulating surface CO2 and CH4 fluxes, a number of tasks were identified as follow-up 

efforts to this study. First, although the upscaling results with an area-weighted approach seems 

promising, the dominant roles of landscape types weakened the variations in C flux. Upscaling 

with a mechanistic model should provide more accurate quantification of the C flux on a regional 

scale, as well as a finer-resolution C flux at both the spatial and the temporal scales (Watts et al., 

2014). Second, belowground C dynamics — for example, DOC, acetate, CO2, and CH4 

concentrations—are important variables and precursors for observed surface gas fluxes. We call 

for a data-model integration approach to better integrate the observational data and better simulate 

belowground processes and surface flux. Third, hydrological dynamics is the key control for 

biogeochemical processes, particularly for the changing Arctic. Improving the model's ability to 

simulate hydrology is an important cornerstone for simulating soil biogeochemistry. Fourth, 

microbial genomic information is the most accurate information for microbial functions, yet it has 
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not been well utilized for model parameterization. The CLM-Microbe model is capable of 

simulating the relative abundance of methanogenesis; thus, it is worth- while to improve the model 

to better simulate the microbial functional groups responsible for CH4 production and consumption. 

Fifth, although C flux data, particularly the CH4 flux, have been scarce across the Arctic tundra 

ecosystem, recent projects and technical improvements have allowed year-round measurements. 

Those data can serve as a good constraint for the CLM-Microbe model at multiple scales; a 

multiscale “MODEX” (model-observation-experiment) framework to better integrate multiple 

observational data to quantify gas flux and understand its mechanisms in the Arctic is much needed.  

 

Conclusions  

This study reported the application of the CLM-Microbe model to seven microtopographic 

landscape types in the Arctic tundra near Utqiagvik, AK. The model results were promising and 

consistent with the observational gas fluxes. The modeled results showed that low-elevation 

landscape types (e.g. trough, transitions, and LCP center) have higher CH4 emission with greater 

seasonal variations than high-elevation landscape types (e.g. rims and HCP center), as a result of 

the greater soil saturation in the low-elevation landscape types. Model sensitivity analysis 

determined that the substrate (e.g. acetate, CO2 + H2) availability for methanogens was the most 

important factor in controlling CH4 emissions in Arctic ecosystems, and plant photosynthesis 

greatly affected the NEE and ER. The model performed more accurately in simulating the daily 

EC fluxes than hourly fluxes, indicating the importance of the time scale in simulating gas fluxes.  

The large spatial heterogeneity in CO2 and CH4 fluxes across the Arctic landscape requires 

explicit consideration and modeling of microtopography, as well as of the mechanisms controlling 

C biogeochemistry in response to hydrology dynamics. As the climate continues to warm rapidly 
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in the Arctic, large variations at both the spatial and the temporal scales are anticipated across the 

Arctic landscape. Dramatic changes in land surface CO2 and CH4 fluxes might alter the land–

atmosphere feedback in the Arctic. An insightful regional-scale investigation of the thermal 

conditions, hydrology, and biogeochemistry across the pan- Arctic is urgently needed and will 

benefit the entire scientific community and the public. 
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Upscaling Methane Flux from Plot Level to Eddy Covariance Tower 
Domains in Five Alaskan Tundra Ecosystems 
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Abstract 

Spatial heterogeneity in methane (CH4) flux requires a reliable upscaling approach to reach 

accurate regional CH4 budgets in the Arctic tundra. In this study, we combined the CLM-Microbe 

model with three footprint algorithms to scale up CH4 flux from a plot level to eddy covariance 

(EC) tower domains (200 m × 200 m) in the Alaska North Slope, for three sites in Utqiaġvik (US-

Beo, US-Bes, and US-Brw), one in Atqasuk (US-Atq) and one in Ivotuk (US-Ivo), for a period of 

2013-2015. Three footprint algorithms were the homogenous footprint (HF) that assumes even 

contribution of all grid cells, the gradient footprint (GF) that assumes gradually declining 

contribution from center grid cells to edges, and the dynamic footprint (DF) that considers the 

impacts of wind and heterogeneity of land surface. Simulated annual CH4 flux was highly 

consistent with the EC measurements at US-Beo and US-Bes. In contrast, flux was overestimated 

at US-Brw, US-Atq, and US-Ivo due to the higher simulated CH4 flux in early growing seasons. 

The simulated monthly CH4 flux was consistent to EC measurements but with different accuracies 

among footprint algorithms. At US-Bes in Sep 2013, RMSE and NNSE were 0.002 µmol·m-2·s-1 

and 0.782 using the DF algorithm, but 0.007 µmol·m-2·s-1 and 0.758 using HF and 0.007 µmol·m-

2·s-1 and 0.765 using GF, respectively. DF algorithm performed better than HF and GF algorithms 
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in capturing the temporal variation in daily CH4 flux in each month, while the model accuracy was 

similar among the three algorithms due to flat landscapes. Temporal variations in CH4 flux during 

2013-2015 were predominately explained by air temperature (67-74%), followed by precipitation 

(22-36%). Spatial heterogeneities in vegetation fraction and elevation dominated the spatial 

variations in CH4 flux for all five tower domains despite relatively weak differences in simulated 

CH4 flux among three footprint algorithms. The CLM-Microbe model can simulate CH4 flux at 

both plot and landscape scales at a high temporal resolution, which should be applicable for other 

landscapes. Integrating land surface models with an appropriate algorithm provides a powerful 

tool for upscaling CH4 flux in terrestrial ecosystems. 

 
Introduction 

Northern Arctic tundra is characterized by polygonal patterns due to freeze-thaw cycles 

with large spatial heterogeneity in vegetation and soil water table (Budishchev et al., 2014b; Lara 

et al., 2020; Petrescu et al., 2015). This heterogeneity leads to large spatial variability of methane 

(CH4) flux (Budishchev et al., 2014b; Xu et al., 2010), as the production, consumption, and 

transport processes of CH4 are primarily related to hydrology, vegetation, and microbial activities 

(Vaughn et al., 2016). Modeling and predicting the spatial variability of CH4 emissions at broader 

scales depend on the upscaling algorithms that consider heterogeneous landscapes (Davidson et 

al., 2016; Xu et al., 2016). At the plot scale (10-2 - 1 m2), closed chambers are commonly employed 

to measure CH4 flux for dominant topography and/or vegetation types (Davidson et al., 2016; Fox 

et al., 2008). Numerous empirical and mechanistic modeling studies have attempted to upscale 

these measurements to the landscape scale (104 - 105 m2) and evaluated against eddy covariance 

(EC) flux (Baldocchi, 2008; Chen et al., 2012; Davidson et al., 2017; Xu and Tian, 2012). Yet, 

these estimates ignored the impacts of the spatial variability of CH4 flux within the source area. 
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Accurate regional estimations of CH4 flux require an upscaling approach that considers the 

mechanistic CH4 processes, including the key factors that control CH4 flux across time and space 

(Xu et al., 2016). 

Factors affecting Arctic CH4 emission vary substantially across spatial scales (Mer and 

Roger, 2001; Serrano-Silva et al., 2014; Xu et al., 2016). Soil water table has been identified as a 

key factor determining the CH4 flux (Funk et al., 1994; Pirk et al., 2017). In addition, plant 

coverage and composition play an important role in CH4 emission by affecting CH4 transport 

pathway and providing substrate for methanogens (Bhullar et al., 2013; Davidson et al., 2016; 

McEwing et al., 2015; von Fischer et al., 2010). Greater vascular plant coverage and density were 

linked to higher CH4 emission (Andresen et al., 2017; McEwing et al., 2015), and vegetation types 

can explain a large proportion of the variation in CH4 flux in Arctic tundra (Davidson et al., 2016; 

Sturtevant and Oechel, 2013). This is because sedges and vascular wetland plants not only exist in 

waterlogged areas prime for CH4 production, but they also transport CH4 through their tissue 

straight to the atmosphere(Lai, 2009). Therefore, it is critically important to include vegetation 

characteristics within an EC footprint for improving the accuracy of CH4 estimation at the 

landscape scale. In most CH4 models (Xu et al., 2016), vegetation is represented as plant functional 

types (PFTs) and in each PFT group, plant species share similar responses to environmental factors 

(Langford et al., 2016). Therefore, it is critically important to integrate mechanistic models of CH4 

cycling with high-resolution spatial datasets of vegetation coverage and environmental factors to 

improve the accuracy of estimations of CH4 flux at the landscape scale. 

The process-based CLM-Microbe model has been tested for simulating plot-scale CH4 flux 

by validating with different polygonal characteristics’ (e.g. troughs, rims, and centers) flux at 

Utqiagvik, Alaska (Wang et al., 2019). In the previous study, we upscaled model-simulated flux 
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from the plot to landscape scales and validated with EC measurements using the area-weighted 

average approach (Wang et al., 2019). However, this approach can be rather inaccurate because 

the contribution of areas in upscaling might be different within the EC tower footprint, leading to 

a significant mismatch (Fox et al., 2008; Oechel et al., 1998). Accurate knowledge of footprints is 

of crucial importance for upscaling from plot-scale flux measurements to the landscape scale. Flux 

footprint algorithms generate the spatial extent and position of the probable source area for EC 

flux measurements by integrating effects of wind direction and speed, roughness at a specific time 

point, thereby they are widely used for understanding EC estimates and improving greenhouse gas 

budgets (Heidbach et al., 2017; Horst and Weil, 1992; Kljun et al., 2015; Kormann and Meixner, 

2001). In our study, we combined the CLM-Microbe model with three footprint algorithms to 

better scale up to the landscape-scale CH4 flux. The CLM-Microbe model represents 17 PFTs for 

vegetation across the globe (He et al., 2021a; He et al., 2021b; Wang et al., 2019), adding Arctic- 

and boreal-specific PFTs in its vegetation modules makes it more appropriate to capture Arctic 

vegetation processes. 

This study was designed to apply the CLM-Microbe model to simulate plot-scale CH4 flux 

with a fine spatial resolution for five study sites in Alaskan Arctic tundra. By incorporating with 

different footprint algorithms, we upscaled the simulated plot-scale flux to the EC domain and 

validated with the EC measurements. In this study, we aim to 1) evaluate the accuracy of CH4 

estimates simulated by the CLM-Microbe model with different footprint algorithms, 2) compare 

the homogenous footprint algorithm (HF), gradient footprint algorithm (GF), and dynamic 

footprint algorithm (DF) for assisting upscaling CH4 flux, and 3) investigate the primary 

controlling factors of CH4 emission at the landscape scale in the Arctic tundra ecosystems. 
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Methodology 

Site Description  

We performed our study at five sites in the northern Alaskan tundra (Figure 1), and detailed 

information of sites and measurements is available in (Arndt et al., 2020; Arndt et al., 2019). Three 

of these sites are located in Utqiaġvik (formerly Barrow), including US-Beo (71.2810°N, 

156.6124°W), US-Bes (71.2809°N, 156.5965°W), and US-Brw (71.3225°N, 156.6093°W) (Zona 

et al., 2016). US-Beo is a polygonal coastal tundra site on the Barrow Environmental Observatory; 

and US-Bes is an inundated wet coastal tundra site at the southern end of the previous 

Biocomplexity Experiment, usually with a water table above the surface of the soil due to its low 

elevation (Zona et al., 2009). US-Brw is a well-drained moist coastal tundra site, and its vegetation 

is dominated by graminoids (Kwon et al., 2006). The US-Atq site (70.4696°N, 157.4089°W) in 

Atqasuk is located about 100 km south of Utqiaġvik; and the US-Ivo site (68.4805°N, 155.7569°W) 

in Ivotuk is located about 300 km south of Utqiaġvik in the northern foothills of the Brooks Range 

(Figure 1) (Davidson et al., 2016). US-Atq is characterized by polygonised tussock tundra and 

sandy soils (Walker et al., 1989), and US-Ivo, the most inland site, is the warmest and gently 

sloping tussock tundra (Davidson et al., 2016). The sensors are located between 2.0 – 4.17 m above 

the ground (3.12 m at US-Beo, 2.20 m at US-Bes, 4.17 m at US-Brw,  2.42 m at US-Atq and 3.42 

m at US-Ivo) (Arndt et al., 2019).These study sites have a polar maritime climate with the majority 

of precipitation falling during summer months (June-August). Detailed meteorological and 

vegetation information for these sites is posted in the Oak Ridge National Laboratory Distributed 

Active Archive Center (ORNL DAAC) (https://doi.org/10.3334/ORNLDAAC/1562 and 

https://doi.org/10.3334/ORNLDAAC/1546). 
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Figure 1. The land cover in Alaskan region and an inset showing the location of the eddy 
covariance tower sites and National Oceanic and Atmospheric Administration (NOAA) BRW 
station in Alaska. The land cover in Alaskan region were from GAP/LANDFIRE National 
Terrestrial Ecosystems data for U.S. and provided by United States Geological Survey 
(https://www.usgs.gov/). The US-Brw, US-Bes, and US-Beo are overlapped as three sites are close 
in distance; two site labels are shown in the inset. 

Data Source for CH4 Flux 

CH4 flux were monitored at a half-hourly time step using an EC tower at each study site 

for the period of 2013 – 2015 and half-hourly flux were calculated from raw data using the 

EddyPro software by LI-COR while missing data were gap-filled (Oechel and Kalhori, 2018). 

Winter CH4 flux were difficult to monitor due to the frozen equipment and frozen soil (Goodrich 

et al., 2016; Zona et al., 2016). Daily CH4 flux were calculated as the mean of half-hourly EC flux. 

Detailed information about the measurement protocols is available at 

https://daac.ornl.gov/ABOVE/guides/AK_North_Slope_NEE_CH4_Flux.html.  

Model Description and Driving data 

The CLM-Microbe model branches from the framework of default CLM 4.5 in 2013. 

Therefore, the CLM-Microbe has default decomposition subroutines in CLM4.5 (Koven et al., 



 45 

2013; Thornton and Rosenbloom, 2005; Thornton and Zimmermann, 2007). The improvements in 

the CLM-Microbe model include a new microbial-functional-group based CH4 module (Wang et 

al., 2019; Xu et al., 2015), and a new framework for microbial controls on the carbon 

mineralization (He et al., 2021b; Xu et al., 2014). Detailed mathematical expressions for CH4 

production, consumption, and transport processes were organized in (Wang et al., 2019; Xu et al., 

2015). The code for the CLM-Microbe model has been archived at https://github.com/email-

clm/CLM-Microbe since 2015. The model version used in this study was obtained from GitHub 

on 27 May 2020. 

The CLM-Microbe model considers the dynamics of dissolved organic carbon, acetate, O2, 

H2, CH4, CO2, and the processes of fermentation, homoacetogenesis, and methanogenesis and 

methanotrophy (Xu et al., 2015). The four key mechanisms for CH4 production and consumption 

are methanogenesis from acetate or from single-carbon compounds and CH4 oxidation using 

molecular oxygen or other inorganic electron acceptors. Four microbial functional groups perform 

these processes: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic 

methanotrophs, and anaerobic methanotrophs (Xu et al., 2015; Wang et al., 2019). The soil profile 

is the same as the CLM4.5 (Oleson et al., 2013). 

In our previous study (Wang et al., 2019), this module was validated with incubation flux 

and closed-chamber flux, and further compared with EC flux using an area-weighted average 

approach for upscaling. In this study, we considered the spatial heterogeneity of vegetation and 

elevation within the EC domain for each study site and conducted the model simulations at a spatial 

resolution of 4 m × 4 m with a domain of 40000 m2 with the EC tower at the center. Meteorological 

variables driving the model include shortwave and longwave radiation, air temperature, relative 

humidity, wind speed and precipitation. US-Beo, US-Bes, and US-Brw shared the same 
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meteorological parameters due to the small distance between sites, which were generated by Xu 

and Yuan (2016) for the period of 1991-2015 and can be obtained from the Utqiaġvik, AK, station 

of NOAA/Earth System Laboratory, Global Monitoring Division (http://www.esrl. 

noaa.gov/gmd/obop/brw/). The data set is gap-filled and at a half-hourly time step. Meteorological 

variables for US-Atq and US-Ivo were extracted from the half-hourly, gap-filled CRUNCEP 

dataset version 4.0 with a resolution of 0.5° × 0.5° longitude/latitude resolution for a period of 

1991-2014 (https://rda.ucar.edu/datasets/ds314.3/).  

Other model parameters include spatial distribution of vegetation and a digital elevation 

model with a resolution of 4 m covering the tower domain at each site, and soil organic carbon 

(SOC) concentration at ten soil layers defined in CLM4.5 (Koven et al., 2013; Thornton et al., 

2007; Thornton and Rosenbloom, 2005). Vegetation distribution in the source area for US-Brw, 

US-Beo, and US-Bes was determined using a random forest algorithm using the plant functional 

type (PFT) from Langford et al. (2019) as training data (Figure S2). Four PFTs were classified 

among five areas, including Arctic C3 grass, bare soil, broadleaf evergreen shrub and broadleaf 

deciduous boreal shrub. The former three PFTs dominated and accounted for > 80% of the domain 

of each area. A World-View3 image (Maxar Technologies) of the Barrow area collected on July 

24, 2016, was used with the plant functional type map overlain to predict plant functional types at 

the other Barrow sites. The model was trained using 1,000 pixels at random, and then applying the 

trained models to the World-View3 image near the sites of interest. For the US-Atq and US-Ivo 

sites, an unsupervised linear spectral unmixing was performed in in ENVI V5.2 (L3Harris 

Geospatial) using the vegetation classes from a previous publication (Davidson et al., 2016) to 

inform the number of classes, with an additional open water category. Following the unmixing, 

vegetation classes were applied according to (Davidson et al., 2016). A 0.5 m (vertical resolution) 
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digital elevation model (DEM) was used for elevation data at the US-Beo, US-Bes, and US-Brw 

sites (Wilson, 2012). Elevation maps for US-Atq and US-Ivo were download from ArcticDEM 

(v3.0 Pan-Arctic) with a high resolution of 2 m based on the geographic information of these two 

sites, and further processed to maps with a resolution of 4 m using the MATLAB software (R2018a, 

the MatWorks, Inc.). SOC concentrations at 0-10, 10-20, 20-30 and 30-40 cm at US-Bes, US-Atq, 

and US-Ivo were derived from the Northern Circumpolar Soil Carbon Database (Hugelius et al., 

2013). Due to the lack of SOC data, we assumed that US-Beo and US-Brw shared the same SOC 

data with BES since these sites are adjacent. In addition, since there were no spatial data of SOC, 

we assumed that all the grid cells within a domain of 40000 m2 had the same vertical distribution 

of SOC. To calculate SOC at each soil layer for model simulation, we assumed the cumulative 

SOC fraction follows an asymptotic equation (Guo et al., 2020; Jackson et al., 1996; Xu et al., 

2013); therefore, SOC concentration for each soil layer was estimated by an exponential equation: 

5 = 	& ∗ 89, 

where the Y is SOC concentration at the soil depth d (m) and a and β are the fitted 

‘coefficient’ (Table S1). The SOC dataset used for model simulation was shown in Table 1.  

Table 1. Concentration of soil organic carbon (SOC) (kg ·C ·m-3) for model initialization for all 
study sites 

Layer Depth (m) US-Beo US-Bes US-Brw US-Atq US-Ivo 
1 0.007 44.6 44.6 44.6 51.6 50.8 
2 0.028 45.4 45.4 45.4 51.4 49.6 
3 0.062 46.6 46.6 46.6 51.0 47.6 
4 0.119 48.8 48.8 48.8 50.5 44.6 
5 0.212 52.6 52.6 52.6 49.5 40.1 
6 0.366 59.4 59.4 59.4 48.0 33.5 
7 0.620 72.8 72.8 72.8 45.7 25.0 
8 1.038 101.7 101.7 101.7 42.0 15.4 
9 1.728 101.7 101.7 101.7 42.0 15.4 
10 2.865 101.7 101.7 101.7 42.0 15.4 
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Model Implementation 

Model implementation was carried out in three stages, similar to the default CLM4.5 

protocols (Oleson et al., 2013). The first phase is accelerated model spin-up that was set up for 

2,000 years to allow the system to an accumulate C and reach steady state. We set the accelerated 

model spin-up for 2,000 years to allow more carbon accumulation as Arctic tundra has a low rate 

and long period of carbon sequestration. Then a final spin-up was set up to 50 years to allow the 

modeled system to reach a relatively steady state. After the final spin-up, the transient model 

simulation was set to cover the period of 1850–2015 for US-Beo, US-Bes, and US-Brw, and the 

period of 1850-2014 for US-Atq and US-Ivo. The difference in model duration was determined by 

the available meteorological data for each site. The climate data of 1850-2015 and 1850-2014 were 

covered as the CLM-Microbe model can be set to cycle the extant climate data.  

For the model simulations, parameters for microbial community and hydrological 

processes were set to default values in the CLM-Microbe model for each study site (Oleson et al., 

2013; Wang et al., 2019; Xu et al., 2015). To simulate the actual hydrological processes in this 

area, we modified the soil hydrology module and changed parameters for the inundated fraction to 

guarantee soil inundated below the 5th soil layer (2 m) in the CLM-Microbe model. In addition, 

the parameter for plant-mediated transport of CH4 was changed to allow CH4 emission from soil. 

The transient simulations for each site produced output at the daily time step. The same model 

parameters and settings were applied for all five study sites. 

Footprint Algorithms 

In this study, we upscaled the simulated CH4 flux to the landscape scale using three 

footprint algorithms. The first algorithm was the “homogeneous” footprint (HF) algorithm, which 

assumes the footprint is a circular area with a radius of 100 m and the EC tower as the center and 
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each grid cell in the footprint contributes equally (Figure 2a). The second algorithm was the 

“gradient” footprint (GF) algorithm, which assumes the footprint is also a circle area with a radius 

of 100 m and the EC tower as the center, but grid cells contribute distinctly and their contribution 

weights decrease from 1 at the center to 0 at the edge in the footprint (Figure 2b). Both HF and GF 

were constant over time. The third algorithm was the “dynamic” footprint (DF) algorithm, which 

considered the influence of wind direction, wind velocity, air temperature, sensible heat, 

precipitation, and the landscape roughness to rigorously characterize the actual EC footprint (Chen 

et al., 2012; Kim et al., 2006; Kormann and Meixner, 2001) (Figure 2c). The DF was developed 

to estimate the probability of flux originated from a particular location surrounding the flux tower 

(Chen et al., 2012).  

 
Figure 2. Source area and weight distribution for different footprint algorithms within an area of 
200 m × 200 m and the EC tower as center (50 latitude grids × 50 longitude grids): (a) the 
“homogeneous” footprint (HF) algorithm regards each grid cell contributes evenly to total EC flux, 
(b) the “gradient” footprint (GF) algorithm regards the contribution of grid cells gradually decrease 
from center to edge; and (c) the “dynamic” footprint (DF) algorithm considers the environmental 
influence to generate dynamic EC footprints at daily time step. Figure (a) and (b) are constant 
through the year. Figure (c) shows a sample of EC footprints produced for ATQ on 22 September 
2013. Grey indicates the data are unavailable. Relative weights are shown and the weights for all 
grids within the entire domain sum to one. 
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We produced the footprint with HF and GF algorithms using R, version 3.6 (R Core Team, 

2020), and implemented the DF following the protocols using the MATLAB software (R2018a, 

MatWorks, Inc.) (Kormann and Meixner, 2001). The DF was generated at a daily time step and 

only for the days with no precipitation. Meteorological data for the DF were derived by the EC 

technique, including friction velocity, crosswind covariance, Monin-Obukhov length, roughness 

length, displacement height, and wind direction available at the half-hourly time step for the period 

of 2013-2015 (https://daac.ornl.gov/ABOVE/guides/AK_North_Slope_NEE_CH4_Flux.html).  

Model Evaluation 

Model evaluation was performed for the combined use of the CLM-Microbe model with 

each footprint model. The upscaled flux was calculated by the grid-cell CH4 flux and its weight in 

the footprint and validated with the measured EC flux in 2013-2015 for each site. The coefficient 

of determination (R2) and root mean square error (RMSE) were calculated for comparing upscaled 

and observed daily CH4 flux at monthly and annual time steps using R, version 3.6 (R Core Team, 

2020). The coefficients cannot be calculated for all months because of insufficient observations 

and limited DF. To further quantify the model accuracy, we adopted an index of Normalized Nash-

Sutcliffe Efficiency (NNSE). The t is the time series of data, T is the total sample size, Qo and Qm 

are the observed and modeled data, respectively. The NNSE has a range of [0, 1], higher values 

indicate better model performance. Noted that the NNSE is different from R2 as the NNSE takes 

heavy consideration of absolute values of individual data points, while R2 relies on the covariance 

between observational data and modeled outputs. 

;;,< = 1
1 + (?@A − ?CA )DE

A*+
(?@A − ?@)DE

A*+
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Statistical Analysis 

Annual estimates of CH4 flux at each site were calculated based on observed and upscaled 

flux.  Because some observed flux and DF estimates were missing, we interpolated those data with 

a linear method at daily time scales using R, version 3.6 (R Core Team, 2020). This approach has 

been applied to gap-fill the missing data, ranging from 10% for US-Beo, 21% for US-Bes, 42% 

for US-Brw, 43% for US-Atq, and 24% for US-Ivo. Additionally, in the current version of the 

CLM-Microbe model, CH4 emission does not occur when the surface water is frozen. Hence, we 

only used the flux for the period of from DOY (day of year) 121 to DOY 280 for annual estimates 

for all study sites. Therefore, annual CH4 flux for those areas can be underestimated by the model, 

since cold season flux can contribute up to 50% of annual flux (Zona et al., 2016). We also 

investigated the effects of air temperature, precipitation, vegetation composition and elevation on 

temporal and spatial variations of CH4 flux for each site. Correlation analysis was conducted for 

quantifying controls of daily air temperature and precipitation on daily CH4 flux in 2013-2015. 

Correlations between vegetation composition and elevation and CH4 flux were analyzed based on 

the spatial distribution of those variables in 2013-2015. Pearson’s correlation coefficients (rp) are 

shown in Table 4 and Table S5. All statistical analyses were conducted using R scripts developed 

in house (version 3.6). 

 

Results 

Simulated CH4 Flux Based on Footprint Algorithms 

Compared with EC measurements, the estimates using DF algorithm were similar to those 

using HF and GF across study sites in 2013 – 2015, with a R2 range of 0.210 - 0.629 (Table S3, 

Figure S1). A total of 61 – 63% of the variations in observed flux was explained by the simulated 
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flux at US-Bes and US-Atq using different footprint algorithms, while only 21% was explained 

for US-Ivo (Table S3, Figure S1). Values of RMSE were comparably small (0.008 - 0.011 µmol·m-

2·s-1) for all sites, except 0.023 at US-Ivo (Table S3). At the monthly scale, the temporal variations 

of simulated CH4 flux were improved using the DF algorithm compared with HF and GF 

algorithms, especially in the summer months (July - September), whereas the accuracy of estimates 

was similar using the HF and GF algorithms (Table 2). In the months when the DF algorithm 

performed better, the correlation (R2) between observed and modeled flux was greatly increased 

compared with HF and GF algorithms (Table 2). However, we also observed a decreased accuracy 

of 36% using the DF algorithm compared with HF and GF algorithms at US-Ivo in September 

2013.  In the majority of the study period, the accuracy of estimated CH4 flux was consistent among 

DF, HF, and GF algorithms as shown by the similar NNSE values among the three algorithms 

(Table 2). Overall, the three footprint algorithms were consistent for all sites (Table 2). For instance, 

the NNSE value was 0.758 for the HF algorithm, 0.765 for the GF algorithm, and 0.782 for the DF 

algorithm at the US-Bes site in September 2013, indicating a slightly better performance of the DF 

algorithm than the other two algorithms.  
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Simulated CH4 Flux Among Study Sites 

 
Figure 3. Left column shows the comparison of upscaled CH4 flux using the homogeneous 
footprint (HF) algorithm (green points), the gradient footprint (GF) algorithm (blue points) and the 
dynamic footprint (DF) algorithm (red points) with the EC observed flux (black points) for (a) US-
Beo, (c) US-Bes, (e) US-Brw, (g) US-Atq, and (i) US-Ivo at daily time step during a period of 
2013-2015. Right column shows the differences of CH4 flux between GF and HF for (b) US-Beo, 
(d) US-Bes, (f) US-Brw, (h) US-Atq, and (j) US-Ivo.  

The CLM-Microbe model captured the starts, peaks, and seasonal trajectory of CH4 flux 

across study sites using different footprint algorithms (Figure 3). US-Beo, US-Bes, and US-Brw 

showed similar trends for CH4 emission with comparable average daily flux, even with different 

footprints in 2015 (Figure 3). The average CH4 flux of the growing seasons (DOY 121 - 280) at 

these three sites was in a range of 0.017 - 0.020 µmol·m-2·s-1 in 2015. US-Atq and US-Ivo had 

higher average flux than US-Bes and US-Brw across footprints in 2013 – 2014. Average CH4 flux 

at US-Atq was 0.020 µmol·m-2·s-1 in 2013, and 0.019 µmol·m-2·s-1 in 2014 using different 
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footprints. At US-Ivo, the average CH4 flux in 2013 - 2014 was 0.036 - 0.037 µmol·m-2·s-1 using 

HF and GF algorithms, and 0.040 - 0.051 µmol·m-2·s-1 using the DF algorithm.  

Table 3. Annual estimates of observed and upscaled CH4 flux using the homogeneous footprint 
(HF), gradient footprint (GF) and dynamic footprint (DF) algorithms for all study sites in 2013-
2015 (Unit: g C ·m-2 ·year-1, n.a.: not available) 

 Site 2013 2014 2015 
Observed US-Beo n.a. n.a. 4.1 

 US-Bes n.a. 3.8 3.7 
 US-Brw n.a. 1.5 2.7 
 US-Atq n.a. 1.7 n.a. 
 US-Ivo n.a. 4.6 n.a. 

HF US-Beo n.a. n.a. 4.1 
 US-Bes 3.0 3.2 3.7 
 US-Brw 3.4 3.6 4.3 
 US-Atq 4.4 4.0 n.a. 
 US-Ivo 8.0 8.3 n.a. 

GF US-Beo n.a. n.a. 4.1 
 US-Bes 3.0 3.1 3.7 
 US-Brw 3.4 3.6 4.3 
 US-Atq 4.5 4.0 n.a. 
 US-Ivo 8.0 8.2 n.a. 

DF US-Beo n.a. n.a. 4.1 
 US-Bes n.a. 3.1 3.7 
 US-Brw n.a. 3.6 4.3 
 US-Atq n.a. 4.0 n.a. 
 US-Ivo 8.1 7.7 n.a. 

Annual estimates of upscaled CH4 flux were comparable using different footprints for each 

study site in the same year with a range of 3.0 - 8.3 g C·m-2 (Table 3). Moreover, annual estimates 

of upscaled CH4 flux were consistent with estimates of observed flux for US-Beo and US-Bes in 

2015, but were overestimated for US-Brw, US-Atq, and US-Ivo in 2014-2015. A small difference 

in annual estimates of CH4 flux was found among US-Beo, US-Bes, and US-Brw with a range of 

3.7 - 4.3 g C·m-2 using different footprint algorithms in 2015. Annual flux at US-Atq was 

overestimated as 4.0 g C·m-2 by all footprint algorithms, which was 2.4 times of the observed flux. 
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In addition, annual estimate of observed flux at US-Ivo in 2014 was 4.6 g C·m-2, which was 

overestimated by 1.67 - 1.8 times using footprint algorithms (Table 3).  

Spatial Patterns of Simulated CH4 Flux within Study Domains 

 
Figure 4. Spatial patterns of upscaled CH4 emission rates based on the homogeneous footprint 
(HF) algorithm in an area of 200 m × 200 m during a period of 2013-2015 for all study sites 

Spatial patterns of simulated CH4 flux varied among study sites at annual and monthly 

scales using different footprints (Figure 4 and S3-S19, Table S4). Generally, the spatial variations 

were greatest using the HF algorithm across sites, which were 1.6 times of using the GF algorithm 

and 3.2 - 28 times of using the DF algorithm (Table S4). Similar to spatial variations, spatial 

averages for each study site using the GF and DF algorithms were comparable but were about half 

of spatial averages using the HF algorithm (Table S4). US-Ivo had the highest spatial averages 
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compared with other sites (unit = µmol·m-2·s-1): 0.0125 - 0.129 using the HF algorithm, 0.0044 - 

0.0046 using the GF algorithm and 0.0012 - 0.0017 using the DF algorithm (Figure 4, S3 and S4, 

Table S4). US-Atq had the second-highest spatial averages and variations (unit = µmol·m-2·s-1): 

0.0062 - 0.0069 using the HF algorithm, 0.0022 - 0.0025 using the GF algorithm, and 0.0002 - 

0.0004 using the DF algorithm (Figure 4, S3 and S4, Table S4). US-Beo, US-Bes, and US-Brw 

had similar spatial averages using different footprint algorithms, which were 0.0047 - 0.0007 using 

the HF algorithm, 0.0016 - 0.0024 using the GF algorithm, and 0.0001 - 0.0005 using the DF 

algorithm (Figure 4, S3 and S4, Table S4). Spatial patterns of CH4 flux were scaled up by three 

footprint algorithms (Figure 4, S3 and S4), but they cannot be verified because there is no available 

observation for spatial distribution of CH4. 

Controls on the Variations in CH4 Flux  

Air temperature and precipitation were the primary factors determining CH4 flux at the 

temporal scale (Table 4). The influences of air temperature and precipitation on CH4 flux were 

highly dependent on footprint algorithms across study sites. In summary, air temperature explained 

67.3 - 74.3% whereas precipitation explained 22.3 - 35.6% of the temporal variations in CH4 flux 

among the five study sites (Table 4). At the spatial scale, CH4 flux was negatively correlated with 

bare soil percentage and positively correlated with Arctic C3 grass percentage using different 

footprint algorithms among the five sites, except for US-Bes; in other words, higher vegetation 

cover was associated with greater CH4 emission (Table S5). Arctic C3 grass percentage was 

strongly related with CH4 flux at US-Beo using the HF (rp = 0.385, P < 0.0001), GF (rp = 0.284, 

P < 0.0001) and DF (rp = 0.265, P < 0.0001) algorithms; at US-Atq using the HF (rp = 0.718, P < 

0.0001), GF (rp = 0.305, P < 0.0001) and DF (rp = 0.280, P < 0.0001) algorithms; and at US-Bes 

(rp = 0.488, P < 0.0001) and US-Ivo (rp = 0.305, P < 0.0001) using the HF algorithm. More Arctic 
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C3 grasses facilitated CH4 emission among five study sites (Table S5). Generally, soil temperature 

and soil water content were positively correlated with CH4 fluxes using different footprint 

algorithms (Table S5); however, their correlations seemed to be overlaid by Arctic C3 grass and 

bare soils. CH4 fluxes were positively correlated with soil temperature (rp = 0.265, P < 0.0001) 

and soil water content (rp = 0.249, P < 0.0001), but these direction of correlation was changed 

using GF (rp = -0.242, P < 0.0001 for soil temperature; rp = -0.210, P < 0.0001 for soil water 

content) and DF (rp = -0.229, P < 0.0001 for soil temperature; rp = -0.200, P < 0.0001 for soil 

water content) algorithms (Table S5). 

Table 4. Pearson’s correlation coefficients (rp) for relationships between air temperature, 
precipitation and upscaled CH4 flux using the homogeneous footprint (HF), gradient footprint 
(GF) and dynamic footprint (DF) for all study sites (Bold indicates | rp | > 0.2; * indicates P 
<0.05, ** P < 0.01) 

Footprint algorithms Site Air temperature (K) Precipitation (mm) 

HF 

US-Beo 0.743** 0.222** 
US-Bes 0.742** 0.222** 
US-Brw 0.743** 0.222** 
US-Atq 0.717** 0.342** 
US-Ivo 0.720** 0.252** 

GF 

US-Beo 0.743** 0.222** 
US-Bes 0.742** 0.222** 
US-Brw 0.743** 0.222** 
US-Atq 0.717** 0.342** 
US-Ivo 0.720** 0.251** 

DF 

US-Beo 0.694** 0.204 
US-Bes 0.736** 0.248** 
US-Brw 0.734** 0.261** 
US-Atq 0.673** 0.231** 
US-Ivo 0.711** 0.356** 
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Discussion 

Importance of Footprint Algorithms in Upscaling CH4 Emission to Landscape Scales 

In this study, we integrated three footprint algorithms with a microbial functional group-

based CH4 model for upscaling plot-scale CH4 flux to the landscape scale. Generally, the simulated 

flux was consistent with the observed CH4 flux at the five study sites during 2013-2015 (Figure 3). 

This confirmed that the CLM-Microbe model is capable of simulating the temporal pattern of 

landscape-scale CH4 emission in Arctic tundra (Wang et al., 2019). Additionally, Arctic tundra 

(about 11,563,300 km2) was estimated to emit 7.54 - 20.87 Tg CH4 per year based on our maximum 

and minimum of annual estimates using different footprints among all study sites, which were 

comparable to previous estimates (Zona et al., 2016). However, our model generally overestimated 

CH4 emission for US-Brw, US-Atq, and US-Ivo in 2014-2015 and underestimated flux for US-

Bes in 2014, regardless of footprint algorithms (Table 2). GF and DF algorithms narrowed the 

discrepancies between simulated and observed flux for US-Ivo compared with the HF algorithm, 

and their effects were small and upscaled fluxes were still 1.67 – 1.78 times annual estimates of 

observed flux. It is probably due to the relatively homogeneous surface of the source area, which 

led to small spatial variations in CH4 flux at US-Ivo and further weakened the influence of 

footprints on upscaled fluxes (Figure 4).  

The footprint algorithms can be a key factor for the regional quantification of the CH4 flux. 

For example, at US-Bes in Sep 2013, the R2 of the DF algorithm was almost double of the R2 for 

the GF algorithm. This is because the upscaled flux can be simulated to be zero using the GF 

algorithm which can lead to a huge difference between measured and upscaled data. But upscaled 

flux using the DF algorithm can only be calculated when measured flux was not zero which 

guarantees that the upscaled flux using the DF algorithm would not be zero and maybe close to 
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measured flux. This is why the differences in upscaled flux between the DF algorithm and GF 

algorithm seem to be tiny in Figure 3 but the R2 using DF and GF can be largely different in Table 

3. Previous research found that footprint algorithms were of considerable importance for 

improving greenhouse gas budgeting (Chi et al., 2021; Kljun et al., 2015), and footprints provide 

useful information about the spatial representativeness of flux in the case that footprint size and 

position determine the distribution of individual sinks or sources in the study areas with large 

heterogeneity (Chu et al., 2021; Heidbach et al., 2017; Reuss-Schmidt et al., 2019). Thus, it is 

reasonable to have a small effect from footprints on improving CH4 estimates in homogenous area, 

suggesting that footprint estimates are more important when validating CH4 emission models with 

EC fluxes for areas with a heterogeneous and irregular vegetation pattern (Budishchev et al., 

2014b). A study reported the footprint for 214 AmeriFlux sites and found that the upscaling with 

fixed-extent target area can lead to up to 20% of biases. A recent review paper highly 

recommended the footprint algorithm as a key task for the flux community (Helbig et al., 2021). 

This study added another evidence of the importance of dynamic footprint in predicting CH4 flux 

at the regional scale. 

The footprint algorithms varied among temporal scales; for example, the DF algorithm had 

better performance in upscaling the CH4 flux at the monthly scale than at the annual scale. The DF 

algorithm performed better or comparable to improve the accuracy of CH4 annual estimates 

compared with the HF and GF algorithms. The HF and GF algorithms were immutable over time, 

whereas the DF algorithm considers the impact of turbulence in releasing CH4 from ecosystems 

(Kljun et al., 2015). Strong atmospheric turbulence can facilitate the instantaneous release of CH4 

bubbles trapped within the soil or on surfaces below the water table (Sturtevant et al., 2012). 

Moreover, friction velocity, which is strongly correlated with wind speed, has been reported to be 
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positively correlated to CH4 emission in Arctic and sub-Arctic tundra (Sachs et al., 2008; 

Sturtevant et al., 2012). The DF algorithm performed better in summer months (July – September). 

This may be explained by the enhanced preformation of dynamic footprint estimates over 

heterogeneous ground, and in summer months the unstable conditions of atmospheric turbulence 

and vegetation cause a higher spatial heterogeneity than in winter (Sturtevant et al., 2012).  

Factors Controlling Landscape-scale CH4 Emission 

In this study, air temperature was the dominant factor controlling CH4 emission in the 

Arctic tundra, which explained 67.3 - 74.3% of the temporal variation in CH4 flux. Three study 

sites in Utqiaġvik (US-Beo, US-Bes, and US-Brw) exhibited the same trend, start, peak, and end 

of CH4 emission, since they experienced the same climate conditions (Figure 3). The annual 

average of air temperature was highest at US-Ivo, the southernmost study site, which 

correspondingly had the greatest CH4 emission (Arndt et al., 2020; Arndt et al., 2019). The key 

role of temperature affecting Arctic CH4 emission has been illustrated in numerous studies 

(Chistensen et al., 1993, 1995, 2004; Morrissey et al., 1992; Nielsen et al., 2016): 1) warmer 

temperature leads to a deeper active layer, allowing a greater soil volume to produce CH4; 2) 

temperature directly affects microbial activities and efficiency of converting substrates to produce 

CH4; and 3) temperature influences the plant growth and biomass in the ecosystem that impact 

CH4 transport via plants. Further, precipitation explained 22.3 - 35.6% of the temporal variations 

in CH4 flux among different sites. This is because CH4 is produced by methanogens in inundated 

soils with no oxygen, and is oxidized in soils above the water table or in while diffusing through 

open water (MacDonald et al., 1998).  

Spatial variations of CH4 emission were influenced by vegetation distribution in Arctic 

tundra ecosystems. Higher vegetation cover was associated with larger CH4 emission within study 
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sites due to the stronger plant-mediated transport of CH4 (King et al., 1998; Waddington and 

Roulet, 1996). In contrast, the US-Bes displayed a positive relationship between non-vegetation 

proportion and CH4 emission within the source area, which may be because inundated areas 

inhibited plant growth, but accelerated ebullition and production of CH4. C3 grasses dominate the 

landscape of the Arctic tundra and are known to provide a conduit for CH4 to transport to the 

atmosphere. As a result, CH4 emissions are strongly correlated with vascular species cover and 

root density (Davidson et al., 2016; Joabsson and Christensen, 2001; Sturtevant et al., 2012). 

Further, Bellisario et al. (1999) found an inverse relationship between water table position and 

CH4 flux in a Canadian northern peatland, and a greater vascular plant cover was most responsible 

for higher emissions. A few comprehensive analyses with the FLUXNET-CH4 data have 

confirmed the substrate and water table as key controlling factors for CH4 flux (Chang et al., 2021; 

Delwiche et al., 2021; Knox et al., 2021). More mechanistic analysis with our model for 

quantitative understanding of those factors on CH4 flux is deemed as future work. 

Combining the controls on temporal and spatial variations in CH4 flux, we found that 

climate and seasonal drivers dominated the temporal variability while the spatial heterogeneity in 

land surface property dominated the spatial variability in CH4 flux. This is consistent with two 

studies in the Arctic (Hashemi et al., 2021; Treat et al., 2018). Considering the small differences 

among the three algorithms in upscaling CH4 flux, it suggested that the variation in CH4 flux over 

months is larger than that the variation across space in the Arctic (Hashemi et al., 2021), indicating 

that maybe the coarser scale models are suitable in capturing total budget but not finer scale 

temporal rends in the Arctic (Melton et al., 2013). 

The Implications 
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This study has three major implications for model development and upscaling CH4 

emission in the Arctic. First, the CLM-Microbe model performed well in capturing the temporal 

variabilities in CH4 flux among different landscapes in the Arctic tundra, thereby improving the 

simulation accuracy for CH4 flux with appropriate footprint algorithms. This study infers that the 

DF algorithm had similar performance to HF and GF algorithms if the landscape is flat. Second, 

this study emphasizes the importance of vegetation composition in influencing the spatial 

heterogeneity of CH4 emission in agreement with many prior studies (Davidson et al., 2016; 

McEwing et al., 2015; Waddington and Roulet, 1996). However, the proportions of different plant 

function types are defined as unchanged during model simulation. The CLM-Microbe model could 

improve estimates by developing a more advanced vegetation module to improve the simulation 

performance for vegetation effects on CH4 flux that have been observed to change over decadal 

timescales (Arndt et al., 2019; Liljedahl et al., 2016). Third, this study infers the importance of 

topography in driving CH4 flux across the heterogeneous landscape. This study adopted a spatial 

resolution of 4 m × 4 m for the tower domain, yet soil heterogeneity is observed within a sub-meter 

scale. Finer resolution of soil and vegetation data might be critical for better simulating CH4 flux 

at a sub-meter scale in Arctic tundra landscapes. 

The Way Forward 

Previous and current results demonstrate the robustness of the CLM-Microbe model to 

simulate the landscape-scale CH4 emission in the Arctic tundra by incorporating different 

upscaling techniques (Wang et al., 2019). Here we identify several tasks required to further 

advance the modeling of landscape-level CH4 emission in Arctic tundra. First, CH4 emission 

during the cold season is very important, which possibly contributes up to ~50% of annual 

estimates in Arctic tundra (Arndt et al., 2020; Hashemi et al., 2021; Zona et al., 2016). The 



 64 

formation of a zero curtain during the cold season thereby contributes to a large underestimation 

of CH4 production (Mastepanov et al., 2008; Mastepanov et al., 2013; Zona et al., 2016). The 

current version of CLM-Microbe allows CH4 release from a frozen soil surface, and the model 

does not effectively simulate the CH4 dynamics associated with the zero-curtain in Arctic tundra. 

Hence, a more accurate representative of the actual soil hydrological and physical condition is 

warranted. Second, estimation of the Arctic CH4 budget can be improved by the CLM-Microbe 

model, owing to the simulation of different microbial functional groups (methanogens vs. 

methanotrophs) acting in CH4 processes. Based on current study, it is feasible to conduct the model 

simulation of CH4 for Arctic regions using the Circumpolar Arctic map. Extrapolating to the entire 

Arctic by combining a relatively high-resolution vegetation maps and topography data would 

tremendously improve the accuracy of the CH4 emission estimates. Third, the “hot moments” may 

represent a disproportionate contribution to the annual CH4 flux in the permafrost region  

(Mastepanov et al., 2013; Pirk et al., 2015; Raz-Yaseef et al., 2016; Song et al., 2012), yet no 

landscape and regional modeling studies have fully taken it into consideration these “hot moments” 

events (Xu et al., 2016). Although our model showed a high pulse in the early growing season, 

more mechanistic evaluation of the CH4 pulse dynamics should be included in our future work. 

Fourth, selection of footprint algorithms for upscaling plot-level CH4 flux is important for 

landscape-scale CH4 estimates. Currently, various models have been used to estimate the source 

area of flux measurements (Budishchev et al., 2014a; Zhang et al., 2012). This study compared 

three footprint algorithms for upscaling CH4 flux. Other footprint algorithms such as Lagrangian 

particle models (Heidbach et al., 2017) and the development of complex “full flow” large eddy 

simulations may need to be considered for a more comprehensive evaluation. 
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Conclusions 

This study reported applying the CLM-Microbe model to landscape-scale CH4 emission in 

the Arctic tundra in association with three footprint algorithms. The model captured the temporal 

dynamics of CH4 emission for different study sites, even when using the same model settings and 

parameters. The DF algorithm improved the accuracy of temporal variations in CH4 flux compared 

with the HF and GF algorithms by considering the influence of wind and soil surface conditions. 

It performed better on the monthly scale than on an annual scale. Due to the relatively flat 

landscape in the Arctic, the three footprint algorithms did not lead to substantial differences in the 

magnitudes of observed CH4 flux within a portion of the study sites. Air temperature explained 67 

- 74% of temporal variations of CH4 flux, whereas precipitation explained 22 - 36% of temporal 

variations. Concerning spatial dynamics, vegetation cover was positively related to Arctic CH4 

emission from soil to atmosphere. In particular, the C3 arctic grasses played an essential role in 

facilitating CH4 transport from soil to the atmosphere. Extrapolating our modeling results to the 

northern Arctic tundra ecosystems led to an annual CH4 emission of 7.54 - 20.87 Tg CH4 per year. 

This study suggested that the approach adopted in this study is applicable for other ecosystem 

types around the globe. The selection of an appropriate footprint model for upscaling CH4 flux 

depends on the landscape characteristics of the study domains. 
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Chapter 2: Supporting Information 

 
Figure S1. Scatter plots of observed versus simulated CH4 flux for (a) US-Beo, (b) US-Bes, (c) 
US-Brw, (d) US-Atq, and (e) US-Ivo in 2013-2015 with linear lines of best fit (no interception) 
and 95% confidence interval for regression line shaded gray. The green lines and points indicate 
the relationship between observed fluxes and upscaled fluxes using the homogeneous footprint 
(HF) algorithm overlapped by blue lines and points. The blue lines and points indicate the 
relationship between observed fluxes and upscaled fluxes using the gradient footprint (GF) 
algorithm. The red lines and points indicate the relationship between observed fluxes and upscaled 
fluxes using dynamic footprint (DF) algorithm. Most of green lines and points were overlapped by 
the blue lines and points. 
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Figure S2. Vegetation maps of four plant functional types defined in the CLM-Microbe model in 
an area of 200 m × 200 m for all study sites 
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Figure S3. Spatial patterns of upscaled CH4 emission rates based on the “gradient” footprint (GF) 
algorithm in an area of 200 m × 200 m from 2013 to 2015 for all study sites 
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Figure S4. Spatial patterns of upscaled CH4 emission rates based on the “dynamic” footprint (DF) 
algorithm in an area of 200 m × 200 m from 2013 to 2015 for all study sites 
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Figure S5. Spatial distribution of upscaled CH4 flux using the homogeneous footprint (HF) 
algorithm for each month in 2013-2015 for US-Beo (flux was zero in January, February, March, 
April, November, and December) 
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Figure S6. Spatial distribution of upscaled CH4 flux using the gradient footprint (GF) algorithm 
for each month in 2013-2015 for US-Beo (flux was zero in January, February, March, April, 
November, and December) 
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Figure S7. Spatial distribution of upscaled CH4 flux using the dynamic footprint (DF) algorithm 
for each month in 2015 for US-Beo (flux was zero in January, February, March, April, November, 
and December) 
  



 79 

 
Figure S8. Spatial distribution of upscaled CH4 flux using the homogeneous footprint (HF) 
algorithm for each month in 2013-2015 for US-Bes (flux was zero in January, February, March, 
April, November, and December) 
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Figure S9. Spatial distribution of upscaled CH4 flux using the gradient footprint (GF) algorithm 
for each month in 2013-2015 for US-Bes (flux was zero in January, February, March, April, 
November, and December) 
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Figure S10. Spatial distribution of upscaled CH4 flux using the dynamic footprint (DF) algorithm 
for each month in 2013-2015 for US-Bes (flux was zero in January, February, March, April, 
November, and December) 
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Figure S11. Spatial distribution of upcaled CH4 flux using the homogeneous footprint (HF) 
algorithm for each month in 2013-2015 for US-Brw (flux was zero in January, February, March, 
April, November, and December) 
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Figure S12. Spatial distribution of upscaled CH4 flux using the gradient footprint (GF) algorithm 
for each month in 2013-2015 for US-Brw (fluxes were zero in January, February, March, April, 
November, and December) 
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Figure S13. Spatial distribution of upscaled CH4 flux using the dynamic footprint (DF) algorithm 
for each month in 2013-2015 for US-Brw (flux was zero in January, February, March, April, 
November, and December) 
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Figure S14. Spatial distribution of upscaled CH4 flux using the homogeneous footprint (HF) 
algorithm for each month in 2013-2014 for US-Atq (flux was zero in January, February, March, 
April, November, and December) 
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Figure S15. Spatial distribution of upscaled CH4 flux using the gradient footprint (GF) algorithm 
for each month in 2013-2014 for US-Atq (flux was zero in January, February, March, April, 
November, and December) 
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Figure S16. Spatial distribution of upscaled CH4 flux using the dynamic footprint (DF) algorithm 
for each month in 2013-2014 for US-Atq (flux was zero in January, February, March, April, 
November, and December) 
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Figure S17. Spatial distribution of upscaled CH4 flux using the homogeneous footprint (HF) 
algorithm for each month in 2013-2014 for US-Ivo (flux was zero in January, February, March, 
April, November, and December) 
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Figure S18. Spatial distribution of upscaled CH4 flux using the gradient footprint (GF) algorithm 
for each month in 2013-2014 for US-Ivo (flux was zero in January, February, March, April, 
November, and December) 
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Figure S19. Spatial distribution of upscaled CH4 flux using the dynamic footprint (DF) algorithm 
for each month in 2013-2014 for US-Ivo (flux was zero in January, February, March, April, 
November, and December) 
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Table S1. Coefficients for calculating SOC concentrations at five study sites 

Sites Coefficients 

 a β 

US-Beo 44.35 0.008 

US-Bes 44.35 0.008 

US-Brw 44.35 0.008 

US-Atq 51.678 -0.002 

US-Ivo 51.761 -0.007 
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Table S2 Annual averages and variations (mean±sd) of upscaled CH4 flux using the homogeneous 
footprint algorithm (HF), gradient footprint algorithm (GF) and dynamic footprint algorithm (DF) 
for all study sites in 2013-2015 (Unit: µmol ·m-2 ·s-1, n.a.: not available) 

Footprint Site 2013 2014 2015 

 US-Beo 0.014±0.008 0.014±0.007 0.017±0.009 
 US-Bes 0.015±0.009 0.016±0.007 0.018±0.009 

HF US-Brw 0.015±0.009 0.016±0.008 0.019±0.010 
 US-Atq 0.020±0.016 0.018±0.012 n.a. 
 US-Ivo 0.036±0.030 0.037±0.025 n.a. 

 US-Beo 0.013±0.008 0.014±0.006 0.017±0.008 
 US-Bes 0.015±0.009 0.016±0.007 0.019±0.010 

GF US-Brw 0.015±0.009 0.016±0.008 0.019±0.010 
 US-Atq 0.020±0.016 0.018±0.012 n.a. 
 US-Ivo 0.036±0.030 0.037±0.025 n.a. 
 US-Beo 0.017±0.006 0.014±0.006 0.017±0.008 
 US-Bes n.a. n.a. 0.020±0.009 

DF US-Brw 0.005±0.006 0.016±0.008 0.020±0.009 
 US-Atq 0.020±0.014 0.019±0.012 n.a. 
 US-Ivo 0.051±0.024 0.040±0.021 n.a. 
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Table S3 Coefficients for upscaled CH4 flux using the homogeneous footprint algorithm (HF), 
gradient footprint algorithm (GF) and dynamic footprint algorithm (DF) compared with observed 
fluxes for all study sites (RMSE: root mean square error and NNSE: the Normalized Nash-Sutcliffe 
Efficiency) 

Coefficient Site HF GF DF 
 US-Beo 0.511 0.512 0.526 
 US-Bes 0.633 0.631 0.629 

R2 US-Brw 0.427 0.427 0.427 
 US-Atq 0.607 0.605 0.610 
 US-Ivo 0.209 0.209 0.210 
 US-Beo 0.011 0.011 0.010 
 US-Bes 0.009 0.009 0.009 

RMSE US-Brw 0.008 0.008 0.008 
 US-Atq 0.010 0.010 0.011 

 US-Ivo 0.023 0.023 0.023 
 US-Beo 0.621 0.623 0.631 
 US-Bes 0.693 0.690 0.688 

NNSE US-Brw 0.397 0.397 0.397 
 US-Atq 0.237 0.232 0.214 
 US-Ivo 0.241 0.242 0.244 
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Table S4 Spatial averages and spatial variations (mean±sd) of upscaled CH4 flux using the 
homogeneous footprint algorithm (HF), gradient footprint algorithm (GF) and dynamic footprint 
algorithm (DF) for all study sites in 2013-2015 (Unit: µmol ·m-2 ·s-1, n.a.: not available) 

Footprint Site 2013 2014 2015 
 US-Beo 0.0051±0.0027 0.0054±0.0028 0.0064±0.0033 
 US-Bes 0.0047±0.0025 0.0050±0.0026 0.0059±0.0030 

HF US-Brw 0.0053±0.0028 0.0057±0.0029 0.0067±0.0034 
 US-Atq 0.0069±0.0037 0.0062±0.0034 n.a. 
 US-Ivo 0.0125±0.0065 0.0129±0.0067 n.a. 
 US-Beo 0.0018±0.0017 0.0019±0.0018 0.0023±0.0021 
 US-Bes 0.0016±0.0015 0.0017±0.0016 0.0020±0.0018 

GF US-Brw 0.0019±0.0017 0.0020±0.0018 0.0024±0.0021 
 US-Atq 0.0025±0.0023 0.0022±0.0021 n.a. 
 US-Ivo 0.0044±0.0040 0.0046±0.0042 n.a. 
 US-Beo 0.0005±0.0006 0.0005±0.0006 0.0005±0.0006 
 US-Bes 0.0004±0.0005 0.0003±0.0004 0.0004±0.0006 

DF US-Brw 0.0001±0.0001 0.0005±0.0004 0.0004±0.0004 
 US-Atq 0.0002±0.0006 0.0004±0.0006 n.a. 
 US-Ivo 0.0017±0.0017 0.0012±0.0016 n.a. 
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Table S5. Pearson’s correlation coefficients (rp) for relationships of vegetation composition, soil 
temperature, soil water content (top 2 cm), elevation with up-scaled CH4 flux using the 
homogeneous footprint algorithm (HF), gradient footprint algorithm (GF) and dynamic footprint 
algorithm (DF) for all study sites (Bold indicates | rp | > 0.2 and P <0.05, *: <0.05, and **: < 0.01) 

Footprint Site Bare soil 
(%) 

Arctic C3 
grass (%) 

Soil 
temperature (K) 

Soil water 
content (m3 m-3) 

Elevation 
(m) 

HF 

US-Beo -0.387** 0.385** 0.055** 0.054** 0.172** 

US-Bes -0.488** 0.488** 0.265** 0.249** 0.263** 

US-Brw -0.073** 0.068** 0.009 0.009 -0.007 

US-Atq -0.718** 0.718** -0.060** -0.058** 0.166** 

US-Ivo -0.290** 0.305** -0.053** 0.052** 0.030 

GF 

US-Beo -0.276** 0.284** 0.232** 0.229** 0.116** 
US-Bes 0.175** -0.171** -0.242** -0.210** -0.367** 

US-Brw -0.009 0.051** 0.025 0.037* 0.134** 

US-Atq -0.305** 0.305** 0.120** 0.100** -0.010 

US-Ivo -0.031 0.028** 0.035* -0.083** 0.072** 

DF 

US-Beo -0.270** 0.265** 0.070** 0.064** 0.093** 

US-Bes 0.182** -0.180** -0.229** -0.200** -0.301** 
US-Brw -0.062** 0.064** 0.107** 0.105** 0.177** 

US-Atq -0.280** 0.280** 0.049 0.029 -0.369** 
US-Ivo 0.039 0.192** 0.101** 0.048* 0.022 
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Chapter 3 

Projecting methane emissions in Arctic tundra ecosystems under different 
climate scenarios 

 
Yihui Wang, Liyuan He, Jianzhao Liu, Kyle A. Arndt, Jorge L.Mazza Rodrigues, Donatella 
Zona, David A. Lipson, Walter C. Oechel, Daniel M. Ricciuto, Stan D. Wullschleger, and 
Xiaofeng Xu 
 

Abstract 

Methane (CH4) emissions from the Arctic tundra are known to increase with climate 

warming. However, interactions among temperature, soil moisture status, and vegetation 

complicate a full understanding of emission rates and their magnitude in a changing climate. In 

this study, we applied the CLM-Microbe model to project CH4 emissions under three Shared 

Socioeconomic Pathways (SSP) scenarios using climate data from three climate models from 2016 

to 2100. Five sites (200 m × 200 m) in the Alaska North Slope were chosen; three of them are in 

Utqiaġvik (US-Beo, US-Bes, and US-Brw), one in Atqasuk (US-Atq), and one in Ivotuk (US-Ivo). 

Simulated CH4 emissions substantially increased by a factor of 5.3-7.5 under SSP5-8.5 scenario 

compared to the SSP1-2.6 and SSP2-4.5 scenarios. The projected CH4 emissions were comparable 

to historical emissions during 2006-2015 across the five sites. CH4 emission exhibited a stronger 

response to rising temperature under the SSP5-8.5 scenario than under SPP1-2.6 and SSP2-4.5 

scenarios, likely supported by a simultaneous enhanced precipitation-induced expansion of anoxic 

conditions for methanogenesis. The CH4 transport via ebullition and plant-mediated transport is 

projected to increase under all three SSP scenarios, and ebullition dominated CH4 transport by 

2100 across five sites. Projected CH4 emission varies in temperature sensitivity, with a Q10 range 

of 2.7-60.9 under SSP1-2.6, 3.8-17.6 under SSP2-4.5, and 5.7-17.2 under SSP5-8.5. Compared 

with the other three sites, US-Atq and US-Ivo were estimated to have greater increases in CH4 
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emissions due to higher temperature and precipitation. The CLM-Microbe model is a practical tool 

for projecting landscape-scale CH4 emissions and investigating the mechanisms of CH4 cycling 

under different climate scenarios in the Arctic. The nonlinear warming impacts on CH4 emission 

in the Arctic indicate strong positive CH4-climate feedback that has been overlooked in previous 

model simulations.  

 

Introduction 

Methane (CH4) is one of the most potent greenhouse gases in the atmosphere (Tan and 

Zhuang, 2015). CH4 concentrations in the atmosphere have been rising since 2007 and approached 

an annual average concentration of 1860 ppb in 2018 (National Oceanic and Atmospheric 

Administration, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends_ch4/) (Clarke et al., 2007; 

Fujino et al., 2006; Ganesan et al., 2019; Nisbet et al., 2019; van Vuuren et al., 2007; Rubino et 

al., 2019). Arctic soils are considered as a substantial net emission source of CH4 to the atmosphere, 

as methanogenesis is positively correlated with temperature (Oh et al., 2020; Tan and Zhuang, 

2015a, b). Arctic CH4 emissions were estimated to be 15 – 50 Tg CH4 yr−1, accounting for 20 – 

25% of global natural CH4 emissions (Kirschke et al., 2013). In addition, process-based 

biochemistry models predicted that Arctic CH4 emissions will be two to three times greater by 

2100 due to warming (Schuur et al., 2013; Koven et al., 2011; Lawrence et al., 2015). Oh et al. 

(2020) reported a 70 and 100% increase in wetland CH4 emissions by 2100 under the 

Representative Concentration Pathways (RCP) of 8.5 W·m-2. This undoubtedly emphasizes the 

importance of CH4 projections in the Arctic for the next few decades. 

Arctic regions have been warming two to four times faster than the global average in recent 

decades (Hansen et al 2007; Miner et al., 2022). Air temperature in the Arctic has increased at a 
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rate of 0.755 °C/decade during 1998–2012 (Chen et al., 2020) and could continue to increase by 

more than 10°C by 2100 relative to present-day, corresponding to about 30% more than the best 

estimate of warming (IPCC, 2021). Field experiments with manipulated temperature in the Arctic 

found that warming increased CH4 fluxes by 15 – 550% or had no effect due to changes in water 

table and vegetation (Granberg et al., 2001; Turetsky et al., 2008; Updegraff et al., 2001; Verville 

et al., 1998). For example, the data-constrained projections showed a 400% increase in CH4 

emission under 9°C warming at the Spruce and Peatland Responses Under Changing 

Environments experimental (SPRUCE) site (Ma et al., 2017). However, large uncertainties still 

exist in predicting responses of Arctic CH4 fluxes to future climate change due to changing thaw 

dynamics and vegetation shifts (Miner et al., 2022), even though CH4 production and emission 

processes have been extensively explored (Ma et al., 2017; Oh et al., 2020).  

The CLM-Microbe model takes advantages of involving a new microbial-functional-group 

based CH4 module (Wang et al., 2019, 2022; Xu et al., 2015, 2016) and a new framework for 

microbial controls on carbon (C) mineralization (He et al., 2021a,b; Xu et al., 2014) in the default 

decomposition subroutines in CLM4.5 (Koven et al., 2013; Thornton and Rosenbloom, 2005; 

Thornton and Zimmermann, 2007). It allows for a better understanding of the mechanisms and 

dynamics of CH4 production, oxidation, and transport pathways under climate changes. Our 

previous studies have validated this module with incubation fluxes and closed-chamber fluxes 

(Wang et al., 2019; Xu et al., 2015). In addition, CH4 fluxes have been upscaled from the plot level 

to landscape scales using different footprint algorithms, which were consistent with Eddy 

Covariance (EC) fluxes in Alaskan tundra ecosystems (Wang et al., 2019, 2022). CH4 emissions 

responding to spatial heterogeneities in vegetation, soil hydrology, and topography can be well 

studied based on the CLM-Microbe model (Wang et al., 2019; 2022). Therefore, the CLM-
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Microbe model could help us to understand the mechanisms of future CH4 dynamics through each 

CH4 process at the landscape scales in the Arctic tundra. 

This study continued our research on simulating CH4 fluxes in the Arctic and further 

estimated how future Arctic CH4 fluxes change under climate changes. In this study, we applied 

the CLM-Microbe model to project CH4 fluxes from 2016 to 2100 under SSP1-2.6, SSP2-4.5, and 

SSP5-8.5 scenarios derived from three climate models for five Alaskan tundra ecosystems. We 

aim to 1) project how Arctic CH4 emissions change under different SSP scenarios by 2100, 2) 

understand the mechanisms behind future CH4 dynamics under different SSP scenarios, and further 

3) investigate the differences of projected future CH4 fluxes across different Alaskan tundra 

ecosystems.  

 

Methodology 

Site Information 

We performed model experiments at five sites in the northern Alaskan tundra; detailed site 

information on the sites is available in Arndt et al. (2019, 2020). Three of these sites are located in 

Utqiaġvik, including US-Beo (71.2810°N, 156.6124°W), US-Bes (71.2809°N, 156.5965°W), and 

US-Brw (71.3225°N, 156.6093°W) (referred as Utqiaġvik sites) (Zona et al., 2016). US-Beo is a 

polygonal coastal tundra site on the Barrow Environmental Observatory; and US-Bes is an 

inundated wet coastal tundra site at the southern end of the previous Biocomplexity Experiment, 

usually with a water table above the surface of the soil due to its low elevation (Zona et al., 2009). 

US-Brw is a well-drained, moist coastal tundra site, and its vegetation is dominated by graminoids 

(Kwon et al., 2006). The US-Atq site (70.4696°N, 157.4089°W) in Atqasuk, AK is located about 

100 km south of Utqiaġvik; and the US-Ivo site (68.4805°N, 155.7569°W) in Ivotuk, AK is located 
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approximately 300 km south of Utqiaġvik in the northern foothills of the Brooks Range (Davidson 

et al., 2016). US-Atq is characterized by polygonized tussock tundra and sandy soils (Walker et 

al., 1989), and US-Ivo, the most inland site, is the warmest and lies on gently sloping tussock 

tundra (Davidson et al., 2016). These study sites have a polar maritime climate, with the majority 

of precipitation falling during the summer months (June-August). Detailed meteorological and 

vegetation information for these sites is posted in the Oak Ridge National Laboratory Distributed 

Active Archive Center (ORNL DAAC) (https://doi.org/10.3334/ORNLDAAC/1562 and 

https://doi.org/10.3334/ORNLDAAC/1546). 

Climate Models 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) includes future warming 

projections for the 21st century climate with different Shared Socioeconomic Pathways (SSP) 

scenarios. In comparison to the RCPs, the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-

7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and 

temperatures (Meinshausen et al., 2020). In this study, we chose SSP1-2.6, SSP2-4.5, and SSP5-

8.5 for CMIP6, which allowed us to explore the impact of different magnitudes of anthropogenic 

forcing and the response of the climate system simulated with varying representations of the model 

(Nazarenko et al., 2015). In addition, three climate models in CMIP6 were selected to retrieve data 

for SSP1-2.6, SSP2-4.5, and SSP5-8.5 from 2016 to 2100. 1) The BCC-CSM2-MR is a medium-

resolution version of the BBC-CSM (T106 in the atmosphere and 1˚ latitude × 1˚ longitude in the 

ocean) which is the baseline for BCC participation in CMIP6 (https://esgf-

node.llnl.gov/search/cmip6/). 2) The CESM Version 2 (CESM2) is the latest generation of the 

coupled climate/Earth system model. The output fields from previous CESM2 simulations have 

been posted on the Earth System Grid Federation (ESGF; https://esgf-node.llnl.gov/search/cmip6). 
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3) EC-Earth3 is the latest version of EC-Earth in CMIP6 that utilizes the original idea of a climate 

model system based on the seasonal prediction system of the European Centre for Medium-Range 

Weather Forecasts (ECMWF). Development started in 2012 by re-designing the software 

infrastructure and updating the atmosphere model to IFS 36r4, corresponding to the ECMWF 

seasonal prediction system 4. Since then, various updates, improvements and forcings have been 

implemented and the model has been tuned for several intermediate versions and finally for the 

CMIP6 version, EC-Earth3 (Döscher et al., 2022) (https://esgf-node.llnl.gov/search/cmip6/). The 

required meteorological variables for model simulations are total incident solar radiation, incident 

longwave radiation, total precipitation, surface air pressure, specific humidity, air temperature and 

wind speed. Detailed information for meteorological variables of each climate model 

corresponding to variables of CRUNCEP are shown in Table S1-S3. 

Calibration of Future Climate Data 

Two major steps for calibration of forcing data were 1) to simulate the trend of 

meteorological variables during future period and 2) to estimate the offset of variables between 

historical and future periods. In the first step, we performed a two-dimensional polynomial 

regression concerning the nonlinear increases of meteorological variables and the increasing 

computing demand of multi-dimensional polynomial fit. Two-dimensional polynomial regression 

of these variables during future periods was conducted using “lspoly” function provided in the US 

National Center for Atmospheric Research (NCAR) command language. In the second step, the 

offsets of meteorological variables between historical and future periods were estimated by 

comparing the arithmetic means of 2007-2016 from historical dataset and means of 2015-2024 

from future dataset. Following completion of these two steps, calibrated future data were the 

combination of future trends of variables simulated by two-dimensional polynomial regressions 
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and the offsets between historical and original future datasets. The climate data (e.g., air 

temperature, air pressure, and precipitation) after calibration are shown in Figure S1. 

Model Description 

The CLM-Microbe model branches from the framework of default CLM 4.5 developed in 

2013. Therefore, the CLM-Microbe has default decomposition subroutines in CLM4.5 (Koven et 

al., 2013; Thornton and Rosenbloom, 2005; Thornton and Zimmermann, 2007). The 

improvements in the CLM-Microbe model include a new microbial-functional-group based CH4 

module (Xu et al., 2015; Wang et al., 2019), and a new framework for microbial controls on C 

mineralization (He et al., 2021a,b; Xu et al., 2014). Detailed mathematical expressions for CH4 

production, consumption and transport processes were obtained from Wang et al. (2019) and Xu 

et al. (2015). The code for the CLM-Microbe model is archived at https://github.com/email-

clm/clm-microbe. The model version used in this study was obtained from GitHub on 27 May 

2020. 

Additional forcing data included spatial distribution of vegetation and a digital elevation 

model with a resolution of 4 m covering the tower domain at each site, and soil organic carbon 

(SOC) concentration at ten soil layers defined in CLM4.5 (Koven et al., 2013; Thornton et al., 

2007; Thornton and Rosenbloom, 2005). Vegetation distribution for Utqiaġvik sites was 

determined using a random forest algorithm using the plant functional type from Langford et al. 

(2019) as training data. For the US-Atq and US-Ivo sites, an unsupervised linear spectral unmixing 

was performed in ENVI V5.2 (L3Harris Geospatial) using the vegetation classes from a previous 

publication (Davidson et al., 2016), with an additional open water category. Four plant species 

across five areas were classified into model defined PFTs, including Arctic C3 grass, bare soil, 

broadleaf evergreen shrub, and broadleaf deciduous boreal shrub. Averages of plant cover at US-



 103 

Beo, US-Bes, US-Brw, US-Atq, and US-Ivo sites were 88%, 82%, 91%, 73%, and 78%, 

respectively; US-Ivo had larger proportions of shrubs than other sites. A vegetation distribution 

map of the five study sites was available in Wang et al. (2022). A 0.5 m (vertical resolution) digital 

elevation model (DEM) was used for elevation data at Utqiaġvik sites (Wilson, 2012). Elevation 

maps for US-Atq and US-Ivo were download from ArcticDEM (v3.0 Pan-Arctic) with a resolution 

of 2 m based on the geographic information of these two sites, and further processed to maps with 

a resolution of 4 m using MATLAB software (R2018a, the MatWorks). SOC concentrations at 0-

10, 10-20, 20-30 and 30-40 cm at US-Bes, US-Atq, and US-Ivo were derived from the Northern 

Circumpolar Soil Carbon Database (Hugelius et al., 2013). Due to the lack of SOC data, we 

assumed that US-Beo and US-Brw had the same SOC distribution with US-Bes since these sites 

are adjacent, which might affect the accuracy of CH4 projections for these two sites. Detailed 

calculation processes can be found in Wang et al. (2022).   

Shared Socioeconomic Pathways (SSP) Experiments 

Model implementation for historical simulation was carried out in three stages, similar to 

the default CLM4.5 protocols (Oleson et al., 2013). The first phase is accelerated model spin-up 

that was set up for 2,000 years to allow the system to an accumulate C and reach steady-state. We 

set the accelerated model spin-up for 2000 years to allow more C accumulation as Arctic tundra 

has a low rate and long period of C sequestration. Then a final spin-up was set up to 50 years to 

allow the modeled system to reach a relative steady-state. After the final spin-up, the transient 

simulation was set to cover the period of 1850–2015 for all five sites. Detailed information for 

historical simulation is available in Wang et al. (2022). 

From 2016 to 2100, we reset the transient simulation to accomplish CH4 projections with 

three climate datasets for each of SSP1-2.6, SSP2-4.5 and SSP5-8.5 started from the year 2015. 
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The SSP1-2.6 “2˚C scenario” of the “sustainability” SSP1 socio-economic family, whose 

nameplate 2100 radiative forcing level is 2.6 W·m−2. This SSP1-2.6 scenario approximately 

corresponds to the previous scenario generation Representative Concentration Pathway (RCP) 2.6 

(Meinshausen et al., 2020). The SSP2-4.5 of the “middle of the road” socio-economic family SSP2 

with a nominal 4.5 W·m−2 radiative forcing level by 2100 – approximately corresponding to the 

RCP-4.5 scenario (Meinshausen et al., 2020). The SSP5-8.5 marks the upper edge of the SSP 

scenario spectrum with a high reference scenario in a high fossil fuel development world 

throughout the 21st century (Meinshausen et al., 2020). We conducted nine model runs for each 

site at the annual scale with a spatial resolution of 4 m. For CH4 projections, all parameter values 

were kept consistent with previous studies (Wang et al., 2019, 2022; Xu et al., 2015), and the same 

model parameters and settings were applied to all five sites under different SSP scenarios. 

Temperature Sensitivity of CH4 Fluxes 

To analyze the sensitivity of CH4 fluxes to temperature, we calculated the Q10 coefficient 

as the measures of the change rate of CH4 fluxes as a consequence of the temperature increment 

of 10 °C or K. We used a linear regression to estimate the Q10 coefficient with all data points of 

CH4 fluxes for each SSP scenario and each climate model. The formula for estimating the Q10 was 

as follows: 

!"#$% &
&'

= )	×	!"#$% ,-,'
$% + / (1), 

where R is the CH4 flux (gC ·m-2·year-1) at temperature T and R0 is the CH4 flux (gC ·m-2·year-1) 

at temperature T0 (K) in 2016. The Q10 is estimated as ten to the power of the coefficient a and the 

coefficient b is the estimated intercept. 

 Statistical Analysis 
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Dynamics of annual CH4 fluxes, air temperature, precipitation, soil temperature, soil 

moisture, and net primary production (NPP) were plotted for five sites under different SSP 

scenarios and the differences among the three climate models were exhibited using the R (version 

3.6). Averages of CH4 fluxes in the periods of 2006-2015, 2016-2015, 2050-2059 (2050s) and 

2090-2099 (2090s) were also calculated for comparison over time for different climate models. 

One-way analysis-of-variance (ANOVA) and the Duncan test were employed to assess the 

differences in CH4 fluxes among different time periods for each site and among different sites for 

each time period. Before this analysis, the data have been tested and followed the assumptions of 

ANOVA. Changing rates of CH4 fluxes, each CH4 process and each environmental factor were 

calculated based on the general linear regression analysis using all data points and three climate 

models for each site and each SSP scenario in 2016-2100. Fractions of three CH4 transport 

pathways: diffusion, ebullition and plant-mediated transport were displayed in pie charts. 

Correlations between CH4 emission and each CH4 process and environmental factor for each site 

under each SSP scenario were analyzed using the Pearson’s correlation coefficients (rp). A 

combined forward/backward multiple linear regression analysis was used to examine the effects 

of air temperature, precipitation, canopy evapotranspiration (ET) and NPP on CH4 fluxes. All 

variables were normalized before the regression analysis, and the ‘best’ model was chosen based 

on the lowest Akaike information criterion (AIC) value (Langeveld et al., 2019). All statistical 

analyses and plots were made using R (version 3.6).  

 

Results 

Projected CH4 Fluxes During 2016-2100 Under Different SSP Scenarios 
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Figure 1. Projections of CH4 fluxes at a) US-Beo, b) US-Bes, c) US-Brw, d) US-Atq and e) US-
Ivo during 2016-2100 under different Shared Socioeconomic Pathways (SSP) scenarios. The bar 
charts show projected CH4 fluxes (mean ± SD; n = 10 or 30) for the periods of 2006 - 2015, 2016 
- 2025, the 2050s, and 2090s at f) US-Beo, g) US-Bes, h) US-Brw, i) US-Atq and j) US-Ivo under 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. Green indicates SSP1-2.6 scenario, blue indicates 
SSP2-4.5 scenario, red indicates SSP5-8.5 scenario and black indicate historical fluxes of 2006-
2015 simulated by the CLM-Microbe model. Different letters above the rectangular bar mean 
significantly differences based on the Duncan’s multiple range test at the α = 0.05; the error bar 
represents the standard deviation. 

Projected CH4 emissions increased by 2100 under the three SSP scenarios with different 

change rates among the five study sites (Figure 1 and Figure S2). Especially after 2050, CH4 fluxes 

drastically increased under SSP5-8.5 compared with SSP1-2.6 and SSP2-4.5 (Figure 1). Until 2100, 

projected CH4 fluxes under SSP5-8.5 were 4 – 7-fold higher than the fluxes under SSP1-2.6 and 

SSP2-4.5 (Figure 1f - j). There were no significant differences in projected CH4 fluxes between 

SSP1-2.6 and SSP2-4.5 (Figure 1f – j), although the fluxes under SSP2-4.5 seemed to be slightly 
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higher than under SSP1-2.6 over time (Figure 1a-e). In the 2090s, projected CH4 fluxes increased 

by 39 – 121% under SSP1-2.6 and SSP2-4.5 but increased by a factor of 5.3 – 7.5 under SSP5-8.5 

among the five study sites in Arctic tundra (Figure 1). 

Average projected CH4 fluxes (unit: gC ·m-2·year-1) during 2016 - 2025 were comparable 

to that in the 2050s under different SSP scenarios, which were 2.47 ± 0.10 at US-Beo, 2.15 ± 0.09 

at US-Bes, 2.56 ± 0.11 at US-Brw, 3.67 ± 0.19 at US-Atq and 3.89 ± 0.20 at US-Ivo (Figure 1f – 

j). Moreover, they were consistent with the average historical fluxes during 2006 - 2015 as 

simulated by the CLM-Microbe model (Figure 1f – j) (Wang et al., 2022). Additionally, projected 

CH4 fluxes in the warmer study sites of US-Atq and US-Ivo exhibited larger absolute increments 

than at US-Beo, US-Bes and US-Brw (Figure 1f - j). For example, projected CH4 fluxes in the 

2090s under SSP5-8.5 were around 20 gC ·m-2·year-1 at US-Beo, US-Bes and US-Brw, whereas 

fluxes approached 30 gC ·m-2·year-1 at US-Atq and US-Ivo. 

Variations in CH4 Processes and Climate Factors Under Different SSP Scenarios 

Conceptual models of CH4 processes were built for each study site under different SSP 

scenarios, which displayed changing rates of each CH4 process, climate and vegetation factor, 

including production, oxidation and transport pathways of CH4, temperature, precipitation and 

NPP (Figure 2, Table 1). Overall, except for anaerobic oxidation, rates for all CH4 processes 

increased by 2100, as well as climate factors (Figure 2, Table 1). Moreover, the magnitude of 

changes for all CH4 processes and climate factors was larger under SSP5-8.5 than under SSP1-2.6 

and SSP2-4.5 (Figure 2, Table 1). Air temperature increased by 0.020 – 0.130 K·year-1 under 

different SSP scenarios, and the increase of soil temperature was comparable with air temperature 

(Table 1). The change rates of air temperature and soil temperature under SSP2-4.5 and SSP5-8.5 

were approximately 2.6 times and 5.7 times that under SSP1-2.6, except at US-Ivo (Table 1). 
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Annually, precipitation increased by 0.503 to 0.786 mm under SSP1-2.6 and SSP2-4.5, but 

increased by 1.861 to 3.084 mm under SSP5-8.5 (Table 1). Soil moisture increased by 0.023 to 

0.099 % per year (Table 1). Additionally, the increase of precipitation and soil moisture under 

SSP2-4.5 were 1.3 – 1.6 times and 1.3 – 2.0 times that under SSP1-2.6, respectively, whereas the 

increase of precipitation and soil moisture under SSP5-8.5 were 3.1 – 5.6 times and 2.3 – 4.0 times 

that under SSP1-2.6, respectively (Table 1). 

Table 1. Annual changes of air temperature, soil temperature, precipitation and soil moisture at 
US-Beo, US-Bes, US-Brw, US-Atq and US-Ivo under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios 

Variable Site SSP1-2.6 SSP2-4.5 SSP5-8.5 

Air temperature 
(∆K·year-1) 

US-Beo 0.023 0.059 0.130 
US-Bes 0.023 0.059 0.130 
US-Brw 0.023 0.059 0.130 
US-Atq 0.021 0.054 0.123 
US-Ivo 0.020 0.042 0.102 

Soil temperature 
(∆K·year-1) 

US-Beo 0.025 0.064 0.133 
US-Bes 0.022 0.059 0.126 
US-Brw 0.025 0.064 0.133 
US-Atq 0.026 0.058 0.123 
US-Ivo 0.016 0.044 0.142 

Precipitation 
(∆mm·year-1) 

US-Beo 0.362 0.440 0.828 
US-Bes 0.362 0.440 0.828 
US-Brw 0.362 0.440 0.828 
US-Atq 0.446 0.606 1.366 
US-Ivo 0.454 0.594 1.861 

Soil moisture 
(∆%·year-1) 

US-Beo 0.039 0.076 0.092 
US-Bes 0.031 0.055 0.083 
US-Brw 0.039 0.081 0.099 
US-Atq 0.040 0.051 0.094 
US-Ivo 0.023 0.038 0.092 
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Figure 2. Conceptual model of CH4 processes at A) US-Beo, B) US-Bes, C) US-Brw, D) US-Atq, 
and E) US-Ivo under different Shared Socioeconomic Pathways (SSP) scenarios. CH4 processes 
(unit: ∆gC ·m-2·year-1) include a) fermentation of soil organic matter (SOM)/ dissolved organic 
carbon (DOC) to acetate, b) acetoclastic methanogenesis, c) hydrogenotrophic methanogenesis, d) 
diffusion, e) ebullition, f) the plant-mediated transport, g) aerobic oxidation, and h) anaerobic 
oxidation of CH4. Vegetation factor is net primary production (NPP, ∆gC ·m-2·year-1). The 
numbers in the conceptual model and table are the changing rates of each process and factor during 
2016 - 2100. Green numbers are for SSP1-2.6 scenario, blue numbers are for SSP2-4.5 scenario, 
and red numbers are for SSP5-8.5 scenario. 
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Different CH4 processes showed dissimilar contributions under different SSP scenarios, 

but mutually strengthened total CH4 fluxes. Generally, the increase or decrease was larger under 

SSP5-8.5 than under SSP2-4.5 and SSP1-2.6 (Figure 2). For example, at US-Beo, NPP annually 

increased by 2.275 gC ·m-2 under SSP1-2.6, 3.194 gC ·m-2 under SSP2-4.5 and 5.776 gC ·m-2 

under SSP5-8.5. However, SOM/DOC were only enhanced by approximately 10% that of the 

increased NPP value (Figure 2A). The production rate of acetate from SOM/DOC was accelerated 

and the rate under SSP2-4.5 was twice the rate under SSP1-2.6, while the rate under SSP5-8.5 was 

three times the rate under SSP2-4.5 (Figure 2A). The increase of acetate was about 1% of the 

increase in SOM/DOC, and the production rate of CH4 from acetate also speeded up with a higher 

increase than the increase of acetate concentration under different SSP scenarios (Figure 2A). 

Annually, the increase in the production rate of CH4 from CO2 + H2 was 0.0004 gC ·m-2 under 

SSP1-2.6, 0.0009 gC ·m-2 under SSP2-4.5 and 0.0047 gC ·m-2 under SSP5-8.5, which were lower 

than that from acetate (Figure 2A).  Moreover, the difference in change rates between these two 

processes narrowed under SSP5-8.5 compared with SSP1-2.6 and SSP2-4.5. All transport 

pathways were accelerated and the ebullition rate changed substantially compared with diffusion 

and plant-mediated transport under each SSP scenario (Figure 2A). Ebullition annually increased 

by 0.011, 0.021 and 0.161 gC ·m-2 under SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively; which 

were about 3 – 7 times higher than other transport pathways (Figure 2A). CH4 oxidation changed 

little compared with production and transport of CH4 and changes of aerobic oxidation can be 

ignored under SSP1-2.6 and 2-4.5 (Figure 2A). Anaerobic oxidation annually reduced by 0.001, 

0.007 and 0.011 gC ·m-2 under SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively (Figure 2A). In 

total, CH4 fluxes annually increased by 0.018 gC ·m-2 under SSP1-2.6, 0.034 gC ·m-2 under SSP2-

4.5 and 0.211 gC ·m-2 under SSP5-8.5 (Figure 2A). 
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Changes in CH4 Processes and Climate Factors Among the Five Study Sites 

Utqiaġvik sites had very similar changes in air temperature, soil temperature and 

precipitation, distinct with US-Atq and US-Ivo, especially for precipitation (Table 1). Under the 

similar climate conditions, the increase of CH4 fluxes were comparable, which were about 0.018 

gC ·m-2, 0.035 gC ·m-2, 0.212 gC ·m-2 under SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively 

(Figure 2A-C). Among these three sites, there were no significant differences in the production of 

CH4 from acetate; however, the increase in NPP at US-Bes was larger under SSP2-4.5 and SSP5-

8.5 than at US-Bes and US-Brw sites (Figure 2A-C). Changes in the production of CH4 from CO2 

+ H2 showed little difference among these sites, especially under SSP2-4.5 and SSP5-8.5 (Figure 

2A-C). US-Bes showed a greater increase in this production process, but changes were still smaller 

than the acetate production pathway. Additionally, there were no significant differences in aerobic 

oxidation of CH4 among these sites (Figure 2A-C). Anaerobic oxidation at US-Bes had the smallest 

changes under different scenarios across sites (Figure 2B); whereas the US-Brw site displayed the 

largest annual decrease of -0.003 gC ·m-2, -0.012 gC ·m-2 and -0.015 gC ·m-2 under SSP1-2.6, 

SSP2-4.5 and SSP5-8.5, respectively (Figure 2C). Ebullition dominated the transport of CH4 

among these three sites, and changes in each transport mechanism were different among sites 

(Figure 2A-C). Diffusion changes were comparable; however, US-Bes had a greater increase in 

ebullition and smaller change in plant-mediated transport, whereas US-Brw had a smaller increase 

in ebullition, but larger increase in plant-mediated transport (Figure 2A-C). 

With higher precipitation, US-Atq had greatest CH4 fluxes across all five sites with 0.026 

gC ·m-2, 0.058 gC ·m-2, 0.297 gC ·m-2 under SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively 

(Figure 2D, Table 1). Compared with US-Beo, the increases of NPP and SOM/DOC at US-Atq 

were smaller under SSP1-2.6 and SSP2-4.5, but production rates, concentrations of acetate and 
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production rates of CH4 from acetate increased under all SSP scenarios (Figure 2A-D). The 

production of CH4 from CO2 + H2 also increased, but the changes were small compared with 

production from acetate. Changes in CH4 oxidation could be ignored under SSP1-2.6 and SSP2-

4.5; although the aerobic oxidation under SSP5-8.5 was increased by 0.0042 gC ·m-2 per year, but 

was still small compared with the production processes. In addition, plant-mediated transport at 

US-Atq showed little change, although NPP increased the most under SSP5-8.5 among all five 

sites (Figure 2). Both diffusion and ebullition accelerated, but ebullition showed the largest 

increase among all five sites with annual values of 0.021 gC ·m-2, 0.048 gC ·m-2, and 0.266 gC ·m-

2 under SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively (Figure 2D).  

The US-Ivo had a higher increase in precipitation, but relatively smaller increase in air 

temperature among the five sites for all SSP scenarios (Table 1). Under SSP1-2.6 and SSP2-4.5, 

the increases of precipitation at US-Ivo were higher than at US-Beo, US-Bes and US-Brw and 

were comparable that at US-Atq, but the increases of soil moisture were much lower than the other 

four sites (Table 1). CH4 flux at US-Ivo under SSP1-2.6 and SSP2-4.5 increased by 0.021 and 

0.058 gC ·m-2, which were lower than that at US-Atq but higher than that among Utiagtik three 

sites (Figure 2). At US-Ivo, NPP and SOM/DOC displayed much smaller increases than at the 

other sites under all SSP scenarios. Aerobic oxidation of CH4 showed little change under SSP1-

2.6 and SSP2-4.5, but increased by 0.005 gC·m-2·year-1 under SSP5-8.5 (Figure 2E). Anaerobic 

oxidation annually decreased by 0.004 gC·m-2, 0.002 gC·m-2 and 0.096 gC·m-2 under SSP1-2.6, 

SSP2-4.5 and SSP5-8.5, respectively (Figure 2E). Diffusion and ebullition of CH4 showed 

comparable increases with US-Beo, US-Bes and US-Brw, and plant-mediated transport had the 

largest increases among the five sites (Figure 2). 

Changes in CH4 Transport Pathways Under Different SSP Scenarios 
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Of all CH4 processes, three transport pathways regulated the increasing CH4 fluxes among 

the five sites, even with contrasting changes in CH4 production and oxidation processes under 

different SSP scenarios. Overall, the contribution rates of the three transport pathways were similar 

during 2016 – 2025 and 2050s among different SSP scenarios but differed in the 2090s (Figure 3 

and 4, Figure S8). Both the contributions of plant-mediated transport and ebullition to CH4 

transport increased, whereas the contribution of diffusion decreased over time across five sites 

under different SSP scenarios. Until 2100, ebullition dominated CH4 transport across all sites under 

all SSP scenarios (Figure 4).  

 
Figure 3. Contribution of three transport pathways to total CH4 fluxes during 2016 - 2025 at US-
Beo, US-Bes, US-Brw, US-Atq, and US-Ivo under a-e) SSP1-2.6, f-j) SSP2-4.5 and k-o) SSP5-
8.5 scenarios. Red indicates diffusion, green indicates ebullition, and blue indicates plant-mediated 
transport 

During 2016 – 2025, diffusion dominated CH4 transport at US-Beo, US-Bes and US-Brw, 

contributing approximately half of total CH4 fluxes for all SSP scenarios (Figure 3). Ebullition 
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contributed about 40% of CH4 fluxes across the three sites, whereas plant-mediated transport 

contributed about 8.5% at US-Beo, 4% at US-Bes, and 11.5% at US-Brw (Figure 3). At US-Atq, 

ebullition contributed about 59% of total CH4 fluxes whereas the contribution of plant-mediated 

transport can be ignored under all SSP scenarios (Figure 3d, 3i and 3n). Diffusion also dominated 

CH4 transport at US-Ivo, but all three transport pathways contributed more comparable CH4 fluxes, 

~41% from diffusion, ~35% from ebullition, and ~24% via plants (Figure 3e, 3j, and 3o). 

 
Figure 4. Contribution of three transport pathways to total CH4 fluxes in the 2090s at US-Beo, 
US-Bes, US-Brw, US-Atq, and US-Ivo under a-e) SSP1-2.6, f-j) SSP2-4.5 and k-o) SSP5-8.5 
scenarios. Red indicates diffusion, green indicates ebullition, and blue indicates plant-mediated 
transport 

In the 2050s, CH4 transport decreased via diffusion, whereas it increased via plant-

mediated transport and ebullition across the five sites and under all SSP scenarios (Figure S8). In 

the 2090s, both plant-mediated transport and ebullition continued to increase under all SSP 

scenarios, but their contribution ratios were somewhat changed compared to the 2050s for SSP1-
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2.6 and SSP2-4.5 (Figure 4). However, under SSP5-8.5, ebullition increased to 72.7% at US-Beo, 

77.1% at US-Bes, 69.5% at US-Brw, 85.7% at US-Atq and 61.5% at US-Ivo (Figure 4k-o). At US-

Beo, US-Bes and US-Brw, diffusion contributed about 42% of total CH4 fluxes under SSP1-2.6 

and about 37% under SSP2-4.5 (Figure 4). Plant-mediated transport could be ignored at US-Atq 

as it contributed less than 0.5% for all SSP scenarios (Figure 4d, 4i, and 4n). US-Ivo had the largest 

contribution rates from plant-mediated transport across the five sites, with approximately 27% 

under all SSP scenarios (Figure 4e, 4j, and 4o).  

Temperature Sensitivity of CH4 Fluxes Under Different SSP Scenarios 

 
Figure 5. Temperature sensitivity (Q10) of CH4 fluxes (mean ± SD; n = 83) at US-Beo, US-Bes, 
US-Brw, US-Atq, and US-Ivo under SSP scenarios derived from a) BBC-CSM2-MR, b) CESM2, 
and c) EC-Earth3 models. Green indicates SSP1-2.6 scenario, blue indicates SSP2-4.5 scenario, 
and red indicates SSP5-8.5 scenario. Numbers above the rectangular bar are values of Q10; the 
error bar represents the standard deviation. 
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The Q10 values for CH4 fluxes differed among different SSP scenarios being lower with 

BBC-CSM2-MR and relatively higher with CESM2 and EC-Earth3 (Figure 5). The Q10 range was 

2.7 – 9.8 using BBC-CSM2-MR, 7.1 – 17.6 with CESM2 and 5 – 60.9 with EC-Earth3 (Figure 5). 

Using EC-Earth3, Q10 had extremely high values under SSP1-2.6, ranging from 18.4 at US-Ivo to 

60.9 at US-Bes; however, Q10 was lower under SSP2-4.5 than under SSP5-8.5 (Figure 5). Q10 

increased along the gradient of SSP1-2.6, SSP2-4.5 and SSP5-8.5 at US-Bes, US-Atq and US-Ivo 

using BBC-CSM2-MR, whereas there were no obvious trends for Q10 along such scenario gradient 

using the other climate models across all five sites (Figure 5). US-Beo and US-Brw had 

comparable Q10 values for the different SSP scenarios with each climate model. 

 

Discussion 

Mechanisms of Future CH4 Emission Under Different SSP Scenarios 

Future CH4 emission has been projected to gradually increase under different SSP 

scenarios. Our results showed that air temperatures were increased by 1 – 2 °C under SSP1-2.6, 3 

– 5 °C under SSP2-4.5, and 7 – 12 °C under SSP5-8.5, leading to an increase of 39 – 60%, 89-

121%, and 531 – 751% in CH4 emissions under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively 

(Figure S2 and S4). This confirmed that warmer temperatures (rp = 0.832, p < 0.05; Figure S9) 

and more precipitation (rp = 0.696, p < 0.05; Figure S9) could enhance CH4 emissions, which was 

consistent with previous studies (Shindell et al., 2004; Ma et al., 2017). In addition, previous 

studies reported that a 3 – 5 °C warming more than doubled boreal emissions (Frolking, 1991), 

and a ~5 °C warming tripled northern Alaskan emissions in the mid-summer (Livingston and 

Morrissey, 1991). Ma et al. (2017) showed that modeled CH4 emissions increased by 30%, 100%, 

275%, and 400% under 2.25, 4.5, 6.75, and 9 °C warming at SPRUCE sites. Compared with 
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previous studies, our projected CH4 emission under SSP1-2.6 and SSP2-4.5 had comparable 

increases, but showed much stronger response under SSP5-8.5. It can be explained by changes of 

other climate factors that strengthened CH4 emissions. Unchanged soil water levels or increased 

precipitation along with warming could cause greater increases in CH4 emissions (Shindell et al., 

2004; Ma et al., 2017). Shindell et al. (2004) found that annual-average CH4 emission doubled in 

the case with a fixed wetland distribution due to around 0.4 – 0.8 mm·day-1 (annually 146 – 292 

mm) increases of precipitation for doubled CO2 over northern Eurasia. In this study, precipitation 

was annually increased by 41 – 48 mm (24 – 30%), 58 – 66 mm (33 – 45%) and 143 – 241 mm 

(83 – 116%) under SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively (Figure S5). Thus, under the 

SSP scenarios with the simultaneous increases in temperature and precipitation, CH4 emission 

could enhance or double its response to only warming.  

In this study, air temperature (43%) and precipitation (48%) acted as the main factors to 

explain variations in CH4 emission (Table S5). Compared with Utqiaġvik sites, US-Ivo had smaller 

increases in temperature but larger increases in precipitation, and its CH4 emission exhibited a 17-

38% greater increase (Figure 2). Additionally, air temperature at US-Ivo were lower than at 

Utqiaġvik sites (Figure S4). Thus, enhanced precipitation could result in this stronger CH4 

response; however, the strength of precipitation effects was hard to evaluate because of their 

interactions with warming and other climate factors on CH4 emission. Furthermore, more 

precipitation did not necessarily increase soil moisture and the depth of waterlogged soils that 

further to facilitate CH4 production. Among all five sites, soil moisture was projected to increase 

under different SSP scenarios; however, the soil water table was deepened probably due to 

enhanced ET under warming (Figure S1), which might cause a shrinkage of inundated (i.e., 

anaerobic) soil volume. Stronger ET was related to the reduce in CH4 emissions and it can explain 
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about 23% of variations of CH4 emissions (Table S5). Our previous study found that the soil water 

table level was reduced under warming due to hydrological feedbacks, therefore mitigated the 

stimulating effects of warming on CH4 emission (Yuan et al., 2021). Hydrological feedbacks under 

warming could exacerbate the challenges for projecting future CH4 emissions. Therefore, 

precipitation impacts were significantly more uncertain than the temperature in predicting CH4 

emission in Arctic regions.  

Both CH4 production and oxidation are microbiological processes affected by soil C input, 

soil temperature, and aerobic vs anaerobic conditions (Segers et al., 1998). Therefore, under 

different SSP scenarios, CH4 emissions are also affected by vegetation and microbial activities 

(Miner et al., 2022; Oh et al., 2020). Our results showed that about 20% of variations in CH4 

emission can be explained by NPP (Table S5). NPP can influence the amount of soil C inputs and 

SOM/DOC concentrations further to regulate CH4 production and emission, but its strength was 

limited because the availability of soil C for methanogenesis depended on microbial 

decomposition rates. More NPP did not necessarily lead to a higher increase in SOM/DOC 

concentrations; in contrast, sometimes NPP could increase while SOM/DOC concentrations 

decreased because the microbial decomposition of SOM/DOC to acetate were stronger than their 

production from NPP. CH4 production by methanogens profoundly strengthened under SSP5-8.5 

compared with SSP1-2.6 and SSP2-4.5. Additionally, increases in the rate of acetoclastic 

methanogenesis were more than 10 times greater than the rate of hydrogenotrophic 

methanogenesis under different SSP scenarios. Therefore, acetoclastic methanogenesis, the main 

pathway of CH4 production, displayed a stronger response to future climate change than 

hydrogenotrophic methanogenesis. Moreover, increases in the rate of aerobic CH4 oxidation was 

much smaller relative to CH4 production and its effects could be ignored in CH4 emission. Change 
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rates of anaerobic oxidation were negative, indicating that more CH4 was freed by methanotrophs 

and preserved in soils. Furthermore, three CH4 transport pathways were also accelerated under 

SSP scenarios, but their increases were less than the increases in the input of soil CH4 

concentrations from enhanced production and reduced oxidation. As a result, soil CH4 

concentrations gradually grew by 2100 under different SSP scenarios with more concentrations 

under stronger warming scenarios. Of the three CH4 transport pathways, ebullition increased faster 

than plant-mediated transport and diffusion and finally dominated the CH4 transport under SSP 

scenarios. In the CLM-Microbe model, diffusion was determined by CH4 concentrations in the 

atmosphere and soils, which were slightly affected by temperature and precipitation. The plant-

mediated transport and ebullition can be largely influenced by warming and enhanced precipitation. 

Plant-mediated transport was controlled by soil CH4 concentrations, NPP, and root factions, 

whereas ebullition was affected by soil CH4 concentrations and plant cover. Goodrich et al. (2011) 

reported that higher ebullition rates in the summer were likely related to both higher rates of CH4 

production and the reduced solubility of CH4 at higher temperatures. In our projection, changes in 

plant cover and composition cannot be simulated in current version of the CLM-Microbe model; 

therefore, the substantial increase of ebullition was caused by the accumulation of soil CH4 

concentrations. In addition, the accelerated plant-mediated transport was in response to increased 

NPP.  

Differences in Future CH4 Emission Among the Five Study Sites 

Projected CH4 emissions gradually grew under three SSP scenarios across all five sites; 

and by 2100, the emissions were largest at US-Atq and lower at US-Beo and US-Bes (Table S4). 

The initial conditions of climate and environmental factors could affect the magnitude of increases 

in CH4 emissions. Warmer and wetter conditions at US-Atq corresponded with greater initial CH4 
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emissions than other sites; moreover, projected CH4 emissions at US-Atq showed a stronger 

response to climate warming. It indicated that more attention should be paid to the areas with large 

CH4 emissions because they can be affected by climate change to a greater extent. Plant cover also 

affected the responses of CH4 emissions to climate change, despite that its effects were limited. 

For example, US-Atq had 73% of plant cover which was the smallest among five sites, leading to 

litter increases and ignorable contributions of plant-mediated transport to total CH4 emissions over 

time (Figure 2B, 3, 4 and S8). Similarly, Utqiaġvik sites had more than 80% of plant cover, 

corresponding to greater increases in plant-mediated transport and larger contributions to 

emissions among five sites. Besides, although US-Ivo had lower plant cover (i.e., 78%) than 

Utqiaġvik sites, plant-mediated transport increased most and contributed most to CH4 emissions 

among five sites. This may be related to larger below-ground NPP and greater root fractions at 

US-Ivo than other sites.  

Differences in Future CH4 Emissions Using Different Climate Models 

Projected CH4 emissions differed among five sites under the three SSP scenarios derived 

from BBC-CSM2-MR, CESM2, and EC-Earth3. Moreover, CH4 emissions from Arctic regions 

tend to increase with temperature, and therefore the Q10 of CH4 emission is an essential parameter 

for estimating CH4 emission and CH4-climate feedbacks under warming (Chadburn et al., 2020; 

Ma et al., 2021). Our study reported various temperature sensitivities of projected CH4 emissions 

using BBC-CSM2-MR, CESM2, and EC-Earth3. Under SSP1-2.6, projected CH4 emissions were 

CESM2 > EC-Earth3 > BBC-CSM2-MR (Figure S2), with temperature sensitivities of EC-Earth3 > 

CESM2 > BBC-CSM2-MR (Figure 5). Under SSP2-4.5, the emissions were comparable among 

three climate models (Figure S2), with temperature sensitivities of CESM2 > EC-Earth3 > BBC-

CSM2-MR (Figure 5). Furthermore, under SSP5-8.5, CH4 emissions were EC-Earth3 > CESM2 > 
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BBC-CSM2-MR at Utqiaġvik sites, whereas were CESM2 > EC-Earth3 > BBC-CSM2-MR at US-

Atq and US-Ivo (Figure S2). Temperature sensitivities of CH4 emissions were lower using BBC-

CSM2-MR and higher using CESM2 and EC-Earth3 (Figure 5). Gill et al. (2017) estimated the 

mean CH4 flux Q10 to be 5.63 (2.92 – 10.52 with a 95% confidence interval) using a linearized Q10 

function (Humphreys et al., 2005) at the SPRUCE site during the 2015 growing season. Ma et al. 

(2017) also reported a constrained Q10 range of 2.34 – 6.33 with a 95% confidence interval for 

CH4 emissions. The Q10 for CH4 production was reported in peatlands, ranging from 1.9 to 3.5 and 

2.4 to 5.8 for sedge and Sphagnum mire sites (Lupascu et al., 2012). Here, we quantified a longer-

term temperature sensitivity using a linearized Q10 function that showed a much stronger response 

of CH4 emission to warming. Across the five sites, the ranges of Q10 for CH4 emission were 2.7 – 

9.8 based on BBC-CSM2-MR and 7.1 – 17.6 based on CESM2 (Figure 5). This indicated that CH4 

emission increased by 2.7 – 9.8 and 7.1 – 17.6 times in response to a 10-degree increase in 

temperature. The Q10 for CH4 emission in our study were generally fell in the Q10 ranges for 

emissions but higher than CH4 production reported in previous studies. Based on EC-Earth3, the 

Q10 of CH4 emission was 5 – 12.6 under SSP2-4.5 and SSP5-8.5, which were comparable to the 

ranges from the other two climate models, but it was extremely high under SSP1-2.6 with a range 

of 18.4 – 60.9. These extreme values could be explained by comparing changes in CH4 fluxes with 

air temperature. We found that changes of air temperature were the lowest by 2100 among the 

three climate models, but changes of CH4 fluxes were larger than BBC-CSM2-MR. It indicated 

that even a small temperature change could result in a substantial increase in CH4 fluxes. In 

addition to mitigate the uncertainties in CH4 emissions under SSP scenarios, we should involve 

multiple climate models for future CH4 projections.  
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Implications  

This study demonstrated three major implications for CH4 emission projections of SSP 

scenarios in Arctic ecosystems. First, the CLM-Microbe model projected Arctic CH4 emission 

from 2016 to 2100 at the landscape scale under SSP1-2.6, SSP2-4.5, and SSP5-8.5 with different 

climate datasets derived from BBC-CSM2-MR, CESM2, and EC-Earth3. CH4 emissions were 

projected to have no significant increases by 2100 under SSP1-2.6 and SSP2-4.5, whereas they 

were estimated to grow by a factor of 5.3 – 7.5 under SSP5-8.5 across the five Arctic sites. Second, 

this study demonstrated the mechanisms of future CH4 dynamics with detailed information on CH4 

processes and environmental variables for the five study sites under different SSP scenarios. Our 

projected CH4 emissions had a stronger response to rising temperatures than previous studies (Ma 

et al., 2017; Shindell et al., 2004), primarily due to the precipitation-induced expansion of 

anaerobic environments facilitating methanogenesis. Ebullition was the main pathway for CH4 

transport across the five sites with climate impacts under SSP scenarios. Third, this study 

emphasized the importance of including different climate datasets for CH4 projections, which can 

help to mitigate the uncertainties of CH4 flux estimates and budgets. Model simulations had 

different responses to the multiple climate datasets (BBC-CSM2-MR, CESM2, and EC-Earth3); 

even a slight difference in temperature or precipitation induced changes in CH4 processes and their 

factors, leading to a significant change in CH4 emission. 

Future work 

Previous and current studies have validated the CLM-Microbe model in simulating 

contemporary and future CH4 emissions at the landscape scale in the Arctic tundra by 

incorporating different upscaling techniques (Wang et al., 2019, 2022). Here we identify several 

tasks required to further advance the projection of CH4 emissions and budgets in the Arctic. First, 
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vegetation shifts in shrub growth and abundance have been observed and modeled in the Arctic 

tundra (Cornelissen et al., 2001; Sistla et al 2013; Tape et al., 2006; Tremblay et al., 2012; Wahren 

et al., 2005; Zhang et al., 2013). This shrub expansion may affect tundra C balances by enhancing 

ecosystem C uptake and altering ecosystem respiration, and through complex feedback 

mechanisms that affect snowpack dynamics, permafrost degradation, surface energy balance, and 

litter inputs (Mekonnen et al., 2021). However, our projection did not involve the effects of shrub 

expansion, which could underestimate CH4 emission. Shrub expansion induced a deeper snowpack 

that may deepen the active layer (Nowinski et al., 2010). It also increased soil wetness and 

anaerobic condition that enhanced CH4 production (Blanc-Betes et al., 2016). Hence, the accuracy 

of CH4 projections can be improved with consideration of shifts in shrub cover under rapid Arctic 

warming. Second, permafrost underlies ~25% of the Northern Hemisphere land surface and stores 

an estimated ~1,700 Pg (1,700 Gt) of C in frozen ground (Lindgren et al., 2018; Olefeldt et al., 

2016). Permafrost thaws due to warming-induced expansion creating anoxic conditions that tend 

to increase CH4 emissions (Anisimov, 2007; Christensen et al., 2004; Miner et al., 2022). 

Substantial permafrost degradation was projected under RCP8.5 involving widespread landscape 

collapse, while thawing was moderated by stabilizing feedbacks under RCP4.5 (Nitzbon et al., 

2020). Our projected CH4 emission could be underestimated without considering permafrost thaw, 

especially under strong warming scenarios. Thus, adding a module for permafrost thaw and 

permafrost C-climate feedbacks in the CLM-Microbe model could improve future CH4 estimation 

for different SSP scenarios. Third, this study explored future CH4 dynamics and the influence of 

various CH4 processes on emissions that benefited from the CLM-Microbe model, including 

different microbial functional groups (methanogens vs. methanotrophs). In addition, incorporating 

various climate models can reduce the uncertainties of future CH4 emissions. Based on the current 
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study, integrated modeling efforts provide a reasonable approach to project CH4 dynamics and 

budgets for the Arctic and globe for different climate trajectories and further ascertain the 

mechanisms of future CH4 emissions. 

 

Conclusions 

This study applied the CLM-Microbe model to project future CH4 emissions across five 

sites in the Arctic tundra under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios using different 

climate datasets derived from BBC-CSM2-MR, CESM2, and EC-Earth3 models. Projected CH4 

emissions increased by a factor of 5.3-7.5 under SSP5-8.5 across the five sites, whereas they 

remained relatively consistent with current emissions under SSP1-2.6 and SSP2-4.5. Our CH4 

projections showed a more robust response to rising temperature, mainly due to a simultaneous 

increase in precipitation-induced expansion of anoxic conditions favoring methanogenesis. CH4 

production from acetate and CO2 + H2 was more strongly accelerated under SSP5-8.5 than SSP1-

2.6 and SSP2-4.5, generating substantial soil CH4 concentrations. Ebullition rates increased and 

were identified as the dominant CH4 transport pathway under the different SSP scenarios. This 

study developed the conceptual models for understanding the mechanisms of future CH4 emissions 

responding to different SSP scenarios regarding each CH4 process that can be applied to future 

CH4 projections.  
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Chapter 3: Supporting Information 

 
Figure S1. Projected dynamics of air temperature (K), air pressure (atm), precipitation (mm), soil 
temperature (K), soil moisture (%), and evapotranspiration (mm) during 2016-2100 at a, f, k, p, u, 
z) US-Beo, b, g, l, q, v, a1) US-Bes, c, h, m, r, w, b1) US-Brw, d, I, n, s, x, c1) US-Atq and e, j, o, 
t, y, d1) US-Ivo under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios  
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Figure S2. Projected dynamics of CH4 fluxes (gC·m-2) during 2016-2100 at a, f, k) US-Beo, b, g, 
l) US-Bes, c, h, m) US-Brw, d, I, n) US-Atq and e, j, o) US-Ivo under SSP1-2.6, SSP2-4.5 and 
SSP5-8.5 scenarios using climate data from BBC-CSM2-MR, CESM2 and EC-Earth3 models in 
CMIP6  
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Figure S3. Projected dynamics of net primary production (NPP) (gC·m-2) during 2016-2100 at a, 
f, k) US-Beo, b, g, l) US-Bes, c, h, m) US-Brw, d, I, n) US-Atq and e, j, o) US-Ivo under SSP1-
2.6, SSP2-4.5 and SSP5-8.5 scenarios using climate data from BBC-CSM2-MR, CESM2 and EC-
Earth3 models in CMIP6 
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Figure S4. Projected dynamics of air temperature (K) during 2016-2100 at a, f, k) US-Beo, b, g, 
l) US-Bes, c, h, m) US-Brw, d, I, n) US-Atq and e, j, o) US-Ivo under SSP1-2.6, SSP2-4.5 and 
SSP5-8.5 scenarios using climate data from BBC-CSM2-MR, CESM2 and EC-Earth3 models in 
CMIP6 
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Figure S5. Projected dynamics of precipitation (mm) during 2016-2100 at a, f, k) US-Beo, b, g, l) 
US-Bes, c, h, m) US-Brw, d, I, n) US-Atq and e, j, o) US-Ivo under SSP1-2.6, SSP2-4.5 and SSP5-
8.5 scenarios using climate data from BBC-CSM2-MR, CESM2 and EC-Earth3 models in CMIP6  
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Figure S6. Projected dynamics of soil temperature (K) during 2016-2100 at a, f, k) US-Beo, b, g, 
l) US-Bes, c, h, m) US-Brw, d, I, n) US-Atq and e, j, o) US-Ivo under SSP1-2.6, SSP2-4.5 and 
SSP5-8.5 scenarios using climate data from BBC-CSM2-MR, CESM2 and EC-Earth3 models in 
CMIP6  
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Figure S7. Projected dynamics of soil moisture (%) during 2016-2100 at a, f, k) US-Beo, b, g, l) 
US-Bes, c, h, m) US-Brw, d, I, n) US-Atq and e, j, o) US-Ivo under SSP1-2.6, SSP2-4.5 and SSP5-
8.5 scenarios using climate data from BBC-CSM2-MR, CESM2 and EC-Earth3 models in CMIP6  
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Figure S8. The pie charts represent the contributions of three transport pathways to total CH4 
fluxes in the 2050s at a, f, k) US-Beo, b, g, l) US-Bes, c, h, m) US-Brw, d, I, n) US-Atq and e, j, 
o) US-Ivo under a-e) SSP1-2.6, f-j) SSP2-4.5 and k-o) SSP5-8.5 scenarios. Red indicates diffusion, 
green indicates ebullition, and blue indicates plant-mediated transport  
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Figure S9. Correlation analysis for projected CH4 fluxes with 14 factors or processes: air 
temperature (Tair), soil temperature (Tsoil), precipitation (PPT), soil moisture (SM), net primary 
production (NPP), dissolved organic carbon (DOC) concentration, acetate (ACE) concentration, 
rates of acetoclastic methanogenesis, rates of hydrogenotrophic methanogenesis, rates of aerobic 
oxidation, rates of anaerobic oxidation, rates of plant-mediated transport, rates of diffusion, and 
rates of ebullition, at US-Beo, US-Bes, US-Brw, US-Atq and US-Ivo for three Representative 
Concentration Pathway (SSP) scenarios. The symbol "*" indicates the significance level at of α = 
0.05. Darker red and darker blue indicate a stronger positive or negative correlation with CH4 
fluxes.  
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Table S1. Climate variables of BCC-CSM2-MR in CMIP6 corresponding to required variables of 
CRUNCEP for CH4 projections 

CRUNCEP BCC-CSM2-MR in CMIP6 
Units 

Variable Description Variable Description 

FSDS Total incident 
solar radiation rsds Surface downwelling 

shortwave Radiation W·m-2 

PRECTmms Total precipitation pr Precipitation kg·m-2·s-1 

FLDS Incident longwave 
radiation rlds Surface downwelling 

longwave Radiation W·m-2 

PSRF 
Surface pressure 

at the lowest 
atmospheric level 

ps Surface ir pressure Pa 

QBOT 
Specific humidity 

at the lowest 
atmospheric level 

huss Near-surface specific 
humidity kg·kg-1 

TBOT 
Temperature at the 

lowest 
atmospheric level 

tas Near-surface air 
temperature K 

WIND Wind at the lowest 
atmospheric level 

uas Eastward near-surface 
wind speed m·s-1 

vas Northward near-surface 
wind speed m·s-1 
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Table S2. Climate variables of CESM2 in CMIP6 corresponding to required variables of 
CRUNCEP for CH4 projections 

CRUNCEP CESM2 in CMIP6  
Variable Description Variable Description Units 

WIND 
Wind at the 

lowest 
atmospheric level 

a2x3h_Sa_u Zonal wind at the 
lowest model m·s-1 

a2x3h_Sa_v Meridional wind at the 
lowest model level m·s-1 

TBOT 
Temperature at 

the lowest 
atmospheric level 

a2x3h_Sa_tbot Temperature at the 
lowest model level K 

  a2x3h_Sa_ptem Potential temperature at 
the lowest model level K 

QBOT 
Specific humidity 

at the lowest 
atmospheric level 

a2x3h_Sa_shum Specific humidity at the 
lowest model level kg·kg-1 

  a2x3h_Sa_dens Density at the lowest 
model level kg·m-3 

PSRF 
Surface pressure 

at the lowest 
atmospheric level 

a2x3h_Sa_pbot Pressure at the lowest 
model level Pa 

  a2x3h_Sa_pslv Sea level pressure Pa 

FLDS Incident longwave 
radiation a2x3h_Faxa_lwdn Downward longwave 

heat flux W·m-2 

PRECT
mms Total precipitation 

a2x3h_Faxa_rainc Convective 
precipitation rate kg·m-2·s-1 

a2x3h_Faxa_rainl Large-scale (stable) 
precipitation rate kg·m-2·s-1 

a2x3h_Faxa_snowc Convective snow rate 
(water equivalent) kg·m-2·s-1 

a2x3h_Faxa_snowl 
Large-scale (stable) 

snow rate (water 
equivalent) 

kg·m-2·s-1 

FSDS Total incident 
solar radiation 

a2x3h_Faxa_swndr Direct near-infrared 
incident solar radiation W·m-2 

a2x3h_Faxa_swvdr Direct visible incident 
solar radiation W·m-2 

a2x3h_Faxa_swndf Diffuse near-infrared 
incident solar radiation W·m-2 

a2x3h_Faxa_swvdf Diffuse visible incident 
solar radiation W·m-2 
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Table S3. Climate variables of EC-Earth3 in CMIP6 corresponding to required variables of 
CRUNCEP for CH4 projections 

CRUNCEP EC-Earth3 in CMIP6 
Units 

Variable Description Variable Description 

FSDS Total incident 
solar radiation rsds 

Surface   
Downwelling 

Shortwave Radiation 
W·m-2 

PRECTmms Total precipitation pr Precipitation kg·m-2·s-1 

FLDS Incident longwave 
radiation rlds Surface Downwelling 

Longwave Radiation W·m-2 

PSRF 
Surface pressure 

at the lowest 
atmospheric level 

ps Surface Air Pressure Pa 

QBOT 
Specific humidity 

at the lowest 
atmospheric level 

huss Near-Surface   
Specific Humidity kg·kg-1 

TBOT 
Temperature at 

the lowest 
atmospheric level 

tas Near-Surface Air 
Temperature K 

WIND Wind at the lowest 
atmospheric level sfcWind Near-Surface Wind m·s-1 
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Table S4. Averages of CH4 fluxes (mean ± sd) in the periods of 2006-2015, 2016-2025, 2050s 
and 2090s at US-Beo, US-Bes, US-Brw, US-Atq and US-Ivo under SSP1-2.6, SSP2-4.5 and 
SSP5-8.5 scenarios Different letters mean significantly differences based on the Duncan’s 
multiple range test at the α = 0.05. 

Period Scenario US-Beo US-Bes US-Brw US-Atq US-Ivo 
2006-
2015 n.a. 2.52±0.20bc 2.49±0.16c 2.64±0.21bc 3.03±0.14b 5.31±0.50a 

2016-
2025 

SSP1-2.6 2.41±0.11d 2.12±0.13d 2.50±0.11c 3.63±0.18b 3.81±0.37a 
SSP2-4.5 2.41±0.15c 2.09±0.15c 2.50±0.15b 3.52±0.26a 3.74±0.39a 
SSP5-8.5 2.58±0.12d 2.25±0.13d 2.68±0.13c 3.88±0.20b 4.12±0.39a 

2050s 
SSP1-2.6 3.48±0.54b 3.17±0.69b 3.59±0.56ab 5.11±0.88a 4.97±0.98a 
SSP2-4.5 3.51±0.16b 3.16±0.25b 3.62±0.16b 5.45±0.53a 5.05±0.58a 
SSP5-8.5 4.35±0.49b 3.99±0.69b 4.47±0.49b 7.09±1.03a 7.43±1.16a 

2090s 
SSP1-2.6 3.65±0.46c 3.38±0.64c 3.73±0.45abc 5.42±0.93a 5.31±1.02ab 
SSP2-4.5 4.78±0.32b 4.61±0.32b 4.87±0.30b 7.61±0.93a 7.07±1.09a 
SSP5-8.5 19.72±8.00b 19.18±7.62b 20.13±8.11ab 26.88±6.00a 26.00±4.67ab 
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Table S5. Coefficients of the forward/backward multiple linear regression analysis for effects of 
air temperature (Tair), precipitation (PPT), canopy evapotranspiration (ET) and NPP on CH4 fluxes. 
Significant level: ‘***’: < 0.0001, ‘**’: < 0.001, ‘*’:  < 0.01. 

 Estimate Standard error t value Pr(>|t|) 

Intercept -0.0875 0.0029 -30.38 <2e-16 *** 

Tair 0.4312 0.0070 61.50 <2e-16 *** 

PPT 0.4843 0.0162 29.98 <2e-16 *** 

ET -0.2306 0.0129 -17.81 <2e-16 *** 

NPP 0.2027 0.0158 12.85 <2e-16 *** 
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CONCLUSION 

This dissertation advanced our understandings of the mechanisms of CH4 cycling at the 

plot and landscape scales in Arctic tundra, and projected the responses of Arctic CH4 emission and 

processes to climate change by 2100. Moreover, the process-based biogeochemical model, the 

CLM-Microbe model, facilitate my research on simulating, upscaling and projecting CH4 cycling 

by involving the detailed information of CH4 processes and different microbial functional groups. 

In the first chapter, I applied the CLM-Microbe model to investigate microtopographic impacts on 

CH4 processes and emissions from seven landscape types in Arctic tundra near Utqiagvik, AK. 

Sensitivity analysis and uncertainty analysis were employed to reveal the main factors of CH4 

cycling at daily and hourly time scales. Additionally, combined with the area-average weighted 

approach, I upscaled the modeled fluxes from seven microtopographic types to EC domains in 

Arctic tundra. In the second chapter, I upscaled simulated plot-level fluxes to EC domains at high 

spatial resolution combined with three footprint algorithms and compared the performance of these 

footprint algorithms at monthly and annual time scales for five Arctic ecosystems in northern 

Alaska. Spatial heterogeneity in CH4 emissions and its controls were also analysized at the 

landscape scale in Arctic tundra. In the third chapter, I continued the modeling work from the 

second chapter and projected the future CH4 emissions in respond to different climate change 

scenarios derived from three climate models. Conceptual models were built for better examining 

the mechanisms of CH4 cycling in the changing climate. Moreover, temperature sensitivity of CH4 

fluxes was analyzed for estimating CH4-climate feedbacks under warming. The key conclusions 

are listed as below: 

1. Modeled fluxes were promising and consistent with the observational gas fluxes from 

different microtopographic types.  
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2. Model results showed that low-elevation landscape types (e.g. trough, transitions, and 

LCP center) have higher CH4 emission with greater seasonal variations than high-elevation 

landscape types (e.g. rims and HCP center). 

3. Sensitivity analysis indicated that the substrate (e.g. acetate, CO2 + H2) availability for 

methanogens was the most important factor in controlling CH4 emissions in Arctic ecosystems, 

and plant photosynthesis greatly affected the NEE and ER. 

4. The CLM-Microbe model performed more accurately in simulating the daily EC fluxes 

than hourly fluxes combined with the area-average weighted approach in the heterogeneous Arctic 

landscape. 

5. The CLM-Microbe model captured the temporal dynamics of landscape-scale CH4 

emission using different footprint algorithms for different study sites, even when using the same 

model settings and parameters. 

6. The dynamic footprint (DF) algorithm improved the accuracy of temporal variations in 

CH4 flux at the monthly scale rather than the annual scale, compared with the homogeneous 

footprint (HF) and gradient footprint (GF) algorithms. 

7. Air temperature explained 67-74% while precipitation explained 22-36% of temporal 

variations of CH4 fluxes at the landscape scale in Arctic tundra.  

8. Extrapolating our modeling results to the northern Arctic tundra ecosystems led to an 

annual CH4 emission of 7.54 - 20.87 Tg CH4 per year.  

9. Arctic CH4 emissions were projected to have a stronger response to intense warming and 

enhanced precipitation; by 2100, increased by 631-851% under SSP5-8.5 but were relatively 

consistent with current emissions under SSP1-2.6 and SSP2-4.5 across all sites in Arctic tundra. 

10. All CH4 transport pathways increased and ebullition contributed most among three 
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transport pathway by 2100.  

This dissertation provides a powerful tool to simulate CH4 cycling at multiple spatial and 

temporal scales with a fine spatial resolution. The improvements in understanding the mechanisms 

of CH4 cycling in Alaskan Arctic tundra ecosystems will broaden our knowledge of microbial 

contributions to CH4 emission and improve the accuracy of CH4 estimation in a changing climate.  

 




