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RKM1 AN ALGOL 60 PROGRAM THAT OBTAINS THE 
P.ARAI€TER DEFINING EQUATIONS FOR.. 

GEERALIZED RUNGE-KUTTA-FREY INTEGRATION: SCHEtvtES 

Elon R. Close 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

ABSTRACT 

An ALGOL 60 program, RK11, that derives the parameter 

• 	 defining equations associated with numerIcal integration 

• 	 schemes for ordinary differential equations to the form 

Dx = X(D 1 x, 	, x) is discussed A simple classical 

third order Runge-Kutta scheme is.presented in detail, 

and it is shown how more complicated schemes can also be 

treated. 
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I. INTRODUCTION 

In the following sections, we shall discussALGOL 60 program 

BKM1 that derives the nonlinear parameter defining equations associated 

with numerical integration schemes used to solve ordinary differential 

equation initial value problems. We shall first define the problem and 

then illustrate how these equations are obtained using MOU by treating 

a classical third order Runge-Kutta- scheme in detail. To show the ease 

with which other schemes can be constructed, we show how to set up some 

other examples: one from Butcher [1],  B. DeVogelaere's scheme for second 

order equations [2], and a classical finite difference scheme of the 

Adams type [3]. 

The.program R1M is described in detail in P4I and so is the theory 

upon which it is developed. In general, this work is an extension of 

ideas and results of B. De Vogelaere [5], Ceschino-Kuntzmann [3], and 

J. C. Butcher [6]. 

Se 
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• . . 	II. DFENITION OF THE PROBLEM. 

We wish to derive the parameter defining equations that are associated 

with numerical integration schemes used to solve the initial value problem 

Dx = x(), 	(a) = b  

where 	....... .. 

- 	 -• . 	 . 

...,x)€R-4R rXXp 

and R is. the real line, RW<P and R are real nxp and n dimensional vector 

spaces. 

For the sake of simplicity, we shall take p 1. However, RKM1 can 

handle arbitrary p. The limitation on the value of p is determined by 

the storage requirements. The results that follow are given without 

proofs and in a rather informal style; however, precise definitions and 

rigorous .proofs can be found in {)-i.]. . 	. 

The class of echemes that we admit for the solution of (2.1) can be 

described in the following manner. 

Given an interval of integration, we construct a set of approximations 

to the true solution (t) by forming linear combinations of the ap-

proximations , function values X = x() and we also admit, after the 

fashion of Rrey [7], the use of the derivative values DX(). Thus, our 

schemes can be written as 

• 	= 	a 	+b, i 	. 	. 	 (2.2) 
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where j .= x() or else DX() times a suitablycoñstructed quantity. 
cd 
	

Since nothing is said about the order of accuracy of the approximations, 

11.11 

	 (2.2) contains classical Runge-Kutta schemes, finite difference schemes, 

predictor-corrector schemes, and the more recent sehemes utilizing off 

step points of lower accuracy along with points from the past. We call 

our schemes generalized Runge-Kutta (GRK) schemes; or, if the first 

derivative is utilized, then generalized Runge-Kutta-Frey (G:R) schemes. 

The programBKMI is built to handle GRKF schemes. 

We shall, for the purpose of illustrating the program, derive the 

classical third order Runge-Kutta equatiOns (RI) .f or a first order system 

of equations. Thus, the problem is 

Dx = X(x) 

x(a)=b 	
(2.3) 

and the scheme can be defined in the following manner. Let 

110 = X(3); T)i = X(2); 2 	i) 	 (2.4) 

then the scheme is 

- 3 + 11 0 

= 3 + o + 111 	
(2.5) 

= x(t) + (h) 

where we have purposefully left out the parameters of the scheme (2.5) 

and we have also numbered the approximations in a reverse fahion. Thus, 

t3tt2 t1t0 =t+h,. 

where 	;being an approximation to (ti). 
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III. DERIVATION OF THE EQUATIONS USING .RiUtI 

In order to set up the data and interpret the results, it is necessary 

to sketch the manner in which the equations àré obtained. All results are 

based on a Taylor's expansion of the solution and of the approximations. 

We assume that there exists a set.of basic elements A so that 

(3.1) 
(tj) =ji 

Then the parameter definig equations become 

	

= Poi i = 1, 2, 3, ... 	 (3.2) 

where c are functions of the parameters ajj . We also assume that given 

an approximation = Z a A there exists harmonics y so that we can perform 

the substitution 

yA=X(aA) 

or the multiplication 	 • 

A=DX(A)XA. 

RKIVII works in tl coefficent space and faithfully constructs the scheme 

as given in (2.4) and (2.5) by carrying out the substitutions and linear 	 C 

combinations. The results it outputs are the harmonics of the constructed 

quantities. 

For .the particular example chosen, RK3, the data input is given in 

Table I and the result.s obtained are given in Table II. • We shall first 

discuss the data input of Table I. In connection with this, the schematic 
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interval representation given in Table I will prove helpful.. 

The input data to RKvfl can be separated into three general types. 

First, there are quantities that set program parameters. These deal 

principally with storage requirements and the output format desired. They 

are relatively fixed and few in number. These quantities are inclosed in 

square boxes in Table I. 

Secondly, there are data tables that alli the program to carry out 

the operations of suirimation and substitution indicated in (2.4) and (2.5). 

These tables are fixed for classes of schemes. For example, the tables 

• required for RK3 are a subset of those required for RK 1.. These tables 

could themselves be specified (generated) by means of a suitably constructed 

programand, thus, we shall consider them to be . given. Their construction 

is fully described in [Ii-]. 

Finally, there is the data necessary to specify the initial value 

problem and the scheme. This data is labled A, B, and C in Table I. 

The quantities input in A are output in Table II, Section A under 

the heading t data input that particularizes the problemT. For our example, 

have chosen a first order system. The first derivative that appears 

in our expansions is D'X since we know Dx X. The number of points in one h 

interval is 3, the number of h intervals is 1 since this is a Runge-Kutta 

scheme, and the scheme repeats itself after one h interval. To represent 

the derivatives 	x, D3x, Dx, we need seven functions A1, i = 0, ..., 
651 

thus there are seven harmonics forthree derivatives. 

in Sèctidn B, we input an identifying comment that appears in the 

output. 

Section C defines the scheme, here RK3, given in (2. 1I) and 
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The quantity (1, true, j) means substitute x() The quantity (3, 1 n, 	) 

means construct a new ti 
= 	

by forming a linear combination of the n 

items that follow. An item is specified by (type, j) where (0, j) are 

tj and (1, j)  are Tjj. Thus, (1, true, 3) 7 x() and (3,2,2, 00,1,0) = 

+ 	As the scheme is constructed, its definition is output as 

Section C of Table II 

We, thus, have a very easy direct data representation of the scheme 

The definition of the scheme essentially in itself defines the input to 

Rn. 

The actual equation output corresponding to this scheme begins in 

Section Dof Table II and we shall now describethat. We have appended 

to that output some notes that should help clarify the printout In 

particular, the power of h corresponding to the harmonic. We should keep 

in mind that t o -  (t0 ) O(h) and that 	- ( 1 ).=(h2 ) is also true 

for EK3;  the latter is, in fact, true for all RK: .schemes. 

The interval parameters B6 1 	, B9 that appear in the parameter 

equations are defined in terms of B03,  B1, 	, B3 which appear in 

Figure 1. The location of the origin establishes the actual numerical 

values of these parameters and normally EK schemes are presented with the 

origin located at t3 ; that is, B0  =h. However, placing the origin at 

B0  = to  is advantageous when dealing with general schemes. 

In Section E, we present the equations that arise from requiring 

2'1't 0 to agree respectively with (t3), ..., (t 0 ) through the first 

derivative Dx. We do this since Dx is known and it reduces the number of 

harmonics used thus reducing the storage requirements. These equations 

should evaluate to zero and can easily be checked by using undetermined 
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t parameters and applying the scheme to the polynnials x = 	for 

j = 0, 1, ......Thus, for a finite difference scheme these are all the 

equations that define the parameters. They will however, extend to 

higher orders s5nce we would require the approximations to agree to a 

higher order with the true solution. 

The equations in F are the usual RK equations. They should evaluate 

to zero through h3  and the 0 values of C give .the local truncation error. 
There is avery definite pattern to their generation and can be checked. 

visually rather easily. Details are given in 

The equations in G. serve to define the parametersB, ..., B and 

24, 	B3c that are the harmonics of 	and 2 respectively that are 

actually used in Section F. Thus, for example, B1 7  that appears in 

is, in reality, the harmonic defined by setting. C :. 1 = 0 in Section .. 

The program automatically uses these undetermined hgrmonics whenever the 

approximation is used before it is constructed. In..this example, we 

performed all substitutions x( 3 ), x( 2 ), x( 1 ) first and thus forced their 

use. After .2 and E l  were constructed, the program equated the undetermined 

parameters to the constructed harmonics, thus, arriving at the equations 

in Section .G. If we, instead, constructed Ell E2 .and used the constructed 

versions, the final equations arrived at would be those that arise by 

substituting in Section F the value of the parametersB1, ..., B and 

distributing all the terms in the products. This leads to the use of more 

storage and also one loses the pattern of development of the RK equations. 

Section H shows that El and E2 have been used with undetermined 

parameters as harmonics with 

cJ- 



 

6 

	

= x(0) + B1 Dx(o) + 	B 7  A 
i=o 

6 

	

= x(0) + B2 Dx(0) + 	B2 4+  A. 

where B1 . and B2  are the distance from the point to . 

Section I is a short dump that allows an estimate of how much storage 

was required. We have used only 622 locations in our list so it could 

have been shorter than the 7000 that was allocated to it. 

The equations are output in FORTRAN; a simple input parameter 

selects FORTRAN or ALGOL, and can easily be punched and transferred to 

another program. For a known scheme, they are easy to verify; for new 

	

schemes, a solution may be hard to find. 	- 

We. note. in passing that the execution time for our example of 

generating the RD3 parameter equations was 14.9 	Central processor seconds 

using the CDC 6600 located at the Lawrence Radiation. Laboraty at Berkeley, 

California. 

To illustrate the ease with which schemes can be generated, we give 

in Tables III, IV, and V the data sections A, B, .0 needed to generate the 

schemes of R. DeVogelaere [2] for D 2  x = X(x), an example from Butcher's 

work [1], and a finite difference scheme of the Adams type [3]. The data 

tables are presumed known. The other program data need not be changed. 

Further details and examples can be found in [ ).i-]. 

I 	 •.• 



-10- 	 TJCRL-19861 

IV. 0BSEVATI0NS 

We have not presented here any details on how the program works 

since this is fully documented in [J A short sunmry would be that 

the scheme generation problem has been defined in a discrete coefficient 

space by using appropriate expansions. Suitable theorems have been 

developed to allow us to work in this space. Then, a program that re-

flects this structure has been built to carry out the work using lists to 

represent: the constructed quantities; 

We also note that RKN1 is a rather large 'nut cracker' to use on 

manr well known schemes The equations it generates are only one repre-

sentation of equations that can be obtained by other means for Runge-

Kutta andFinite difference schemes. However, there is a proliferation 

of schemes.that have been published and it is inipossible to check whether 

coefficients are correct or to, sometimes, extend their accuracy. RKM1 

easily does a lot of the work by furnishing the parameter defining equations 

for a minimum amount of work. 

Finally, the interest in offstep schemes can lead to a formidable 

problem Of obtaining these equations, especially when points from the 

past are used. These equations can easily be obtained using 1R1M, the 

problem then becomes to find a solution for them. 
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Table I. IK3 Worksheet for RKMI Input 

6; 

Problem 	Dx = X(x) 	 Order 1 

Scheme 	RK5 	 . 	_ I 

	

I 	F 

	

.3 	2 	O 	t 
No  = X(E3 ); N1 = 	 N2  = X(E1); 

F2 =E +N 	 rank=3 3 . 0 	
. 	 extent = 1 

E =E ±N +N. 	 period=1 1 	.3 	0 	1 	 3dérivatives require 7 
E0  = E3,  + No  + N1 + N2 	 harmonics 

RKMI Input Data 	 . 	. . 

 

r1) 	1,1,1,1,1,3,3,3,1,2,1,1,0, 

72, 6000, 7000, 10, 10, 10 

jffsej 

Dattàble(3,7,O,+,1) 

CE o~m;ment  RK3, third order Rung e-Kut 

1 0, _li 

 

le 
true ,3 , . 	1, true ,2, 	. 1, true , 

3,2,2, 	. 	 0,3, 	1,0 

3, ,3 1. . .. 	0,3, 	1,0,1,1 1  C The Scheme 

-,false 
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Table III. 	RDV [2] Worksheet for RKM1Input 

Problem 	D2x 	X(x) Order = 2 

Scheme 	RDV 
- J 

No 	x(E3 ); N1=X(); N2 = E 1.) 	N3  = X(E0). 	 . 

rank 	=2 
• 	

••. period=1 
E0.E2+N1+N2+N3 . extent=2 

• 	
. 3 derivatives require i-i- 

harmonics. 

RKIVII Input Data • 

2,2.,2121111,3, 	• 	• 
• A. 	Scheme Parameters 

data.table (3,4,f1, co I,+,2) 

comment RDV 	2 , second order equation; A Comment 

1,true,3, 	1,true,2, The Scheme 

1,true;i, 	1,true,0, 

3,1,3, 	0 1 2,  

3,0, 1 	0,2, 	1 1 1 1 1,21 1,3 

All other. data is the same as in Table I. 
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Table IV. 	Butcher [ii WorksheetforBi 

Problem 	Dx=x(x) Order=1 H 

Scheme 	Butcher, k = 3 I 	I 	I 	I 	I 	I 
98765 4 	32 	10 

= x(), N1 = 	N2  = x(E3), N3 = 	 = 

rank 	=3 
EpzE3+E6+E9 +N0 +N1 +N2 +N3  period=1 

extent = 3 
E3 + E6  + E9 + N 	+ N1  + N2  + N3  3derivátives require 7 

harmonics. 
E0 E3 + E6+F9 +N0 +N1  +N2 +N3 +N) 

RKtVI 	Input data 

Scheme Pareters 

datatable(3,7, 0 ,+,5) 

comment Butcher Iii with k = 3, A Comment 

1,true,9, 	1,true,6, 1,true3, Scheme 

1,true,2, 	1, true, 1, 

3,2,6, 	0,3,0,6,0,9, 1,0,1 1 1,1,2, 

3,1,7, 	. 	0,3, 0, 6, 0, 9, 1,0,1, 1,,2, 1,3, 

3,0,8 1 .. 	0,3,0,6 1 0,9, 1;0 	1,1, 1 1 2, 1,3,1 1 ; 

All other data is the same as in Table I. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the CommissIon: 

0 

	 A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any in formation, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such con tractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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