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Abstract

Orbital design and electronic structure of topological metals

by

Samuel M. L. Teicher

Topological materials are an exciting new area of inquiry. These materials exhibit

fundamentally new and nonlocal phenomena including spin-polarized surface states.

More tantalizing is the prediction that an intrinsic topological superconductor could

exhibit quasi-particles called Majorana anyons and provide the materials platform for

building a quantum computer robust to many of the decoherence effects that plague

competing quantum computation technologies. A scalable quantum computer would

be able to solve many problems that are fundamentally intractable with current com-

puting technologies and is hoped to provide a path towards understanding some of the

most difficult contemporary physics questions such as the interaction of electrons in

correlated systems.

While new topological materials—especially topological superconductors—are de-

sired, design rules for predicting new topological metals are far from understood. Elec-

tronic materials discovery, especially in the laboratory, is largely driven by chemical

understanding of the atomic bonding motifs in the crystalline structure that generate

relevant electronic structure features. By modifying these motifs via chemical substitu-

tion and comparing with carefully constructed simulations, new topological materials

are discovered and understood. Here, we present computational studies on five fam-

ilies of topological metals with varying functional properties, ranging from catalytic

activity to complex magnetic ordering and superconductivity. In each study, emphasis

is placed on the orbital origins of the predicted topological electronic structure.
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The first part of the dissertation explores bonding interactions and electronic struc-

ture in three cubic metals: Na(Pd,Pt)3O4, Mn3ZnC, and LaIn3. Chapter 2 describes

the bonding of palladium and platinum d orbitals with square-planar coordinating O

p orbitals in NaPd3O4 and NaPt3O4. This unusual geometry generates an inversion of

dx2−y2 and dz2 bands, yielding an exotic nodal cube state that is a higher-degeneracy

analog of a Dirac semimetal. Spin-orbit coupling effects partially fragment this cube,

with stronger fragmentation in the Pt containing compound. Chapter 3 follows the

electronic structure progression of antiperovskite Mn3ZnC, which transitions from a

ferromagnetic room temperature phase to a distorted non-collinear magnetic structure

at low temperatures. The electronic structure of this material can largely be under-

stood in terms of Mn d bonding and magnetism. The ferromagnetic phase is shown to

host topological Weyl nodes and surface states. The Weyl nodes are largely gapped and

eliminated in the low temperature phase. The removal of Weyl nodes via structural

distortion and antiferromagnetic ordering is likely common to a wider variety of Weyl

metals. In chapter 4, the Fermi surface of auricupride LaIn3 is simulated and com-

pared to experimental quantum oscillation measurements. The electronic structure is

explained in terms of a simple tight-binding model involving only In p orbital interac-

tions with close similarity to prior work on the ZrSiS family of square-net semimetals.

While further experimental verification is needed, an initial survey suggests that LaIn3

hosts a wide variety of topological surface states.

The second part of the dissertation examines the electronic structure of three com-

pounds, CsV3Sb5, GdV6Sn6, and YV6Sn6, in which the relevant electronic properties

derive largely from the bonding of d orbitals on 2D kagome planes of vanadium atoms.

Chapter 5 offers a careful comparison of simulation results to experimental X-ray diffrac-

tion and quantum oscillation measurements that track the charge density wave and

electronic structure transitions that occur upon cooling crystals of CsV3Sb5. The charge

xii



density wave is shown to derive primarily from breathing-mode distortions of the vana-

dium kagome net, which are energetically favored in the DFT and qualitatively agree

with the experimental structural solution and low frequency quantum oscillation sig-

nals. The predicted band reconstruction, combined with an earlier prediction of Z2

topological surface states in CsV3Sb5, suggest that surface states may be active at the

Fermi level at the superconducting transition temperature, indicating that CsV3Sb5 is

a promising intrinsic topological superconductor candidate. Chapter 6 details the syn-

thesis of GdV6Sn6 and YV6Sn6 crystals, electronic structure predictions and initial com-

parison of the simulated electronic structure to experimental ARPES measurements.

Like CsV3Sb5, these kagome metals are predicted to host Z2 topological surface states.

The relevant electronic structure of these materials derives from V-V, V-Sn, and Sn-

Sn bonding interactions. Substitution on the Gd/Y site provides additional magnetic

tunability.
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Chapter 1

Introduction

The goal of this dissertation is to provide tools and chemical intuition for predicting

and synthesizing topological semimetals based on ab initio calculations. While first-

principles methods have progressed greatly in recent decades, making density func-

tional theory calculations widely accessible and ubiquitous in the world of materi-

als discovery, these advancements have not always translated to laboratory-relevant

knowledge. Ambitious recent works have made significant impact in the field of topo-

logical materials by systematically calculating and categorizing topological invariants

for large databases of materials at once, relying on mathematical rigor sans chem-

istry.[1, 2, 3] However, simplified bonding models, long known to solid-state chemists

and physicists, still provide crucial insight in experimental work. Knowledge of the or-

bitals and bonding interactions at play in a given compound provide immediate impact

for the experimentalist:

1. does the electronic structure feature of interest arise from d-orbital bonding on

the M site? If so, I may be able to make an atomic substitution to replace M with

a similar element that has larger or smaller d orbitals, thereby carefully tuning

the properties.

2. is the electronic structure strongly affected by spin-orbit coupling (SOC)? If so,

1
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I may be able to substitute an atom in the same column of the periodic table in

order to increase the SOC strength. (see Chapter 2)

3. is the electronic structure feature of interest above or below the Fermi level? If

so, I may be able to add or remove electrons through substitution of an element

in a nearby column of the periodic table. (see Chapter 4)

4. do I want to make my material magnetic? If so, I may be able to substitute an

atom with an additional d or f electron on one of the electron donating sites. (see

Chapter 6)

Moreover, the intuition associated with näıve chemical bonding models often proves

surprisingly prophetic in explaining instabilities—even in complex metals. A number

of quasi-2D topological semimetals undergo charge density wave (CDW) distortions,

and an increasing number of semimetals have been found to exhibit antiferromag-

netic orderings at low temperature (discussion of a magnetic antiperovskite semimetal

which undergoes both structural and antiferromagnetic ordering at low temperature is

provided in Chapter 3, while in-depth computations and experimental collaborations

untangling the breathing-mode distortion in a kagome superconductor are offered in

Chapter 5). These findings are not unsurprising to solid-state chemists, however, since

they align with intuition formed by the simple Peierls chain bonding model.

With this goal in mind, presented here are careful computational studies on five

families of semimetals with varying functional properties, ranging from catalytic ac-

tivity to complex magnetic ordering and superconductivity. In each study, emphasis is

placed on the orbital origins of the predicted topological electronic structure.

2
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Figure 1.1: Real space topology. (a) a sphere has no holes and is categorized with
an Euler characteristic, ξ = 2. (b) a torus or donut shape has a single hole and is
categorized by a characteristic, ξ = 0.

1.1 Topology (in Real Space)

In mathematics, concepts of topology have long been used to describe the geometry

of surfaces. One of the surprising findings in this field is that surfaces can be divided

systematically into different classes based on their geometry. Fig. 1.1 displays two

examples of 3D surfaces, (a) a sphere and (b) a torus. It isn’t hard to see a practical

difference between the two shapes—the torus has a hole in the middle. There is no

way to continuously stretch the sphere into a torus or vice-versa, since conversion

would require the formation or removal of a puncture hole. For real 3D surfaces, these

findings are summarized through the Gauss-Bonnet theorem[4]:

ξ =
1

2π

∮

S

KdA (1.1)

where K is the local Gaussian curvature, and
∫

S
dA represents integration over the full

surface area. ξ is known as the Euler characteristic and turns out to be a quantized

property; ξ only adopts integer values. Integrating over the spherical surface of Fig.

1.1 (a), with a constant Gaussian curvature K = 1/R2 we find ξ = 1

2π
1

R2

∫

S
dA =

1

2πR2 (4πR
2) = 2. It can be shown that a similar integration for the toroidal surface of

Fig. 1.1 (b), yields ξ = 0.[5] Abbreviating further mathematical results, it turns out

3
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that these integrations are quite general: any surface without holes will have ξ = 2, any

surface with one hole will have ξ = 0, any surface with two holes will have ξ = −2, etc.

The Euler characteristic is a topological invariant characterizing the number of holes

in a surface. Any two surfaces with the same ξ value can be continuously deformed

into one another. A surface cannot be continuously deformed into another surface with

a different Euler characteristic since this transformation would require puncturing the

surface or removing holes.

This dissertation discusses topology in the context of the electronic properties of

materials. While the dimensions may at first appear more abstract (energy-momentum

space rather than real space), electronic structure topology is conceptually and mathe-

matically similar, and categorizible in terms of topological invariants that are quantized

to integer values.

1.2 Motivation

At its core, a chemical view of electronic structure topology is defined by an inver-

sion of electronic states in a topological material with respect to an insulator. Air/vacuum

are often the relevant insulator in experimental contexts, but inversion can also be de-

fined across materials junctions, such as layered semiconductors or other heterostruc-

tures. Topological inversion is visualized schematically in Fig. 1.2. In an insulator

(e.g., glass, semiconductors, air), (a), there is a gap in the energy spectrum. Electrons

fill up and completely occupy a band of states called the valence band. A higher energy

conduction band is unfilled, and separated from the valence band by the band gap (in

reality, small numbers of electrons are thermally excited into the conduction band, but

we are assuming very low temperatures for the moment). In order to conduct current,

electrons must be excited from the valence band to a higher energy state in the conduc-

4
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Figure 1.2: A chemical view of topology. Semiconductor: a semiconductor or insula-
tor has a complete band gap in the energy spectrum. Metal: a metal has no band gap
and no clear energy separation between conduction and valence bands. Topological

insulator concept: in a topological insulator, valence states are ‘inverted,’ mixing into
the conduction band and conduction states similarly mix into the valence band. This
guarantees that surface bands will appear at the interface with air/vacuum—in which
there is no band inversion.

tion band. In a metal, (b), by contrast, there is no gap and no well-defined separation

between valence and conduction states. Instead, the electrons occupy the states up to a

given energy level, referred to as the Fermi level, or Fermi energy, EF . With even small

energetic excitations, electrons can access a continuum of states immediately above EF .

For this reason, electrons tend to be more mobile in metals, yielding the high metallic

electrical conductivity familiar in household wiring and electronics. Topological mate-

rials are distinct from either metals or insulators. Topological insulators (TIs), the first

experimentally verified topological materials, share properties of both insulators and

metals—they are insulators in the bulk, but exhibit metallic electronic conductivity on

their surface. The topological insulator concept is demonstrated in (c). Here, there is

mixing of the valence states (orange) into the conduction band (blue) and vice-versa.

This band mixing is referred to as inversion, since the valence and conduction states

on either side of the bandgap are inverted with respect to their usual positions. As a

5
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Figure 1.3: Schematics of potential applications for topological materials. (a) en-
hanced bulk transport and large surface state electron populations may generate good
catalysts. (b) spin-momentum-locked surface states allow for selective spin trans-
port—a necessity for spin diodes. (c) topological surface states may provide a path
towards realizing majorana anyons, proposed quasi-particles that can store informa-
tion in their relative position, which could be ‘braided’ by moving around each other.

result, continuity requires that the conduction and valence states cross at the interface

between a TI and a normal insulator. The band crossing closes the band gap, but only

on the surface of the material, guaranteeing metallic surface conductivity while pre-

serving a bulk band gap. In a real material, the conduction and valence bands derive

from different orbital states (e.g. s vs. p, or bonding/antibonding pairs like pπ,p∗π),

and band inversion can be described as an inversion of the orbital energies. In many

cases, the surface states are potentially more interesting than conventional metallic

bands: spin-orbit coupling (SOC) is often strong on the surface of a material, and can

separate electrons into states with opposite magnetic spin. Electrons with a given spin

(conventionally, ‘up’) move in the opposite direction from electrons with opposing spin

(‘down’), this phenomenon is known as spin-momentum locking.[6, 7]

These unusual properties enable a number of exciting applications for topological

materials. Three applications are presented in schematic in Fig 1.3. A conventional

property, perhaps overlooked in current literature, is that many of these materials are

good electronic conductors, either on the surface, as in TIs, or in both the bulk and on

the surface as in the topological semimetals to be discussed in depth in this dissertation.

Good electronic conductivity is a key property for conventional electronic devices, such

6
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as computers and cellphones, and is also essential to newer renewable technologies

for energy conversion, storage, and transport. Many known TI materials have been

explored for thermoelectric energy conversion, owing largely to their high electrical

conductivity with respect to other bandgap materials.[8, 9] Topological semimetals

are proposed for catalysis applications due to their high bulk and surface conductivity

and, often, surface state electron population.[10, 11] Semimetals have proven efficient

catalysts for the hydrogen evolution reaction,[10, 12, 13, 14, 15] as well as oxygen

evolution[16]. NaPt3O4, a semimetal which is discussed in Chapter 2, is known to be

an effective catalyst for hydrogenation reactions. Fig. 1.3 (a) presents a cartoon of

bulk and surface electron transport in a semimetal catalyst, depicting a hydrogenation

reaction.

In addition to improving conventional technologies, topological materials provide

tantalizing possibilities for new quantum technologies. Spin-momentum-locking pro-

vides the possibility of building a spin diode, in which electrons with opposite spin

move in opposite directions and the relative conduction of the two spin populations

could be controlled and switched (see schematic in Fig. 1.3 (b)).[17, 18, 19] Spin

diodes are a key step in the field of spintronics, which aims to build computing devices

in which spin currents are transported rather than electrical currents; a potentially

low-power-use computing solution. Finally, a current holy grail is the use of topo-

logical materials to realize theoretically-predicted quasi-particles known as Majorana

anyons. Theorists predict that by coupling spin-momentum locked surface states and

superconductivity—either by producing layered devices with interfaces between topo-

logical materials and superconductors, or by discovering a single bulk material that is

intrinsically both topological and superconducting—Majorana anyons can be realized

on the surface of a real material.[20] While a rigorous theoretical discussion of anyons

is beyond the scope of this introduction, a simple central concept is the question of

7
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what occurs when two particles exchange positions. Exchange is often summarized

with a simple equation in introductory physics textbooks.1 Suppose we have two par-

ticles with positions {x1, x2}. Quantum mechanics dictates that the system must be

described by a wavefunction, ψ(x1, x2) with a probability distribution |ψ(x1, x2)|2. The

particles we experience in everyday life are indistinguishable–all electrons are func-

tionally identical. We therefore know that the probability distribution cannot change

when the positions of the particles are swapped:

|ψ(x1, x2)|2 = |ψ(x2, x1)|2

meaning, in turn, that the exhange can be described with a simple phase factor, θ:

ψ(x1, x2) = eiθψ(x2, x1)

Assuming that swapping particles twice (x1 → x2 → x1 and vice-versa) brings us back

to the original state, we find that θ can only take on values {0, π}. These are the cases

for bosons (e.g., photons) and fermions (e.g., electrons), respectively. All particles you

experience in everyday life are either bosons or fermions. But this assumption about

double swapping doesn’t apply to anyons: anyons are theoretical particles that have

any phase factor, theta, other than 0 or π. For this reason, it is proposed that anyons

can store information in the phase factor associated with their relative positions, and

that information can be stored and transferred by physically exchanging the positions

of anyons over time, a process called braiding. Anyon braiding is visualized in Fig.

1.3 (c). Braiding presents an opportunity to store information nonlocally, providing

protection against decoherence. A major challenge in current quantum computing de-

1See D. J. Griffiths, Introduction to Quantum Mechanics, 2nd Ed., Prentice Hall (Upper Saddle River,
N.J.): 1995, Chapter 5.
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signs is that quantum states are often not robust; local perturbations, such as a lattice

vibration in a crystal or incoming light (photons), can interact with and destroy the

desired state. Due to the nonlocal storage of information in the braiding design, topo-

logical materials are proposed to provide a platform for quantum computers robust

to local decoherence.[21] Heterostructure devices using a number of different super-

conductor/topological material/semiconductor combinations are under active investi-

gation.[22]2

Only a small number of intrinsic topological superconductor materials have been

proposed thus far, among them iron-based superconductors,[23] doped variants of

the topological insulator Bi2(Se1−xTex)3,[24] and doped topological crystalline insu-

lators in the SnTe family[25]. Chapter 5 discusses initial calculations and accompany-

ing experimental collaborations suggesting that the recently-discovered kagome metals

AV3Sb5 (A = K,Cs,Rb) may provide a new family of intrinsic topological superconduc-

tors. While these metals are not immediately relevant to devices since they must be

cooled to a temperature on the order of 10 K before superconductivity manifests, these

kagome metals present the possibility of new physics discoveries—the mechanism of

the superconductivity and its relationship with proposed topological surface states, ini-

tially predicted in the work presented here, are far from fully explored. In chapter

4, new calculations are presented which suggest that the electronic structure of the

LaIn3 family of metals, long known for superconductivity, feature bulk band inversion

and likely host topological surface states at experimentally-relevant energies near EF—

these materials also show promise as intrinsic topological superconductor candidates.

2It is important to note here that topological protection resulting from bulk band inversion is not
strictly necessary in heterostructure designs, since spin orbit coupling can induce spin-momentum locked
surface states even in normal semiconductors with appropriate electron doping. A great deal of current
effort pursues device stacks including conventional III-V semiconductors, such as InGaAs, layered with
metallic superconductors. InGaAs is not a bulk topological insulator.

9
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1.3 Berry curvature and the Chern invariant

The brief discussion of Majorana anyons in the previous section highlights the im-

portance of the wavefunction phase in quantum systems. In many treatments of quan-

tum mechanics, phase is largely neglected. After all, most observable quantities depend

on the probability distribution of possible states, which is given by the modulus squared

of the wavefunction:

|ψ|2 = ψ∗ψ

as such, an arbitrary phase factor can always be added to the wavefunction, ψ′ = eiθψ

without any change to the relevant modulus:

|ψ′|2 = (ψ′)∗(ψ′) = e−iθψ∗eiθψ = ψ∗ψ

this phase choice is sometimes referred to as a reference gauge. While the wavefunction

phase itself is arbitrary and gauge dependent, certain properties associated with the

phase are gauge invariant and associated with real physical observables. One such

quantity is the phase accumulated over a closed, circuitous path, a concept popularized

by Sir Michael Berry now commonly referred to as the Berry phase.[26] We can quickly

show that this quantity is gauge invariant. Any closed path can be decomposed into

a set of states, |u1〉 , |u2〉 , . . . , |uN−1〉, such that the path evaluation around the loop is

given by:

〈u1|u2〉 〈u2|u3〉 · · · 〈uN−1|u1〉

since any wavefunction can be divided into an amplitude, A, and phase, θ, such that

ψ = Aeiθ, the Berry phase, γ, can then be defined such that:

γ = −Im ln[〈u1|u2〉 〈u2|u3〉 · · · 〈uN−1|u1〉]
10
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suppose now that we change to an arbitrary gauge that adds phase factors to each state

|uj〉 such that |uj,g〉 = eiθj |uj〉:

γg = −Im ln[〈u1,g|u2,g〉 〈u2,g|u3,g〉 · · · 〈uN−1,g|u1,g〉]

= −Im ln[e−iθ1 〈u1|u2〉 eiθ2e−iθ2 〈u2|u3〉 · · · 〈uN−1|u1〉 eiθ1 ]

= −Im ln[〈u1|u2〉 〈u2|u3〉 · · · 〈uN−1|u1〉]

since the additional phase factors all cancel, the Berry phase is unchanged by the gauge

transformation. The Berry phase can also be defined in an integral formulation for a

path along a parameter, λ[27]:

γ =

∮

P

A(λ) · dλ

where A(δ) = 〈uλ|i∂λuλ〉 is a quantity known as the Berry connection or Berry potential.

Via Stokes theorem, we can relate this path integral to an equivalent integral over the

enclosed area of the loop: γ =
∮

P
A · dλ =

∫

S
∇ × A · dS =

∫

S
Ω · dS were dS is an

infinitesimal element of the surface area, S, and Ω = ∇ × A is known as the Berry

curvature. It can be further shown that the Berry curvature of a fully enclosed surface

is quantized according to the Chern theorem[27]:

2πC =

∮

S

Ω · dS

where C is a topological invariant known as a Chern number. This formula is almost

identical to the Gauss-Bonnet theorem described in equation 1.1 with the Berry curva-

ture analogous to the Gaussian curvature and the Chern number in analog to the Euler

characteristic. However, unlike the previous discussion of geometric invariants, the key

11
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consideration in evaluating the Chern number is usually the change of the wavefunc-

tion ψ(λ) within the parameter space rather than the geometry of the space itself. In

this discussion, the choice of parameter λ has been intentionally left vague. Berry phase

has proven to be a useful general concept for describing wavefunction evolution in a

number of subject areas including optics (conical diffraction), magnetic measurements

(Aharonov-Bohm effect), and electronic structure (topological materials), with the λ

parameter space of interest differing in each case.[28] A more complete derivation of

the Chern theorem and other Berry phase quantities is given by Vanderbilt.[27]

While several different types of topological materials are described in this disserta-

tion, in all cases topology arises from nontrivial Berry curvature and associated invari-

ants. Here, the relevant parameter space is λ = k where k is the crystal momentum.

After motivating the origins of electronic band structure and the meaning of k in the

next section, the electronic Chern invariant formula will be provided explicitly.

1.4 Orbital origins of band structure

An important first step in describing the orbital origins of topological electronic

structure and band inversion is to provide some brief intuition as to the orbital origins

of electronic states (bands) in extended solids, and the meaning of the momentum,

k. A more complete treatment can be found in Refs. [29, 30]. We assume a periodic

crystal in which atoms are evenly spaced in a chain. In individual atoms, electrons

occupy individual spherical harmonics, including s-orbitals, which are perfectly spher-

ically symmetric, p-orbitals, which have dumbbell-like shapes, and d and f orbitals,

which have more complex structures with multiple lobes. Given any combination of

orbitals χn on sites n, the wavefunction of the entire chain can be written as a linear

12
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Figure 1.4: Orbital origins of electron bands. (a) an s-orbital band. (b) a p-orbital
σ-bonding band. (c) a p-orbital π-bonding band. (d) when two orbitals are present in
the unit cell, two bands are present, pπ and antibonding p∗π. These bands have orthog-
onal wavefunctions and therefore cross without interacting. An alternative labeling
for bands with orthogonal symmetry is to say that they have different irreducible rep-
resentations, here denoted arbitrarily as ∆1,∆2.
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combination of the individual orbitals:

ψk =
∑

n

eiknaχn (1.2)

where a is the lattice constant separating the orbitals. Depending on the value of k,

more or fewer of the orbitals have positive or negative wavefunction contributions. For

k = 0, ψk is just the linear combination of the individual orbitals, yielding positive

wavefunction contributions on every site. For k = π/a, the sign of the wavefunction

switches between every adjacent site. The range of possible k values is infinite, but

the range we must consider is quite limited. Similar to the real-space periodicity of the

atoms, the wavefunction is periodic in k. We need only consider the range −π/a ≤ k ≤

π/a, since the states in this range can represent any possible value of k. This limited

range is referred to as the Brillouin zone. Band structures are typically depicted as

energy versus k plots within the Brillouin zone. With this knowledge, we can begin

to plot simple bands. From the perspective of an introductory chemistry course we

know that antibonding interactions tend to be less energetically favorable than bonds.

Similarly, from introductory quantum mechanics examples such as the particle-in-a-

box, we know that excited states of a system tend to have more nodes (sign-reversals)

than the ground state. We therefore know that the k = 0 state for an s-orbital chain,

which is purely bonding, will be more energetically favorable than the k = π/a state

at the edge of the Brillouin zone, which has purely antibonding interactions between

all adjacent orbitals. We can draw a band like that in Fig. 1.4 (a). In (b), we see

two p-orbitals aligned end to end in a σ bonding configuration. For this configuration,

the band dispersion is opposite to s orbitals. For k = 0, all adjacent interactions are

antibonding and for k = π/a all interactions are bonding. Using similar arguments, we

can show that p π-bonding bands, arranged as in (c), run upwards with k like s orbital

14
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bonding.

These simple models contain much of the intuition necessary to understand topo-

logical semimetals. Suppose now that we have two p π bonding atoms per unitcell, as

depicted in Fig. 1.4 (d). We now find two possibilities for our unit cell: the p orbital

pair can be either bonding (blue) or antibonding (orange). At k = 0, the bonding

band is heavily energetically favored since all interactions are bonding, similarly, the

antibonding band is much higher in energy since all interactions are antibonding. At

k = π/a, both bands have the exact same energy; in both cases, half of the interactions

are bonding and half antibonding. The bands cross at this point at the edge of the

Brillouin zone. Two bands can only cross like this if they have orthogonal symmetry. In

band structure literature, this is often abstracted with the comment that the two bands

have different irreducible representations (irreps) with respect to the local point group

(in this case, the point group at k = π/a). In this simple scenario, however, the ra-

tionale for band crossing is easily visualized: the antibonding band always has a node

(sign reversal) at the center of each unit cell while the bonding band does not. The

wavefunction overlap between the bonding and antibonding states will therefore be

zero, and no interaction can occur between bands. In practice, irreps are a convenient

and rigorous labelling scheme to determine which bands can cross and which bands

will interact and form band gaps. Thanks to modern codes, irreps can be conveniently

calculated and plotted as shown in schematic here.[31] Since the irreps are different

(here, arbitrarily labeled ∆1,∆2), the bands are guaranteed to cross with no interaction

and band gapping. Even in larger crystals with more complex symmetry, the explana-

tion for this irrep notation continues to be simple: bands with different irreps have

orthogonal wavefunctions at a given k-point.

Simple bonding models also provide intuition as to the origins of symmetry-breaking

distortions in crystalline solids. One of the simplest models is the Peierls distortion,[32]
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Figure 1.5: Peierls distortion schematic. (a) An undistorted chain of s-orbitals, with
a crystal unit cell containing two orbitals, has a semimetal band structure in which
the bonding states (teal) are fully-filled, the antibonding states (pink) are completely
empty, and the bonding and antibonding bands meet at a single linear band crossing
point. (b) a symmetry-breaking lattice distortion can create a band gap which sep-
arates the bonding and antibonding states, stabilizing the structure by lowering the
energy of the occupied bonding states.
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which alternates bond lengths in a 1D chain of s orbitals. The Peierls chain model is

presented in Fig 1.5. In (a), we see a simple chain of s orbitals in which the unit cell

contains two orbitals. The bonding arrangement is similar to the p π bonding of Fig.

1.4 (c), with separation between bonding and antibonding states and a band crossing

at the end of the Brillouin zone. In (b), we see in schematic what can occur if the

atoms break symmetry by alternating bond short and long bonds: bonding states move

down in energy, antibonding states move up in energy, and the distortion is stabilized

since the filled bonding states have lowered in energy below the original EF . In addi-

tion to the band structure E− k diagram, included are schematics of the crystal orbital

overlap population (COOP), popularized by Roald Hoffmann and colleagues.[29, 33]

COOP and related tools provide a semi-quantitative description of bond strength based

on wavefunction overlap. Consider two crystal sites occupied by orbitals χ1,χ2. The

total wavefunction of an electron in this material can be written: ψ = c1χ1 + c2χ2. The

electron probability density is then given by[29]:

1 =

∫

|ψ|2dτ

=

∫

|c1χ1 + c2χ2|2dτ

= c21 + c22 + 2c1c2

∫

(χ∗
1χ2 + χ∗

2χ1)dτ

where dτ represents a volume integration over real space. The final integral repre-

sents a site wavefunction overlap which is positive for bonding and negative for an-

tibonding interactions. Neglecting full formalism here in the name of brevity, COOP

shares the intuitive property that negative values represent antibonding contributions

and positive values represent bonding contributions. Significant work has pursued de-

veloping the Crystal Orbital Hamilton Population or COHP, an analog of COOP that
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Figure 1.6: 1D diatomic tight-binding model. The band structure is shown in (a) for
the ideal semimetal case, εA = εB. (b) presents a schematic visualizing the local
wavefunction of a single unit-cell for k = 0. Here, it can be seen that the valence
band (orange) and conduction band (blue) correspond to symmetric, bonding and
antisymmetric, antibonding states, respectively.

can be determined from standard, plane-wave ab-initio calculations, which is lever-

aged significantly in the following chapters as a semi-quantitative estimate of bond

strength.[33, 34, 35, 36] More rigorous discussion of the equations used to calculate

COHP is offered in Appendix B.

1.5 Tight-binding formulation of the 1D diatomic chain

The linear combination of atomic orbitals (LCAO) method presented in the pre-

vious section is equivalent to a tight-binding formalism that may be more familiar

to physicists. The simple Peierls chain model of Fig. 1.5 can be recreated with a

linear chain tight binding model with two orbitals in the basis, and an alternating

pattern of orbitals: · · ·φn−1,A—φn−1,B—φn,A—φn,B—φn+1,A—φn+1,B · · · , etc. Letting

εA ≡ 〈φi,A|Ĥ|φi,A〉 and εB ≡ 〈φi,B|Ĥ|φi,B〉 be the onsite energies of the orbitals φi,A

and φi,B, respectively, and −t ≡ 〈φi,A|Ĥ|φi+1,B〉 be the hopping energy between sites,
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the Schrödinger equation can be written:

Ĥψ = Eψ

and, expanding into matrix form:
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which gives us the equations:

εAφn,A − t(φn,B + φn−1,B) = Eφn,A

εBφn,B − t(φn,A + φn+1,A) = Eφn,B

Following the LCAO notation previously provided in equation 1.2 we can write out the

wavefunctions in the form φn,A = χAe
ikna and substitute, yielding:

εAχA − tχB(1 + e−ika) = EχA

εBχB − tχA(1 + eika) = EχB

We can then rewrite in the simpler matrix form:







εA −t(1 + e−ika)

−t(1 + eika) εB













χA

χB






= E







χA

χB
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Which can be solved to give the eigenenergies:

E± =
(εA + εB)±

√

(εA − εB) + 8t2(1 + cos(ka))

2

As previously motivated, the semimetal phase corresponds to the case of a uniform

bonding chain. Here, this means the case in which εA = εB, with eigenvalues:

E± = ±t
√

2(1 + cos(ka))

and corresponding eigenvectors:

v =







∓
√

1+e−ika√
1+eika

χA

χB







where we have chosen to set εA = εB = 0 for convenience. This band dispersion is

visualized in Fig. 1.6 (a). Analyzing the eigenvalues in the limit k → 0, we find that

the lower energy band corresponds to a symmetric bonding state with v = [χA, χB]

while the higher energy band corresponds to an antibonding state with v = [−χA, χB].

These state are visualized in schematic in Fig. 1.6 (b) assuming that χA and χB have a

sinusoidal shape. These symmetric and antisymmetric wavefunctions are similar to the

orbital model depicted in Fig. 1.4 (d). The band crossing is symmetrically allowed in

this toy model due to the orthogonality of the bonding valence band and antibonding

conduction band wavefunctions.

While simple, section 1.7 will demonstrate that this tight-binding model provides

much of the intuition necessary to understand a model semimetal, graphene.
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1.6 Topology in k space

In order to define topological invariants like those of section 1.3 for the electronic

band structure of a material, we can define the Berry phase of a single band, n, inte-

grated along a path in k space:

γn =

∮

C

An(k) · dk

and An(k) = 〈unk|i∂kunk〉. However, most systems have more than one filled band. It

can be shown that the total Berry connection for a system can be given as the sum[27]:

Atot(k) =
N
∑

n=1

〈unk|i∂kunk〉

with similar definitions of the total Berry phase and Berry connection:

γtot =

∮

C

Atot(k) · dk =

∫

S

Ωtot(k) · dS

We can therefore calculate the Berry phase and associated topological invariants for

the electronic bands of a crystal calculated in k-space. Like the geometric topological

invariants of section 1.1, these band structure topological invariants are unchanged by

smooth, adiabatic changes of the system. A non-adiabatic change of the system that

can change the topological invariant is the swapping of two bands near the Fermi level,

i.e. a band inversion, which is analogous to the effect of puncturing a hole in a 3D

surface on the Euler characteristic. When the electronic structure of a material is said

to be topologically-protected, this means that a band inversion would be required to

remove the topology.
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1.7 Graphene as model semimetal

We now examine the simplified bonding models of the proceeding sections applied

to a real material: graphene. Graphene is a good choice of focus for both pedagogical

and historical reasons. The bonding in graphene is indeed fairly simple, and graphene,

while not a topological semimetal itself, has had a major impact on the field of topo-

logical materials. Three dimensional semimetals are often thought of as 3D analogs of

graphene.[37, 30] Considerable interest and subsequent research following both the

Nobel prize work of Geim and Novoselov on graphene (2010)[38, 39] and Haldane,

Kosterlitz and Thouless on topological invariants (2016),[40, 41] has contributed to

the development of the current research field of topological semimetals.

Fig. 1.7 presents a summary of the bonding and electronic structure of graphene. In

(a), we see that, due to the hexagonal lattice of carbon atoms, graphene has two atoms

present in the unit cell. Since carbon only has occupied s and p orbitals, we need only

consider orbitals that are linear combinations of s and p. The bonding in graphene

is qualitatively well-described by sp2 in-plane bonding, which is σ-like, and pz out-of-

plane bonds, which are π-like. Each carbon atom contributes 4 electrons, completely

filling the sp2 states and the pz bonding band, but leaving the pz antibonding band

unoccupied. The result is very similar to the linear π-bonding chain of Fig 1.4 (d) and

the 1D diatomic chain of section 1.5. Using simulation, we can visualize the charge

density. In (b,c), we find that the charge density at the edge of the Brillouin zone

indeed has a similar structure, separated into symmetric bonding and antisymmetric

antibonding states. In (d), we find that this connection extends to the band structure:

graphene also features a band crossing at the edge of the Brillouin zone (K) at the

Fermi level. More formally than this analysis of the charge density, orthogonality of the

bonding and antibonding band wavefunctions can also be shown in terms of the band
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Figure 1.7: Graphene bonding and band structure. (a) the graphene unit cell con-
tains two carbon sites, which are occupied by sp2 and pz orbitals. (b,c) Using DFT
simulations, we can visualize the pz π bonding and antibonding states at the edge
of the Brillouin zone, the K point. We find that the π bonding states (b) include lo-
cal bonding pairs, and the antibonding states (c) have nodes in the center of these
pairs. (d) band structure and irreps in the absence of spin-orbit coupling: there is a
linear band crossing (Dirac node) at K. (e) band structure with artificially increased
spin-orbit coupling (100×). When considering spin symmetry, both bands share the
same irrep (Γ5) and there is now mixing and a small band gap at K. Partial charge
density contours are visualized at 0.027 e/Å3.
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C2v E E C2 σv σ′
v

Γ1 1 1 1 1 1
Γ2 1 1 -1 1 -1
Γ3 1 1 1 -1 -1
Γ4 1 1 -1 -1 1

Γ5 2 2 0 0 0

Table 1.1: Character table for the C2v point group. This table employs the notation
from [42]. There are 4 non-spinor irreps, Γ1-Γ4, and only one spinor irrep Γ5.

irreps with respect to the point group along the M -K and K-Γ lines (C2v): the bonding

band has irrep Γ2, while the antibonding band a different irrep, Γ1.[42]

Linear bands crossings like these are special, and contribute to the relatively high

electron mobility in many semimetals. In many materials, such as most semiconduc-

tors, the E−k dispersion is well-described by a parabolic model: E ∝ k2. In semimetals

like graphene, the dispersion is linear near the Fermi level: E ∝ k. This has a corre-

sponding result on the effective mass of the electron: theoretically, in materials with

linear band dispersion, the electron is effectively massless. This is result is intimately

related to the masslessness of photons, which also have a linear dispersion relationship

(ω = ck) due to the relativistically-defined constant speed of light, c.

This is not the full story, however, at least on the theory side. All electrons in

extended solids experience relativistic effects, spin-orbit coupling (SOC), that scale with

the atomic mass of the element they orbit. The carbon atoms of graphene are fairly

light such that these effects are unimportant and invisible in the calculations shown

so far. However, we can artificially increase the strength of SOC in the calculations by

100×, as shown in Fig. 1.7 (e), with the finding that a small band gap opens right at

the Fermi level. We had previously shown that the band crossing at the K is avoided

due to orthogonal wavefunctions and the correspondingly different irreps of the pz π

and π∗ bands, so why is a band gap allowed to form when SOC is increased? SOC
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allows mixing between electron states with opposite spin, and spin symmetry becomes

important when SOC is significant. Formally, we must consider only spinor irreps for

large SOC systems. Table 1.1 presents the character table for the C2v point group.

Rather than focusing on the particulars of the symmetry operations embodied by each

irrep (C2 is a rotation around the z-axis, for example), what’s important to notice is that

there are four available non-spinor irreps, conventionally placed in the first block, Γ1-

Γ4, whereas there is only one available spinor irrep in the second block, Γ5. Because the

Γ-M , M -K, and K-Γ lines all have C2v symmetry in the hexagonal Brillouin zone, all

bands must have the Γ5 spinor irrep, meaning that no bands in Graphene-like materials

can cross without gapping when SOC is strong. In general, the spin-mixing introduced

by SOC tends to reduce the number of available irreps; therefore often resulting in the

formation of local band gaps.

While the particulars of SOC gapping are unimportant for real graphene, SOC-

gapped graphene-like lattices are model topological materials, with bulk band inver-

sion resulting in surface bands crossing the SOC-gap. A good deal of early work on

electronic structure topology focused on the Haldane model, which describes a 2D

hexagonal system gapped by SOC.[43] SOC gapping and the irrep notation introduced

here is essential to understanding the electronic structure of the materials discussed in

the following chapters, since these materials feature elements with significantly greater

atomic mass than carbon.

1.8 Recent progress in topological materials

This section provides brief coverage of recent developments in the field of topolog-

ical materials and the progression from interest in topology in fully-gapped materials

analogous to the topological insulator concept previously presented in Fig. 1.2 to more

25



Introduction Chapter 1

Figure 1.8: Timeline of recently discovered topological materials. Adapted from [30].

recent work on topological metals. All of the materials discussed in the body of this

dissertation are bulk metals. A timeline is provided as a chronological guide in Fig. 1.8.

1.8.1 Topological insulators and the Z2 invariant

The first experimentally verified topological materials were topological insulators

with a bulk band gap. Aided by intuition from previous work on graphene,[44] Bernevig,

Hughes and Zhang predicted a band-gapped topological phase in HgTe/CdTe quantum

wells[45], which feature band gapping due to strong SOC. In 2D layered systems, sur-

face states manifest along the edges of the layered device stack. This prediction was

soon verified via transport measurements in 2007, with quantized Hall conductance

indicating the presence of surface states.[46] The topological insulator concept was

then extended to 3D crystals by Moore and Balents[47]. Fu and Kane predicted a

3D topological insulator phase in Bi1−xSbx alloys.[48] Single crystals of a 3D topolog-

ical insulator exhibit surface states on all the crystalline facets, rather than just a 2D

layer. The electronic structure of Bi1−xSbx was examined via angle-resolved photoe-

mission spectroscopy in 2008, directly confirming the proposed band inversion and

surface states.[49] Topological insulator phases were soon verified in a number of bis-
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Figure 1.9: Simulated electronic structure of the topological insulator Bi2Se3. (a)
presents the bulk band structure, which features an orbital inversion between Bi and
Se p states. (b) surface spectrum with bright surface bands crossing the band gap.
These surface states cross at Γ, generating a Weyl node.

muth compounds, including Bi2(Se,Te)3.[50, 51, 52] Fig. 1.9 presents the simulated

electronic structure of Bi2Se3, which is a prototypical example of how band inversion

and topological surface states manifest in a real material. In (a), we find that the

band gap of Bi2Se3 features a bulk band inversion between states with primary Bi p

and Se p contributions. The result of this band inversion is demonstrated in (b): two

spin-polarized surface bands with opposite E-k slope traverse the gap. The crossing

of the surface states forms a characteristic conical shape, a Weyl cone.3 In addition to

predicting these new candidate materials, Fu and Kane also demonstrated that topolog-

ical classification is particularly simple in inversion-symmetric, time-reversal invariant

3There are two conventions in the literature for naming the surface state band crossings. In earlier
work, this crossing is usually referred to as a Dirac node. However, in later studies, especially after
the advent of a significant body of work on Dirac and Weyl semimetals, authors often refer to the
singly-degenerate band-crossings on the surface of crystals as Weyl nodes to distinguish them from bulk
Dirac nodes, which are always doubly degenerate. I will use the latter convention. This discrepancy
is somewhat silly; a topological insulator features mirrored copies of each surface band crossing on
opposite faces of the crystal, meaning that the total band structure is effectively doubly degenerate.
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(non-magnetic) materials. Under these conditions, topology can be conveniently com-

putationally determined in terms of a Z2 invariant that can be determined as a product

of the parity eigenvalues of the occupied bands in a system at several time reversal

invariant momentum (TRIM) points in k space.[48] The parity product formula is:

(−1)ν =
∏

i

δi

where:

δi =
N
∏

m=1

P (Γm
i )

where N is number of occupied bands below the band gap (divided by two for spin-

degeneracy), P is the parity operator, and Γm
i indicates the irrep of band m at TRIM

point i. The 8 relevant TRIM points are k = [n1
π
a
, n2

π
b
, n3

π
c
] where (a,b,c) are the lattice

parameters and (n1,n2,n3) are equal to either 0 or 1. If the resulting product yields

ν = 1, and there is a complete gap between bands N and N + 1, the band gap is

nontrivial and surface states are guaranteed. Note that this definition does not actually

require that the material be a semiconductor. The Z2 invariant is also well-defined in

metals under the condition that two consecutive bands do not cross.

1.8.2 Dirac and Weyl semimetals

In subsequent years, interest developed in extending the graphene band structure

in 3D materials. The characteristic band dispersion around the K point in graphene

forms a cone with linear dispersion (Fig. 1.7). This band dispersion can be described as

a solution of the Dirac equation, originally developed by Paul Dirac.[53] The range of

3D materials with band structure similar to graphene have therefore been dubbed Dirac

semimetals. Early experimental observations of Dirac semimetal phases were reported
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for Cd3As2[54, 55, 56] and Na3Bi[57, 58] in 2014. While not explicitly topological

materials in isolation, Dirac semimetals often exhibit unusually high bulk electronic

mobility due to their linear band dispersion.

Transitions between Dirac semimetal and topological phases are common. Like

early toy models of graphene, spin-orbit coupling can band gap Dirac phases in heavy-

atom metals, yielding a Z2 topological insulator. However, another type of topolog-

ical transition is available that can be experimentally simpler than chemical doping.

The unusual predicted transport properties of singly-spin degenerate band crossings

were discussed as early as 1983[59]. In the case that spin-symmetry is broken, the

electronic structure is described by a Weyl Hamiltonian rather than a Dirac Hamilto-

nian. Early work by Weyl demonstrated a key difference: Weyl nodes are chiral, unlike

Dirac nodes.[60] The net result is that Weyl nodes always form in pairs and that pairs

of Weyl nodes with opposite chirality are connected by spin-polarized surface states,

known as Fermi-arcs. Spin-symmetry breaking can be achieved by simply applying a

magnetic field to a Dirac material. Alternatively, there are semimetal materials with in-

trinsic spin-symmetry breaking wherein Weyl physics always applies; these systems are

known as Weyl semimetals. Among the first experimental studies on Weyl semimetals

were studies performed on the TaAs[61, 62, 63, 64] and WTe2[65, 66, 67] families in

2015.

In addition to high electron mobility,[55, 68] semimetal materials host a wide va-

riety of interesting transport properties including large magnetoresistance and anoma-

lous hall effect,[69, 18, 70], quantized circular photogalvanic effect,[71, 72, 73], and

unusual quantum oscillations that appear to derive from surface states[74, 75]. An

important note is that many known semimetal materials have imperfect Dirac or Weyl

band structures: in addition to linearly dispersing Dirac and Weyl band crossings near

the Fermi level, the electronic structures of these materials also contain conventional
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parabolic metal bands. For this reason the word semimetal is often a misnomer: rather

than a being graphene-like, with a vanishingly-small density of states at EF , most Weyl

and Dirac candidate materials have a large number of states at the Fermi level, and

are therefore better classified simply as metals. Practically speaking, semimetal trans-

port properties and surface states can still be observed in many materials despite the

presence of interfering metallic bands.

1.8.3 Nodal line semimetals

Although the Dirac bands in graphene cross at isolated points, forming cones in E

vs. k space, extended band crossings are possible. Work in 2016 demonstrated that

when additional symmetries such as mirror planes are present, extended nodal lines of

Dirac or Weyl crossings can be stabilized. Materials exhibiting nodal lines are known

as nodal line semimetals. One important early proposal was for a nearly ideal nodal

circle in Ca3P2.[76] In such a mirror-protected system, shown in schematic in Fig. 1.8,

surface states are predicted that connect between all the nodes on the loop. Surface

states of this type are known as drumhead surface states. Unfortunately, Ca3P2 is fairly

chemically unstable. In the years since, many additional promising nodal line materials

have been discovered, among them the ZrSiS family of square-net semimetals[77, 78,

79].

While many nodal lines are predicted in high-symmetry metals, nodal lines are

not usually robust to spin-orbit coupling. Few nodal materials with atoms as light as

those of Ca3P2 have been predicted. For this reason spin-orbit coupling usually plays

an important role in gapping nodal lines and most experimentally realized nodal lines

are imperfect. A finding of the work presented in this dissertation is that nodal lines

may be quite common in high-symmetry metals. All materials in the following chapters
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feature nodal lines in simulation when SOC is neglected.

1.8.4 High-throughput searches

How common are topological metals? While our understanding of topological met-

als is still expanding, high-throughput computational studies shed some light on this

question. In 2018, three computational studies examined large databases of known

materials and performed automated simulations attempting to classify all the materials

with topological electronic structure features near the Fermi level.[1, 2, 3] While there

is reason to doubt the accuracy of high-throughput calculations (the band gap problem

and treatment of correlations, to be discussed, are key culprits), the result was stun-

ning: up to 27% of known non-magnetic materials may be functionally topological. In

future, topological electronic structure may be viewed not as a rarity, but a common

feature of metals and small-bandgap semiconductors.

1.8.5 Degenerate Node Semimetals

In recent years, there has been increasing discussion of materials in which multi-

ple band crossings are degenerate at the same point in k-space, including systematic

theoretical predictions.[80, 81] In these materials multiple overlapping Dirac cones

can appear at once. I will refer to these materials as degenerate node semimetals. In

addition to stronger semimetal transport properties, it has been proposed that multiply-

degenerate Weyl nodes can be detected via multiply-quantized circular photogalvanic

effect. This effect was recently measured in candidate degenerate node semimetal

RhSi.[73, 72, 82]
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1.9 Brief discussion of computational techniques

1.9.1 ab initio computational methods

Our understanding of the electronic structure of materials has been immensely im-

proved over the past 70 years by the development of computationally efficient, widely

accessible and increasingly accurate simulations. Much of this success is built on den-

sity functional theory (DFT).

The history of quantum mechanical theory largely centers around success in shift-

ing from classical models in which particles have definite positions and momenta to

wavefunction models described by the Schrödinger equation,

Ĥψ(r) = Eψ(r) (1.3)

provided here in the time-independent form where Ĥ is the Hamiltonian, E is the

system energy, and ψ is the wavefunction, which can depend on position, r. While

ψ itself is not a physical observable, Born demonstrated that the modulus squared of

this quantity, |ψ|2, can be interpreted as a probability density.[83] For example, the

modulus square of a single electron wavefunction represents the probability of finding

the electron in a given state. While complete, equation 1.3 does not provide immediate

insight as to how one actually solves for the wavefunction in a real material. Assuming

a system of electrons in a material, we can expand to write the Schrödinger equation

as[84]:
[

~

2m

N
∑

i=1

∇2

i +
N
∑

i=1

∑

j<i

U(ri, ri) +
N
∑

i=1

Vext(ri)

]

ψ(r) = Eψ(r) (1.4)

where m is the electron mass and there are N electrons in the system. The first brack-

eted term represents the kinetic energy of the electrons, the second bracketed term
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the energy associated with interaction between electrons and the final bracketed term

the interaction of electrons with an external potential. In most materials, movement

of atoms is many orders of magnitude slower than that of the electrons that surround

them and form bonds between them. For this reason, quantum mechanical simulations

of materials usually make the Born-Oppenheimer assumption[85]—that atomic nuclei

have static, fixed positions—and focus on simulating the electrons and their response

to the atomic potentials. Equation 1.4 makes use of the Born-Oppenheimer approxima-

tion by including the ionic potentials associated with atomic nuclei as part of the poten-

tials, V (ri), and neglecting explicit treatment of the nuclear wavefunctions. A practical

concern with equation 1.4 is that computational limitations prevent a full treatment of

electron interactions. Modeling even solitary atoms with three or more electrons is still

an area of active development due to the difficulty in directly computing many-body

interactions.

Hohenberg and Kohn proved two famous theorems that laid the groundwork for

modern density functional theory approaches to solving the Schrödinger equation.[86]

A functional is a function that takes another function as input. Hohenberg and Kohn

proved important properties of the functional E[n(r)], which takes an electron density,

n(r), as input in order to calculate an associated energy, E. The H-K theorems can be

stated as the following[87]:

1. For any system of interacting particles in an external potential, Vext(r), the poten-

tial is determined uniquely4 by the ground state electron density, n0(r).

2. There exists a universal functional for the energy, E[n(r)], that is valid for any

choice of external potential. For any given choice of Vext(r), the global minimum

of this functional is the ground state energy and the electron density that mini-

4Up to a free constant determined by gauge choice.
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mizes this functional, n0(r), is the ground state electron density.

As a result of the first theorem, we know that the Hamiltonian of a system is uniquely

determined by n0(r). In principle then, all properties of a material (including ground

and excited states) are determined given the ground state electron density. The second

theorem tells us that knowledge of the functional E[n] and external potential Vext(r) is

sufficient to determine the ground state of a system (but not excited states). In the case

of materials simulation, a primary contribution to the external potential is the periodic

potential due to the atomic lattice of nuclei. Given a material with known crystalline

structure and associated periodic potential, choice of the correct functional would allow

precise determination of the ground state properties. Unfortunately, though the H-K

theorems tell us that an exact energy functional must exist, we do not know the true

functional.

While Hohenberg and Kohn provided a theoretical framework for density functional

methods, the H-K theorems themselves do not provide immediate insight into how

one can simplify the many-body problem of inter-electron interactions into a compu-

tationally tractable form. Kohn and Sham introduced the ansatz that a material can

be modeled with completely independent electrons and that the effect of electron in-

teraction and correlation can be accounted for by an exchange-correlation functional,

Exc[n(r)].[88] The Kohn-Sham equation for the ground state energy functional can be

written[87]:

EKS = Ts[n] +

∫

drVext(r)n(r) + EH [n] + EII + Exc[n] (1.5)

where Ts[n] represents the kinetic energy contribution, EH is the so-called Hartree

energy associated with coulomb interactions between the electron and surrounding
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charge density,

EH [n] =
1

2

∫

d3rd3r′
n(r)n(r′)

r− r′
(1.6)

Vext is the external potential experienced by the electrons due to the atomic nuclei as

well as any applied fields and EII represents the inter-ionic interaction. Given the cor-

rect choice of exchange-correlation functional, the ground state of a system can then

be determined by minimizing the Kohn-Sham energy. While we don’t know the exact

exchange-correlation functional, one of the reasons that the Kohn-Sham ansatz works

in practice is that electron correlations are screened in many materials: in compounds

with large electron density, especially metals, the electron system is well described

by the assumption that each electron mainly interacts with the total potential of the

remaining electrons rather than with each other electron individually.5 Significant re-

search effort continues to pursue increasingly accurate choices of Exc[n].

Another important assumption made in order to reduce computational cost in most

modern DFT codes is that core electrons are well-localized, not contributing signifi-

cantly to chemical bonding, and can be approximated as part of the external potential,

Vext(r). This assumption allows the simulation of only the valence electron wavefunc-

tions, while approximating the contributions of core electrons as pseudopotentials[89]

or PAW potentials[90] localized on the atomic sites.

Given the prior discussion, we can highlight both technical and fundamental chal-

lenges associated with the Kohn-Sham DFT calculations employed in this dissertation.

Two practical issues are limitations on the system size and accuracy of approxi-

mate choices of Exc[n]. Despite incredible advancements in computing hardware and

algorithmic efficiency, systems with hundreds or thousands of atoms are not currently

5The result of electron screening is that the effective coulomb potential can have an exponential
attenuation: V (r) = q

r
exp(−Ksr), where Ks is a screening constant. See Chapter 14 of Kittel, C.,

Introduction to Solid State Physics, 8th Ed. Wiley (New York): 2005, Chapter 14.

35



Introduction Chapter 1

computationally tractable for most DFT users. DFT is usually most accurate in describ-

ing crystalline solids, which are well approximated by a small (periodic) unit cell with

a small number of atoms. System size is an important constraint in topological mate-

rials because confinement effects usually mean that the surface electronic structure is

only well converged with a large simulation cell, often 10s or even 100s of unit cells

in length. As a result, current work on topological materials relies heavily on tight

binding models. The work in this dissertation employs the popular strategy of fitting

empirical tight binding models by post-processing DFT results with the WANNIER90[91]

code. Tight binding models can be extended to large simulation cells at a fraction of

the computational cost and can greatly speed up k-space interpolation of electronic

properties. While the tight-binding strategy has achieved significant success in current

topological materials literature and is successfully employed in the work contained in

this dissertation, it is important to note that the atomic termination on the surface of a

material—largely ignored herein—can be quite important to surface electronic proper-

ties.

Our inexact knowledge of Exc[n] can make it quite difficult to accurately simu-

late materials with strong electron correlations based on Kohn-Sham DFT. Standard

‘workhorse’ functionals such as the local density approximation (LDA)[92, 93] and

generalized gradient approximation (GGA)[94] methods employed here often fail spec-

tacularly when simulating strongly-correlated systems. This is a particular challenge

for work on topological superconductors since the superconducting phase itself, which

involves strong interactions such as Cooper-pairing of electrons, cannot be simulated

with standard DFT methods. In practice, however, DFT can provide useful informa-

tion about the electronic properties in the metallic phase of a material that has a low

temperature superconducting transition. Extensive DFT calculations are employed in

this dissertation in order to understand the metallic phases of superconducting metals
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LaIn3 and CsV3Sb5.

A fundamental issue is the treatment of thermal properties and excited states. Even

with knowledge of the exact functional, Exc[n], the H-K theorems only guarantee an

exact solution for the ground state properties of a material at 0 K. While progress has

been made in modeling thermal transport via phonon calculations and adjusting for

temperature effects via thermodynamic sampling, simulating excited states is a very

present challenge.6

Both fundamental and technical issues both contribute to inaccuracy in the predic-

tion of electronic band gaps using standard DFT methods, which is a particular chal-

lenge for the field of topological materials since accurate prediction of band inversion

is necessary in order to correctly classify the topology in a material. The experimen-

tally measured band gap of a material is the energy taken to excite an electron from an

initial state in the highest occupied state of the valence band to the lowest unoccupied

state in the conduction band. Thus, the DFT band gap is typically calculated by cal-

culating the (Kohn-Sham approximated) ground state configuration and determining

separation between the highest energy eigenvalue in the valence band and the lowest

energy eigenvalue of the conduction band. However, it can be shown that even an

exact Kohn-Sham density functional theory solution will not give an exact band gap us-

ing this method. In addition to the fundamental limitations on the treatment of excited

states in general, the Kohn-Sham DFT band gap is known to be subject to error arising

from derivative discontinuity.[96] This issue can be rationalized by examining the form

6While excited states are out of the scope of Hohenberg-Kohn DFT, an analogous time-dependent
formulation (TDDFT) has been developed on the Runge-Gross theorem,[95] that can, in principle, de-
termine excited states as a unique functional of the density assuming the exact functional is known.
TDDFT methods are not employed here.
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of the potential, Vxc associated with the exchange correlation functional[87]:

Vxc(r) = εxc([n], r) + n(r)
δεxc([n], r)

δn(r)
(1.7)

where εxc([n], r) is defined such that Exc[n] =
∫

drn(r)εxc([n], r). The final derivative

term is discontinuous in an insulator, meaning that adding or exciting a single electron

should change the Kohn Sham potential for the entire system. Despite this fundamen-

tal error, an engineering rationale for estimating band structure and band gaps with

Kohn-Sham eigenstates nonetheless is that many approximate choices of Exc[n] have

been optimized to achieve accurate band gaps, with reasonable quantitative success.

However, a practical limitation is that many of the known functionals with good band

gap performance are very computationally costly.

Band gap and correlation errors result in frequent DFT-based predictions of band

topology in materials that are in reality insulators with no band inversion. This issue is

particularly present in high throughput searches, wherein computationally inexpensive

Kohn-Sham functional choices are favored. Correlation error is at play in the incorrect

classification of the classic Mott insulator material NiO in the Topological Quantum

Chemistry Database, where it is predicted to be a metal based on a paramagnetic cal-

culation.[97, 1, 98, 99, 100] In the following, I present an archetypical example of

band gap underestimation in PdO.

Band gap underestimation in electron-precise PdO

Palladium oxide adopts the crystal structure shown in Fig. 1.10 (a). The palladium

atoms form square-planar units with coordinating oxygen atoms on the corners. The

full structure is formed out of corner-connected square planes. The electronic structure

is well described by a ML4 square planar crystal field splitting model (b) in which
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Figure 1.10: Crystalline and electronic structure of PdO. (a) The crystal structure
of PdO is composed of Pd-O square planar bonding units connected at the corners.
(b) The main features of the electronic structure can be explained via square-planar
ligand field splitting. Electrons fill up to the top of the dz2 band, leaving an insulator
with band gap ∆Eg. (c,d,e) simulations with increasingly computationally intensive
functional choices (PBE < mBJ < HSE), see increasing separation between the dz2
and dx2+y2 bands. Only the HSE functional correctly predicts an insulator.
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palladium metal (M) donates two elections to ligand oxygen (L), which has a strongly

favored oxidation state of O2−. The Pd2+O2− system has a total of 16 valence electrons.

The first eight electrons bond with oxygen in Mp,d +L states, leaving eight electrons in

palladium d states. Of these d states, the in-plane Md
x2−y2

states are highest in energy

due to strong antibonding interaction with oxygen. The electrons therefore fill up to

the top of the Md
z2

band, leaving a semiconductor with band gap ∆Eg.

While the electronic structure of PdO may be intuitive to a chemist, DFT calcu-

lations regularly predict this semiconductor to be a metal. Palladium oxide is rep-

resentative of a general issue with contemporary density functional theory simula-

tions: DFT tends to underestimate band gaps. Fig. 1.10 (c,d,e) present calculations

completed with increasingly computationally-intensive functional choices, the Perdew-

Burke-Ernzerhof (PBE),[94] modified Becke-Johnson (mBJ),[101] and Heyd-Scuseria-

Ernzerhof (HSE)[102] functionals. The PBE functional greatly underestimates the

band gap, predicting a metal with significant overlap between the dx2+y2 conduction

band and the dz2 valence band. There is some improvement with the mBJ functional,

but PdO is still incorrectly predicted to be a metal. The HSE functional correctly pre-

dicts that PdO is a semiconductor, and has been previously shown to yield results ap-

proximately consistent with experiment.[103] In operation, the mBJ and HSE func-

tionals combat band gap error by incorporating the wavefunction, in addition to the

electron density, as input (differing from the pure density functional formulation pro-

vided in the previous section). mBJ incorporates the wavefunction to make a kinetic

energy correction while HSE mixes standard DFT (which tends to underestimate band

gaps) and more intensive Hartree-Fock calculations (which tend to overestimate band

gaps).

The semiconductivity of palladium oxide has been well-documented since at least

the 1970s when Rogers and coworkers demonstrated single crystal vapor transport
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and transport measurements7.[104] Despite this, all three of the major 2018 high-

throughput topological materials classification efforts mentioned previously incorrectly

classify PdO. Based on PBE calculations, Ref [3] and (at time of writing) the Topological

Quantum Chemistry Database[1, 98, 99, 105] classify PdO as a ‘high symmetry point

semimetal’ and nodal line semimetal, respectively. Ref. [2] employs the mBJ functional

in an attempt to avoid band gap underestimation, producing a band structure similar

to Fig. 1.10 (d). Based on this flawed calculation, Tang et al. highlight PdO as a

particularly promising semimetal candidate for applications.

Palladium oxide serves as a cautionary tale about the limitations of high-throughput

DFT studies. Any system like PdO that is electron-precise, with easily-assignable whole

number oxidation states that can lead to a band gap between states associated with dif-

ferent electron shells, warrants further examination. Additional details on similar crys-

tal field models and their comparison to electronic structure simulations can be found

in Ref. [29]. Chapter 2 discusses the electronic structure of NaPd3O4 and NaPt3O4,

which have a close structural relationship with PdO, but are metals due to the fact that

they are not electron-precise.

1.10 Brief discussion of experimental methods

As described in the previous section, despite the success of first principles methods,

computational predictions of electronic structure fail to accurately recreate experimen-

tal reality in a wide variety of materials. Theoreticians studying new electronic materi-

als therefore devote significant time and effort comparing electronic structure models

to experimental results in order to improve simulations and determine which ab initio

7I have independently repeated the PdCl2 growth technique reported by Rogers et al. As discussed in
their work, PdO crystals have a noticeable green patina, which is also consistent with the existence of a
band gap.
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Figure 1.11: ARPES schematic. Angle resolved photoemission spectroscopy (ARPES)
involves photoemission of electrons that are excited by incident light. These electrons
are then sensed by a detector, which records energy information. By rotating the angle
of the detector with respect to the sample normal, information about the in-plane
momentum, k‖ can be gained. Extracting full momentum information, including the
sample-normal momentum k⊥, is more complex and often involves careful variation
of the incident photon energy.

predictions are trustworthy. Careful comparison to experimental results is particularly

crucial in the field of topological semimetals since topology can depend on subtle band

inversion. This section briefly discusses the experimental methods used to study the

band structure and Fermi surfaces in the following chapters. Details involved in com-

paring these experimental data to electronic structure calculations are emphasized.

1.10.1 Experimentally determining band structure via angle-resolved

photoemission spectroscopy

In order to experimentally reconstruct the band structure of a material, a technique

is needed that collects data about both the energy, E, and momentum, k, of the elec-

42



Introduction Chapter 1

trons. Angle resolved photoemission spectroscopy (ARPES) fulfills these requirements.

An ARPES experiment is depicted in schematic in Fig. 1.11. Electrons are excited by

incident light and ejected from the material. Photoemitted electrons are sensed by a

detector that records their energies. From this recorded kinetic energy, the band energy

of the electron in the material relative to the Fermi level can be extracted:

Eband = hν − Ekin + Φ

where hν is the incident photon energy and Φ is the work function. ARPES analysis

typically assumes the sudden approximation—that the electron escapes the region in

which it was excited fast enough that it does not have time to interact with the local

charge density (photo-hole). Under this assumption, the band energies detected by

ARPES can be interpreted as peaks of the single particle spectral function. Under the

further assumption of weak electron correlation, the energy of peaks in the ARPES

spectrum, Eband, can be interpreted as the energy of an individual electron band and

profitably compared to a calculated density functional theory band structure.8

By varying the angle of the detector with respect to the surface normal and examin-

ing the variation of the detected electron energies, the momentum of electrons on the

plane parallel to the surface of the material, k‖, can be extracted. Since kinetic energy

is defined to be p2

2m
, where p is the total momentum, and the crystal momentum, k, is

defined such that p = ~k, the total crystal momentum is k = 1

~

√
2mEk. Because the

in-plane symmetry is unbroken on the surface of a crystalline material, the momentum

component parallel to the surface is preserved and can be determined from the detector

8In practice, observed spectral peaks often have a tail related to correlated quasi-particle excitations
even in ‘normal’ metals without particularly strong correlation. These tails are not recreated by DFT
eigenvalue band structures like those calculated in this thesis.
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angle, θ, and the kinetic energy, Ekin[106]:

k‖ =
1

~

√

2mEkin sin θ

Combining these two elements, the E vs. k‖ band structure of the material can be

reconstructed. An element is still missing, however. The band structure also varies with

the momentum perpendicular to the sample surface, k⊥. While the momentum per-

pendicular to the surface is not preserved, an analytical expression can still be derived

with additional assumptions. Often, it is assumed that the final state of the photoex-

cited electrons during detection is an ideal free electron state (a better assumption for

higher photon energies). In this case, the perpendicular momentum component can be

shown to be[106]:

k⊥ =
1

~

√

2m(Ekin cos2 θ + V0)

Here, V0 is an unknown energy known as the inner potential. A convenient exper-

imental tuning knob for determining k⊥ is the incident photon energy, which changes

Ekin and allows a fitting of the periodic change of k⊥ and assignment of V0.

The experimental reality is more complex than the cartoon of Fig. 1.11. A few

salient details warrant discussion. First, multiple light sources are available for pho-

toemission experiments including lasers and X-ray synchrotrons. Incident light is often

polarized. Higher energy light sources have longer attenuation length of photons into

the sample and can offer better k⊥ resolution. In general, attentuation lengths are short

and ARPES usually probes the surface electronic structure, which may be different than

the bulk electronic bands. ARPES requires high-quality crystalline samples with clean

surfaces. In order to generate a pristine surface, crystals are often exfoliated under

vacuum. While many materials can be computationally predicted to be topological
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semimetals, only a select few candidates can be conveniently grown as high-quality,

exfoliable single crystals. The requirement of exfoliability favors 2D materials, which

often form in layers that can be easily separated by peeling. 2D materials can also

be easier to compare to theory since the k⊥ dependence of the electronic structure is

usually weak.

The band structure visualized in ARPES is often treated as a picture, like a photo-

graph, of the electronic bands and placed next to DFT band structures in publications

as a verification of the theory. Agreement is often sufficiently good to make this treat-

ment reasonable. However, even in materials with weak correlations for which first

principles single-electron band structures are valid, the intensity visualized in ARPES

depends on a number of intrinsic factors not present in standard band structure calcu-

lations. Assuming a free-electron-like final state, the full intensity is given by[107]:

I ∝
∫

dk⊥|T f |2|Mif (k⊥)|2 ·
δk⊥

(k⊥ − k0⊥)
2 + (δk⊥/2)2

· δE

(Ei − Ei(k⊥))2 + (δE/2)2

where k0⊥,Ei are the momentum and energy of the initial band state and δk⊥, δE are

Lorentzian variances. The first term, |T f |2 is a transmission matrix element represent-

ing the probability of an electron escaping the material. |Mif |2 is a photoexcitation

matrix element depending on the overlap of the initial and final wavefunctions and

polarization of incident light. The final two fractions represent intrinsic Lorentzian

broadening in the surface normal momentum k⊥ and the energy. Intrinsic Lorentzian

spread in k⊥ can mean that peaks in the ARPES intensity do not have one-to-one corre-

spondence with simulated bands. For example, the highest intensity of a free-electron

like parabolic band will appear slightly above the true band bottom.

In addition to these intrinsic factors, real experimental equipment has limited reso-

lution. Resolution spread in k‖ and E is often treated as Gaussian.
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Figure 1.12: Schematic of free-electron Fermi surfaces and extremal orbits. (a) a
free-electron-like band has a parabolic dispersion in E vs. k with electrons filling up
to the Fermi level, EF . (b) the Fermi surface is a 3D contour in k space corresponding
to the isosurface at EF . For a free-electron-like band, the Fermi surface is a sphere.

When a magnetic field,
−→
B , is applied, electrons can be considered to be confined

to finite quantum states, visualized by the orange cylinders and lines. The single
extremal orbit with largest cross-sectional area is highlighted in red. For an hourglass
Fermi surface, (c), there are two extremal orbits corresponding to the largest and
smallest cross-sectional areas.

1.10.2 Experimentally determining Fermi surfaces via quantum

oscillations

As previously described, metals are characterized by a continuous spectrum of

bands that are partially filled up to an energy level called the Fermi level, EF . While

thermal effects smear out the electron population, the most chemically and electron-

ically active electrons in metals have energies close to EF . A good deal of relevant

electronic properties of metals can therefore be understood purely in terms of the

Fermi surface, which is the isosurface in k-space occupied by electrons with energy

EF . Assuming a partially-filled free-electron band with parabolic dispersion, like that

of Fig. 1.12 (a), setting E = k2 = EF = const yields a perfectly spherical Fermi surface,

visualized in Fig. 1.12 (b).
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At very low temperatures and under large applied magnetic fields, metals exhibit

oscillations in their electronic properties corresponding to their Fermi surface geometry.

In 1930 Lev Landau[108] demonstrated that when applying a magnetic field to con-

fined electrons, a spectrum of states is created with quantized energies, now commonly

referred to as Landau levels. Rather than occupying the continuous Fermi surface, elec-

trons are confined to states known as Landau tubes with quantized orbits in the plane

perpendicular to the applied magnetic field. In the case of a free electron, these Landau

tubes are cylinders like the orange cylinders visualized in Fig. 1.12 (b). As the magnetic

field,
−→
B , is increased, the radii of the the cylinders increases until they reach the edge

of the Fermi surface. Periodically, the area of one of these cylinders reaches the edge

of the Fermi surface, which results in a divergence in the density of occupied states at

the Fermi level. Since many experimentally observable properties of a metal depend

strongly on the density of states, these properties exhibit periodic and measureable

oscillations. The oscillation frequnecy is given by the Onsager relation[109]:

F =

(

~

2πe

)

A

The frequency, F , measured in Tesla, is directly proportional to the area, A, of an ex-

tremal orbit, which is a local minimum or maximum of the Fermi surface cross-sectional

area in a plane perpendicular to the applied magnetic field. For a sphere, there is only

one extremal orbit, which is the maximal cross-section, drawn with a red line in Fig.

1.12 (b). Another simple Fermi surface example is an hourglass, which can occur in

quasi-2D materials with free-electron-like conduction in-plane. In this case, presented

in Fig. 1.12 (c), there are two extremal orbits corresponding to the largest and smallest

circular cross-sections. Precisely these two extremal orbits are observed for an hour-

glass Fermi surface in the compound CsV3Sb5 in Chapter 5. Additional discussion of

47



Introduction Chapter 1

the origin of Landau levels and a more detailed explanation of the Onsager relation is

provided in Appendix C.

Quantum oscillations are commonly measured in the resistivity (Shubnikov de Haas

effect) and magnetization (de Haas van Alphen effect). While the prefactors are differ-

ent for each measurement type, in both cases the full quantum oscillation amplitude

from the Lifshitz-Kosevich (L-K) formulas is proportional to[109]:

amplitude ∝ X

sinh(X)
exp

(

−πmc
eHτ

)

where:

X =
2π2kTmc

e~H

T is the temperature,H is the applied field,m is the cyclotron mass of the electrons, and

τ is the scattering time. From this expression, it can be seen that quantum oscillation

amplitude is maximized when temperature is low, applied field strength is high, and

electrons have high mobilities with low effective mass and long scattering time. In

experiments where the temperature and applied field are known, the cyclotron mass

is commonly extracted by measuring quantum oscillations under varying temperature

and then fitting the resulting data to the functional form X/ sinh(X).

Since the frequency of oscillations is proportional to the extremal orbits of the Fermi

surface, quantum oscillations in materials with very small Fermi surfaces can have very

large and easily-observable periods. For this reason, the first experimental observation

of quantum oscillations was achieved in bismuth metal.[110] Bismuth quantum oscilla-

tion data similar to the original observations of de Haas and van Alphen are presented

in in Fig. 1.13 (a). The sample used for this measurement is shown in the inset. The

sample was a chunk of co-aligned bismuth grains oriented with the easy cleavage plane
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Figure 1.13: Large-period quantum oscillations in bismuth. (a) Raw experimental
measurement of quantum oscillations in the magnetization of Bi. Inset shows the
sample of co-aligned crystalline Bi grains with the the easy cleavage plane perpen-
dicular to the applied field. (b) oscillation data after subtracting the background
signal and re-plotting against inverse field. The period of oscillations is approximately
0.7T−1, corresponding to a frequency of about 1.4 T. (c) The bismuth Fermi surface
consists of electron (long, green) and hole (wider, purple) pockets with exceptionally
small size. The observed oscillations derive from the electron pockets which have pre-
dicted smallest extremal cross-sections of about 1 T. An electron pocket and extremal
orbit (gray line) are shown in close-up. Measurements were conducted on a Quan-
tum Design PPMS operating in VSM mode. The Fermi surface was visualized using
SERENDIPITY.
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perpendicular to the applied field. Similar to sample requirements for ARPES, aligned

crystals are needed to get coherent quantum oscillation signal, however, as shown here,

it is sometimes possible to use aligned crystalline grains from flux rather than a single

solid crystal. While the magnetization shows an overall negative slope with increasing

field due to diamagnetism, at low temperatures between 1.8 K and 20 K clear oscilla-

tions can be seen in the signal. (b) shows the quantum oscillation data after typical

processing. The diamagnetic background slope has been subtracted in order to extract

the oscillatory signal, Mosc, and the x-axis has been re-plotted as inverse field. Using

this second plot, we can see that the oscillatory signal has frequency of approximately

1.4 T. While this frequency is easy to visually extract in Bi, when the signal is more com-

plicated with multiple frequency components a Fourier transform is commonly used to

rigorously determine the component frequencies. The incredibly low frequency signal

corresponds to exceptionally small extremal orbits. The Fermi surface of Bi is presented

in Fig. 1.13 (c). The full Fermi surface is comprised of multiple distinct, disconnected

3D surfaces, called pockets. There are six thin green electron pockets and two wider

purple hole pockets. All of the pockets are quasi-ellipsoidal. The measured frequency

derives from the electron pockets, which have smallest cross-section of approximately

1 T, as shown in the close-up. While more precise crystal in-plane orientation is nec-

essary to more rigorously compare to the calculated extremal orbits, this measured

frequency is in almost perfect agreement with early experimental work by Shoenberg

which found a quantum oscillation frequency of 1.4 T for the electron pockets when

field is applied along the in-plane binary axis of the crystal[109].

Quantum oscillations can provide a nice complement to ARPES for materials with

3D electronic structures and Fermi surfaces. In practice, 3D crystals are often harder to

exfoliate due to isotropically-strong bonding. 3D materials also have band structures

that vary strongly with k⊥, which can make ARPES comparison to calculated bands
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Figure 1.14: Angle-dependent quantum oscillations in copper. The Fermi surface of
copper supports a wide variety of extremal orbits under changing magnetic field ori-
entation. (a,b,c) present extremal orbits for magnetic field oriented along the high-
-symmetry [100],[111], and [110] directions, respectively. These orbits are known as
the “belly” (B), “neck” (N), four and six-fold “rosettes” (4-R,6-R), and the “dogbone”
(D). (d) presents a numerical comparison for select orbits between early angle-de-
pendent data from Joseph and coworkers[111], shown as blue circles, and numerical
calculations completed using the SERENDIPITY code, presented as solid lines.

more complex. By contrast, while indirect, quantum oscillations provide a covenient

method for determining the 3D Fermi surface of a metal. By rotating the crystal and

applying magnetic fields along multiple directions, the sizes of all the extremal orbits

of a Fermi surface can be determined and carefully compared to simulated predictions.

While ellipsoidal Fermi surfaces like the pockets of bismuth have relatively simple ex-

tremal orbits, even a mild increase in geometric complexity can yield more complicated

orbits.

Fig. 1.14 depicts the angle-dependent extremal orbits of copper metal. As opposed

to the exceptionally small Fermi surface in bismuth, copper has a free-electron-like

Fermi surface that is exceptionally large. This Fermi surface extends outward so far

that it intercepts the edges of the Brillouin zone. The copper geometry results in a
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variety of more complex extremal orbits depending the applied field direction. Orbits

corresponding to the large cross-sections of the main quasi-spherical Fermi surface and

the small circular Brillouin zone edge are usually referred to as “bellies” (B) and “necks”

(N), respectively. Orbits passing through multiple Brillouin zones form the “dog bone”

(D) and 4- and 6-fold “rosettes” (4-R,6-R). Fig. 1.14 (d) provides a direct comparison

between experimentally measured de Haas van Alphen quantum oscillation frequen-

cies and quantum oscillation frequencies calculated from the displayed first-principles

Fermi surface, demonstrating relatively good agreement. By carefully and iteratively

comparing results to electronic structure models with controlled tuning parameters,

increasingly accurate 3D models of Fermi surfaces and metallic electronic properties

can be achieved.

I am currently developing a code, SERENDIPITY, that automates extraction of quan-

tum oscillation frequencies from first-principles calculations and provides tools for 3D

plotting of extremal orbits. SERENDIPITY is leveraged significantly in Chapters 4 and 5

to determine the origins of experimentally-observed quantum oscillations in the com-

pounds LaIn3 and CsV3Sb5.

1.11 Electronic structure and predicted Z2 surface states:

CsV3Sb5

9Here, I provide an explicit example of electronic structure calculations and topo-

logical classification informed via experimental ARPES.

Figure 1.15 presents the structure of CsV3Sb5. This layered material has a hexagonal

9The contents of this section are adapted from Ref. [112]: B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo,
P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri,
L. Balents, J. He, and S. D. Wilson, CsV3Sb5: a Z2 topological kagome metal with a superconducting
ground state, Phys. Rev. Lett. 125, 247002. ©APS publishing, 2020, reprinted with permission.
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Figure 1.15: Ambient temperature crystal structure of CsV3Sb5. The structure of
CsV3Sb5 is shown from above (left) and in a 3D view (right.)

lattice with quasi-2D connectivity in the a-b plane. The vanadium atoms form a kagome

network of interconnecting triangles and hexagons with bond length 2.75 Å. In the

planes just above and below the kagome layer along the c axis, antimony atoms form

hexagonally-connected antimonene layers analogous to graphene with bond length

3.17 Å. The antimonene bonding connectivity is indicated by the gray dashed lines in

the overhead view. Transport measurements on CsV3Sb5 exhibit anomalies at 94 K and

2.5 K. The 2.5 K anomaly is well-characterized as a superconducting transition.[112]

New results, including the work discussed in depth in Chap. 5, strongly suggest that

the 94 K transition is a charge density wave.

Due to the 2D layered structure and weak van der Waals bonding along the c-axis,

crystals of CsV3Sb5 can be conveniently exfoliated for ARPES measurements. ARPES

results are compared to the ab initio simulated electronic structure in Fig. 1.16. The

measured and simulated E vs. k‖ band structures are displayed in (a). While overall

agreement is remarkably good, there are several key differences. First, the experimen-

tal measurement appears fuzzier due to finite resolution. Second, there are no bands

above EF in the experiment: since no electrons occupy these states at low temperature,

they cannot be detected in ARPES. The simulated band structure density is somewhat
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Figure 1.16: Comparison of ARPES data and simulated band structure in ambient
structure CsV3Sb5. (a) ARPES band E vs. k band structure data (left) is compared to
simulated bands (right). (b) constant energy k-space maps visualize the Fermi surface
at 3 constant energy contours (E = 0 eV, −0.3 eV, and −0.6 eV). The upper three
panels display measured ARPES intensity while the lower three panels are simulation
results. Intensity values represent counts and density of states in the ARPES and
simulation, respectively. Intensity values are normalized by a square root.
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different than the band structures that have been presented so far in this introduction.

There is almost no experimental k⊥ resolution, so the ARPES measurement effectively

samples all values of k⊥ at once. The band structure has therefore been simulated

using the surface Green’s function method,[113] which produces a band density that

is effectively an average of the band structure over k⊥. Fig. 1.16 (b) presents con-

stant energy maps of the band density in the k‖ plane, again comparing measurements

and simulation. These constant energy cuts again show remarkable agreement from

E = EF down to E = EF − 0.6 eV. Small asymmetries in the experimental energy maps

are present that are not seen in the simulation. These weak asymmetries are likely due

to matrix element effects, as discussed in Ref. [114].

These ARPES results validate the CsV3Sb5 model. While some correlation effects

are present that are not accounted for in the DFT (after all, this material is a low-

temperature superconductor), these data strongly suggest that the DFT model accu-

rately recreates the electronic band structure of CsV3Sb5 in the ambient temperature

metallic phase. With confidence in the simulated band structure, we can examine the

relevant physics in greater detail. Due to the hexagonal symmetry, we will be able

to define a topological invariant in this system using similar techniques to previously

discussed work on graphene.

Fig. 1.17 (a) presents the calculated band structure of CsV3Sb5. A 3D schematic

of the hexagonal Brillouin zone is provided for reference. While this compound is

metallic because there are partially-filled bands at EF , we can define two band gaps

that cross the Fermi level, highlighted in light purple and light blue. As discussed in

section 1.8.1, the topological invariant across a band gap can be calculated via a parity

product formula. The relevant parity products have been calculated at the TRIM points

and are shown in a table. The parity products for the filled states up to bands 131 and

133 yield nontrivial Z2 invariants for the light purple and light blue gaps, respectively.
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Figure 1.17: Z2 topological invariant and surface states in CsV3Sb5. (a) the band
structure of CsV3Sb5 includes two band gaps that cross the Fermi level that lie between
bands 131 and 133 (light purple) and between bands 133 and 135 (light blue). Point
groups for each segment are annotated above the band structure (C2v,C6v,etc.). By
calculating the parity products at the TRIM points (Γ,A,L,M), shown in the hexagonal
Brillouin zone, the corresponding Z2 invariants can be determined. The nontrivial
invariants for occupied states up to bands 131 and 133, presented in the table for the
current tight-binding model, indicate nontrivial topology for both the light purple and
light blue band gaps. Corresponding to this prediction, nontrivial surface states can
be found in the simulation just above the experimentally-observed Fermi level at the
M point, as displayed in (b).
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For example, in the case of band 133, the total product is:

(−1)ν = (δΓ)(δA)(δL)
3(δM)3 = (−1)(−1)(+1)3(−1)3 = −1

(The M and L points are 3-fold degenerate) Since ν = 1, the gap is nontrivial. This Z2

invariant formula only guarantees topological surface states when there is a complete

gap between the the two bands. Although this material is a metal, such a complete gap

exists in the light blue region between bands 133 and 135. This can be shown with

relative ease by examining the point groups. Similar to graphene, the point group for

most segments of the band structure is C2v. Referring to Table 1.1, we know that no

band crossings along any of these segments will be robust to spin orbit coupling. Along

the remaining segments (Γ-A and K-H) where symmetry protected band crossings

could occur, there is a relatively large gap between bands 133 and 135 that is visible by

eye (greater than 0.5 eV in both cases). We can therefore quickly conclude that there is

a complete band gap in the light blue region. The nontrivial Z2 invariant and complete

band gap guarantee that CsV3Sb5 will exhibit surface states similar to a topological

insulator.

The most obvious surface states in CsV3Sb5 are located at the M point. Fig. 1.17

(b) displays these surface states along the high symmetry K −M −K and Γ−M − Γ

lines. Comparing to Fig. 1.9, the surface state dispersion along K−M −K can be seen

to be quite similar to that of Bi2Se3.

The surface states in CsV3Sb5 remain unverified because they lie slightly above EF

at ambient temperature, and were undetectable in this original ARPES study. Chapter

5 presents work modeling the 94 K structural distortion in CsV3Sb5, which is predicted

to be a breathing mode distortion based on DFT results carefully compared to single

crystal X-ray diffraction data and Shubnikov de Haas quantum oscillations. These re-
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sults suggest that the charge density wave distortion reconstructs the band structure,

lowering states near the M point. Newer ARPES studies also confirm a lowering of the

M bands in the low temperature CDW phase and increased intensity signal is found

right at the Fermi level at low temperatures—a possible indication of the predicted

surface states.[115] This validated band structure calculation has also provided a basis

for recent phenomenological models, such as that in Ref. [116], that aim to explain

correlated phenomena and superconductivity in CsV3Sb5.

Z2 band topology may be common in nonmagnetic kagome metals. Chapter 6 in-

cludes predictions of similar Z2 surface states in kagome metals GdV6Sn6 and YV6Sn6.

1.12 Examples of instabilities in semimetals

Given the prior qualitative discussion of Peierls model instability, we expect that

symmetry-breaking distortions may play an important role in materials with Dirac

or Weyl band crossings near the Fermi level. This section presents two established

examples of such symmetry-breaking distortions: structural distortions in square-net

semimetals and antiferromagnetic ordering in chromium metal.10

1.12.1 Square net semimetals: stability of Peierls-like bonding

motifs

Square-net semimetals in the ZrSiS family have attracted significant recent research

attention due to their large-dispersion Dirac bands and chemical variety. The crystal

10In this section, I reference the chemical description of the Peierls chemical bonding model from Fig.
1.5. In the physics community, the denomination ‘Peierls-like’ is often used to refer to charge density
wave transitions driven by Fermi surface nesting. Johannes and Mazin have provided evidence that this
Fermi surface nesting mechanism is fairly rare in systems with 2D and 3D bonding.[117] The instability
of half-filled bands with nonbonding character described here is more general and not specific to a Fermi
surface nesting mechanism.
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Figure 1.18: Crystalline and electronic structure of square-net semimetals. (a,b) dis-
play the crystal structures of ZrSiS and GdPS. An approximate electron filling model
is shown in the inset of (a) for the p orbitals of Si. (c,d) show the corresponding band
structures of ZrSiS and GdPS, respectively. ZrSiS has an undistorted square-net, leav-
ing a Dirac cone at the Fermi level whereas distorted GdPS is a band-gapped insulator.
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structure of ZrSiS is shown in Fig. 1.18 (a). Zr and S form bonding layers with a

distorted rock salt configuration. Si forms flat interspersing planes with square planar

bonding coordination. The approximate oxidation states of Zr and S are Zr4+ and S2−,

which leaves Si in an unusual Si2− state. The relevant band structure near the Fermi

level can largely be understood in terms of a tight-binding model in which only Si p

orbitals are present.[118] Close bonding in the square planes raises the energy of in-

plane Si pxy orbitals with respect to out-of plane Si pz orbitals. With four p electrons

localized on the Si site, this model can be described by the cartoon in the inset of Fig.

1.18 (a): the pz band is filled and the remaining two electrons half-fill the pxy bands,

leaving the pxy bonding states filled while the antibonding p∗xy states are empty. In

analog to the Peierls model, the half-filled pxy band in ZrSiS yields Dirac cones at the

Fermi level, as shown in the band structure of Fig. 1.18 (c).

As discussed in detail by Tremel and Hoffmann,[119] the ZrSiS structure can be-

come unstable with slight chemical substitution or doping. They compared ZrSiS to the

related compound GdPS, which is insulating. In GdPS, the nominal oxidation states are

(Gd3+)(P1−)(S2−), yielding an identical orbital electron filling and an electronic struc-

ture which is dominated by P1− states near the Fermi level. In the case of GdPS, how-

ever, the P square net is not the most stable configuration; rather than evenly-spaced

squares, the P atoms form distorted long-short chains in analog to the 1D Peierls model,

as shown in Fig. 1.18 (b). This symmetry-breaking distortion allows mixing of the px,y

states and formation of a band gap, which is simulated in Fig. 1.18 (d).

The dissertation author collaborated on a recent study demonstrating that this sim-

ple p-orbital model is quite general for a wide range of square-net materials. The

stability of the Dirac crossings in hundreds of square-net materials can be accurately

predicted based on a simple bond length ratio between the in-net bonds and the dis-

tance between the square-net and rock salt layers.[121] Additional new work on the
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Figure 1.19: Band engineering in GdSbxTe2−x−δ. (a) unit cell of stoichiometric GdS-
bTe with perfect Sb square-net, shown in inset. (b) simulated unit cell band structure.
In addition to a Dirac crossing close to EF , there are two undesirable metallic bands.
(c) experimental structure of doped GdSb0.46Te1.48. In analog to the Peierls chain,
the doped Sb nets have formed bonding chains with uneven spacing. The unwanted
bands are absent in ARPES measurements of this doped structure, (d). Unit cell bands
are overlaid in white as a guide for the eye. DFT simulations performed on the ap-
proximated structure shown in (e) confirm this band gapping, with unfolded band in-
tensity (f) in remarkable agreement to the ARPES. Despite the massive band gapping
of the unwanted metallic bands, the desired semimetal band crossing is preserved,
demonstrating that Peierls-like band gapping can be used to ‘clean’ semimetal band
structures. Adapted from Ref. [120].
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square-net metal GdSbxTe2−x−δ[120] suggests that Peierls-like distortions aren’t neces-

sarily a liability. Rather than impeding topological band structure, controlling Peierls-

like distortion can be used to ‘clean’ square-net semimetal band structures, removing

unwanted metallic bands while preserving Dirac cones as shown in the experimental

and simulation results of Fig. 1.19. A similar band cleaning effect is also predicted in

the doping series CeSbxTe2−x−δ.[122]

Chapter 4 draws on this understanding of 2D square-net materials, demonstrating

that the electronic structure of 3D cubic auricupride metals can largely be understood

using an analogous half-filled px,y model that similarly stabilizes Dirac crossings near

the Fermi level.

1.12.2 Chromium metal: antiferromagnetism as symmetry

breaking

Rather than distortions of the crystal structure, many materials display magnetic

ordering transitions that share some qualitative similarities to the Peierls instability.

In 2002, Decker and coworkers proposed a mechanism that they dubbed an electronic

Peierls distortion for the antiferromagnetic transition in chromium metal.[123] The sim-

ulation results plotted in Fig. 1.20 recreate the original findings of Decker et al. The

top row displays simulation results for a non-spin-polarized calculation of the electronic

structure of chromium metal performed on the bcc structure conventional cell, (a). The

band structure in (b) displays two large dispersion band crossings, Dirac nodes, at the

Fermi level, highlighted in orange. There is an incomplete pseudogap in the density

of states in (c). (d) shows the crystal orbital Hamilton population. The filled states

below the Fermi level are largely bonding (positive), while the unfilled states above

the Fermi level are antibonding (negative), which promotes stability. However, there is
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Figure 1.20: Electronic instability and antiferromagnetic ordering in chromium. The
electronic band structure, density of states, and total Cr-Cr crystal orbital Hamilton
population are plotted for non-spin polarized (a) and antiferromagnetic (e) config-
urations in (b,c,d) and (f,g,h), respectively. All simulations are performed on the
conventional cubic cell. Upon transitioning to the the energetically-favored antiferro-
magnetic state, Fermi level Dirac cones are gapped out (orange highlights in (b),(f)),
a deeper pseudogap opens up in the DOS (†), and the flat non-bonding region of the
COHP is extended (‡). Figure adapted from Ref. [123].
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a large non-bonding region with a COHP value of 0 at and just below the Fermi level.

Decker and co-workers argue that instability of these Fermi-level non-bonding states to

band gapping drives the antiferromagnetic ordering transition, in analog to the Peierls

model and COHP previously presented in Fig. 1.5. The intuition here is simple. Rather

than making the two crystal sites in the lattice distinct and breaking symmetry by alter-

ing the bonding in a long-short-long pattern like the 1D Peierls chain, two atomic sites

can also be made distinct by placing oppositely-directed antiferromagnetically-ordering

spins.

An antiferromagnetic magnetic ordering is stabilized in the simulation, consistent

with the true ground state of chromium (by about 25 meV/atom in my simulation).

While the true low temperature phase of chromium includes long range magnetic or-

der, the antiferromagnetic phase is well-approximated by the bcc antiferromagnetic

ordering of Fig. 1.20 (e). Upon magnetic ordering, the electronic structure undergoes

a number of subtle, but notable, transitions. The large Fermi level Dirac bands are

shown to gap in (f). This corresponds with the opening of a new and deeper pseu-

dogap in the density of states in (g) and a stretching of the crystal orbital Hamilton

population curve in (h) that widens the non-bonding region near EF . These results are

consistent with a picture in which certain bands in the electronic structure undergo a

Peierls-like bonding transition, while the rest of the electronic structure is unaffected

by the magnetic ordering. While the density of states near the Fermi level is decreased,

chromium remains a metal in the antiferromagnetic phase.

Qualitatively speaking, many compounds that have antiferromagnetic ordering have

similar non-bonding COHPs to chromium. Based on the examples discussed in this

section, we would expect that materials with Dirac and Weyl band crossings near

the Fermi level might exhibit low temperature transitions to structurally-distorted and

antiferromagnetically-ordering phases. In chapter 3, this bonding intuition will be used
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to rationalize a transition to a distorted and antiferromagnetically-ordering low tem-

perature phase in Mn3ZnC.
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Electronic structure of cubic metals
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Chapter 2

Dirac crossings in cubic metal oxides

NaPd3O4 and NaPt3O4

1The cubic oxide metals NaM3O4 (M = Pd or Pt) crystallize in the non-symmorphic

Pm3̄n space group. First-principles calculations are employed here to understand the

role of the MO4 square planes and M–M interactions in the development of the elec-

tronic structure. The compounds host numerous Dirac crossings near the Fermi level

which, in the absence of spin-orbit coupling, appear to form a cubic nodal state. Spin-

orbit coupling fragments this nodal state into smaller regions with Dirac-like character,

with the fragmenting being more pronounced in the the M = Pt compound.

2.1 Introduction

Dirac semimetals (DSMs) have become an active area of research due to their ex-

ceptional transport properties, arising as a consequence of a linear band crossing, or

Dirac point, which results in massless charge carriers known as Dirac fermions. In or-

der for the transport to be dominated by Dirac fermions, Dirac points in the electronic

structure should be proximal to the Fermi level with few or no other bands at the same

1The contents of this chapter previously appeared in Ref. [124]: S. M. L. Teicher and L. K. Lamon-
tagne, L. M. Schoop, and Ram Seshadri, Fermi-level Dirac crossings in 4d and 5d cubic metal oxides:
NaPd3O4 and NaPt3O4, Phys. Rev. B 99, 195148. ©APS publishing, 2019, reprinted with permission.
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energy. DSMs could be considered 3D analogs of graphene, which is a 2D material with

purely linear band crossings at the Fermi level.[37] There is an additional constraint

on DSMs, however, that graphene does not satisfy, that the crossing must be symmetry-

protected such that it does not gap out due to spin-orbit coupling (SOC) and or an

applied magnetic field.[128] In recent years, a push to develop design principles for

3D DSMs that possess these protected linear band crossings near the Fermi level has

yielded the experimental verification compounds Na3Bi and Cd3As2.[129, 130, 58, 56]

A closely related class of materials to DSMs have degenerate Dirac crossings along a

line in the Brillouin zone, rather than points and these are called nodal-line semimet-

als.[131, 76, 132] SOC is often unfavorable for the formation of these features in the

electronic structure since symmetry protections tend to only exist along high-symmetry

lines in k-space, and thus do not usually fully stabilize the nodal lines, which are fre-

quently circular or oval.[30] Nodal-line semimetals with certain symmetry protections

exhibit drumhead-shaped surface states that are proposed to host novel correlated elec-

tron physics.[132] Recently, it has been proposed that rather than displaying nodal

lines, there could exist compounds in which the degenerate band crossings trace a con-

nected 3D surface — a spherical shell — in the Brillouin zone,[133] these nodal-sphere

semimetals could exhibit similar correlated surface states.

Analyzing and understanding crystallographic and compositional motifs that lead

to linear band crossings proximal to the Fermi level is important in identifying new

compounds and advancing potential technological applications. It is also of particular

interest to examine oxide compounds which are somewhat underrepresented in the

space of Dirac and related materials. To this end, we present electronic structure cal-

culations on the complex platinum group metal oxides, NaM3O4 (M = Pd, Pt). Since

the strength of SOC scales approximately as Z4/n3, (Z is the atomic number and n is

the principal quantum number) comparing the Pd and Pt compounds allows the role
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of SOC in the development of the electronic structure to be scrutinized.

From the perspective of current applications, these complex Pd and Pt oxides are

known for their their ability to be p-doped. Unlike most oxides which have valence

bands dominated by localized O p orbitals and are most conveniently electron doped,

these Pd and Pt compounds can be easily hole-doped using alkali metals.[134, 135]

The semiconducting d8 oxides (Ca/Sr)(Pd/Pt)3O4 can be hole doped by Na substitution

for Ca/Sr. Substitution on this site does not significantly change the crystal structure

or the qualitative nature of bands, allowing fine tuning of the Fermi level. Sodium

doping of CaM3O4 and SrM3O4 has been shown to convert these semiconductors into

metals.[136, 137, 138, 139] NaM3O4 can be viewed as the 100%-doped end-member

in which Ca or Sr has been completely replaced by Na. Lamontagne et al. recently

proposed that Na doping in CaPd3O4 and SrPd3O4 may proceed via a non-uniform

percolative transition, with significantly increased local disorder in SrPd3O4 impeding

percolation relative to CaPd3O4.[140]

Platinum metal has also long been ubiquitous as a chemical catalyst, and Pd oxides

are well-known for their use in automotive catalytic converters. In the 1970s, NaxPt3O4

was proposed to be one of the main active components of the Adams catalyst, a com-

pound useful for catalyzing organic hydrogenation reactions that was first described

by Adams and Voorhees in 1922, whose properties proved difficult to reproduce over a

half-century of subsequent syntheses.[141, 142] In recent years, there has been signif-

icant general interest in the enhanced catalytic action of ionic noble metal species and

noble metal oxides.[143, 144, 145, 146] It is interesting to ask whether topological

surface states and/or potentially enhanced charge transport due to linear dispersion

at Dirac and Weyl band crossings could play a role in the catalytic activity of these

compounds. Indeed, a growing number of catalysts including the pure noble metals Pd

and Pt, have been suggested as hosting non-trivial topological states and linear band
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Figure 2.1: NaM3O4 structure and bonding. (a) Crystal structure of Na(Pd/Pt)3O4

in the non-symmorphic space group Pm3̄n (#223).(b) Crystal field splitting for the
general square planar case, modified here through the interaction between the par-
tially filled dz2 levels across the faces of the square planes. The energy gap for
the corresponding d8 compounds would be between the dz2 and dx2−y2 levels. For
(Ca/Sr)M3O4, the dz2 states are filled, resulting in a band insulator. For NaM3O4,
however, the dz2 states are partially filled, resulting in a metal. (c) The dx2−y2 + O p
interaction for a single square plane. (d) The stacked MO4 square planes in the unit
cell yield a network of inter-planar Md2z

bonding.

crossings in their electronic structure.[10, 11]

NaPd3O4 and NaPt3O4 crystallize in the cubic Pm3̄n space group (#223) shown

in Fig. 2.1(a). The structure consists of corner-connected MO4 square planes. Closely-

spaced, infinite parallel stacks of MO4 square planes also run along all three cubic axes.

The space group has an n glide that results in nonsymmorphic symmetry. Recently,

there has been significant interest in 3D nonsymmorphic crystals, especially due to the

fact that these compounds can host protected multiply-degenerate band crossings in

which more than 4 bands overlap at high-symmetry points in the Brillouin zone. At

these overlap points, even more exotic analogs of Dirac fermions could potentially be

realized.[147, 77, 80] Group #223 can host band crossings that are up to eight-fold

degenerate.[80]
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The crystal-field splitting of square planar M as presented in Fig. 2.1(b), has been

described using tight binding models as popularized by Hoffmann[29] and an impor-

tant feature is that interaction of the dz2 orbitals raises this level over the dxy level as

shown in the right. The dx2−y2 orbitals form a 3D-connected bonding network with the

O p orbitals at the corner of each square planar group [Fig. 2.1(c)]. The dz2 orbitals

form independent bonding chains with two square planar groups per unit cell along

the cubic axes [Fig. 2.1(d)]. 3D bonding increases the energy dispersion of the dx2−y2

bands (which would not be expected to have particularly significant dispersion in the

isolated chain model), allowing them to cross the dz2 bands near the center of the

Brillouin zone, and, as will be shown, resulting in symmetry-protected Dirac crossings.

Doublet, Canadell, and Whangbo have developed a semi-empirical tight-binding model

for NaM3O4 and provided band-folding explanations for the electronic structure of the

dx2−y2 and d2z states near the Fermi-level.[148] The Pd/Pt ions in NaM3O4 have a nom-

inal 2.33+ charge, making these compounds metallic with partially-filled d2z orbitals.

This is in contrast to the isostructural, band semiconducting compounds with Ca or Sr

which have d8 Pd2+ or Pt2+ and a fully-filled d2z level. The compounds (Ca/Sr)M3O4

have previously been suggested to be topological semimetals, but these compounds are

actually insulating both at appropriate levels of electronic structure theory as well as

in experimental studies.[149, 140]

We present here a detailed electronic structure description of the two compounds

NaPd3O4 and NaPt3O4 using a combination of plane-wave pseudopotential and plane-

wave local orbital density functional theory calculations in tandem with tight-binding

models to identify Dirac crossings near the Fermi level that appear to form a nodal cube,

not unlike the nodal-sphere semimetallic state proposed previously by Wang et al.[133]

Spin-orbit coupling fragments this nodal cubic state into 14 protected Dirac crossings in

both the Pd and Pt compounds. This work points to the potential of complex oxides to
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enrich the domain of Dirac and related quantum materials and supports the view that

there may be a role for previously ignored features in the electronic structure playing

a role in the catalytic properties of compounds of the platinum group metals.

2.2 Methods

First principles electronic structure calculations were performed using Vienna ab

initio Simulation Package VASP [150, 151, 152] and WIEN2k codes,[153] with and

without SOC. Computation performed using VASP utilized PAW[90, 154] potentials,

while computations involving WIEN2k employed linear augmented plane waves and

local orbitals.[155] The Perdew, Burke, Ernzerhof (PBE) generalized gradient approx-

imation [94] was used for the exchange energy while Vosko, Wilk, and Nusair inter-

polation was used for the correlation energy.[156] While computationally expensive

hybrid functionals such as HSE06,[157] are known to improve band gap estimations

in a wide range of semiconductors, including in simple and complex Pd oxides,[103]

previous empirical comparisons of transition metal and metallic transition metal oxide

systems suggest that the additional electron screening in hybrid functionals provides

little improvement over PBE and can reduce accuracy in estimations of key material

parameters.[158, 159] We employed a 10×10×10 Monkhorst-Pack [160] k-point grid.

Structural relaxations and static self-consistent calculations used the default smearing

algorithms for VASP and WIEN2k, first-order Methfessel-Paxton [161] and tetrahedral

smearing with Blöchl corrections,[162] respectively. The plane wave energy cutoff for

VASP was set to 520 eV and the plane-wave expansion parameter, RKMAX, for WIEN2k

was set to 8.5. The density of states calculations provided in the supplemental ma-

terial utilized tetrahedral smearing and band structures were calculated using Gaus-

sian smearing.[163] Structures were initially relaxed in VASP (to lattice parameters of
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5.728 Å and 5.765 Å for the the Pd and Pt compounds, respectively, within expected

error from experimental values of 5.650 Å[164] and 5.689 Å[165]) using the conju-

gate gradient descent algorithm with a force cutoff of 0.01 eV/Å. Self-consistent static

calculations and electronic structure calculations were subsequently performed using

VASP and WIEN2k with energy convergence better than 10−5 eV.

Brillouin zone energy gap calculations on the kz = 0 plane were calculated in VASP

using a 30 × 30 × 1 k-mesh and Gaussian smearing. Orbital-projected band structures

were calculated using WIEN2k without SOC but were checked against results from

VASP and a spin-polarized WIEN2k calculation with SOC. The charge density of va-

lence electrons contributing to energy states within 0.1 eV of the Fermi level was com-

puted using WIEN2k. Irreducible representations of electronic bands were determined

using the IRREP subprogram in WIEN2k. The Brillouin zone Dirac crossing calcula-

tions were performed by projecting our VASP calculations onto maximally localized

Wannier functions using Wannier90,[91] starting from initial projectors corresponding

to valence orbitals (Na s and p; Pd/Pt s,p, and d; O s and p), constructing a tight-

binding model from these localized Wannier functions, and subsequently using the

GAPPLANE and GAPCUBE functions in the Wannier Tools package [166] with 400× 400

and 200× 200× 200 sampling meshes, respectively. The tight-binding models are very

slightly asymmetrical with respect to the cubic crystalline structure; this is a result of

Wannier90’s Wannier function localization algorithm rather than inherent asymmetry

in the original DFT simulation. Structures were visualized with VESTA.[167]

2.3 Results

The electronic band structures of NaPt3O4 and NaPd3O4 with and without the inclu-

sion of SOC are given in Fig. 2.2. We focus our attention on the bands near the Fermi
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Figure 2.2: NaM3O4 band structure. Band structures of NaPd3O4 (a) without and
(b) with SOC and NaPt3O4 (c) without and (d) with SOC calculated using the PBE
functional in VASP. A linear band crossing near the Fermi level is evident in the Γ−X
direction with large energy dispersion (≈ 0.5 eV). Smaller linear band crossings occur
along M − Γ and Γ−R.

level from the Γ to X high symmetry points. These bands cross just below the Fermi

level with a large linear energy dispersion that is as great as 0.5 eV in NaPt3O4. Viewing

along the M − Γ and Γ− R branches, additional, smaller linear band crossings can be

seen. A close-up view of the band crossings is provided in Fig. 2.3. The Dirac crossings

along Γ−X and Γ−R are symmetry-protected, while the M−Γ crossing is gapped out

when SOC is included. Calculations in VASP and WIEN2k show good agreement for

states above the Fermi level and in the Fermi level region where the Dirac crossings lie.

Predicted energies for states below the Fermi level differ slightly for the two methods.

This is unsurprising given the local orbital approach in WIEN2k. Although WIEN2k

calculations are not shown in Fig. 2.2 for the sake of visual clarity, a direct compari-

son of the band structures calculated in both codes is available in the supplementary

information.[163]

Nonsymmorphic symmetry protects multiply-degenerate band crossings in both ma-
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Figure 2.3: Close-up views of NaM3O4 Dirac cones. Dirac cones lie along the Γ −X,
M − Γ, and Γ − R paths of the band structures of NaPt3O4 (a) without and (b) with
SOC calculated in WIEN2k. The Dirac cones along M −Γ are gapped by SOC whereas
the other Dirac cones are protected in both compounds. Colors of the plotted bands
represent calculated irreducible representations (irreps).

terials. Eight-fold crossings can be seen at energies near 1.5 eV and between −0.6 eV

and −1.5 eV at the R point, the energy of the latter, sub-Fermi level degeneracy vary-

ing significantly with M site species and simulation program. While the eight-fold

crossings are very far from the Fermi level in these compounds, they are relevant to

electronic structure of closely-related compounds. It has been shown that the Fermi

level of the isostructural compound LaPd3S4 lies near the upper eight-fold degeneracy

at R and Pt3O4 appears to have a Fermi level near the lower eight-fold degeneracy.[80]

In order to explore the origins of the Fermi level Dirac crossings, we consider sym-

metry and orbital character. Formally, symmetry protects band crossings from gapping

if the two crossing bands have different irreducible representations (irreps) with re-

spect to the point group of the k-vector.[30] When SOC is significant, the two band

irreps must be different with respect to the double group, which accounts for spin.
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Figure 2.4: Determination of NaM3O4 band orbital character. (a)-(c): orbital pro-
jected band structures of NaPt3O4 calculated in WIEN2k. Dirac cones are generated
by the crossing of M dz2 and M dx2−y2 bands. (d): the same plot with an overlay
of the simulation-defined bands B+ and B− that form the tops and bottoms of the
Dirac crossings, respectively. These bands will be further visualized in Fig. 2.5 and
Fig. 2.6. (e,f): Charge density of valence states contributing to bands within 0.1 eV of
the Fermi level in NaPt3O4 and NaPd3O4, respectively, suggesting primary contribu-
tions from Pt dx2−y2 and dz2 orbitals in combination with O p orbitals. The charge

density is visualized at a constant contour of 0.0021 e− Å−3.
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The gapping of the Dirac crossing along M − Γ when SOC is introduced can be ex-

plained as a consequence of the cubic space group. The Γ − X, M − Γ and Γ − R

lines in k-space obey C4v, C2v, and C3v point group symmetries, respectively. With-

out SOC, the crossing bands have different irreps in each of these point groups and

all three crossings are allowed (See the irrep-colored bands of Fig. 2.3). When SOC

is introduced, there is only one spinor irrep available in the double group of C2v and

the Dirac crossing along M − Γ therefore gaps out. Explicitly, we calculate the ir-

reps of the crossing bands along the three high-symmetry Brillouin zone lines in the

system with SOC: Γ − X : {∆6,∆7} → {∆7,∆6}; M − Γ : {Σ5,Σ5} → {Σ5,Σ5};

Γ − R : {Λ4,Λ5 + Λ6} → {Λ5 + Λ6,Λ4}.[42] The irreps are identical for both the Pd

and Pt compounds. There is an exchange of irreps at the Γ − X and Γ − R crossings,

and these crossings are therefore protected, while no such exchange can occur along

M − Γ. More specifically, the Dirac crossings along Γ −X and Γ − R are protected by

C4 and C3 rotational symmetry, respectively, as the irreps of the crossing bands at these

points are distinguished by their character with respect to these symmetry operations.

Overall, we can state that the symmetry protections in the system are completely gen-

eral properties of the cubic Brillouin zone and can be extended to cubic compounds in

other space groups.

Figure 2.4 presents orbital-projected band structures and a visualization of the va-

lence electron charge distribution contributing to energy states near the Fermi level in

NaM3O4. The difference in symmetry between the bands crossing at the Dirac cones

can be seen to reflect a difference in orbital origin. The dominant contributions are

fromM dx2−y2 and dz2 orbitals in tandem with O (mainly p) states. Density of states cal-

culations supporting this conclusion are also offered in the supplement.[163] The Dirac

crossings are created by the overlap of partially-filled dz2 bands with large-dispersion

dx2−y2 bands that dip down in energy at Γ. Oxygen states overlap significantly with
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Figure 2.5: Heatmaps of NaM3O4 band energies on the kz = 0 plane. Energies of
the B− and B+ bands are shown for NaPt3O4 with SOC. The absolute value of the
energy separation between the B− and B+ bands is shown in (c). The Fermi-level
Dirac crossings between the B− and B+ comprise an approximately square energy
degeneracy loop in the region {−0.2 ≤ kx ≤ 0.2;−0.2 ≤ ky ≤ 0.2}.
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Figure 2.6: Visualization of NaM3O4 nodal surfaces. High-resolution calculations
of energy-splitting between NaM3O4 B+/B− bands in k-space, performed with
tight-binding model: 2D plots in (a) and (b) show all energies on a logarithmic scale,
while for 3D plots in (c-f) the maximum energy cutoff was 20 meV.
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both orbitals, but interact more strongly with the dx2−y2 band. It is important to note

here that we are using a local bonding basis to describe the the states, rather than the

crystal coordinates, such that dx2−y2 refers to anM orbital with lobes pointing along the

square planar coordinated bonds towards oxygen. Although the orbital decomposition

generally follows the energy level diagram of Fig. 2.1(c), the non-negligible interaction

of oxygen states with the dz2 might be somewhat unexpected. Figure 2.4 (e,f) show

that the O p orbitals are oriented along [111] axes, facing out of the square coordina-

tion plane defined by M -O bonding such that they can interact with additional orbitals

along the z-axis. The Pd compound has more disperse orbitals than the Pt compound

and has less directional d orbital preference along the Pd-O bonds (the Pd d orbitals

have more dxy character in addition to the primary dx2−y2, dz2 character).

From the perspective of simulation, all three Dirac crossings of interest occur be-

tween the same two bands. Since the system is metallic, there is no good division

between “valence” and “conduction” bands, we refer to the band with greater energy

at the Γ point, which descends in energy towards the Dirac crossings along Γ-X, Γ-M,

and Γ-R, as the “B+” band, while the band with lower energy at Γ will be referred to as

“B−.” These simulation-defined bands are visualized in Fig. 2.4(d). While this scheme

is sufficient for our purposes, note that the Γ-R Dirac cone is actually 6-fold degenerate

(composed of 3 separate sets of spin-degenerate bands) in the non-SOC calculations,

though this degeneracy is gapped by SOC.

Figure 2.5 shows the energy landscape of the B− and B+ bands along a constant

kz = 0 slice in the (cubic) Brillouin zone for NaPt3O4. As discussed by Doublet et al.,

the roughly square shape of the Fermi surface of the dz2 band can be viewed as a con-

sequence of the relative independence of the MO4 bonding chains along x and y.[148]

Despite the 3D connectivity of the M dx2−y2+ O p bonding network, the correspond-

ing Fermi surface is roughly square as well. The net result is that both the B− and
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B+ bands have cubic symmetry. There are two regions where these bands come close

together: along a square loop at the center of the Brillouin zone, corresponding to the

Dirac crossings, and, far below the Fermi level, along the Γ−M line from the center of

the diagram to the corners.

In order to achieve a higher k-space sampling resolution to more precisely visual-

ize the locations of the Dirac crossings, we implemented Wannier-interpolated tight-

binding models as discussed in section 2.2. Figure 2.6 shows calculations of the energy

gaps in the area of the Brillouin zone near the central square intersection region of

Fig. 2.5. (a) and (b) demonstrate that there is a full square nodal line in the kz = 0

plane that is interrupted by gapping along Γ −M when SOC is introduced. (c) and

(d) show that the nodal square in the Pd compound without SOC is part of a larger

small energy-splitting region with roughly cubic shape, but small holes in the nodal

cube, which SOC gaps into eight protected degeneracies along Γ−R and six protected

degeneracies along Γ−X for a total of 14 Dirac points. The Γ−R crossings have sharp

dispersion whereas the Γ−X Dirac crossings have very small dispersion along the faces

of the cube and appear flat and plate-like even after SOC is included. The nodal cube

in NaPt3O4 in the absence of SOC is found to be a complete cube, (e), similar to a nodal

sphere semimetal. More generally, the cubic degeneracy region in the Pt compound is

noticeably more square than the similar region in the Pd compound and the stronger

SOC in this compound more fully removes the nodal cube degeneracy, although small,

plate-like dispersion along Γ−X remains (see supplement for kz = 0 plane nodal lines

in NaPt3O4).[163] At the smallest energy splittings available in our tight-binding mod-

els, the intersection region in the Pd compound is reduced to a number of nodal lines.

The Pt compound, by contrast, has a full, nodal-cubic Dirac degeneracy in the absence

of SOC down to the lowest reasonable simulation energies (see supplement).[163]

These qualitative findings were found to be robust to re-parameterization of the tight-
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binding model using a number of alternative orbital projections, including a model

including only the M dx2−y2, dz2 and O p orbitals previously discussed.

2.4 Conclusions

We have shown that the high symmetry structures of NaM3O4 result in the forma-

tion of 14 Fermi level Dirac crossings that are protected against spin-orbit coupling,

with a particularly large linear energy dispersion region about Γ − X. These com-

pounds can potentially be doped between interesting electronic states including the

nonsymmorphic-symmetry-enabled degenerate R point bands ofM3O4, the Dirac cones

of NaM3O4 discussed, and the insulating compounds (Ca/Sr)M3O4.

The Pm3̄n cubic space group appears promising for the generation of a stable nodal

cube state with surface states that could host exciting correlated electron physics.[133]

While the compounds discussed here have significant SOC that prevents the realization

of a true nodal cube, this state might be achieved in related systems by lowering SOC

using lighter elements. The presence of a full nodal cube in the Pt compound without

SOC also gives us some hints as to how we might go about creating such a state in a

real material. The cubic Dirac degeneracy of these compounds is a direct consequence

of the quasi-independence of the MO4 square-planar bonding chains in the unit cell.

The dz2 bonding network is nearly independent along the cubic axes resulting in a

B+ band that creates the nodal cubic state [Fig 2.5(a)]. Dirac character along the

Γ − X direction is directed towards the cubic faces of the (001) single crystal surface

with metallic or mixed Dirac-metallic character along other high-symmetry directions.

Interaction with the ligand oxygens increases the 3D connectivity of the dx2−y2 bonding

network and reduces the how cubic the Dirac crossings are. In the absence of SOC,

increased Pd-O bonding in the Pd compound compared to the Pt-O bonding of the Pt
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compound results in a less perfect nodal cube degeneracy. A possible way to reduce

the M -O bonding would be to increase the lattice parameter though chemical strain,

for example though substituting K+ or Rb+ for Na+.

Effects of these predicted Fermi level Dirac crossings and large k-space regions of

linear dispersion may be detectable in magnetotransport measurements. A number

of compounds in this family, including NaxPt3O4, have been previously synthesized as

single crystals suitable for transport studies.[168, 169, 170, 171] Nodal-line semimetals

frequently show signs of anomalous transport such as large magnetoresistance and low-

field quantum oscillations.[172, 173]

The band inversion in this system results from bonding chains, rather than the

relativistic contraction of s orbitals on a single atomic site (as in the now-canonical

DSM examples Na3Bi and Cd3As2), so this compound can be classified with other new

“molecular” semimetals such as ZrSiS that feature large linear energy dispersion.[118]

The significance of the transport contribution from linear bands to catalysis has

not yet been fully deciphered. Nonetheless, Dirac transport in NaM3O4 may further

our understanding of the Adams catalyst on the centennial of its discovery. While

topological semimetals have been previously examined as catalysts for the hydrogen

evolution reaction, hydrogenation catalysts may also prove a fruitful avenue of inquiry.
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Chapter 3

Weyl nodes and magnetostructural

instability in antiperovskite Mn3ZnC

1The room temperature ferromagnetic phase of the cubic antiperovskite Mn3ZnC is

suggested from first-principles calculation to be a nodal line Weyl semimetal. Features

in the electronic structure that are the hallmark of a nodal line Weyl state—a large

density of linear band crossings near the Fermi level—can also be interpreted as sig-

natures of a structural and/or magnetic instability. Indeed, it is known that Mn3ZnC

undergoes transitions upon cooling from a paramagnetic to a cubic ferromagnetic state

under ambient conditions and then further into a non-collinear ferrimagnetic tetrago-

nal phase at a temperature between 250 K and 200 K. The existence of Weyl nodes and

their destruction via structural and magnetic ordering is likely to be relevant to a range

of magnetostructurally coupled materials.

3.1 Introduction

Antiperovskite carbides are a family of materials with the cubic perovskite structure

and formula X3BC where X is the least electronegative element in the formula and C

1The contents of this chapter have previously appeared in Ref. [125]. Reproduced from S. M. L.
Teicher and I. K. Svenningsson, L. M. Schoop, and Ram Seshadri, Weyl nodes and magnetostructural in-
stability in antiperovskite Mn3ZnC, APL Mater. 7, 121104 (2019), with the permission of AIP Publishing.
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Figure 3.1: Reported crystal and magnetic structures of Mn3ZnC. Mn3ZnC undergoes
transitions from paramagnetic (PM) to ferromagnetic (FM) states in the cubic antiper-
ovskite structure with a TC ≈420 K. A lower temperature antiferromagnetic transition
with TN ≈219 K is associated with noncollinear ferrimagnetic ordering in a tetragonal
structure.

is carbon (see Fig. 3.1). Related carbides have a long history in metallurgical research,

associated with the larger family of so-called MAX phases.[174] Several members of

the family such as Co3AlC[175] have been explored for applications in structural alloys

and Mn3SnC[176] and carbon-doped Mn3ZnN[177] exhibit negative thermal expan-

sion effects. Some antiperovskite carbides are also of interest for their functionality.

Mn3GaC is known to display giant magnetoresistance[178] and Ni3MgC is an 8 K su-

perconductor, the latter rationalized by first principles calculations as being associated

with a flat band with large density of states near the Fermi level.[179, 180]

More recently, the larger class of antiperovskites has been explored due to the pre-

diction of topological electronic states. The Ca3PbO and Ca3BiN families include Dirac

semimetals[181, 182]—materials with a graphene-like linear-band crossing, or Dirac

cone, near the Fermi level[37, 130]—as well as topological insulators[183] and topo-

logical crystalline insulators[184] with a bulk band gap and metallic surface states.

Magnetization and resistivity data in two recent studies on Sr3PbO and Sr3SnO provide

preliminary evidence for Dirac transport[185] and low-temperature superconductiv-
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ity,[186] respectively. The Cu3PdN family is predicted to include nodal line semimetals,

in which Dirac crossings persist over an extended region, a line, rather than a single

point in the Brillouin zone.[187] Nodal line semimetals can host a unique class of

drum-head topological surface states with k-vectors connecting all the Dirac nodes on

the nodal ring in the Brillouin zone.[132] However, as is common in predicted nodal

line compounds, the relatively large spin-orbit coupling due to the heavy Pd atom in

Cu3PdN partially gaps the nodal line, preventing the realization of a true nodal line

semimetal.[187]

The topic of this chapter is Mn3ZnC, a material that has been explored since the

1950s due to its interesting magnetic transitions. In a series of studies, Butters and

Myers,[188] Brockhouse and Myers,[189] and Swanson and Friedberg[190] provided

early characterization of these transitions, which include a paramagnetic to ferro-

magnetic transition with reported Curie temperatures 350 K< TC <500 K[188, 191,

192] and antiferromagnetic ordering with reported Néel temperatures 215 K < TN <

233 K.[188, 191, 192] In the 1970s, Fruchart and colleagues solved the magnetic

structures via neutron diffraction, determining the [001] ferromagnetic room tem-

perature structure and more complex non-collinear low temperature structure shown

in Fig 3.1.[193, 191] The magnetic moments, localized on the Mn site, are approx-

imately 1.3µB in the ferromagnetic state and 2.7µB and 1.6µB in the noncollinear,

antiferromagnetically-coupled and collinear, ferromagnetically-aligned layers of the

low temperature structure, respectively. The low magnetic moments suggest that the

magnetism is fairly itinerant in this system relative to most Mn magnetic materials. In

the 1980s, the transition shifts in Mn3ZnC were studied under large applied magnetic

fields and pressures.[192, 194]

Theoretical attempts to explain the magnetic transitions in Mn3ZnC have focused on

the presence of a large Fermi level flat band. In 1975, Jardin and Labbé proposed that
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the main bonding interactions in this system originate from Mn dxz, dyz and C p orbitals

and generated a tight-bonding model with sharp peaks in the density of states.[195]

Should the Fermi level lie at one of these peaks, the ferromagnetic to paramagnetic

transition could be explained by Stoner exchange and the low temperature structural

distortion by a Jahn-Teller-like energetic benefit accrued through further reducing the

density of states near the Fermi level. Non-spin polarized density of states calculations

reported later indeed found a large spike in the density of states just above the cal-

culated Fermi level.[196] This work was extended with density of states calculations

on both the spin-polarized, ferromagnetic and non-collinear, ferrimagnetic structures,

demonstrating that spin polarization opens up a pseudo gap at the Fermi-level in the

ferromagnetic phase, consistent with a Stoner exchange mechanism, and that a wider

gap opens just below EF in the ferrimagnetic state.[197]

Here, we use first principles calculations to show that the cubic ferromagnetic phase

of Mn3ZnC that is stable at room temperature is a nodal line Weyl semimetal. Although

Weyl nodes are common in ferromagnetic metals, including bcc Fe,[198] to-date stud-

ies on Weyl nodal lines are more of a rarity: the first experimental work towards ver-

ification of a Weyl nodal line has recently been completed for the Heusler compound

MnCo2Ga.[199] In Mn3ZnC, we present a computational bonding analysis that pro-

vides qualitative explanations for the magnetic transitions that create and destroy this

delicate Weyl ferromagnet phase. Motivated by interest in the Weyl nodes and their

potential role in magnetostructural instabilities, we experimentally revisit the transi-

tions in this material via magnetoentropic mapping, which is a sensitive probe for low

energy and metamagnetic reordering.
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3.2 Methods

3.2.1 Computational

Density functional theory simulations were completed in VASP [150, 151, 152] and

WIEN2k[153] using the Perdew, Burke, Ernzerhof functional [94] with projector aug-

mented waves,[90, 154] and linear augmented plane waves + local orbitals[155], re-

spectively. PAW potentials for VASP were selected based on the version 5.2 recommen-

dations. All calculations described in the text were performed in VASP other than the

band irrep assignments of Fig. 3.3 (c), which were completed using the IRREP subpro-

gram of WIEN2k. A 17× 17× 17 Γ-centered k-mesh was employed for electronic struc-

ture simulations of the ferromagnetic phase. These calculations are well-converged for

much lower density k-meshes, but high k-mesh density is desirable for accurate Wan-

nier function fitting; an 8 × 8 × 8 mesh was used for relaxation steps. Calculations

for the expanded low temperature tetragonal cell were performed using a 5 × 5 × 4

Γ-centered k-mesh for relaxation and self-consistent steps and a 7× 7× 5 mesh for the

density of states. The plane wave energy cutoff for VASP and the plane-wave expansion

parameter, RKMAX, for WIEN2k were set to values better than 500 eV and 8.0, respec-

tively. Tetrahedral smearing with Blöchl corrections[162] was used for relaxations and

self-consistent calculations. Structures were relaxed in VASP via the conjugate gradi-

ent descent algorithm with an energy convergence cutoff of 10−4 eV. Subsequent self-

consistent static calculations and non self-consistent electronic structure calculations

were performed using VASP and WIEN2k with energy convergence better than 10−5 eV.

The surface states of Mn3ZnC were determined by projecting our VASP calculations

onto maximally localized Wannier functions using Wannier90,[91] starting from initial

projectors corresponding to valence orbitals (Mn d; Zn s, p, d; C p; with a frozen fitting
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window EF ± 2 eV), constructing a tight-binding model from these localized Wannier

functions, and finally using the Wannier Tools package [166] to calculate the Green’s

function spectrum.[113] The VASP simulations input into Wannier90 were simulated

with noncollinear spins on a non-symmetrized k-mesh with and without SOC. The Mn

magnetic moments in these simulations were constrained to point along [001]. Fine k-

mesh mapping of the Weyl node locations in the 3D Brillouin zone was also performed

on this tight-binding model. Berry curvature was determined using the Wannier90

KSLICE module. The band structure of Fig. 3.5 was unfolded using BandUP.[200, 201]

Orbital projections, density of states, and crystal orbital Hamiltonian populations for

the high temperature phase were determined using LOBSTER.[33, 34, 35, 36] The

density of states and orbital projections for the low temperature structure are reported

using default VASP projections as LOBSTER does not support noncollinear magnetism.

A post-process Gaussian smoothing with standard deviation 0.2 eV was applied to all

calculated density of states and COHPs. Structures are visualized with VESTA.[167]

3.2.2 Experimental

Samples of Mn3ZnC were produced by a two-step solid-state synthesis, following

a previous report,[192] starting from stoichiometric quantities of Mn (Fisher Scien-

tific, 99.95%), Zn (Strem Chemicals, 99.9%), and C (Alfa Aesar, 99%) and adding 7

mass % Zn during the second mixing step. Additional Zn was included to decrease the

Mn:Zn ratio of the final material towards 3. Wavelength-dispersive X-ray fluorescence

measurements performed on a Rigaku ZSX Primus IV suggest that the composition

is close to Mn3.16Zn0.84C. Magnetic measurements were performed on a Quantum De-

sign MPMS3 operating under vibrating sample magnetometer mode. High temperature

measurements (T >400 K) including the PM-FM transition utilized the oven heater
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stick attachment option while lower temperature measurements used a standard brass

sample holder. The magnetization curve in Fig. 3.1 was generated by measuring mag-

netization at fields of 1T, 0.1T; below and above 300K, respectively, and normalizing

the high temperature magnetization curve such that there was no discontinuity at 300K.

∂M/∂T and ∆SM curves are calculated using methods reported previously.[202] Ad-

ditional experimental details, including our attempts to develop an original microwave

synthesis route for this and related antiperovskite carbides, are provided in the supple-

mentary material.[203]

3.3 Results

We first consider the density of states (DOS) for the cubic, ferromagnetic phase

of Mn3ZnC, as shown in Fig. 3.2. We consider only Mn d states because other orbital

contributions are small near the Fermi level (see supplementary material[203]). From

Fig. 3.2 (a), we can see that the DOS is relatively large at the Fermi level and that there

is a large DOS peak just above this level. This is consistent with the hypothesized Stoner

exchange mechanism for the ferromagnetism in this material. Indeed, in the spin-

polarized calculation, Fig. 3.2 (b), we find that the onset of ferromagnetism eliminates

this DOS peak, reducing the Fermi-level DOS. The mechanism appears to be somewhat

distinct from that originally proposed by Jardin and Labbé, however, as the near-Fermi

level DOS peak in the non spin-polarized calculation originates from Mn dxy states,

rather than dxz/dyz states. Here, we consider the local symmetry of the Mn d orbitals

in terms of the cell coordinates (this is the preference in prior literature). From this

perspective, we find that the dxz/dyz orbitals are equivalent and point from one Mn

towards its Mn neighbors and are involved in strong Mn-Mn bonding and some Mn-C

bonding. dz2 and dxy orbitals have lobes pointing from Mn towards C and Zn atoms and
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Figure 3.2: Density of states and crystal orbital Hamiltonian population for the
Mn3ZnC ferromagnetic phase. Partial density of states of the dominant Mn d-orbital
contributions are compared (a) without and (b) with spin polarization. The crystal
orbital Hamiltonian populations for Mn-Mn, Mn-Zn, and Mn-C bonding are presented
(c) without and (d) with spin polarization. Inset of (d) shows close-up of COHP in
the region just about the Fermi level (EF±0.5 eV).
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are expected to be important in Mn-C and Mn-Zn bonding, respectively. Finally, dx2−y2

orbitals point directly towards no other atom and are expected to be more weakly

involved in bonding.

The proposed picture of a simple ferromagnetic distortion is further complicated

when we consider these bonding interactions via the crystal orbital Hamiltonian pop-

ulation (COHP), a quantity derived from wavefunction overlap that is negative for

bonding and positive for antibonding interactions. In a normal ferromagnet, such as

iron, the COHP shows significant antibonding at the Fermi level.[204] By splitting the

spin populations, the normal ferromagnet is able to stabilize and fill a greater number

of bonding states near the Fermi level, and relatively few antibonding states. The dxy

orbitals, however, are not expected to be strongly (anti-)bonding; the COHP, Fig. 3.2

(c), confirms the relatively weak strength of Mn-Zn interactions in this energy region.

Rather than elimination of a sharp antibonding peak due to the dxy states, the spin-

polarization appears to be stabilized by two effects: first, the reduction of the an-

tibonding states just below the Fermi level and, second, the development of Mn-Zn

bonding states originating from the originally weakly-bonding dxy band, Fig. 3.2 (d).

In the end, rather than a magnetic metal with a large number of bonding states at the

Fermi level, we are left with a semimetal that has non-bonding character near EF . Ex-

amining the COHP immediately about the Fermi level (Fig. 3.2 (d), inset), we find that

the Mn-Zn interactions are bonding and the Mn-C interactions are anti-bonding. The

Mn-Mn COHP displays a subtle cross-over from antibonding to bonding at the Fermi

level. Such a Fermi level COHP cross-over is typical of antiferromagnetic metals, al-

though it usually involves bonding states below the Fermi level and antibonding states

immediately above. In analog to the simple tight-binding chain model of 1s orbitals,

which forms a metal with a completely filled bonding band that can support a sym-

metry breaking lattice displacement of the atoms with a resulting bandgap, the Peierls
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Figure 3.3: Mn3ZnC bulk band structure and Weyl crossings. (a) high-symmetry
points in the bulk Brillouin zone and (100)/(001) surface-projected Brillouin zone.
(b) spin-polarized band structure showing a flat-band in the majority states and four
types of near-Fermi level Weyl crossing. (c) close-up band structure with bands col-
ored by irreducible representation. (d-f): schematics of Weyl surfaces in the 3D Bril-
louin zone. (d) 3D view without SOC. (e) (100) view without SOC. (f) (100) view
with SOC. In the absence of SOC, Nodal loops are displayed around M (orange) and
3D nodal surfaces around R (blue). With magnetization along [001], SOC gaps the
nodal surfaces and many of the nodal loops, leaving behind kz = 0 nodal loops and
isolated W1 nodes.

distortion,[29] the bonding in Mn3ZnC appears susceptible to symmetry breaking via

both physical lattice distortion and antiferromagnetic ordering, either of which could

distinguish the Mn sites and generate an electronic gap.

This ferromagnetic semimetal phase becomes much more interesting when we con-

sider the electronic band structure in Fig. 3.3, which reveals several Weyl nodes. Fig. 3.3

(a) depicts the bulk cubic Brillouin zone. Fig. 3.3 (b) presents the spin-polarized band

structure with orange majority bands and blue minority bands. Five features of inter-

est are labeled. First, despite the gapping of the density of states at the Fermi level,
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a flat band, FB, persists along Γ-X right at the Fermi level. Along X-M and M -Γ, we

find linear band crossings, Weyl nodes, in the minority bands, labeled W1 and W2. On

either side of the R point, we also find linear band crossings just above the Fermi level

involving both the majority and minority bands. The Weyl nodes on either side of R

are labeled W3 and W4. Note, however, that there are actually several Weyl nodes on

either side of R and this labeling is a reduction for the sake of simplicity.

The colors of the bands in Fig. 3.3 (c) depict the irreducible representations (irreps)

of bands involved in the Weyl crossings. A band crossing is protected against gapping

if the irreps of the two crossing bands are different; this represents orthogonality of

the electronic states generating these bands. In the absence of spin-orbit coupling

(SOC), we can consider this system in the paramagnetic space group (Pm3m, #221).

The point group of the k-vectors along X-M , M -Γ and R-X is C2v and along Γ-R the

point group is C3v. The Z1 and Z2 irreps differ in their symmetry with respect to C2

rotation and the mirror operation σ′
v, indicating that the W1 node is protected by these

operations. The Σ1 and Σ4 irreps differ with respect to C2 rotation and the mirror

operation σv. The W4 nodes involve crossings of S2, S3, S4 bands. The nearest Weyl

crossings to the Fermi level along Γ-R and R-X actually involve bands with the same

irrep, Λ3 and S4, respectively. However, these crossings have bands of orthogonal spinor

character, as can be seen when comparing with Fig. 3.3 (b). When SOC is incorporated

in the simulation, we must consider the coupling of the magnetic moment to the lattice

as well as majority / minority spin mixing interactions. Spin mixing gaps the lowest

energy W3,W4 crossings and the breaking of C2 and mirror symmetries along R-X

gaps the W4 Weyl nodes. The W3 Weyl crossings due to Λ1,Λ3 crossings, meanwhile,

are left untouched by SOC. When considering the kx = 0 Brillouin zone plane, which in

the non-SOC calculation had been equivalent, however, both nodes are not preserved.

Viewing the W1 and W2 nodes, on the kx = 0 plane, we find that two of the four W1

95



Weyl nodes and magnetostructural instability in antiperovskite Mn3ZnC Chapter 3

nodes and all four of the W2 nodes gap out (see supplement for additional details on

the effect of SOC). In all cases, the magnitude of the SOC gaps in this material are

relatively small due to its low-mass 3d electrons.

Mapping the Weyl nodes in the 3D Brillouin zone, we find that the Weyl nodes in

this system are not isolated points, but instead nodal lines and surfaces as depicted in

Fig. 3.3 (d,e). The W1 and W2 nodes are part of a nodal line about the M point whereas

the lowest energy W3 and W4 nodes form a 3D connected surface about the R point.

Because of the large number of W3,4 Weyl crossings, additional W3,4 nodal surfaces may

exist which have not been considered. In general, although individual band crossings

and nodal lines can be protected, there are no symmetries that can fully protect a

3D nodal surface in the presence of SOC.[133, 124] The nodal surfaces depicted in

Fig. 3.3(d,e) about R are no exception. Because these surfaces result from the crossing

of bands of opposite spinor character, and SOC allows spin-channel mixing, these nodal

surfaces gap out and the nodal surface is no longer realized in the final electronic

structure after SOC has been incorporated. We find that some of the M nodal lines,

however, are protected. The nodal loops on the kz = 0 plane are protected against

gapping, while the nodal loops on the kx, ky = 0 planes gap, leaving only isolated Weyl

crossings on the X-M lines. This results in the spin-orbit-gapped configuration shown

in Fig. 3.3 (f).

The protection of the M nodal lines is a direct result of the mirror symmetry in the

cubic antiperovskite structure. While we have already shown that a combination of

C2 and mirror symmetries protects the band crossings along the Γ-M and M -X high

symmetry lines, recomputing the irreps along a generic path through the loop with

point group Cs shows the band crossings to be protected by C2, which is equivalent to

a mirror. The M nodal lines on the kz = 0 plane are preserved under SOC because

the [001]-oriented collinear magnetic moment does not break mirror symmetry on this
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Figure 3.4: Characterization of Weyl behavior in Mn3ZnC. (a) kz = 0 cut through the
bulk BZ showing large Berry curvature near the W1 Weyl crossings. A constant energy
band-cross-section is overlaid in teal. (b) surface density of states calculation showing
brightly-colored surface states connecting between W3,4 and between W1 Weyl points.
The energy level of the W2 Weyl points is also shown. (c) constant energy Fermi arc
calculation for the (001) surface at the energy level of the W2 nodes. Dotted pink
lines connect between surface states at the W2 level in (b) and the locations of these
states in (c) to guide the eye.

plane. Likewise, the M nodal lines on the kx, ky = 0 planes gap because the magnetic

moment does break the mirror symmetry on these planes—except at the W1 nodes

where the nodal line is tangent to the kz = 0 plane and perpendicular to the [001]-

magnetic moment.

These nodal lines are similar to those described in a theoretical tight-binding model

of Ca3P2 with imposed spin and previously predicted in alloys of the real material

ZrCo2Sn (also under [001] magnetization).[132, 205] Due to the soft ferromagnetism

and readily-reorientable magnetization in ZrCo2Sn, it was proposed that the effective

number of Weyl nodes can be tuned by changing the applied field direction. Mn3ZnC

also appears to be a soft ferromagnet and could exhibit similar tunability.

Now that the existence of a protected kz = 0 nodal loop has been established, we

might expect to see drumhead surface states connecting between the nodes of this loop

on the (001) surface of the material. Fig. 3.4 characterizes the Weyl nodes and their
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surface states. Weyl nodes can be described as sources and sinks of a quantity called

the Berry curvature or Berry flux, defined as:

∇k × 〈uk|i∂kuk〉

where uk represents the Bloch wavefunction.[27] Low energy electronic excitations

analogous to quantum Hall surface states, Fermi arcs, are topologically protected be-

tween Weyl nodes emitting and collecting Berry flux.[128] Fig. 3.4 (a) shows the mag-

nitude of the Berry flux in the kz = 0 plane at an energy level near the W1 nodes,

highlighting large Berry flux concentration at the nodes. Fig. 3.4 (b) and (c) present

the Weyl surface states projected on a (001) surface. We can see bright surface bands

connecting between two W1 nodes and between two W3,4 nodes (Note, following Fig

3.3 (a), that the R-M and X-M lines are projected onto the M and X points when flat-

tening the cubic Brillouin zone along kz). The energy level of the W2 nodes is overlaid

in teal. In Fig. 3.4 (c), we can see a Fermi surface cut taken at the W2 energy level with

W2 nodes clearly visible along Γ-X. Fermi arcs emitting from the W2 points can be seen

to connect to W2 nodes in the neighboring Brillouin zone due to the periodic boundary

conditions. The M -X-M line in Fig. 3.4 (b) corresponds to the edges of the plot in

Fig. 3.4 (c). Comparing between Fig. 3.4 (b) and (c), we see that the surface states

connecting the W1 nodes are identical to the surface states connecting the W2 nodes;

there is indeed a drumhead surface state connecting W1, W2 and the other nodes on

the nodal line about the M point.

In general, materials with electronic structure features like those in Fig. 3.3 (b)—

degenerate flat bands and near-Fermi level band crossings—and especially semimetals

with a large concentration of Weyl crossings like this nodal-loop compound, often dis-

tort at low temperatures. The energy-lowering transitions that tend to break such nodes
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Figure 3.5: Electronic structure of the low temperature phase of Mn3ZnC. (Total)
DOS values have been normalized to the high-temperature unit cell to provide fair
comparison to Fig. 3.2. A large gap is seen that can be accessed by decreasing the
electron count through slight electron deficiency. This unfolded band structure allows
a direct comparison of the ferrimagnetic tetragonal cell bands to the band structure of
the ferromagnetic cubic unit cell. Although there is significant gapping and removal
of Weyl nodes just below the Fermi level, a small number of Weyl nodes persist at EF .

are frequently referenced to the idealized models of Peierls or Jahn-Teller distortions.

The well-established experimental fact is that a symmetry-breaking low-temperature

distortion does activate in this material, involving both a tetragonal stretch of the

atomic positions and a magnetic reorientation of the spins with partial antiferromag-

netic coupling (Fig. 3.1).

The density of states of the low temperature structure provide valuable insight for

the origin of the low temperature phase. Fig. 3.5 shows the DOS and band structure

of the tetragonal low temperature structure with fully non-collinear spins and associ-

ated antiferromagnetic coupling. A large pseudogap is seen to open up in this case, as

would be expected from the description of the antiferromagnetic ordering as a Peierls-

like symmetry breaking. We also considered simulations with the tetragonal low tem-

perature structure with no spin polarization and collinear, ferromagnetic polarization.

However, because the tetragonal distortion is fairly small, the density of states for these

phases exhibit only minor changes with respect to those of Fig. 3.2. Further, when al-

lowed to relax, the non-spin polarized and collinear spin polarized structures relax into
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the cubic structure. This analysis suggests that though both are coupled, it is probably

the new magnetic ordering, rather than tetragonal distortion alone, which drives the

transition.

The relationship between the new magnetic ordering and potential electronic in-

stabilities, flat bands and Weyl nodes, can be examined via the band structure of the

low temperature phase in Fig. 3.5. In order to provide a direct comparison to the band

structure and Weyl nodes of the ferromagnetic phase in Fig. 3.3, we have unfolded the

bands of the low temperature cell into a Brillouin zone corresponding to that of the low

temperature cubic primitive cell. We see that, in the low temperature structure, the flat

band and several of the Weyl nodes have disappeared. The DOS pseudogap can be seen

in the relatively empty region of the band structure about 0.2 eV below the Fermi level.

Despite the formation of the pseudogap, a few Weyl nodes remain at the calculated

Fermi level. Part of the discrepancy between our simulation and the expectation for

the stabilization of a pseudogap at the Fermi level likely results from electron deficiency

in the real material. As early as Butters and Myers’ first study, Mn3ZnC was found to

have varying composition and magnetic properties with nominal Mn:Zn ratios greater

than 3.[188] The Mn:Zn ratio of our best sample, measured by wavelength-dispersive

X-ray fluorescence, was close to 3.76, which, in a rigid band approximation, would

result in a deficiency of 0.8 electrons per primitive cubic cell and a Fermi level near the

exact center of the pseudogap. We expect that the true Mn:Zn ratio in our samples lies

somewhere between the idealized value of 3.00 and the measured value of 3.76; while

samples of this material appear pure in laboratory X-ray diffraction, synchrotron X-ray

diffraction suggests that small nonmagnetic impurities of carbides Mn5C2 and Mn7C3

as well as MnO (which orders antiferromagnetically, but far lower in temperature than

the transitions discussed here) may be present in addition to the majority Mn3ZnC

phase.[206]
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Figure 3.6: Magnetoentropic mapping of the Mn3ZnC PM-FM and FM-NCL transitions.
(a) line plots of the magnetization, (b) magnetization derivative (∂M/∂T ), and (c)
magnetic entropy change (∆SM) taken under varying magnetic field are shown across
the paramagnetic to ferromagnetic transition that occurs at approximately 420K in our
sample. (d-f) provide similar plots for the FM-NCL transition (≈ 219K). Lines in (b,e)
and (c,f) are offset by 0.1 and 0.01 units, respectively, for visual clarity.

101



Weyl nodes and magnetostructural instability in antiperovskite Mn3ZnC Chapter 3

Motivated by interest in these electronic structure changes associated with magne-

tostructurally coupled transitions, we performed experimental magnetoentropic char-

acterization of both the high and low temperature transitions. Fig. 3.6 (a) presents

magnetization data measured across the paramagnetic to ferromagnetic transition,

which takes place near 420K in our sample. While magnetization has been measured in

older studies, to the best of our knowledge no studies of the the sharp, low field magne-

tization curves for either of the two magnetic transitions have been previously reported.

Fig. 3.6 (b) shows the partial derivative, ∂M/∂T , of these magnetization curves, dis-

playing a large transition peak at low fields that reduces in magnitude and broadens as

the field is increased. Fig. 3.6 (c) shows the magnetic entropy change, ∆SM across the

transition. The magnitude of ∆SM is a direct probe of the magnetostructural coupling

strength in this compound.[207] The peak ∆SM value is significant but not anomalous,

suggesting medium magnetostructural coupling strength in this compound. Negative

∆SM transitions are typical of the magnetocaloric effect seen in paramagnetic to fer-

romagnetic transitions in many magnetic materials. Characterization of the antiferro-

magnetic ordering transition in (d-f) is consistent with this finding. This transition is

qualitatively similar in that it is sharp for low applied field, broad at high field and has

∆SM values with approximately the same magnitude of ≈ 0.1 J Kg−1 K−1. The positive

sign of ∆SM is typical of the inverse magnetocaloric effect seen at many antiferromag-

netic ordering transitions.

3.4 Conclusions

We have shown electronic structure simulations predicting that the room tempera-

ture phase of Mn3ZnC is an exotic Weyl nodal line semimetal with nodal loops, isolated

Weyl nodes, and drumhead surface states. The magnetic and electronic characteriza-
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tions of the two transitions in this material that create and destroy this phase, mean-

while, appear relatively conventional. The upper transition can be explained by the

reduction of near-Fermi level antibonding states and strengthening of Mn-Zn bonding,

while the lower transition can be explained by the need to break symmetry and open

a gap by expanding the unit cell to allow for antiferromagnetic ordering. An electronic

Peierls distortion through antiferromagnetic ordering can allow for spin population en-

ergy shifts and the formation of a pseudogap that remove flatbands and Weyl nodes

near the Fermi level. Despite the significant pseudogap, we found that a limited num-

ber of Weyl nodes still persist near the Fermi level in the low-temperature structure.

However, even a small electron deficiency, expected based on the tendency towards Zn

deficiency in experimental work, moves the Fermi level into the pseudogap of the low

temperature structure.

There is interest at present in the Peierls-like structural distortions and phonon res-

onances associated with Weyl nodes.[208] The finding of Weyl nodal lines in Mn3ZnC,

a classic magnetic transition material, suggests that Weyl instability may play a role

in a much wider range of magnetostructurally-coupled materials. Many other mag-

netic materials that have a low temperature antiferromagnetic ordering likely transi-

tion through a semimetal state with near-Fermi level Weyl nodes. In fact, prototypical

itinerant antiferromagnet chromium itself, the material for which the electronic Peierls

instability concept was coined, hosts Fermi level Dirac crossings in non-spin polarized

calculations, some of which are preserved in its transition to a low temperature antifer-

romagnetic ordering.[123] One major distinction between Mn3ZnC and conventional

antiferromagnetic materials is the reversed Peierls-like bonding structure with anti-

bonding states below the Fermi level, non-bonding states at EF , and bonding states

just above. This reversed bonding structure is indicative of band inversion and could

prove a useful hallmark in the search for topologically-interesting magnets.
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In addition to the bonding analysis we have presented to explain the structural

transitions, important future work will focus on rigorously disentangling the relation-

ship between Weyl nodes, flat bands, and phonon-mediated instabilities in Mn3ZnC

and related semimetals. There is incredible potential for nesting in the Fermi surface of

Mn3ZnC; the flat-bands alone, which perfectly bisect the Brillouin zone in kx, ky, kz di-

rections, provide maximal nesting at the calculated Fermi level in any supercell scheme

as well as the tantalizing prospect of coupling flat-band-related correlation effects to

Weyl physics. We urge caution. Just as flat band degeneracies in DFT are not a guaran-

tee of interesting correlation effects in experiment, substantial evidence suggests that

calculations of Fermi surface nesting are insufficient to prescriptively predict charge

density waves, spin density waves and other lattice incommensurate instabilities.[117]

An important first step has been provided by a recent study on (TaSe4)2I, which relates

the characteristic q-spacings of the Weyl nodes, peaks in the electronic susceptibility,

and CDW-modulation vectors observed in experimental X-ray measurements.[209]

Overall, our results suggest that compounds which display Weyl-like features in

idealized high-symmetry structures may actually undergo transitions to more complex

ground states than initially supposed.
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Chapter 4

3D analogs of square-net nodal line

semimetals: band topology of cubic

LaIn3

1In 2D systems, the origins of topological band structure have been linked to simple

chemical bonding models. Here, we investigate the 3D metal LaIn3 and show that its

electronic structure and band topology is well-modeled using a tight-binding model

consisting of only In p-orbitals. We predict this material to be a nodal line semimetal

with Dirac crossings and topological surface states at the experimental Fermi level. This

compound can be considered a 3D chemical analog of 2D square-net semimetals in

the ZrSiS family, with primary px,y orbital contributions and cubic connectivity. LaIn3

and related auricupride metals are established superconductors and may provide a

valuable platform for exploring the interplay between topological electronic structure

and superconductivity.

1The contents of this chapter are the result of a current collaboration. S. M. L. Teicher, J. Linnartz,
R. Singha, D. Pizzirani, S. Klemenz, S. Wiedmann, J. Cano and L. M. Schoop, 3D analogs of square-net
nodal line semimetals: band topology of cubic LaIn3. Submitted. Reproduced here with permission from
the authors.

105



3D analogs of square-net nodal line semimetals: band topology of cubic LaIn3 Chapter 4

4.1 Introduction

In recent years, topological materials have been realized in which a band inver-

sion in the bulk electronic structure generates a new and exciting phenomenon—spin-

polarized metallic surface states.[6, 128, 30] Topological materials can exhibit a num-

ber of interesting transport properties deriving from their electronic structure, includ-

ing high mobility,[55, 68, 210] quantized circular photogalvanic effect,[71, 72, 73] and

large anomalous Hall effect[69, 18, 70]. A new frontier is the combination of topology

and correlation effects, especially superconductivity. Theoretical models predict that an

intrinsic topological superconductor could host Majorana anyons, quasi-particles that

may provide a technological path towards developing a topological quantum computer

that is robust to local decoherence effects that plague other proposed quantum com-

puting technologies.[211, 20, 21] Here, we explore the electronic structure of super-

conducting LaIn3, ultimately concluding that this material hosts nontrivial bulk band

topology.

Topological materials of recent research interest are square-net semimetals in the

ZrSiS family.[118, 212] The relevant electronic structure of these materials derives

from partially-filled px and py orbitals that form a 2D square planar bonding lattice.

Despite a wealth of strongly-correlated and magnetic phases in these materials,[213,

214, 215, 120, 122, 216, 217, 218] tight-binding models have demonstrated remark-

able success in predicting the relevant electronic structure in square-nets—in fact, it

appears that the topological classification across the entire family can be largely pre-

dicted via a simple ratio of bond lengths inside and outside the square-net.[121] We

will demonstrate that the electronic structure of the 3D cubic metal LaIn3 can be un-

derstood in terms of a chemically-analogous tight binding model with primary px,y

contributions.
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LaIn3 forms in the AuCu3 structure, with La atoms at the corners of the unit cell and

In atoms at the centers of the faces, as visualized in Fig. 4.1 (a). The auricupride struc-

ture of these materials was explored as early as 1934.[219] Gambino and coworkers

discovered low temperature superconductivity in the isostructural compounds LaTl3

(Tc=1.57 K), LaSn3 (Tc=6.45 K), and LaPb3 (Tc=4.05 K) in 1968 while searching for

superconducting compounds that could be doped with rare earth elements.[220] Su-

perconductivity and transport properties were further examined during the 1970s, with

detection of an extremely low temperature superconducting transition in LaIn3, sug-

gested to activate close to 0.7 K.[221, 222, 223, 224]

Detailed quantum oscillation studies of LaIn3[225, 226] and LaSn3[227, 228] were

performed by Umehara and coworkers in the 1990s in order to understand the band

structure and Fermi surface; at this point, interest was also driven by a desire to

understand related rare earth compounds,[229, 230, 231] which have more com-

plex and correlated electronic structures due to f orbital contributions and magnetic

ordering. Antiferromagnetic CeIn3, which has a theoretical band structure similar

to LaIn3 when Ce f -orbitals are localized, was a material of particular research fo-

cus.[232, 233, 234, 235, 236, 237] Quantum oscillation studies show that two of the

Fermi surface pockets in this material, labeled d and a in the notation of Umehara, are

identical to those in LaIn3[238]. Taken together, the body of the previous work is quite

promising; many features of the Fermi surface of these materials revealed from quan-

tum oscillations experiments were well-described by simple ab initio calculations em-

ploying the local density approximation. For this reason, LaIn3 has been considered a

reference for understanding related heavy fermion systems such as CeIn3. Nonetheless,

discrepancies between simulation and experiment persist. To date, the low frequency

quantum oscillation components in LaIn3 as well as the origin of an experimental fre-

quency branch previously detected for [111] magnetic field orientation (just below
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Figure 4.1: Crystal structure of LaIn3. (a) LaIn3 forms in the cubic L12/AuCu3 struc-
ture type with space group Pm3m (#221). The electronic structure of this material
can largely be understood in terms of In p bonding interactions. These p orbitals can
be separated into two symmetry-distinct sets: (b) px and py orbitals, which point be-
tween neighboring La atoms on the faces of the unit cell, and (c) pz orbitals, which
point between neighboring In atoms towards the center of the unit cell. Orbitals are
depicted for local coordinate axes set on the In atom at the top of the unit cell.

branch k in Umehara et al.[225] and Fig. 4.3 (e)) are not understood.

Herein, we revisit the electronic structure of LaIn3, demonstrating that the Fermi

surface can be recreated by a tight-binding model with only In p orbital contributions

and offer an improvement over previous results, showing that the [111] frequency

branch detected in previous experiment can be accounted for by a small onsite en-

ergy adjustment related to La d state localization. We also provide new experimental

quantum oscillation data that confirms the prior findings of Umehara and co-workers

and clarifies the low-frequency spectrum. With confidence in our Fermi surface model,

we further characterize the electronic structure, demonstrating that this material is a

topological nodal line semimetal. Ultimately, we conclude that LaIn3 and related cubic

superconductors may provide an exciting materials platform for exploring the interplay

of topological surface states and superconductivity.
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4.2 Methods

4.2.1 Experimental

Single crystals of LaIn3 were grown in self-flux method using excess indium as

the metal flux. High-purity elemental lanthanum (Sigma Aldrich 99.9%) and indium

(Sigma Aldrich 99.999%) were mixed in the molar ratio 1:14 under argon atmosphere.

The mixture was taken in an alumina crucible, which was then sealed inside an evacu-

ated quartz tube. The tube was heated to 1000 ◦C in 12 hrs in a box furnace, kept at

this temperature for 6 hrs followed by a slow cooling (3 ◦C/h) to 400 ◦C. At this temper-

ature, the tube was centrifuged to separate the single crystals from the excess indium

flux. The stoichiometry of the obtained crystals was checked using energy dispersive

x-ray spectroscopy (EDS) in a Verios 460 scanning electron microscope operating at 15

kV and equipped with an Oxford EDS detector. EDS was performed on several sam-

ples from the same batch and at different randomly selected regions of the crystals to

confirm the homogeneity of the chemical composition.

The single crystals were shipped to HFML (Radboud University, Nijmegen, Nether-

lands) under argon atmosphere in order to measure de Haas-van Alphen (dHvA) effect

by the cantilever torque magnetometry technique. The sample was glued onto a BeCu

cantilever (thickness 50µm, leg length 4.5 mm and leg width 0.4 mm) using GE-7031

low temperature varnish. The change in magnetization of the sample was measured as

a changing capacitance of a parallel plate capacitor set-up between the movable can-

tilever and the fixed bottom plate. The base capacitance of 1.5 pF was compensated

by an analog capacitance bridge to decouple any electrical noise. The sample was

first characterized in an Oxford superconducting magnet up to 16 T and down to 3He

temperatures, and then the magnetization was investigated up to 30 T in a Bitter mag-
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net down to 0.3 K. Both cantilever torque magnetometry measurements are in good

agreement with susceptibility measurements performed by Umehara et al.[225, 229]

The quantum oscillations in magnetization, namely de Haas-van Alphen (dHvA) oscil-

lations, start from 3 T onwards and evolve in a rich and complex quantum oscillation

pattern. According to the Lifshitz-Kosevich formalism,[239] dHvA oscillations are pe-

riodic with respect to the inverse of the applied magnetic field (1/B); their amplitude

exponentially increases with reduction of 1/B and the frequency corresponds to the ex-

tremal cross-sectional area, namely the cyclotron orbit, of the Fermi surface (FS) in the

momentum space, perpendicular to the magnetic field, B. By tilting the angle between

the sample and the applied magnetic field, making use of a rotating stage allowing for

in situ rotation, and tracing the evolution of the frequencies as function of angle, the

full FS topography can be probed and mapped.

4.2.2 Computational

The electronic structure of LaIn3 was simulated in VASP[150, 151, 152] v5.4.4

using a 11 × 11 × 11 Γ-centered k-mesh, a plane-wave energy cutoff of 500 eV, and

the recommended PAW potentials[90, 154] for v5.4. The local density approximation

(LDA)[92, 93] functional was found to predict the extremal orbits in closest agreement

with experimental quantum oscillation data, consistent with the earlier findings of

Umehara and coworkers[225] (other functional choices tested: PBE,[94] LDA+U,[240]

and SCAN[241]). The structure was relaxed to an ionic energy step convergence of

10−6 eV, with a final lattice parameter a = 4.657 Å, in reasonable agreement with prior

experimental measurements of a ≈ 4.735 Å[242]. All calculations were converged

with energy cutoff criterion of 10−8 eV. For the calculations with spin-orbit coupling

(SOC), SOC corrections were activated for all steps after structural relaxation. Or-
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bital projections and crystal orbital Hamilton populations were computed in LOB-

STER.[33, 34, 35, 36] A 0.1 eV Gaussian smoothing was applied to the density of states

and crystal orbital Hamilton population curves. Spin orbit coupling was neglected in

LOBSTER calculations due to the limitations of that code.

Tight-binding models were constructed by post-processing in WANNIER90[91] us-

ing a spherical harmonic basis-set of p orbitals located on the In atomic sites with fitting

to the p-majority bands near EF . Both SOC and non-SOC tight binding models were

constructed. Models were reduced in PYTHTB[243] such that only hopping terms larger

than 10−3 eV were preserved and then re-symmetrized using WANNHR SYMM[244].

The reduced version of the tight-binding model was generated by limiting the full

model to hopping terms larger than 10−1 eV and hopping distances less than 7 Å. The

pxy reduced model in Fig. 4.4 is shown with further reduction to terms larger than

2×10−1 eV in order to visually highlight the Dirac crossings. Fermi surface interpo-

lation and surface state Green’s function calculations were performed in WANNIER-

TOOLS[166, 113]. Surface states are calculated for an In terminated surface with no

La atoms. Extremal orbit calculations were performed in SERENDIPITY,2 a new code

in development that leverages previous algorithmic developments by Rourke and Ju-

lian[245] as well as the open source python packages SPGLIB,[246] TRIMESH,[247] and

PLOTLY[248].

Previous experimental quantum oscillation data[225] were extracted using WEB-

PLOTDIGITIZER[249].

Crystal structures were visualized in VESTA[167].

2SERENDIPITY is in development. Interested parties can contact Samuel Teicher: smlte-
icher@gmail.com
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4.3 Results

4.3.1 Crystal and Electronic Structure of LaIn3

We begin by examining the orbital origins of the LaIn3 electronic structure. Fig.

4.2 (a) presents the density of states. In the electronically-relevant range −10 eV<

EF <4 eV, In s, In p, La d, and La f states all make significant contributions. Unlike

related rare earth family members such as CeIn3, the f band is far above the Fermi

level and can largely be neglected in discussing the electronic structure. Similarly, the

In s states are largely filled, forming a band from about −3 eV to −8 eV, and do not

contribute strongly near the Fermi level. In Fig. 4.2 (b), the crystal orbital Hamilton

population (COHP) is provided. COHP is a semi-quantitative evaluation of relative

bond strength based on wavefunction overlap that is negative for bonding and positive

for antibonding interactions. While In s/In p, In s/La d, In p/In p, and In p/La d,

bonding interactions all contribute significantly to the filled states and the bands just

above the Fermi level, we find that the electronic structure near the Fermi level is

largely driven by In p / In p and In p / La d bonding, consistent with the results of

previous studies.[250, 228] COHP results align with the expectation that the filled

states are largely negative stabilizing bonding interactions, while the higher energy

spectrum largely consists of positive antibonding states. The antibonding In s/In p

interaction near EF may play a mild destabilizing role, though no lone-pair driven

structural distortions are known or expected in these materials (similar antibonding

lone-pair interactions are quite important in other main-group cubic materials such as

SnTe[251] and perovskites[252]). We now focus in on the electronic structure closest

to the Fermi level.

Fig. 4.2 (c) provides a close-up of the main In p and La d bonding interactions near
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Figure 4.2: Orbital origins of LaIn3 electronic structure. (a) orbital-projected density
of states calculation. (b) crystal orbital Hamilton population, showing dominant in-
terorbital bonding interactions. (c) close up of COHP showing the main In p and La
d interactions near EF . (d) orbital-projected band structure. The relative projection
magnitude is represented by RGB color value. Dirac nodes are labeled D1, . . . , D5.
Dashed guidelines for the pz band dispersion are overlaid in orange.
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EF . In p orbitals can be separated into a basis with two symmetry-distinct sets. Indium

px and py orbitals point between neighboring La atoms on the faces of the cubic unit

cell (Fig. 4.1 (b)). Indium pz orbitals point towards the center of the unit cell, between

the neighboring In atoms (Fig. 4.1 (c)). Note that we use x, y, z here to refer to the

local symmetry at the In site rather than the crystal axes; e.g., the pz orbital points

along a different x, y, z direction depending on which In atom you examine. The COHP

curves in Fig. 4.2 (c) are broken down into separate contributions from In pxy, In pz,

and La d orbitals. The strongest bonding contributions near the Fermi level derive from

In pxy / La d and In pxy / In pxy interactions. Significant interaction with La d states

is unsurprising given the local orientation of the In pxy orbitals. The In pz states have

relatively little overlap with La d, forming a band with much wider energy dispersion

than the In pxy states. In pxy / In pz interactions also play a small but non-negligible

role.

In Fig. 4.2 (d), a band structure with In s, In pxy and In pz projections is provided,

offering further specificity. In s states form a series of bands (red) below the Fermi

level that reach a maximum energy of about −2 eV. In pxy orbitals (green) are the

main contributors in the region of interest within −2 eV< EF <2 eV, with one major

exception. A parabolic band of In pz states (blue) with wide dispersion runs down

along the Γ-R and X-R lines, crossing the pxy region, and reaching a minimum at the

R point with an energy close to −3 eV. This band is partially gapped by interaction with

the pxy states, and dashed orange guidelines are provided to mark the band path across

the gaps. Aside from the bands closest to R, In pxy states are the main contributor to

all bands at the Fermi level. A second plot comparing In p, La d and La f projections is

provided in the supplementary material.

The band dispersion also provides important information about potential properties

of the related compounds. Returning to the DOS, we see that the Fermi level in LaIn3
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lies just below a low density pseudogap region. By slightly increasing the electron

count, for example by doping along the La(In1−xSnx)3 series, one could likely reach a

semimetal regime. Examining the band structure, we find that the semimetal region of

the density of states corresponds to an energy region with many linear band crossings,

or Dirac nodes, just above EF . Relevant Dirac nodes are labeled D1, . . . , D5. Tuning the

Fermi level to a Dirac node can result in high mobility metals with interesting trans-

port properties. Dirac materials can also exhibit topological surface states; subsequent

sections will demonstrate that such surface states are present in LaIn3.

4.3.2 Fermi surface and comparison to experimental quantum os-

cillation frequencies

The simulated Fermi surface of LaIn3 from DFT is shown in Fig. 4.3 (a). The

3D isosurface can be divided into three distinct pockets. Pocket 1, Fig. 4.3 (b), is

comprised of an inner closed spheroidal region connected to an outer enclosing region

by thin offshoots along the cube diagonal (Γ-R line). Pocket 2, Fig. 4.3 (c), is an

octahedral lattice of thinner arms connecting wider sections at each of the cube faces

(X points). Pocket 3 encloses the cube corners (R points).

In order to understand how our simulated electronic structure compares to exper-

imental reality, we turn to de Haas-van Alphen quantum oscillation (QO) data, which

is an ultrasensitive probe of Fermi surface topography.

Previous work by Umehara and coworkers[225] demonstrated that DFT simulations

with the LDA functional generated a Fermi surface that recreated much of the quantum

oscillation frequency spectrum seen in experiment. The quantum oscillation frequency

is given by the simple Onsager relation[109]:
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Figure 4.3: LaIn3 Fermi surface and quantum oscillation frequencies. (a) the DFT
model of the Fermi surface consists of 3 distinct pockets, color-coded in yellow, red,
and green, respectively. Conventional labeling of high symmetry points (Γ,X,M ,R)
for the cubic Brillouin zone is provided in the inset. Pockets 1 and 2 are displayed
in (b,c), respectively. Calculated quantum oscillation frequencies, (d), show remark-
able agreement with experiment, though there are significant discrepancies in the
low frequency spectrum (f <1000 T) and there is no explanation for the [111] fre-
quency branches marked with †. (e) a ‘correlation corrected’ Fermi surface from a
tight-binding model with slightly lowered In px,y on-site energy. Pockets 1 and 2 have
connected together into a combined pocket, labeled ‘1/2’, and holes have opened up
in their joint isosurface, (f). (g) correlation adjustment improves the frequency fit and
explains the † frequency branch. While the LDA ∆xy model alone cannot explain the
lowest measured frequencies along [110] and [100], a similar ∆xy model built from
DFT calculations with the SCAN functional provides the r orbit.
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F =

(

~

2πe

)

A

where F is the QO frequency, in Tesla, e is the electron charge, and A is the area of an

‘extremal orbit’, a local extremum in the 2D cross-section of the 3D Fermi surface per-

pendicular to the applied magnetic field direction. In this way, QO measurements are

able to identify specific 2D orbit paths undertaken by electrons in k-space: experimen-

tally detected quantum oscillations are directly proportional to extremal areas enclosed

by Fermi surface pockets. The SERENDIPITY code automates extraction of extremal

orbits; identified orbits that overlap with the experimental signal are presented in Fig.

4.3 (d). Experimental data from the original work by Umehara, as well as new original

experimental data collected along the [110]-[100] path are displayed as scatter points.

Connected lines indicate calculated extremal orbits. A nice feature of SERENDIPITY is

the ability to order orbits by pocket of origin, and orbit lines are color-coded appropri-

ately. In general, our results align with the prior work of Umehara et al. with orbits a-k

identical to those identified in their prior work. Orbits m,n,o are newly identified here.

While the discovery of orbit o improves on the previous Umehara fit by explaining the

presence of the second-lowest frequency branch, the lowest frequency signal for [110]

and [100] field orientations is still unexplained. Comparing between the Umehara data

and our new signal, there is overlap in almost all locations, reconfirming the previous

experimental results and demonstrating that there is neglible variation of the quantum

oscillation signal between samples. Improved low-field signal demonstrates that the

lowest frequency branch is connected across the [100] field orientation, meaning that

this signal cannot arise purely from orbit j. While small orbits can be difficult to fit from

DFT due to rapid area change with Fermi level, the much larger ≈1000 T frequency

branch at [111], marked by †, suggests that the current Fermi surface model must be
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incomplete. Neither the model presented by Umehara et al. nor the initial DFT Fermi

surface model presented here provide any explanation for this signal. Full visualization

of relevant extremal orbit paths is provided in the supplementary material.

4.3.3 In p based tight-binding approach and correlation correction

Based on the orbital character assignments of Fig. 4.2, which demonstrated that

In p states contribute most to the electronic structure near the Fermi level, we might

wonder whether a simpler orbital-based electronic structure model is possible. Using

WANNIER90 we fit a tight-binding model composed of only In p orbitals to the near-

Fermi level electronic structure from DFT. The full model includes many smaller-energy

Hamiltonian terms in order to almost perfectly recreate the DFT bands. However,

reducing the model to only the most significant interactions (minimum energy 0.1 eV,

maximum hop distance 7Å), we can gain useful qualitative understanding of the LaIn3

electronic structure.

In Fig. 4.4 (a), we present a version of this reduced model in which interactions be-

tween pxy and pz orbitals have been switched off. Despite an upward energy shift, this

electronic structure has many similarities to the full LaIn3 band structure. To first order,

the band structure can be seen to result mainly from a pxy manifold at the Fermi level

that is crossed by a broad dispersion pz band only at R. This aligns with structural in-

tuition from Fig. 4.1: it is more favorable to fill the pxy states, which point between the

La sites, than to fill the pz states, which interact with neighboring In atoms. Most of the

Dirac band crossings previously presented in the full electronic structure, D2, . . . , D5,

derive from pxy interactions and can be reproduced in this pure pxy model (D1 results

from pxy-pz bonding and is not reproduced here).

Our results suggest that an In p based tight binding model can accurately describe
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Figure 4.4: Electronic structure of the LaIn3 In p tight-binding model. (a) reduced
tight binding models confirm the orbital origins of electronic structure. Removing
px,y and pz interactions, the near-Fermi level electronic structure and Dirac nodes in
LaIn3 can largely be described in terms of a px,y lattice with a large-dispersion pz
band crossing EF only at R. (b) full tight-binding model without spin-orbit coupling.
(c) final tight-binding model with spin-orbit coupling. All models include the on-site
correction ∆xy = −0.025 eV.
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the band structure, Fermi surface and pertinent electronic structure features (Dirac

nodes) in LaIn3. This simple parametrization also provides a clue as to how to improve

our electronic structure model. Ab initio models, particularly when using the local

density approximation, often over-delocalize charge density due to inexact treatment

of correlation effects. Delocalization error is generally much greater for d-orbitals than

p-orbitals. Assuming that correlation plays an important role in the current DFT error,

we would expect the DFT model to reproduce the pz Fermi pockets surface well, while

having errors in the pxy pockets due to the strong interaction of the pxy orbitals and La

d charge density. This is indeed the case, as can be seen when re-examining Figs. 4.3

(a)-(d). pz orbitals contribute most significantly to the 3rd pocket centered at the R

point and the predicted extremal orbit for this pocket (a) is in almost exact quantitative

agreement with the experimentally measured frequency band. The rest of Fermi surface

derives primarily from pxy states where we would expect some error.

Since we expect the La d orbitals to be over-delocalized, the simplest correlation

correction that can be performed on the tight-binding model is a reduction of the pxy

on-site energy since the interaction of the pxy and La d orbitals should be reduced in

the real material. We performed such an on-site energy correction, determining that

a value ∆xy = −0.025 eV generated a Fermi surface that addresses many of the dis-

crepancies between the pure DFT Fermi surface and experimental quantum oscillation

signal. The ‘correlation corrected’ Fermi surface is presented in Fig. 4.3 (e). As a

result of lowering the pxy energy, a gap forms that connects the first and second pock-

ets, generating a combined pocket, labeled “1/2.” Pocket 1/2 is visualized in Fig. 4.3

(f). Distinct from the previous DFT model, this combined pocket is pierced by several

small holes near the Γ-M line. The predicted extremal orbits are provided in Fig. 4.3

(g). Overall, there is some improvement in quantitative agreement of the h, n, o, and

j orbits. The gap along Γ-M removes the g orbit, leaving only the e [110] high fre-
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quency extremal orbit below a, which agrees better with the single frequency branch

seen in experiment. An explanation for the missing [111] orbits at † also falls naturally

out of this model: the p and q signals derive from subtle orbits entangling the new

holes in the pocket 1/2 isosurface, as detailed in the supporting material. While this

tight-binding model from DFT calculations with the LDA functional cannot explain the

lowest frequency signal for [100] field orientation, performing a similar tight-binding

model parametrization and correlation correction (∆xy = −0.025 eV) based on SCAN

functional calculations provides the r orbit, which may explain this signal. While the

LDA model offers an overall better fit, geometric differences between the two Fermi

surfaces are only slight. The r orbit in the SCAN calculations also derives from the new

holes in the pocket 1/2 isosurface, suggesting that almost all the discrepancy between

previous calculations and experiment may be explained purely by mild correlation er-

ror. The SCAN model quantum oscillation fit is provided in the supplement.

All further results were determined using our full correlation corrected tight-binding

model rather than pure DFT. In aid of further theoretical work, full and reduced 18-

term versions of our LDA tight-binding model are provided in the supporting material.

Overall, the final correlation-corrected band structure of Fig. 4.4 (b,c) is only subtly

different from the original DFT bands due to the minor correlation correction shift. The

quantum oscillation comparison suggests that the experimental Fermi level lies just

within the spin-orbit gap of the D3 node, as shown here, with important ramifications

for predicted topological surface states, discussed in the following.

4.3.4 Nodal lines, topological classification and surface states

We now examine the Dirac crossings in greater detail, initially excluding spin-orbit

effects from the discussion. In Fig. 4.5, we identify the 3D nodal regions for which
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Figure 4.5: Topological classification of LaIn3. LaIn3 hosts a wide variety of nodal
lines near the Fermi level, shown in (a,b) for an isosurface contour ∆band = 0.13 eV.
Nodes can be separated into two contributions, a main region of interconnected nodal
lines, centered at Γ (orange), and a low gap region near the R point at the corners of
the cube (purple). The topological invariant classification for relevant [100] surfaces
is relatively simple, depending only on nodal lines about the M and X points on the
kz = 0.0 and kz = 0.5 high-symmetry planes depicted in (c) and (d), respectively.
Integrating along any line that passes through these nodal lines gives a nontrivial
Berry phase γ = π. Paths that do not pass through these loops yield a trivial Berry
phase γ = 0, 2π. The integration paths are shown in 3D in (a) and from above in (b),
with nontrivial and trivial integrations in green and pink, respectively. The resulting
surface Brillouin classification is given in (e). We expect to find nontrivial drumhead
surface states in the non-trivial regions (green, diagonal hatch) corresponding to the
nodal loops with Z2 = 1.
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the band separation ∆band is small (for this TB model the gap of interest near EF is be-

tween bands 3 and 4). In Figs. 4.5 (a,b) this nodal isosurface, displaying intersections

between bands 3 and 4, is plotted in 3D and from above along the [100] direction. The

nodal isosurface consists of two distinct regions: a central connected array of nodal

lines (orange) and a low ∆band region near the R points at the corners of the cube

(purple). The latter is less relevant since the R band crossing region lies much lower in

energy (about −1 eV when examining the band structure of Fig. 4.2 (d)). The orange

nodal lines correspond to the Dirac nodes near the Fermi level. The nodal surface is

quite complex owing to the high symmetry and large number of mirror planes in this

cubic material. Orange nodal lines in Fig. 4.5 (a) can be identified on planes perpen-

dicular to all high symmetry directions ([100],[110],[111]). Any of these nodal lines

could potentially host topological surface states. In lieu of a full classification, we dis-

cuss the topological classification of the [100] surface, which is most relevant due to

the cubic habit of experimentally-grown LaIn3 crystals, and greatly simplifies the dis-

cussion. There are only two symmetry-distinct nodal lines lying in [100] planes, a loop

enclosing the M point on the kz = 0.0 plane (Fig. 4.5 (c)) and a loop enclosing the X

point on the kz = 0.5 plane (Fig. 4.5 (d)). Dirac nodes D2, D3 are part of the M nodal

loop and Dirac nodes D2, D5 part of the X loop.

Materials with mirror symmetry-protected nodal lines carry a Z2 invariant that can

be determined via a Wilson loop calculation integrating the Berry curvature over a

closed loop in k-space. The determined Berry phase, γ, is defined modulo 2π such that

values of 0, 2π indicate a topologically trivial band gap and a value of π indicates a

nontrivial band gap. Topological surface states are expected in nontrivial gaps. Due

to periodicity of the Brillouin zone, the Berry phase within these nodal loops can be

determined by integration from kz = −0.5 to 0.5 through any complete gaps in the

nodal surface. Such a Berry phase evaluation has previously been performed in other
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nodal line materials, including ZrSiTe[253]. Unlike ZrSiTe, the nodal surface here is

quite complex and the evaluation cannot be completed along high-symmetry lines in k

space. We have evaluated the Berry phase in each of the symmetry-distinct gaps though

the nodal surface (white spaces in Fig. 4.5 (b)). Integration lines can be seen in 3D

in Fig. 4.5 (a) and from above in Fig. 4.5 (b). We find non-trivial regions with γ = π

(green lines and squares) at the center of the Brillouin zone and near the corners. We

also find γ = π when integrating in a loop around either the X or M nodal lines, as

expected. These results for the [100] surface can be simply summarized in Fig. 4.5 (e):

both the X and M nodal lines result in regions with a nontrivial Z2 invariant (green,

diagonal hatch). While all of the symmetry-protected nodal lines in LaIn3 can host

surface states, these surface states can hybridize and gap out on surface projections

with an even number of overlapping nodal lines. On the [100] surface Brillouin zone,

every point is enclosed by at least one nodal loop, but only the regions in the X and

M loop projections, shown in Fig. 4.5 (e), feature an odd number of surface states and

are topologically protected.

The surface spectrum of LaIn3 is quite rich. Fig. 4.6 presents topological surface

states associated with the nodal loops. In Fig. 4.6 (a), the surface spectrum is presented

along a path intersecting the M nodal loop and the kz-integrated Berry phase along the

path is shown in Fig. 4.6 (b). A pair of bright surface states in Fig. 4.6 (a) near

the Z
′
point can be seen to coincide with the nontrivial Berry phase γ = π within the

M loop; these bands form a protected drumhead surface state interconnecting all the

Dirac nodes on the loop. Nodal loop surface states are also present at ∆
′
. Though

these surface bands are clearly visible in the current simulation, they result from the

projection of an even number of nodal loops and are not topologically protected. Fig.

4.6 (c) presents the calculation in the presence of spin-orbit coupling. While mirror-

protected drumhead surface states are not guaranteed to be robust to spin-orbit effects,
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Figure 4.6: Topological surface states in LaIn3. (a) presents the surface spectrum
along the Z

′
(kx, ky = −0.5,0.375) - ∆

′
(0.0,0.375) - Z

′
(0.5,0.375) path that inter-

sects the M nodal loop. Bright surface bands can be seen near Z
′
and ∆

′
. (b) provides

the topological invariant calculation with a nontrivial Berry phase γ = π within the
nodal loop. (c) demonstrates that the surface states are robust to the opening of
small band gaps associated with spin-orbit coupling. (d-f) show similar results for the
X-Γ-X line that intersects the X nodal loop. Insets of (a,d) show the k-paths with
respect to the topological invariant classification of Fig. 4.5 (e). The Berry phase cal-
culation in (e) is taken along a slightly offset adjacent path with ky += 0.02 to avoid
interecting the Dirac nodes.
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here the band structure change is relatively minor with only small band gapping effects.

The Fermi-level topological surface states can still be seen even after spin-orbit coupling

is incorporated. Fig. 4.6 (d-f) demonstrate similar results for a path intersecting the X

loop. The X loop surface states near Γ are shown to be robust to spin-orbit coupling

as well. Discussion of the full surface state spectrum and additional surface states is

offered in the supplement.

4.4 Discussion

We have demonstrated that the electronic structure of LaIn3 can be described using

only In p orbitals. This yields a tight-binding model in which the lower energy In px,y

manifold is partially filled and the In pz manifold is largely unoccupied. While the

electron valence in this intermetallic is not precise, the resulting electronic structure

aligns with intuition for La3+(In1−)3: the In px,y bands are approximately half-filled,

yielding a band structure with multiple Dirac nodes in close proximity to EF . This half-

filled px,y model is a close analog of the semimetal band structure of ZrSiS in which

Si2− valence yields filled Si pz and half-filled Si px,y manifolds.

We performed original quantum oscillation measurements reconfirming the prior

results of Umehara et al. and clarifying the low-frequency spectrum. Detailed compari-

son of the experimental oscillation frequencies and calculated extremal orbits suggests

that the Fermi surface is relatively well-understood with only näıve correlation correc-

tion necessary to account for the main discrepancies between ab initio simulation and

experiment. The good fitting achieved with the local density approximation hints that

the In p states in this compound may be relatively delocalized—again, potentially in

analog to bonding in the ZrSiS family metals.[121]

Using our tight-binding models we explored the electronic band topology and pre-
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dicted surface state spectrum of LaIn3, identifying symmetry-protected nodal lines and

drumhead surface states close to the Fermi level. Following from our analysis of the

Fermi surface extremal orbits, we find that previously unexplained frequency branches

can be explained by a small onsite energy adjustment (∆xy = −0.025 eV) that places

the Fermi level in the spin-orbit gap of the D3 Dirac node, generating holes in the Fermi

surface which result in new p and q orbits. This Fermi level placement guarantees that

the M drumhead surface states will be active at EF .

Nodal line surface states have been proposed to promote surface superconductiv-

ity[254] and idealized models suggest that nodal line electronic structure may pro-

mote low-temperature transitions to a number of intriguing correlated phases;[255]

although drumhead surface states may be unstable to the opening of an s-wave su-

perconducting gap, the experimental nature of this interaction is largely unknown and

experimentally unexamined.

Given established superconductivity and the rich spectrum of nodal line surface

states predicted here, which persist over a large energy range, the LaIn3 family may pro-

vide an exciting platform for further exploring the interaction between topological sur-

face states and superconductivity. Compounds in the doping series LaIn3−xSnx are read-

ily prepared as high quality single crystals via either flux or melting techniques[220]

and offer both high electronic mobility and experimentally-accessible superconducting

transitions. In addition to electronic doping, the stability of the compounds LaPb3 and

LaTl3 also present an opportunity for carefully tuning the effective spin-orbit coupling.
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4.5 Supplementary Material

4.5.1 SCAN TB model

SCAN calculations were performed in VASP using identical parameters to the LDA

model described in the text. The relaxed lattice parameter was 4.753 Å. Tight binding

model construction was performed using the same method, including the final onsite

energy adjustment ∆xy = −0.025 eV. Extremal orbits and calculated quantum oscilla-

tion frequencies extracted using the SCAN TB model are detailed in Fig. 4.8.

4.5.2 Symmetry and Irreducible Representations

Fig. 4.12 (a) provides the band structure of our final tight-binding model in the

absence of spin-orbit coupling (SOC). Bands are colored based on irreducible repre-

sentation (irrep) and the point group for each segment of the band path is given. By

examining the irreps of each pair of bands forming each Dirac band crossing, we can

gain understanding of the symmetries protecting each Dirac node. Two bands can cross

without interaction and form a Dirac node if and only if they belong to two separate

irreps. Symmetry operations differing between these irreps are the symmetries that

protect the node. We use the irrep numbering convention of Koster.[42] TB-model ir-

reps were calculated with IR2TB[31]. In the calculation without SOC all Dirac band

crossings consist of bands with differing irreps and are therefore symmetry-protected.

After SOC is included in (b), small band gaps form in the D2, . . . , D5 Dirac nodes. All of

these crossings lie along lines with C2v point group symmetry. There is only one spinor

irrep (#5) in this point group, meaning that all bands may interact in the presence

of SOC. The D1 node remains ungapped as its two bands derive from separate spinor

irreps.
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Further than demonstrating the symmetry protection of all five near-Fermi level

Dirac nodes in the absence of spin-orbit coupling and the protection of the D1 node

even with spin-orbit effects activated, we can also use the irreps to show that theM and

X nodal loops are protected by mirror symmetry; a necessary condition for the validity

of the topological invariant classification and nodal line surface state discussion of

Figures 4.5 and 4.6 in the chapter body. Using the irrep notation of Fig. 4.12 (a): D2 is

protected by the crossing of Z2 and Z4 irreps, which differ by the mirror operations IC ′
2

and IC ′′
2 , meaning that D2 is protected by two mirror operations. D3 (D5) arises from

the intersection of
∑

1
(S1) and

∑

3
(S3) which is protected by the same two mirrors.

Since all of the high-symmetry Dirac nodes on the M and X loops are protected by

mirror symmetry, we may conclude that these are both mirror-protected nodal loops.

This can be similarly shown by calculating along a low symmetry path in the point

group Cs across either loop, in which case a single mirror operation can be seen to

protect the band crossing.
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Figure 4.7: Additional LaIn3 orbital-projected bands. Here we, provide an addi-
tional orbital-projected band structure in complement to Fig. 4.2 in the chapter body.
The relative magnitude of orbital projections is represented by RGB color value. The
near-Fermi level electronic structure can be seen to derive from In p / La d contribu-
tions, with the La f states un-filled. The pocket around R derives from In pz states
with little La d contribution. Other regions of the band structure that derive mainly
from In px,y states, such as the region around M , have strong interaction with La d.
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Figure 4.8: LaIn3 SCAN TB model Fermi surface and predicted quantum oscillation
frequencies. Here, we provide a quantum oscillation comparison similar to that of Fig.
4.3 in the chapter body, but with a TB model derived from a SCAN rather than LDA
DFT calculation and similar onsite energy correction ∆xy = −0.025 eV. The SCAN
results are generally intermediary between the LDA DFT and the corrected LDA TB
model results, with slightly worse quantitative fitting of the h orbit and a weaker
version of the frequency splitoff that leads to the p and q orbits in the LDA TB model.
However, the SCAN TB model provides the r orbit, which appears to explain the lowest
frequency signal for [100]-oriented field. As marked with †, the SCAN model also
provides possible alternative explanations for the lowest [111] frequency; suggesting
that this signal may not actually derive from the j orbit.
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Figure 4.9: Visualization of LaIn3 extremal orbits. 2D extremal orbit paths associated
with the frequencies in Fig. 4.3 (e) of the chapter body are provided here for the high
symmetry field orientations ([100],[110],[111]). Orbit paths are plotted as gray lines
and explicit predicted frequencies are provided in Tesla.
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Figure 4.10: Visualization of the LaIn3 emergent extremal orbits extracted from
correlation corrected tight binding models. Orbit paths are plotted as gray lines. All
emergent orbits derive from the small holes interpenetrating the pocket 1/2 Fermi
surface. Compare to Fig. 4.3 (f) in the chapter body.
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Figure 4.11: LaIn3 TB model comparison. (a) comparison between LDA DFT and
our full TB model without correction (∆xy = 0). The band structures are virtually-i-
dentical near EF . (b) comparison between our full final TB model with correction
(∆xy = −0.025 eV) and the reduced version of the model described in the text. While
the reduced version of the model does not quantitatively recreate the band structure, it
achieves similar band structure and topology with only 18 unique Hamiltonian terms.
Spin orbit coupling is neglected for the calculations in this figure.
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Figure 4.12: LaIn3 TB model symmetry and irreps. This is a version of Fig. 4.4 in the
chapter body providing additional symmetry information for our full final tight-bind-
ing model. In (a) the point groups (C4v, C2v,etc.) are provided for each branch of the
non-SOC band structure and each band is colored based on its irreducible representa-
tion (irrep). Irreps contributing to the Dirac nodes, D1, . . . , D5 are explicitly labeled.
(b) presents the SOC band structure, in which several of the Dirac cones have been
gapped.
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Figure 4.13: Full LaIn3 surface state spectrum. Full [100] surface state spectrum
of LaIn3 calculated with the final version of the TB model (∆xy = −0.025 eV). (a)
surface states in the absence of spin-orbit coupling. The bulk band structures along
the corresponding Γ-X-M -Γ and X-M -R-X paths are provided as orange (solid) and
pink (dashed) lines for reference. (b) surface states in the presence of spin-orbit
coupling. LaIn3 hosts a rich variety of additional surface states not discussed in the
main chapter text.
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Figure 4.14: LaIn3 M -Γ-M surface spectrum. Surface state spectrum along the
M -Γ-M line (a) without and (c) with SOC. (b) provides the Berry phase evaluation
for the gap between bands 3 and 4 in the absence of SOC. Non trivial invariants γ = π
are found for the regions near M enclosed by the M nodal loop and near Γ enclosed
by the X nodal loop. After SOC is activated in (c), bulk gaps form near Γ and at the
D3 Dirac node. The X loop and M loop topological surface states (TSS) are explicitly
identified. The result of the quantum oscillation fitting and correlation adjustment is
that the Fermi level likely lies within the spin-orbit gap of the D3 node (this Fermi level
placement is what creates the Fermi surface holes that generate orbits p, q, and r),
which, in turn appears to guarantee that M loop surface states are active at the Fermi
level. In addition to the X and M loop surface states, other high-energy-dispersion
surface states can be seen. These states may also be relevant depending on the surface
reconstruction/potential realized in experiment. Since the Berry phase evaluation is
undefined at Dirac nodes, the Berry phase calculation has been performed along a
slightly shifted adjacent k-path with ky += 0.02 where no nodes are present.
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Chapter 5

Fermi surface mapping and the nature

of charge density wave order in the

kagome superconductor CsV3Sb5

1 The recently discovered family of AV3Sb5 (A: K, Rb Cs) kagome metals possess a

unique combination of nontrivial band topology, superconducting ground states, and

signatures of electron correlations manifest via competing charge density wave order.

Little is understood regarding the nature of the charge density wave (CDW) instability

inherent to these compounds and the potential correlation with the onset of a large

anomalous Hall response. To understand the impact of the CDW order on the elec-

tronic structure in these systems, we present quantum oscillation measurements on

single crystals of CsV3Sb5. Our data provide direct evidence that the CDW invokes a

substantial reconstruction of the Fermi surface pockets associated with the vanadium

orbitals and the kagome lattice framework. In conjunction with density functional

theory modeling, we are able to identify split oscillation frequencies originating from

reconstructed pockets built from vanadium orbitals and Dirac-like bands. Complemen-

tary diffraction measurements are further able to demonstrate that the CDW instability

1The contents of this chapter previously appeared in Ref. [126]: B. R. Ortiz, S. M. L. Teicher, L.
Kautzsch, P. M. Sarte, J. P. C. Ruff, R. Seshadri, and S. D. Wilson, Fermi surface mapping and the nature
of charge density wave order in the kagome superconductor CsV3Sb5, Phys. Rev. X 11, 041030. ©APS
publishing, 2021
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has a correlated phasing of distortions between neighboring V3Sb5 planes, and the av-

erage structure in the CDW state is proposed. These results provide critical insights into

the underlying CDW instability in AV3Sb5 kagome metals and support minimal models

of CDW order arising from within the vanadium-based kagome lattice.

5.1 Introduction

While kagome insulators are traditionally sought as potential hosts of quantum spin

liquid states and laboratories for highly frustrated magnetism [256, 257, 258, 259,

260], kagome metals are equally interesting due to their potential to host topologically

nontrivial electronic states interwoven with local electronic symmetry breaking. At a

single-orbital tight binding level, the kagome structural motif naturally gives rise to an

electronic structure with Dirac points and a flat band that together provide the potential

for an interplay between topologically nontrivial surface states and substantial electron

correlation effects. A wide array of instabilities have been predicted, ranging from bond

density wave order [261, 262], charge fractionalization [263, 264], spin liquid states

[265], charge density waves (CDW) [266] and superconductivity [261, 267].

The electron filling within the kagome framework controls the formation of a wide

variety of predicted electronic instabilities. For band fillings near 5/4 electrons per band

[261, 268, 269, 270, 271], a Van Hove singularity is formed at the Fermi level due to the

presence of saddle points along the zone edge. Excitations between these saddle points

can lead to CDW order, and, in some limits, unconventional superconductivity. The

recently discovered class of AV3Sb5 (A: K, Rb Cs) kagome metals [272] are potential

realizations of this physical mechanism with each member exhibiting thermodynamic

anomalies associated with CDW order [273, 274, 112, 275, 276, 277] followed by the

onset of superconductivity at lower temperatures [112, 275, 278]. While there are mul-
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tiple gaps identified with both evidence of s-wave pairing [279] and evidence of nodal

quasiparticles [280], the interplay between superconductivity and the CDW state can

in principle lead to unconventional behavior even in a fully gapped superconducting

state [281].

The CDW instability in AV3Sb5 compounds seemingly competes with superconduc-

tivity [282, 283] and presages the formation of a potentially unconventional supercon-

ducting ground state [275, 283]. However, the microscopic origin of the CDW remains

an open question. Concomitant to the onset of CDW order, an exceptionally large

anomalous Hall effect (AHE) appears [284, 285], despite the absence of detectable

local moments or magnetic correlations [286]. While the normal state electronic struc-

ture is a Z2 topological metal [275, 275] and topologically-protected surface states are

predicted close to the Fermi level [275], below the CDW transition recent scanning

tunneling microscopy (STM) data [273] and theoretical proposals [271] have sug-

gested the formation of a chiral CDW order parameter. This chiral CDW, endemic to

the kagome lattice, is proposed to break time reversal symmetry and generate a large

Berry curvature, potentially accounting for the AHE. To date, however, data directly

linking the onset of CDW order with reconstruction of vanadium orbitals associated

with the kagome lattice in AV3Sb5 is lacking. Similarly, the applicability of minimal,

single orbital tight binding kagome models in multiband AV3Sb5 compounds remains

an open question.

Specifically, STM and diffraction experiments have observed charge order with an

in-plane q = (0.5, 0.5) wave vector in KV3Sb5 [273] and CsV3Sb5 corresponding to 3Q

CDW order. A kagome “breathing” mode can give rise to candidate distortions such as

the “Star of David” (see Figure 5.1) and its inverse structure [287], and recent stud-

ies have shown strong electron-phonon coupling in KV3Sb5 promoting such a distortion

[288]. Native electronic instabilities promoting CDW order along this wave vector have
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Figure 5.1: CsV3Sb5 crystal structure and breathing mode distortions. CsV3Sb5 is
a layered, exfoliatable, kagome metal consisting of a structurally perfect lattice of
vanadium at room temperature. Upon cooling below T ∗ = 93K, CsV3Sb5 exhibits
charge density wave order. A concurrent structural distortion emerges as well, which
is suspected to be related to the kagome “breathing mode.” Upon distortion and
relaxation in both the positive and negative displacements, the “breathing mode” gives
rise to the “Star of David (SoD)” and “Tri-Hexagonal (TrH)” candidate structures.

long been predicted in Kagome models at select fillings near Van Hove singularities

[261, 268, 269, 270, 271], suggesting that a minimal model built around the kagome

planes of these materials may capture the essential physics governing their unconven-

tional electronic properties. Notably, additional features such as unidirectional charge

stripe order [274] also seemingly coexist with the 3Q CDW state, further connecting

the underlying interactions to stripe/nematic instabilities predicted within a kagome

network [271].

Here we investigate the origins of the 3Q CDW order in AV3Sb5 kagome compounds

via study of Shubnikov-De Haas (SdH) quantum oscillations in magnetotransport data

of CsV3Sb5, which has the most pronounced CDW instability within the family. By cor-

relating quantum oscillation data with DFT models of the breathing distortion of the

kagome lattice, we are able to observe the effect of the CDW on the electronic struc-
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ture. Specifically, we demonstrate that a series of low-frequency quantum oscillations

originate from CDW-reconstructed vanadium orbitals and exhibit transport consistent

with the Dirac-like features (high mobility, low cyclotron mass) of the kagome lat-

tice. The multiplicity and frequencies associated with these vanadium orbits are shown

to originate from a reconstructed Fermi surface with small pockets linked to folded,

vanadium-dominated bands. We further demonstrate that the CDW instability is three-

dimensional in nature with a resulting 2×2×4 superstructure. Synchrotron x-ray data

are ananlyzed to provide a model for the average superstructure. Together, our re-

sults provide direct evidence that the in-plane CDW is derived from vanadium orbitals

which comprise the kagome lattice in AV3Sb5 and validate recent efforts to map the

core interactions in these materials to minimal tight-binding models built from a two-

dimensional kagome network.

5.2 Methods

5.2.1 Synthesis

Single crystals of CsV3Sb5 were synthesized from Cs (liquid, Alfa 99.98%), V (pow-

der, Sigma 99.9%) and Sb (shot, Alfa 99.999%). As-received vanadium powder was

purified in-house to remove residual oxides. Due to extreme reactivity of elemental

Cs, all further preparation of CsV3Sb5 was performed in an argon glovebox with oxy-

gen and moisture levels <0.5 ppm. Single crystals of CsV3Sb5 were synthesized using

the self-flux method. The flux is a eutectic mixture of CsSb and Cs3Sb7[289] mixed

with VSb2. Elemental reagents were milled in a pre-seasoned tungsten carbide vial

to form a composition which is 50 at.% Cs0.4Sb0.6 eutectic and approximately 50 at.%

VSb2. Excess antimony can be added to the flux to improve volatility if needed. The
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fluxes were loaded into alumina crucibles and sealed within stainless steel jackets. The

samples were heated to 1000 at 250/hr and soaked there for 24 h. The samples were

subsequently cooled to 900 at 100/hr and then further to 500 at 2/hr. Once cooled, the

crystals are recovered mechanically. Crystals are hexagonal flakes with brilliant metal-

lic luster. Samples can range up to 1 cm in side length and up to 1 mm thick. Elemental

composition of the crystals was assessed using energy dispersive x-ray spectroscopy

(EDX) using a APREO C scanning electron microscope.

5.2.2 Electrical transport measurements

Electronic transport measurements were performed using a Quantum Design 14 T

Dynacool Physical Property Measurement System (PPMS). A Quantum Design rotator

option was used to collect angle-dependent and temperature-dependent data. Crystals

are exfoliated to remove any surface contaminants, and electrical contacts were made

in a standard 4-point geometry using gold wire and silver paint. Crystals were initially

mounted such that the c-axis was parallel to the field (flat plates mounted flush on

resistivity stage). An alternating current of 8 mA and 12.2 Hz was driven in the ab-

plane.

5.2.3 Electronic structure calculations

DFT simulations of the electronic structure of CsV3Sb5 unit cell were performed

in VASP v5.4.4 using identical parameters to several recently reported studies [275,

275, 290]. We employed the PBE functional [94] with D3 corrections [291], a 500 eV

plane wave energy cutoff, a Γ-centered 11×11×5 k-mesh, and the recommended PAW

pseudopotentials for v5.2. Spin orbit coupling was activated for all calculation steps

except for structural relaxation. All calculations were completed with an energy con-
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Figure 5.2: CsV3Sb5 low temperature XRD data. (a–d) 2-dimensional slices through
reciprocal space on half-integer Bragg planes at 15 K, highlighting superlattice peaks
in CsV3Sb5. (e–h) Line cuts through the 2D data, highlighting the periodicity of the su-
perlattice peaks. Blue data are 1D traces showing data collected at base temperature
(15 K). Red data shows the data collected at 130 K data, confirming that the superlat-
tice peaks emerge alongside the charge density wave order emerges T ∗ ∼ 94K. Our
data indicates that the superlattice in CsV3Sb5 is described by a wave vector of (0.5,
0.5, 0.25).

vergence cutoff of 10−6 eV or better. The unit cell was relaxed, as previously described

[275], with final a and c lattice parameters of 5.45 Å and 9.35 Å; in good agreement

with the room-temperature values determined by X-ray diffraction, 5.52 Å and 9.36 Å,

respectively.

WANNIER90 [91] was used to fit Wannier functions (Cs s, p; V s, p, d; Sb s, p;

with a frozen fitting window EF ± 2 eV) and interpolate unit cell Fermi surfaces on a

101 × 101 × 101 grid. Extremal orbits were determined using SERENDIPITY,2 a new

code that builds on the algorithms developed by Rourke and Julian[245] with addi-

tional symmetry and interactive visualization tools enabled by the python packages

SPGLIB,[246] TRIMESH,[247] and PLOTLY[248].

Supercell calculations were completed on a 2 × 2 × 1 supercell simulated using

2SERENDIPITY is in development. Interested parties can contact Samuel Teicher: steicher@ucsb.edu
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identical parameters and a 5 × 5 × 5 k-mesh that was distorted along the M+

1 P3 irre-

ducible representation in ISODISTORT.[292, 293] M+

1 P3 involves four distinct distor-

tion modes, including B3u and B2u V sublattice modes and Ea and A1a Sb2 (antimonene

layer) sublattice modes. Cs and Sb1 (kagome layer) atomic positions are unaffected.

Negative magnitudes of the B3u, B2u, and Ea modes recreate the “Star of David” (SoD)

while positive magnitudes recreate the inverse “Tri-Hexagonal” (TrH) structure. We ini-

tialized super cell structural relaxations with four different sets of mode magnitudes,

(B3u, B2u, Ea, A1a)=0.3 Å·{(+,+,+,+); (+,+,+,−); (−,−,−,+); (−,−,−,−)}, testing

both the SoD and TrH structures, while additionally trialing both positive and negative

magnitudes of the A1a mode, which corresponds to c-axial buckling of the antimonene

lattice.

Relaxation proceeded in three steps: volumetric optimization, followed by adjust-

ment of the ionic positions, and finally a free relaxation of the super cell lattice parame-

ters and ionic positions simultaneously. Ultimately, the two SoD configurations relaxed

to a similar structure, and the same was true for the two TrH structures. In the final

SoD structure we find a positive A1a mode, corresponding to Sb2 atoms moving further

from the smaller triangles and closer to the larger triangles of the SoD structure. In the

final TrH structure, we find that a negative A1a mode is favored, in which the Sb2 atoms

similarly move away from the smaller V-V triangle units. In each case, c-axial buckling

of the Sb2 layer is minuscule, 0.005c and 0.002c for SoD and TrH, respectively.

The SoD and TrH distorted super cells are energetically favored over the undis-

torted unit cell by 4.7 meV and 13.5 meV per formula unit, respectively, consistent with

recently reported simulations [287]. Super cell band unfolding employed a modified

version of VASPBANDUNFOLDING [294]. Unfolded Fermi surface slices in Fig. 5.8 were

calculated on a 51 × 51 BZ mesh. Cubic spline interpolation was used for smooth-

ing/upsampling prior to projecting onto the larger display range.
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Fermi levels for the electronic structure calculations in Fig. 5.4 and Fig. 5.8 were

determined based on prior experiment. Additional discussion is provided in the sup-

porting material [295]. Errors in extracting frequencies associated with extremal orbits

of the unfolded supercells were determined by graphically selecting orbit paths clearly

within a given orbit and those clearly outside and are a product of the pixel resolution

of the calculations. The top of the error bar is the outer bounding area, the bottom

the inner bounding area, and the average of these bounds was chosen as the nominal

value. Errors in determining the extremal orbits of the parent structure are small and

not shown (<10 T).

5.2.4 X-ray diffraction measurements

High dynamic range x-ray diffraction maps were collected at the QM2 beamline at

CHESS. The incident x-ray wavelength was 0.42755Å, selected using a double-bounce

diamond monochromator. Temperature was controlled by bathing the small single

crystal samples inside a stream of cold flowing helium gas. Diffraction was recorded

in transmission though the sample using a 6 megapixel photon-counting pixel-array

detector with a silicon sensor layer. Full 360 degree sample rotations, sliced into 0.1

degree frames, were indexed to the high-temperature crystal structure and transformed

to reciprocal space. Some elements of the data reduction employed the NeXpy software

package. Crystal structures were visualized in VESTA.[167]. Diffraction data were

analyzed within the APEX3 software package and data were corrected for absorption

and extinction effects. Refinement of the structure was performed using the integrated

SHELX software package.[296] Charge flipping simulations of diffraction data were

performed using the TOPAZ software package.[297, 298, 299]
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5.2.5 Second harmonic generation optical measurements

Second harmonic generation (SHG) measurements were performed using an ultra-

fast laser with a pulse duration of 40 fs and a repetition rate of 50 kHz. The laser

was tuned to a center wavelength of 800 nm and a sample fluence of 3 mJ/cm2. An

oblique incidence reflection geometry was employed with both incoming and outgoing

beams P-polarized. The reflected SHG at 400 nm was isolated with a spectral filter and

detected using a back-illuminated CMOS image sensor. Overall SHG intensities were

extracted by averaging over the scattering plane angle. A sample-in-vacuum optical

cryostat was used to cool the sample below the CDW phase transition temperature.

5.3 Results

5.3.1 Crystal Structure

The AV3Sb5 (A: K, Rb Cs) family of kagome metals are layered, exfoliable materials

consisting of V3Sb5 slabs intercalated by alkali metal cations. The vanadium sublattice

forms a perfect kagome lattice under ambient conditions (Figure 5.1). CsV3Sb5 is the

terminal endpoint of the alkali-metal series, shows the highest superconducting tran-

sition (Tc = 2.5K), and an onset of CDW order below T ∗ = 94K [275]. The CDW is

accompanied by a weak structural distortion manifest as a superlattice of Bragg scat-

tering in synchrotron x-ray diffraction data.

Early measurements within the L = 0 scattering plane resolved only q = (0.5, 0, 0)

and (0, 0.5, 0)-type superlattice reflections [275], which is seemingly at odds with re-

cent STM reports of 2×2 supercells associated with 3Q charge order. To address

this, an expanded exploration of superlattice peaks was conducted at finite L-values

with the results shown in Fig. 5.2. In this higher resolution data, a more com-
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plex, three-dimensional superlattice structure is observed that is best indexed by a

q = (0.5, 0.5, 0.25) wave vector. (0.5, 0.5)-type superlattice reflections are largely not

resolvable in the L = 0 plane, accounting for the initial failure to index them. The in-

plane component of the superlattice modulation agrees with the 3Q structure observed

in local probes. The superlattice peaks at (0.5, 0.5, 0.25)-type positions vanish above

the CDW ordering temperature and indicate a modulation of the in-plane distortion

along the c-axis (interplane phasing).

Considering first the in-plane distortions allowed on an idealized kagome lattice,

the kagome “breathing” mode often leads to lower energy structures, and this mode

matches preliminary conclusions drawn from STM and DFT studies of KV3Sb5 [273,

287, 288]. As shown in Figure 5.1, the structure can distort between two potential

candidates: (1) the SoD distortion and (2) the TrH distortion. The phasing along the

c-axis, which governs the modulation of the distortion motifs along the out-of-plane

direction are naively expected to be of a lower energy scale than the in-plane com-

ponents. To determine the nature of the three-dimensional superstructure that forms

below the CDW transition, the low-temperature (15 K) diffraction data was refined. Ap-

proximately 30000 reflections (∼4500 unique) were indexed within a hexagonal unit

cell with lattice parameters a = b = 11.05410(13)Å, c = 37.334(5)Å, and α = β = 90◦

γ = 120◦.

SHG data indicate that inversion symmetry is not broken below the ordering tran-

sition [295], and, as a result, data were initially analyzed via charge-flipping in the P 1̄

space group. This provided a baseline visualization for distortions below the transition,

and, absent any further constraints, already suggests an average cell with modulation

between TrH and SoD-type distortions along the c-axis. Further refinement was then

pursued within the space group P 3̄, assuming a minimal three-fold symmetry that con-

formed with the diffraction data as well as inversion symmetry demonstrated from the
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Figure 5.3: CsV3Sb5 low temperature XRD structure solution. Single-crystal diffrac-
tion data implies that CsV3Sb5 distorts into 2×2×4 supercell, where the kagome layers
exhibit both TrH- and SoD-like distortions. Our current model indexes the cell in the
P 3̄ space group. The SoD-like distortions are substantially weaker than the TrH-like
distortion, and two unique SoD layers are noted.

SHG data. While the data can potentially be indexed in a lower rotational symmetry

(e.g. centered orthorhombic), we could not find sufficient evidence within the current

data to perform the refinement lower than P 3̄. For the solution in P 3̄, a twinning

model was used with twins realized via a two-fold rotation along the (0, 0, 1) axis. We

qualitatively tested alternate hexagonal twinning models, and in all cases the refined

structure remains nearly unchanged.

Atomic positions and displacement parameters were refined in P 3̄ (R1 = 0.089,

GoF = 1.32) with the resulting refinement parameters provided in the supplemental

information [295]. The resulting P 3̄ structure is shown in Fig. 5.3. To highlight the

differences in bonding and V-V motifs, we have selected to draw V-V bond lengths

≤ 2.79Å. The middle panels demonstrate the different motifs with distortions in each

kagome plane highlighted. The top and bottom layers of the lattice assume an in-plane

TrH distortion while the intervening layers assume a weak SoD-like distortion. The
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right most panels of Figure 5.3 identify the distorted V-V bond distances. For graphical

simplicity, bonds within 0.0025Å of their mean value were grouped and averaged. Full

bonding information is available in the CIF file.[295] The TrH-like layers feature the

most distinct distortion, which manifests the largest deviation in bond lengths from

the parent structure. The two unique SoD-like layers are similar, though the central

layer exhibits slightly weaker V-V bond distortions. We emphasize here that this is

a depiction of the average structure produced by modeling the x-ray diffraction data.

More complex twinning effects or stacking disorder within the 4 layer unit cell can

influence the appearance of the average structure.

5.3.2 Electronic Structure

As the interlayer interactions are expected to be weak in CsV3Sb5, we neglect the

impact of the c-axis component of the superlattice on the electronic structure and focus

on the impact of the in-plane distortion modes. This was verified by comparing the

calculated band structures of the nominal 2× 2× 1 cell with the 2× 2× 4 cell proposed

by SCXRD [295]. Candidate structures (M+

1 P3 irrep.) matching the pure TrH and SoD

distortions were selected for DFT relaxation and band structure calculations. Our DFT

studies find that both the SoD and TrH distortions are slightly favored over the undis-

torted structure; by 4.7 meV/f.u and 13.5 meV/f.u, respectively. DFT-relaxed structures

are shown alongside the experimental, undistorted crystal structure in Figure 5.1.

Despite the low stabilization energy of the distorted structures relative to the par-

ent structure, the predicted vanadium lattice distortions are significant. The V-V bond

lengths are all equally 2.72Å in the parent structure, and transform to 3 distinct

lengths: 2.65Å 2.75Å and 2.84Å for the SoD distortion, and 2.58Å 2.68Å and 2.82Å

for the TrH distortion. The experimentally refined structure shows slightly weaker
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Figure 5.4: CsV3Sb5 band structure unfolding. (a) Unfolded electronic structure of
the “Star of David (SoD)” and “Tri-Hexagonal (TrH)” distortions in CsV3Sb5 with the
undistorted electronic structure superimposed for comparison (black). Largest per-
turbation to the structure appears near the Dirac-like bands near M. (b) Close-up of
the changes near the M-point, highlighting the new bands that appear as a result of
the CDW and the associated structural distortion.

distortions and corresponding lengths of 2.74Å 2.77Å and 2.79Å for SoD layers and

2.62Å 2.72Å and 2.86Å for the TrH layers. Concurrently, the Sb graphitic sublattice is

fragmented into individual hexagons and also hosts a slight buckling in the c-direction

for both distorted structure types.

Figure 5.4 shows the effect of the two superlattice types (SoD and TrH) on the ab

initio electronic structure of CsV3Sb5. The resulting band diagrams were unfolded for

comparison to the undistorted electronic structure shown in previous works [272, 275].

The heat map shows the relative projections of the electronic states after the unfolding,

and the black bands are the undistorted structure of CsV3Sb5. In the low-temperature

152



Fermi surface mapping of kagome superconductor CsV3Sb5 Chapter 5

distorted state, the electronic structure is largely unperturbed, particularly the central

band about Γ which derives from the Sb p-orbitals. However, the bands near the M-

point, which are the relevant Dirac-like bands associated with the vanadium d-orbitals,

are altered significantly.

Figure 5.4(b) shows expanded views of the SoD and TrH electronic structures in

the vicinity of the M -points. An orbital decomposed band diagram (“orbital bands”)

further identifies these states as originating primarily from vanadium orbitals [295].

The emergence of the CDW and the resulting superlattice therefore has a clear effect

on the electronic structure near EF for the vanadium orbitals comprising the Dirac-like

crossings. This effect has a significant impact on the Fermi surface and is expected to

impact transport sensitive to topographical changes at EF. Experimental detection of

these effects are discussed in the next section.

5.3.3 Quantum Oscillation Measurements

A effective bulk probe of the low energy band structure is the measurement of

quantum oscillations in high-field electron transport measurements. Crystals of the

AV3Sb5 kagome metals are high mobility metals with low residual resistivity (∼ 0.1 µΩ-

cm) values [272, 275, 284], rendering quantum oscillation measurements an appealing

probe for exploring the low temperature electronic structure.

Figure 5.5 presents a series of temperature-dependent quantum oscillation mea-

surements on stoichiometric crystals of CsV3Sb5 with RRR ≈ 80. The crystals were

mounted with the c-axis parallel to the magnetic field while current was driven within

the ab-plane. The normal “background” magnetoresistance (MR) was modeled us-

ing a power function ρ0 ≈ αHβ + γ fit over the range from 4 T to 14 T. The os-

cillatory component of the MR was then isolated by subtracting the background MR
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Figure 5.5: Overview of CsV3Sb5 quantum oscillations and temperature dependence.
(a) Oscillatory component of the magnetoresistance extracted from the tempera-
ture-dependent SdH data collected on single crystals of CsV3Sb5 mounted with the
c-axis parallel to the magnetic field (0. (b) A high-resolution scan at 1.8 K shows
significant contributions from high-frequency modes, particularly at the peaks and
troughs of the general oscillatory behavior. (c) Magnified view of the high-frequency
features, providing visual confirmation for multiple high-frequency modes. (d,e)
Fourier transformation of the quantum oscillation data, showing the low- and high-
-frequency components of the power spectrum. The 9 unique frequencies have been
assigned greek letters. (f) The magnitude of the Fourier coefficients is used in conjunc-
tion with the Lifshitz-Kosevich (LK) formula to extract the cyclotron “effective mass.”
All low-frequency modes show very low effective masses, consistent with transport
originating from the Dirac-like crossings at M.
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Figure 5.6: Angular dependence of CsV3Sb5 quantum oscillations. (a) Raw electronic
resistivity as a function as field and angle, where the angle is defined as between
the c-axis and the magnetic field. Oscillations are clearly visible >2 T. The oscilla-
tions appear dampened with angle, vanishing for θ >60 (b) Fourier transform of
angle-resolved SdH data, showing primary low-frequency contributions to the power
spectrum. The high-frequency contributions are suppressed rapidly by rotation. (c)
The most prominent frequencies (β, δ) are shown as a function of rotation angle –
dashed lines serve as a guide to the eye. The frequencies were estimated from (b) us-
ing Gaussian functions to approximate both the broadening and shortening of peaks.
These frequencies exhibit a delayed onset of the angular dependence, consistent with
Dirac-like pockets.

∆ρ(H) = ρ(H)− ρ0(H). Figure 5.5(a) shows the oscillatory component of the magne-

toresistance as a function of temperature and field, and oscillations are seen to persist

up to 25K. The oscillation pattern is relatively complex, with multiple harmonics visible

by inspection.

Quantum oscillation data collected at 1.8 K is isolated in Figure 5.5(b), where mul-

tiple frequency components have been noted by Greek letters. At higher fields, we

further highlight several regions that show contributions from additional, higher fre-

quency oscillations in Figure 5.5(c). Due to the presence of multiple closely spaced

frequencies (discussed in the next paragraph), we have grouped similar frequency com-

ponents together in this initial inspection of the subtracted data. All frequencies persist

between different measurements and different crystals.

Turning first to the low frequency spectrum, Figure 5.5(d) shows the Fourier trans-

form of the data at multiple temperatures with H ≤ 250T. Four well-defined frequen-
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cies appear (α, β, γ, δ). At higher frequencies with 400 < H < 2000T, the Fourier trans-

form in Figure 5.5(e) shows an additional five well-defined frequencies (ǫ, κ, λ, µ, η).

The peak designated ǫ technically appears as two sharp peaks; however, this effect is

likely extrinsic, and we currently consider the ǫ peak as the average of these two peaks.

While the modes above 250 T vanish quickly with increasing temperature above 2 K,

the low frequency modes remain well-defined up to 25 K. The temperature dependence

of the Fourier coefficients of the α, β, γ and δ orbits are shown in Figure 5.5(f). The cy-

clotron “effective mass” (m∗
eff) can be extracted using the approximate Lifshitz-Kosevich

(LK) form ai(T ) ≈ X/(B sinhX/B), where X = αm∗
effT . Here, B is the magnetic flux

density and is typically selected as the mean field within the FFT window. The param-

eter α is a constant defined as 14.69 T/K. The resulting m∗
eff values are low for these

low frequency orbits—nearly 1/10 of the free electron mass—consistent with transport

originating from the Dirac modes expected near the M -point.

Whereas the temperature-dependence of the quantum oscillations provides infor-

mation regarding the scattering, lifetime, and effective mass of the carriers, the angular-

dependence can provide information regarding the topography of the Fermi surface.

Figure 5.6(a) presents a series of angle-dependent quantum oscillation measurements

collected at 1.8 K where θ = 0◦ denotes the c-axis parallel to the H-field. The Fourier

transforms of the data in Figure 5.6(a) are shown in Figure 5.6(b), and the frequencies

of the δ and β orbits are plotted as a function of angle in Figure 5.6(c). The α and γ

orbits shift and quickly convolve into neighboring frequencies with increasing angle,

precluding their analysis at finite θ.

Conceptually, the orbits that generate the oscillations can be imagined as slices

through the Fermi surface at different approach angles. ‘Extremal’ cross-sections with

the largest and smallest cross-sectional area will generate distinct oscillation frequen-

cies. For example, a perfectly spherical Fermi pocket exhibits no angular dependence
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and only one frequency from the circular cross-section. A strongly anisotropic pocket

(e.g. those from 2D Dirac cones) would show a strong dependence with angle, as

oblique slices through a cylinder become progressively larger as the angle increases.

The sharp upturns seen above 40◦ in the δ and γ orbits are consistent with orbits

derived from strongly anisotropic pockets, and—as we will demonstrate in the next

section—are best ascribed to electrons within Dirac-like features associated with the

vanadium kagome lattice.

5.3.4 Fermi Surface Topography and Frequency Correlation

The transport data shown in Figures 5.5 and 5.6 reveal a complex superposition of

quantum oscillations originating from multiple portions of the Fermi surface. In order

to identify how the CDW and the associated crystallographic distortions perturb the

Fermi surface, the oscillation frequencies (i.e. enclosed Fermi surface pockets) seen

experimentally must be correlated to the DFT-calculated Fermi surfaces. To do so, we

first examine the undistorted Fermi surface in the context of the possible extremal

orbits.

To determine the orbits accurately, the Fermi energy needs to be well-defined. It is

worth taking a moment to review the spread of EF’s reported in the current literature,

as the Dirac-like nature of the bands near EF renders rapid changes in the sizes of

electron pockets with relatively minor shifts in Fermi energy. Initial DFT studies [272,

275, 275, 273, 284] found Fermi levels slightly below those determined experimentally

by ARPES [265, 275] and STM measurements [273, 274]. For simplicity, we will refer

to these earlier results as EF,lit and EF,exp respectively. Recent DFT studies have since

provided self-consistent results closer to experimental values [287]; we refer to this

value as EF,DFT, which agree with the self-consistent DFT calculations presented in this
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Figure 5.7: Fermi surface of undistorted CsV3Sb5. (a) The Fermi surface for undis-
torted CsV3Sb5 calculated with EF = EF,exp shows a variety of potential orbits. Orbits
calculated by the SERENDIPITY python package are shown highlighted in grey. (b,c)
For clarity, isoenergy contours at kz = 0 and kz = 0.5 for the EF = EF,exp surface
are shown with all unique extremal orbits marked. Several high- and low-frequency
orbits can be identified. The Fermi surface pocket of origin is indicated through the
orbit color, which will be used for comparison throughout our discussion. While there
are clearly multiple frequencies in the predicted spectrum, note that there is only 1
symmetry unique (39 T) low frequency-mode, which seems at odds with our exper-
imental observations. Further, for frequencies 400 < f < 2000T, there are only 4
predicted modes, as opposed to the 5 experimentally observed components.

work.

Figure 5.7 shows the calculated Fermi surface using the undistorted CsV3Sb5 struc-

ture where EF = EF,exp. Despite already motivating that the underlying electronic

structure is perturbed by the influence of the CDW, it is nevertheless instructive to first

understand the undistorted Fermi surface. The orbits identified by SERENDIPITY are

shown in Figure 5.7(a) in grey. 2D slices of the Fermi surface at kz = 0 and kz = 0.5 are

provided for a more convenient comparison, since all of the extremal orbits at EF,exp

occur on these two high-symmetry planes. The Fermi surface maps reveal a variety of

possible extremal orbits, confirming that the quantum oscillations in CsV3Sb5 should

contain multiple frequencies, though the 9329 T and 12846 T frequencies are signifi-

cantly above the experimental range of detection in 5.5(d,e) and Figure 5.6(b).

First considering the measurable high frequencies (250 T < f < 2000 T), we find

only four extremal orbits (B-I, 699 T; A-I, 1123 T; A-II, 1831 T; and C-II, 1967 T) to
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match to five measured values (η ≈ 580T, κ ≈ 860T, λ ≈ 1370T, µ ≈ 1700T, ν ≈

1930T). At lower frequencies, the agreement is much worse: only one calculated low

frequency orbit (C-I, 39 T) is found to compare with four low frequency oscillations

observed in experiments (α ≈ 11T, β ≈ 28T, γ ≈ 74T, and δ ≈ 90T). A table of the

calculated (DFT) frequencies at EF = EF,exp, along with the associated cyclotron masses

mcyc has been included in the supplementary supporting material (SFig. 3).[295]

Given the significant CDW band reconstruction presented in Fig. 5.4, a low-temperature

Fermi surface modification in CsV3Sb5 is expected. Figure 5.8 displays unfolded Fermi

surface slices for pure SoD and TrH 2 × 2 × 1 supercells at EF,exp, demonstrating this

reconstruction. While the central Sb p-orbits are largely unaffected by the CDW, V

d-bands gap and change the Fermi surface. On the kz = 0.0 plane, the single, large

B-II orbit reconstructs into small orbits in both structures, generating triangular orbits

around the K points at the corners of the Brillouin zone. On the kz = 0.5 plane, the A-II

central pocket and the smaller B-I orbit around K are largely unaffected by the CDW;

however, the larger C-II orbit (dashed line) is strongly affected. In the SoD structure,

this orbit is completely gapped out at EF,exp, while in the TrH structure, the C-II orbit

persists.

Supporting these models, prior ARPES results show the A-I and A-II orbits as well

as the B-I orbit in KV3Sb5 and CsV3Sb5 both above and below the CDW transition

[275, 273]. STM results at lower temperature also show the preservation of the A-I

and A-II orbits and are consistent with at least one triangular orbit at the K-points

[274]. Therefore, with regard to the preservation of the A-I, A-II, and B-I orbits, CDW

calculations in both SoD and TrH structures appear consistent with experimental results

to-date. STM data also validate the reconstruction of the B-II orbit captured within the

DFT models; however our models also predict numerous other changes in the low

frequency (small orbit) regime.
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Figure 5.8: Unfolded Fermi surfaces of CsV3Sb5 in the breathing mode phases. (a)
Fermi surfaces for the SoD and TrH distortions in CsV3Sb5 generated from the un-
folded supercell band structures. Undistorted Fermi surface (black lines) contours are
shown for comparison. A significant reconstruction of the V d states occurs. Most
high-frequency modes are preserved, though the C-II orbit (dashed) is gapped in the
SoD structure. (b) Schematic description of Fermi surface reconstruction. Grey orbits
are well above measurable frequencies. Band reconstruction in the TrH supercell in-
troduces one additional triangular orbit around the M -point while preserving higher
frequency native V d and Sb p orbits. Notably, the distortion also introduces 3 smaller,
Dirac-like orbits (purple) consistent with our measurements.
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Investigating the band reconstruction in the distorted state further, the data shown

in Figure 5.8(a) clearly show additional features. Figure 5.8(b) provides a simpli-

fied, pictorial representation of the Fermi surface and closed orbits in the undistorted

and TrH structures to aide discussion. All possible orbits that exist in the undistorted

structure 5.8(a) are depicted at EF,exp. Orbits which are too large to be experimentally

observed with our current data are shown in grey. The remaining orbits are color-coded

consistent with the pocket designations shown previously in Figure 5.7. For this qual-

itative comparison, we focus on the orbits within the TrH structure for two reasons;

1) the additional modes are less obvious in the 2D data for the TrH (but no less rele-

vant), and 2) as we will show, the TrH structure produces one additional frequency in

the “mid-frequency” regime which makes the presence of layers with this configuration

distinguishable.

Focusing on comparison of the high-frequency orbits, we see that there are a total

of 4 experimentally accessible orbits at EF,exp in the undistorted structure. Upon intro-

ducing the TrH distortion, several key changes occur. In the kz = 0 plane, the distortion

generates 3 distinct vanadium d-orbits at EF,exp by shifting and gapping bands around

the M and K points near the corners and sides of the zone. Notably, band reconstruc-

tion about the M point forms a new medium-frequency triangular orbit at EF,exp. The

kz = 0.5 plane, in contrast, is largely preserved in the new configuration, with the

exception of the addition of one Dirac-like orbit at the L point.

Thus, in this high frequency regime, the TrH distortion has several effects: 1) the

generation of 3 additional Dirac-like modes, 2) the preservation of high frequency

orbits primarily comprised of Sb-states, and 3) the introduction of a new triangular

orbit from the band reconstruction. It is worth noting that other, smaller Dirac-like

orbits are likely present, but the resolution of the present supercell calculation limits

our search to orbits >30 T.

161



Fermi surface mapping of kagome superconductor CsV3Sb5 Chapter 5

Figure 5.9 summarizes all the numerical data characterizing orbits in the undis-

torted and distorted SoD and TrH Fermi surfaces and overlays these with the experi-

mentally observed quantum oscillations. An exhaustive search was performed for all

extremal orbits within a range of EF spanning from above and below the Fermi lev-

els reported throughout the literature thus far (EF,lit–EF,exp–EF,DFT). Orbits are again

colored to remain consistent with their pocket designations in previous figures. For

completeness, we also show orbits up to 15000 T, though these orbits are not resolv-

able in the current experiments. The experimentally observed frequencies are overlaid

as horizontal grey bars.

First examining comparisons of the models in the high-frequency regime (200 < f <

3000T), there are a total of four possible (symmetry unique) orbits at EF,exp. These are

the same four shown in the schematic representation. There is one orbit (B-III) which

appears at slightly lower EF, though it is gapped by EF,exp. Comparison at EF = EF,exp,

shows that, while precise quantitative agreement between all the frequencies varies

between orbits, TrH layers are the only qualitative match to 5 frequencies in this regime.

In contrast, due to the loss of the C-II orbit, the SoD distortion only recovers 4 of the 5

modes. More detailed comparisons for EF shifted away from EF,exp will be discussed in

the Discussion section.

Next, examining the low-frequency (f < 200T) regime, the data show at least 4

well-defined frequencies about EF,exp. However, at EF,exp there is only 1 orbit in the

undistorted structure. This orbit (C-I) is predominantly comprised of vanadium d-

orbitals associated with the Dirac-like crossings along the Γ-K line. However, as shown

throughout this manuscript, substantial reconstruction is expected about the M point.

Characterization of the well-defined, closed orbits in the supercell models is shown to

the right of the low-frequency (undistorted) structure panel. There are 4 orbits in the

SoD model, and 3 in the TrH model. However, it is important to note that our unfolded
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Figure 5.9: Numerical comparison of predicted and measured CsV3Sb5 quantum os-
cillation frequencies. Frequencies extracted as a function of Fermi level in undistorted
CsV3Sb5 allow us to directly compare the experimental SdH data (grey bars) with
the DFT models. The undistorted oscillation frequencies are shown as a function of
Fermi level (left). Colored frequencies have been grouped by the pocket and orbit of
origin. A conservative numerical estimate for the supercell orbits for the SoD and TrH
structures are shown (left) at EF = EF,exp. While 5 mid-frequency orbits are indeed
expected in the range EF ± 0.1 eV, no singular choice of EF produces complete agree-
ment with experiment. However, the TrH distortion introduces a new high-frequency
V d orbit, similar to B-III, which provides a consistent hypothesis. The DFT resolution
limit (pink shaded) indicates the frequency range below which we cannot accurately
resolve closed orbits.
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supercell calculations are unable to resolve orbits with frequencies < 30T.

5.4 Discussion

While precise numerical agreement between quantum oscillation frequencies and

DFT-derived oscillation frequencies at EF,exp is lacking in all single layer structures mod-

eled, the presence of the TrH structure at EF,exp within the unit cell is the only means

of capturing the multiplicity of orbits within the experimentally-accessible frequency

windows. This is confirmed within x-ray diffraction data which identify TrH distorted

planes within the structure; however, the modulation between TrH and SoD distorted

planes along the c-axis likely renders a more complex convolution of the orbits calcu-

lated within single layer models. Further work computationally modeling the much

larger 2 × 2 × 4 supercell with full spin-orbit coupling is required to definitely assess

the impact of this modulated supercell and generate a more quantitative comparison

to the experimentally observed orbital frequencies.

Irrespective of the out-of-plane modulation, when combined with DFT models, our

quantum oscillation data demonstrate that the reconstructed electronic states near the

Fermi level are intimately tied to the vanadium d-orbitals. This is particularly true for

the M points, which are relevant for their contributions to the topologically protected

surface states. Specifically, the observation of multiple low frequency orbits provides

direct evidence of a CDW-derived reconstruction of vanadium bands endemic to the

underlying Kagome lattice in CsV3Sb5. This finding agrees with recent ARPES results

which identify gapping around the states at the M-points [300].

When matching ARPES or other Fermi-surface sensitive probes, it is worthwhile to

consider the impact of choosing alternative Fermi levels in the single-layer DFT models

(i.e. away from EF,exp), in the comparison between models and the data. In the low
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frequency regime for the undistorted structure, multiple orbits appear when moving

both above and below EF,exp, mimicking the multiple modes found in the experiment;

however, this scenario can be precluded with the following arguments: (1) For the

case where EF lies below EF,exp—in the regime where multiple low frequency orbits

appear—the multiplicity of the high-frequency modes does not match the data, as the

C-II mode is absent. (2) For the case where EF lies above EF,exp, the C-II and B-I orbits

are quickly gapped out in the distorted structures, leaving no explanation for the five

mid-frequency oscillations.

Superlattice reflections with a propagation wave vector q = (0.5, 0.5, 0.25) in x-ray

scattering data indicating a 2×2×4 superstructure with a correlation length match-

ing the native crystallinity of the sample. Primary Bragg reflections in the undistorted

state are anisotropic due to c-axis broadening, and the superlattice reflections show

the same degree of anisotropy. This indicates a minimum correlation length of ≈ 200Å

for the out-of-plane superlattice modulation, which is born from the poorer interplane

crystallinity. While the in-plane wave vector (h, k) = (0.5, 0.5) matches the 3Q struc-

ture observed in STM, the out-of-plane component of q implies a four unit cell phasing

along the c-axis. The average structure refined in P 3̄ suggests a modulation of distor-

tion types along the c-axis. While there are a number of possible stacking sequences

of SoD and TrH structures, the solution presented here almost falls naturally out of

charge flipping in P 1̄ and is further sharpened by refining the structure within P 3̄.

Future work resolving the presence of orthorhombic twins in the bulk is necessary to

justify pursing lower symmetry structures, or more complex combinations of motifs

(e.g. phased offsets between layers).

The 2 × 2 × 4 unit cell resolved in CsV3Sb5 seemingly contrasts the 2 × 2 × 2 cell

identified in KV3Sb5 [273]. Future diffraction studies will be required to fully explore

this apparent difference; however one potential reason is the poorer c-axis crystallinity
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of the KV3Sb5 crystal explored in the earlier study. This broadening along L can poten-

tially mask qL = 0.25-type reflections or the enhanced disorder can modify the struc-

tural ground state. While this paper was in review, another manuscript appeared by

Li et al. [301] instead reporting a 2×2×2 superstructure in CsV3Sb5. We note here

that our data are in agreement in the momentum space regions reported in that work.

In these regions the qL = 0.25-type superlattice peaks are weak and below our exper-

imental resolution. Larger surveys of reciprocal space reveal are required to map the

1/4-type c-axis superlattice reflections. Disorder within a crystal can also disrupt the

longer wavelength stacking, and random stacking faults are unable to create a smaller

q periodicity.

5.5 Conclusion

Combined DFT modeling, high-resolution x-ray scattering, and quantum oscillation

measurements demonstrate that the CDW state in CsV3Sb5 derives from the recon-

struction of the kagome-plane vanadium orbitals with an accompanying out-of-plane

modulation of the distorted structure. The in-plane component of the resulting 2×2×4

superstructure is best modeled using the kagome “breathing mode”, with the SoD and

TrH patterns emerging as energetically favorable structures. X-ray diffraction data are

best fit via a model of modulated SoD and TrH distortions along the c-axis of the av-

erage structure. Quantum oscillation measurements provide a bulk probe of the elec-

tronic structure that demonstrates the CDW’s reconstruction of the Fermi surface. They

show the dominant role of vanadium orbitals within the kagome planes in CsV3Sb5 in

the CDW, and support theoretical approaches drawn from minimal models focused on

the kagome substructure in AV3Sb5 superconductors.
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Chapter 6

Electronic structure of topological

kagome metals YV6Sn6 and GdV6Sn6

1The synthesis and electronic structure characterization of vanadium-based kagome

metals YV6Sn6 and GdV6Sn6 are presented. X-ray diffraction reveals an ideal kagome

network of V-ions coordinated by Sn and separated by triangular lattice planes of rare-

earth ions. Density functional theory calculations are presented modeling the band

structures of both nonmagnetic YV6Sn6 and magnetic GdV6Sn6, which can be classified

as Z2 topological metals in the paramagnetic state. These compounds present an inter-

esting platform for controlling the interplay between magnetic order associated with

the R-site sublattice and nontrivial band topology associated with the V-based kagome

network. Our results invite future exploration of other RV6Sn6 (R=rare earth) variants

where this interplay can be tuned via R-site substitution.

1The contents of this chapter previously appeared in Ref. [127]: G. Pokharel, S. M. L. Teicher, B.
R. Ortiz, P. M. Sarte, G. Wu, S. Peng, J. He, R. Seshadri, and S. D. Wilson, Electronic structure of
topological kagome metals YV6Sn6 and GdV6Sn6, Phys. Rev. B 104, 235139. ©APS publishing, 2021,
reprinted with permission. The text has been abridged and lightly edited to emphasize the portion of the
text—electronic structure calculations—contributed by the dissertation author. The full article includes
additional experimental characterization, including transport and magnetization measurements, which
are omitted here.
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6.1 Introduction

The structural motif of a kagome net of metal ions gives rise to both Dirac points in

the band structure as well as destructive interference-derived flat band effects. As a re-

sult, kagome metals have the potential to host topologically nontrivial band structures

intertwined with electron-electron correlation effects. Electronic instabilities resulting

from this interplay have been studied theoretically ranging from bond density wave

order, to charge density waves (CDW) to superconductivity [269, 261, 262, 267, 302,

266, 303]. Recent experiments have begun to probe this rich phase space and have

uncovered the emergence of an unusually large anomalous Hall effect [284, 304, 70],

complex patterns of magnetism [305, 306], charge density waves [273, 274], and su-

perconductivity [275, 112, 278], validating the promise of kagome metals to form a

rich frontier of unconventional electronic phenomena.

One family of kagome metals are the so-called “166” compounds that crystallize in

the MgFe6Ge6 structural prototype. This class of materials is chemically very diverse,

and considering the structure as AB6X6, the A-site can host a variety of alkali, alkali

earth, and rare earth metals (e.g. Li, Mg, Yb, Sm, Gd...). The B-site generally hosts

a transition metal (e.g. Co, Cr, Mn, V, Ni...), and the X-site is generally restricted to

the group IV elements (Si, Ge, Sn). Due to this chemical diversity, 166 materials host

a wide variety of functionalities, particularly among those with magnetic host lattices.

Examples include the existence of spin polarized Dirac cones in YMn6Sn6 [307]; large

anomalous hall effects in LiMn6Sn6 [308], GdMn6Sn6 [309]; Chern topological mag-

netism in TbMn6Sn6 [310]; competing magnetic phases in YMn6Sn6 [311]; catalytic

properties in MgCo6Ge6 [312]; negative magnetoreistance in YMn6Sn6−xGax[313]; and

a cycloidal spin structure in HoMn6−xCrxGe6 [314].

One appeal of the chemical versatility of the 166 class of compounds is the ability
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Figure 6.1: Crystal structure of RV6Sn6 (R = Gd, Y). (a) RV6Sn6 lattice structure
comprised of different layers of V3Sn2, RSn1 and Sn3 atoms. The three different types
of Sn sites are represented by Sn1, Sn2 and Sn3. (b) Top view of crystal structure
looking along the c-axis and showing the kagome plane of V-atoms and projected Sn1
and Sn3 sites. (c) 2D kagome net of V-atoms. (d) Triangular lattice of R-site (Gd, Y)
ions interwoven between kagome planes as shown looking along the c-axis.

to design materials where magnetic interactions can be tuned independently from the

kagome lattice. Nonmagnetic B-site variants, in principle, provide this flexibility and

allow the interplay between magnetism and the kagome-derived band structures to be

explored. This potentially allows access to new electronic phenomena derived from

coupling the triangular-lattice planes of magnetic A-site ions and a nonmagnetic B-site

kagome net. Nonmagnetic kagome metals are rather underexplored relative to their

magnetic counterparts, and recent investigation of nonmagnetic AV3Sb5 compounds

[272] have shown that unusual charge density wave instabilities and superconductiv-

ity may appear when local magnetic interactions are absent [112, 273]. Finding new,

nonmagnetic kagome metal variants and tuning/proximitizing magnetic coupling al-

lowed in the 166 structure via the neighboring layers is an appealing next step in this

field.
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In this work, we report the synthesis of single crystals of YV6Sn6 and GdV6Sn6

kagome metal compounds and study their physical properties. Ab initio modeling of

the band structures of these compounds establishes the presence of topological sur-

face states at the Fermi level and categorizes the paramagnetic state as a Z2 topolog-

ical metal. The relative accuracy of the electronic structure calculations is confirmed

via angle resolved photoemission spectroscopy (ARPES). Our results demonstrate that

vanadium-based 166 kagome metals are interesting platforms for studying the inter-

play between nontrivial band topology and correlation effects endemic to a nonmag-

netic kagome lattice proximitized to magnetic order in the neighboring rare-earth lay-

ers.

6.2 Experimental Details

Single crystals of YV6Sn6 and GdV6Sn6 were synthesized via a flux-based technique.

Gd (pieces, 99.9%), Y (powder, 99.9%), V (pieces, 99.7%), Sn (shot, 99.99%) were

loaded inside an alumina crucible with the molar ratio of 1:6:20 and then heated at

1125oC for 12 hours. Then, the mixture was cooled at a rate of 2oC/h. The single

crystals were separated from the flux via centrifuging at 780 oC. Crystals grown via

this method were generally a few millimeters in length and < 1 mm in thickness. The

separated single crystals were subsequently cleaned with dilute HCl to remove any flux

contamination. Crystals were then transferred into a small jar of mercury to further

remove additional tin contamination to the crystals.

Single-crystal x-ray diffraction measurement were carried out on a Kappa Apex

II single-crystal diffractometer with a charge coupled device (CCD) detector and a

Mo source. Structural solutions were obtained using the SHELX software package

[315]. Powder x-ray diffraction (PXRD) measurements were performed on a Pana-
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Table 6.1: Structural details of YV6Sn6. Obtained from the refinement of single crystal
x-ray diffraction data at T = 300 K. Cell refinement in P6/mmm yields Rf = 0.0175,
WRf = 0.0399, and
a = b = 5.520(2), c = 9.168(4) Å.

atom (site) x y z Uani occupancy

Y (1a) 1.0000 1.0000 0.5000 0.0085(3) 1
V (6i) 0.5000 0.5000 0.7481(1) 0.0053(3) 1

Sn1 (2e) 1.0000 1.0000 0.8335(1) 0.0066(2) 1
Sn2 (2d) 0.3333 0.6667 0.5000(1) 0.0063(2) 1
Sn3 (2c) 0.3333 0.6667 1.0000 0.0054(2) 1

Table 6.2: Structural details of GdV6Sn6. Obtained from the refinement of single
crystal x-ray diffraction data at T = 300 K. Cell refinement in P6/mmm yields Rf =
0.039, WRf = 0.085, and a = 5.5348(7), c = 9.1797(11) Å.

atom (site) x y z Uani occupancy

Gd (1b) 1.0000 1.0000 0.5000 0.0063(4) 1
V (6i) 0.5000 0.5000 0.7487(2) 0.0055(4) 1

Sn1 (2e) 1.0000 1.0000 0.8344(1) 0.0072(4) 1
Sn2 (2d) 0.3333 0.6667 0.5000 0.0054(4) 1
Sn3 (2c) 0.3333 0.6667 1.0000 0.0064(4) 1
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lytical Empyrean powder diffractometer using powdered single crystals. This was done

to further verify the structure and phase purity over a larger volume.

ARPES results were obtained at Beamline 5-2 of the Stanford Synchrotron Radiation

Lightsource (SSRL) of SLAC National Accelerator Laboratory using 100 eV photons with

a total energy resolution better than 20 meV and a base pressure better than 3×10−11

torr. The measurements presented here were performed using linear horizontal (LH)

polarized light on a Sn-terminated crystal plane.

6.3 Computational Methods

Ab initio simulations were completed in VASP [150, 151, 152] using the PBE func-

tional [94] with projector-augmented waves, [90, 154]. PAW potentials for V and Sn

were selected based on the VASP v5.2 recommendations. For the calculations presented

in the chapter body, Gd potentials with a frozen f -orbital core were chosen in order to

approximate the paramagnetic phase previously investigated in ARPES experiments

[316]. In the supporting material, electronic structure calculations are completed for

the low-temperature ferromagnetic phase using complete Gd potentials with a Hubbard

potential U = 6 eV applied to the Gd f orbitals. This choice of U gives a magnetic mo-

ment µ ≈ 7µB, consistent with experiment (a Hubbard U correction near 6 eV is gen-

erally expected for Gd [317]). Calculations employed an 11×11×5 Γ-centered k-mesh

and a plane wave energy cutoff of 400 eV. Structures were relaxed in VASP via the con-

jugate gradient descent algorithm with a force-energy cutoff of 10−4 eV. All calculations

after relaxation employed spin-orbit coupling corrections with an energy convergence

cutoff of 10−6 eV. Tight-binding models were constructed by projecting onto valence

orbitals (Gd d; V d; Sn p; inner window EF ± 2 eV; outer window E > EF − 5.3 eV)

using the disentanglement procedure in WANNIER90 [91]. Surface state Green’s func-
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tion calculations were completed in the WANNIER TOOLS package [166, 113]. Irre-

ducible representations used to determine the Z2 invariant were determined with IRVSP

[31]. COHP calculations and orbital projections employed LOBSTER; these calcula-

tions do not incorporate spin-orbit coupling, which is not implemented in LOBSTER

[33, 34, 35, 36]. A Gaussian smoothing with standard deviation 0.1 eV was applied to

the density of states and COHPs. Structures were visualized with VESTA [167].

We performed bulk electronic structure ARPES simulations using parameters similar

to the experimental values (100 eV photon energy, T=30 K, σE=0.011 eV, polarization

vector = [001]) in CHINOOK [318]. Due to computational constraints, tight-binding

terms with magnitude less than 1 meV were omitted. This model employs the näıve

assumption of perfect spherical harmonic d and p orbitals. Gd d orbitals were approxi-

mated as Y d. Due to the apparent lack of kz resolution in the experiment, simulations

were performed for 41 slices, sampling the full Brillouin zone for kz = −π/c, · · · , π/c

and then averaged.

Additional computational details, including a comparison of the relaxed vs. exper-

imental lattice parameters and the full Z2 invariant calculations are available in the

supporting material.[319]

6.4 Results

6.4.1 Crystal structure

The crystal structure of RV6Sn6 (R = Y, Gd) was obtained from the refinement of x-

ray single crystal diffraction data and the structure is illustrated in Fig. 6.1. YV6Sn6 and

GdV6Sn6 both exhibit the MgFe6Ge6-type structure with a stacking of the kagome layers

of V-ions along the cryostallographic c-axis. The Y/Gd ions as well as the vanadium ions
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occupy unique crystallographic sites; whereas Sn ions occupy three different types of

crystallographic sites denoted by Sn1, Sn2 and Sn3 in Fig. 6.1. A unit cell consists

of the layers of V3Sn2 separated by two inequivalent layers of Sn3 and RSn1, forming

[V3Sn2][RSn1][V3Sn2][Sn3] layers along the c-axis. Fig. 6.1(b) reveals the topside

view of the crystal structure where the V-atoms form a kagome layer within the ab-

plane. Sn2 and Sn3 sites form stannene planes between the kagome layers of V atoms.

The isolated kagome net of V atoms is shown in Fig. 6.1(c). The interstitial rare-earth

atoms form a triangular lattice plane as shown in Fig. 6.1(d).

The refined structural parameters of YV6Sn6 and GdV6Sn6 are shown in Table 6.1.

Nearest neighbor distances within the kagome plane are reasonably close with V-V

distances being 2.76 Å in YV6Sn6 and 2.77 Å in GdV6Sn6. Sn2 atoms center later-

ally within the hexagons of the V-based kagome plane and are displaced slightly up-

ward/downward along the c-axis. This is analogous to the CoSn-B35 type structure

where the R sites are empty and the Sn atoms reside within the kagome planes of

Co-atoms [320]. In RV6Sn6, steric effects introduced by the R atoms push the Sn2

atoms out of the kagome layer, and this arrangement is distinct from the structures of

other well-known Sn-based kagome metals such as Fe3Sn2 [321, 322] and Co3Sn2S2

[323] where the Sn atoms almost lie within the kagome layers of Fe and Co atoms

respectively.

6.4.2 Calculated electronic structure

The electronic structure of (Y,Gd)V6Sn6 was modeled via density functional theory

calculations. YV6Sn6 and GdV6Sn6 show qualitatively similar band structures in the

paramagnetic state and for clarity, we focus on the electronic structure of GdV6Sn6 in

the paramagnetic phase in the following paragraphs.
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Figure 6.2: Orbital origins of GdV6Sn6 electronic structure. (a) orbital-projected
density of states showing that the electronic structure near EF derives primarily from
the V d states. (b) crystal orbital Hamilton population curves for V-V, V-Sn, and Sn-Sn
bonding. (c) V d orbital decomposed band structure.
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Figure 6.3: Topological classification of GdV6Sn6. (a) band structure with bands 169
(green), 171 (blue), and 173 (orange). Shaded regions show (E, k) space where
topologically nontrivial states are expected to appear (b) visualization of the hexag-
onal Brillouin zone and projected [001] surface Brillouin zone, identifying high sym-
metry points. (c) Parity products classifying the Z2 invariant for each band. Bands
169 and 171 are characterized by a strong topological invariant, Z2 = 1. Band 173
is trivial with no topological invariants. In addition to the strong invariant, band 171
also supports a weak invariant ν3 = 1.
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Figure 6.2 shows the orbitally decomposed electronic structure of GdV6Sn6 with the

orbital breakdown of the density of states shown in Fig. 6.2 (a). Fig. 6.2 (b) shows the

crystal orbital Hamilton population curves projected for V-V, V-Sn, and Sn-Sn bonding

interactions, where all are shown to contribute significantly near the Fermi-level. V-Sn

and V-V bands are approximately half-filled, whereas states arising from the Sn p-Sn p

interaction are fully filled. As a result, filled Sn p-Sn p antibonding states contribute

near the Fermi level and likely play an important role in the structure. Fig. 6.2 (c)

shows the V-based d-orbital band structure endemic to the kagome lattice. A prominent

d2z kagome flat-band can be seen above EF , and Dirac cones and saddle points similar to

those expected from minimal kagome tight-binding models lie at the Fermi level. Given

the local kagome coordination in this structure, it is unsurprising that out-of-plane d2z

orbital states fill prior to dyz + dxz and in-plane dx2−y2 + dxy states.

Figure 6.3 shows the band structure of GdV6Sn6 in the paramagnetic phase along-

side the topological classification of the metallic state based on the bands crossing EF .

Bands crossing EF are highlighted in Fig. 6.3 (a) with high symmetry points labeled

in Fig. 6.3 (b) for reference. Due to the presence of small, but continuous gaps be-

tween bands, the Z2 topological classification can be determined for each band using

parity products, and a strong topological invariant Z2 = 1 can be assigned to bands 171

(blue) and 169 (green), while the topmost band 173 (yellow) is topologically trivial.

As a result of these invariants, topological surface states are expected in the gaps be-

tween bands 169 and 171 (green, square-hatched) as well as between bands 171 and

173 (blue, diagonal-hatched) marked in Fig. 6.3 (a). Further classification is presented

in the supplemental material[319].

Exploring the possibility of topologically nontrivial surface states further, Fig. 6.4

plots projections of predicted surface states along the [001] surface with bulk bands

in Fig. 6.4 (a) and a Gd/Sn1-terminated surface spectrum in Fig. 6.4 (b). Comparing
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Figure 6.4: GdV6Sn6 [001] surface states. (a) and (b) display the surface Green’s
function projection of pure bulk states and the states on a Gd/Sn1 terminated surface,
respectively.

the two plots, many bright surface state bands can be identified in (b) which are not

present in the bulk. Near-Fermi level surface bands can be seen emitting from the bulk

Dirac cones on either side of K. A pair of surface states bridge the large local band

gap at Γ, with a surface Weyl band crossing appearing at E ≈ −0.4 eV. The presence of

this rich surface state spectrum is expected from the topological invariant calculation

described in Figure 6.3.
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Figure 6.5: Comparison between experimental and simulated ARPES of GdV6Sn6.
(a,b) measured ARPES intensity along the Γ-K-M and Γ-M -Γ high-symmetry lines.
(c,d) simulated ARPES spectra using experimental measurement parameters along
the same lines. Band structures for the kz = 0 and kz = π/c planes are overlaid in
pink and teal (dashed), respectively. Comparing the lengths of the white bars at the
K point in (a,c), we can estimate an approximate renormalization factor of 1.12.
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6.4.3 Comparison of simulated and observed ARPES spectra

In order to confirm the predicted band structure, we characterized single crystals

of GdV6Sn6 using angle-resolved photoemission spectroscopy performed in the para-

magnetic state. Our results, summarized in Fig. 6.5, show good agreement between

prediction and experiment. In addition to allowing clear identification of some pre-

dicted bands, the simulation also provides explanation for some of bands that are not

observed in the experiment, most notably the spectral weight suppression near the M

point (†), strongly suggesting that much of the discrepancy between simulation and

experiment derives from matrix element effects. The high intensity of the measured

states near K (‡) may relate to the expected topological surface states. While ex-

perimental identification of the predicted surface states is still forthcoming, relatively

accurate intensity in the simulation suggests that our ab initio modeling recreates the

correct bands just below the Fermi level with qualitatively correct orbital symmetry,

which is a very promising sign for the proposed topological classification.

Finally, our results indicate that while correlation and renormalization effects re-

lated to the V d kagome lattice that are not accounted for in the DFT are likely present,

they are relatively minor in magnitude. Comparing using the white overlaid bar, we

estimate an approximate renormalization factor of 1.12.

6.5 Discussion

Similar to the recently reported AV3Sb5 compounds [275, 112], the band struc-

tures of both YV6Sn6 and GdV6Sn6 in the paramagnetic phase can be categorized as Z2

topological metals with surface states predicted at EF . Furthermore, a clear flat band

appears in the band structure ≈ 400 meV above EF , consistent with the interference

180



Electronic structure of topological kagome metals YV6Sn6 and GdV6Sn6 Chapter 6

effects expected from a kagome-derived band. Multiple Dirac points appear near EF at

the K points as well as a van Hove singularity (vHs) near the M-point—both arise from

the vanadium d-orbitals comprising the kagome lattice. Given the potential for nesting

effects along the M-points at fillings that reach these vHs, slight carrier-doping in these

systems is an appealing next step in engineering correlation effects.

6.6 Conclusions

The synthesis of single crystals of two new kagome metals GdV6Sn6 and YV6Sn6,

each with a nonmagnetic kagome V sublattice, is presented. The lattice structures and

electronic ground states were studied via x-ray diffraction and ARPES. Both compounds

possess an ideal P6/mmm symmetry with perfect kagome nets of vanadium atoms

coordinated by Sn ions and spaced into layers via interleaving triangular lattice nets of

rare earth ions. In the paramagnetic state, DFT modeling categorizes these compounds

as Z2 kagome metals with multiple Dirac crossings and vHs close to EF . The presence

of topological surface states, Dirac points, and vHs’s near EF in the bulk band structure

combined with the ability to tune magnetic interactions in these compounds via control

of the R-sites suggest they are promising platforms for unconventional electronic states

born from a model kagome network proximitized with a tunable magnetic layer.
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Conclusion and Future Directions

In this dissertation, I have presented several studies examining the orbital and struc-

tural bonding origins of electronic structure in topological metals. Overall, these results

support the view that band topology is common to a wide-variety of high-symmetry

crystal bonding motifs. Despite the presence of a wide variety of promising candidates,

understanding subtle structural and magnetic transitions, as well as low temperature

electron correlations, is essential to realizing desired functionality, particularly in pro-

posed quantum devices. These electronic transitions are not necessarily a problem,

and in some cases enhance the promise of a material, but in all cases require close

collaboration between experimentalists, simulation experts, and theorists.

Chapters 2 and 3 highlight new electronic structure discoveries in established mate-

rials systems with known applications. Na(Pd,Pt)3O4 compounds are known catalysts

with doping-controlled metal insulator transitions. Mn3ZnC has long been studied for

its interesting magnetostructural transitions. Both materials highlight the problems

and promise of electronic instability. While interest is growing in topological cata-

lysts, catalytic activity is driven by reactivity. Many promising semimetal candidates

predicted in idealized first-principles simulations are so reactive that they are hard

to grow, maintain and study as single crystals. Our work on Mn3ZnC similarly hints

that many predicted Weyl semimetals may, in fact, be unstable to magnetostructurally-

183



Conclusion and Future Directions Chapter 7

coupled transitions to more complex ground states. From another perspective, metal

insulator transitions and magnetostructural transitions enable new functionality such

as switching of topological transport properties through electron carrier population,

temperature, and magnetic field. Switchable surface transport, a first step towards

spintronic anomalous hall diodes, is of great current interest. Verification of the pre-

dicted electronic properties in Na(Pd,Pt)3O4 and Mn3ZnC via the methods described in

this dissertation—quantum oscillations and ARPES—will require the growth of large

single crystals. I have not succeeded in adapting the flux growth technique of Ref.

[170] with Na-doping. However, many other flux methods are available. It may be

possible to grow large crystals of Mn3ZnC as well as related antiperovskite carbides

and nitrides via high temperature floating zone techniques.

Chapters 4 and 5 unravel subtle electronic structure details of two metals with

low temperature superconducting transitions. Development of a simple p orbital tight-

binding model in LaIn3, combined with a careful 3D reconstruction of the Fermi sur-

face, supports a näıve, yet informative, electronic structure adjustment that can be

rationalized as a correction to the calculated La d correlation. Ultimately, our best

fit suggests that LaIn3 likely hosts Dirac nodes and surface states at the Fermi level.

Due to the presence of a large variety of Dirac states just above EF , transport stud-

ies involving doping by adding electrons and additional spin-orbit coupling through

Sn, Tl, and Pb substitutions on the In site are an obvious next step. By comparing ab

initio simulations to experimental X-ray diffraction and quantum oscillation measure-

ments, our work has shown that the charge-density wave distortion in CsV3Sb5 derives

from a breathing mode distortion of the vanadium d kagome bonding and has revealed

the delicate energy scale of this transition and the additional c axial stacking distor-

tion. Further simulation and experimental efforts are needed to unravel the full 3D

nature of the charge-density wave, the relationship between the charge density wave,
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superconductivity, and other proposed correlated phenomena in this compound, and

the subtle experimental differences observed between CsV3Sb5 and sister compounds

KV3Sb5 and RbV3Sb5, which are currently reported to have different c-axial charge

density wave distortions. Ultimately, the proposed band reconstruction suggests that

previously predicted topological surface states in CsV3Sb5 may lower in energy during

cooling, lying near the Fermi level at low temperatures. Both LaIn3 and CsV3Sb5 appear

to be very promising research platforms for examining the interplay of topology and

superconductivity, an important first step towards the dream of topologically protected

qubits.

In chapter 6, compounds GdV6Sn6 and YV6Sn6 were realized as single crystals

and electronic structure calculations were performed and compared with experimental

ARPES. Similar to the AV3Sb5 family, these materials can be categorized as Z2 topolog-

ical metals with predicted surface states. The discovery of this new family of vanadium

kagome compounds, combined with the geometric intuition of section 1.11, hints that

Z2 states may be common in kagome metals, making these metals ideal candidates

for further exploratory synthesis and simulation. An important next step is verifica-

tion of the proposed surface states via high-resolution ARPES. Unlike the surface states

in CsV3Sb5, the surface states in GdV6Sn6 and YV6Sn6 appear in a wide band gap with

large band dispersion, meaning that experimental verification may prove relatively sim-

ple. Magnetic functionality enabled by substitution of rare-earth elements on the R

site encourages further study of RV6Sn6 compounds in order to examine new magnetic

transitions and their interplay with the predicted band topology.
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Computational parameters for

introductory figures

Computational details for figures adapted from previously published results in section

1.11 and Fig. 1.19 are provided in Refs. [112] and [120], respectively. Computational

details for additional introductory figures are detailed here.

All calculations employed the VASP code[150, 151, 152] using the recommended

PAW[90, 154] pseudopotentials with convergence better than 1e−5 eV. Relevant param-

eters are detailed in Table A.1. k-space Fermi surface interpolation was performed in

WANNIER90[91] and surface states were computed using WANNIERTOOLS[166].
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Fig # name functional k-mesh plane-wave cutoff additional
details

1.7 C PBE 15×15×1 500 eV
1.9 Bi2Se3 PBE 12×12×12 300 eV Bi p and Se p

wannier pro-
jections with a
frozen window
−2 eV< E <
5.5 eV

1.10 PdO PBE|MBJ|HSE >=8×8×8 >=400 eV Bands plot-
ted with
SUMO.[324]

1.13 Bi LDA 14×14×13 300 eV Bi p wannier
projection with
frozen window
EF − 6 eV< E <
EF + 2 eV

1.14 Cu PBE 21×21×21 400 eV automatic wan-
nierization with
26 bands and
26 wannier
functions

1.18 ZrSiS PBE 8×8×4 400 eV Bands plot-
ted with
SUMO.[324]

1.18 GdPS PBE 6×6×2 400 eV Bands plot-
ted with
SUMO[324]
with EF set to
EV BM .

1.20 Cr PBE 17×17×17 400 eV DOS and COHP
curves were
computed in
LOBSTER[33,
34, 35, 36] with
a 0.1 eV Gaus-
sian smoothing
applied.

Table A.1: Additional computational details for introductory figures.
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Formal definition of COHP

This appendix expands on the definition of the crystal orbital Hamilton population, or

COHP, providing further details for computational calculation following the notation

in Refs. [33, 34]. We start by assuming that our wavefunction, ψn for band n can be

decomposed into contributions from local basis functions corresponding to orbitals, L,

on crystal sites, R:

|ψn〉 =
∑

RL

uRL,n |χRL〉

The total band energy is defined as the sum of the occupied energy eigenvalues:

Eband ≡
∫ EF

dε
∑

n

fnδ(εn − ε)

where fn is the occupation of band n and εn is the corresponding eigenvalue. This

sum can be rewritten as a sum over the Hamiltonian element corresponding to the

interaction between each orbital pair multiplied by the joint density of states:

=

∫ EF

dε
∑

RL

∑

R′L′

〈χRL|Ĥ|χR′L′〉
∑

n

fnu
∗
RL,nuR′L′,nδ(εn − ε)
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which gives the formal definition of COHP, which is a DOS-weighted Hamiltonian pop-

ulation:

Eband =
∑

RL

∑

R′L′

COHPRL,R′L′(ε)

In order to evaluate the strength of a bonding interaction, it is common to evaluate

the contribution of a particular pair of orbitals, µ, ν, to the COHP, which is called the

partial COHP, or pCOHP1:

pCOHPµ,ν(ε) =
∑

k,n

R[〈χµ|ψn(k)〉 〈ψn(k)|χν〉 ·

∑

ℓ

εℓ(k) 〈χµ|ψℓ(k)〉 〈ψℓ(k)|χν〉]× δ(εn(k)− ε)

where ℓ is a second (dummy) band index and only the real part of the first brack-

eted term is taken. Here, it is also indicated that an additional summation needs to

be made over each k-point, k, in the calculation. COHP is used as an estimate of the

bonding strength in a system. As can be seen in the equations, what COHP function-

ally measures is the contribution of the overlap of a given pair of orbitals, χµ,χν to the

overall band energy in a material. The band energy alone does not provide a com-

plete description of the energetic stabilization of a given crystal structure and COHP is

therefore only a semi-quantitative estimate of the bond strength. One major assump-

tion is the validity of a linear combination of atomic orbitals (LCAO) description of

the wavefunction. Practically speaking, careful choice of local atomic wavefunctions is

necessary to develop a basis set that both reasonably approximates expected spherical

harmonic orbitals and can be projected onto the results of plane-wave DFT calculations

with proper accounting for the interstitial charge far from the local atomic sites (low

1Here we are condensing the labels R,L and R′, L′ into a single pair of labels since we only care
about a single pair of orbitals and the atomic labeling no longer matters
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‘charge-spilling’). Basis set considerations are detailed in the documentation for the

LOBSTER code.[36]
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Landau Quantization

This appendix briefly motivates the origin of magnetic field driven splitting in electronic

structure (Landau levels) and discusses the origin of the Onsager relation with greater

rigor.

C.1 Landau levels in a confined system

In a system with confinement under a uniform magnetic field, the charged particles

occupy orbits with quantized energies. This section summarizes a simple example using

notation similar to original work by Lev Landau.[325]

Let our system contain a charged particle with charge q, confined within a region

of dimensions ax, ay in the x-y plane, in a uniform magnetic field, B = Bẑ, directed

along the z axis. The particle will have kinetic energy and an energy qÂ associated

with the magnetic field where Â is the vector potential and B ≡ ∇ × Â. There are

multiple possible choices of Â (gauge freedom), but we will choose the simple case in

A is directed along the y axis, Â = Bxŷ. The Hamiltonian of the system is:

Ĥ =
1

2m
[p̂− qÂ]2 =

1

2m
[p̂2y − Bxx̂]2 +

1

2m
[p̂2x + p̂2z]
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=
1

2m
[~k2y − Bxx̂]2 +

1

2m
[p̂2x + p̂2z]

In analog to the classical case of cyclotron motion a magnetic field,

mv2

r
= qBv;ωc ≡

v

r
=
qB

m

we can substitute in the cyclotron frequency to rewrite:

=
p̂2x
2m

+
1

2
mω2

c

[

~k2y
mωc

− x̂

]2

+
p̂2z
2m

This final expression takes the form of a quantum harmonic oscillator (Ĥ = p̂2

2m
) +

1

2
mω2x̂2) with the minimum of the potential along x slightly shifted (by

~k2y
mωc

). The

solution to this Hamiltonian is then:

En = ~ωc

(

n+
1

2

)

+
p2z
2m

These discretized energy levels for different values of n are known as Landau levels.

Due to the fact that pz is not necessarily quantized, the allowed Landau states can take

the form of cylinders or Landau tubes as visualized in Fig. 1.12.

C.2 Cyclotron frequency and cyclotron effective mass

We now derive an expression for the cyclotron frequency and effective mass in a

solid state system in terms of the area of orbits on the Fermi surface. Consider an

electron under the influence of a magnetic field with Lorentz force:

F = mṗ = e(v × B)
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where F is the force, p is the momentum, v is the electron velocity, and B is the

magnetic field. Using p = ~k, and E = ~ω → 1

~
∇E = ∂ω

∂k
= v we can substitute:

~k̇ =
e

~
(∇E × B)

Splitting up k̇ = dk/dt:

dt = dk
~
2

e
(∇E × B)−1

In a metal in which there is no electron current on average, the electron orbit will be

perpendicular to the applied magnetic field. We can therefore separate the k momen-

tum into components along the orbit (k‖) and perpendicular to it (k⊥):

dt = dk‖
~
2

eB

∆kn
∆E

dt =
~
2

eB

∆(dA)

∆E
=

~
2

eB

(

∂(dA)

∂E

) ∣

∣

∣

∣

k⊥

where ∆kn is the change of the k in the in-plane direction normal to k‖ and dA is the

infinitesimal area spacing between neighboring orbits with energies separated by ∆E.

Integrating around the orbit, we find the orbit period, Tc and the cyclotron frequency,

ωc where ωc ≡ 2π
Tc

:

Tc =
~
2

eB

(

∂A

∂E

) ∣

∣

∣

∣

k⊥

ωc =
2πeB

~2

[

(

∂A

∂E

) ∣

∣

∣

∣

k⊥

]−1

we can also use these quantities to define a local effective mass for the electron on a

given orbit, called the cyclotron mass, mc. In analog to the classical case of cyclotron

motion a magnetic field:

m =
eB

ω
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we define:

mc =
eB

ωc

=
~
2

2π

(

∂A

∂E

) ∣

∣

∣

∣

k⊥

The cyclotron mass can be therefore be determined directly from calculated orbits on

the Fermi surface and compared directly to experimental measurements as in Chapter

5. A more detailed derivation is provided by Shoenberg [109].

C.3 Onsager relation

Combining the two previous results, we can consider the origin of the Onsager

relation in a larger system with distinct Landau levels. Assuming a reasonably large

quantum number, n, the energy separation between adjacent Landau levels is well

approximated by the frequency of the associated classical motion of the electron in an

orbit (Bohr utilized a similar ‘correspondence principle’ when building semiclassical

models of electron orbits in atoms):

En+1 − En = hf =
h

Tc

where Tc is the cyclotron period of electron motion. Substituting the equation for Tc

from the previous section (C.2), we find that:

En+1 − En = h

(

~
2

eB

∂A

∂E

)−1

(En+1 − En)
∂A

∂E
=

2πeB

~
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Figure C.1: Geometric argument for the Onsager relation. The number of occupied
states associated with a Landau tube is proportional to the region of the Fermi surface
enclosed. On this hourglass Fermi surface, an arbitrary orange Landau tube with small
thickness dA is shown in (a). The enclosed region of the Fermi surface is indicated
with the red, checked pattern. In (b), the surface enclosed by a Landau tube of similar
thickness is shown enclosing the innermost extremal orbit (the thinnest part of the
hourglass, see Fig. 1.12). The enclosed region of the Fermi surface is larger, meaning
that there will be a maximum in the density of states. This is a general property of
Landau tubes enclosing extremal orbits, since extremal orbits occur in regions where
the Fermi surface normal is perpendicular to the applied field axis.

Here, under the assumption of a small Landau splitting relative to the total energy scale

(E ≈ EF ), we can make the approximation:

∂A

∂E
≈ An+1 − An

En+1 − En

which yields:

An+1 − An =
2πeB

~

meaning that the difference in areas between neighboring Landau tubes is given by:

∆A =
2πe

~
B

The density of states in a metal reaches a local maximum whenever electron orbits
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are extremal, which can be rationalized from a simple visual argument as in Fig. C.1.

The density of states will therefore fluctuate, reaching maxima whenever one of the

Landau tubes has cross-section equal to an extremal orbit, Ae, matching the quantiza-

tion condition:

Ae = (n+ λ)∆A

where λ is an integer. We can therefore write:

2πe

~
B(n+ λ) = Ae

B =

(

1

n+ λ

)(

~

2πe

)

Ae

and then, inverting:

1

B
= (n+ λ)

(

2πe

~

)(

1

Ae

)

meaning that that the density of states will be maximized at regularly spaced intervals

in 1/B with frequency given by:

F =
~

2πe
Ae

which is precisely the Onsager relation. Since measureable properties of metals such as

magnetization and resistivity depend on the density of states at the Fermi level, these

properties are expected to exhibit similar periodic fluctuations. Further discussion can

be found in Onsager’s original work[326] and Ref. [327].

196



Bibliography

[1] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A
complete catalogue of high-quality topological materials, Nature 566, 480–485
(2019), doi:10.1038/s41586-019-0954-4.

[2] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for
topological materials using symmetry indicators, Nature 566, 486–489 (2019),
doi:10.1038/s41586-019-0937-5.

[3] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang,
Catalogue of topological electronic materials, Nature 566, 475–479 (2019),
doi:10.1038/s41586-019-0944-6.

[4] E. W. Weisstein, Gauss-bonnet formula, Accessed at https://mathworld.

wolfram.com/Gauss-BonnetFormula.html in February 2022.

[5] E. W. Weisstein, Euler characteristic, Accessed at https://mathworld.wolfram.
com/Gauss-BonnetFormula.html in February 2022.

[6] Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82, 102001 (2013),
doi:10.7566/JPSJ.82.102001.

[7] M. Z. Hasan and J. E. Moore, Three-dimensional topological insulators, Annu.

Rev. Condens. Mat. Phys. 2, 55–78 (2011), doi:10.1146/annurev-conmatphys-
062910-140432.
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[14] J. Gujt, P. Zimmer, F. Zysk, V. Süß, C. Felser, M. Bauer, and T. D. Kühne, Wa-
ter structure near the surface of Weyl semimetals as catalysts in photocatalytic
proton reduction, Struct. Dyn. 7, 034101 (2020), doi:10.1063/4.0000008.

[15] D. W. Boukhvalov, C.-N. Kuo, S. Nappini, A. Marchionni, G. D’Olimpio, J. Filippi,
S. Mauri, P. Torelli, C. S. Lue, F. Vizza, and A. Politano, Efficient electrochemical
water splitting with PdSn4 Dirac nodal arc semimetal, ACS Catal. 11, 7311–7318
(2021), doi:10.1021/acscatal.1c01653.

[16] G. Li, Q. Xu, W. Shi, C. Fu, L. Jiao, M. E. Kamminga, M. Yu, H. Tüysüz, N. Ku-
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