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Constructing first-principles phase diagrams of amorphous LixSi using
machine-learning-assisted sampling with an evolutionary algorithm

Nongnuch Artrith,1, 2, ∗ Alexander Urban,1, 2 and Gerbrand Ceder1, 2, †
1Department of Materials Science and Engineering, University of California, Berkeley, CA, USA

2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
(Dated: February 13, 2018)

The atomistic modeling of amorphous materials requires structure sizes and sampling statistics
that are challenging to achieve with first-principles methods. Here, we propose a methodology to
speed up the sampling of amorphous and disordered materials using a combination of a genetic
algorithm and a specialized machine-learning potential based on artificial neural networks (ANN).
We show for the example of the amorphous LiSi alloy that around 1,000 first-principles calculations
are sufficient for the ANN-potential assisted sampling of low-energy atomic configurations in the
entire amorphous LixSi phase space. The obtained phase diagram is validated by comparison with
the results from an extensive sampling of LixSi configurations using molecular dynamics simulations
and a general ANN potential trained to ∼45,000 first-principles calculations. This demonstrates the
utility of the approach for the first-principles modeling of amorphous materials.

I. INTRODUCTION

Amorphous phases determine the properties of many
technologically relevant materials, such as catalysts for
water oxidation and reduction,[1–3] lithium and sodium
ion battery electrodes,[4, 5] electrodes for solid oxide fuel
cells,[6, 7] and the solid electrolyte interphase at the elec-
trode/electrolyte boundary.[8] Owing to the absence of
long-range order, amorphous structures cannot be char-
acterized by conventional diffraction techniques. Other
characterization methods, such as X-ray or neutron pair
distribution function measurements, only provide indirect
structural information. First principles density-functional
theory (DFT) [9–11] offers predictive insight into phase
stabilities and structures [12] and is an attractive alter-
native for the characterization of atomic structures and
their properties. However, the high computational cost
of DFT calculations confines the method to structure
models containing at most a few hundred atoms and
moderate sampling, a limitation that in practice makes
it challenging to model many amorphous or disordered
phases.
To overcome these sampling and size limitations, re-

cently a number of machine-learning techniques have been
proposed that can be used to efficiently interpolate first
principles energies and atomic forces.[13–18] Machine-
learning potentials (MLPs) have enabled large-scale sim-
ulations of complex materials such as nanoalloys, [19, 20]
metal-oxide nanoparticles, [21] and amorphous carbon [22]
with an accuracy that is close to the reference method,
but at a fraction of the computational cost. However, to
reliably sample all relevant atomic interactions MLPs have
to be trained on extensive databases of first-principles cal-
culations. Depending on the number of chemical species,
several thousand to tens of thousands of reference data

∗ nartrith@berkeley.edu
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points might be required to obtain a reliable MLP. By
their nature, amorphous phases exhibit a large variety of
local structural motifs, making the compilation of com-
plete structural reference databases even more challeng-
ing.
Here we propose an alternative approach for the cal-

culation of first-principles phase diagrams of amorphous
materials with machine-learning-assisted sampling. In-
stead of constructing a general MLP based on tens of
thousands of reference calculations, we employ a special-
ized MLP trained on only around one thousand DFT
calculations of small structures, and which is used specif-
ically for the sampling of near-ground-state structures
with a genetic algorithm. The relevant structures iden-
tified by this sampling approach are recomputed using
DFT to obtain an accurate first-principles phase diagram.
Finally, we validate the approximate sampling approach
by training a fully converged general MLP that makes
possible extensive molecular dynamics simulations.
We consider LixSi alloys as a prototypical example

of an amorphous electrode material. Nanostructured
amorphous Si is a potential high-capacity negative elec-
trode material for Li-ion batteries.[4, 23–25] The lithiation
of crystalline Si has previously been studied with first-
principles calculations on small model structures, and
through mesoscale simulation techniques.[26–36] In the
present article, we consider significantly larger structure
models with more than 600 atoms, which provides addi-
tional insight into the energetics of the amorphous LiSi
phase.
The paper is structured as follows: In section II, we

detail all simulation parameters and recap the artificial
neural network potential method, as well as the descriptor
technique used to capture the local atomic environment.
This is followed by a description of the construction of the
specialized MLP and the genetic algorithm in section III
and the molecular dynamics sampling in section IV. In
the next section IVB, the phase space of amorphous
LixSi structures that is sampled by the genetic algorithm
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is compared with that of the molecular dynamics heat-
quench simulations. The results are assessed in a final
discussion section V.

II. ENERGY MODELS

A. Density-functional theory calculations

All density-functional theory (DFT) calculations were
carried out using the Vienna Ab-Initio Simulation Pack-
age (VASP).[37, 38] The exchange-correlation functional
by Perdew, Burke, and Ernzerhof (PBE) [39, 40] and
projector-augmented wave (PAW) pseudopotentials [41]
were used. The energy cutoff of the plane wave basis set
was generally 520 eV, and a k-point density of 1000 di-
vided by the number of atoms was used for the Brillouin-
zone integration following the recommendations from ref-
erence 42. VASP input files were generated using the
Python Materials Genomics tool (pymatgen).[43] In ge-
ometry optimizations, energies were generally converged
to 0.05 meV/atom and the convergence thresholds for
atomic forces was 50 meV/Å.

B. Machine-learning potentials with Chebyshev
descriptor

The idea behind machine-learning potentials (MLPs)
is to interpolate first principles potential energies and
atomic forces using machine learning techniques, such as
artificial neural networks (ANNs) [13, 15] or Gaussian
process regression.[14] For the structure space that it is
trained on, an MLP can be nearly as accurate as its refer-
ence method at a fraction of the computational cost.[44]
Several approaches in this spirit have been proposed,
varying in the details of the machine learning model, the
atomic structure descriptor, and the interpolated quantity
(total energy vs. atomic energy).[16, 45–47]

In the present work, we employ ANNs to interpolate
the atomic energy from DFT calculations, and the total
energy of an atomic structure σ is given as the sum of
the atomic energies of all atoms

E(σ) =

Natoms∑
i

Eatom(σ
Rc
i ) . (1)

In equation (1), σRc
i = {~Rj , tj : ||~Rj− ~Ri|| ≤ Rc} captures

the local atomic environment of atom i, i.e., the set of the
coordinates ~Rj and chemical species tj of atoms within
a radial cutoff Rc from atom i. Note that the number
of atoms in σRc

i (i.e., within the cutoff radius) depends
directly on the density of the structure, and the number
of chemical species additionally depends on the chemical
composition.

For the construction of a transferable ANN potential, a
constant-size descriptor of the local atomic environment

is needed (see section IIB 1). With such a descriptor of
the local atomic environment, σ̃Rc

i , the total energy of
the ANN potential is then given by

E(σ) =

Natoms∑
i

ANNti(σ̃
Rc
i ) , (2)

where ANNti is the atomic energy ANN potential for
chemical species ti.
In the present work, an ANN architecture with two

hidden layers each consisting of 15 nodes was used, giving
a descriptor dimension of 44 (see section IIB 1) and a
total of 931 ANN parameters. We previously confirmed
that this architecture provides sufficient flexibility to fit
high-dimensional first principles data.[19, 48, 49]

Before the ANN potential training, ten percent of all ref-
erence data points were randomly selected as an indepen-
dent test set for cross-validation and were not considered
during training. The ANN potentials were trained using
the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method [50, 51] as implemented in the atomic
energy network (ænet) package.[52] Training was repeated
ten times using different randomly initialized fitting pa-
rameters, and out of this set the optimal ANN fit was
selected.

1. Descriptor of the local atomic environment

The atomic coordinates cannot directly be used as ANN
input, as the number of atoms within the interaction range
Rc varies with the structure and density of the material.
Hence, a descriptor of the local atomic environment with
constant dimension is required as the input layer of the
atomic energy ANN model in Eq.(2). The descriptor
additionally has to obey the invariants of the atomic
energy, i.e., it has to be invariant with respect to rotation,
translation, and the exchange of equivalent atoms. Several
atomic structure descriptors for machine-learning models
have been proposed in the literature.[53–59]

Here we employ a recently developed descriptor based
on the expansion of the radial and angular distribution
functions (RDF and ADF) that is numerically efficient and
has the advantage that its complexity does not increase
with the number of chemical species.[60] A complete der-
vation and benchmarks of the method can be found in
the original reference 60. In brief, the RDF and ADF of
the local structural environment of atom i within a cutoff
radius Rc are defined as

RDFi(r) =
∑

Rj∈σRc
i

δ(r −Rij) fc(Rij)wtj (3)

ADFi(θ) =
∑

Rj ,Rk∈σRc
i

δ(θ − θijk) fc(Rij) fc(Rik)wtjwtk ,

(4)
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where Rij is the bond distance between atoms i and j,
θijk is the bond angle for atoms i, j, and k, and

fc(r) =

{
1
2

[
cos
(
r · πRc

)
+ 1
]

for r ≤ Rc
0 else

(5)

is a cutoff function. The choice of the weights wti for
chemical species ti will be discussed shortly. Both RDF
and ADF automatically obey the invariants of the atomic
energy. Expanding the RDF and ADF in an orthonormal
basis set, up to a specified order N , gives an approxi-
mate constant-size representation that can be used as a
descriptor for a machine-learning model.
With a basis set of Chebyshev polynomials {Tα}, the

following expressions are obtained for the expansion coef-
ficients of the RDF

c(2)α =
∑

Rj∈σRc
i

Tα

(2Rij
Rc
− 1
)
fc(Rij)wtj

with 0 ≤ Rij ≤ Rc

(6)

and the ADF

c(3)α =
∑

Rj ,Rk∈σRc
i

Tα

(2θijk
π
− 1
)
fc(Rij) fc(Rik)wtjwtk

with 0 ≤ θijk ≤ π .

(7)

Note that the arguments of Tα in Eqs. (6) and (7) are
scaled to the interval [−1.0,+1.0] for which the Chebyshev
polynomials are orthogonal with

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=


π n = m = 0
π
2 n = m 6= 0

0 else

for x ∈ [−1.0,+1.0] .

(8)

To construct a descriptor for both the local atomic
structure {~Ri} and the chemical species {ti}, two sets
of expansion coefficients are used: The first set only de-
scribes the local structure, and all species weights wti in
Eqs. (1) through (7) are taken to be equal to 1, i.e., all
atomic species are considered to be equivalent in the
expansion. Expanding the RDF and ADF with this
choice of wti yields the coefficients {sc(2)α , sc

(3)
α } which

describe only structural features. The second set of co-
efficients is obtained by assigning a different value wti
to each chemical species ti, yielding the expansion coef-
ficients {tc(2)α , tc

(3)
α } that describe the atom types. The

combined set {sc(2)α , sc
(3)
α , tc

(2)
α , tc

(3)
α } is used as the de-

scriptor for the ANN potentials. One possible choice of
unique species weights for compositions with Nt chemical
species is wti = (0, ) ± 1,±2, . . . , bNt

2 c where 0 is only
included for odd numbers of species. [60]

For the present work, we choose wLi= -1 and wSi=+1,
and N = 11 Chebyshev polynomials are used for both the
radial and angular expansions. Hence, the combined de-
scriptor with radial and angular coefficients for structure
and atomic species has a total dimension of 4× 11 = 44.

III. GENETIC ALGORITHM SAMPLING WITH
A SPECIALIZED ANN POTENTIAL

The stable ground state phases of the LiSi alloy and
their crystalline structures, c-Li8Si8,[61] c-Li12Si7,[62]
c-Li7Si3,[63] c-Li13Si4,[64] and c-Li21Si5,[65] are well
known.[66, 67] However, during lithiation and delithi-
ation at room temperature these crystalline phases are
not observed. Instead, metastable amorphous a-LixSi
structures form that crystallize into the metastable c-
Li15Si4 phase[4, 68–71] when the Li potential drops to
∼50 mV vs. Li+/Li

To generate realistic amorphous LiSi structures as they
occur in an actual Li-ion battery anode, we directly sim-
ulate the amorphization during electrochemical delithia-
tion. This means, Li is computationally extracted from
the fully lithiated and crystalline Li15Si4 structure and
the atomic positions and the cell parameters are relaxed
at intermediate compositions.

A. A specialized ANN potential for the sampling
of near-ground-state LixSi structures

To determine the structure of the metastable amor-
phous LixSi phase at different compositions, we employ
an evolutionary (or genetic) algorithm for the sampling
of Li/vacancy orderings coupled with a specialized ANN
potential.

To train a suitable ANN potential, an initial set of LixSi
reference structures was generated by isotropic scaling
of the lattice parameters by up to ±5% and by distor-
tion of the crystalline c-LixSi phases, structures of which
were obtained from the Materials Project database.[72]
In addition to the ideal crystal structures, structures with
random Li and Si vacancies were also included. The re-
sulting initial reference set comprised 725 LixSi structures
and was used to train a specialized ANN potential for the
GA sampling.

We consider this potential to be specialized because it
is trained only to DFT reference calculations of structures
that are related to the crystalline LixSi structures. As
such, it cannot be expected that the resulting potential
would reproduce the correct energetics of structural motifs
that are very different from those of the crystalline struc-
tures, such as different atomic coordinations and much
shorter bond length, as they would occur at very high
energies. However, we hypothesize that the specialized
potential is suitable for the specific purpose of sampling
near-ground-state Li/vacancy arrangements in delithiated
amorphous Li15–xSi4 structures.

B. Sampling amorphous LixSi structures with a
genetic algorithm

Genetic algorithms (GAs) are standard global optimiza-
tion techniques [73] and have been routinely applied to
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FIG. 1. Schematic of the genetic algorithm (GA) sampling approach using the specialized ANN potential. The GA is used to
identify the most likely Li atoms to be extracted at each delithiation step, starting with the crystalline Li15Si4 structure. The
atomic positions and cell parameters of configurations with intermediate compositions are subsequently optimized using DFT.
The magnitude of the energies shown in the schematic are E3 < E1 < E2. Li atoms are shown as green balls, Si is blue, and
vacancies are red. See text for details of the algorithm.

atomic structure optimization problems.[74–77] Here, we
are dealing with a simplified optimization problem in
that we only seek to identify those Li atoms that are most
likely to be removed at each delithiation step. The specific
delithiation algorithm employed in the present work is as
follows: (i) The GA is used to determine the most stable
Li/vacancy configuration for a supercell of the Li15–xSi4
structure. (ii) The atomic coordinates and lattice pa-
rameters of at least the 30 most stable configurations as
predicted by the GA are optimized with DFT. (iii) The
most stable (lowest-energy) structure as determined by
DFT is used as the starting point for the next delithiation
step, and the scheme is continued with step (i).
A schematic of the GA method used in the present

work is shown in Fig. 1. In detail, the GA involves the
following individual steps:

0. Input for the GA is the structure of one particular
LixSi composition. For the first delithiation step, a
supercell of the ideal Li15Si4 structure is used.

1. The atomic configuration is represented as a vector
(or string) in which only Li sites are considered;

2. An initial population of N trial configurations is
generated by randomly removing Li atoms from the
input structure (delithiation) to realize the specific
Lix1Si composition of the present delithiation step;

3. The energy of each trial configuration is evaluated
using the ANN potential. If the optimization has
converged and no lower energy was determined over
a certain number of steps the algorithm is continued
with step 4b, else the optimization is continued with
step 4a;

4a. For the following steps, each two trial configurations
from the current population are selected with prob-
abilities that are proportional to their energy such
that lower energy means higher selection probability.
This selection method is sometimes called roulette
wheel selection; [73]

5. N additional trials are generated by combination
(crossing) of two selected trials from the current
population. Each new trial configuration is fur-
ther subject to random changes with a mutation
probability of pm (not shown in Fig. 1);

6. The energies of the new trial configurations are eval-
uated using the ANN potential, and the algorithm
continues with step 3;

4b. Once the GA optimization has converged or a set
number of steps have been completed, the M con-
figurations with the lowest energies are prepared for
subsequent geometry optimizations with DFT.

For the present work, we used a population size of N =32
trials and a mutation rate of pm=10%. At least M = 30
configurations were optimized with DFT at each compo-
sition. A Python implementation of the above GA algo-
rithm can be obtained from http://ga.ann.atomistic.net.
Using the GA approach described above coupled with

the specialized ANN potential of section IIIA, two dif-
ferent supercells of the c-Li15Si4 phase with composi-
tions Li60Si16 (76 atoms) and Li480Si128 (608 atoms) were
delithiated. The small Li60Si16 cell was delithiated in
intervals of each 2 Li atoms, and the large Li480Si128 cell
was delithiated in steps of 8 Li atoms.

http://ga.ann.atomistic.net
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FIG. 2. Energy of the Li360Si128 configurations during optimization with the genetic algorithm (GA) coupled with the specialized
ANN potential. The energy of the current best configuration is shown as black line (optimal energy), the green line corresponds
to the average energy of the GA population of 32 trials, and the yellow line is the current maximal energy. The insets show the
initial structure and the final structure with lowest energy after optimization with DFT. Li and Si atoms are colored green and
blue, respectively.

As one concrete example, the course of the energy
during GA optimization of an atomic configuration with
composition Li360Si128 is shown in Fig. 2. As seen in the
figure, after around 500 GA steps the energy only changes
by around 13 meV/LixSi, indicating that the optimization
has reasonably converged.

A total of 1,263 structures from this GA sampling were
selected for subsequent DFT evaluation and geometry
optimization, and together with the initial reference set
they form the basis for the first principles phase diagram
discussed below.

IV. MOLECULAR DYNAMICS SAMPLING
WITH A GENERAL ANN POTENTIAL

The GA methodology described above makes two ap-
proximations that may intuitively not seem justified:
(i) The GA sampling does not consider structural relax-
ations (though, the final 30 or more low-energy configura-
tions are fully optimized), and (ii) the ANN potential is
specialized for the GA sampling and would not be suitable
for other applications. To verify that the GA sampling
generated genuinely low-energy metastable amorphous
structures, we compare the resulting phase diagram with
the one obtained from heat-quench molecular dynamics
(MD) simulations.

All MD simulations were carried out using the Tin-
ker software package [78] and a Parrinello-Bussi thermo-
stat [79] in the NV T ensemble. Generally, a time step of
2 fs was used for the integration of the equation of motion
with the Verlet algorithm.[80]

A. ANN potential construction and molecular
dynamics simulations

To carry out reliable MD simulations, a fully general
ANN potential is required. For the training of such an
ANN potential, a more extensive set of DFT reference
calculations is needed that also includes local structural
motifs that do not occur in near-ground-state bulk struc-
tures. This means, also unphysical bonding situations and
lattice parameters as well as unusual coordinations should
be present in the reference data set, so that structures
that exhibit those features are not artificially overstabi-
lized during MD simulations. Therefore, we also included
clusters with up to ≈200 atoms, and surface slab struc-
tures that were truncated from the bulk in addition to
further bulk reference structures.
The additional structures were generated by repeated

MD simulations. In addition to the crystalline LixSi struc-
tures, the lowest energy structures from the GA sampling
of section III B were also used as starting points for MD
simulations. Hence, structures with up to 608 atoms were
considered.

Short (< 10 ps) ANN potential MD simulations of the
input LixSi structures at very high temperatures up to
3,000 K were employed to amorphize the structures. These
heating simulations were followed by subsequent 2 ns
long simulations at lower temperatures (between 400 K
and 1200 K) to obtain equilibrated low-energy structures.
400 structures (every 5 ps) along each 2 ns long MD trajec-
tory were recomputed with DFT single-point calculations
and subsequently included in the reference data set.
MD simulations and ANN potential re-training were

repeated until a low root mean squared error (RMSE)
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(a) (b)

FIG. 3. (a) Phase diagram based on the formation energies of all ∼45,000 LixSi structures including bulk, surface slab, and
cluster structures from both training and test set. The energies predicted by the general ANN potential are shown as green
stars and the DFT reference energies are black circles. (b) Only DFT formation energies of those structures sampled by the
GA with the specialized ANN potential (green circles) and only those generated during MD simulations with the general ANN
potential (black crosses).

relative to the DFT energies was obtained and all LixSi
ground states of the ANN potential and DFT energies
were in agreement. Iterative ANN potential training
based on MD simulations is also described in more detail
in reference 52.
In total, around 45,000 reference structures were used

for the training of the general ANN potential, including
the reference structures of the specialized potential, the
structures from GA sampling, and the additionally gen-
erated bulk, slab, and cluster structures. Ten percent of
this reference data set, around 4,500 randomly selected
structures, were set aside as an independent test set for
cross validation and were not used in the final ANN poten-
tial training. Simultaneously, 10 different ANN potentials
were trained with different random initial ANN weight
parameters on the remaining 40,500 data points. Out of
these potentials, the one with the smallest overall error
relative to the DFT reference energies reproduces the
DFT ground state phase diagram most accurately and
was therefore selected for the subsequent analysis.

The selected ANN potential achieves an RMSE of
7.7 meV/atom and a mean absolute error (MAE) of
5.9 meV/atom for the test set. The RMSE and MAE for
the training set are 6.3 and 5.7 meV/atom, respectively.

Figure 3a shows a comparison of the formation en-
ergies predicted by the ANN potential and their DFT
references for all structures in the reference data set. As
seen in the figure, all features of the DFT formation en-
ergies are correctly reproduced by the ANN potential,

and the energies of the individual data points are in good
agreement. In the present work, this general ANN poten-
tial is only used for the purpose of validating the results
of the approximate GA sampling. However, this general
potential will enable the investigation of other properties
of the LiSi alloy in future projects.

B. Comparison of the amorphous phase space
sampled by GA and MD

Having at hand the two sets of independently sampled
amorphous LixSi structures from the approximate GA
sampling (section III B) and from the extensive MD heat-
quench sampling (section IVA), we can now directly assess
the differences. Figure 3b shows only those DFT forma-
tion energies belonging to structures obtained from the
GA sampling (light green circles) and from the MD sam-
pling (black crosses). Clearly, the GA sampling yielded
consistently lower energy structures than the MD sam-
pling at all considered LixSi compositions. Despite the
approximations made in the GA sampling, the sampled
structures are within a small energy range of around
100 meV/atom above the lowest energy of all a-LixSi for
each composition. Thus, the ANN-potential-assisted GA
sampling is successful in determining structure models
of low-energy metastable amorphous phases, and a fully
converged and general ANN potential is not required if
that is the only objective.
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FIG. 4. Superposition of the radial distribution functions (RDF) of each 1,000 randomly selected structures obtained from the
GA sampling (top) and from the MD sampling (bottom).

V. DISCUSSION

The coupling of a GA with a specialized MLP (GA-
MLP) as proposed in this work is designed to gener-
ate low-energy metastable amorphous structures, and we
demonstrated that this is accomplished. However, the
comparison of the GA and MD sampling results in the
previous section show that the sampling strategy has a
pronounced effect on the structures and energetics. In our
simulations, computationally quenching a melt gives rise
to energetically quite different results than computational
delithiation. It should be noted that the outcome of the
heat-quench simulations depends on the cooling rate of
the quenching step and on the simulated time scale, as
rapid quenching can trap the system in high-energy states.
However, the 2 ns long MD simulations of the present
work are already far beyond the time scales that can
be reached with first principles methods. In practice, it
depends on the concrete application which sampling strat-
egy is most appropriate to model an amorphous phase.
When modeling glasses, for example, heat-quench simula-
tions may be most appropriate. In the present example
of electrochemical amorphization, simulated delithiation
more closely resembles the actual mechanism.

To better understand the differences between the struc-
tures generated by the two different sampling approaches,
we evaluated the radial pair distribution functions (RDFs)
for each 1,000 structures from the GA and MD sampling.
A superposition of the RDFs is shown in Fig. 4. As seen
in the figure, the majority of structures generated by the
MD heat-quench simulations exhibit little correlations
beyond the first coordination shell, and at a distance of 8
Å the RDFs approach a value of 1 indicating absence of

ordering. In contrast, the structures generated using the
GA sampling approach exhibit stronger long-range corre-
lations reminiscent of the ground-state crystal structures
as can be seen by comparison with the RDFs reported by
Dahn et al. for the crystalline LiSi phases.[26] The reason
for this difference is likely that the heat-quench simula-
tions start at high temperatures at which no long-range
ordering is present, and the cooling-rate is apparently
too fast to allow for the emergence of ordering. The GA
sampling, on the other hand, simulates the amorphization
by lithium extraction without temperature effects.

One concrete example related to the LixSi alloy is the
voltage relative to Li+/Li. Computationally, the average
conversion voltage between two LixSi phases at T =0K
can be well approximated based on the first-principles
energy differences relative to Li metal [12, 81]

V = −E(Lix1
Si)− E(Lix2

Si)− (x1 − x2)E(Li)

(x1 − x2)F

with x1 > x2 ,

(9)

where F is Faraday’s constant. In Eq. 9, the energies
E(LixSiy) are obtained from the lower convex hull of the
formation energy which corresponds to the T = 0 K phase
diagram. At higher temperatures, the steps of the voltage
profile will be smoothed out to some extend.[82] Fig-
ure 5a shows the formation energies of the structures
from GA sampling for a lithium content that is normalized
to one Si atom, so that the x-axis corresponds directly
to the capacity in battery applications. The correspond-
ing computational 0K voltage profiles for the crystalline
and amorphous phases are shown in Fig. 5b along with
experimentally measured voltage profiles taken from the
literature.[66, 69] Note that the T = 0 K voltage profile
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FIG. 5. (a) DFT formation energies of the amorphous Li480–xSi128 structures generated by the GA sampling (green) along
with the convex hull of the crystalline LiSi phases. In this figure, the composition axis has been normalized to a constant Si
content (LixSi) which reflects the Li storage capacity per Si atom in a Si anode. (b) Computed voltages corresponding to
the lower convex hulls of the formation energies in (a) compared to measured voltage profiles from the literature. The DFT
voltage profile based on the crystalline LixSi phases (black solid line) can be compared to the equilibrium voltages measured by
Huggins et al.[66] (light red line), while the DFT voltages of the amorphous phases (dotted green line) more closely correspond
to the voltage profile by Dahn et al.[69] (dashed blue line) measured for a thin film amorphous Si anode. (c) DFT formation
energies of the structures from MD sampling. (d) Comparison of the computed amorphous LixSi voltage profiles based on the
GA and MD structures.

of the crystalline LiSi phases (solid black line in Fig. 5b)
agrees well with the measured T = 415◦C voltage profile
showing that the 0 K voltage profile is a reasonable ap-
proximation. The formation energies and voltage profile
from MD sampling are equivalently visualized in Fig. 5c
and Fig. 5d. Evidently, the GA-generated formation
energies shown in Fig. 5a give rise to a qualitatively and
quantitatively different 0 K phase diagram as those from
the MD sampling (Fig. 5c), as defined by the lower con-
vex hull of the formation energies. The higher energies
of the structures from MD sampling for low Li contents
and the overall greater slope of the convex hull result in
a much steeper voltage profile than the GA counterpart,
as seen in Fig. 5d. The large hysteresis in the experi-
mental voltage profile prevents a quantitative comparison
with the computed voltages, though the voltage profile

based on the energetics from GA sampling is closer to the
experimental average.

Finally, we stress that machine-learning-assisted sam-
pling is neither limited to the present application (delithi-
ation) nor to genetic algorithms. The main message of
the present work is instead that a specialized machine-
learning potential is sufficient for structural sampling
in a limited domain. Other amorphization mechanisms,
such as amorphization caused by off-stoichiometries (e.g.,
from doping) can be modeled with an equivalent sampling
setup. As an alternative to a GA for the sampling of
low-energy configurations, we could have also employed
other techniques such as Monte-Carlo simulations (i.e.,
simulated annealing).[19] It should be noted that the GA
sampling does not describe real-time dynamics and the
present methodology assumes quasi-equilibration at each
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composition. The obtained voltages therefore correspond
to equilibrium voltages, i.e., slow delithiation. In contrast,
the MD sampling corresponds to a delithiation rate that
is determined by the length of the simulated trajectories
between delithiation steps (2 ns) which might provide an
explanation of the higher voltages obtained from the MD
sampling.

VI. CONCLUSIONS

Using the example of the amorphous LiSi alloy, we
showed how specialized machine-learning potentials can
be used to speed up the first-principles sampling of com-
plex structure spaces. Our methodology is based on a
combination of a genetic algorithm (GA) with an artificial
neural network (ANN) potential. We demonstrated that
this ANN-assisted sampling is successful in determining
low-energy amorphous structures and is computationally
more efficient than the construction of a converged general

ANN potential. Using molecular dynamics heat-quench
simulations, we confirmed that the metastable structures
generated by ANN-assisted GA sampling are consistently
within a low energy range. The herein described method
is not limited to a specific material or amorphization
mechanism but is generally applicable to the modeling of
amorphous and disordered materials.
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