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Salivary Physiology
Prior to the 20th century, little was known about human saliva 
physiology. However, it was known that saliva contained amy-
lase, and the parasympathetic and sympathetic nerve supplies 
to most of the salivary glands had been determined, primarily 
by studies on animals. A few years before the first issue of the 
Journal of Dental Research in 1919, Carlson and Crittenden 
(1910) developed a collection device for parotid saliva (Fig. 1), 
which allowed the study of secretion from an individual sali-
vary gland. However, it was not until 1955 that Schneyer 
developed a device for collection of submandibular and sublin-
gual saliva, and an improved version was described by Truelove 
et al. (1967). The composition of secretions from minor sali-
vary glands of the lips was first described by Dawes and Wood 
(1973). Veerman et al. (1996) collected and compared the com-
positions of stimulated parotid, submandibular, sublingual, and 
palatine secretions. A major stimulus for salivary physiology 
research, although primarily in animals, was the monograph by 
Burgen and Emmelin (1961).

Two pioneers who studied variations in flow rate and cal-
cium and phosphate concentrations in human whole saliva 
were Becks and Wainwright, who published a series of articles 
in the Journal of Dental Research in the 1930s and 1940s. 
Their 1943 paper on the normal unstimulated flow rate of 
whole saliva is still widely quoted, and others have since con-
firmed their finding that about 10% of the population has an 
unstimulated salivary flow rate ≤0.1 mL/min, whereas the 
mean value in the population is 0.3 to 0.4 mL/min. However, 
flow rate is virtually zero during sleep (Schneyer et al. 1956).

An important study by Thaysen et al. (1954) on 3 young 
women showed that the concentrations of the main electrolytes 
(sodium, potassium, bicarbonate, and chloride) in parotid 
saliva elicited by beta-methyl-acetyl-choline were very depen-
dent on flow rate. Since this is a key factor influencing saliva 

composition, development of a negative-feedback technique 
(Dawes 1967) for maintaining a constant stimulated flow rate, 
up to the physiologic limit of the gland, allowed study of the 
effects of other physiologic variables—such as flow rate itself, 
duration of stimulation, nature of the stimulus, circadian 
rhythms, previous stimulation, exercise, and stop-flow condi-
tions—on human salivary composition.

Because of variation in nomenclature used in different 
branches of salivary research, a group of researchers in the 
field recommended a standard nomenclature (Atkinson et al. 
1993), which seems to have been generally accepted.

The mechanisms by which salivary glands secrete electro-
lytes from plasma into saliva are rather complex, but a recent 
mathematical model (Vera-Sigù̀enza et al. 2018) appears to fit 
the theoretical processes and the experimental data quite well. 
Several neurotransmitters—including acetyl choline, norepi-
nephrine, vasoactive intestinal peptide, substance P, and nitric 
oxide—act as transmitters in salivary secretion (Pedersen et al. 
2018), but there is still much to be learned about the factors 
influencing the superior and inferior salivary nuclei in the pons 
and medulla. The mechanisms involved in secretion of protein 
by pancreatic cells (which also apply to salivary acini) were 
described by Jamieson and Palade (1967a, 1967b).
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Abstract
The objective of this article was to provide an account of some of the developments related to saliva over the first 100 years of 
the Journal of Dental Research and to outline some of the many biomarkers identified in saliva in the last few years. The first section 
covers findings in salivary physiology, biochemistry, calcium phosphate chemistry related to saliva, microbiology, and the role of saliva 
in maintaining oral health. The second section highlights salivary diagnostics, salivaomics, and saliva exosomics in the context of the 
emerging theme of personalized and precision medicine.

Keywords: parotid, submandibular/sublingual, exosomics, proteomics, salivaomics, transcriptomics

https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/jdr


134 Journal of Dental Research 98(2)

Salivary Biochemistry
Studies on the structure, composition, and function of the dif-
ferent proteins and glycoproteins in saliva began later than 
those on salivary electrolytes and made little progress until the 
development of separating media such as Sephadex, polyacryl-
amide gel electrophoresis, and advances in molecular biology, 
mass spectrometry, and protein databases. Important contribu-
tors with respect to proteins include Mandel et al. (1965), Azen 
and Oppenheim (1973), Schlesinger and Hay (1977), Bennick 

(1987), Kauffman et al. (1986), Oppenheim 
et al. (1988), and Levine (1993) for indi-
vidual salivary proteins and Tabak (1995) 
for studies on salivary mucins. The 
acquired enamel pellicle was initially 
thought to contain only salivary proteins 
but has now been found to contain 123 
proteins, and, surprisingly, only 14% of 
these are of salivary origin (Siqueira et al. 
2007). In contrast, using proteomics, 
Denny et al. (2008) detected 914 proteins 
in parotid saliva and 917 in submandibu-
lar/sublingual saliva, the majority being in 
very low concentrations. Ruhl (2012; Fig. 
2) listed the estimated mean concentra-
tions of the 23 most abundant proteins 
(0.001% to 60% of the total protein 
amount) in whole saliva. The 9 in highest 
concentration, forming >90% of total pro-
tein, are synthesized in the salivary glands. 
However, the number of proteins and gly-
coproteins in whole saliva, mostly at min-
ute concentrations, is up to 3,000, as 
whole saliva also contains proteins derived 
from desquamated epithelial cells, crevic-
ular fluid, and the oral microbiome.

Calcium Phosphate 
Studies
Although there are 6 types of calcium 
phosphate, which can form under different 
conditions, only 4 occur in dental calcu-
lus, and only 1, an impure hydroxyapatite, 
is found in enamel and dentine.

Important considerations are the fac-
tors influencing the solubility of enamel, 
which relates to both dental caries and 
enamel erosion. Some of the first quantita-
tive studies were those of Ericsson (1949), 
when enamel was already known to have 
an apatite structure with a basic formula of 
Ca

10
(PO

4
)

6
(OH)

2.
 However, enamel is not 

a pure hydroxyapatite but contains traces 
of other substances, such as magnesium, 
bicarbonate, and fluoride, the last of which 

tends to reduce its solubility. Larsen and Bruun (1986) dis-
cussed the complex interactions between enamel and saliva. 
An important clinical question is the value of the so-called 
critical pH, which is the saliva pH at which enamel starts to 
dissolve. This question relates primarily to enamel erosion, and 
a salivary pH below about 5.5 will initiate this process, depend-
ing on the calcium and phosphate concentrations in saliva. 
Above that pH, saliva is supersaturated with respect to tooth 
mineral. A new acquired enamel pellicle forms immediately 
after a tooth has been eroded with acid, such as that in a typical 

Figure 2. Relative abundancies of protein and peptide species in human saliva. Reproduced from 
Ruhl (2012) by kind permission.

Figure 1. Collection device for parotid saliva: (A) a modern version of the Carlson-Crittenden 
device, which can be used for collection of parotid saliva from the left or right gland; (B) 
clinical collection of parotid fluid (courtesy of the National Institute of Dental and Craniofacial 
Research). 
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soft drink, which makes erosion irreversible. Since caries 
occurs only under a layer of dental plaque and as the fluid 
phase of plaque contains a higher phosphate concentration than 
does saliva (Tatevossian and Gould 1976), the critical pH for 
development of caries (about 5.2) is less than that for erosion. 
Plaque pH may fall to as low as 4.0 after consumption of car-
bohydrates such as glucose (Fig. 3; Stephan 1944) or sucrose. 
Saliva is normally supersaturated with respect to 4 of the 6 
calcium phosphates: hydroxyapatite, brushite, β-tricalcium 
phosphate, and octacalcium phosphate. Thus, there is a ten-
dency for these to precipitate out in dental plaque as calculus, 
as discussed by ten Cate (2012). Patients with renal disease 
often develop high levels of urea in their saliva, and this can be 
converted to ammonia in dental plaque. The resulting high pH 
in their plaque makes these people particularly susceptible to 
calculus formation because of the increased degree of satura-
tion with the various calcium phosphates.

Salivary Microbiology
One of the most influential books on the importance of fre-
quent removal of dental plaque (the dental biofilm) for preven-
tion of caries and periodontal disease is probably that by W. D. 
Miller (1890), a fascinating book available online (https://
archive.org/details/microorganismsof00mill). The essence of a 
biofilm is that the bacteria that it contains can attach to a sur-
face and to one another. The bacteria in a biofilm exhibit quo-
rum sensing and were found to share proteases and glycosidases, 
making the metabolism of the biofilm more efficient than in 
single microorganisms. Over most of the years since 1919, 
individual bacteria in the mouth could be studied only if they 
could be cultured. It was just a decade ago that genomic 
sequencing became available and the human oral microbiome 
database was described by Dewhirst et al. (2010). It is now 
known that the mouth contains nearly 700 prevalent taxa, a 
third of which cannot yet be cultured, in a range of 13 phyla. 
Useful updates on oral microbiology are those by Kilian et al. 
(2016) and Sanz et al. (2017).

Although Streptococcus mutans had been detected in the 
mouth as early as 1924 (Clarke), it was in the later years of the 
last century that it was thought to be the main cause of dental 
caries (Loesche 1979), but even today there is uncertainty 
about its importance (Banas and Drake 2018). Its advantage 
with respect to caries is that, not only can it convert sucrose to 
lactic acid to create a pH of 4.0 or slightly less, but it can also 
form intra- and extracellular polysaccharides, which can later 
be converted to acid; furthermore, it can metabolize sucrose at 
a much lower pH (4.0) than most other oral microorganisms. 
The many deleterious oral effects of sucrose in our diets were 
recently outlined by Sheiham and James (2015).

Dental plaque may also initiate periodontal disease as well 
as caries, and an important advance was made by Löe et al. 
(1965) showing that gingivitis could be produced experimen-
tally by cessation of all oral hygiene measures for 4 wk (in 
dental students!), followed by recovery over a similar length of 
time after renewal of oral hygiene measures. The proteins and 

glycoproteins in saliva are the main sources of nutrition for 
most oral microorganisms, but the ones in deep periodontal 
pockets have access to gingival crevicular fluid, which facili-
tates the growth of proteolytic and obligately anaerobic bacte-
ria. Their production of inflammatory factors causes exudation 
of blood into the gingival crevice, which promotes further 
growth of periodontopathic microorganisms. Theilade (1986) 
argued that different combinations of indigenous microorgan-
isms, rather than a single species, cause the transition from gin-
givitis to periodontitis.

It was realized recently that a major function of the indige-
nous oral microflora is to occupy sites that would otherwise be 
available to pathogenic microorganisms. Xu et al. (2015) found 
that the mouth contains 8 sites with site-specific microflora—
namely teeth, gingival sulcus, attached gingivae, tongue, 
cheek, lip, and hard and soft palate—perhaps because saliva in 
the mouth is present as a thin film (<0.1 mm; Collins and 
Dawes 1987) and secretions from the different glands do not 
mix well. Saliva was also found to contain many antibacterial 
components, such as secretory IgA, lactoferrin, lactoperoxi-
dase, lysozyme, statherin, and histatins.

Saliva and Oral Health
Mandel (1979) and Tabak (2006) both discussed the roles of 
saliva in protecting the oral cavity. A low unstimulated flow 
rate not only makes a person susceptible to xerostomia but 
greatly delays clearance of food from the mouth. The main buf-
fers in saliva are bicarbonate, the concentration of which is 
proportional to flow rate (Thaysen et al. 1954) and, to a lesser 
extent, phosphate. Thus, people with a low unstimulated 

Figure 3. A copy of Figure 1 from the article by Stephan (1944) shows 
the decrease and subsequent increase in plaque pH after a glucose 
rinse (the famous Stephan curve). Permission from the Journal of Dental 
Research.



136 Journal of Dental Research 98(2)

salivary flow rate are particularly susceptible to dental caries 
because of the low buffering capacity of their saliva and the 
low clearance rate for food debris. According to an accepted 
model of salivary clearance (Dawes 1983; Lagerlöf and Dawes 
1984), high values of 2 other factors—namely, Vmax (the vol-
ume of saliva in the mouth before swallowing is elicited) and 
Resid (the volume left in the mouth after swallowing)—delay 
clearance considerably.

Unfortunately, the roles of saliva in maintaining good oral 
health receive very little attention in most dental schools, par-
ticularly in the clinical years, possibly because in all areas of 
clinical dentistry, the presence of saliva is a great nuisance that 
can interfere with tooth assessment, preparation, or restoration, 
as well as impression taking, cementation (crowns, inlays, 
bridges, orthodontic bands), endodontics, and oral surgery. 
However, since dentists are encouraged to inform patients of 
their disease susceptibility, a group with expertise in oral medi-
cine (Wolf et al. 2017) recommended that all dental schools 
teach their students how to measure a patient’s unstimulated 
salivary flow rate so that those with low values can receive 
greater emphasis on prevention of caries and periodontal dis-
ease. Since unstimulated flow rate does not change much with 
age, this measurement needs to be made only once, takes no 
more than 15 min, and, in a general dental practice, could be 
delegated to a dental assistant.

At present, only in Sweden are dental students taught to 
measure the unstimulated salivary flow rate, but the failure in 
other countries seems to us to be equivalent to a medical stu-
dent never being taught to check a patient’s weight or blood 
pressure as a measure of disease susceptibility!

Translation of Saliva Research toward 
Personalized Precision Medicine/
Dentistry
Saliva as a diagnostic tool is now of public interest, as it can be 
used 1) to detect at least 24 drugs, including cocaine, ethanol, 
and MDMA (i.e., ecstasy; Simonsen et al. 2012); 2) viruses, 
such as those for HIV, hepatitis C, and human papilloma virus 
infection; and 3) DNA for genetic analysis (Regalado, 2018).

The year 2004 marked a defining moment in saliva research. 
The National Institute of Dental and Craniofacial Research 
(NIDCR), under the leadership of Lawrence Tabak, issued 2 land-
mark initiatives to decipher the human salivary proteome and 
develop point-of-care microfluidic devices that can assay particu-
lar proteins for personalized precision medicine applications.

The Human Salivary Proteome initiative was launched to 
elucidate disease pathogenesis and evaluate the influence of 
medications on the different proteins of saliva. The 3 NIDCR-
supported programs—Susan Fisher, University of California–
San Francisco; John Yates, Scripps Research Institute; and 
David Wong, University of California–Los Angeles (UCLA)—
formed a consortium to identify all of the peptides and proteins 
in salivary fluid and gain knowledge of their functions. A landmark 
work was published by this consortium in 2008 identifying, 

cataloging, and annotating 1,166 proteins in human saliva, 
constituting the first saliva diagnostic alphabet (Denny et al. 
2008).

The NIDCR-catalyzed point-of-care initiatives had 2 cycles 
of funding to develop microfluidics and microelectrical 
mechanical devices for salivary diagnostics. Various innova-
tive technologies were advocated by the final 4 groups: John 
McDervitt, University of Texas at Austin; Daniel Malamud, 
University of Pennsylvania and New York University; David 
Watt, Tufts University; and David Wong, UCLA (Wei et al. 
2009; Chen et al. 2010; Miller et al. 2010; Nie et al. 2014). The 
anticipated outcome of this initiative is the commercialization 
of saliva-based diagnostic point-of-care technologies opti-
mized for the detection of highly sensitive and specific salivary 
biomarkers for human diseases. These visionary NIDCR initia-
tives for saliva research, while still in progress, laid the founda-
tion for personalized precision medicine that will affect clinical 
practice in the next decade.

Salivaomics

Salivary Genomics

Salivaomics is the integrative study of saliva and its constitu-
ents, functions, and related techniques (Ai et al. 2010, 2012; 
Fig. 4). Saliva is not a homogeneous fluid: genomics, epig-
enomics, transcriptomics, proteomics, metabolomics, and 
microbiomics are the key components that make up sal-
ivaomics. The 3 major -omic groups include circulating DNA 
(genomics), RNA (transcriptomics), and protein (proteomics).

Saliva contains cell-free DNA, of which 70% originates 
from the host and 30% from the oral microbiota (Rylander-
Rudqvist et al. 2006). Salivary DNA is stable and the quality 
relatively high (Hansen et al. 2007; Bonne and Wong 2012; 
Looi et al. 2012), suggesting that salivary DNA is a useful tar-
get for the development of biomarkers.

The presence of the host genome in saliva has been exploited 
to access personal genomic information pertaining to ancestry, 
health, and wellness. Companies (23andMe, Ancestry Health, 
National Geographic) harness the host genomic content in 
saliva and next-generation sequencing (NGS) to reveal 
genomic variants (single-nucleotide polymorphisms) with risk 
of health conditions (cancer risks such as BRCA1 and BRCA2) 
and ancestry information (Regalado 2018).

Circulating tumor DNA (ctDNA) is cell-free DNA, 180 to 
200 base pairs in length, that is shed from tumor cells into the 
circulatory system (Jahr et al. 2001; Diehl et al. 2005, 2008; 
Fan et al. 2008; Mouliere et al. 2011; Diaz and Bardelli 2014). 
ctDNA has been detected in a number of body fluids, including 
blood, urine, and saliva (Wei et al. 2014; Patel and Tsui 2015), 
and it can be distinguished from normal cell-free DNA by the 
presence of mutations. The clinical testing of ctDNA in body 
fluids is referred to as liquid biopsy (Overman et al. 2013; 
Haber and Velculescu 2014). The most common technologies 
for the detection of ctDNA are NGS and digital polymerase 
chain reaction (Chaudhuri et al. 2015; Ignatiadis et al. 2015). 
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However, a simple, compact, and more cost-effective analysis 
with high levels of sensitivity and specificity is desirable to 
facilitate routine clinical care. An electrochemical technology 
developed by the UCLA group, termed electric field–induced 
release and measurement (EFIRM), found a unique entry point 
into liquid biopsy (Wei et al. 2014). EFIRM detects the 2 front-
line actionable epidermal growth factor receptor (EGFR) muta-
tions, exon 19 deletion and L858R mutations, with receiver 
operating characteristic curve analysis and area under the curve 
of 0.94 and 0.96, respectively, suggesting that saliva-based 
EFIRM liquid biopsy has superior performance than digital 
droplet polymerase chain reaction (ddPCR) and NGS to detect 
ctDNA for lung cancer (Wei et al. 2014; Pu et al. 2016).

Salivary Transcriptomics

The transcriptome is the complete set of RNA molecules, 
including mRNA, microRNA, piwi-interacting RNA, and 
other small RNAs, such as rRNA and tRNA. Salivary tran-
scriptomics has emerged as a powerful approach for salivary 
biomarker development (Park et al. 2006; Kaczor-Urbanowicz 
et al. 2018). Although the genome is the same in all host cells, 
different cells and body fluids show different patterns of 
RNA composition; therefore, transcriptomic analysis can 
provide valuable information about disease states. In 2004, 
the human salivary transcriptome was first discovered at 
UCLA with microarray technology (Li, Zhou, et al. 2004). 

The salivary transcriptome consists of coding and noncoding 
gene transcripts derived from host and oral microbiota (Beard 
et al. 2006; Park et al. 2007; Spielmann et al. 2012). In 2009, 
microRNA was discovered in saliva and characterized as a 
biomarker for oral cancer detection (Park et al. 2009). More 
recently, piwi-interacting RNAs in saliva are emerging  
potential biomarkers for cancers (Bahn et al. 2015). High-
throughput RNA sequencing of human saliva from healthy 
individuals showed expression patterns and levels compara-
ble to those in other body fluids (Spielmann et al. 2012; Bahn 
et al. 2015).

In 2013, the NIH Common Fund established the 
Extracellular RNA Communication Consortium (ERCC) to 
independently validate the use of extracellular RNA. Once 
thought to exist only within cells, RNA is now known to be 
exported from cells and to play a role in newly discovered 
mechanisms of cell-to-cell communication. The ERCC aims 1) 
to establish fundamental biological principles of extracellular 
RNA secretion, delivery, and impact on recipient cells; 2) to 
describe exRNAs in human biofluids and the extent to which 
nonhuman exRNAs are present; 3) to test the clinical utility of 
exRNAs; and 4) to provide a data and resource repository for 
the community at large. The ERCC independently validated 
salivary exRNA toward the development of salivary exRNA 
biomarkers for gastric cancer detection. Salivary RNA is now 
validated and included in the ERCC’s Extracellular RNA Atlas 
(https://exrna-atlas.org).

Figure 4. Salivary biomarker development. CLIA, Clinical Laboratory Improvement Amendments; FDA, Food and Drug Administration; LDT, 
laboratory development test; PRoBE: prospective specimen collection and retrospective blinded evaluation.
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Salivary Proteomics

The first attempt at cancer diagnosis with salivary protein was 
made by Hoerman (1959), who showed that patients with pros-
tate cancer exhibited elevated acid phosphatase enzymatic 
activity in parotid saliva. In the past decades, there have been 
marked advances in protein analytic technologies that, com-
bined with bioinformatics, created a new revolution in salivary 
proteomics.

Comprehensive analysis of the salivary proteome is critical 
for appreciating its full diagnostic potential. The data set from 
the study of Denny et al. (2008) has been deposited into the 
Saliva Proteome Knowledge Base (http://www.skb.ucla.edu/
cgi-bin/spkbcgi-bin/main.cgi) and the NIDCR’s Human Saliva 
Proteome Wiki (https://salivaryproteome.nidcr.nih.gov) for 
public access (Ai et al. 2010). Bandhakavi et al. (2009) signifi-
cantly expanded our understanding of the salivary proteome by 
using 3-dimensional peptide fractionation and generated the 
largest whole saliva proteome data set, including 2,340 pro-
teins that are involved in a variety of biological functions in the 
oral cavity. Comparative analysis of the human saliva and 
plasma proteomes showed that distribution of salivary proteins 
is enhanced in 2 gene ontology categories (metabolic and cata-
bolic processes) as compared with plasma, suggesting that 
saliva may be advantageous over plasma, especially for less 
abundant proteins involved in these biological processes (Loo 
et al. 2010). In comparison with serum proteins, salivary pro-
teins appear to be more susceptible to degradation (Helmerhorst 
and Oppenheim 2007; Schulz et al. 2013). Esser et al. (2008) 
reported that salivary protein can be degraded rapidly even 
during saliva collection and handling, which may hamper the 
downstream experiments and application.

Saliva Exosomics

Extracellular vesicles are classified into 3 subgroups (exo-
somes, microvesicles, and apoptotic bodies) based on their size 
and biogenetic pathways (Kalra et al. 2012; Simpson et al. 
2012). Exosomes are intraluminal vesicles that are formed 
within multivesicular bodies and released upon fusion of the 
multivesicular bodies with the cell membrane (Denzer et al. 
2000). Exosomes in human saliva were first described by 
Ogawa et al. (2008). The stability of exosomes in the circula-
tion and body fluids has made exosomes attractive as potential 
biomarkers. Typically, exosomes are defined as vesicles rang-
ing from 30 to 100 nm in size and 1.13 to 1.19 g/mL in density 
and are isolated through density gradient or sucrose cushion by 
ultracentrifugation at 100,000 g (Thery et al. 2006). Exosome 
isolation from saliva has been optimized (Michael et al. 2010; 
Lasser et al. 2011), and the use of this small but highly infor-
mative fraction may simplify analysis of saliva, currently com-
plicated as a result of contributions from local and systemic 
sources (Al-Tarawneh et al. 2011). For these reasons, the study 
of vesicles secreted by cancer cells into saliva will be an inter-
esting approach for the development of discriminatory bio-
markers in systemic diseases, including cancer.

Saliva Liquid Biopsy

Liquid biopsy is used to detect actionable mutations in bioflu-
ids. The most noted is in lung cancer, where 3 mutations 
(L858R, exon 19del, and T790M) in the epidermal growth fac-
tor receptor (EGFR) gene can be therapeutically targeted to 
have an impact on the survival of patients with non–small cell 
lung carcinoma (NSCLC; Wei et al. 2014).

Current clinical practices for detection of signature EGFR 
ctDNA for NSCLC are ddPCR and NGS, with performance 
ranges from 60% to 80% concordance with biopsy genotyping 
(Sholl et al. 2016). In 2 blinded clinical studies, the EFIRM 
technology detected signature oncogenic EGFR mutations in 
the plasma and saliva of patients with NSCLC, with near- 
perfect concordance with biopsy genotyping (96% to 100%; 
Wei et al. 2014; Pu et al. 2016). Salivary EFIRM liquid biopsy 
presents superior performance over current liquid biopsy tech-
nologies of ddPCR and NGS.

Future Perspectives
In the past decade, salivaomics studies have revealed the trans-
lation and clinical utilities of saliva for biomarker develop-
ment. Note that while saliva biomarkers are considered to 
mirror those in blood, it is often the contrary. Disease discrimi-
natory biomarkers are often present only in saliva. A good 
example is the discriminatory panel of exRNA biomarkers for 
oral cancer detection in saliva (IL-1β, OAZ1, SAT, and IL-8; 
Li, St John, et al. 2004), which is entirely different from the 
circulatory panel (ARHA, FTH1, H3F3A, COX4I1, FTL1; Li 
et al. 2006), with receiver operating characteristic values of 
0.95 and 0.88, respectively. In addition, while some biomark-
ers are present in blood and saliva, the level is often higher in 
saliva than in blood. Last, when biomarkers are present in 
blood and saliva, the patient’s preference is usually to donate 
saliva rather than blood.

Much progress has been made in understanding characteris-
tics of saliva, with advances in how the salivary constituents 
relate to biomarkers and functions. The unique properties of 
cancer-derived exosomes in saliva, which originate from 
organelles migrating into saliva, could be used as diagnostic 
biomarkers, potential surrogate markers for other physical con-
ditions, or novel immune regulatory systems through the gas-
trointestinal tract (Fig. 5; Zhang et al. 2010; Lau et al. 2013). 
However, the utility of salivary exosomes as biomarkers of 
diseases and conditions requires much further investigation 
due to the current paucity of studies in this emerging area. Key 
future tasks will be to validate salivary exosome biomarkers 
and determine the molecular mechanisms of exosome interac-
tion between distal tumors and salivary glands. Also, establish-
ing rapid and sensitive technologies to purify and analyze the 
exosomes will represent important immediate and future 
challenges.

Saliva liquid biopsy may soon be the method of choice to 
detect actionable mutations in patients with lung cancer, as 
well as monitor treatment efficacy and recurrence in such 
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patients. Other translational and clinical inroads will soon fol-
low, such as screening for KRAS mutations, which occur in 
90% of patients with pancreatic cancer.

The next hundred years of saliva and saliva diagnostic 
research will harness the scientific foundations and new hori-
zons, with a promise toward translating and clinically maturing 
saliva to benefit oral and systemic health.
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