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Abstract
What evolutionary account explains our capacity to reason 
mathematically? Identifying the biological provenance of 
mathematical thinking would bear on education, because 
we could then design learning environments that simulate 
ecologically authentic conditions for leveraging this univer-
sal phylogenetic inclination. The ancient mechanism coopt-
ed for mathematical activity, I propose, is our fundamental 
organismic capacity to improve our sensorimotor engage-
ment with the environment by detecting, generating, and 
maintaining goal-oriented perceptual structures regulating 
action, whether actual or imaginary. As such, the phenom-
enology of grasping a mathematical notion is literally  
that – gripping the environment in a new way that promotes 
interaction. To argue for the plausibility of my thesis, I first 
survey embodiment literature to implicate cognition as con-
stituted in perceptuomotor engagement. Then, I summarize 
findings from a design-based research project investigating 
relations between learning to move in new ways and learn-

ing to reason mathematically about these conceptual chore-
ographies. As such, the project proposes educational impli-
cations of enactivist evolutionary biology.

© 2021 S. Karger AG, Basel

My interest in immediate coping does not mean  
that I deny the importance of deliberation and analysis.  

My point is that it is important to understand the role  
and relevance of both cognitive modes.  

(Varela, 1999, p. 18)

Preamble: Attentional Anchors Grounding 
Mathematical Notions

The reader is kindly invited to partake in a brief activ-
ity that should help us immediately establish some essen-
tial common ground with regards to a key hypothetical 
construct, an attentional anchor, that will be thematic to 
the argument put forth in this paper. Please imagine a 
large L-shape inscribed on your desk. You may wish to 
mark this L-shape on paper, but you need not. The L-
shape is composed of a vertical line and a horizontal line. 
Viewed as a y-axis and x-axis, respectively, this L suggests 
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the first quadrant of the Cartesian plane. Your task is as 
follows. Place the index fingertips of both your left hand 
(LH) and right hand (RH) at the origin (the L’s corner). 
Now, move your LH up/down along the y-axis, even as 
you move your RH right/left along the x-axis, with the 
additional caveat that RH’s distance from the origin is al-
ways double LH’s distance from the origin. In a sense, you 
are asked to move RH twice as fast as LH, thus coordinat-
ing your hands’ motor action simultaneously, orthogo-
nally, proportionately.

Most people find it quite challenging to enact this bi-
manual movement. Yet, as we have learned from the 
mouths of our 10-year-old study participants, perform-
ing this task can be dramatically facilitated if you now 
introduce an auxiliary construction into the activity 
space. Begin by positioning LH and RH at any pair of 1:2 
distances from the origin. Now, imagine a diagonal line 
connecting LH and RH. Notice this diagonal’s acute angle 
with the x-axis. Then, move this imaginary LH-RH di-
agonal connector to the right, all the while keeping its 
angle to the horizontal axis constant. It is as though you 
are dilating a right triangle composed of two legs extend-
ing along the axes and an elongating diagonal as the hy-
potenuse. When we track the eye gaze of people engaged 
in this activity, we note that their attention deflects away 
from their hands and onto the diagonal, as though it is a 
new thing that they are handling. This new phenomenal 
object has inherent properties, such as its length, and it 
has relational properties, such as its angle with the x-axis. 
As you displace this object along a horizontal trajectory, 
you keep its relational property of angularity invariant. 
You are thus self-imposing a constraint on how you may 
move this object. Moreover, you can describe this imagi-
nary object, get another person to perceive it (as I have 
got you to perceive it), see it as part of a larger mathemat-
ical composition (the right triangle), and even copy it 
with a pencil onto paper, measure it, and so on.

How should we think of what you have just experi-
enced and accomplished? Specifically, as you reflect on 
your engagement in this task, what is your phenomenol-
ogy of your own cognitive activity? You were presented 
with a motor-control task. As you attempted to perform 
this task, you may have realized that it was taxing your 
cognitive capacity to coordinate two independent motor 
actions, to the point where it felt that meeting the task re-
quirements might require a different approach. I then of-
fered you instructions for modifying how you were at-
tending to the situation. This new attentional orientation 
toward your immediate environment gave you a new grip 
on the world: Perhaps perceiving the diagonal line let you 

enact the LH-RH 1:2 movement more effectively and 
smoothly.

Hutto and Sánchez-García (2015) call these percep-
tual orientations, which facilitate the enactment of move-
ment, attentional anchors – these orientations selectively 
foreground elements, regions, or other aspects of the en-
vironment to tighten our purposive interactions with the 
world. Attentional anchors may be discovered, as in the 
case of our study participants (Abrahamson & Trninic, 
2015), cued (Liao & Masters, 2001; Newell & Rangana-
than, 2010), as in our orthogonal-lines activity just now, 
or co-constructed (Shvarts & Abrahamson, 2019), as in 
tutorial sessions. Abrahamson and Sánchez-García 
(2016) claim that attentional anchors, while instrumental 
in solving motor-control impasses and thus enabling new 
feats in the physical practices, can also be experienced as 
new ontologies that reveal mathematical patterns, similar 
to the dilating right-triangles in our task. Duijzer et al. 
(2017) used eye-tracking instruments to document the 
variety of attentional anchors that mathematics students 
discover spontaneously as their means of solving biman-
ual motor-control tasks. Bongers et al. (2018) have docu-
mented students creating paper-and-pencil representa-
tions of their attentional anchors, such as drawing the 
imaginary diagonal line, measuring it, and elaborating on 
this construction through arithmetic procedures. Similar 
results have been demonstrated with regards to oth- 
er mathematical concepts, such as geometrical area  
(Shvarts, 2017), trigonometric functions (Alberto et al., 
2019), and parabolas (Shvarts & Abrahamson, 2019).

It thus appears that students can get a first grip on 
mathematical concepts by spontaneously conjuring new 
ways of attending to the environment (Hutto et al., 2015). 
Elsewhere, we have discussed these empirical findings 
from various theoretical perspectives, including ecologi-
cal dynamics, enactivism, constructivism, and sociocul-
tural theory, as these bear on mathematics-education re-
search (for a review, see Abrahamson, 2019). In the cur-
rent conceptual paper, we step back to ask: What are the 
implications of these findings more broadly, with respect 
to epistemological theories of mathematical knowledge? 
At least within the learning environments that we have 
designed and investigated, it would appear that our natu-
ral capacity to improve our grip on the material or vir-
tual environment by changing our perceptual orientation 
toward it could be implicated as our cognitive means of 
first grasping mathematical concepts. To the extent that 
this model is demonstrable more broadly across learning 
environments and concepts, and to the extent that em-
pirical research continues to substantiate this model, one 

D
ow

nl
oa

de
d 

by
: 

U
ni

v.
of

 C
al

ifo
rn

ia
 B

er
ke

le
y 

   
   

   
   

   
   

   
   

   
12

8.
32

.1
0.

23
0 

- 
4/

20
/2

02
1 

3:
28

:4
1 

A
M



Grasp Actually 3Human Development
DOI: 10.1159/000515680

might then consider that the cultural practice of mathe-
matical reasoning coopts the cognitive capacity for im-
proving our perceptuomotor engagement in the environ-
ment. Ancient cognitive wherewithal is thus re-instru-
mentalized to meet emergent cultural needs. The objective 
of our paper is to develop this idea of mathematical cog-
nition as utilizing evolutionarily endowed perceptuomo-
tor capacity.

Objective: Motivating an Evolutionary Account of 
Mathematical Thinking

What do we do when we do mathematics? The thrust 
of this paper is to promote the thesis that mathematical 
thinking, while perhaps a specialized cultural activity, 
draws on mundane cognitive capacity. Mathematical 
thinking draws on our biological species’ cognitive incli-
nation to adapt our attentional orientation toward the en-
vironment to improve the efficacy of our purposive sen-
sorimotor interactions. As such, when we learn new 
mathematical ideas, we use our primordial knack to get a 
better grip on stuff we are handling, whether to eat it, con-
trol it, ply it, or wield it.

I will argue for this position along conceptual, theo-
retical, and empirical veins. The conceptual vein looks to 
the foundations of evolutionary biology to motivate the 
premise that a species’ rarified cognitive skill can evolve 
as a coopting of existing neural architecture. The theo-
retical vein will draw on literature from cognitive devel-
opmental psychology and enactivist philosophy that sup-
ports a view of cognition as constituted in situated, pur-
poseful, multimodal interactions with the environment. 
The empirical vein will draw on analyses of data from 
design-based research studies of mathematical teaching 
and learning that evidence the emergence of attentional 
patterns regulating the motor enactment of complex bi-
manual movement – movement that is then pinned down 
as mathematical structure.

A research problem concerning the origins of mathe-
matical reasoning is worth considering, I maintain, both 
for its apparent intellectual merit and potential broader 
impact. Understanding the evolutionary roots of mathe-
matical reasoning would advance the philosophy and the-
ory of cognitive science, because the answers could in-
form the development of explanatory models accounting 
for qualities, prerequisites, processes, prospects, and lim-
itations of mathematical reasoning. In turn, if we knew 
what this evolved capacity is, what it is for, and how it 
operates “in the wild,” perhaps we could better leverage it 

in the classroom. We could create and facilitate learning 
environments designed to let students exercise and ap-
preciate this natural capacity, so that they can get and use 
mathematical ideas and create their own.

Introduction: Conceptual Rationale for an 
Evolutionary Theory of Mathematical Cognition

In his paradigm-changing On the Origin of Species by 
Means of Natural Selection, Charles Darwin (1859) posits 
the following to account for observed morphological 
variability in organic forms of an avian species distrib-
uted geographically over multiple habitats across an ar-
chipelago.

[T]hese [material organic] parts [are] perhaps very simple in 
form; … then natural selection, acting on some originally cre-
ated form, will account for the infinite diversity in structure and 
function [of the forms] … Any change in function, which can 
be effected by insensibly small steps, is within the power of nat-
ural selection. (pp. 435–456)

More than a century later, Stephen Jay Gould and Elisa-
beth Vrba published in Paleobiology an article that put 
forth the neologism exaptations – species’ biological 
“characters, evolved for other usages (or for no function 
at all), and later ‘coopted’ for their current role” (Gould & 
Vrba, 1982, p. 6). Unlike the more familiar adaptations, 
where “natural selection shapes the character for a current 
use” (p. 5), exaptations coopt biological characters in one 

Fig. 1. A black heron canopy-feeding: the bird coopts its flight-
bound feathers as an embodied parasol casting shadow on water, 
thus greatly improving its sight of any fish below the surface. Hu-
mans perform an analog action when they cup their hand over 
their eyes to shield the sun.
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of two manners: (a) “A character, previously shaped by 
natural selection for a particular function (an adaptation), 
is coopted for a new use”; or (b) “A character whose origin 
cannot be ascribed to the direct action of natural selection 
(a nonaptation) is coopted for a current use” (p. 5) (Fig. 1).

A classic example of Type 1 exaptation is the mutation 
of feathers: originally selected for their thermoregulatory 
function, feathers featured only much later through the 
evolutionary eons in their now-emblematic flight effect 
(Gould & Vrba, 1982). In fact, feathers also play myriad 
non-aeronautic roles that include enhancing hearing, 
producing sounds, snow-sliding, and canopy-feeding: 
some birds who prey on fish raise their plumage above 
their heads as an opaque awning that enshadows the wa-
ter beneath them, thus facilitating their vision under the 
surface that otherwise reflects ambient light (Fig. 1). No-
tably, to configure a canopy serving the fishing function, 
the heron recruits kinesiological forms originally adapted 
for enacting the flight function.1 As such, in order to un-
derstand how a species employs a perceptuomotor capacity 
to accomplish an exapted function, we examine how it ac-
complishes the form’s original vocational function.

Here, I draw an analogy from canopy-feeding, putting 
forth that mathematical reasoning, too, exapts an earlier 
form for a new function. Mathematical reasoning, I pro-
pose, exapts our ancient capacity to adapt our perceptual 
orientation toward the environment, which is what bio-
logical organisms constantly do to improve their physical 
engagement with the environment. This ancient cogni-
tive form was originally selected for, because it functioned 
to promote organisms’ existentially efficacious interac-
tions in the material-biological ecology (Maturana & Va-
rela, 1987/1992). In turn, this ancient form was exapted 
in the service of cultural practices that require attending 
in specialized ways to the environment so as to perceive 
mathematical structures inherent therein, as we demon-
strated in the case of the diagonal attentional anchor. Yet, 
the thesis holds, this cognitive capacity, being exapted, is 
still perceptuomotor, just as perceiving the diagonal line 
served to organize the coordination of bimanual move-
ment. If this thesis is true, then expert mathematical per-
ception, even of static images on blackboards or in text-
books, is cognitively constituted as perceiving-for-acting. 
And we perceive new mathematical structures, because 
we are attempting to move in new ways.

What might all this mean for mathematics education? 
In our earlier exercise, we enhanced your motor coordi-
nation by highlighting for you a new gestalt, the diagonal 
line, which we then framed as bearing mathematical 
meanings. If we are to put this theory to practice, then 
instructional design should simulate for students ecologi-
cally authentic experiences that solicit and accommodate 
ancient biological forms that evolved to tighten our senso-
rimotor grip on the world. To bring about conceptual 
learning, educational activities should present action 
tasks that are designed such that the targeted perceptual 
change comes about as a cognitive solution to a motor 
problem. In turn, introducing educational activities that 
invite students to introspect into their own perceptuomo-
tor phenomenology is an opportunity for a cultural shift, 
whereby we lay bare for students the epistemological ra-
tionales motivating their mathematics curriculum. That 
is, philosophical and theoretical ideas underlying an en-
activist pedagogical design rationale should be made 
transparent to students engaging in these activities. In 
particular, classroom discourse should acknowledge, le-
gitimize, valorize, and leverage our perceptuomotor phe-
nomenology of mathematical reasoning as a collective re-
source for learning. This conclusion would offer radically 
different implications for mathematics education than 
would an epistemological model of mathematical reason-
ing as the amodal generation and processing of abstract 
static entities.

I am scarcely the first to query the evolutionary sourc-
es of cultural practice (Donald, 1991; Malafouris, 2013). 
In this tradition, we will trace the footsteps of Casasanto 
(2010) (see also Jelec, 2014) to consider the evolutionary 
theory of exaptation as an approach to implicating the 
ecological roots of mathematics. The evolved biological 
form of interest in this inquiry is the cognitive capacity 
for adapting sensory perception to organize hands-on 
motor action. It is this capacity, I hypothesize, that en-
ables us to learn mathematical ideas.

Below, I will situate this paper within a tradition of 
form-function scholarship in the research field of cogni-
tive developmental psychology oriented on questions of 
mathematics education.

Form Changes Function in Mathematical Practice:  
A View from Sociocultural Theory

Darwin’s seminal evolutionary model pertains to eco-
logical relations between biological forms and their con-
textual functions. The model thus motivates scholarship 

1 In analyzing “aptations,” Gould and Vrba (1982) associate function with 
adaptations and effect with exaptations. For simplicity, I will use function 
more broadly to include effects, thus designating any apparent ecological 
utility of biological forms, where forms include all genetic organic structures 
or characters (e.g., material organs, neural architecture).
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on characters of anatomy, metabolism, and kinesiology as 
these adapt vis-à-vis ecological constraints on foraging, 
predation, and procreation. Yet one could plausibly ex-
trapolate the form-function principle of natural selection 
as it obtains in primordial flora and fauna to Homo sapi-
ens’ sociocultural phylogeny, including the functional 
evolution of practice-based artifacts taken as forms. In-
deed, Saxe (2012) developed a theoretical model ground-
ed in form-function dialectics as his analytic means of 
investigating gradual adaptive changes in a people’s cul-
tural practices (Fig. 2).

Saxe is a cognitive developmental anthropologist in-
terested in the origin, transformation, and travel of cul-
tural forms. His studies comprise multi-time-scale lami-
nated analyses of historical evolutions in form-function 
relations, where a collective of people adapts its social en-
actment of situated cultural practice amidst shifting eco-
logical contingencies. For example, he demonstrated how 
the Oksapmin people of Papua New Guinea accommo-

dated their indigenous counting practice, which uses 
multiple body parts in tallying the cardinality of a set and 
conducting rudimentary arithmetic, to assimilate fea-
tures of colonial currency they had to engage (Fig. 2; Saxe, 
2012). Notably, the cultural form “fu,” whose utterance 
signifies completion of an embodied tally, relocated from 
the 27th embodied landmark to the 20th, previously non-
descript point, thus assimilating the new currency’s cal-
culus (20 shilling = 1 pound). Later, when the Papua New 
Guinea currency was introduced, the new 2-kina note re-
placed the 1-pound note. Consequently, the function of 
“fu” shifted once more to serve as a multiplicative opera-
tor – “fu” now expressed doubling the value of the 10th 
body tally, the shoulder, which now tallied 1 kina.

A fundamental assumption in evolutionary biology as 
well as in its applications to anthropology is that the orig-
inary function of a form may no longer subsist once the 
form takes on new functions. As the Oksapmin young are 
schooled in now-prevalent Hindu-Arabic base-10 math-

a b

c

d

Fig. 2. Form-function shifts in Oksapmin’s 
27-body counting system. a In Oksapmin 
communities in central Papua New Guin-
ea, the fingers, arms, shoulders, and facial 
features anchor a sequence of 27 enumera-
tive actions – the completion of the 27-
body part enumeration culminates in an 
exclamation of a fist-raised “fu!” (see 
https ://culturecognit ion.com/new-
page-3). b, c Foreign currency, shillings 
and pounds (20 shillings = 1 pound) (b), 
colonized the Oksapmin collective practic-
es of economic exchange; subsequently the 
“fu” cardinal utterance, traditionally 
sounded at the completion of the 27 tally 
process, traveled to the 20th position, 
marking the enumerative completion of 20 
shillings in a pound (c); thus, “fu” shifted in 
function, now marking the 20th body part 
and the equivalent of a 1-pound note, and 
a count of pounds could be expressed as a 
count of “fu’s.” d When Papua New Guinea 
became independent, the country issued a 
new currency in which a 2-kina note was 
the equivalent of a pound, and the 2-kina 
note became a “fu”; subsequently, using the 
body-part name applied to 2-kina notes 
(e.g., a count of three 2-kina notes was the 
equivalent of 6 kina) led to yet a new func-
tion for “fu” – a doubling of the value of a 
body part – thus, shoulder (10th body part) 
followed by “fu” indicated 20 kina or dou-
ble the value of the 10th body part, a new 
doubling function for “fu.”
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ematics, “fu” might still persevere as a cultural form, per-
haps to index a doubling function. This nuanced etymo-
logical exaptation may or may not conserve enactive trac-
es of body-based tallying. Presumably, the cultural form 
“fu” could henceforth function without tacit collective 
reference to its ancestral enactive sources, so much so that 
knowing the history of those previous functions may bear 
little to no pedagogical utility.

In contrast to anthropological examination of cultural 
forms that emerge and transform in social ecologies, the 
current article examines our species’ embodied cognitive 
forms that matured eons before cultural practices or ma-
terial artifacts sprouted in our evolutionary niche (Don-
ald, 1991; Malafouris, 2013). Though tacit and pre-lin-
guistic, ancient enactive forms bear explanatory power in 
analyzing how we approach contemporary tasks, whether 
physical (Wilson & Golonka, 2013), logical (Smith et al., 
1999), or symbolic (Landy & Goldstone, 2007). If we knew 
what ancient embodied cognitive form engenders mathe-
matical insight and how this form functions, we could 
imagine a mathematics pedagogy that fosters the active en-
gagement of this form. I submit that ascertaining the em-
bodied cognitive form of mathematical insight is now 
within our reach. My objective, here, is to frame a re-
search program that develops theories and methodolo-
gies to capture the mechanisms of this putative form. I 
believe this cognitive embodied form is our capacity to 
modify our perceptual orientation toward the environ-
ment to improve our motor engagement.

In the following theoretical section, after a brief framing 
of the research program, I will attempt to defend my hy-
pothesis by drawing on the following ideas: (a) genetic 
epistemology (Piaget, 1968), in particular the notion of 
perceptual routines that emerge through sensorimotor ac-
tivity as a means of guiding motor action; and (b) the phi-
losophy of enactivist cognition (Varela et al., 1991) that 
looks to eschew kneejerk allusions both to representations 
in the head and to objective objects in the environment, 
instead looking to forge an epistemological theory consti-
tuted on intrinsically relational bonds. In a radicalized ver-
sion of this theory (Hutto & Myin, 2013, 2017), perceptual 
attention is proposed as an operational interface between 
self and environment – attention constitutes a sufficient 
construct for building explanatory models of the mind.

Building on these resources, I put forth that we im-
prove our operative grip on the concrete environment by 
adapting our attentional routines toward selected fea-
tures of the environment. These features may be in flux, 
either independent of us or as a direct result of our actions 
on the environment. Though dynamic, these structures 

bear some invariant collective property respecting stable 
relations between their elements – our attentional rou-
tines enable us to engage these dynamic structures. Such 
was the case with the diagonal line: as we moved it, we 
kept it at a constant angle to the horizontal line. It is these 
dynamically invariant perceptual structures, the atten-
tional anchors, I believe, that we think about, with, and 
through when we think mathematically.

Stepping back, this article draws on the construct of 
exaptation to promote a theoretical implication of pri-
mordial biological forms as critical to the task of model-
ing modern cognitive functions. This argumentative 
grammar is grounded in epistemological philosophy, 
which I now outline.

Theoretical Antecedents to a View of Knowing as 
Gripping

How should we think about learning? This section sit-
uates this paper’s pursuit of an evolutionary account for 
mathematical reasoning within a larger research program 
to promote mathematics education through understand-
ing the nature and potential of cognitive development in 
the sociocultural context. A theoretical commitment to 
attentional anchors as critical cognitive vehicles of math-
ematical reasoning motivates efforts both to inquire into 
literatures supporting this view and, through this inquiry, 
to take practical measures toward occasioning opportu-
nities for students to develop attentional anchors relevant 
to the mathematical concepts they are to learn.

The logical premise of any theory of mathematics 
learning is to identify and model biological and ecological 
structures and mechanisms accounting for observed de-
velopmental changes in individuals’ manifest skill. Yet, 
what ontologies of structure and mechanism should we 
examine? What events account for developmental 
change? What should be the unit of analysis in investigat-
ing these events as developmental processes (Araújo et al., 
2020; Damşa & Jornet, 2020) – should we look at a student 
alone or a student in interaction with a teacher and peers? 
Thus, who are the participants in these events, what re-
sources do they draw on, and how is development accom-
plished? To build an evolutionary account of mathemati-
cal reasoning, we must first identify an epistemological 
model that will serve as our theoretical substrate.

This article subscribes to the dialectical approach to 
theorizing teaching and learning (diSessa et al., 2015) – an 
approach that looks to combine the legacies of both Pia- 
get and Vygotsky in theorizing individuals’ construction 
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of cognitive structure as a sociocultural achievement. I 
propose to call this theoretical approach enculturated epi-
genesis, so as to capture and foreground a commitment to 
the complementary lenses of both Piagetian and Vygotski-
an theory. Theories of enculturated epigenesis go beyond 
simplistic Piaget-versus-Vygotsky antinomy (Cole & 
Wertsch, 1996) to model how participating in the guided 
social enactment of cultural practice occasions for learners 
opportunities both to recruit their early developed know-
how and to attribute disciplinary meaning to any new 
structures emerging from these experiences (Abraham-
son, 2009; Flood, 2018; Shvarts & Abrahamson, 2019).

This article also subscribes to transformative approach-
es to theorizing teaching and learning. Stetsenko (2017) 
argues for a historically authentic revisionist reading of 
Vygotsky as rallying societies to promote their own ongo-
ing reconfiguration by means of educating their young for 
revolutionist agency. I propose a view of design-based re-
search as a transformative paradigm that aspires to mobi-
lize positive cultural change by both implicating and tack-
ling problems of pedagogy (Cobb et al., 2003). As such, 
when they engineer experimental responses to problems 
of pedagogy, design-based educational researchers ask not 
what personal resources participants draw on per se when 
participating in the social enactment of curriculum as cur-
rently practiced but – transformatively – what resources 
they should draw on in a revised curriculum. A transfor-
mative orientation to educational practice invites both 
critical evaluation of mainstream curriculum and the in-
novation of design solutions attentive to students’ early 
ways of knowing (Abrahamson & Chase, 2020). As such, 
transformative design straddles the cultural-cognitive 
saddle of enculturated epigenesis to ask both “What are 
students to know?” and “What personal resources could 
we tap so as to foster this knowing?”

Yet what are these alleged personal resources that edu-
cational innovators hope to tap? That is, as we design 
learning environments, including media, tasks, and fa-
cilitation protocols, what “principles of biological cogni-
tive systems” (Glenberg, 2006, p. 271) should we cater to? 
This section overviews two intellectual strains, construc-
tivism and enactivism, to argue that they converge on a 
similar epistemological account of knowledge as situated 
coping routines that emerge from purposeful interaction 
with the environment. This interactionist account of 
knowledge, I claim, could inform which principles of bio-
logical cognitive systems design-based researchers ought 
to solicit to engage students in learning activities that are 
to ground mathematical concepts. Specifically, mathe-
matics learning environments should draw on students’ 

innate cognitive capacity to improve their sensorimotor 
engagement with the environment (Abrahamson & 
Trninic, 2015; Nathan & Walkington, 2017; Ottmar & 
Landy, 2017). Reframed from the viewpoint of evolution-
ary biology, mathematics educators should tap cognitive 
forms governing our pervasive capacity for perceptuomotor 
enactment of ecologically coupled movement. It is these 
ancient organismic forms, I maintain, that humanity ex-
apted to function in beholding, apprehending, and ma-
nipulating mathematical objects and, as such, it is these 
forms that educational practice should draw on for stu-
dents to ground their mathematics learning.

Genetic Epistemology and Radical Constructivism

Piaget’s grand research program, genetic epistemolo-
gy, purports to model how genotypical material potenti-
ates phenotypical intelligence. In Genetic Epistemology, 
Piaget (1968) explains human cognitive ontogenesis as an 
epigenetic developmental process. Humans begin life 
without any innate knowledge per se but with an innate 
capacity to learn through interaction. Namely, learning 
transpires through and for interacting with the environ-
ment. Knowledge, as such, is not a representation of 
things as they are. Rather, knowledge – or, better, know-
ing – is inherently an actionable capacity to interact with 
the environment when the environment appears appro-
priate for those actions.

Knowing does not really imply making a copy of reality but, 
rather, reacting to it and transforming it (either apparently or 
effectively) in such a way as to include it functionally in the 
transformation systems with which these acts are linked. (Pia-
get, 1968, p. 6)

When an organism engages the environment as ame-
nable for acting upon in some particular way, the organ-
ism is perceiving the environment: the organism is attend-
ing to the environment as soliciting particular motor ac-
tion. Through exploration, pruning, and tuning, this 
manner of attending stabilizes – it has become formed or 
constructed as a cognitive structure, and it will more like-
ly guide future encounters of similar purpose and in sim-
ilar context. Perceptual construction of the sensory man-
ifold is not arbitrary but, rather, intentional, contextual, 
selective, and synthetic. The act of perceiving is the or-
ganism spontaneously devising and organizing a for-ac-
tion readiness toward the environment. Importantly, per-
ception is not “in the head,” just as it is not “in the world.” 
Rather, perception is intrinsically relational, an ad hoc 
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subjective sensorimotor configuration that solicits, stag-
es, and guides interaction. Perception is the situated in-
stantiation of knowing (Turner, 1973). In turn, perceptu-
ally guided interaction is where learning transpires: inter-
action shapes and modifies cognitive coordinations 
between apparent environmental structure and possible 
motor behavior. Piaget calls this coordination an action 
schema. This malleable functional form of knowing is the 
crucible of intelligence.

Importantly, whereas biological capacity to apply ac-
tion schemata is innate, the action schemata themselves 
are to develop through the individual’s sensorimotor in-
teractions.

[Actions] reproduce themselves exactly if there is the same in-
terest in a similar situation, but they are differentiated or else 
form a new combination if the need or the situation alters. We 
shall apply the term “action schemata” to whatever, in an ac-
tion, can thus be transposed, generalized, or differentiated 
from one situation to another: in other words, whatever there 
is in common between various repetitions or superpositions of 
the same action … [M]ost schemata, instead of corresponding 
to a complete inherited apparatus, are built up a bit at a time, 
and even give rise themselves to differentiations, by adaption 
to a modified situation or by multiple and varying combina-
tions. (Piaget, 1968, pp. 7–8)

Thus, as an infant begins to grip objects, the multi-
modal perceptual spectrum of grippable things expands 
the morphological-kinesiological span of actionable grip-
ping capacity. In Piaget’s terms, the sensorimotor grip-
ping schema accommodates through-and-for assimilat-
ing the sensory display as prehensible. The gripping form 
progressively fields objects that vary in color, size, shape, 
heat, texture, weight, orientation, and so on.

Still, there is an epistemic gap between doing and 
thinking, or, if you will, there are different ways of know-
ing: the objects we grip are not initially objects we can 
reflect on. For the pre-reflective mind, per Piaget, even as 
we attend to the environment, we do not initially parse it 
as things – we have not yet objectified the objects we are 
engaging. Rather, as similarly theorized in various strands 
of phenomenological philosophy that elaborate on Franz 
Brentano’s notion of intentionality, the acting mind tac-
itly perceives objects as psychological objectives of motor 
intentionality (Dreyfus & Dreyfus, 1999; Merleau-Ponty, 
1964), as perceptual-functional types mediating inten-
tionality (Husserl, in Boer, 1978), or as ready-to-hand fac-
ets of dasein, namely, immersed intentionality (Hei-
degger, 1962). Objects of pre-reflective motor intention-
ality (Sheets-Johnstone, 2015) change their ontic status, 
when we step back from operating on or through them 

and, instead, attend to them in a reflective epistemic 
mode (Koschmann et al., 1998). “[I]t is during break-
downs that the concrete is born” (Varela, 1999, p. 11). Yet 
one need not wait for breakdown to reflect on what we are 
manipulating – through appropriate training, mindful at-
tention to the immersing environment can be solicited 
deliberately (Petitmengin, 2007).

Inspired more so by Piaget’s theory of genetic episte-
mology than by his cognitive developmental psychology 
studies per se, and building on von Glasersfeld (1987), rad-
ical-constructivist scholars of mathematics education have 
sought to hone core principles of Piaget’s theory and apply 
these principles in modeling the development of mathe-
matical concepts. These clarifications of Piaget’s theory in-
sisted that whereas Piaget implicated interaction as the 
source of intelligence, he denied that what we learn about 
the world could be viewed as a representation of the world. 
Explicitly, they argued for an “interactionist but not repre-
sentationalist view of mathematical knowing and teach-
ing” (Steffe & Kieren, 1994, p. 728). This view inveighs 
against “Cartesian anxiety” yet concedes that, nevertheless, 
these interactionally borne non-representationalist objects 
of knowing come forth as bona fide mathematical objects 
through social interaction, namely “languaging” (pp. 723–
724). Ergo, radical constructivists are sanguine about the 
prospects of theorizing enculturated epigenesis.

Yet what might a truly radical-constructivist pedagogy 
look like? How would mathematics educators assemble a 
learning environment that fosters mathematics knowing 
founded on engaging motor intentionality prior to lan-
guaging these experiences? That is, what curriculum 
could solicit our species’ paleobiological forms that have 
been exapted for mathematical reasoning? Before ad-
dressing this question, we will now briefly discuss anoth-
er intellectual strand that, though rising from a conflu-
ence of cognitive science and Buddhist philosophy, shares 
with genetic epistemology and phenomenology an impli-
cation of cognition as rooted in sensorimotor activity.

Enactivism

Increasingly, since the closing decades of the 20th cen-
tury, cognitive science has been undergoing an embodied 
turn (Nagataki & Hirose, 2007). This embodied turn, as-
serts Varela (1999), is exemplified in the enactivist thesis.

[T]here are strong indications that within the loose federation 
of sciences dealing with knowledge and cognition – the cogni-
tive sciences – the conviction is slowly growing that […] a rad-
ical paradigm shift is imminent. At the very center of this 
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emerging view is the conviction that the proper units of knowl-
edge are primarily concrete, embodied, incorporated, lived; 
that knowledge is about situatedness; and that the uniqueness 
of knowledge, its historicity and context, is not a “noise” con-
cealing an abstract configuration in its true essence. The con-
crete is not a step toward something else: it is both where we 
are and how we get to where we will be. (p. 7)

He then defines the essence of embodied cognition:

Embodied entails the following: (1) cognition dependent upon 
the kinds of experience that come from having a body with 
various sensorimotor capacities; and (2) individual sensorimo-
tor capacities that are themselves embedded in a more encom-
passing biological and cultural context. (p. 12)

Homing into a distinctive thesis of the enactivist ap-
proach, Varela (1999) asserts the following, which speaks 
to the ecological fit between the organism and the envi-
ronment it may perceive:

In the enactive approach reality is not a given: it is perceiver-
dependent, not because the perceiver “constructs” it as he or 
she pleases, but because what counts as a relevant world is in-
separable from the structure of the perceiver. (p. 13)

In particular, Varela explains, “what counts as a relevant 
world” is contingent on the organism’s goal in interacting 
with the environment, namely what the organism is at-
tempting to actuate.

[P]erception does not consist in the recovery of a pre-given 
world, but rather in the perceptual guidance of action in a world 
that is inseparable from our sensorimotor capacities. (p. 17)

Critically for our discussion of grasping mathematical 
objects, Varela (1999) believes that “‘higher’ cognitive 
structures also emerge from recurrent patterns of percep-
tually guided action” (p. 17). Not unlike Piaget, Maturana 
and Varela (1987/1992) sought to build an ambitious the-
ory of human cognition, including “higher” cognition, on 
an evolutionary implication of organisms’ sensorimotor 
adaptive capacity. Indeed, enactivists appreciate parallels 
between their project and genetic epistemology:

By studying how children shape their worlds through sensori-
motor actions, [Piaget] has done nothing less than study how the 
constitution of a perceptual object is grounded in ontogeny. 
Piaget successfully introduced the notion that cognition – even 
at what seems to be its highest level – is grounded in the concrete 
activity of the whole organism, that is, in sensorimotor coupling. 
In short: the world is not something that is given to us but some-
thing we engage in by moving, touching, breathing, and eating. 
This is what I call cognition as enaction since enaction connotes 
this bringing forth by concrete handling. (Varela, 1999, p. 8)

Yet, enactivists posit that their epistemology improves 
on Piaget’s. Enactivist reading of Piaget queries his cogni-
tive construct of a schema, as though it is an insufficiently-
radical still-in-the-head ontology, whereas enactivist 
knowing is a systemic expression of the organism-envi-
ronment intrinsically relational duality (for a similar dis-
missal of Piaget, see de Freitas & Sinclair, 2014; for a rebut-
tal, see Abrahamson et al., 2016b, pp. 240–241; Turner, 
1973). As such, enactivism would be more akin to eco-
logical psychology, albeit the jury is still out on that alleged 
kinship (Di Paolo et al., 2021). Notwithstanding, in sifting 
through these theory innuendos, one can discern a conflu-
ence of genetic epistemology and enactivism:

In a nutshell, the enactive approach consists of two points: (1) 
perception consists in perceptually guided action and (2) cog-
nitive structures emerge from the recurrent sensorimotor pat-
terns that enable action to be perceptually guided. (Varela et al., 
1991, pp. 172–173)

As such, enactivists would plausibly advocate for educa-
tional practice where students participate in perceptuomo-
tor activities that occasion the emergence of conceptually 
critical cognitive structures (Hutto et al., 2015). Indeed, 
that enactivist philosophy could bear on transformative ed-
ucational research is not lost upon its evangelists. In the 
words of enactivist epistemologist Petitmengin (2007):

[A]re our teaching methods well adapted? For at present, teach-
ing consists in most cases of transmitting conceptual and dis-
cursive contents of knowledge. The intention is to fix a mean-
ing, not to initiate a movement. Which teaching methods, in-
stead of transmitting contents, could elicit the gestures which 
allow access to the source experience that gives these contents 
coherence and meaning? Such a teaching approach, based 
more on initiation than transmission, by enabling children and 
students to come into contact with the depth of their experi-
ence, could re-enchant the classroom. (p. 79, original italics)

This enactivist gauntlet to pedagogy was historically 
picked up by Pirie and Kieren (1989, 1992, 1994), mathe-
matics-education researchers who sought to implicate an 
alleged “primitive knowing,” namely, sensorimotor dy-
namic-imagistic know-how, as structuring students’ rea-
soning about formal concepts (for reviews, see Reid, 2014; 
Simmt & Kieren, 2015). And while, perhaps, disagreeing 
on nuances of theory, enactivist math-ed researchers jour-
ney on a not-too-dissimilar path as their neo-Piagetian 
colleagues (Arnon et al., 2013; Kazunga & Bansilal, 2020). 
They all seek to foster mathematics learning through con-
crete or virtual sensorimotor experiences (Sarama & Cle-
ments, 2009). They all conceptualize cognitive structures 
coming forth from perception-for-action, namely, the ac-
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tion of manipulating the environment. Thinking is engag-
ing the environment, whether that which we are handling 
is concrete, virtual, imaginary (MacIntyre et al., 2019), or 
some combination thereof (Hutto & Sánchez-García, 
2015; Kirsh, 2013; Liao & Masters, 2001).

We have surveyed constructivist and enactivist theory 
of conceptual learning. These positions all agree that “cog-
nitive structures emerge from the recurrent sensorimotor 
patterns that enable action to be perceptually guided” (Va-
rela et al., 1991, p. 173). These cognitive structures are im-
puted to encompass “higher” forms of cognition, such as 
mathematical notions. We thus submit that comprehend-
ing mathematical objects is constituted in prehending per-
ceptual structures. That is, individuals’ experience of com-
ing to grips with a mathematical idea is phenomenologi-
cally similar to that of gripping the environment in a way 
that promotes efficient interaction – in both cases, what is 
at stake is figuring out how to attend to the actual or imag-
inary percept so as to operate it in accord with one’s objec-
tives, as in the case of the diagonal line. As such, for any 
mathematical concept, the phenomenology of reasoning 
about it is grounded in a particular perception-for-action. 
Yet for this theoretical conviction to become a pedagogi-
cal reality, we further submit, educational designers must 
determine which specific perception-for-action could un-
derlie the particular mathematical notion they are target-
ing; in turn, one must then determine which actions could 
give rise to that perception-for-action; next, one must cre-
ate an activity that would elicit that action; and finally, one 
must devise a means for students to signify their emergent 
cognitive structures as mathematically meaningful (Abra-
hamson, 2014; Abrahamson et al., 2020, in press).

We now turn from the conceptual and theoretical sec-
tions of this paper to the empirical section, where we will 
demonstrate our thesis in the context of an embodied-
design research project that seeks to create for students of 
mathematical concepts “source experience that gives 
these contents coherence and meaning” (Petitmengin, 
2007, p. 79). This project, we argue, solicits students’ ex-
apted capacity to form new perceptions-for-action that 
rise to the concrete as cognitive structures cultivated into 
mathematical ontologies.

Evidence: Findings from Design-Based Research on 
the Mathematics Imagery Trainer

Inspired by the embodied turn in the cognitive scienc-
es, in particular by radical-constructivist and enactivist 
theories of epistemology, the Embodied Design Research 

Laboratory at the University of California, Berkeley has 
been evaluating a theoretical view of mathematical rea-
soning as grounded in perceptuomotor activity (Abra-
hamson, 2019). Operating as a design-based research 
program, the objective has been to foster, document, and 
analyze students’ multimodal phenomenology of devel-
oping perceptuomotor capacity to enact movement forms 
that instantiate mathematical concepts (Abrahamson & 
Trninic, 2015). For example, raising both hands such that 
they move at different speeds instantiates proportional 
equivalence. Understanding a mathematical concept, as 
such, would be predicated on figuring out how to move 
in a new way – if you can’t move it, you don’t get it – and 
yet, to move in a new way, you must perceive the environ-
ment in a new way (Abrahamson & Sánchez-García, 
2016).

Perception is both necessary and sufficient for effect-
ing motor action. Empirical research on perception, ac-
tion, and cognition (Mechsner, 2003, 2004; Mechsner et 
al., 2001) has demonstrated the pivotal role of perception 
in organizing the enactment of complex motor action. 
This body of research rejects prior beliefs that the devel-
opment of manual skills depends on improving motor 
coordination. As such, Mechsner’s persuasive empirical 
research suggests that our theorization of physical-skill 
learning should shy away from modeling a would-be mo-
tor coordination as the learning objective, instead looking 
to the individual’s apprehension of previously unattend-
ed perceptual gestalts as discovered ways of orienting to 
the environment.

From Perception-for-Action to Mathematical 
Signification

Our research program does not mitigate the role of 
symbolic registers in mathematical practice (Ernest, 
2008). Rather, the program seeks to explain the micro-
process of mathematics learning as two-stepped (Abra-
hamson, 2015): (a) developing a new perceptuomotor ca-
pacity (primitive knowing, Pirie & Kieren, 1992, 1994; a 
pre-symbolic notion, Radford, 2013; know-how, Ryle, 
1945; a concept image, Tall & Vinner, 1981; immediate 
coping, Varela, 1999; a theorem-in-action, Vergnaud, 
2009); and then (b) re-perceiving the movement form 
with respect to disciplinary frames of reference – that is, 
analyzing, modeling, and describing the form using quan-
titative measures and arithmetic routines to depict its 
constituent components, calculate relations between the 
components, determine invariant properties of the dy-
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namic form, and extrapolate descriptors of the form’s po-
tential manifestations beyond the immediate context of 
the particular activity’s situated constraints (Abraham-
son et al., 2011). As such, the design program abides with 
the thesis that all knowing begins from movement (Sheets-
Johnstone, 2015), including mathematical knowing.

Along the designed process of enculturated epigenesis, 
a critical pedagogical phase is the mathematical significa-
tion of perceptual forms, similar to speaking of the diago-
nal line and viewing it as a hypothenuse. As will soon be 
exemplified, this process begins in our activities, when 
the teacher introduces supplementary resources into the 
students’ working space (Abrahamson et al., 2012; Flood, 
2018; Shvarts & Abrahamson, 2019). In particular, the 
teacher may introduce symbolic artifacts – rudimentary 
mathematical tools, such as a grid, which, laid onto the 
working space, could potentiate a Cartesian coordinate 
plane onto an otherwise continuous space. Initially, stu-
dents recognize in these new resources utilities for getting 
the job done according to the original activity task – 
whether to facilitate their performance of a challenging 
bimanual coordination or to better enable them to moni-
tor and discuss their strategy. But, in the course of appro-
priating these new resources into their perceptuomotor 
attentional routines, the students become dependent on 
these resources for enacting movements and reflecting on 
this enactment. The resources, which initially serve unre-
flective doing, thus emerge as frames of reference for re-
flective mathematical practice. Consequently, features of 
dynamic enactment become pinned down as specified 
static locations that can be named and measured. It is thus 
that moving in a new way becomes the grounding refer-
ent of a new mathematical concept.

The Mathematics Imagery Trainer

The empirical context for this research program to 
evaluate mathematical reasoning as perceptuomotor ca-
pacity is centered on a type of learning environment 
called the Mathematics Imagery Trainer (hence, “the 
Trainer”). The Trainer can be conceptualized as what 
Reed and Bril (1996), combining their respective perspec-
tives from ecological psychology and intercultural devel-
opmental psychology, call a field of promoted action, that 
is, a socio-material space that occasions opportunities for 
novices to develop culturally valued dexterity through en-
countering and overcoming staged motor-control prob-
lems. As a field of promoted action, the Trainer consti-
tutes an activity architecture where students learn to 

move in new ways through attempting to perform a mo-
tor-control task that requires developing new perceptions 
of the environment (Abrahamson & Trninic, 2015): to 
move in a new way, you need to perceive in a new way 
(Mechsner et al., 2001).

Working with the Trainer, students face the task of 
manipulating selected features of the environment so as 
to effect a goal state, such as causing a screen to turn 
green. There are many ways to effect the Trainer’s goal 
state, and students must figure out how to move while 
keeping the Trainer consistently in its goal state. By way 
of analogy, imagine you are participating in a most pecu-
liar salsa lesson, where all the instructor does is let you 
know whenever your body is positioned appropriately – 
you would need to “dot-to-dot” from one correct position 
to the next, until you figure out the overall choreography, 
at which point you will no longer need the teacher.

As Trainer students explore how to move smoothly “in 
green,” they increasingly self-impose constraints on their 
degrees of freedom, so that their movement increasingly 
approximates the task’s targeted form (Abrahamson & 
Abdu, 2020). Reflecting on this new know-how, students 
articulate how one should move to perform the task. In 
so doing, students refer to the perceptual patterns they are 
attending to. These attentional anchors often combine 
actual and imaginary percepts into a gestalt. For example, 
in raising their hands such that the hands move at differ-
ent speeds, students often report they are attending to the 
spatial interval between their hands – they increase this 
interval as they raise their hands. In response, the activity 
facilitator introduces mathematical instruments into the 
movement space, such as a grid. Students perceive in 
these instruments potentials for enhancing the enact-
ment, evaluation, or explanation of their movement strat-
egy. Yet in the course of utilizing the instruments’ per-
ceived affordances, the students shift into mathematical 
perceptions, where the instruments become frames of ref-
erence (Abrahamson et al., 2011). For example, students 
who have explained that they are simultaneously raising 
and increasing the interval between their hands will now 
shift into a motor-action plan using the grid lines as in-
terim destinations: they raise their hands sequentially by 
different increments, with one hand rising in larger incre-
ments than the other, which results in an increasing in-
terval between the rising hands (Fig. 3).

We have now come full circle back to the activity that 
gives rise to the spontaneous apprehension of a diagonal 
line that one imagines as a means of coordinating a com-
plex bimanual movement. Eye-tracking studies (Duijzer 
et al., 2017) have corroborated data from our semi-struc-
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a

b

tured clinical interviews (Abrahamson et al., 2011): to 
solve Trainer motor-control problems, students sponta-
neously generate new perception-for-action gestalts 
(Mechsner, 2003), the attentional anchors. Recall that an 
attentional anchor is a perceptual orientation toward the 
environment that enables the enactment of a goal move-
ment by guiding the coordinated generation of constitu-
ent motor actions. Whether discovered or taught, atten-

tional anchors constitute cognitive solutions to motor-
control problems. Students refer to these constructed 
figments as bona fide objects they are manipulating. Fig-
ure 3 presents a sequence of screenshots featuring a typi-
cal behavior in Trainer activities. In this Mathematics Im-
agery Trainer for Proportion, the Orthogonals activity, 
which was engineered and trialed by Abrahamson’s 
Dutch collaborators, students are to maintain their screen 

Fig. 3. a Lars, a 14-year-old low-tracked prevocational education Dutch student, gestures an imaginary diagonal 
line connecting his projected points of contact on the axes. b Lars uses an emergent attentional anchor to guide 
proportional bimanual coordination: he is keeping parallel the imaginary line between his fingertips.
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green by simultaneously moving their LH up/down and 
their RH right/left, that is, along orthogonal axes (Fig. 3; 
Abrahamson et al., 2016b). The screen is green when the 
hands’ respective distances from the bottom-left origin 
point relate by the unknown ratio, here 1:2. Similar to nu-
merous other students, Lars spontaneously discerned and 
described an imaginary diagonal line connecting his LH 
and RH index fingers (Fig. 3a). Lars maintains green by 
moving this imaginary diagonal line to the right, taking 
measures to keep it at a constant angularity to the base 
axis (Fig. 3b).

Across several Trainer evaluation studies for different 
mathematical domains, we are consistently gathering 
empirical data supporting the intriguing finding that at-
tentional anchors emerge spontaneously as students’ per-
ceptual solution to the motor problem of coordinating 
the enactment of complex, often bimanual movement 
forms in our designed activities. The activity then occa-
sions for students, like Lars, guided opportunities to re-
flect on how they are attending to the sensory manifold 
as they move their hands and to verbalize and draw these 
images. In sum, perception-for-action rises from the sen-
sory manifold in the service of moving effectively in a 
field of promoted action, to become the cognitive struc-
ture of mathematical reasoning. As we have suggested, 
these nuanced sensations of immediate coping are ini-
tially ineffable yet, through appropriate guidance, can 
come forth as apprehensible experience that is accessible 
to conscious reflection and languaging (Morgan & Abra-
hamson, 2016, 2018). As such, Trainer studies demon-
strate the plausibility of theorizing our phenomenology 
of mathematical objects as action-oriented perceptions of 
the environment. Mathematical reasoning, thus, can be 
designed so as to draw on an action-oriented perceptuo-
motor mechanism that, I believe, is the very same mecha-
nism that evolved for interacting with the natural envi-
ronment. It is in this sense that mathematical practice 
exapts an ancient cognitive capacity.

Conclusion

[T]he roots of logical thought are not to be found in language 
alone, even though language coordinations are important, but 
are to be found more generally in the coordination of actions. 
(Piaget, 1968, p. 18)

Ontologically, mathematical objects are imaginary 
and intangible, yet, phenomenologically, mathematical 
objects are concrete for those who handle them (Wilen-
sky, 1991). Mathematical reasoning, like any other form 

of reasoning, draws on cognitive capacity that originally 
evolved in the service of motor action (Melser, 2004). 
Mathematical reasoning draws on the same cerebral pro-
cesses as motor action, so that, neurally, mathematical 
objects are treated as prehensible ontologies (McGil-
christ, 2012). Like the black heron who exapted aerial ki-
nesiology for aquatic predation, so, this paper has argued 
through theoretical consideration and empirical evi-
dence, humanity exapted for mathematical practice its 
ancient ecologically adaptive capacity to formulate ac-
tion-oriented sensory perceptions of the environment.

Still, this has been an argument about enculturated 
epigenesis, so how does culture figure in? When we study 
a mathematical concept, as in the case of the Mathematics 
Imagery Trainer, the concept is not objectively new. The 
concept has pre-existed us as a cultural legacy embedded 
in ongoing goal-oriented practice, just like the case of ma-
terial artifacts, such as any mundane utensil we learn to 
use. And similar to operating material objects, in learning 
mathematics we need to learn how to move in a new way 
that achieves our task objective while satisfying the inter-
action constraints imposed by the cultural forms we en-
gage. As such, humans endow legacy skills through en-
gaging the young in guided activities using cultural arti-
facts, whether these are material or immaterial forms 
(Malafouris, 2013; Rogoff, 1990; Saxe, 2012; Tomasello, 
2019). Thus, on the one hand, the literatures of ecological 
perception (Gibson, 1966, 1977; Turvey, 2019) and move-
ment science (MacIntyre et al., 2019) assert that all organ-
isms share the capacity to develop action-oriented per-
ceptions of the environment, which is how we learn to 
move in new ways. Yet, on the other hand, human civili-
zation’s existential, material, and social circumstances, 
co-constituted with our species’ evolving cognitive-lin-
guistic capacities, have occasioned us opportunities to 
hone this perceptual phenomenology into non-arbitrary 
“things” that we language forth into our discourse, in-
scribe onto our environment, and thus distribute over ar-
tifacts, people, and time. We thus come to partake skill-
fully in cultural practice, including its action and dis-
course.

Mathematical objects are the stuff that mathematical 
practice is ultimately about – they are the symbol-
grounding referents (cf. Harnad, 1990). Mathematical 
practice elaborates formally on these pre-symbolic no-
tions (Radford, 2013): bringing them forth through ac-
tion and gesture into language (Roth, 2014), framing and 
imbuing them with new meanings (Bartolini Bussi & 
Mariotti, 2008), and converting and treating them 
through cascades of inter-signifying semiotic registers 
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(Duval, 2006). This referential duality of mathematical 
concepts – as action and symbol, that is, as encompassing 
multimodal image schema in tandem with their formal 
definitions and semiotic presentations – has been dis-
cussed by mathematicians (Davis & Hersh, 1981; Tao, 
2016), ethnographers of mathematical practice (Hada-
mard, 1945), and educational researchers (Nemirovsky 
& Ferrara, 2009; Presmeg, 1992; Schön, 1981; Sfard, 1991; 
Tall & Vinner, 1981). Indeed, it has never been my inten-
tion to shrug the colossal semiotic cathedral of mathe-
matical praxis. To wit, following Varela (1999), “My in-
terest in immediate coping does not mean that I deny the 
importance of deliberation and analysis. My point is that 
it is important to understand the role and relevance of 
both cognitive modes” (p. 18). Focusing on immediate 
coping, this article has been concerned with perceptuo-
motor orientations to the environment that give rise and 
lend meaning to mathematical thinking. Thus, the bio-
logical form I have proposed as undergirding mathemat-
ical cognition bears phenomenological quality – it is a 
lived experience of perceiving and acting, an embodied 
cognitive form of enactment. As such, this proposal can 
be understood by way of the following juxtaposition with 
a competing theory.

Our phenomenology of mathematical ontologies as 
quasi-realistic entities is not due to some linguistic or 
pre-linguistic projection from an experiential source do-
main to some would-be abstract target domain, as delin-
eated in the cognitive semantics theory of conceptual met-
aphor (cf. Lakoff & Núñez, 2000). In fact, mathematical 
activity does not activate language areas of the brain at all 
(Amalric & Dehaene, 2016). Rather, we literally experi-
ence mathematical ontologies as quasi-realistic entities, 
because human experience of imaginary entities evolved 
from the experience of real entities (Donald, 1991). To 
know is to grasp (cf. McGilchrist, 2012). As such, our use 
of spatial-temporal multimodal language in talking about 
mathematical objects is not because of the semiotic pro-
cess of linguistic articulation (cf. Núñez et al., 1999) – it 
is about the fundamental phenomenological experience 
that would be articulated to begin with, that is, grasping, 
literally (Abrahamson, 2004, 2007). When metaphorical 
language is used to communicate a mathematical experi-
ence, this is not because mathematical concepts are met-
aphorical (cf. Gallagher & Lindgren, 2015) – that would 
be a category error – but because metaphor is a means of 
fostering for others the enactive sensorimotor explora-
tions that would lead them to developing concordant 
perceptions (Abrahamson, 2020; Abrahamson et al., 
2016a; Tao, 2016). As such, having a sense of knowing is 

feeling that one has got a grasp on a situation (see Trni-
nic, 2018, on Vygotsky’s notion of kinesthetic sensa-
tions). To emphasize, it is not the case that we make 
mathematical ideas real through projecting metaphor. 
Rather, mathematical ideas seem real and possibly true 
to us when they are grounded in the experience of grasp-
ing, actually. Mathematical objects emerge from multi-
modal perceptuomotor solutions to situated problems of 
interacting adaptively with the ecology, whether natural, 
cultural, social, or combinations thereof (Abrahamson & 
Trninic, 2015).

I have proposed that mathematical thinking is possi-
ble due to our biological capacity to develop an enactive 
grip on the world; that enactive grips on the world oper-
ate similarly in the case of imaginary objects, and that 
mathematical thinking, as such, is grounded in atten-
tional anchors – dynamically invariant perceptual orien-
tations that guide our action on the environment. This 
proposal differs from proposals from cognitive neuro-
science that focus on innate and early developed spatio-
temporal and enumerative capacities (Dehaene & Bran-
non, 2011) or the implication of more advanced quanti-
tative reasoning as elaborations on simple approximations 
(Jacob et al., 2012). These vying proposals – the phenom-
enological and the neuroscientific – I believe, should be 
in dialogue. For example, elsewhere I have discussed 
mathematics education as drawing on what I called per-
ceptually privileged intensive quantities, that is, our ap-
parently innate sensitivity to magnitudes of formal 
structure a/b, such as likelihood, slope, and density 
(Abrahamson, 2012; see also Thacker, 2019; Xu & Gar-
cia, 2008). But for this dialogue to be productive, I wager, 
we should not shy from epistemological issues surround-
ing the phenomenology of mathematics, because how 
we think mathematically must surely inform how we 
teach mathematics.
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