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 Roa: AN ALGOL 60 PROGRAM THAT OBTAINS THE
' PARAMETER DEFINING EQUATIONS FOR-.
'GENERALIZED RUNGE‘KUTTAFFREY INTEGRATION SCHEMES
Elon R. Close
Lawrence Radiation Laboratoryf" "
University of California - -
Berkeley, California

ABSTRACT

An ALGOL 60 program, RKNH that derlves the parameter

edeflnlng equatlons ‘associated with numerlcal 1ntegrat10n

schemes for ordinary dlfferentlal equatlons to the form

X(Dp'lx, ceey x) is dlscussed. A simple classical

,third order Runge-Kutta scheme is present"ed'in detail,
:and 1t is shown how more compllcated schemes can also be

_treated
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'I. TNTRODUCTION

In the follow1ng sections, we shall dlscuss an ALGOL 60 program
RKML that derlves the nonlinear parameter deflnlng equatlons associated
with numerlcal 1ntegrat10n schemes used to solve ordinary differential
equatloﬁ 1n1t1al value problems. We shall flrst deflne ~the problem and
then 1llustrate how these equations are obtalned us1ng RKMl by treatlng'
a class1cal third order Runge-Khtta scheme in detall To show the ease
with whlch Other schemes can be constructed, we show how to set up some
other examples: one from Butcher [1], R. DeVogelaere s scheme for second
order equatlons [2], and a classical finite dlfference scheme of the
Adams type [5 ]. .

The . program.RKNﬂ is descrlbed in. detail in [4] and so is the theory
upon Whlch 1t 1s developed. In general this work 1s an exten51on of
ideas andvresults of R. De Vogelaere [5], Ceschlno-Kuntzmann (31, and

J. C. Butcher [6].
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IT. DEFINITION OF THE PROBLEM
We. w1sh to derive the parameter deflnlng equatlons that are associated = -

with numerlcal 1ntegrat10n schemes used to solve the initial value problem

DPx = x(¢), t(a) =b L o (2.1)
where
xe€ R>R% be R aceR.
g:'ﬁfdx;;Q,x)eRQa#Np'
X e R™P
and R is_the real line;anxP end Rn‘are real nxp.ehd n dimensionalvvector‘
spaces(b
For the sake of simplicity, we shall take p = ‘1. However, RKMl can
handle arbifrary . The limitatioﬁ on the value.of.p is determined by
the storage requirements. The results that follow are glven without
proofs - and in a rather informal style; however, prec1se definitions and
rigorous proofs can be found in [4].
The class of schemes that we admit for the solution of (2.1) can be
described in the following manner.
Given‘an inferval of integration;'we construeﬁ a set of approximafions -
E; to the true solution §(ti) by forming linear combinations of the ap-

proximatioﬁsvgj, function values Xj = X(gj) and we also admit, after the
fashion ofoFTey [7], the use of the derivafive'velues DX(EJ). Thus, our - -

schemes can be written as

€= ZajE;+3byny - - (2.2)
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where 7 ;.= X(E 4 ) or else DX(E, ) times a suitably constructed quantity.
Since nothlng is said about the order of accuracy of the approximations,
(2.2) contalns classical Runge-Kutta schemes, flnlte dlfference schemes,
predlctor-corrector schemes, and the more recent;schemes utlllzlng off
step pointé ofvlower-éccuracy-along with points froﬁ the past. We call
our schemes genéralized Runge-Kut ta (GRK) schemes;}or, if the first
derivatiVe is utiliied, theﬁ~generaiizéd Runge—Kﬁfta—Frey (GRKF') schemes.
The program RKMI" is bﬁilt to handle GRKF schemes;

' We:shéil, for the purpose of illustrating:the program, derive the
classical third order Runge-Kutta equations (RKBjﬂfor a first order system

of equaﬁions.. Thus, the problem is

= X(x)
(2.3)
x(a) =
and the schéme can be defined in the following manner. Let
No = X(3)5 ny = X(€p)5 np = X(&1) o (2.h)
then ﬁhé séheme is
§2 = §5 + Mo
°f1= 85 * 15 My
o (2.5)

.gO: §3+ Mo ¥+ N1 + Mo
to = x(t) + (n")

5
Py 4

%

where we have purposefully left out the parameters of the scheme (2.5)

and we have also numbered the approximations in a reverse fashion. Thus,

ty =t St, st Sto=t+h

where ¢, being an approximation to &(ty).
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.';~iII. DERIVATION OF THE EQUATIONS USING RKMl
In order to set up the data and 1nterpret the results, it is necessary -
to sketch the manner in which the equatlons are obtalned A1l results are
based on a Taylor 8 expan31on of the solutlon and of the approx1mat10ns

We assume that there exists a set of bas1c elements A s0 that

§ —Z‘.alei

(3.1)
£(ty) = B A1
Then theeparameter defining equations become
Uoi = PBog » 1=1,2,3, ";;'QJ7: o - (3.2)

where a'; are fuhctions of the parameters Q. We also assume - that given

Ji

an approximatlon £ = Z a A there exists harmonlcs y so that we can perform

the substltutlon

1

2y A=XZon)
or the”multiplication

Sy A=DXE e A) X 5B A.

RKML works in the coefflcent space. and falthfully constructs the scheme

as given in (2.4) and (2 5) by carrying out the substltutlons and linear
.comblnetlons. ‘The results it outputs are the harmonlcs of the constructed
7quantities.v o E

For the particular example chosen, RK3, the data 1nput is given in
Table I and the .results obtained are given in Table II. We shall first

dlscuss the data input of Table I. In connection with this, the schematic
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intervél rebresentation given in Table I will ﬁjové helpﬂul;_

The.inﬁut data to RKMl can be sepérated inté.threé general types.
First, thefe are quantities that set program péréméﬁérs. These deal
principa;iy“with storage requirements and the oﬁtpﬁf format desired. They
are reiatiVély fixed and few in number. These:qyaﬁtitiés are inclosed in
square b§xes in Téble I. |
| Seé¢ﬁdly, fhere are data tables that allo&-fhe program t§ carry out
the operations of summation and substitution indicated in (2.4) and (2.5).

These tables are fixed fdr.classés of-schemes._'Fdr example, the tables

‘required for RK3 are a subset of thoée fequired'fpr.RKh. These tables

coirld thémsélves be spécified (generated) by mééns of a suifably constructed
progra@ and; thus; we shall consider them to be_gi#en. Their construction
is fully described in [4].

Finally, there is the data necessary fo spe01fy the initial value
problem and the scheme. Thls data is labled A, B, and C in Table I.

The qﬁantities input in A are output in Table IT, Section A under
the heading 'data input that ﬁarticulariies thelﬁroblem‘. For our example,
we have chosen a first order system. The firsf défivative that appears
in our expan51ons is D1X since we know Dx = X. The number of points in one h
interval is 3, the number,of h intervals is 1 since this is a Runge-Kutta
scheme, and the scheme repeats itself after one‘h interval. To represent
the derivatives x, Dsi, Dux, we need seven funétions Ay, 1 =0, ..., 6,
thus thefé'are seven harmonics for three derivati#es.

In Séctidn E, we input an identifying comment that appears in the
output. |

Section C defines the scheme, here RK3, given in (2.4) and (2.5).
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The quantity (1, true, j) means substitute X(& ;). The quantity (3, i, n, ...)

: L . n -
means construct a new i = .21 by forming a linear~combination of the n

it ems that follow An item is spe01f1ed by (type, J) where (O, J) are
Es and (1, J) are nJ Thus, (1, true, 3) = xxg3) and (3 2,2, 0,3, 1 o) =
ge_: §5Q+ no, As the scheme is COnstructed, its deflnltlon is output as
Section'Cﬂof Teble II. | =

We, thus, have a very easy direct data representatlon of the scheme.
The deflnltlon of the scheme essentlally in 1tself deflnes ‘the input to
. . R _ .
| VThe actual equation output'corresponding to'this scheme begins in
Sectlon D of Table IT and we shall now descrlbe that. We have appended
to that output some notes that should help clarlfy the prlntout In
partlcular, the power of h correspondlng to the. harmonlc. We should keep
in mlnd that E, - &(t,) —O(hb') and that £y - g(t ) ~0(h2) is also true
for RKB, the latter is, in fact, true for all RK schemes. |

The 1nterval parameters B6’ cony Bg that appear in the parameter
equatlons‘are deflned in terms of BO, By, ..., B5 which appear in
Figure 1.' The locatlon of the origin establishes the actual numerical
values of these parameters and normally RK schemes'are presented with the
origin located at t5, that is, By = h However, plac1ng the origin at
By = to is advantageous when deallng w1th general schemes. - |

In Sectlon E, we present the equatlons that arlse from requiring §3,
Ess gl, go to agree respectively with g(t5), ..;, g(to) through the first
derlvatlve.Dx. We do this since Dx is known'andsitfreduces the number of
harmonics used thus reducing the storage requirements. These equations -

F should evaluate to zero and can easily be checked by u51ng undetermined



Ly

w

Figure 1 i:

. UCRL-19861

Interval Parameters for RKB": f_f
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parametersfand applying theISCheme to the polynomials X = %; for
j=0, 1,?.{.. . Thus, for a finite difference ééheme these are all the .
equatlons that define the parameters - They w1ll‘ however, extend to
hlgher orders since we would require the approx1mat10ns to agree to g
hlgher order with the true solutlon.

The equatlons in F are the usual RK equatlons " They should evaluate

to zZero through n> and the hu values of C give the local truncatlon error.

vThere is’ a very deflnlte pattern to their generatlon and can be checked

vlsually rather eas1ly. Details are given in [M]

The equatlons in'@ serve to define the parameters 317, ceny 323 and
B2h’ cens BBO that are the harmonlcs of &1 and. gg respectlvely that are
actually used in Section F Thus, for example, 317 that appears in thB

is, in reallty, the harmonlc defined by settlng C 1 1 = 0 in Section G-

5,
The program automatically uses these undetermlned harmonlcs whenever the
approx1matlon is used before it is constructed. In this example, we

performed'all substitutions X(gB), X(En), (gl) flrst and thus forced their

use. After g and £, were constructed, the program equated the undetermlned
2 1

parameters to the constructed harmonics, thus, arr1v1ng at the equations

in Sectlon G If we, 1nstead, constructed gl, 52 and used the constructed

ver51ons, the flnal equatlons arrived at would be those that arlse by

substltuting in Section F the value of the parameters Eﬁ7, ceey 330 and ; S

dlstrlbutlng all the terms in the products. This leads to the use of more |

storage_andralso one loses the pattern of development of'the RK equations.
Section H shows that &1 and gé have been used with undetermined ,

mrameters as harmonics with
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gy = x(0) + Bl Dx(0) + 2 Bigug Ay
Ci=0 SR
o = x(0) + By Dx(0) + Z Bolgy Ag

i=o
where Bi and.Be‘are the distance from the p01nt t

bectlon I is a short dump that allows an estlmate of how much storage
was requlredf We have used only 622 locatlons in our list so it could
have been shorter ‘than the 5000 that was allocated to it.

The equatlons are output in FORTRAN, a s1mple 1nput parameter
selects FORTRAN or ALGOL, and can e381ly Dbe punched and ‘transferred to -
another'program. For a known scheme, they are easy to verlfy, for new
schemes, a solutlon may be hard to find.

Weanote.in passing that the execution time fo; our example‘of »
generatihg the RD3 parameter equations was 14.§ ;-.central processor seconds
using the CDC 6600 located at the Lawrence Radlatlon Laboratory at Berkeley,
Callfornla,. |

To-illastrate the‘ease'with which schemes can:be generated, we give
in Tables lII, IV, and V the data sections A, B,_C‘needed to generate the
schemes of R. DeVogelaere [2] for D?x = X(x), an‘exahple from Butcher's
work [1];>aﬁd a finite difference scheme of thefAdaﬁs type [3]. The data

tables are presumed known. The othervprogram data need not be changed.

Further details and examples can be found in [4].
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IVr_'OBSERVATIONS

We.have not presented here any details on how the program works
since thls 1s fully documented in [4] A short summary would be that
the scheme generatlon problem has been deflned 1n a dlscrete coefflclent
space by u31ng approprlate expan51ons. Sultable theorems ‘have been’
developed to allow us to work in this space Then; a program that re-
flects thls structure has been bullt to carry out the work using llsts to
.represent the constructed quantltles. |

We also note that RKMI is a rather largel nut cracker'.to use on
many well known schemes. The equatlons it generates are only one repre-
sentatlon ‘of equatlons that can be obtained by other means for Runge—
Kutta and Flnlte difference schemes However,_there is a prollferatlon
of schemes _that have been published and it is 1mposs1ble to check whether
coeff1c1ents are correct or to, sometimes, extend.thelr accuracy. RKML
easily does a lot of the work by furnishing the parameter defining equations
for a minimum amount of work. |

Flnally, the interest in offstepvschemesﬂcan lead to a formidable
problem'ofiobtaining these equations, especially when points from the-
past are used " These equatlons can ea51ly be obtalned using RKML, the

problem then becomes to find a solutlon for them.

W
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Table I. RK3 Worksheet for RKMl Input

Problem . Dx = X(x) -
Scheme i:-@@_
No = X(E3); Ny = X(By); Ny = X(Ey);
B = EB + N, :
E = 33.+ Ny + Ny
E. =

o= B3+ Ny + N + N,

RKMI Input Data

1) 1’ 1) 1) 1) 1)3)315’1)2)1} 1)01 2}

50, 72, 6000, 7000, 10, 10, 10

(4 1,'3,;1',.1; 7,3,)

false, .

Data table(3,7,0,+,1)

Order 5'1".

(comment RK3, third order Runge-Kutta; )

=)

I, false

(T:trué,B,; l,frﬁé;é, : 1,true;T)
312:2: . 0)3: ”1;0)

3, )3,. S | 0,3, 110,1,1_; _
\310,4,_; ) 0,3, 1)0) 1" 1} 1,2 J
b,-1

no -lb
e o
‘O 1

ot

N e

extent = 1

period = 1

3 derivatives require 7
Sl harmonics

rank = 3

Af:Scheme Parameters

B A Comment

C The Scheme
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Teble II RK3
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Table IT RK3
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‘Table IT RK3
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I RK3

Table T
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- ‘Table III. RDV [2] worksheet for RKN&"Input

Probleﬁ?Q'_Dex = X(x) .

Schemé " RDV

=
Il

El % Eé + N + N1

E2 + Ny + Né + N5

=
O
ll

RKMl Input Data

2,2,2,2,1 ’,4"3)
data’ .’table (5: )431-1)‘” ]) F+) 2)

coﬂmeﬁthDV 2 , second order equation;
1,true,3, 1,true,2,

1,true,1, 1,true,0,

3,1’3, ’ O, 2, 1)0:-1;_1)

3,0, 'LL)“‘ -0, 2, ,1,1,2,1,3

A1l othef:data is fhe:same as in Table I.

'rank

Order = 2

pral—
-,
———
e
r-n—

X(EB) Ny = X(EQ), N2 = X(El) N5 = X(E, )

2
1

[T

period

extent = 2

3 derivatives require 4
.. harmonics.

AiA;f Séheme Parameters

';Bﬁng Comment

}Cf;,The Scheme
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_Table IV. Butcher [1] Worksheet for RKMI

Problem . Dx = X(x) Order = 1
Scheme‘; f;Butcher{ k=3 N ‘ { —4 !‘ 4 4 —t ! 2t
98765&3210~
No #’_X('Eg); Ny = X(Eg); N, = X(E;), N5 = X(Ez), m, = X(El),‘
o rank = 3
Ep"l=E3+E6+E9+N +1\11+1\12+1\r5 period = 1
R extent =3
-Elié E3 + E6 + E + N’ + Nl + Né + N3 : B”derlvatlves require 7
L ~harmonics.
Eo:; Ez + Bg + Eg + Ny + Ny + Né + Nz + N),
RKM Inpﬁf_data
,5,5 3,1,7,3, . | : 'A. Scheme Parameters

data table(3 7,0, +,5)

comment - Butcher 1] w_lth k = 3; | B. A Comment
1,true,9,  1,true,6, 1,true,3, e _-scheme
1,true,2, 1, true, 1,

5,?-,'_6_,_ | 0,3,0,6,0,9, 1,0,1,1,1,2,

3,1,7, . 0,3,0,6,0,9, 1,0,1,1,1,2,1 3,

3,0,8,. 0,3,0,6,0,9, 1,0,1,1,1,2,1,5, Lk,

A1l ofher data is the same'as in Table I.
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Table V. Adams [3] Worksheet for RKML

PrdblemJ   Dx = X(x) v Order = 1 "
o : v : ' . ' ¢
Scheme " * " Adams : : l_ -, J ] -
et v ' T 1 t
- ' : . 3 _' 2 0
No = X(Ez); Np = X(B); Np = X(B1); o
SR . rank = 1
E, = E + Ny + Ny + N3 ' .period = 1
. S eXtent =3 v
1. derivative requires 1
. harmonic
' RKMI Tnput Data
1,3,1,3,1,1,1, : ' - A. Scheme Parameters
data table (1,1,0,+,3)
comment Illustrative Adams scheme; B. A Comment -
1,true,3, 1,true,2, 1,true,1, -C.*_Scheme'
5)0:’)'?‘-:' O:i') _ | 1;O) 1) 1’ 1)2)
All other data is the same as in Table I.
SEN
.
‘y;



1.

L21- . UCRL-19761

. REFERENCES

‘J;jc; Butcher, A Modified Multistep Method for. the Numerical

Iﬁfegrétion of Ordinary Differentiai>EquatiOhs, J. ACM, 12, 1,

Jan. 1965, p. 131. | |

R DeVogelaere, A Method for the Numerlcal Integratlon of leferentlal
Equations of Second Order Without Expllc1t:£irst Derivatives, J.

Ree;‘NBS 54, 3, 1955, pp. 119-125.

.QF. CeSChan and J. Kuntzmann, Numerical Solution of Initial Value

Problems, Prentice Hall, 1966.

E. Close, Generation of Generalized Runge Kutta Integration Methods

for n+th Order Systems of p-th Order Ordlnary Differential Equatlons,
U¢R1;18650, Lawrence Radiation»Laboratofy, Univ. of Calif., Berkeley,
calif;, Dec. 1968. |

R; DeVogelaere, Mathematics Department, University of Calif., Berkeley,
Calif; private communicatien.

J.’C;EButcher, Coefficients for the Study;of Runge-Kutta Integration
frocesses, J. of the Australian Math. Soc., 3, Part 2, May 1963,

pp - 185:201.

T. Frey, On Improvement of the Runge—Kutta Nystrom Method I,

.Perodlca Polytechnlca, Electrlcal Englneerlng - Elektrotechnlk

Budapest 2, 2, 1958, pp. 1h1- 165



LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or 1mp119d with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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