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Area-preserving mapping of 3D carotid ultrasound
images using density-equalizing reference map

Gary P. T. Choi, Bernard Chiu, and Chris H. Rycroft

Abstract—Atherosclerotic plaques are focal and tend to occur
at arterial bends and bifurcations. To quantitatively monitor
the local changes in the carotid vessel-wall-plus-plaque thickness
(VWT) and compare the VWT distributions for different patients
or for the same patients at different ultrasound scanning sessions,
a mapping technique is required to adjust for the geometric
variability of different carotid artery models. In this work, we
propose a novel method called density-equalizing reference map
(DERM) for mapping 3D carotid surfaces to a standardized
2D carotid template, with an emphasis on preserving the local
geometry of the carotid surface by minimizing the local area dis-
tortion. The initial map was generated by a previously described
arc-length scaling (ALS) mapping method, which projects a 3D
carotid surface onto a 2D non-convex L-shaped domain. A smooth
and area-preserving flattened map was subsequently constructed
by deforming the ALS map using the proposed algorithm that
combines the density-equalizing map and the reference map
techniques. This combination allows, for the first time, one-to-one
mapping from a 3D surface to a standardized non-convex planar
domain in an area-preserving manner. Evaluations using 20
carotid surface models show that the proposed method reduced
the area distortion of the flattening maps by over 80% as
compared to the ALS mapping method. The proposed method is
capable of improving the accuracy of area estimation for plaque
regions without compromising inter-scan reproducibility.

Index Terms—Area-preserving map, carotid atherosclerosis,
carotid ultrasound, density-equalizing map, reference map tech-
nique, vessel-wall-plus-plaque thickness (VWT)

I. INTRODUCTION

STROKE is a leading cause of death and disability world-
wide, causing an annual mortality of nearly 133,000 in

United States [1] and over 1.6 million in China [2]. Carotid
atherosclerosis is a major source of emboli, which may travel
and block one of the cerebral arteries, causing ischemic
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stroke [3]. As atherosclerosis is a focal disease with plaques
predominantly occurring at bends and bifurcations (BFs) of the
carotid artery, monitoring local changes in the vessel-wall-plus-
plaque thickness (VWT), defined as the pointwise distance
between the lumen-intima boundary (LIB) and the media-
adventitia boundary (MAB) as introduced by Chiu et al. [4],
is important for the development of sensitive biomarkers that
can identify high-risk patients with rapid plaque progression
in a shorter time frame. The presence of common carotid
plaques was shown to be associated with a higher 5-year
risk of vascular events than internal carotid plaques [5].
Therefore, monitoring the location of VWT-Change is also
important for risk stratification of vascular events. Although
the VWT-Change distribution for an individual patient can be
visualized by mapping point-by-point measurements onto the
three-dimensional carotid vessel wall, a flattened representation
facilitates image analysis as clinicians can scan the entire image
in a systematic manner without having to rotate and interact
with the 3D surface, which may cause observers to become
disoriented and losing track of which regions that had been
examined and which had not [6]. More importantly, since a 3D
VWT-Change map was constructed by mapping VWT-Change
measurements onto the carotid surfaces, the geometry of the 3D
map is highly subject-specific. For this reason, although visual
matching allows for qualitative comparisons of VWT-Change
distributions among subjects in placebo-controlled studies of
treatment effect [7], [8] or of the same subject measured
from different imaging modalities (such as 3D ultrasound
and MR imaging in [9]), quantitative local comparisons were
not possible without mapping the 3D distribution maps to a
standardized template.

To address this issue, Chiu et al. [10] developed the arc-
length scaling (ALS) mapping approach for mapping the 3D
carotid surfaces onto a standardized 2D non-convex L-shaped
domain (Fig. 1). Note that the external carotid artery (ECA)
(i.e. the left branch above the bifurcation point) is excluded in
the analysis since plaques at ECA are not directly related to
stroke. The availability of the 2D standardized L-shaped carotid
map has allowed for the development of sensitive biomarkers
to monitor vessel wall and plaque progression/regression in
clinical trials evaluating the effect of atorvastatin [10], [11]
and B Vitamins [12]. However, the ALS mapping approach
does not consider any local geometric distortion introduced by
the 3D to 2D mapping. Unless a surface has a uniformly zero
Gaussian curvature, distortion in either angle or area comes
with surface flattening [13].

Conformal (angle-preserving) approaches have been pro-
posed for flattening tubular surfaces with [14], [15] and without
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Fig. 1. An illustration of the 2D arc-length scaling (ALS) map [10] of carotid
surfaces. A carotid surface is first cut by two planes, denoted by PICA and
PCCA (as shown in (a)), and then unfolded to a 2D L-shaped non-convex
domain (as shown in (b)). The arc-length of transverse contours segmented
from 2D transverse images resliced from 3D ultrasound images is rescaled
such that all vertices on the carotid surface correspond to uniformly spaced grid
points on the L-shaped domain. The bifurcation (denoted by BF) is mapped
to the non-convex corner of the L-shaped domain, and the carotid boundaries
σ1, σ2, σ3 are mapped to the horizontal boundaries of the L-shaped domain.
Note that if the ECA (the missing branch above σ2 in (a)) was also included,
it would appear in the top left space of the L-shaped domain in (b).

bifurcations [16] (see [17] for a survey). A common strategy
employed in these methods was to attain conformality through
solving the Dirichlet problem [18], [19]. References [14],
[16] solved a longitudinal and a circumferential Dirichlet
problem to generate conformal 2D maps for the colon and
carotid surfaces respectively. These approaches are not suitable
for carotid template construction as they generate 2D maps
with shapes depending on the geometry of the original 3D
surfaces. A standardized 2D map was generated by Antiga and
Steinman [15] by first decomposing the common, internal and
external carotid arteries (CCA, ICA and ECA) in a consistent
manner based on the geometric properties at the bifurcation,
resulting in three topological cylinders, each representing a
carotid branch. Each carotid branch was individually mapped
to a planar map (i) with longitudinal coordinates obtained
by solving a Dirichlet problem and (ii) with circumferential
coordinates representing the angle each carotid surface point
made with the centerline. This method was implemented as an
open-source software package known as the Vascular Modelling
Toolkits (VMTK). Since the flattened maps for CCA, ICA
and ECA were generated independently, vessel wall thickness
or local hemodynamic distributions in the bifurcating region
and the carotid bulb were displayed in three discontinuous
sections (Fig. 4 in [15]). As plaque appears predominantly at
the bifurcation and the carotid bulb, the discontinuity at these
regions hampers clinical interpretation of the VWT-Change
map. Moreover, since areal and volumetric measurements of
plaques are related to the stroke risk of patients [20], [21] and
the volume of the plaque burden can be quantified in an area-
preserving flattened map, area preservation is a more important
consideration than angle preservation in the development of
a surface flattening approach for carotid analysis. Apart from
plaque size quantification, area preservation ensures that the
scope of plaque changes is accurately represented to clinicians
in the flattened view of the artery.

Two area-preserving carotid flattening methods have been
previously introduced [14], [22]. Zhu et al. [14] first computed
a conformal map as described in [16] and then applied the
optimal mass transport theory to correct for the area distortion

exhibited in the conformal map. Chiu et al. [22] mapped each
transverse cross-section of the carotid surface to a plane in
an arc-length preserving manner and then solved the Monge-
Kantorovich problem to correct for the area distortion occurred
in the arc-length preserving map. This algorithm has been
applied to multiple clinical studies [7], [8]. These two methods
share with the two conformal maps introduced above [14],
[16] in that the shape of the flattened map varies with the 3D
vessel wall geometry, and therefore, not suitable for quantitative
analysis of VWT-Change.

As the position and the size of plaques are two factors
that have been shown to predict stroke risk [5], [21], a
standardized carotid VWT-Change map should represent these
two factors accurately and consistently across patients. This
representation would allow these two important factors to be
considered collectively for quantitative stroke risk stratification
and treatment evaluation. For example, the biomarker developed
previously based on the ALS map, which was able to detect
the effect of Vitamin-B treatment, took into consideration
the size and the position of plaque and local thickening of
the vessel wall [12]. Although our previously described ALS
method has attained an acceptable positional correspondence
as demonstrated in an inter-scan reproducibility analysis [23],
area distortion generated by ALS is substantial, which may
lower risk stratification accuracy and reduce the sensitivity to
treatment effect. In addition, as one of the major purposes of
generating the flattened map is to provide a quick compre-
hensive view of the entirety of plaque changes throughout the
carotid bifurcation, area preservation ensures that the scope
of these changes are not over or under-represented to the
clinician. For these reasons, there is a need for developing
an area-preserving approach for correcting the area distortion
without increasing the inter-scan variability. The goal of this
work is to develop and validate such a correction method.

Recently, Choi and Rycroft [24] developed a method for
computing surface flattening maps by extending a technique for
cartogram projection called the density-equalizing maps [25].
Although the method [24] is successful in producing an area-
preserving map from a 3D surface onto a 2D domain, the
bijectivity of the map is not guaranteed if the target 2D domain
is non-convex. A non-bijective map has self-intersection, and in
the context of VWT map construction, a point on such a map
would be equipped with multiple VWT values. In other words,
the VWT values at these points are not defined, which would
render quantitative analysis of VWT distribution impossible. In
this work, we developed and validated a novel method called
density-equalizing reference map (abbreviated as DERM) for
computing area-preserving flattening maps of carotid surfaces
onto the 2D non-convex L-shaped domain, using an improved
formulation of density-equalizing maps. Our method extends
the idea of density diffusion for handling the non-convex
corner of the L-shaped domain, and further combines it
with the reference map technique [26], [27], coupling the
deformation of individual nodes with the spatial information
for producing a smooth and accurate mapping result. Our
method produces a flattening map from 3D carotid surfaces
onto a standardized non-convex 2D domain independent of
the vessel geometry, with area distortion minimized, and with
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bijectivity ensured. To the best of our knowledge, this is the
first work that is capable of achieving all these three properties
for carotid flattening. The area-preserving map generated using
the proposed algorithm will provide an accurate and consistent
collective representation of plaque size and position that would
allow unbiased quantitative comparisons of the extent of carotid
diseases among patients involved in population studies.

II. MATHEMATICAL BACKGROUND

A. Density-equalizing map

Gastner and Newman [25] proposed an algorithm for
producing density-equalizing map projections based on a
physical principle of density diffusion. Conceptually, given a
planar map (such as the world atlas) and a density distribution
prescribed on every part of the map, the method continuously
deforms the map such that the difference in the density at
different regions is transformed into a difference in the area of
the regions. Regions with a larger prescribed density expand
and those with a smaller density shrink. Ultimately, the density
is equalized over the entire deformed map.

Mathematically, given a planar domain D and a quantity
ρ(x, 0) called the density defined at every location x on D
at time t = 0, the method deforms D by equalizing ρ(x, t)
as t→∞. The equalization of ρ follows from the advection
equation ∂ρ

∂t = −∇ · j, where j = −∇ρ is the diffusion flux
with uniform diffusivity. This yields the diffusion equation

∂ρ

∂t
= ∆ρ. (1)

The density flux causes any tracers to move with velocity

v = −∇ρ
ρ
. (2)

With the velocity field, the location of any tracer x at time t
can be traced by

x(t) = x(0) +

∫ t

0

v(x(τ), τ)dτ, (3)

where τ represents the intermediate time between time 0 and
time t. Taking t → ∞, ρ is equalized on the entire domain,
and the above displacement produces a deformed map xfinal
that encodes all the density difference in the original density
ρ(x, 0) in terms of the area difference of different parts on the
final deformed map xfinal.

The algorithm was primarily applied to the visualization of
sociological data such as population and average income on the
world atlas [28]. Recently, Choi and Rycroft [24] explored the
close connection between density-equalizing maps and surface
flattening. In particular, by setting ρ as the face area of a 3D
surface mesh and computing a density-equalizing map from the
3D surface to a 2D domain, the deformation follows the ratio
of the face area at different regions and hence the resulting
density-equalizing map is an area-preserving map. This idea
sets the stage for our area-preserving mapping method for
carotid surfaces.

B. The reference map technique

Rycroft, Kamrin, and colleagues [26], [27] developed the
reference map technique for simulating large-strain solid
mechanics with a fully Eulerian formulation. Suppose a body is
under deformation such that the material initially located at the
position X is moved to the position x at time t. x(X, t) is a
motion function which keeps track of the motion of the material
initially at X. Define the reference map X = ξ(x, t) as the
inverse of the motion function. ξ(x, t) can be regarded as a
vector field in the deformed body which indicates the reference
location of the material occupying the position x at time t.
In particular, ξ(x, 0) = x. Since the reference location of any
tracer particle is the same at all time t under the deformation,
we have ξ̇ = 0, yielding the advection equation

∂ξ

∂t
+ v · ∇ξ = 0. (4)

By solving the above equation as t→∞, the final reference
map ξ(xfinal,∞) gives the reference location of the material
occupying the final position xfinal of the deformed body.
Therefore, to obtain xfinal from ξ, we simply need to track the
contour lines of the x- and y- coordinates of ξ.

III. MATERIALS AND METHODS

A. Study subjects and 3D ultrasound image acquisition

Ten subjects with carotid atherosclerosis were involved in
this study. These subjects were recruited from The Premature
Atherosclerosis Clinic and the Stroke Prevention Clinic at
the London Health Science Center, London, Canada and the
Stroke Prevention & Atherosclerosis Research Center, Robarts
Research Institute, London, Canada. Each subject was scanned
at baseline and two weeks later with a 3D ultrasound carotid
imaging system, providing 20 carotid ultrasound images for the
evaluation of the proposed algorithm. The reason of imaging
patients 2 weeks apart was to evaluate the change in the VWT
map representation stemming from variability due to patient
repositioning, different neck orientations and sonographer
change across the two scanning sessions [29]. The patients
investigated have stable atherosclerosis and no physiological
changes were expected to increase the inter-scan variability of
VWT.

The 3D ultrasound carotid imaging system has been detailed
previously [30] and briefly summarized here. A transducer
(L12-5, Philips, Bothel, WA, USA) mounted on a mechanical
assembly translated along the neck of the patient for 4 cm
while contiguous 2D images were acquired by the ATL HDI
5000 ultrasound machine (Philips, Bothel, WA, USA) at regular
spatial intervals of 0.15 mm. Ultrasound frames were captured
and digitized by a frame grabber and reconstructed into a 3D
carotid image volume.

The reconstruction of the 3D carotid surfaces and the
construction of the 3D VWT map was described previously [4],
[10]–[12], [22], [23], [31], [32]. The 3D images were resliced
at 1 mm intervals perpendicular to the medial axis of the vessel
identified by an expert observer, who then segmented the LIB
and MAB of the carotid artery on each resliced image. The 3D
lumen and vessel wall surfaces were subsequently reconstructed
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Fig. 2. Repeated segmentations of the lumen-intima boundary (LIB) and
media-adventitia boundary (MAB) are represented as white and black contours
respectively. The mean LIB and MAB are represented as red contours. Each
blue line connect a pair of correspondence points that were matched using the
symmetric correspondence algorithm [4], and the local vessel-wall-plus-plaque
thickness (VWT) is the distance between each correspondence pair.

from the segmented boundary stacks. To reduce the effect of
segmentation variability, the LIB and MAB were repeatedly
segmented five times, with consecutive segmentation sessions
separated by at least 24 hours to minimize observer memory
bias. As shown in Fig. 2, segmentation of LIB and MAB
was prone to observer variability. A previous analysis [10]
shows that segmenting a boundary repeatedly and taking the
average of the repeated segmentations reduces the variability
by a factor of N , where N is the number of repeated
segmentations performed. The mean LIB and MAB surfaces
for each carotid artery were then computed and matched on a
point-by-point basis by using the symmetric correspondence
technique described in [4]. The VWT was measured by taking
the distance between each pair of corresponding points (i.e.,
length of blue lines in Fig. 2). The 3D VWT map was
constructed by superimposing this pointwise VWT on the
MAB surface as previously described. Fig. 3 shows all 20 3D
carotid surfaces in our study.

B. 2D arc-length scaling (ALS) map

Chiu et al. [10] proposed the arc-length scaling (ALS)
mapping method for flattening the 3D VWT map onto a 2D non-
convex L-shaped domain. Here we briefly describe the method
and refer readers to previous works [11], [31] for more details.
The method begins with transforming the 3D carotid surface to
a standard coordinate system, with the bifurcation (BF) located
at the origin, the longitudinal direction of the common carotid
artery (CCA) aligned with the z-axis, and the internal carotid
artery (ICA) located at the upper half space of the coordinate
system. The surface is then cut by two planes (Fig. 1(a)) and
unfolded to a 2D L-shaped non-convex domain (Fig. 1(b)).
The ICA and the CCA are respectively mapped to the top part
and the bottom part of the L-shaped domain. The arc-length
of transverse contours segmented from 2D transverse images
resliced from 3D ultrasound images is rescaled so that the
vertices on the carotid surface correspond to uniformly spaced
grid points on the L-shaped domain. With the 2D L-shaped
carotid template, a more systematic comparison between the
VWT of different carotid arteries can be performed.

However, the ALS mapping approach does not consider any
local geometric distortion produced by the 3D to 2D mapping.

To reduce the geometric distortion, we consider deforming the
ALS map and generate an area-preserving 2D carotid template.

C. Area-preserving map via density-equalizing reference map
(DERM)

Denote the 2D non-convex L-shaped domain obtained by the
ALS mapping method by D. We would like to deform D based
on a prescribed density distribution. Let ρ(x, t) be the density
at the location x on D at time t. To achieve an area-preserving
map, we set ρ(x, 0) to be the area of each face of the carotid
surface and consider a diffusion-based deformation.

Here, we consider a more general version of the diffusion
process when compared to the formulation (1) described in II-A.
Consider the diffusion equation with diffusivity κ:

∂ρ

∂t
= ∇ · (κ∇ρ) = κ∆ρ+∇κ · ∇ρ. (5)

κ is a differentiable function that we introduce for handling the
non-convex corner of the L-shaped domain. To regularize the
deformation around the non-convex corner, we slow down the
diffusion process there by considering a differentiable function
κ with κ� 1 around the non-convex corner and κ ≈ 1 at the
regions far away from it. One possible choice of such κ is

κ(x, y) = 1−
(

1− 1√
a

)
e
− (x−p)2+(y−q)2√

a , (6)

where (p, q) are the coordinates of the bifurcation point on
D and a is the total area of D. Note that ∇κ in (5) can be
expressed explicitly by taking partial derivatives on (6). On
the boundary edges of the L-shaped domain D, we enforce
the no-flux boundary condition n · ∇ρ = 0 where n is the unit
outward normal, so that the diffusion occurs only within D.
This ensures that the subsequent diffusion-based deformation
does not change the overall shape of the L-shaped domain.
With the diffusivity κ, the velocity field (2) becomes

v(x, t) = −κ∇ρ
ρ

. (7)

Now, from the viewpoint of the reference map technique
described in II-B, we treat the L-shaped domain D as a solid
body and consider its deformation under the velocity field
v(x, t) induced by the density gradient. We obtain the reference
map ξ(x, t) by solving the advection equation

∂ξ

∂t
(x, t) + v(x, t) · ∇ξ(x, t) = 0. (8)

As t → ∞, the density ρ(x, t) is equalized over D, and
the associated reference map field ξ(xfinal,∞) is a density-
equalizing reference map. If the VWT at the location X on
the initial 2D ALS map is described by a function T (X), then
the VWT on the final area-preserving map will be given by
T (ξ(X,∞)). Equivalently, by considering the contour lines
of constant x- and y- coordinates of ξ, we obtain the final
area-preserving map xfinal.

In the discrete case, suppose D (including the top left
empty space of the L-shaped domain as shown in Fig. 1)
is a rectangular grid consisting of M × N grid points, with
grid spacing h in both the x-direction and the y-direction.
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Fig. 3. The 20 3D carotid surfaces from ten subjects in our study, color-coded and superimposed by their VWT distributions (with both front and back views).
For each subject, the carotid models at baseline and follow-up are labeled as T1 and T2 respectively.

Here the top left empty space is included just for simplicity
of the discretization and can be omitted in all the subsequent
computations. Let the coordinates of the grid points be (ih, jh),
where 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ N − 1. The
diffusion equation (5), the velocity field (7) and the advection
equation (8) are discretized and then solved iteratively. Denote
the step size by δt, and the density at the grid point (ih, jh)
at the n-th step by ρni,j . The discrete version of v and X is
represented in a similar manner.

Note that κ and its derivatives κx, κy can all be easily
discretized. For the diffusion equation (5), we use the central
difference scheme to approximate ∇ρ and solve the equation
by the implicit Euler method

ρni,j − ρ
n−1
i,j

δt
=κi,j

ρni+1,j + ρni−1,j + ρni,j+1 + ρni,j−1 − 4ρni,j
h2

+ (κx)i,j
ρni+1,j − ρni−1,j

2h
+ (κy)i,j

ρni,j+1 − ρni,j−1

2h
.

(9)
The no-flux boundary condition for the diffusion equation
is enforced using the following ghost node approach. At
the four rectangular boundaries (x, y) = (0, jh), ((M −
1)h, jh), (ih, 0), (0, (N − 1)h) where 0 ≤ i ≤ M − 1

and 0 ≤ j ≤ N − 1, and the two L-shaped boundaries
(x, y) = (p, jh), (ih, q) where 0 ≤ ih ≤ p and 0 ≤ jh ≤ q,
we suitably replace the terms ρni−1,j , ρ

n
i+1,j , ρ

n
i,j−1, ρni,j+1 on

the right hand side in (9) by ρni,j to ensure that there is no
density flux orthogonal to the boundaries. Hence, the L-shaped
domain maintains its boundary shape throughout the density
equalization process. If we represent ρn as a column vector of
size MN × 1, (9) can be simplified as ρn = A−1ρn−1, where
A is an MN ×MN matrix with A = I− δt(κ∆ +Kx+Ky),
Kx +Ky being the matrix representation of ∇κ · ∇. Note that
A is a sparse matrix independent of n and hence we only need
to compute it once throughout the iterations.

The discretization of the velocity field (7) is achieved again
using the central difference scheme

(vx)ni,j = −κi,j
ρni+1,j − ρni−1,j

2hρni,j
,

(vy)ni,j = −κi,j
ρni,j+1 − ρni,j−1

2hρni,j
.

(10)

The advection equation (8) for updating the reference map
ξ(x, t) is solved using the upwind method:

ξni,j − ξn−1
i,j

δt
=


−(vx)ni,j

ξn−1
i,j −ξ

n−1
i−1,j

h − (vy)ni,j
ξn−1
i,j −ξ

n−1
i,j−1

h if (vx)ni,j > 0 and (vy)ni,j > 0,

−(vx)ni,j
ξn−1
i+1,j−ξ

n−1
i,j

h − (vy)ni,j
ξn−1
i,j −ξ

n−1
i,j−1

h if (vx)ni,j ≤ 0 and (vy)ni,j > 0,

−(vx)ni,j
ξn−1
i,j −ξ

n−1
i−1,j

h − (vy)ni,j
ξn−1
i,j+1−ξ

n−1
i,j

h if (vx)ni,j > 0 and (vy)ni,j ≤ 0,

−(vx)ni,j
ξn−1
i+1,j−ξ

n−1
i,j

h − (vy)ni,j
ξn−1
i,j+1−ξ

n−1
i,j

h if (vx)ni,j ≤ 0 and (vy)ni,j ≤ 0.

(11)

A schematic for the above-mentioned discretization is shown
in Fig. 4. By iteratively solving (9), (10), (11) until the density
ρ is fully equalized on the entire domain, we obtain the desired
density-equalizing reference map ξ. To obtain the associated
area-preserving map xfinal, we denote ξ = (ξ1, ξ2). For every
grid point (ih, jh) on the initial 2D L-shaped domain obtained

by the ALS mapping algorithm, where i = 0, 1, · · · ,M−1 and
j = 0, 1, · · · , N − 1, the corresponding point of it in the final
area-preserving map xfinal is the intersection point of the contour
lines ξ1 = ih and ξ2 = jh. Note that in the discrete case,
each contour line is represented as a piecewise linear curve. To
check whether a line segment {(xk1 , yk1 ), (xk+1

1 , yk+1
1 )} of a ξ1-
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Fig. 4. Schematic for the discretization of the proposed method. On a grid
with spacing h, the density ρni,j at the grid point (ih, jh) at the n-th step is
updated by solving the diffusion equation (9). Note that ρni,j depends on the
densities ρni±1,j , ρ

n
i,j±1 at the neighboring grid points at the n-th step, the

density ρn−1
i,j at (ih, jh) at the (n− 1)-th step, as well as the discrete κ and

its derivatives at (ih, jh). The density flux causes a velocity field (10), and
the reference map ξni,j is updated by the advection equation (11).

contour intersects with a line segment {(xl2, yl2), (xl+1
2 , yl+1

2 )}
of a ξ2-contour, it suffices to solve the following system of
four linear equations in four unknowns x∗, y∗, t1, t2:

(xk+1
1 − xk1)t1 = x∗ − xk1 ,

(yk+1
1 − yk1 )t1 = y∗ − yk1 ,

(xl+1
2 − xl2)t2 = x∗ − xl2,

(yl+1
2 − yl2)t2 = y∗ − yl2.

(12)

If t1, t2 ∈ [0, 1], then the two line segments intersect at (x∗, y∗).
Otherwise, they do not intersect. By tracking all the intersection
points of the pairwise contour lines, the area-preserving map
xfinal can be obtained.

As for the choice of the step size δt, note that the backward
Euler scheme for the diffusion equation is unconditionally
stable. Following the discussion in [24], we perform a dimen-
sional analysis on (1) and see that an appropriate dimension
of δt is (length)2. Also, as the density diffusion process is
invariant under uniform rescaling of the input density ρ, δt
should be independent of the magnitude of ρ. Hence, it is
desirable to have the step size in the form δt = std(ρ)

mean(ρ) × ac,
where c is a dimensionless constant. The convergence criterion
is sd(ρn)

mean(ρn) ≤ ε, where ε is the error threshold. The algorithm
is summarized in Algorithm 1.

Note that the original density-equalizing map (DEM) ap-
proach [25] iteratively solves (1) with uniform diffusivity,
obtains the velocity field (2) and tracks the displacement of
every tracer by (3). In the discrete case, updating each tracer
by (3) requires an interpolation of the velocity field at its current
location in every iteration. By contrast, the proposed DERM
algorithm keeps track of the reference map field by (8), which is
fully Eulerian and hence no interpolation is needed throughout
the iterations. Note that DERM is capable of handling surfaces
with highly irregular geometry due to severe stenosis or other
circumstances. The diffusivity κ and the appropriately chosen
step size δt regularize the deformation caused by a large∇ρ and
ensure the stability of the numerical scheme, thereby preventing
edge collapses or mesh overlaps.

IV. RESULTS

The 2D ALS mapping algorithm was implemented in
C++. The proposed area-preserving DERM method was also
implemented in C++ with OpenMP parallelization (with grid

Algorithm 1: Area-preserving carotid flattening via density-
equalizing reference map (DERM)
Input: A carotid surface S, the error threshold ε, the

maximum number of iterations allowed nmax.
Output: An area-preserving map xfinal on the 2D

non-convex L-shaped domain.

1 Compute an initial map f : S → R2 onto the 2D
L-shaped domain using the ALS mapping [10];

2 Compute the area ρ of every face of S and set ρ as the
density on the L-shaped domain;

3 Set δt = std(ρ)
mean(ρ) × ac;

4 Compute A = I − δt(κ∆ +Kx +Ky);
5 Set n = 0 and ρ0 = ρ;
6 repeat
7 Solve ρn+1 = A−1ρn;
8 Compute the velocity field v using (10);
9 Update the reference map ξ using (11);

10 Update n = n+ 1;
11 until sd(ρn)

mean(ρn) ≤ ε or n ≥ nmax;
12 By tracking the intersections of the contour lines ξ1 = ih

and ξ2 = jh of the density-equalizing reference map
ξ = (ξ1, ξ2) for all i, j, obtain the desired map xfinal;

spacing h = 1, maximum number of iterations nmax = 500,
step size constant c = 0.01, error threshold ε = 10−3). The
sparse linear systems were solved using the biconjugate gradient
stabilized method (BiCGSTAB) in the C++ library Eigen. On
a PC with an Intel i7-6700K quad-core processor and 16GB
RAM, for each arterial model, the 2D ALS mapping took 1
second and the proposed DERM method took 8 seconds. The
visualization and statistics were produced using MATLAB.

The first column of Fig. 5 shows the front and back views of
six example 3D carotid models from three subjects with their
VWT distributions color-coded and superimposed. For each
subject, the carotid models at baseline and follow-up are labeled
as T1 and T2 respectively. We flattened the 3D models onto the
2D L-shaped domain using the ALS mapping method [10] and
our area-preserving DERM method (see the middle column
of Fig. 5). Each of the 2D ALS and area-preserving flattening
maps was made up of 7518 quadrilateral elements. The area
distortion associated with each quadrilateral face was quantified
by the logged area distortion ratio defined below:

d = loge
Area of the face on the flattened map

Area of the face on the 3D carotid model
. (13)

A perfectly area-preserving map will result in d = 0 for all
faces. A positive d at a local region indicates that the region is
enlarged on the L-shaped 2D carotid template, while a negative
d indicates that the region is shrunken. d represents enlargement
and shrinkage of the same factor in an equal magnitude. For
example, a face with the area halved and another with the
area doubled after being flattened have d = −0.693 and 0.693
respectively. With this symmetric property, the logged ratio d is
easier to interpret than the linear ratio. The last column of Fig. 5
shows the flattened maps with d color-coded and superimposed.
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Fig. 5. Carotid flattening maps produced by the ALS mapping method [10]
and our area-preserving DERM method. (a), (b), (c) show the results for three
subjects. For each subject, the carotid models constructed from the baseline
and follow-up 3D ultrasound images are denoted by T1 and T2 respectively.
The first column shows the 3D carotid surfaces color-coded and superimposed
by their VWT distributions (with both front and back views). The second
column shows the 2D VWT maps of the carotid surfaces produced by the ALS
mapping method and our area-preserving DERM method. The third column
shows the area distortion maps.
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Fig. 6. Histograms of the logged area distortion ratio d exhibited in 150360
quadrilateral faces (7518 per carotid model × 20 carotid models) in (a), the
2D ALS maps and (b), the 2D area-preserving maps produced by the proposed
DERM algorithm.

In these examples, the area distortion exhibited in the ALS map
was largely corrected by the proposed DERM algorithm. We
further evaluated the area distortion of the 150360 quadrilateral
elements in all the 20 carotid models (7518 per carotid model
× 20 models) before and after the application of the proposed
algorithm. Figs. 6(a),(b) show the area distortion histogram
for the ALS and the proposed algorithm, respectively. The
histogram shown in Fig. 6(b) is much more concentrated at d =
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Fig. 7. Average absolute area distortion mean(|d|) of 20 carotid models. The
carotid models constructed from the baseline and follow-up 3D ultrasound
images for each subject are denoted by the subscripts T1 and T2 respectively.

0 than Fig. 6(a), indicating the area distortion associated with
the proposed method is smaller than the ALS mapping method.

We also quantified the performance of the proposed flattening
algorithm for each of the 20 carotid models by the average
value of |d| over the corresponding 2D maps. Fig. 7 shows
the values mean(|d|) of the 2D ALS map and the 2D area-
preserving map produced by the proposed DERM method for
each carotid model. The proposed method attained a reduction
in area distortion by over 80% on average. A two-sample t-test
shows that the average area distortion is significantly reduced
by the proposed method (P < 10−6).

In addition to minimizing area distortion, the proposed
method contributed in the elimination of overlapping cells
when mapping to a non-convex domain. Fig. 8 compares
the performance of three methods aiming to correct the area
distortion associated with ALS mapping. Figs. 8(c)-(e) show
the results generated at the non-convex corner of the L-
shaped domain by the density-equalizing map (DEM) [25],
the shape-prescribed density-equalizing map (SPDEM) [24]
and the proposed DERM method. For both DEM and SPDEM,
the density was set to be the face area for computing area-
preserving flattening maps. The free boundary condition in
DEM was replaced by the no-flux boundary condition for
enforcing the L-shape. The target boundary shape in SPDEM
was also set to be the L-shape, and the method imposed the
no-flux boundary condition to maintain the L-shape throughout
the iterations. After obtaining the flattening maps for all four
methods, we checked the bijectivity of the results. It can be
observed that both DEM and SPDEM produce undesirable
overlaps around the non-convex corner of the L-shaped domain
(Fig. 8(c),(d)) due to the large density gradient (i.e. face
area difference) between the ICA and CCA generated by
ALS mapping as shown in the last column of Fig. 5. Since
the proposed DERM method has a non-constant diffusion
coefficient κ in the diffusion process and involves the reference
map technique for producing a smoother deformation, we
are able to obtain an area-preserving flattening map without
any overlaps (Fig. 8(e)), thereby guaranteeing bijectivity.
We quantified the above observation by evaluating the total
overlapping area in each flattened map, computed by taking the
difference between the sum of area of all quadrilateral faces
in the flattened map and the area enclosed by the boundary
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(d) (e)

(a)

ALS DEM

SPDEM DERM

Fig. 8. Comparison between various mapping methods for handling the
non-convex corner of the L-shaped domain. We consider zooming into the
non-convex corner of the L-shaped domain as illustrated in (a). In (b), (c),
(d), (e), the mapping results at that region produced by ALS [10], DEM [25],
SPDEM [24] and the proposed DERM method are respectively shown. Our
method is advantageous in adjusting for the geometric variability of the carotid
surfaces without causing any overlaps.

ALS

DERM

ALS

DERM

Fig. 9. Binary images of the flattened VWT maps obtained by ALS and
DERM, with white representing the plaque region (i.e. with VWT > 0.9 mm)
and black otherwise. Each column corresponds to one carotid model.

of the L-shaped domain. This overlap metric was computed
for the entire set of 20 arteries. The mean and the standard
deviation for DEM and SPDEM were 2.1 ± 1.3 and 2.8 ±
2.1 mm2 respectively. Since the proposed algorithm guarantees
bijectivity, this overlap metric is 0 for all arterial models.

Table I records the average area distortion and the total
overlapping area of each flattened map produced by the
four above-mentioned methods. DERM achieves a significant
reduction in area distortion comparable to the state-of-the-art
SPDEM method and guarantees bijectivity.

A major goal of this work was to improve the accuracy of
the plaque size represented in the carotid standardized map.
The areas of the “plaque regions” represented in the ALS
and DERM maps were compared with their corresponding
areas in the 3D VWT maps. “Plaque regions” were defined as
regions with VWT > 0.9 mm. This threshold was chosen
according to the latest European Society of Hypertension
(ESH) and European Society of Cardiology (ESC) hypertension
guidelines [33], which listed intima–media thickness (IMT)
> 0.9 mm as a risk factor of asymptomatic organ damage.
Fig. 9 shows the flattened VWT maps constructed for two
carotid models by ALS and DERM, with white representing
the plaque regions and black representing the background.

The accuracy of plaque area change for each patient from
baseline to follow-up obtained in the maps generated by
ALS and DERM were compared with that obtained in the
corresponding 3D VWT map, which was considered as the
gold standard. The plaque area change errors associated with

ALS and DERM mappings were computed by:

e∆PAi
= ∆PAi −∆PA3D, (14)

where i ∈ {ALS, DERM} represents the mapping method,
∆PAi denotes plaque area change estimated using method i
and ∆PA3D represents the plaque area change obtained on
the 3D VWT map. For the 10 subjects involved in this study,
|e∆PAALS | = 13.8±24.9 mm2 and |e∆PADERM | = 7.2±12.9 mm2.
The mean error was reduced by 48% and the difference was
statistically significant (P = 0.01).

The purpose of the above analysis was to demonstrate
the significance of the reduction of the error in plaque
size representation attributed by DERM. The 2D carotid
template described herein integrates plaque size and positional
information and allows for the development of biomarkers
capable of sensitive detection of small treatment effect by
dietary supplements, such as that reported in [12]. Although
the above analysis involved only plaque size estimation, the
2D template should not be considered solely as a tool for
plaque size estimation. Instead, if the plaque size is more
accurately represented in the map, biomarkers developed from
the carotid template aiming to detect treatment effect, such
as that described in [12], may become more sensitive, which
would further reduce the sample size required for showing the
efficacy of a treatment.

The strength of the proposed 2D standardized representation
of VWT is that two major determinants of stroke risk, the
location and the size of plaques [5], [20], [21], can be consid-
ered collectively in quantitative analyses. Although DERM has
reduced the error in plaque region area estimation as shown
above, a concern would be whether the deformation involved in
DERM would negatively affect anatomic correspondence. The
difficulty of evaluating anatomic correspondence for carotid
arteries is that there is no anatomic landmark that can be
dependent upon in such an evaluation, other than the bifurcation
point. By the construction of ALS, we have already ensured
the bifurcation points of all arteries were mapped to a common
point in the 2D carotid template. As no physiological change
was expected for patients involved in this study between the two
scanning sessions, inter-scan variability quantified by ∆VWT
between the two sessions can be used as a metric for anatomic
correspondence. A previous study using the same data set
has established that ALS mapping provides good anatomic
correspondence [23]. For this reason, ∆VWT associated with
ALS mapping can be used as a benchmark for comparison.
∆VWTs associated with ALS and DERM were compared
based on the following three parameters: (a) Percentage of
points with ∆VWT ≤ 0.35 mm for each subject, (b) Visual
comparison between the mean ∆VWT maps generated by ALS
and DERM for the ten subjects involved in this study, and
(c) Mean |∆VWT| for each subject.

The threshold of 0.35 mm was chosen for the following
reason. The axial, lateral and elevational resolutions of our
3D imaging system are 0.6, 0.8 and 2 mm, respectively, at
the depth of 40 mm, which is approximately the depth of the
carotid artery [34]. The average in-plane resolution is 0.7 mm
and half of which (i.e., 0.35 mm) can be considered as a “small”
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TABLE I
THE AREA DISTORTION AND THE TOTAL OVERLAPPING AREA IN EACH FLATTENED MAP PRODUCED BY ALS [10], DEM [25], SPDEM [24], AND THE

PROPOSED DERM METHOD. THE AREA DISTORTION WAS QUANTIFIED BY THE LOGGED AREA DISTORTION RATIO d (13), AND THE TOTAL OVERLAPPING
AREA AOVERLAP (IN MM2) WAS CALCULATED BY THE DIFFERENCE BETWEEN THE SUM OF AREA OF ALL QUADRILATERAL FACES IN THE FLATTENED MAP

AND THE AREA ENCLOSED BY THE BOUNDARY OF THE L-SHAPED DOMAIN.

Carotid model ALS [10] DEM [25] SPDEM [24] DERM
mean(|d|) Aoverlap mean(|d|) Aoverlap mean(|d|) Aoverlap mean(|d|) Aoverlap

Subject 1 Time 1 0.29 0 0.15 4.27 0.04 8.88 0.04 0
Subject 1 Time 2 0.18 0 0.07 1.97 0.03 4.57 0.03 0
Subject 2 Time 1 0.16 0 0.06 2.47 0.02 3.55 0.02 0
Subject 2 Time 2 0.19 0 0.06 2.43 0.03 3.03 0.02 0
Subject 3 Time 1 0.19 0 0.08 2.87 0.02 4.52 0.02 0
Subject 3 Time 2 0.13 0 0.05 2.18 0.02 3.09 0.02 0
Subject 4 Time 1 0.17 0 0.05 1.29 0.02 1.65 0.03 0
Subject 4 Time 2 0.24 0 0.09 3.01 0.03 4.82 0.04 0
Subject 5 Time 1 0.08 0 0.02 0.36 0.01 0.49 0.02 0
Subject 5 Time 2 0.19 0 0.05 1.89 0.02 2.61 0.03 0
Subject 6 Time 1 0.23 0 0.11 4.58 0.03 5.40 0.03 0
Subject 6 Time 2 0.21 0 0.08 3.19 0.03 3.39 0.03 0
Subject 7 Time 1 0.15 0 0.03 0.83 0.02 1.21 0.02 0
Subject 7 Time 2 0.12 0 0.04 1.49 0.01 2.31 0.02 0
Subject 8 Time 1 0.18 0 0.05 1.65 0.02 1.57 0.03 0
Subject 8 Time 2 0.17 0 0.06 2.97 0.02 1.57 0.02 0
Subject 9 Time 1 0.15 0 0.02 0 0.02 0.22 0.02 0
Subject 9 Time 2 0.14 0 0.02 0 0.02 0 0.02 0
Subject 10 Time 1 0.20 0 0.04 1.87 0.02 1.01 0.03 0
Subject 10 Time 2 0.22 0 0.08 3.32 0.03 1.91 0.03 0

ALS

ΔVWT (mm)

DERM

ΔVWT (mm)

Fig. 10. The average ∆VWT map between the baseline and the follow-up
generated by ALS and DERM for the ten subjects.

change. This area percentage was 80.7%± 6.7% for ALS and
80.9%± 6.4% for DERM. A two-sample paired t-test shows
no significant difference between the two mapping techniques
(P = 0.85). Fig. 10 shows the average ∆VWT map between
the baseline and the follow-up generated by ALS and DERM
for all subjects. It can be observed that the two ∆VWT patterns
are similar. The two-sample paired t-test shows no significant
difference between the subject-based mean of |∆VWT| for
the ten subjects by the two mapping techniques (P = 0.80).
These results show that DERM is capable of improving the
accuracy of plaque area change estimation in terms of (14)
without compromising inter-scan reproducibility.

The effect of DERM area correction operation on point
correspondence was further evaluated by assessing how much
the 2D grids generated by ALS were deformed. The DERM-
deformed grids on the 2D baseline (T1) and follow-up (T2)
maps of the same subject were mapped to the 3D carotid
surface constructed from the follow-up scan. The baseline (red)
and follow-up (black) grids generated for each of the two
example subjects were superimposed to allow comparison in
Fig. 11. The similarity of the red and black grids shows that
the deformation by DERM does not have a substantial effect
in point correspondence.

Fig. 11. The carotid models of two subjects (subjects 7 and 9) at follow-up
(the black grid and the purple quads) overlaid with those at baseline (the red
grid) using the point correspondence established by the 2D L-shaped domain
via DERM. For better visualization, only part of the grid lines are shown.

V. DISCUSSION

Density-equalizing maps [25] have been widely used in
sociological data visualization and was recently introduced
for the computation of area-preserving surface mapping [24].
However, the bijectivity of the maps obtained by these methods
is only guaranteed when the maps are with free boundary
constraints or with a convex target shape. To overcome
this limitation so as to produce area-preserving maps with
the non-convex L-shape, we extended the formulation of
density diffusion in these methods to allow for a non-constant
diffusivity that effectively regularizes the density gradient
around the non-convex corner. Note that while our algorithm
was developed with a quadrilateral-based discretization of the
3D carotid models, it is also applicable to surfaces with triangle
or other polygonal elements, for which the finite difference
discretization in (9), (10), (11) should be replaced by the
relevant triangle/polygon-based discretizations. Besides, the
proposed technique is not limited by the choice of the surface
reconstruction method employed. For 3D carotid surfaces
reconstructed using any other methods, the proposed technique
can also be applied for computing the area-preserving flattening
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map. We tested our algorithm with different number of surface
mesh nodes n, keeping all other parameters fixed. The result
shows an O(n1.5) time scaling for each timestep, consistent
with the expected scaling for the BiCGSTAB method. As for the
expected rate of slow down, we have lim

n→∞
‖ρn+1−mean(ρ)‖2
‖ρn−mean(ρ)‖2 = 1

and lim
n→∞

‖ρn+1−ρn‖2
‖ρn−ρn−1‖2 = 1, indicating that the process con-

verges logarithmically.
Another limitation of the previous methods is that the

deformation of each node on the domain was tracked individu-
ally without considering the neighboring spatial information,
which results in an unsmooth mapping result under a large
deformation. The reference map technique [26], [27] was
originally developed for tracking large physical deformations
of a solid body smoothly. For the first time, the reference
map technique was integrated with the density-equalization
process to generate a smooth and area-preserving flattened
map. Although this technique was applied on carotid mapping,
it can be applied to facilitate the interpretation of spatial
distributions on the surfaces of other organs, such as brain
ventricles and kidneys [35]. Carotid mapping described in this
paper is particularly challenging due to the non-convex nature
of the carotid template. A highlight of the proposed algorithm
is that it allows bijective (one-to-one) mapping even at the
non-convex corner at the carotid bifurcation, whereas previous
density-equalizing approaches do not guarantee bijectivity in a
non-convex domain (Fig. 8).

The proposed algorithm shares with previous area-preserving
algorithms [14], [22] that the area distortion could not be
completely eliminated, although the method reduced the area
distortion in a statistically significant manner. This limitation
can be explained by the finite grid size and step size used in our
numerical scheme. A possible way to further reduce the area
distortion without slowing down the computation is to extend
our algorithm with an adaptive framework, which will allow
us to take adaptive time steps to handle specific regions with
relatively large distortion. This strategy will be implemented
and our hypothesis will be validated in a future investigation.

In this work, we set the density ρ to be the local 3D surface
area of the artery so that density-equalization gives us an
area-preserving map. We can extend our method to take tissue
properties into account by setting ρ to be equal to Local surface area

Young’s modulus .
In this setting, if a region is calcified and more rigid (with
larger Young’s modulus), a smaller area change is allowed,
while if the region is healthy and more flexible (with lower
Young’s modulus), a larger area change can be accommodated
in the resulting map.

Although this algorithm was applied in analyzing 3D carotid
ultrasound images, the proposed method is equally applicable to
any imaging modality that allows the segmentation of the LIB
and MAB. In fact, an earlier version of the carotid flattening
approach [22] has been used in comparing the vessel wall
thickness measured from 3D ultrasound and MRI [9]. As
mentioned in the introduction, the shape of the 2D carotid
map generated by the algorithm proposed in [22] was not
standardized. Therefore, only a qualitative comparison was
possible by matching the 3D ultrasound and MRI maps visually.
The standardized carotid map currently available would allow

for quantitative comparisons of the VWT measured from the
two imaging modalities. In the past 10–15 years, many clinical
trials have been performed to evaluate the feasibility of using
carotid vessel wall MRI to detect the effect of lipid-lowering
therapies [36]–[39]. The outcomes of these trials were evaluated
in terms of global parameters, such as vessel wall area and
maximum wall thickness. The ability to analyze the VWT
distribution quantitatively afforded by the proposed approach
may allow for more sensitive detection of treatment effect.

Besides, although the density-equalizing approach introduced
here was used to generate area-preserving carotid maps, its
application can be extended to non-rigid carotid registration
(i.e. finding an optimal deformation to match carotid images).
3D ultrasound images are acquired at baseline and a follow-up
imaging session in serial monitoring of the carotid disease.
Even if no physiological changes are expected, such as in
the case where patients are presented with stable disease and
the time interval between the baseline and follow-up imaging
session is as short as two weeks [7], there would be variance
in the VWT maps due to different patient position and neck
orientation that could only be corrected by non-rigid registration
techniques. The proposed pipeline can be extended in the
future and used for registering VWT maps obtained in the
two imaging sessions in a non-rigid manner. However, one
will need to replace the density-equalizing velocity field by
a suitable velocity field that provides a descent direction for
reducing the VWT difference between the two maps before this
framework can be extended to be used in non-rigid registration.
The improved reproducibility of the VWT maps thus produced
may play a role in increasing the sensitivity of biomarkers
that quantify the change in VWT distribution for evaluation of
new therapies. One example of such biomarker is the mutual-
information-weighted biomarker used to quantify the weighted
VWT-Change average exhibited in a one-year longitudinal
study involving patients who received placebo and Vitamin B
tablets [12]. Although a statistically significant difference was
found between the two treatment groups, thereby establishing
the effect of Vitamin-B treatment on atherosclerosis, only rigid
registration was performed to align the arteries imaged at
baseline and the follow-up session before the construction
of VWT maps. The non-rigid registration capability of the
proposed algorithm has the potential to further increase the
sensitivity of the biomarkers characterizing VWT-Change. Such
an improvement would reduce the sample size required to
establish effects of new medical treatments on atherosclerosis,
thereby increasing the cost-effectiveness of clinical trials.

VI. CONCLUSION

In this work, we have proposed a novel method for producing
area-preserving flattening maps for visualization and consistent
quantification of the VWT distributions on carotid surfaces.
Our method first takes the 2D L-shaped non-convex domain
produced by the ALS mapping algorithm [10] as an initial
map. Then, we improved the density diffusion process [24],
[25] and combined it with the reference map technique [26],
[27]. From the experimental results, it can be observed that
the area distortion of the flattening maps was significantly
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reduced by our proposed method. The bijectivity at the non-
convex corner of the L-shaped domain was also guaranteed
by the nonconstant diffusivity in the density equalization
process. Our method provides an accurate and consistent
way for flattening 3D carotid models onto a standardized 2D
template for carotid analysis, with the geometric variability
of them taken into account. The experimental results have
demonstrated the capability of our method for reducing the
plaque size representation error without compromising inter-
scan reproducibility. The improved collective representation
of plaque size and position in the proposed standardized
2D carotid template will allow for unbiased quantitative
comparisons in population studies.
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