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ABSTRACT:   
We introduce a methodology to develop a geo-typology (geotype) that categorizes each location in the 
United States in terms of their main drivers of transportation demand and supply. We develop the first 
comprehensive set of geotypes for both urban and rural areas across the entire United States. This typology 
is designed to facilitate national level modeling of multi-modal transportation system’s response to 
alternative investment strategies differentiated across different types of locations. We develop a two-stage 
clustering procedure to systematically and quantitatively characterize the ways in which locations across 
the nation are similar or different with respect to their potential response to investment strategies of 
interest. First, we cluster all 73,057 census tracts, using factor analysis and the CLARA clustering 
algorithm into “microtypes” based on their street network and economic characteristics. Then we cluster 
regions (core-basic statistical areas and counties) into “geotypes” using PAM clustering according to their 
commute configurations, polycentricity and density. The resulting set captures both local and regional 
variation. These microtypes and geotypes are comparable across all locations, enabling a national level 
perspective, while maintaining sufficient heterogeneity to support a variety of transportation analyses 
capturing critical geographic variation.  
 
Keywords: Geo-Spatial, Neighborhood, Typology, Geotype, Transportation Investment, Machine 
Learning, Clustering Algorithm  
 
 
1. Introduction  

While a growing body of work examines innovative transportation design in dense urban environments, 
the interaction among transportation performance objectives, new service solutions, and dynamic supply 
and demand across different types of environments, and not only urban areas, is not yet well understood. 
We develop a geospatial and geo-economic typology using publicly available data to enable the modeling 
of shared transportation outcomes for prototypical regions that share common transportation attributes. 
This set of prototypical system configurations, with associated generalizable transportation supply and 
demand, are designed to facilitate quantitative macro-level analyses of transportation outcomes. Prior 
efforts have made progress in enabling the micro-level modeling of prototypical transportation systems to 
examine urban mobility outcomes (Fielbaum et al., 2017; Oke et al., 2019). However, these efforts have 
been limited to identifying prototypical urban systems and have largely ignored variation in rural forms. 
They have historically also relied on proprietary datasets. Here, we extend that concept to include both 
rural and urban locations.  
 
One of the challenges facing transportation planning in the U.S. is the lack of a high-level transportation 
modeling tool that can capture key regional heterogeneity without relying on data-intensive, regional 
travel demand models. Existing travel demand models are typically computationally burdensome, data-
intensive, unavailable in rural locations, and highly context-specific. Furthermore, they are trending in a 
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direction of greater detail, such as agent-based-modeling (Auld et al., 2016; Sheppard et al., 2016), rather 
than generalizability and speed. A classification scheme of transportation systems is a powerful tool to 
enable effective modeling of transport scenarios at a national level, while still capturing relevant variation 
and allowing for different tradeoffs in different types of locations. We provide a preliminary step toward 
this type of modeling effort by defining such a classification scheme in the form of a nationally-
comprehensive set of representative location types. This approach has application in fields outside of 
transportation, but is particularly powerful for modeling applications requiring large geographic coverage, 
but with critical inputs needed that are only available for a subset of locations, and thereby require a 
rigorous framework that enables appropriate aggregation of different locations or extrapolation of findings 
from one location type to another.  
 
In our application, we identify fundamental factors that define the differences in the underlying local 
transportation systems and travel patterns across different types of locations from a national perspective. 
The use case of this specific typology is geared toward a national level transportation model with 
transportation cost and traffic system dynamics models specified to capture heterogeneity across different 
types of regions and neighborhoods. The model could be used to, for example, examine tradeoffs between 
the allocation of right-of-way to different modes in different types of locations. The inputs to our typology 
categorize localities based on their local constraints and potential to use different types of modes. This 
typology could then enable a model built, for example, to identify a more efficient way of serving demand 
through an alternative modal mix. Defining our typology as a function of fundamental geo-economic and 
geospatial factors, and not only current travel choices, allows for a broader understanding of the likely 
impact of future investments on travel demand and supply in different locations, as the results are not 
limited by current mode choices. For this purpose, we conduct a two-stage clustering approach in which 
we account for both local and regional variation in geo-economic attributes in our typology.  
 
Building on a long history of spatial analysis and typological efforts, this paper presents the first tractable 
yet comprehensive typology that is informed by primary drivers of travel demand and transportation 
supply constraints, without relying on current transportation outcomes, with an emphasis on economic 
and geospatial characteristics of locations, and that cover all areas of the U.S., from rural to urban. To our 
knowledge, it is the first clustering effort to address variation at two levels of resolution, the census tract 
and greater regional area within which the tract is situated. The resulting typology provides a foundation 
for modeling the dynamics of transportation supply and demand for large portions of the country at a time. 
Building such a model is the focus of continuing work leveraging the typology methodology described 
here. In addition to the typology, this work generated a unique and extensive integrated database of 
heretofore disparate publicly available datasets that can facilitate similar analyses for different types of 
applications. For example, city or regional planners, air quality researchers or oversight bodies, 
transportation safety policy makers, among others, could use the database to tailor new typologies with 
different sets of inputs targeted to their applications and use cases. 
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This paper proceeds as follows. Section 2 provides an overview of other typology efforts relevant to 
transportation. Section 3 explains the conceptual framework for this work, drawing from a wide range of 
previous research. Section 4 describes the data selected as inputs for the clustering procedures, the factor 
analysis, and the cluster analysis. Section 5 presents the results and Section 6 concludes. Section 7 
provides a discussion of the contributions and possible extensions of this work.  
 
2. Existing typologies and their applications  

The U.S. convention of using population densities to define location types as “urban” or “rural”  is 
widespread (Ratcliffe et al., 2016). However, the different thresholds used for these definitions often result 
in the conflicting assignment of locations (Isserman, 2005), causing controversy, for example, over the 
allocation of transportation funding (Federal Transit Administration, 2020). While informative for 
comparing one urban region to another, or locations within urban regions, this urban-suburban-rural 
distinction falls short of providing a comprehensive method to capture nuance across a variety of 
dimensions contributing to differences across location types. Sociologists and demographers have 
emphasized that the urban-suburban-rural definitions commonly used are inadequate to capture variation 
in access to opportunities (van Eupen et al., 2012) or the primary function of the transportation system 
(Lowe et al., 2018). Decades of research has worked to address this limitation and provide nuance and 
complexity to definitions of urban and rural systems, providing a more accurate description of the variation 
within these region types, often through the use of typological methods. These efforts incorporate 
multifaceted aspects of economic and geographic interactions that collectively determine access to 
opportunities. Of particular relevance here are typology efforts that have focused on different spatial scales 
of street patterns and network structures to describe ‘typical’ urban forms at the regional (Angel and Blei, 
2016; Fielbaum et al., 2017; Huang et al., 2007; Sarzynski et al., 2014; Van Der Laan, 1998) or 
neighborhood (Bagley et al., 2002; Song and Knaap, 2007) level. Some research efforts have extended 
this thinking to leverage their typologies to predict neighborhood-level responses to transportation policies 
such as transit investment (Lutin et al., 2008; Nilsson and Delmelle, 2018) in different location types. 
None of these prior efforts, however, have considered both neighborhood and regional aspects of 
development patterns.  
 
Other typologies have been developed specifically to predict travel outcomes, such as mode choice, 
vehicle-miles-traveled, or emissions, as a function of the built environment and street network attributes 
(Bagley and Mokhtarian, 2002; Handy, 1996; McCormack et al., 2012; McIntosh et al., 2014). These 
efforts inform the choice of variables we use in our clustering procedure. However, their methods differ 
in one important way. To the extent these typologies provide meaningful, categorical distinctions, they do 
so to better predict current outcomes, and therefore, endogenize current travel choices. In contrast, we 
develop our typology according to primary determinants of trip generation and the constraints on 
transportation supply, which in turn determine travel demand and costs for different modes. Our intention 
is that this framework provides maximum flexibility, enabling modeling of the potential for locations to 
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respond to different transportation investment strategies, regardless of their previous degree of reliance on 
alternative transportation options. 
 
The transportation-related typologies most relevant to our application are those that have set out to define 
prototypical urban configurations to aid in regional transportation planning, such as Fielbaum et al. (2017), 
Oke et al. (2019), and Thomson (1978). These efforts have demonstrated the value of defining 
representative systems upon which detailed models can be run. The main limitations of typologies such 
as Oke et al., (2019) is that they are defined only for urban systems, rely on current mode shares, and are 
designed specifically to provide inputs to data-intensive, agent-based models. Typologies such as 
Fielbaum et al. (2017), provide an extensive treatment of the spatial pattern of employment centers, but 
omit other important attributes of the urban system. While recognizing the large contribution of these 
papers to the field, we attempt here to expand those approaches to include non-urban regions as well, 
while also omitting current travel outcomes from the definition.   
 
Finally, we draw from research that employs two-stage clustering methods to accommodate both spatial 
and temporal attributes to define not only geographical locations, but also their trajectories over time 
(Delmelle, 2017, 2016; Wei and Knox, 2014). While these approaches provide rich information about 
specific locations over time, they are unable to provide sufficient scope to generate a classification 
approach to compare large numbers of locations with each other. To capture key characteristics for all 
types of locations, we adapt this two-stage spatial-temporal clustering procedure to a bi-level sequential 
spatial clustering procedure that represents every location in the United States, except territories. 
 
3. Defining the transportation system 

Our approach to generate a typology hinges on the conceptualization of location-specific factors that 
underpin determinants of travel demand and costs. Formulating the definition of transportation demand 
and supply constraints requires a recognition that some of these are relevant at a highly localized level, 
and some are shared by a broader region. The motivation for our two-stage, two-level, approach is that 
some factors affect relative cost of using alternative modes, for example, at a highly local scale (e.g., street 
network configurations affecting traffic dynamics and thereby vehicle travel times) while other 
characteristics affect these relative costs at a broader regional level (e.g., transit is only cost-effective in 
regions with a certain population density, and is particularly well-suited to locations with highly 
directional travel flows (Guerra and Cervero, 2011)). We refer to characteristics with higher resolution 
local variation as neighborhood determinants and attributes with relevant variation at the regional-level 
as regional determinants, some of which build from different configurations of neighborhood 
determinants. Importantly, this research focuses on attributes of the built environment and geography that 
are not expected to change in the short run. We thus do not include hyper-local attributes, such as the 
current land use mix or zoning codes.   
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Error! Reference source not found.Figure 1 summarizes the categories of inputs to our typology. 
Broadly, demand determinants capture the rate of trips and factors likely to influence that rate, while 
supply determinants capture the system constraints that reflect the extent to which a location faces 
restrictions in accommodating the demand, including street network structures and topography. The 
demand determinants reflect the exogenous drivers of travel, while the supply constraints—or cost 
determinants—reflect the location-specific exogenous factors mediating the resulting cost of travel, 
including user travel times, system costs, and external costs (or “externalities”) (Applied Research 
Associates, 2018; Batelle, 2019). Together, cost and demand determinants define the transportation 
system within which individuals make travel choices, including where, when, and how they travel. The 
typology developed here is intended to enable subsequent modeling efforts to examine how investment 
strategies interact in different types of locations to influence outcomes in the transportation system. In this 
section, we provide a theoretical overview of our choice of inputs, followed by a detailed description of 
the data available to construct these attributes in Section 4. 
 
 

 
Figure 1 Transportation system and typology structure  

3.1 Neighborhood demand for travel 
Travel demand is jointly determined by trip generation rates and the costs of travel associated with those 
trips. We begin with the premise that neighborhood trip generation rates are the product of population 
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density and employment density. In addition, all else equal, locations with similar macro-economic 
attributes, such as the distribution of employment types, are expected to generate similar travel behavior. 
This relationship has been made especially clear in light of the COVID-19 pandemic, in which different 
employment sectors have vastly different opportunities for telecommuting (Alon et al., 2020). Internet 
access can also eliminate the need to travel for certain activities, such as shopping (Weltevreden, 2007), 
though whether online activities actually decrease total travel demand is far from clear (Jaller and Pahwa, 
2020).  

3.2 Neighborhood costs of travel 
Travel costs comprise user, system, and external costs, and they are jointly determined by standard trip 
attributes, such as distance, as well as the geography, built environment, network attributes along the route, 
and other users in the system. In other words, geospatial attributes constrain the potential transportation 
supply and dictate the costs of travel that users and non-users of the system face. Hence, we consider both 
elements of the system that constrain the potential allocation or expansion of road space (street network 
and geography characteristics) as well as the estimated distribution of travel on the existing infrastructure 
(travel structure).  
 
User costs are costs borne by the traveler. At the most basic level, user costs consist of time and money. 
All travel costs increase with trip length. However, there are important elements that determine variation 
in travel costs for a trip of a given distance. Street network attributes influence travel times for different 
modes, transportation system resiliency, and access to different destinations. For a given straight-line 
distance between and origin and a destination, the number of accessible destinations and time required to 
reach those destinations varies as a function of the density of activities (job density) and the configuration 
of the street network along the route, including road type, and total right-of-way (ROW) available (street 
network). For example, the higher the demand for travel per unit of road space, the higher are the expected 
costs of travel, including travel times, system costs, and external costs. For a given mode and trip distance, 
user costs increase with road grade (Boriboonsomsin and Barth, 2009) and pavement deterioration (Islam 
and Buttlar, 2012; Thigpen et al., 2015).  
 
System costs include capital and maintenance costs of modal infrastructure and are typically paid for fully 
or in part by public entities. System costs, such as ROW allocation and expansion, vary directly according 
to the built environment surrounding the road, such as development intensity, road grade, and terrain, as 
well as the functional class of the roadway (U.S. Federal Highway Administration Office of Highway 
Policy Information, 2016). For example, it may be cost-prohibitive to reallocate ROW on highways with 
full access control to active modes, whereas existing roads with no access control are less costly to 
reallocate. Other determinants of system costs include freight demand, which reduces the effective amount 
of ROW that can be allocated to other modes and increases congestion in the system. Maintenance and 
resurfacing costs, in particular, increase with the level of freight traffic (Bai et al., 2009), owing to the 
significant weight of trucks. The provision of transit services is also typically more expensive in dense 
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locations, but requires a minimum level population and employment density to be viable at all (Guerra 
and Cervero, 2011). 
 
External costs are those imposed by travelers on other users and non-users of the transportation system, 
and may include things such as air pollution, crashes, noise, greenhouse gas emissions, or congestion. For 
a given mode and trip distance, the external costs of travel increase with road grade (Boriboonsomsin and 
Barth, 2009), intersection density (Batterman et al., 2010), pavement deterioration (Wang et al., 2012), 
population density via exposure response rates, and baseline levels of pollution (Goodkind et al., 2019). 
External costs for motorized vehicles also vary with travel speeds (National Academies of Science, 
Engineering, and Medicine, 1995), which are a function of the number of other users in the system 
(population density and freight travel), and functional system of the roadway, which is highly correlated 
with speed limits (U.S. Federal Highway Administration Office of Highway Policy Information, 2016). 

3.3 Regional structure of travel  
Understanding local generators of trips and costs only provides half of the story for understanding the 
impacts of transportation investments. To capture the expected impacts of new transit investments or 
dedicated bicycle lanes, it is also necessary to know how such travel and costs are distributed throughout 
the region. The overall density of the system determines whether a region is able to support high-capacity 
transit, for example. Another important determinant of the applicability of different modes is how 
dispersed travelers are within the region. Polycentricity captures the degree of dispersion of commute trip 
destinations in the region and is widely acknowledged as playing a key role in determining optimal 
transportation infrastructure investments (Angel and Blei, 2016; Schwanen et al., 2001). For example, 
large, fixed-guideway transit modes are most cost-effective in locations where many people travel along 
the same corridor (Pushkarev and Zupan, 1977). The availability of high-resolution data on commute trips 
lends itself to defining polycentricity most often in terms of employment opportunity location or access 
(Anas et al., 1998; Craig and Ng, 2001; Giuliano and Small, 1999; McDonald, 1987; Sarzynski et al., 
2014). In addition to the way that origins and destinations are oriented, it is important to understand how 
travel is dispersed between origins and destinations. For instance, there may be locations in which very 
few people live or work, but which serve as a major corridor between origins and destinations, receiving 
a disproportionately high share of total person-miles-travelled, even if they are not especially important 
trip sources or sinks.   
 
4. Data and Methods 

We capture neighborhood determinants at the census tract level. To accommodate both rural and urban 
areas, we capture regional structure at the Core-Based Statistical Area (CBSA) level, where applicable, 
and county otherwise. Broadly, we cluster census tracts in the first stage based on neighborhood 
socioeconomic, street network, land use, and geography determinants, the output of which we call 
microtypes. In the second stage, we cluster regions according to their polycentricity, travel dispersion, and 



10 
 
 
 

density, the output of which we call geotypes. The final output of this sequential clustering procedure is a 
set of microtypes and geotypes, with each tract assigned to a microtype according to its first stage cluster 
and each county/CBSA assigned to geotype in the second stage clustering. We select inputs to the clusters 
based on existing literature and our guiding conceptual framework, as described in the previous section. 
The remainder of this section describes the data sources used to generate the inputs to the clustering at 
these two stages, falling into the categories summarized in Error! Reference source not found.and 
captured at either the microtype or geotype level. 

4.1 First stage cluster inputs  
The basis for the first stage clusters are 73,056 census tracts as defined by the 2010 census boundaries 
(U.S. Census, 2019b). We omit 266 tracts whose areas are 100 percent water from the first stage clustering 
for a final sample of 72,794 tracts. Some inputs capture aspects of multiple cost categories.  

4.1.1. Travel demand determinants 
Table 1 summarizes the trip generation determinants that enter the first stage clusters. We calculate 
population density as the number of residents per square mile of land area and job density using the number 
of jobs listed in the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD) database 
(U.S. Census Bureau, 2017). We capture the traditional economic sector with the percent of jobs in mining 
and manufacturing, each as a proportion of total private sector employment. In practice, the percent of 
land area made up of agricultural land and the agricultural employment mix are highly correlated, so we 
chose not to include the latter and instead allow agricultural land use to proxy for agricultural employment 
representation. We include job-housing balance to approximate job competition, which mediates trip rates. 
We include the percent of households with broadband access (Federal Communications Commission 
(FCC), 2019) as a proxy for potential trip substitution. Finally, we include a variable called “trip-sink 
magnitude,” which provides an estimate of the relative draw of that census tract, in terms of number of 
work trip destinations divided by work trip origins, drawing on the notion of polycentricity as a function 
of in-flows and out-flows put forth by Sarkar et al. (2020). A location with a trip source magnitude greater 
than one has more work trips that terminate in the tract than work trips that begin in the tract.  
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Table 1 Trip generation inputs to the first stage clusters 

Variable Definition Mean Std. Dev Source 
Population density People per sq. mile   2,097 4,683 U.S. Census Bureau 

(2019a); Dewitz (2019) 
Job density Jobs per sq. mile  964 6,821 U.S. Census (2017); Dewitz 

(2019) 
Pct. jobs manufacturing Pct. of jobs in NAICS 31-33  0.006 0.037 U.S. Census Bureau (2017) 

Pct. jobs mining Pct. of jobs in NAICS 21  0.075 0.135 

Pct. ag land Pct. of area in classes 81 and 82 
(crops, pasture, ag) 

0.12 0.208 Dewitz (2019) 

Jobs-housing balance Jobs per capita  0.9 26.3 U.S. Census Bureau 
(2019a); U.S. Census (2017) 

Trip-sink magnitude 
Number of work trip 
destinations divided by number 
of work trips origins (homes) 

1.357 6.811 U.S. Census Bureau (2017) 

Broadband access Pct. of households with 
broadband access (categorical 
ranging from 1 to 5) 

4.312 0.896 Federal Communications 
Commission (FCC) (2019) 
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4.1.2 Travel costs determinants 
Table 2 summarizes the neighborhood determinant inputs to the first stage clusters capturing user, system, 
and external costs. The largest determinants of user and system costs are derived from the road network 
characteristics. The Bureau of Transportation Statistics National Transportation Atlas Database (NTAD) 
provides detailed attributes of each road link in the country. From these, we include: the distribution of 
road types (e.g., arterials, highways, or local roads), road grade, International Roughness Index (IRI), 
percent of roads with controlled access, and estimates for average annual daily traffic (AADT) of 
combination trucks per lane-mile and the percent of total AADT that is freight traffic per lane-mile of 
ROW in each tract (Bureau of Transportation Statistics, 2018). When road grade data are not available, 
we use average slope, derived from the R packages elevatr and raster. To enable comparability across 
regions, ROW quantities are normalized by population and land area in the clustering inputs (lane mile 
density and lane-miles-per-capita). 
 
ROW represents the existing area available for surface transportation modes to meet travel demand. The 
surrounding terrain provides an indication of how expensive it may be to expand this ROW to meet 
demand. In addition to the NTAD variables, we capture important terrain attributes that constrain future 
transportation supply. The U.S. Geological Survey National Land Cover Database (NLCD) provides the 
amount of impervious surface area, which we use as a proxy for development intensity, and water area of 
each tract (Dewitz, 2019). We capture external costs with characteristics that contribute to exposure rates, 
including population density and the number of criteria pollutants for which a census tract is in non-
attainment status (Environmental Protection Agency (EPA), 2018).  
 
We capture exogenous, location-specific variation in determinants of user costs with inputs that contribute 
to variation in travel time and experiential trade-offs between modes of a given trip.  The street network 
inputs relevant to user costs capture the extent to which location-specific exogenous factors mediate travel 
time for a trip of the same straight-line distance. These inputs include average circuity, dead-end 
proportion, intersection density, self-loop proportion, street density and average street length, from a 
public database of street network attributes (Boeing, 2017). We include a binned distribution of commute 
trip lengths for each tract estimated from the LEHD database (U.S. Census Bureau, 2017) to identify 
locations that might be suitable for micromobility modes.1  
  

 
1 We recognize that commute trips are only a small subset of trips, but trips of other purposes are not available at such a fine 
scale with national coverage.  
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Table 2 Transportation supply constraint inputs to the first stage clusters 

Variable Definition Mean 
Std. 
Dev 

Source 

Non-attainment count 
No. of pollutants for which tract is in non-
attainment status 

0.854 1.438 
Environmental 
Protection 
Agency (2015) 

Pct. water Pct. of area that is water 0.036 0.099 
Dewitz (2019) 

Development intensity  Pct. of area that is impervious 0.281 0.239 

Avg. circuity 
total edge length /sum of great circle distances 
between the nodes indecent to each edge 

1.073 0.06 

Boeing (2017) 

Dead-end proportion proportion of nodes that are dead-ends 0.203 0.114 
Intersection density intersection count / area 34.7 33.3 

Self-loop proportion proportion of edges with single incident node 0.008 0.016 

Street density  Street length (m) / area (km2) 7,287 5,067 

Avg street length 
mean edge length (m) in unidirected 
representation of network 

240 210 

Avg. IRI Mean IRI of all lane miles 202.9 80.1 

Bureau of 
Transportation 
Statistics 
(2018) 

Pct. full access control Pct. lane miles with full access control 0.101 0.183 

Pct. partial access control Pct. lane miles with partial access control 0.041 0.123 

Pct. highways Pct. lane miles of functional system 1 or 2 0.076 0.171 

Pct. ADDT truck 
Percent of total average annual daily traffic that 
is combination trucks 

0.035 0.051 

Truck AADT per lane 
mile 

Avg. combination truck AADT / total lane 
miles 

653 1,264 

Lane mile density Lane miles / area (km2) 6.6 7.6 

Lane meters per capita Lane meters / population 36.4 249.7 

Pct. arterials/collectors  Pct. lane miles of functional system 3,4, or 5 0.231 0.253 

Pct. local roads Pct. lane miles functional system 6 or 7 0.016 0.07 

Avg. road grade 
average road grade of shortest commute trip (or 
average slope if missing) 

1.511 1.112 

(Graphhopper, 
n.d.);  USGS 
(2019); U.S. 
Census Bureau 
(2017) Pct. trips < 1.3 miles 

Distribution of home to work distances  

0.085 0.089 
U.S. Census 
Bureau (2017) 

Pct. trips 1.3 –3 miles 0.111 0.084 
Pct. trips 3–8 miles 0.244 0.109 
Pct. trips > 8 miles 0.559 0.155 
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4.2 Second stage cluster inputs 
A region is defined as a CBSA, when applicable, and county otherwise. Of the 3,142 counties, 1,825 are 
part of one of the 933 CBSAs and the remaining 1,317 counties are included at the county level, for a total 
of 2,250 observations in the second stage sample. While the inputs to the first stage focus on drivers of 
the magnitude of local travel demand and costs, inputs to the second stage clusters capture the spatial 
structure of that travel demand, including patterns of flow and the dispersion of key employment centers 
in the region. Table 3 summarizes the regional determinant inputs to the second stage clustering.  
 
First, we generate a metric of regional commute dispersion using the origins and destinations from the 
LEHD data (U.S. Census Bureau, 2017). Based off of the normalized Herfindahl-Hirschman Index (HHI), 
this measure captures the extent to which commutes linking the origins and destinations flow through 
other tracts within the region. Regional commute dispersion is defined as !! = ∑ $"!#$!

"%& 	, where & indexes 
the region, $"! is the proportion of person-miles traveled (PMT) per lane mile (LM) that tract ' demands 
across all (! tracts in region &. We normalize the HHI, to account for the differing number of tracts in 
each region, to produce a value between zero and one. The HHI is equal to 1 if all demand for person 
miles traveled (PMT) per lane mile is concentrated in a single tract ((! = 1) and approaches zero the 
more uniformly distributed trips are through census tracts. 
 
Next, we derive two inputs to the geotypes from the results of the first stage microtypes. The first input is 
the region’s overall density, defined as the proportion of total census tracts that are in the densest cluster 
from the first-stage output, representing the breadth of the densest areas of the region. While the proportion 
of tracts in the densest microtype is highly correlated with the number of jobs, the dispersion of those jobs 
is important for transportation investments. Hence, we calculate the degree of employment polycentricity 
of each region. We estimate polycentricity by dissolving all spatially contiguous tracts in the first-stage 
cluster with the highest employment density into a single polygon in QGIS. Then we count the number of 
non-contiguous employment centers in each region. The higher the number of non-adjacent polygons of 
microtype 1, the more polycentric is the region.  
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Table 3 Regional structure inputs to the second stage clusters 

Variable Definition Mean Std. Dev Source 
Commute 
dispersion 

normalized HHI of distribution of commute 
PMT per lane-mile in each tract 

0.20 0.30 
US Census 
Bureau (2017) 

Polycentricity # of non-contiguous employment centers 0.65 3.79 
Derived from 
first-stage 
clusters 

Density 
Share of tracts in the region assigned to the 
first-stage cluster with the highest population 
density  

0.018 0.95 

4.3 Factor Analysis 
We conduct factor analysis on the 32 raw inputs of the first stage to remove redundancy in the data and 
improve cluster efficiency (Steinbach et al., 2004). To accommodate the different ranges over which each 
variable is observed, we first normalize the raw inputs using z-scores such that all values are nationally 
relative. We choose to normalize values at the national, rather than regional, level because unlike certain 
socio-demographic variables, such as household income, which are most interpretable in the context of 
their immediate surroundings, the variables in our analysis are selected to facilitate a direct comparison of 
locations at the national level. We then group the initial set of normalized raw variables into a smaller 
number of factors to reduce the number of inputs to the clustering procedure with Exploratory Factor 
Analysis (EFA) using the R package psych. EFA assumes there exists some underlying relationship 
between the raw variables that can be expressed in a condensed structure. Refer to Appendix A for details. 
The factor loadings are obliquely rotated based on the assumption that latent factors are correlated 
(Fabrigar et al., 1999) and extracted using an Ordinary Least Squares (OLS) procedure. We drop 
observations with systematically correlated missing inputs (.8% of the data). We impute missing values 
for the remaining observations with randomly missing inputs (.75% of the data) using median values. 
Parallel analysis suggests that 11–13 factors is optimal to explain the observed variation in the data (Figure 
A.1 in Appendix A). Weighing tradeoffs between variation explained and interpretability with respect to 
travel demand and costs, we select 12 factors.  
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Figure 2 First stage input factors (x-axis) and their loadings (y-axis). Only loadings with values greater 
than .3 are depicted. 

 
Figure 2 depicts the resulting factors (x-axis) and their loadings (y-axis) with an absolute value greater 
than 0.3 for each of the 12 factors uncovered from the EFA process. Loadings with a large magnitude, 
negative or positive, indicate a larger contribution of that input to that factor. These factors are grouped 
according to their relevance to our intended outcomes of travel demand and costs in Table 4.  
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Table 4 Description of factors uncovered 

Factor Components Travel 
Demand 

Travel Costs 
User System External 

Median Trip Lengths trips 3-8 miles X  X     

Job Opportunity high ratio of jobs and ROW per capita X       

Freight high freight demand X X     

Walk/Bike Potential many trips under 3 miles X X     

Network Density 
grid-like, high jobs/population density, high 
ROW coverage 

X X X X 

Job density dense jobs and road coverage X   X X 

Poor Air/Pavement 
high pollution, extensive paved areas, poor 
pavement condition 

  X X X 

Highway high proportion of highways, heavy freight 
traffic 

  X X X 

Steep/Circuity dead-ends, steep roads, low agriculture   X   X 

Long Streets long streets   X     

Self-Loops self-looping streets   X     

Local Roads mostly local roads    X     

 
Most of the driving variation comes from the type and configuration of roads in the network. Except for 
job and population densities, the attributes selected for travel demand do not contribute very significantly 
to any of the factors. Four inputs are surprisingly in their own factor, indicating that there may be no 
underlying structure relating these inputs to the others. As they capture important attributes of the street 
network, we still choose to include them in the cluster analysis. The full loadings for each factor are 
available in Table C.1 of Appendix C. 
 

4.5 Cluster Analysis 
One of the primary objectives of this research is to identify and understand the variation in and co-location 
of transportation-related geophysical and geo-economic attributes of the built environment across the 
country. To do so, we select inputs to the clustering procedure that are known to impact trip generation 
rates and transportation supply constraints, as described in Section 3. In an effort to balance the merits of 
unsupervised clustering approaches with causal inference methods, we intentionally select inputs 
demonstrated to influence the demand for and costs of travel, while using a method that does not require 
defining a structural relationship between the inputs and outputs. Using an unsupervised method allows 
us to uncover heretofore unknown patterns between the inputs, generating new insights with respect to 
how certain attributes known to influence travel might be spatially interdependent.  
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We thus use CLARA, a centroid-based, unsupervised clustering procedure (Kaufman and Rousseeuw, 
1990), with the R package Cluster. CLARA is an efficient extension of the conventional partitioning 
around medoids (PAM) clustering technique. CLARA also accommodates outliers better than other 
centroid-based clustering methods, such as k-means, and works well with continuous variables 
(Swarndepp and Pandya, 2016). We generate clusters using the reduced dataset of 72,469 tracts by 12 
factor scores, the output of the factor analysis. Weighing the results from the silhouette metric (Figure B.1 
in Appendix B) with interpretability of the output, we select six first-stage clusters, or “microtypes.” 
 
As the goal of the second stage clustering is to group locations according to similarity for use in national-
level models, rather than to uncover latent relationships between the inputs, we allow the final set of inputs 
to enter directly into the second stage clustering procedure without any dimensionality reduction. For 
consistency with the first-stage clustering methods, we use the PAM clustering procedure to cluster the 
2,250 regions. The significantly smaller dataset in the second stage does not require the use of the more-
efficient extension of PAM, CLARA. Weighing the results from the silhouette metric and inverse DBI 
(Figure B.1 in Appendix B) with interpretability, we select six second stage clusters. 
 
5. Results 

The first-stage cluster analysis produces six microtypes, labeled 1 through 6, that define all census tracts 
in the U.S according to their geo-economic, geospatial, and street network attributes that contribute to 
travel demand and costs. The second stage cluster analysis produces six geotypes, labeled A through F, 
that define all CBSA and rural counties in the U.S. based on their density, polycentricity, and dispersion 
of person-miles. While it is not feasible to describe in detail the specific attributes of each of the 36 
elements of the resulting typology (six microtypes by six geotypes) in this paper, we highlight some of 
the features that distinguish clusters from each other. Further details are available from the corresponding 
author upon request.  

5.1 First-stage clusters (microtypes) 
Figure 3 summarizes the microtypes. The center of each radar chart in each case represents the minimum 
median value of each factor score observed across all microtypes and the outer ring represents the 
maximum. The values are comparable across charts for each factor.   
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Figure 3 Factor score medians by first stage microtype. The center of each radar chart in each case 
represents the minimum median value of each factor score observed across all microtypes and the outer 
ring represents the maximum. The values are comparable across charts. 
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Microtype 1 is characterized by the highest concentrations of jobs, people, and intersections, and, on 
average, worst air and pavement quality. These areas represent locations with a low ratio of jobs per capita, 
potentially in-part due to the high population density, and the highest external travel costs, also resulting 
from its high population densities, as well as low ambient air quality, and over-utilized pavement. These 
locations are most often in urban centers. Their grid-like street networks and short commute lengths make 
them potentially most amenable to multi-modal transportation. Owing to its high concentration of jobs, 
Microtype 1 is used to denote employment centers for the polycentricity metric in the second stage. 
Microtype 2 represents the second most populous, second densest street networks, and second-shortest 
share of commute trips under 3 miles, with few highways or land dedicated to agriculture. Tracts in this 
microtype are often adjacent to Microtype 1 tracts and do not rank among the highest or lowest observed 
medians of any factors. It has the largest proportion of census tracts in the country (26%). Microtype 3 
has the largest proportion of highways as well as significant freight travel. These locations typically 
represent highway corridors in urbanized areas and may be amenable to the re-allocation of road space to 
long-distance transit modes. Figure 4 depicts the microtype results surrounding the Nashville, TN area, 
and, in particular, the arrangement of microtype 3 (dark orange) Viewed from above, these tracts often 
serve as highway and corridors between urbanized locations. Microtype 4 is characterized by its circuitous 
and self-looping street network. These locations are also the steepest, on average, with very little 
agriculture, few highways, long commute trips, and sparse populations. They experience some of the 
highest costs for capital improvements as well as the lowest access to amenities. Microtype 5 is quite 
similar to Microtype 4, except with fewer dead-ends and somewhat more freight traffic. It represents about 
one-quarter of all census tracts in the U.S. Microtype 6 has the longest average street lengths, highest 
freight demand, highest proportion of median commute trip lengths (3-8 miles), and the highest number 
of jobs per capita, given the low population density in these locations. These tracts tend to cover large area 
with low population densities. By conventional definitions, these locations would be considered the most 
rural. Approximately 11% of tracts are in this cluster. 
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Figure 4 Example microtypes depicting highway corridors (microtype 3) near Nashville, TN.  

 
Compared to existing urban and rural distinctions often used for national transportation planning, the 
microtypes provide significant improvement in explaining the variation within urban areas and rural areas. 
For reference, Figure 5 displays the urbanized area that includes Seattle, WA, defined as a region with a 
population greater than 5,000 individuals (U.S. Federal Highway Administration Office of Highway 
Policy Information, 2016) as well as the census tracts in the greater Seattle, WA area and their microtype 
assignment. While population densities drive a large portion of the variation in the microtypes, outside of 
core downtown areas, the distinction across types is driven more by differentiation in street network 
characteristics and road types. These different representations of network characteristics imply different 
tradeoffs in transportation investment strategies. 
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Figure 5 Urban area boundary (left) and microtype assignment of census tracts (right) in Seattle, WA.  

5.2 Second-stage clusters (geotypes) 
The second stage produces six geotypes, labeled A through F, with the raw inputs depicted in Figure 6. 
The value for polycentricity is normalized for plotting purposes, such that values closer to one represent 
a higher number of employment subcenters. Commute dispersion is the normalized HHI index, where a 
value of zero represents the most dispersed PMT and a value of one represents the most concentrated 
PMT. Geotype A is comprised of the largest, densest CBSAs, with high polycentricity. On average, 
regions in this geotype consist of about 20% employment centers (Microtype 1). Commute travel is highly 
dispersed, with person-miles-traveled spread fairly equally throughout the census tracts in the region. A 
total of 19 regions are in this geotype with no non-CBSA counties represented. Geotype B represents the 



23 
 
 
 

next most polycentric locations, in terms of job density, and includes many of the smaller CBSAs. 
Geotypes C, D, E, and F are defined almost entirely by their relative dispersions of commute travel, as 
they represent regions with few to no dense employment centers. Geotype F has highly concentrated 
travel, owing mostly to the fact that these rural counties have only a handful of census tracts. In line with 
earlier studies of metropolitan commute behavior (Angel and Blei, 2016), we find that a large majority of 
CBSAs (89%) are characterized by polycentric configurations with dispersed travel, Geotypes A, B, and 
C.   
 
 

 
 

Figure 6 Median input values by Geotype. The center line represents the median value observed and the 
bounds of the boxes depict the 25th and 75th percentile. Polycentricity is defined by the number of 
employment centers in the region (values are normalized for plotting). 

Considering the results of the microtypes and geotypes together, we observe patterns of development 
across the U.S. At the regional level, we can identify which locations are amenable to different types of 
existing and emerging modes, for example. Taken together, the microtype and geotype assignment of a 
location with  a high proportion of dense neighborhoods (Microtype 1) and relatively concentrated 
commute travel (Geotypes E, F) could be able to support transit modes such as light rail.  
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Figure 7 Monocentric (left) versus polycentric (right) employment distribution in Milwaukee, WI (left) 
and Los Angeles, CA (right) 

Milwaukee, WI, and Los Angeles, CA each have the same proportion of tracts that are dense job centers 
(Microtype 1 represents 42% of each CBSA region). However, the location of these employment centers 
is highly concentrated in Milwaukee and highly dispersed in Los Angeles (Figure 7). Naturally, larger 
regions will be correlated with higher numbers of employment centers simply because they have more 
census tracts. We consider this correlation acceptable because the spatial units of analysis (CBSA or 
county) roughly capture the full commute sheds for a given location.   
 

6. Discussion 

To our knowledge, this paper produces the first tractable and comprehensive transportation typology of 
all locations across the United States, including locations that are traditionally categorized as both urban 
and rural. In contrast to existing typologies at the neighborhood (e.g. Song and Knaap, 2007) or urban 
level (e.g. Oke et al., 2019; Sarzynski et al., 2014), our typology describes locations in terms of both local 
and regional attributes. It also provides a method to categorize every single location in the U.S., unlike 
other typologies which focus only on urban (Delmelle, 2017) or rural (van Eupen et al., 2012) locations 
at a time. One of the primary benefits of constructing this typology is to enable the possibility of modeling 
plausible transportation scenarios for multiple regions that share common characteristics together. 
Defining our typology in terms of fundamental geo-economic and geospatial factors could allow for a 
model, built from this typology, to increase our understanding of the likely impact of future investment 
strategies on travel demand and supply in different location types. Prior efforts have made considerable 
progress in enabling the micro-level modeling of prototypical transportation systems to examine urban 
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mobility outcomes (Fielbaum et al., 2017; Oke et al., 2019). However, these efforts have been limited to 
identifying prototypical urban locations and have largely ignored variation in rural forms. We extend that 
same concept to include both rural and urban locations and develop a typology for the country as a whole. 
In a similar vein as (Oke et al., 2019), which demonstrated the value of using a prototypical city to 
extrapolate the results of transportation modeling scenarios to other similar cities, our two-level typology 
could be enable a model to be calibrated to observed travel outcomes (e.g. vehicle ownership, mode shares, 
and demographic data) and thereby used to predict outcomes of different transportation investment 
strategies in different location types. This is the objective of future work building from this typology.  
 
There are a few key limitations to our analysis and results. One of the limitations of using an unsupervised 
clustering approach is that we risk losing some of the homogeneity within each cluster, relative to a case 
in which we cluster locations specifically in terms of their explanatory power on travel outcomes. As this 
approach is largely already explored in the existing literature, one of the goals of our work is to identify 
the extent to which such an unsupervised approach can generate meaningful and usable typologies. One 
of the limitations of interpreting our results is their reliance on work trip data. Focusing on work trips to 
define polycentricity and trip lengths ignores trip-chaining and all non-work trips, which systematically 
biases against the travel needs of women, who complete the lion’s share of non-work trips (Boarnet and 
Hsu, 2015).  Researchers are collecting more and more non-work trip data, such as the National Household 
Travel Survey, but there is no existing dataset comparable to the LEHD data for commute trips. Future 
efforts could expand on this research to incorporate non-work travel when defining location types. 
Incorporating information on fuel options and regional energy mixes would also provide insight into the 
energy implications of different transportation investment strategies. 
 

7. Conclusion 

In this paper we set out to create a geospatial typology of the United States that captures both local drivers 
of travel demand and supply constraints as well as the regional structure of travel. We used a two-stage 
unsupervised clustering analysis to define this typology in terms of the structure of their underlying 
factors. We found that U.S. census tracts can be categorized into six microtypes according to their geo-
economic, geospatial, and road network attributes, each with different implications for transportation 
investment and mode choice. We found that U.S. CBSAs and rural counties can be categorized into six 
geotypes that describe the extent of their density, polycentricity, and travel dispersion throughout the 
region. The resulting set of 36 location types provide preliminary prototypical configurations that could 
be used as inputs to or constraints in a model to examine different mobility scenarios.  
 
This typology provides a critical first step toward a national level transportation modeling tool upon which 
the impacts of specific investment strategies on transportation system performance metrics such as travel 
times or accessibility could be examined in different prototypical regions. The similarities captured here 
suggest that key components of travel demand and costs are co-located and can be distilled into relatively 
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few location types. This typology can enable co-modeling or extrapolation of calibrated models from one 
location type to another to leverage relatively sparse, but potentially necessary, modeling data for broader 
regional or national model coverage. Understanding the distribution of commute trip lengths, in 
conjunction with the current strain on existing road space, can enable focused alternative investment 
strategies to increase, for example, micromobility infrastructure, in locations with amenable travel demand 
characteristics. The ability to isolate specific characteristics of every census tract in the nation and to 
identify other locations that share similar characteristics enables the testing of investment strategies to be 
targeted to ensure representation of all types of locations, while capturing critical factors that differ across 
these types of locations. In addition to the typology, this work generated a unique and extensive integrated 
database of heretofore disparate publicly available datasets that can facilitate further analyses. For 
example, city or regional planners, air quality researchers or oversight bodies, transportation safety policy 
makers, among others, could use the database to tailor new typologies with different sets of inputs targeted 
to their applications and use cases. 
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Appendix A. Exploratory Factor Analysis and Parallel Analysis 
EFA creates a representation of the + tracts in terms of their latent response variables that represent the 
underlying structure of the data. The vector of + latent response variables , is defined as , = - + /0 +
1, where - is a vector of variable means, / is an +	 × 	3 matrix of factor loadings, 3	is the number of 
factors, 0 is a 3 × 1  vector of variable scores on each factor (i.e. factor scores), and 1 is an + × 1  vector 
of error terms. The resulting reduced dataset is comprised of	72,794 × 3	 inputs, one column of factor 
loadings for each factor uncovered for each tract. Parallel analysis suggests around 11-13 factors. 

 
 
 
Figure A.1 Scree plot results of parallel analysis 
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Appendix B. Robustness Checks 
We check the robustness of our clusters according to definition and interpretability. Cluster definition 
refers to whether there is meaningful distinction between clusters and sufficient within-cluster 
homogeneity. The Silhouette and Inverse DBI indices in Figure B suggest that the clusters are best defined 
with six to eight groups and the region types with between eight and 10 groups.  

 
Figure B.1 Metrics to select optimal number of microtypes (left) and geotypes (right) 
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Appendix C. Factors and their loadings 

  
Highway 

Network 
Density 

Walk/  
Bike 

Job 
Opps Freight 

Median 
Trips 

Self-
Loops 

Local 
Roads 

Steep/ 
Circuity 

Poor Air/ 
Pavement 

Long 
Streets 

Job 
density 

broadband 0.087 0.076 0.092 -0.067 -0.150 -0.053 0.082 0.029 0.248 0.016 -0.171 -0.081 
pollutant_count 0.081 -0.098 -0.003 0.003 -0.072 0.022 -0.006 -0.019 -0.011 0.489 -0.038 -0.017 
pct_ag_land -0.023 -0.424 0.056 -0.017 0.137 -0.033 0.010 -0.006 -0.339 -0.085 0.292 -0.018 
pct_water 0.001 0.032 0.025 0.023 -0.068 -0.006 0.023 0.014 0.068 -0.167 -0.097 0.021 
dev_intensity 0.019 0.513 -0.015 0.000 -0.063 0.059 -0.038 0.018 -0.149 0.359 -0.131 0.106 
circuity_avg 0.016 -0.094 -0.096 0.024 -0.001 0.014 0.291 0.011 0.480 -0.095 -0.010 -0.017 
dead_end_proportion 0.009 -0.443 -0.064 -0.011 0.026 -0.004 -0.049 0.025 0.445 -0.101 0.026 -0.058 
intersection_density_km -0.054 0.875 0.065 -0.005 -0.009 0.002 -0.027 0.001 -0.020 0.052 0.013 0.026 
self_loop_proportion -0.005 0.002 0.005 -0.001 -0.003 -0.001 1.003 -0.002 -0.009 0.010 -0.002 0.005 
street_density_km -0.024 0.875 0.026 0.002 -0.035 0.016 -0.031 0.001 -0.034 0.017 -0.133 -0.058 
street_length_avg -0.007 -0.197 -0.158 0.076 0.130 0.071 -0.026 -0.033 0.007 -0.073 0.617 -0.028 
pct_jobs_manuf -0.037 0.028 -0.062 0.028 0.072 -0.028 -0.038 -0.011 0.105 -0.016 0.172 -0.008 
pct_jobs_mining -0.006 -0.286 -0.068 -0.008 0.065 0.032 -0.026 -0.017 -0.213 0.008 -0.018 0.036 
avg_iri -0.211 -0.058 -0.006 0.004 -0.114 -0.022 -0.091 -0.099 0.047 0.418 -0.018 0.005 
pct_controlf 0.927 -0.037 0.007 0.003 0.042 -0.006 0.003 -0.112 0.002 0.047 -0.008 -0.003 
pct_controlp -0.033 0.117 0.022 0.004 0.045 0.006 -0.008 0.015 0.013 -0.257 0.071 0.026 
pct_aadt_combi -0.020 0.004 0.005 0.007 0.938 -0.014 -0.003 0.009 -0.004 -0.022 0.036 0.005 
aadt_combi_per_lm 0.467 0.029 -0.044 -0.024 0.469 0.015 0.008 -0.044 0.025 0.077 -0.207 0.018 
lane_miles_sqkm 0.206 0.586 -0.013 -0.028 -0.048 0.036 -0.027 -0.048 -0.059 -0.028 0.026 0.348 
pop_density -0.009 0.398 0.161 -0.039 -0.011 -0.020 0.011 0.012 0.024 0.294 0.256 0.172 
job_density -0.089 0.040 0.008 0.006 0.029 0.003 -0.003 0.022 0.069 0.035 0.022 0.569 
road_grade 0.003 -0.049 0.069 -0.009 -0.012 -0.048 -0.030 -0.022 0.414 0.187 0.097 0.180 
lanemeters_per_capita 0.028 0.078 -0.024 0.795 0.025 -0.008 0.001 -0.013 0.017 -0.009 0.157 -0.091 
jobs_housing_bal -0.010 -0.050 0.044 0.802 -0.022 -0.011 0.000 0.007 -0.010 0.014 -0.127 0.094 
pct_hiway 0.993 0.009 -0.002 0.007 -0.007 0.000 -0.001 -0.112 0.003 -0.032 0.008 -0.005 
pct_local_roads 0.001 -0.010 0.000 -0.004 0.004 -0.001 -0.001 0.901 0.000 -0.006 -0.005 0.007 
pct_mid_roads -0.956 0.001 0.005 -0.005 0.004 0.001 0.001 -0.253 0.000 0.020 -0.012 -0.001 
pct_trips_bin1 -0.053 0.216 0.415 0.015 -0.020 -0.231 -0.011 0.069 0.018 0.160 -0.087 -0.164 
pct_trips_bin2 0.012 -0.082 0.597 -0.029 -0.034 -0.290 -0.016 -0.041 -0.061 -0.110 -0.013 0.108 
pct_trips_bin3 -0.007 0.006 0.072 -0.009 -0.011 0.988 -0.004 -0.001 -0.002 -0.002 0.009 0.004 
pct_trips_bin4 0.000 -0.016 -0.953 -0.010 0.004 -0.173 0.008 -0.007 -0.001 -0.019 0.021 0.018 
trip_sink_mag -0.028 -0.148 -0.086 0.253 0.003 0.053 -0.009 0.019 -0.087 -0.010 -0.185 0.392 

 




