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ABSTRACT OF THESIS 
 

Despite widespread abuse, high socioeconomic costs, and substantial research 
investment, the basic mechanisms of alcohol action on the brain remain poorly 
understood. This is partly due to the physiological complexity of alcohol’s effects and the 
long term progressive nature of alcohol use disorders (AUDs). Further, mammalian 
models of AUD endophenotypes require high levels of resources and time. One approach 
that has promise is to use invertebrate model organisms to understand the molecular and 
cellular mechanisms of behavioral adaptations to acute ethanol exposure. The fruit fly 
Drosophila, is a classic model organism for defining the molecules and neural circuits 
that drive animal behavior. The molecular makeup of the fly brain is remarkably 
conserved with that of mammals. Moreover, both flies and humans have a long history of 
association with alcohol, suggesting that behaviors like craving, drinking, and reward are 
coded similarly. Indeed, dopamine signaling underlies the hyperactivating and rewarding 
properties of ethanol across species. Flies, like humans, become inebriated, develop 
ethanol tolerance, ethanol preference, and ethanol reward associations, and they show 
signs of withdrawal. Many of these are adaptations to ethanol exposure that are forms of 
behavioral plasticity. How ethanol behavioral plasticity differs from non-addictive forms 
is key to understanding why some substances are abused. The goal of the research for this 
thesis was to ask if glial cells, like neuronal cells, promote behavioral plasticity induced 
by acute ethanol. Glial cells perform surprisingly diverse functions in the brain, including 
information transmission whose regulation is key to behavioral plasticity. A survey of the 
Drosophila glial types uncovered roles in ethanol tolerance for two types, the astrocytes 
that contact and regulate neuronal synapses, and the perineurial cells that form the outer 
surface of the blood-brain barrier. Dysregulation of glutamate homeostasis in astrocytes 
renders flies sensitive to acute inebriation and decreased ethanol tolerance. These ethanol 
phenotypes correlate with others that are early signatures of neurodegeneration caused by 
glutamate excitotoxicity. Perineurial cells show morphological change that correlated 
with reduced actin organization following acute ethanol exposure. This morphological 
change required Akap200, an adaptor protein that coordinates protein kinase A, protein 
kinase C, calcium, and actin at the perineurial plasma membrane. Loss of Akap200 either 
globally or specifically in the perineurium decreases ethanol tolerance development, as 
does disruption of many of the molecules that interact with Akap200. These Akap200 
dependent functions appear to be occurring at the time of ethanol exposure. These 
findings indicate an active signaling role for the blood-brain barrier in the development of 
ethanol tolerance, and they imply that the barrier and neurons communicate to promote 
behavioral plasticity.  
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CHAPTER 1: INTRODUCTION 
 
1.1 Dissertation Statement 
 

Glial cells in the brain regulate ethanol tolerance development, demonstrating that both 
glia and neurons control behavioral plasticity induced by drugs of abuse. 

 
1.2 Ethanol Pharmacology and Neuronal Plasticity 
 

Ethanol is the most widely used and frequently abused addictive drug. The term 
“alcohol use disorders” (AUDs) describes the range of pathological effects of ethanol, 
from abuse, to dependence, to addiction. Amongst drugs of abuse, ethanol is unique: 
humans have a very long association with the drug, brewing it since ancient times to 
make drinking water safe and for socializing. Further, the majority of all humans have 
had an alcoholic drink, and many enjoy drinking over a lifetime without ever 
developing an AUD. However, the cost to society is high: for example, well over 50% 
of all emergency room visits involve alcohol in some form (Sacks et al., 2015). 
Furthermore, the current best treatment - group therapy like Alcoholics Anonymous - is 
only slightly more effective than no treatment at all. The relapse rate is astoundingly 
and unacceptably high. Our partial understanding of how ethanol affects brain function 
and behavior has seriously hampered the development of medications and behavioral 
treatments for AUDs. 
 
The actions of ethanol can be classified as acute and the plasticity of those responses 
with repeat drinking, longer term chronic, withdrawal, and relapse. Whereas chronic 
ethanol intake is most directly tied to the development of AUDs, its acute actions 
provide the clearest window into how ethanol pharmacology impacts the cellular and 
molecular properties of the brain. A basic, and likely true, assumption of our work is 
that these direct actions of acute ethanol cause changes that prime the brain for the 
longer-term effects of the drug, therefore providing a needed simplifying window into 
the complex biology of addiction.  
 
How acute ethanol intake causes adaptations in behavior is what we seek to understand. 
One of the simplest forms of neuroadaptative change is the development of tolerance. 
Ethanol tolerance can be defined as the acquired resistance to its aversive and 
pleasurable effects that facilitates increased ethanol intake (Fadda and Rossetti, 1998). 
For example, if three drinks in succession causes unconsciousness, three drinks a day 
later may only cause inebriation. Ethanol tolerance facilitates increased ethanol intake, 
a clarion risk factor for developing an AUD.  
 
Ethanol tolerance has multiple forms with differing underlying biology. Tolerance is 
classified as acute, rapid, and chronic. Acute tolerance develops within a bout of 
drinking. Acute tolerance is due in part to changes in the conductance properties of 
neurons through changes in potassium channel quantity and activity (Lewohl et al., 
1999). Rapid tolerance develops after alcohol from the first drink has been completely 
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metabolized, over the course of hours or days. This is a longer lasting form of 
tolerance, and is the subject of the studies described in this thesis. Chronic tolerance 
develops after repeated exposures to alcohol and is the result of multiple neurological 
and physiological adaptations. All these forms of tolerance can be either dispositional 
or functional: changes in ethanol metabolism are termed dispositional, and changes in 
neuronal properties are termed functional. 

 
1.3. Drosophila as a Model for Ethanol Behavioral Plasticity 
 

Animal models are particularly useful for defining the molecular and cellular 
mechanisms of complex biology and pathology (Barkley-Levenson and Crabbe, 2012). 
The most commonly used models for AUD endophenotypes are mice and rats. The fruit 
fly Drosophila is also a well-established model for identifying the molecular 
mechanisms of both simple and more complex behavioral responses to ethanol. 
Drosophila, like humans, have a long history of alcohol intake. Their favored source of 
food is rotting fruit that can contain up to 5% ethanol concentration (Dudley, 2000). 
Furthermore, ethanol is a naturally occurring molecule commonly found in nature that 
is not much larger than water, suggesting that its basic molecular interactions are 
conserved across organisms. 
 
Drosophila have been used for over a century to discover the basic mechanisms of 
genetics, of cell structure and function, and the signaling mechanisms that let 
multicellular organisms develop and function (Chao et al., 2017). Drosophila genes are 
well conserved with those of mammals, and nearly all molecules that let the nervous 
system develop and work are found in Drosophila. Advances in transgenic technology 
lets researchers easily manipulate genes and cellular properties in highly cell-type and 
temporally specific manners. For example, RNA interference (RNAi) against of a 
specific gene allows tight spatiotemporal reduction of that gene to test its role in a 
cellular or behavioral process, like ethanol tolerance. Transgenic technology also made 
accessible exquisite details of the neuroanatomy, allowing for highly precise 
connectivity to be studied. All these technologies were used in the studies described in 
this thesis.  
 
Drosophila exhibit behavioral responses to ethanol that broadly mirror those seen in 
mammals (Rodan and Rothenfluh, 2010). Drosophila given an acute ethanol exposure 
show progressive behavioral responses as the ethanol dose increases. Low doses 
stimulate locomotion, akin to hypersociality and behavioral disinhibition in humans. As 
the dose increases, Drosophila become progressively more incoordinated and then 
sedated. Sedated flies wake up and regain normal behaviors as ethanol is metabolized 
by a conserved metabolic pathway. Flies that recover will show sensitization to the 
locomotor activating effects and tolerance to the incoordinating and sedating effects of 
ethanol. Flies given continuous access to a choice of food and food plus ethanol will 
initially avoid the ethanol, but over the course of days they will develop a preference 
for it. This ethanol preference is for its pharmacological and not its caloric value 
(Devineni and Heberlein, 2009; Peru Y Colón de Portugal et al., 2014; Xu et al., 2012). 
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Perhaps even more compelling, a low dose of ethanol presented with a behaviorally 
neutral odor cue will later become attracted to that cue when presented alone (Kaun et 
al., 2011). This indicates that flies find ethanol rewarding. Finally, flies show signs of 
ethanol withdrawal after chronic ethanol exposure, that, like in higher organisms, is due 
in part to inhibition of GABAergic inhibitory interneurons (Ghezzi et al., 2014).  
 
Evidence for molecular parallels for ethanol action in flies and mammals is growing. 
One of the best examples is dopamine, which plays a critical role in the 
reinforcing/rewarding properties of all known drugs of abuse. In mammals, ethanol 
exposure causes dopamine release from ventral tegmental area neurons into the nucleus 
accumbens. Rodents and other mammals with blocks to this dopamine response fail to 
show locomotor stimulation or associate external cues with the drug (Berridge and 
Robinson, 1998). In flies, genetic blockades of specific dopamine circuits has the same 
effect: reduced locomotor activation and loss of ethanol reward (Kaun et al., 2011; 
Kong et al., 2010a). Other molecular and circuitry parallels are also emerging, with new 
advances occurring in both mammals and Drosophila. Thus, not only are behavioral 
responses to ethanol conserved across phyla, but also the molecular mechanisms 
driving those behaviors. 
 
The molecular mechanisms of ethanol tolerance are partly understood in Drosophila. 
The main behavioral paradigm used involves the induction and measurement of rapid 
tolerance, however flies also develop acute and chronic tolerance (Berger et al., 2004). 
Rapid tolerance in Drosophila is functional, meaning that tolerance is due to ethanol 
altering the function of the nervous system and not altering ethanol metabolism (Scholz 
et al., 2000). Importantly, while ethanol sensitivity and tolerance are correlated in wild-
type, they are easily separable genetically, indicating that their underlying mechanisms 
are distinct (Devineni et al., 2011). From here on the term “tolerance” will refer to 
“rapid tolerance”. Typically, flies are given a just sedating dose of ethanol over the 
course of about ½ hour, are allowed to recover and completely metabolize accumulated 
ethanol for 3.5 hours, and then are given a second, identical ethanol exposure. There are 
a number of ways to measure ethanol tolerance, including loss of postural control, loss 
of the righting reflex, and recovery of the righting reflex during the recovery period 
(Rodan and Rothenfluh, 2010). Tolerance is induced by 2 hours after exposure, and 
lasts at least one day. Classic genetic mutant screening often coupled with gene 
expression studies have identified several genes involved in tolerance development, 
including the Hangover RNA binding protein, the Homer adaptor protein, the Sirtuin 
histone deacetylase, and the Slowpoke inwardly rectifying potassium channel, all of 
which are conserved by sequence in mammals. Indeed, to date a list of about 50 genes 
have been implicated in tolerance development with varying degrees of evidence 
quality (Ghezzi et al., 2013; Kong et al., 2010b; Morozova et al., 2006; Urizar et al., 
2007). 
 
Comparatively less is known about the cellular circuitry for ethanol tolerance. The 
current best evidence points to two well-studied regions of the Drosophila brain, the 
mushroom bodies and the central complex ellipsoid body. The mushroom bodies are 
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critical centers for associative learning and memory, but they also perform some non-
associative or innate functions (Guven-Ozkan and Davis, 2014). Inactivation of 
mushroom body synaptic output decreases ethanol tolerance, as does reduction of Sir2 
expression in specific mushroom body lobes (Engel et al., 2016). The Homer 
postsynaptic adaptor protein is needed in the ellipsoid body, a part of the central 
complex that is thought to coordinate sensory information with motor output (Seelig 
and Jayaraman, 2015; Urizar et al., 2007). How these regions communicate and their 
specific roles in the development of tolerance remains to be discovered. To the credit of 
Drosophila research, even less is known about the circuitry of ethanol tolerance in 
mammals. 

  
1.4. Role of Glia in the Actions of Ethanol 
 

Glia are the main non-neuronal cells of the nervous system, however current estimates 
place them at a 1:1 ration with neurons (Azevedo et al. 2009, von Bartheld et al 2016). 
There are three main types of glia in the mammalian brain: astrocytes, 
oligodendrocytes, and microglia. Oligodendrocytes ensheath neuronal axons to enhance 
action potential conductance and to provide electrical isolation. Microglia perform 
immune-like functions in the brain, engulfing non-self, carrying out inflammatory 
reactions, and removing cellular debris. Astrocytes are star-shaped cells that infiltrate 
all the neuronal synaptic regions of the brain. They also make extensive contact with 
the endothelial cells that form the physical and chemical barrier properties of the blood-
brain barrier. Astrocytes are remarkably versatile, performing metabolic, homeostatic, 
and structural roles. The major metabolic roles of astrocytes are transport of glucose 
and lactate from the circulation to neurons, and uptake of potassium and 
neurotransmitters following synaptic release, thereby cleaning up the extracellular 
space to provide for clean signal propagation. One of the best characterized properties 
of astrocytes is the regulation glutamate homeostasis. Synapses release glutamate from 
synaptic vesicles, loaded by VGlut, a vesicular glutamate transporter, as a 
neurotransmitter. Astrocytes take up this glutamate to clear the synaptic cleft via 
excitatory amino acid transporters (EAATs). Glutamate is then converted into 
glutamine in astrocytes and released back to the presynaptic neuron, where it is taken 
up through the EAAT2 transporter.  Once inside the neuron, glutamine is converted into 
glutamate and loaded into vesicles to repeat the cycle (Danbolt, 2001).  
 
Astrocytes also comprise part of the blood-brain barrier in mammals, along with 
endothelial cells, and pericytes (Obermeier et al., 2013). Their direct apposition on the 
barrier endothelium is critical for two well studied functions, the aforementioned 
nutrient transport, and the regulation of cerebrovascular blood flow (Bélanger et al., 
2011). This latter function is coupled to their role in glutamate homeostasis: glutamate 
conversion produces small molecules that can cause either vasodilation or 
vasoconstriction: increased glutamate uptake is a sign of neuronal activity, and results 
in vasodilation, bringing increased oxygen and nutrients to the active area. 
Recent findings demonstrate that astrocytes are also important for the regulation of 
synaptic plasticity that underlies most forms of behavioral plasticity (De Pittà et al., 
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2016). The neuronal process of long-term depression that decreases activity at a 
synapse requires an intercellular communication pathway that travels from the 
postsynaptic to the presynaptic neuron through the closely apposed astrocyte (Min and 
Nevian, 2012). Astrocytes also perform a regulatory role in memory stability through 
the neurotransmitter adenosine (Orr et al., 2015). 
 
Drosophila glia are less studied than in mammals. Early findings indicate that 
Drosophila glia perform many of the same functions as their mammalian counterparts, 
however some functions are distributed differently. There are three main classes of 
Drosophila glia: surface-associated, cortex, and neuropil-associated. The Drosophila 
blood-brain barrier is composed of the surface-associated glia, and it forms a physical 
and chemical barrier between the brain and the circulating hemolymph. The surface glia 
are two closely apposed layers of glia: the outermost perineurial glia interfaces directly 
with the circulating hemolymph, while the subperineurial glia are located just beneath 
where they form both the physical and chemical barrier (Awasaki et al., 2008; Hindle 
and Bainton, 2014). Like the mammalian barrier, the Drosophila barrier is selectively 
permeable to a variety of proteins and small molecules, including sugars that provide 
the nervous system with energy (Volkenhoff et al., 2015). My research (Chapter 4) 
provides some of the clearest evidence to date that the barrier also generates signals to 
transmit information between the periphery and the central nervous system.  
 
Little is known about the cortex glia that surround the neuronal cell bodies or the 
ensheathing glia that insulate neuropils from one another. Interestingly, the ensheathing 
glia appear to perform some microglia functions, in particular they are phagocytic and 
help drive neuronal remodeling during metamorphosis (Doherty et al., 2009). 
 
Drosophila astrocytes are apposed to synapses and they share a similar morphology to 
their mammalian counterparts. Indeed, Drosophila astrocytes perform metabolic, 
homeostatic, and structural roles. Importantly, the glutamate homeostasis function in 
Drosophila and mammalian astrocytes is identical (Freeman et al., 2003). Furthermore, 
Drosophila astrocytes regulate sleep, circadian rhythms, and also modulate neuronal 
function (Farca Luna et al., 2017; Ma et al., 2016; Ng et al., 2011).    
 
Ethanol affects glia in both physiological and pathological conditions. Short-term 
exposure to physiologically-relevant ethanol concentrations increases the levels of a 
glial-specific cytoskeletal protein (Blanco and Guerri, 2007; Bull et al., 2015; Goodlett 
et al., 1993). Studies with binge and chronically drinking rodents reveal astrogliosis and 
changes in glial density following moderate levels of ethanol intake (Bull et al., 2015; 
Evrard et al., 2003; Fattore et al., 2002; Goodlett et al., 1997; Miguel-Hidalgo, 2006). 
Long term changes in the expression levels of glial markers and in the proliferation of 
oligodendrocytes and microglia after cessation of ethanol self-administration suggests 
that glia may also contribute to the long-lasting effects of ethanol on behavior (Evrard 
et al., 2006; He et al., 2009; Nixon, 2008).  
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Drosophila glia have been implicated in the sensitivity to drugs of abuse, including 
ethanol and cocaine (Bainton et al., 2005; Hoxha et al., 2013; Ng et al., 2011). The 
strongest study to date demonstrated that mutations of the G protein-coupled receptor 
Moody lead to disruption of the physical barrier and decreased ethanol sensitivity and 
increased cocaine sensitivity (Bainton et al., 2005). No studies are published that link 
any type of glia in either Drosophila or mammals to the behavioral adaptations induced 
by ethanol. The one potential exception is for glutamate transmission and homeostasis. 
 
Glutamate, the major excitatory neurotransmitter in the brain, is intimately tied with the 
actions of ethanol. Classic studies showed that alcohol interacts with glutamate 
receptors, blocking their function (Lovinger et al., 1989). This is part of the depressant 
effect of intoxication, decreasing brain activity at higher ethanol doses. Lower doses of 
ethanol potentiate glutamate signaling, causing greater neurotransmitter release and 
contributing to the hyper sociality that accompanies its euphoric effects. The enduring 
adaption of glutamate receptor signaling is implicated in the development of ethanol 
dependence, tolerance and addiction (Chandler, 2003). In Drosophila, the protein 
Homer, that interacts with glutamate receptors, regulates ethanol tolerance, suggesting 
that glutamate signaling is important for the behavioral effects of ethanol in flies 
(Urizar et al., 2007).  
 
Disruption of glutamate homeostasis through drugs of abuse implicate astrocytes as 
potential regulators of drug action. Work in rat astrocyte in culture and in the nucleus 
accumbens have shown that cocaine exposure leads to decreased expression of xCT and 
GLT-1, astrocyte-specific glutamate transporters, and that treatment with n-
acetylcysteine or ceftriaxone rescues both expression of xCT and GLT-1, respectively, 
as well as cocaine-seeking behavior in rats (Knackstedt et al., 2010). Neurons increase 
the number of dendritic spines upon reinstatement of cocaine, which may be regulated 
by astrocytes (Hakim et al., 2014; Kalivas, 2009). Together these findings suggest a 
relationship between glutamate homeostasis, ethanol, and astrocytes.  

 
1.5. Limitations of Current Studies 
 

Behavioral studies in flies and mice provide evidence that glia and neurons 
communicate and are crucial for regulation of complex behaviors, however the exact 
method of interaction and role of glia in synaptic plasticity remains to be understood. 
Recent research has demonstrated novel and complex interactions between astrocytes 
and neurons to regulate neuronal properties, yet astrocyte function remains largely 
unknown in both flies and mammals  (Perea et al., 2009; Santello et al., 2012). 
Furthermore, the tools available are lacking, as even though there are hundreds of 
differentially expressing Gal4 lines are available in flies, there exists a need for both 
more spatially restricted, and better characterized lines (Rodan and Rothenfluh, 2010). 
 
The mechanisms underlying ethanol tolerance are remarkably poorly understood. As 
this phenotype lends itself to the formation of AUDs as well as the physiological 
changes that occur with prolonged alcohol consumption, it is worthy of attention. As a 
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simple form of change in central nervous system function, ethanol tolerance lends itself 
nicely to detailed molecular dissection. Further studies can explore how molecular 
mechanisms of ethanol tolerance apply to the more complex changes accompanying the 
development of alcoholism, and AUDs. As no drug therapies for AUDs presently target 
neurons, astrocytes are an appealing target for drug therapies. Furthermore, the use of 
Drosophila makes it inexpensive to explore astrocyte function with respect to the action 
of ethanol, potentially facilitating the development of new drug targets. Further 
research needs to be done with ethanol tolerance and the subsequent changes in gene 
expression, as this is ultimately what facilitates AUDs.  

 
 
1.6. Research Aims 
 

The overall goal of this research project is to study the role of glia in ethanol behaviors. 
This will be achieved through two research aims: 1) characterize how glutamate 
homeostasis in astrocytes regulates ethanol tolerance; and 2) characterize the blood 
brain barrier glia’s role in ethanol-dependent behaviors. 



8 
 

CHAPTER 2: MATERIALS AND METHODS 
 
2.1 Strains and Culturing Conditions 
 

All strains were outcrossed for at least five generations to the Berlin genetic 
background. Flies were raised on standard food containing agar (1.2% w/v), cornmeal 
(6.75% w/v), molasses (9% v/v), and yeast (1.7% w/v) at 25°C and 70% humidity, 
unless otherwise indicated. Drosophila strains (stock number) were from Bloomington 
Drosophila Stock Center: Akap200EY4645 (15759), UAS-Akap200.IR (35651), repo-Gal4 
(7415), nrv2-Gal4 (6800), Act5C-Gal4 (4414), UAS-Itp-r83A.IR (25937), UAS-Ca-
p60A.IR (25928), UAS-Pka-R2.IR (27680), UAS-Lifeact-GFP (58718), UAS-MCFO 
(64085); Drosophila Genetic Resource Center: Akap200NP511 (103626), Akap200NP609 
(103674), Akap200NP6271 (105177); Vienna Drosophila Resource Center: UAS-Akap.IR 
(v5646), UAS-CaM.IR (v28242); Richard Mann: Akap200PBss; Roland Bainton: Indy-
Gal4, SPG-Gal4; Marc Freeman: alrm-Gal4, mz709-Gal4; Paul Garrity: UAS-TrpA1; 
Bing Ye: UAS-CD2mCherry; Ulrike Heberlein: UAS-Pka-C and UAS-Pka-C*. UAS-
Akap200 transgenes in the pUAST vector were created by Zhuhao Wu in the laboratory 
of Alex Kolodkin. The amino acid changes were, in Akap200L isoform PA: UAS-
Akap200.NM (non-myristoylated mutation): G-2-A, UAS-Akap200.DN (non-
phosphorylated mutation): S-132/135/137-A, UAS-Akap200.CA (pseudo-
phosphorylated mutation): S-132/135/137-D. 

 
2.2 Molecular Biology 
 

RNA was extracted from male heads, DNase treated, and reverse-transcribed using 
MultiScribe™ (Applied Biosystems). Quantitative PCR reactions were done using the 
Taqman Gene Expression system (Applied Biosystems) and custom designed primers 
on a StepOnePlus machine (Applied Biosystems). Ct values were normalized to RpL32, 
expression was calculated using the ΔΔCt method, and the mean of three independent 
biological replicates was calculated. 

 
2.3 Behavioral Analysis 
 

Ethanol vapor and humidified air were produced as previously described (Wolf et al., 
2002). The experimenter was blinded to genotype for all behavioral tests. Groups of 20 
male flies were acclimated to a stream of humidified air for 5 min in the booz-o-mat 
and then exposed to a continuous stream of ethanol vapor. The flies were filmed for 
locomotion, or they were counted separately for loss of the righting reflex to measure 
sedation. Sedation sensitivity was calculated as the time to 50% sedation for each 
group. Sedation tolerance was measured as the time to 50% sedation for exposure 2 
minus exposure 1. Locomotion was measured as previously described (Wolf et al., 
2002). For behavioral experiments performed at an elevated temperature, I designed a 
miniaturized booz-o-mat that mounted atop a Peltier thermal controller (IC20, Torrey 
Pines Scientific). Control and experimental groups were tested side-by-side and across 
multiple days to account for variation in behavior. 
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The capillary feeding assay (CAFE) was used to determine ethanol preference, as 
previously described (Devineni and Heberlein, 2009). Groups of eight adult males were 
collected 3-4 days after eclosion and allowed to recover from CO2 for one day. They 
were then exposed to either 55% ethanol vapor/air mixture or 100% humidified air 
alone for 20 min. After 16 h recovery, flies were placed into the CAFE chamber, which 
consists of empty vials with capillary tubes containing liquid food with or without 15% 
ethanol, embedded in the vial plug. Preference index was measured as the volume of 
food consumed from the ethanol capillaries minus that consumed from the no-ethanol 
capillaries over the total volume consumed, corrected for evaporation by measuring the 
volume lost in vials with no flies. Bitter taste avoidance was measured by presenting 
flies with a choice of 1.25% agarose containing either 50 mM sucrose (S) or 100 mM 
sucrose and 1 mM quinine (SQ). Groups of approximately 20 male flies were food 
deprived on water for 14 h, placed in a 40x90x10 mm clear acrylic arena, and 150 uL S 
and SQ dots were then placed in apposition at the center of the arena. The number of 
flies on each dot was counted at 120 min. Avoidance was calculated as (SQ – S)/(SQ + 
S) such that complete avoidance of bitter gives a value of -1. 
 
Ethanol absorption was measured by exposing groups of 25 flies to either ethanol vapor 
(40%) or humidified air for 15 minutes. Flies were frozen immediately on dry ice and 
the ethanol concentration in whole fly homogenates was measured with an alcohol 
dehydrogenase-based spectrophotometric assay (Diagnostic Chemicals, Ltd., 
Charlottetown, PE, Canada). 
 
Negative Geotaxis assay was used to determine neurological deficits, as described 
previously (Barone and Bohmann, 2013). Groups of ten male flies were placed into an 
empty fly vial that was taped to another one, creating a sealed chamber. Vials were 
tapped on the benchtop and the number of flies who climbed to or past 8cm in 
10seconds were recorded. This was repeated for a total of 10 times, with 30sec of rest 
in between each trial.  

  
2.4 Immunohistochemistry 
 

Whole flies were prefixed in 4% paraformaldehyde (PF), 1xPBS and 0.05% Triton-X 
100 for 20 min on ice to help maintain barrier morphology. Brains were dissected in 
1xPBS and 0.05% Triton-X 100 (0.05% PBT), fixed (2% PF in PBT) overnight at 4°C 
or 1 hr at room temperature. Brains were washed 5x 10 min in 0.1% PBT, blocked 1 hr 
in 0.1% PBT with 0.5% BSA and 5% normal goat serum and then incubated with 
primary antibodies overnight at 4°C. Brains were washed, blocked, and incubated with 
secondary antibodies overnight at 4°C. Brains were washed and mounted on glass 
slides with Vectashield (Vector Laboratories). Squares of double-sided tape served as 
narrow spacers such that the brains were partially flattened, facilitating imaging of the 
brain surface. Primary antibodies used were mouse anti-CD2 (1:500, Serotec OX-34), 
rabbit anti-GFP (1:1,000, Invitrogen A6455), rabbit anti-dsRed (1:500, Clontech 
632496), rat anti-FLAG (1:200, Novus Biotech NBP1-06712), rabbit anti-HA (1:300, 
Cell Signaling 3724S), and mouse anti-discs large (1:100, DSHB 4F3). MultiColor 
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FlpOut (MCFO) flies were given a 10-15 min 37°C heat shock and then treated and 
dissected 2 days later (Nern et al., 2015). 

 
2.5 Dye Injection 
 

Male flies were pressure injected in the medial thorax region with approximately 100 
nL of 45 mM 10 kDa Texas Red dextran (Sigma-Aldrich) and 0.2 mM BODIPY FL 
prazosin (Life Technologies), and allowed to recover for 3 hr (Mayer et al., 2009). 
Positive control mutants were used to confirm our ability to detect increased 
permeability of the physical (moodyc17) and chemical (mdr65PEx8) barrier (Bainton et 
al., 2005; Mayer et al., 2009). 

 
2.6 Statistical Analysis 
 

Statistical analysis was performed with GraphPad Prism v6.0. Typically, one-way 
ANOVA was used followed with Tukey’s multiple comparison test. If the data was not 
distributed normally (Brown-Forsythe test), we instead used the Kruskal-Wallis test 
followed with Dunn’s multiple comparisons test. t-tests were two-tailed. Sample sizes 
were chosen based on prior experience with each experimental paradigm. All graphs 
show the mean and the standard error of the mean. 
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CHAPTER 3: EXCITOTOXICITY AND ETHANOL TOLERANCE 
 
3.1 Identification of a Glial-specific Gene Involved in Ethanol Response  
 

To identify genes which have changes in expression following ethanol exposure, Kong 
et al. exposed flies to ethanol or air for 30 minutes and allowed them to recover for no 
longer than four hours (Kong et al., 2010b). RNA was extracted and analyzed through 
microarrays. 1,280 genes were found from microarray analysis to have expression 
changes following ethanol exposure; from these results, 76 mutants were found to be 
available for screening. Mutant flies were screened with behavioral assays for ethanol 
tolerance and from this screen 32 genes were identified as either increasing or 
decreasing tolerance. Of these 32 genes, Akap200, originally thought to be a glial-
specific gene, was further explored (Figure 1) (Freeman et al., 2003). Characterization 
of Akap200 is detailed in Chapter 4. Because Akap200 implicated glia in ethanol 
behavioral plasticity, I performed a broad-based assessment of glial functions that may 
be important for ethanol tolerance development. 

 

 
 
3.2 Screen for Glial Role in Ethanol Behaviors 
 

My initial screen used a pan-glial driver and the functional manipulations listed in 
Table 1. Expressing these tools pan-glially either resulted in organismal lethality, 
extreme ethanol sensitivity that is diagnostic for general unhealthiness, or in no ethanol 
tolerance phenotype (data not shown). I reasoned that the glial subtypes may be 
differently sensitive to specific manipulations, potentially masking important functions. 
For this reason, a focus on the role of specific glial cell types was undertaken. I focused 
on astrocytes due to their proximity to synapses and the recent mammalian literature 
implicating roles in many neurological functions  (Barres, 2008; Danbolt, 2001; Min 
and Nevian, 2012). To investigate the role that astrocytes play in the development of 
ethanol sensitivity and ethanol tolerance, behavioral analysis was performed 
manipulating known mammalian astrocyte functions in fly astrocytes.  

 
 
 

Figure 1: Scheme used to identify candidate genes involved in ethanol exposure.  
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Using the GAL4/UAS system I genetically manipulated astrocytes (the alrm-Gal4 
driver) in adult flies and measure their behavioral response (see Table 1). Vesicular 
recycling was interrupted using Tetanus Toxin (TeTx), which disrupts exocytosis by 
cleaving n-synaptobrevin, and Shibire GMR (Shi GMR), which creates a temperature 
sensitive Dynamin that disrupts vesicular uptake. GPCR signaling was interrupted 
using Pertussis toxin (PTX), this construct prevents GDP to be swapped out for GTP on 
the inhibitory Gα-subunit thereby disrupting all inhibitory GPCR signaling, also G-αI 
RNAi was used to specifically target the inhibitory Gα-subunit pathway, and G-γ RNAi 
was used to specifically target the Gβγ signaling pathways. The calcium signaling 
pathways were interrupted using Calmodulin (Cam) RNAi, and Cap60A RNAi, a 
construct that prevents Itp3 from binding to the SERCA pump on the endoplasmic 
reticulum. Membrane potential was disrupted using the following transgenes: TrpA1, a 
temperature-sensitive cation channel will depolarize the membrane when brought above 
the permissive temperature of 26°C; Zydeco, increases expression of the Sodium 
Calcium Exchanger (NCX) on the plasma membrane; Kir2.1, is an inwardly rectifying 
voltage-gated potassium channel that will hyperpolarize the membrane; and NaChBac 
#1, is the ectopic expression of a bacterial sodium channel causing depolarization of the 
membrane. Finally, glutamate homeostasis was disrupted by decreasing expression of 
the glutamate transporter EAAT1.  

 
 
  
 

Transgene Cellular Function Sensitivity Tolerance 
TeTx Vesicular Recycling NP Decreased 
Shi GMR Vesicular Recycling NP NP 
PTX GPCR Signaling Increased Decreased 
G-γ RNAi GPCR Signaling NP NP 
G-αI RNAi GPCR Signaling NP NP 
Cam RNAi Calcium Signaling NP Decreased 
Cap60A RNAi Calcium Signaling NP NP 
TrpA1 Membrane Potential NP NP 
Zydeco Membrane Potential Increased NP 
Kir2.1 Membrane Potential NP NP 
NaChBac #1 Membrane Potential NP NP 
EAAT1 RNAi Glutamate Homeostasis Increased Decreased 

 
 
 
 
 
 
 

Table 1: Summary of UAS transgenes of known mammalian astrocyte function and their 
behavioral response to ethanol exposure. NP is for No Phenotype. Two behavioral 
readouts were measured, Sedation Sensitivity and Sedation Tolerance. 
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3.3 Glutamate Regulation by Astrocytes is Required for Ethanol Responses  
 

From this screen, it was noted that disruption of glutamate homeostasis, through the 
reduced expression of the glutamate transporter EAAT1, led to a very pronounced 
phenotype (Figure 2): increased sedation sensitivity (** p= 0.0055-0.0011) and 
decreased in sedation tolerance (** p= 0.0032 ***p=0.0002).  
 
 

 
 
 
 

To test if the phenotype seen with the RNAi was a result of the lack of transporter, an 
opposing experiment was performed by ectopically overexpressing EAAT1 in 
astrocytes. Ectopic overexpression of EAAT1 provided an opposing phenotype, with no 
sedation sensitivity but increased ethanol tolerance (Figure 3). This confirms that the 
original phenotype with the RNAi was not a result of the gross disruption of the 
nervous system, but rather a result of the decreased expression of EAAT1. Further, it 
suggested that either glutamate clearance from the synapse, or a product of glutamate 
metabolism, may play a central role in setting ethanol tolerance susceptibility. 

 

  

0

10

20

tim
e,

 m
in

ut
es

Sensitivity

0

4

8

12

16

20

24

tim
e,

 m
in

ut
es

Tolerance
A 

** 
n.s. 

 ** 
*** 

 

**

B 

n.s. 
 

Figure 2: Decreased expression of EAAT1 in astrocytes causes increases 
sensitivity and decreased tolerance. A) A significant sedation sensitivity phenotype 
is seen. B) Decreased tolerance is seen in experimental flies (blue bar) compared to 
controls. One-way ANOVA/Tukey’s, n=8-9 groups of flies. **P<0.01, 
***P<0.001 
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3.4. Dysregulation of Glutamate Homeostasis Causes Signs of Neurodegeneration 
 

Climbing ability is a measure of overall nervous system function: excitotoxicity from 
reduced glutamate clearance, and other neurodegenerative conditions reduce climbing 
(Barone and Bohmann, 2013). Flies with reduced EAAT1 in astrocytes showed a 
pronounced climbing defect (Figure 4). Concern was made that perhaps the flies were 
not able to properly right themselves following the spinning of tubes in the Sedation 
Tolerance assay, thus readings of knock-out flies were merely flies that were stuck 
versus intoxicated. To confirm that this climbing defect did not compromise the 
original behavioral phenotype I repeated the original Sedation Tolerance assay without 
ethanol (data not shown). The results confirmed that despite having an inability to 
climb, the experimental flies could right themselves without defect, showing that the 
original behavioral phenotypes are due to ethanol-induced behavior. Furthermore, our 
climbing assay was performed on newly eclosed flies. Overt signs of neurodegeneration 
with reduced EAAT1 do not become evident until at least 15 days, which is roughly 
late middle age for a fly. These data suggested that reducing glutamate clearance and 
homeostasis by astrocytes may cause pre-neurodegenerative changes to neurons 
important for ethanol tolerance. 

B A 

  
 
Figure 3: Overexpression of EAAT in astrocytes provides no sensitivity or tolerance 
phenotype. A) No sedation sensitivity phenotype is seen. B) No significant tolerance phenotype is 
seen in experimental flies (blue bar) compared to controls. One-way ANOVA, n=11 groups of flies. 
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Another potential explanation for the ethanol tolerance phenotypes with changes in 
EAAT1 expression levels is that ethanol absorption or metabolism may be affected. An 
ethanol metabolism assay was conducted to assess if the behavioral phenotype was not 
due to altered ethanol metabolism (Figure 5). Flies were exposed to ethanol or air for 
15 minutes and either frozen immediately or allowed to metabolize for 30 minutes and 
then frozen. Ethanol content was analyzed by measuring ethanol concentration in 
exposed flies and subtracting the values found in unexposed control flies. No 
significant differences were seen between experimental and control flies at either the 15 
minute or 45 min time points. Thus, experimental flies were not merely containing an 
increased amount of alcohol and responding accordingly, but were exhibiting a change 
in behavior due to the lack of functional EAAT1 in the astrocytes. 
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Figure 4: Decreased expression of EAAT1 in astrocytes provides a 
locomotor defect phenotype. Average results of climbing assay for individual 
trials and genotypes showing significant climbing defect in experimental flies. 
One-way ANOVA/Tukey’s, n=11 groups of flies. **P<0.01, ****P<0.0001 
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Excitotoxicity causes a significant decrease in longevity. To test if flies with reduced 
EAAT1 were short-lived, I assessed viability over a 75 day period. Flies were exposed to 
either ethanol or air for 45 min and then were cultured under standard conditions to 
determine how exposure would affect the lifespan of the flies. Our results were consistent 
with previous findings, with flies expressing decreased levels of EAAT in astrocytes 
exhibiting decreased lifespan (Figure 6) (Rival et al., 2004). Ethanol exposure did not 
hasten demise or proffer a protective effect, either in the experimental or the controls 
(Figure 6). This data suggests that ethanol does not interact synergistically with 
glutamate dyshomeostasis to alter the rate of neurodegeneration. 
 
 
 
 
 
 
  

 
Figure 5: Decreased expression of EAAT1 in astrocytes does not affect 
ethanol metabolism.   Bar graph displaying ethanol metabolism in flies. No 
visible differences in either initial ethanol absorption (15 minute) or ethanol 
metabolism over time (45 minutes) across groups and genotypes. One-way 
ANOVA, n=4 groups of flies. 
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3.5. Discussion 
 

In summary, disruption of glutamate uptake by fly astrocytes strongly alters ethanol 
sensitivity and tolerance. In tandem, it degrades behavioral responses by increasing 
neurodegeneration. Previous studies have unequivocally demonstrated that blocking 
glutamate uptake by astrocytes in flies results in excitotoxicity from increased 
glutamate neurotransmission (Aw et al., 2017; Rival et al., 2004, 2006; Verma et al., 
2015). The mechanism is thought to be tied to increased production of reactive oxygen 
species in the overstimulated neurons (Bingol et al., 2014; Cassar et al., 2015; Yu et al., 
2011). We were unable to separate excitotoxicity from ethanol behavioral phenotypes. 
Therefore, either excitotoxicity results in changes in ethanol behavioral responses, or 
they are separate processes that are difficult to untangle at the present. It is important to 
note that onset of the neuroanatomical overt behavioral signs of neurodegeneration 
typically take 10-20 days. Our ethanol tolerance tests are done on younger flies that are 
a maximum of 5 days old. This may suggest that damage to the nervous system occurs 
much earlier than previously thought. Alternatively, ethanol tolerance is a separable 
process. A further weak argument against neurodegeneration as the sole cause of 
decreased ethanol tolerance: Eaat1 overexpression in astrocytes rescues 
neurodegeneration in a fly model for tauopathy, whereas I found no effect on ethanol 
tolerance (Kilian et al., 2017). 

 
Figure 6: Decreased expression of EAAT1 in astrocytes reduces fly lifespan. A) Flies 
exposed to air only showed decreased longevity compared to controls. B) Flies exposed to 
ethanol also showed decreased in longevity compared to controls. One-way ANOVA/Tukey’s, 
n=15 groups of flies. **P<0.01 

 

 



18 
 

 
 

Decreasing EAAT1 in astrocytes not only increases extracellular glutamate, but also 
decreases glutamate availability inside the astrocytes. I also pursued manipulation of 
astrocyte glutamate metabolism, but these manipulations either had no clear effect on 
ethanol behavioral responses or caused early lethality (data not shown).  
 
The current state of technology limits our ability to firmly answer whether glutamate 
homeostasis by astrocytes contributes to ethanol behavioral plasticity. However, our 
data does indicate that astrocytes function in ethanol behavioral responses. In addition 
to glutamate, we found that signaling by inhibitory GPCRs in astrocytes is important 
for tolerance. Astrocytes express GPCRs for almost all neurotransmitters and 
neuromodulators (Zhang et al., 2014). GPCRs conduct slower neurotransmission, and 
therefore generally transmit modulatory information to the receiving cells. Our 
admittedly preliminary data suggests that astrocytes are modified by ongoing 
neurotransmission that is affected by ethanol, and this may be tied to glutamate 
homeostasis. The advent of tools to alter the function of just a subset of astrocytes, 
especially those in direct contact with neurons that promote ethanol behavioral 
plasticity, will give us much needed specificity and will allow us to readdress the 
questions raised by our experiments (Engel et al., 2016; Jenett et al., 2012; Urizar et al., 
2007).  
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CHAPTER 4: THE BLOOD BRAIN BARRIER IS PHYSICALLY 
REMODELLED BY ETHANOL IN AN AKAP200-DEPENDENT MANNER 

 
4.1 Akap200 Mutants Exhibit Decreased Behavioral Plasticity Upon Repeated Ethanol 

Exposure 
 

To understand if Akap200 functions in ethanol behavioral responses, we first 
characterized its transcriptional response to ethanol. The Akap200 locus transcribes 
seven distinct transcripts that are translated into two major forms of Akap200 protein 
(Figure 7a). Class I transcripts encode Akap200L proteins that contain a protein kinase 
A (PKA) regulatory subunit type II (RII) binding domain, and Class II transcripts 
encode Akap200S proteins that lack the RII domain. We confirmed increased Akap200 
expression with ethanol exposure, and found that Class I transcripts were upregulated 
by ethanol (Figure 7b). To ask if Akap200 functions in ethanol behavioral responses, 
we characterized new mutations in the gene. Two transposon insertions in the Akap200 
locus, NP511 and EY4645, strongly decreased expression of Akap200 transcript classes 
in homozygotes (Figure 7c). Two additional independent transposon insertions at 
different genomic locations also decreased Akap200 expression (Figure 7c). All these 

Figure 7. Akap200 expression levels are increased by ethanol. a. Map of the Akap200 genomic 
region depicting the two major transcript classes that encode distinct proteins. Boxes indicate exons and 
open reading frames are shaded. Triangles indicate transposon insertion sites, and sequences used to 
generate dsRNA (5646, 651) are also indicated. qPCR probesets bridge the final intron for each class. 
b. Akap200 transcript levels 1 h after exposure to 30’ humidified air or 30’ ethanol vapor. One way 
ANOVA/Dunn’s, **P<0.01. n=7 biological replicates. c. Expression of Akap200 is reduced in flies 
homozygous for the indicated transposon insertions. *P<0.05 **P<0.01 one sample t-test. n=5-7 
biological replicates.  
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Akap200 mutants were homozygous viable and sterile. The sterility phenotype is likely 
due to the role of Akap200 in oogenesis (Jackson and Berg, 2002).  
 
We tested NP511 and EY4645 flies for their behavioral response to ethanol using assays 
that measure sedation sensitivity (Figure 8a) and locomotor stimulation (Figure 8f). 
To induce and measure rapid tolerance to ethanol sedation, flies were exposed twice to 
ethanol vapor, with a 4 h interval between the start of each exposure, allowing for 
complete ethanol metabolism between exposures. Flies are less sensitive to the sedating 
effects of ethanol upon the second exposure, and this tolerance is measured as the 
difference in time to 50% sedation (ST50) between exposures (Figure 8a). EY4645 
flies showed increased sensitivity to the sedative effect of acute ethanol exposure 
(Figure 8b), and both EY4645 and NP511 showed decreased ethanol tolerance (Figure 
8c). Flies heterozygous for either mutation were unaffected for ethanol behavioral 
responses (Figure 8d,e), indicating that both Akap200 mutations are recessive and loss-
of-function for ethanol sedation responses. The two additional alleles, NP609 and 
NP6271, also exhibited decreased ethanol tolerance (Figure 8c). 
 
Inebriating ethanol doses stimulate locomotor activity, and this ethanol-induced 
hyperactivity is sensitized upon a second exposure (Figure 8f) (Kong et al., 2010b). A 
measure of hyperactivity is the total distance travelled between 2 and 25 min of ethanol 
exposure, and the difference between exposures, ∆Dist, is a measure of behavioral 
plasticity. NP511 increased and EY4645 decreased ethanol-induced hyperactivity 
(Figure 8g), whereas both mutations decreased ∆Dist (Figure 8h). Ethanol absorption 
was unaffected in the Akap200 mutant flies (Figure 8i). 
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Figure 8. Ethanol behavioral responses are altered in Akap200 mutants. a. Ethanol sedation 
sensitivity and tolerance time course. Flies are given two identical exposures to continuous ethanol 
vapor (E1, filled symbols, and E2, open symbols) separated by a rest period. ST50 is the time to 50% 
sedation within a group of approximately 20 flies. n=9 groups of flies. b-e. Sedation sensitivity (b, d) 
and tolerance (c, e) for flies homozygous (b, c) or heterozygous (d, e) for NP511, EY4645, NP609, or 
NP6271. Homozygous: one-way ANOVA, n=7-12 groups of flies. Heterozygous: one-way ANOVA, 
n=6-20 groups of flies. f. Ethanol-induced locomotor activity using the exposure scheme and genotypes 
described in a. ‘A’ indicates the locomotor speed of flies in a stream of humidified air just prior to 
continuous ethanol exposure. g. Distance travelled from 2-25 min ethanol exposure. *P<0.05 **P<0.01 
t-test. n=6-7 groups of flies. h. Distance travelled, E2-E1. **P<0.01 t-test. n=6-7 groups of flies. i. 
Internal ethanol concentration in flies exposed to ethanol vapor. n=3-4 groups of flies. ‘Ctl’ is the 
Berlin genetic background strain. 
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Ethanol preference is a distinct measure of drug-induced behavioral plasticity 
(Devineni and Heberlein, 2009; Devineni et al., 2011; Ja et al., 2007). Drug naïve flies 
equally prefer food and food+ethanol, whereas pre-exposure to an inebriating dose of 
ethanol vapor induces preference for food+ethanol (Figure 9a,b) (Peru Y Colón de 
Portugal et al., 2014). Interestingly, Akap200 mutant flies preferred food+ethanol even 
without the priming pre-exposure (Figure 9b). This precocious ethanol preference 
could be due to an inability to detect aversive tastants such as ethanol. However, 
Akap200 mutant flies given a choice between highly sweet but bitter and less sweet 
foods chose the less sweet option (Figure 9c). These data show that Akap200 affects 
ethanol sensitivity and promotes behavioral plasticity (tolerance, ∆Dist, and preference) 
upon repeated or chronic ethanol exposure.  

Figure 9. Akap200 mutants prefer ethanol without a priming ethanol exposure. a. Ethanol 
preference measured in the CAFÉ assay. Flies were pre-exposed to ethanol vapor (EtOH) or humidified 
air (Air), allowed to recover for 16 hr, and placed in the CAFÉ assay overnight to measure preference 
for ethanol consumption. b. While Akap200 mutants developed ethanol preference, they exhibited 
preference without prior ethanol experience (lower panel). *P<0.05, one sample t-test compared to 0. 
n=19-22 groups of flies. c. Bitter taste aversion in flies given the choice of sucrose with and without 
quinine. A value of ‘-1’ indicates complete aversion. *P<0.01, one-sample t-test compared to 0. n=5-9. 
‘Ctl’ is the Berlin genetic background strain. 
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4.2 Akap200 Expression in the Adult Nervous System 
 

Akap200 is expressed almost exclusively in the nervous system during embryonic 
development (Bonin and Mann, 2004; Freeman et al., 2003). We used the GFP protein 
trap PBss (Figure 7a) to assess Akap200 distribution in the adult nervous system. In 
Akap200PBss, GFP-encoding sequences are predicted to splice to the Akap200 open 
reading frame upstream of the final coding exon, and downstream of all characterized 
functional domains. We confirmed the presence of Akap200-GFP fusion proteins in 
Akap200PBss fly heads by western analysis (Figure 10a), detecting both Akap200L-GFP 
and Akap200S-GFP. Akap200-GFP appeared cytoplasmic and was widely distributed 
in the brain (Figure 10b). Particularly strong expression surrounding neuronal nuclei in 
the cortex suggested expression in cortex glia. Ensheathing glia that surround neuropils 
like the mushroom body kenyon cells and the antennal lobe glomeruli also appeared to 
be labeled. Diffuse expression was evident throughout the synaptic neuropil. We used 
the Gal4/UAS binary expression system to express two Akap200 dsRNAs, 651 and 
5646, that target distinct regions of Akap200 that are common to all isoforms (Figure 
7a). When expressed ubiquitously, both dsRNAs decreased Akap200 expression to 
barely detectable levels (Figure 10e). Akap200 RNAi restricted to all neurons reduced 
Akap200-GFP throughout the adult brain, with the greatest reduction in the synaptic 
neuropil, and made ensheathing glial Akap200-GFP expression more visible (Figure 
10c,c’). Glial-specific Akap200 RNAi also reduced Akap200-GFP expression, 
especially in the cortex (Figure 10d,d’). Thus, Akap200 is present in both neurons and 
glia in the adult brain, and Akap200 expression is widespread. 
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Figure 10. Akap200 expression in the adult brain. a. The Akap200-PBss protein trap produces 
endogenous GFP-tagged Akap200L and Akap200S (Akap200-GFP). Western analysis of whole head 
protein extracts from genetic background control and Akap200PBss flies, probed with GFP antibodies. 
Molecular weights are in kDa. b. Akap200-GFP is expressed broadly in the adult fly brain. Confocal 
image of a w,UAS-Akap200.IR/+;Akap200PBss/+ control brain (without a GAL4 driver transgene) 
labeled with antibodies to GFP (green) and DLG (magenta) to broadly label brain synapses. ctx: cortex 
region containing glia and neuronal cell bodies; al: antennal lobe. Scale bar: 50 µm. b’. Enlarged view 
of Akap200-GFP in the antennal lobe. c. Akap200 RNAi targeted to all neurons globally reduced 
Akap200-GFP expression, especially in the synaptic neuropil. c’. Reduced synaptic region staining 
reveals Akap200-positive ensheathing glia. Genotype: w,elav(c155)-Gal4,UAS-
Akap200.IR/+;Akap200PBss/+. d. Akap200 RNAi targeted to all glia also reduced Akap200-GFP 
expression. d’. Only synaptic neuropil Akap200-GFP staining is evident in the antennal lobe. 
Genotype: w,UAS-Akap200.IR/+;Akap200PBss/+;repo-Gal4/+. e. Akap200 transcript levels are reduced 
in fly heads when Akap200 RNAi is expressed ubiquitously with Act5c-Gal4. 
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4.3 Akap200 is Required in the Outermost Layer of the Blood-brain Barrier for Ethanol 
Responses 
 

We next asked if Akap200 was required in the nervous system for ethanol responses. 
Akap200 RNAi in all neurons (elav-GAL4) did not alter ethanol sedation sensitivity or 
tolerance, whereas Akap200 RNAi in all glia (repo-GAL4) reduced ethanol tolerance 
(Figure 11a,b). Drosophila possess diverse types of glia that perform specific functions 
(Figure 11e), and so we used a panel of transgenes that express Gal4 in specific glial 
classes to reduce Akap200 expression (Figure 11b, lower table). Akap200 RNAi 
specifically in perineurial glia (using Indy-Gal4) decreased ethanol sedation sensitivity 
and sedation tolerance (Figure 11a,b). Indy-Gal4 is highly specific to the perineurial 
glia in the adult nervous system (Supplementary Figure 1), however it may be 
expressed in other tissues in the animal (DeSalvo et al., 2011a). To test this, we 
introduced repo-Gal80, a transgene that expresses the GAL4 inhibitor GAL80 
specifically in all glia, and we found that it blocked the behavioral effects of Akap200 
RNAi driven by Indy-Gal4, indicating that Akap200 function for ethanol tolerance is 
specific to perineurial glia (Figure 11a,b). Like ethanol sedation tolerance, ∆Dist was 
decreased when Akap200 expression was reduced in all glia and specifically in 
perineurial glia (Figure 11c,d). These findings indicate that Akap200 promotes ethanol 
behavioral responses through its actions in the perineurial glia that form the outermost 
cellular layer of the Drosophila blood-brain barrier. Higher magnification images 
revealed Akap200-GFP expression in perineurial glia (Figure 11f). Perineurial-specific 
Akap200 RNAi decreased Akap200-GFP expression specifically in these cells, and the 
cell layer appeared to be intact (Figure 11f). There is limited understanding of the 
function of the perineurial glia (Seabrooke and O’Donnell, 2013; Volkenhoff et al., 
2015). 

 
 
 
 
 
 
 
 
 
Figure 11. Akap200 is required in the perineurial glia for ethanol responses. a,b. Ethanol sedation 
sensitivity (a) and tolerance (b) when expressing Akap200 dsRNA (UAS-Akap200.IR) in neuronal and glial 
cells with the Gal4 strains indicated below the graphs. Tissue type expression is listed for each Gal4 strain 
below the graphs. repo-G80 expresses the GAL4 inhibitor GAL80 specifically in all glial cells. One way 
ANOVA/Tukey’s, the number of groups tested is indicated below each bar. c,d. Ethanol induced locomotor 
activity in ethanol naïve (c) and ethanol pre-exposed (d) flies. One way ANOVA/Tukey’s, the number of 
groups tested is indicated below each bar. All tests were with UAS-Akap200.IR 651 except where indicated. 
e. Diagram depicting the location of the five types of glia in flies. Diagram adapted with permission from 
Dr. Margaret Ho (Ou et al., 2016). f. Akap200 is expressed in the perineurial glia, labeled with the Indy-
Gal4 transgene. “Overlap” show pixels that are common between labels. Genotypes are Control: 
w;Akap200PBss/UAS-CD2mCherry;Indy-Gal4/+, and Akap200.IR: w,UAS-Akap200.IR;Akap200PBss/UAS-
CD2mCherry;Indy-Gal4/+. Labeled with dsRed (magenta, to detect CD2mCherry in the perineurial glia) 
and GFP (green, for Akap200-GFP) antibodies. Area imaged is depicted by a dashed rectangle in panel e. 
Scale bar: 25 µm. 
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4.4 Ethanol Alters Perineurial Glial Morphology in an Akap200-dependent Manner 
 

The perineurial layer of the blood-brain barrier is composed of elongated cells that tile 
the entire surface of the adult brain (Awasaki et al., 2008; Kremer et al., 2017; Stork et 
al., 2008). Labeling the perineurial glia with plasma membrane bound GFP reveals their 
tiled organization on the front surface of the brain (Figure 12a, Air panel, and 
Supplementary Figure 2). Akap200 RNAi in the perineurial glia did not affect 
perineurial morphology, indicating that their development and overall structure is 
unaffected by loss of Akap200 (Figure 12b, Air panel). Exposure of awake and 
behaving flies to an ethanol dose that induces tolerance resulted in a marked change in 
perineurial glia membrane topology (Figure 12b, Ethanol panel), appearing more 
disorganized and masking the tiled appearance. We used Multicolor FlpOut to assess 
the morphology of individual cells (Nern et al., 2015). Whereas the spatial arrangement 
of perineurial cells appeared unaffected by ethanol, the plasma membranes appeared 
less uniform (Supplementary Figure 2a,b). Because Akap200 binds actin, we 
expressed the Lifeact-GFP actin-binding protein in perineurial glia, which was 
stochastically expressed in a subset of perineurial cells. The actin cytoskeleton in 
untreated perineurial cells appears to form a lattice-like structure (Supplementary 
Figure 2c). Ethanol exposure disrupted the lattice, and resulted in the accumulation of 
discrete actin blobs (Supplementary Figure 2d).   

 
Surprisingly, the altered appearance of the perineurial glia persisted at least 24 h after 
recovery from the single ethanol exposure, a time when tolerance has mostly dissipated 
(Figure 12a, 24 hr rest panel) (Scholz et al., 2000). In flies with Akap200 expression 
reduced specifically in the perineurial glia, ethanol exposure affected perineurial glia 
membrane topology less severely or in a delayed manner (Figure 12b, lower panels). 
These data indicate that ethanol induces morphological changes in the perineurial glia 
through an Akap200-dependent mechanism. 
 
Ethanol may promote tolerance by structurally or functionally incapacitating the 
perineurial glia. We tested the extreme form of this scenario by killing the perineurial 
layer specifically in adults. Flies of the genotype tub-Gal80ts,Indy-Gal4>UAS-rpr,UAS-
hid will express pro-apoptotic Rpr and Hid in the perineurial glia at 29°C but not at 
18°C. Flies raised at 18°C were viable and outwardly normal. When shifted to 29°C as 
adults nearly all experimental flies died within 3 days, whereas temperature controls 
maintained at 18°C and genetic controls lacking UAS-rpr and UAS-hid shifted to 29°C 
remained alive. Furthermore, ethanol exposed wild-type flies showed no decreased 
viability for at least a week after exposure (not shown). Therefore, the adult perineurial 
glia are essential for viability, consistent with their known essential role in transporting 
circulating sugars into the brain, and they retain their vital functions following ethanol 
exposure (Volkenhoff et al., 2015). 
 
The subperineurial glia make extensive physical contact with the perineurial glia and 
they form both the physical and chemical barrier in Drosophila (Hindle and Bainton, 
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2014). Ethanol exposure or loss of Akap200 could affect behavior by changing barrier 
permeability, potentially altering the molecular composition of the brain extracellular 
fluid. Previous work showed that disruption of the subperineurial physical barrier 
decreased ethanol sensitivity (Bainton et al., 2005). We asked if either ethanol or the 
loss of Akap200 disrupted these protective functions of the barrier. Dye-coupled large 
molecular weight dextrans injected into the hemolymph are physically excluded from 
the brain by subperineurial septate junctions, and we observed that the injected dye 
accumulated at the perineurial glia (Figure 12d). Similarly, the drug prazosin is 
chemically excluded from the brain by subperineurial transporter proteins; we 
confirmed that BODIPY-prazosin accumulated at the blood-brain barrier along with 
dextran (Figure 12e) (Mayer et al., 2009). Neither loss of Akap200 nor ethanol 
exposure resulted in increased penetration of either molecule into the brain (Figure 
12e). Tests with gene mutants known to disrupt the physical (moody) and chemical 
(mdr65) barrier confirmed our ability to detect barrier defects (not shown). Therefore, 
the classical barrier functions of the blood-brain barrier appear to be intact following 
ethanol treatment and with loss of Akap200, suggesting that Akap200 serves a different 
role in the perineurial glia. 
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Figure 12. Ethanol causes a morphological change of the perineurial glia that depends on 
perineurial glia-expressed Akap200. a. Front surface image of the central brain perineurial glia 
expressing plasma membrane-bound mCherry, revealing the columnar distribution of the elongated 
perineurial glia cells in ethanol naïve flies (Air). An individual cell is outlined. Membrane topology 
became more complex immediately following exposure to a just sedating dose of ethanol (Ethanol). 
This effect persisted at least 24 h post-ethanol recovery (rest). b. Ethanol effects on perineurial glia 
topology were delayed and less dramatic when Akap200 expression was reduced in the perineurial glia. 
c. Brain areas imaged in this figure. d. High molecular weight dye (10 kDa Texas Red dextran) injected 
into the hemolymph accumulated at the perineurial glia layer (Indy-Gal4/+;UAS-CD8:GFP/+) of the 
blood-brain barrier, and did not penetrate into the central nervous system (CNS). e. The physical and 
chemical exclusion properties of the blood-brain barrier were unaffected by ethanol exposure or lack of 
Akap200. 10 kDa Texas Red dextran (physical, septate junctions, magenta) and BODIPY-prazosin 
(chemical, green) co-injected into the hemolymph were excluded from the CNS. Micrographs depict 3 
µm frontal sections midway through the brain, at the surface of the optic lobe. Scale bar: 25 µm. 
 



30 
 

 
 

4.5 Akap200 Overexpression in the Perineurial Glia Decreases Ethanol Tolerance  
 

To determine if Akap200 regulates ethanol responses in a dose sensitive manner, we 
overexpressed Akap200 in the perineurial glia. Akap200L (Long) overexpression 
increased ethanol sensitivity and decreased ethanol tolerance, similar in effect to the 
EY4645 loss-of-function mutation, whereas overexpression of Akap200S (Short) had 
no effect (Figure 13a,b). Because Akap200L contains the PKA-RII binding domain, 
this suggests that spatial coordination of PKA by Akap200 in the perineurial glia can 
affect ethanol behavioral responses. This overexpression phenotype gave us an 
opportunity to test the importance of each Akap200 domain (Rossi et al., 1999). PKC 
phosphorylation sites in the N-terminal positively charged domain were made either 
nonphosphorylatable (S->A) or psuedophosphorylated (S->D), and the myristoylation 
consensus sequence was separately mutated. Both psuedophosphorylation and blocking 
myristoylation eliminated the effects of overexpression on ethanol sensitivity and 
tolerance (Figure 13a,b). Because PKC phosphorylation dissociates calmodulin and 
actin from Akap200, these data suggested that Akap200 membrane localization and its 
interactions with PKC, calmodulin, or actin may be important for its role in ethanol 
behavioral responses (Rossi et al., 1999). 
 
To test if increased Akap200L expression resulted in a dominant negative effect, 
interfering with normal Akap200 function, or a neomorphic effect, we overexpressed 
wild-type Akap200L in flies heterozygous for the strong loss-of-function allele EY4645 
to lower the dose of endogenous Akap200. Decreasing the dose of Akap200 had no 
effect on Akap200 overexpression behavioral phenotypes (Figure 13c,d), suggesting 
that overexpression conferred a new function to Akap200 that impacts ethanol 
behavioral responses. Alternatively, Akap200 levels may need to be kept in a tightly 
controlled optimal range. 
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4.6 PKA and Calcium Regulate Ethanol Tolerance in the Perineurial Glia 
 

Akap200 physically interacts with the PKA RII regulatory subunit PKA-R2, the 
calcium binding protein calmodulin (CaM), and actin, and it is phosphorylated by PKC 
(Li et al., 1999; Rossi et al., 1999). We asked if PKA and intracellular calcium levels 
contribute to ethanol tolerance in the perineurial glia. RNAi-mediated reduction of Pka-
R2 in the perineurial glia decreased ethanol sedation sensitivity and decreased ethanol 
tolerance (Figure 14a,b). Overexpression of the PKA catalytic subunit (Pka-C), either 
the wild-type or a constitutively active form, had similar behavioral effects to loss of 
Pka-R2. Both manipulations of PKA are predicted to increase PKA activity. This 
suggests that Akap200 may promote ethanol tolerance by limiting PKA activity. 
Further, reducing CaM expression in the perineurial glia led to marked ethanol sedation 
resistance and a near absence of ethanol tolerance (Figure 14a,b), suggesting that a 
calcium-dependent process in the perineurial glia is important for ethanol responses. 
Consistent with this, reduced expression of the sarco/endoplasmic reticulum calcium-
ATPase channel Cap60A or the inositol 1,4,5-trisphosphate receptor Itpr resulted in 

 
 

Figure 13. Increased expression of Akap200 in perineurial glia increases ethanol 
sensitivity and decreases ethanol tolerance. a, b. Ethanol sensitivity (a) and tolerance (b) 
when either wild-type or mutated Akap200 transgenes were expressed in perineurial glia of 
wild-type flies. Akap200 sequence changes were S->A: PKC non-phosphorylatable; S->D: PKC 
pseudo-phosphorylated; NM: myristoylation blocked. c, d. Ethanol sensitivity (c) and tolerance 
(d) in flies with reduced wild-type (Akap200EY4645/+) and overexpressed Akap200L did not 
affect the overexpression phenotypes. One way ANOVA/Tukey’s, the number of groups tested 
is indicated below each bar for all panels in figure. *p < 0.05, **p < 0.01. 
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decreased ethanol tolerance (Figure 14a,b). These results suggested that PKA and 
endoplasmic reticulum-mediated calcium signaling may be coordinated by Akap200 in 
the perineurial glia to promote ethanol sensitivity and tolerance.  
 
Finally, we asked if altering the properties of the perineurial glia specifically during 
ethanol exposure affected behavior. We acutely depolarized the perineurial glia, 
increasing calcium influx, during ethanol exposure using the heat activated TrpA1 
cation channel. TrpA1 activation did not alter ethanol sensitivity, but it strongly 
decreased ethanol tolerance (Figure 14c,d). These data demonstrate that the perineurial 
glia are actively involved in the development of ethanol tolerance. 

 
 

4.7 Discussion 
 

We show that the outer cellular layer of the Drosophila blood-brain barrier, the 
perineurial glia, is critical for the development of ethanol tolerance. Prior work shows 
conclusively that ethanol tolerance is due to changes in neuronal excitability and 
synaptic plasticity (Ghezzi and Atkinson, 2011; Lovinger and Roberto, 2013). We 
propose that ethanol generates tolerance in part by eliciting a signal that leads to A 
kinase anchoring protein-dependent changes in blood-brain barrier morphology and 

 
 
Figure 14. Perineurial expression of proteins that interact with Akap200 is required for normal 
ethanol sensitivity and tolerance. a,b. Ethanol sedation sensitivity (a) and tolerance (b) for flies 
expressing the indicated transgenes (UAS-Tg) in perineurial glia. Pka-R2.IR: PKA regulatory subunit 
RII RNAi; Pka-C: wild-type PKA catalytic subunit; Pka-C*: constitutively active PKA catalytic 
subunit; Cam.IR: calmodulin RNAi; Cap60A.IR: SERCA RNAi; itpr.IR: InsP3R Itp-r83A RNAi. c,d. 
Ethanol sedation sensitivity (c) and tolerance (d) for flies expressing the TrpA1 cation channel in 
perineurial glia. Flies were raised at 22°C (TrpA1 off), and held at 22°C (control) or shifted to 31°C 
(TrpA1 on, experimental) just prior to commencement of ethanol vapor exposure. One-way 
ANOVA/Tukey’s or Kruskal-Wallis/Dunn’s. Number of groups tested is indicated below each graph. 
*p < 0.05, **p < 0.01. 
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function. Perineurial Akap200, membrane polarization, calcium regulation, and PKA 
activity all contribute to ethanol responses. These findings assign a function to the 
perineurial glia in the regulation of adult behavior. We suggest that a humoral-CNS 
communication pathway exists that is affected by ethanol and that transits through the 
barrier. 
 
Maintenance of classical physical and chemical barrier functions is critical for normal 
behavioral responses to acute ethanol exposure. The fly G protein-coupled receptor 
Moody maintains septate junctions between subperineurial glia, forming the physical 
barrier. Moody mutants accumulate high molecular weight dyes in the CNS  and show 
decreased ethanol sensitivity (Bainton et al., 2005). The fly Mdr65 transporter is also 
located in the subperineurial glia and is critical for selective exclusion of hemolymph 
molecules from the CNS (Mayer et al., 2009). Like Moody, loss of Mdr65 decreases 
ethanol sensitivity (unpublished observations). The perineurial glia are directly apposed 
to the subperineurial glia and both completely cover the adult CNS, suggesting that the 
barrier glia communicate to maintain barrier function. However, neither ethanol nor 
removal of Akap200 from the perineurial glia caused measurable changes in 
subperineurial glia-dependent barrier functions, indicating that Akap200 in the 
perineurial glia regulates ethanol behaviors by a distinct mechanism. 
 
Acute ethanol exposure has pronounced effects on barrier-like properties and the 
cytoskeleton in culture-based models of the mammalian blood-brain barrier. Cultured 
brain endothelial cells form a confluent monolayer sealed with tight junctions. A 2 hr 
exposure to 50 mM ethanol causes changes in cell shape, increased paracellular 
permeability, and altered phosphorylation and distribution of tight junction-associated 
proteins (Haorah et al., 2005). Primary cultures of astrocytes treated with 100 mM 
ethanol for 10 min lose actin stress fibers and mislocalize the focal adhesion protein 
paxillin (Allansson et al., 2001; Guasch et al., 2003). Together these findings indicate 
that acute ethanol exposure can alter the cytoskeleton at the membrane, leading to 
decreased integrity of endothelial sheets and potentially decreased extracellular matrix 
adhesion of astrocytes. Our in vivo data is consistent with changes in cytoskeletal 
organization in the perineurial glia upon acute ethanol exposure, and Akap200 binds 
filamentous actin (Rossi et al., 1999). The delayed effects of ethanol on perineurial glia 
morphology in Akap200 mutants suggest that Akap200 may coordinate some of the 
biochemical pathways that ethanol engages to affect cytoskeletal organization. 
Akap200, like other AKAP proteins, may dynamically position protein complexes 
where they can respond to membrane-bound receptor activation in a localized fashion. 
Akap200 and the mammalian Akap12 (also known as SSeCKS and Gravin) lack 
sequence homology yet they physically interact with similar molecules, including PKA-
RII, PKC, calmodulin, Src, and the actin cytoskeleton, and both proteins associate with 
membranes via N-terminal myristoylation and polybasic effector domains (Gelman, 
2010). Akap12 expressed in astrocytes is induced by acute ethanol exposure, promotes 
blood-brain barrier formation in development, and tightens preformed endothelial 
barriers (Choi and Kim, 2008; Choi et al., 2007; Lee et al., 2003; Pignataro et al., 
2013). Akap12 also regulates cell shape and motility in response to extracellular signals 
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by flattening membranes and decreasing chemotaxis, however the direct relationship 
between the extracellular signal and Akap12 is not known (Su et al., 2010; Weiser et 
al., 2008). 
 
Acute ethanol exposure generally activates PKA signaling in mammals, and PKA 
regulates both the short and long term behavioral effects of ethanol (Ron and Messing, 
2013). For example, deletion of PKA regulatory subunits or PKA pharmacological 
inhibition in specific mouse brain regions decreases sensitivity to the hypnotic effects 
of ethanol and increases ethanol consumption (Lai et al., 2007; Pandey et al., 2003; 
Thiele et al., 2000; Wand et al., 2001). In flies, PKA also regulates ethanol sensitivity: 
flies lacking or expressing a dominant negative PKA regulatory subunit show decreased 
ethanol sensitivity (Park et al., 2000; Rodan et al., 2002). Furthermore, genetic 
manipulation of adenylyl cyclase activity suggests that neuronal PKA signaling 
promotes the development of ethanol preference in Drosophila (Xu et al., 2012). Our 
results show that increasing PKA activity, like decreasing Akap200 expression, 
specifically in the perineurial glia decreases ethanol sensitivity and tolerance. These 
results suggest that Akap200 may promote ethanol tolerance by sequestering inactive 
PKA. Alternatively, Akap200 may limit the spatial distribution of activated PKA to 
achieve high fidelity signaling. Our results, combined with others, point to cell type 
specific roles for PKA signaling in the brain in ethanol behaviors (Rodan et al., 2002; 
Ron and Messing, 2013).  
 
Cytoplasmic calcium levels in glia are mostly controlled by the endoplasmic reticulum. 
Calmodulin binds to Akap200 in the presence of calcium, displacing F-actin (Rossi et 
al., 1999). Calmodulin and endoplasmic reticulum stores of calcium in the perineurial 
glia are important for promoting ethanol sensitivity and tolerance, suggesting that 
calcium homeostasis may affect calmodulin and F-actin binding to Akap200. In 
mammals, elevation of intracellular calcium levels causes Akap12 to leave the 
membrane and become cytoplasmic or perinuclear (Schott and Grove, 2013). It is not 
yet known if ethanol exposure increases cytoplasmic calcium in the perineurial glia. 
However, experimentally increasing intracellular calcium during ethanol exposure led 
to decreased ethanol tolerance. 
 
Several blood-brain barrier intercellular signaling pathways have been described for 
neural development and adult physiology in both mammals and insects (Alvarez et al., 
2013). All the currently described signals in insects originate in the periphery to affect 
the CNS. First, nutrient availability in the hemolymph triggers production of the 
insulin-like molecule Dilp6 by the subperineurial glia to promote neuroblast 
proliferation in larvae (Spéder and Brand, 2014). It is notable that insulin regulates 
ethanol sensitivity in flies (Corl et al., 2005). Second, lipoprotein particles produced by 
the fat body adipose tissue cross the blood-brain barrier via glial-expressed LRP 
receptors, possibly to deliver signaling molecules to the CNS (Brankatschk et al., 
2014). Endocannabinoids, which modulate ethanol behaviors in mammals, are carried 
on Drosophila lipoproteins (Khaliullina et al., 2015; Pava and Woodward, 2012). Third, 
hemolymph levels of octopamine, thought to function like mammalian epinephrine and 
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norepinephrine, are increased by stress, and octopamine receptors are likely present on 
the blood-brain barrier (Davenport and Evans, 1984; Schofield and Treherne, 1985). 
Octopamine is required for the development of ethanol tolerance (Scholz et al., 2005). 
Finally, the subperineurial glia produce sex-specific signals to regulate male courtship 
(Hoxha et al., 2013). These findings indicate the diversity of roles played by the blood-
brain barrier beyond classical partitioning of the humoral and neural compartments, and 
suggest possible signaling mechanisms used by ethanol to regulate behavioral 
plasticity. 

 
 
4.8 Supplemental Figures 
 

 
 
Supplementary Figure 1. Indy-Gal4 brain expression is limited to the perineurial glia. a, b. Whole 
mount Indy-Gal4/+;UAS-CD2mCherry/+ (green) brain counterstained with antibodies to the glial nuclear 
protein REPO (magenta), 20 μm compressed stack. c, d, e. 2 μm section of lateral optic lobe at higher 
magnification shows no REPO-positive cells external to the Indy-Gal4-expressing layer. 
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Supplementary Figure 2. Ethanol effects on individually labeled perineurial cells. a,b. Stochastic 
labeling of individual perineurial cells using Muliticolor FlpOut in flies either sham treated with 
humidified air (a) or a sedating dose of ethanol vapor (b), and a subsequent 4 hr recovery. Independent 
recombination events were detected with either HA or FLAG tags. c,d. Representative discretely labeled 
perineurial cells expressing the actin binding Lifeact-GFP protein, in flies sham treated with humidified 
air (c) or with ethanol vapor (d). Confocal sections are inverted to highlight the actin pattern. e. Locations 
for the perineurial glia shown in this figure. 



37 
 

CHAPTER 5: CONCLUSIONS 
 
5.1 Short-term Goals 

 
The short-term goal of this work was to identify a role for glia in ethanol behaviors. 
While this was unsuccessful for the astrocytes at moment, follow up work should be 
done to investigate these cells, especially once Gal4 drivers become available that label 
specific neuropil-associated astrocytes. Furthermore, the results of the Akap200 work 
in the perineurial glia have opened new avenues of research into how these cells are 
interacting with neurons for the behavioral phenotypes we have observed, but also with 
the other glia cells that are physically between the neurons and the perineurial glia. 
Current work has started to suggest a signaling cascade involving actin and calcium but 
more research should be performed to better understand these interesting cells.  

 
5.2 Long-term Goals 
 

Future studies in the glia-ethanol field should include potential drug therapies for 
AUDs. As there are no current drug therapies in place to combat AUDs research into 
glia as a drug target is imperative. Understanding the relationship glia have with 
alcohol is crucial to this outcome and the work presented in this thesis is barely a 
starting point into the understanding of these cells. With the increasing genetic 
knowledge of these cells, new tools will be developed to better manipulate these cells 
and allow for understanding of their inner workings, and the disappearance of the 
“black box” figures that are all too common in the literature.   
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