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Abstract

If a single phrase can be said to embody modern perspectives on many-body theory, it is P.W.

Anderson’s famously simple line, “More is di�erent”. This idea is well understood by practitioners

of many-body theory, and �eld theory more generally, as drawing a distinction between the

degrees of freedom which de�ne a macroscopic system and the emergent degrees of freedom

which control its low-energy behavior. This dissertation will center this concept by studying a

set of models – frustrated magnetic systems – which maximize the distinction between e�ective

and de�nitional degrees of freedom. Each model highlights distinct sets of “exotic” many-body

phenomena.

We begin by considering an insulating quantum magnet on the geometrically frustrated

kagomè lattice. A simple approximation to the physics of some materials, such as the iron

jarosites, is achieved by focusing on nearest-neighbor antiferromagnetic exchange and spin-orbit

e�ects in the form of Dzyaloshinskii-Moriya interactions. Through series expansions around the

strong-�eld limit, we will provide evidence that this model generically realizes either topological

magnon bands or “semimetals” built out of charge-neutral magnetic excitations. We will also use

the wavefunctions computed in this process to determine transport functions of interest, such as

the thermal Hall conductivity. In the topological phase, we compute the system’s Chern numbers

and discuss the consequences of topological phase transitions for transport properties.

Next, we consider intriguing empirical results for the Lanthanide-based compound Ytter-

bium Silicate (Yb2Si2O7). This quantum dimer magnet is related to other well-known materials

which exhibit Bose-Einstein condensation transitions of spin excitations when subjected to a

magnetic �eld. We construct an e�ective spin model which reproduces the observed behavior of

Yb2Si2O7, and use a broad range of computational techniques to argue that this model captures
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the essential physics of the material. This example highlights the prospect of producing novel

interacting phases in materials with strong spin-orbit coupling.

Finally, we consider the statistical mechanics of a model that we call the distorted pyrochlore

Heisenberg model. This model constitutes a thermodynamic interpolation between the kagomé

and pyrochlore Heisenberg models, which each have storied histories in the context of spin

liquid physics. We will argue that thermal order-by-disorder – a phenomenon present in the

kagomé, but absent in the pyrochlore – appears above a nonzero transition temperature in a

quasi-two dimensional limit. We discuss the thermodynamic signatures of this behavior in the

low-temperature limit and their relevance for layered kagomé systems.
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Chapter 1

Magnetism, Quantum and Classical

1.1 Introduction: Why Magnets?

All undergraduate physics students become acquainted with the basic theory of magnetism fairly

early in their studies. Beyond the physics of magnetic dipoles, one might wonder how much there

is to learn about this subject. After all, it’s often said that magnetic forces were known to the an-

cient Greeks; how much novelty could possibly be left in such a storied �eld? Setting aside the

signi�cant exercises in mathematical physics one performs in electromagnetism courses, what

else is there to see? Furthermore, are there any general lessons to learn at all? One might worry

that most of the research into magnetism today is narrowly focused on individual materials which

are deemed empirically interesting. While the study of individual materials is a worthwhile pur-

suit, theoretical physicists would generally prefer to develop paradigm-de�ning principles which

put those examples in a broader framework. This is certainly the prevailing attitude found in

other areas of physics, popularized by the modern perspective associated with the renormaliza-

tion group and e�ective �eld theory [2–4].

The reader can be forgiven for asking such questions: condensed matter physics is a massive

�eld, and identifying the physical themes underlying such a large volume of work is a non-

trivial task. While it can seem at times that there is a “zoo” of results which defy attempts to

develop a uni�ed perspective, history has demonstrated that condensed matter systems can be

understood through a principled theoretical approach. Examples of these unifying theories in

many-body physics include the theory of Fermi liquids, the Landau-Ginzburg theory of symmetry
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breaking phase transitions, and the theory of topological order [5–9]. We will hopefully convince

the reader over the course of this dissertation that condensed matter physics, and the theory of

magnetic systems in particular, is an extraordinarily rich �eld with many general lessons in store

for its practitioners.

One of the goals of this dissertation is to highlight some of the active themes of many-body

research in the context of speci�c problems. For example, Chapter 3 is motivated by interesting

empirical data for a particular compound, Ytterbium Silicate (Yb2Si2O7). The spin model that

we will construct in order to understand that data is closely related to other spin models which

exhibit Bose-Einstein condensation of magnetic excitations. This class of models, which are ap-

plicable to a broad range of materials, illustrate a prevailing theme of modern condensed matter

theory: mappings between very di�erent models can yield deep insights, and in some cases exact

solutions.

The rest of this chapter is used to provide short introductions to some of the central concepts

we will encounter throughout the dissertation. While this commentary is brief, it should provide

adequate motivation for our technical decisions going forward. The interested reader is urged to

consult the enclosed references for more details.

1.2 Band Topology

Topology has come to play an extremely important conceptual role in modern condensed matter

physics. While the advent of topology in many-body physics is somewhat novel from a historical

perspective, today it is used to characterize a broad range of many-body phenomena. This in-

cludes the use of topological invariants as clear diagnostics of phases of matter, such as topological

insulators, and the theory of fractionalized quasiparticles in two dimensional systems [10,11]. In

fact, topology’s role is so prevalent in condensed matter theory today that the term is overloaded

- there are multiple, conceptually distinct, applications of topology which appear in di�erent

physical contexts.

Here we will brie�y review the manifestation of topology which we will encounter in Chap-
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ter 2, namely, the role of topology in band theory. Historically, this subject gained signi�cant

attention for its role in studies of the integer quantum Hall e�ect. The most striking property of

integer quantum Hall systems is the sharp quantization of the Hall conductivity in units of e2/h.

That a many-body response function could be so precisely quantized, despite empirical e�ects

such as disorder, is remarkable. Such a remarkable feature is in need of a remarkable explanation.

This explanation came from Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) [12].

We will brie�y summarize their argument. Suppose we have a translation-invariant many-body

system, so that wavefunctions are labeled by momentum k and take the Bloch form

ψk (x) = eik·xuk (x) (1.1)

where uk(x) has the periodicity of a unit cell. This generically divides the spectrum into

well-de�ned energy bands separated by gaps. Note that the Brillouin zone in which we de�ne

our momenta is topologically non-trivial in two dimensions - it is a torus. Adiabatic transport

of an arbitrary initial state around the Brillouin zone yields a wavefunction that di�ers from the

initial state by a phase. Aside from an uninteresting dynamical phase associated with adiabatic

transport, there may be a geometric component to the phase factor (also known as the Berry

phase). In discussions of the Berry phase, it is natural to de�ne a Berry connection over the

Brillouin zone:

Aj (k) = −i〈uk|∂kj |uk〉 (1.2)

This connection provides a measure of how much a wavefunction uk(x) “twists” as it is

wound around the Brillouin zone. However, the connection is “gauge dependant” in the sense

that it is sensitive to phase conventions for the Bloch states. Clearly, any quantity which depends

on our choice of phase for the basis states cannot be physically relevant. A gauge-invariant

quantity one can build from the Berry connection is the Berry curvature,

3



F (k) =
∂Ax
∂ky
− ∂Ay
∂kx

(1.3)

This is clearly reminiscent of the situation in electromagnetism, where we are taught to

build the �eld-strength tensor from the vector potential. A topological invariant known as the

�rst Chern number or TKNN invariant comes from the integral of the curvature:

C = − 1

2π

∫
B.Z.

dk F (k) ∈ Z (1.4)

where the integral is over the Brillouin zone. This integer-valued invariant is part of a larger

story in mathematical physics that we will not explore further [13, 14]. Remarkably, this classi-

�cation of maps over the Brillouin zone is physically signi�cant: the TKNN invariant is directly

related to the Hall conductivity of the integer quantum Hall e�ect, as one can show from text-

book linear response arguments. For our purposes in Chapter 2, we will be studying excitations

about a �eld-polarized magnet rather than free fermions. In this context, the Chern number is

still a useful topological invariant, and we will study it in relation to a new response function,

the thermal Hall conductivity.

1.3 Comments on Computational Methods

In subsequent chapters, we will use a number of computational techniques which have become

standard practice in many-body theory. For the sake of pedagogical completeness, the following

sections are used to introduce the core ideas underlying these methods.

1.3.1 Mean-Field Theory and Spin-Wave Theory

Mean-�eld theory is a general approach to many-body problems that seeks to replace an inter-

acting Hamiltonian with a set of e�ective single-particle problems. This is typically achieved by

using an ansatz for an ordered state to decouple the Hamiltonian, which renders the problem

soluble with standard methods. The parameters of the decoupling ansatz are then constrained to

match the single-particle solution, and a self-consistent result is achieved [6, 15].
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It is, of course, profoundly naive to expect that neglecting interactions will have no qualita-

tive (let alone quantitative) impact on the results of our analysis. As a prototypical example, let

us consider a classical nearest-neighbor model with antiferromagnetic coupling on an arbitrary

lattice:
1

H =
∑
〈ij〉

JSi · Sj (1.5)

We might anticipate that at low temperatures, the ground state of (1.5) spontaneously breaks

some symmetries and exhibits long-range magnetic order. If the system “freezes” into such a

con�guration, an expansion in �uctuations is often reasonable. This can be implemented by

rewriting

Si = 〈Si〉+ (Si − 〈Si〉) ≡ 〈Si〉+ δSi (1.6)

The expectation value 〈Si〉 represents our ansatz for the ordered phase, and can be quite

complicated in systems with a large unit cell. We will encounter an example with a simple but

non-trivial unit cell in Section 3.2.3. Substituting (1.6) into (1.5) and neglecting quadratic terms

in �uctuations, we �nd

H =
∑
〈ij〉

J [〈Si〉 · Sj + Si · 〈Sj〉 − 〈Si〉 · 〈Sj〉] (1.7)

Now we can compute the single-spin expectation values from (1.7) and insist that they match

the form postulated in our ansatz. When neglect of �uctuations is qualitatively justi�ed, this

mean-�eld scheme does a reasonable job of estimating the location of phase boundaries and the

nature of the phase transitions associated with them. However, such calculations should not be

trusted without further support from unbiased methods.

One can systematically build upon mean-�eld theory by studying �uctuations around the

1
This is a very glib description, as the lattice structure often controls the accuracy of mean-�eld theory. Neglect

of �uctuations is more controlled for systems with a large coordination number (particularly in higher dimensions)

or on a bipartite lattice. Here we are being very schematic.
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mean-�eld solution. There are a number of techniques which are well-suited to this purpose; later,

we will encounter one in the study of spin-waves, the Holstein-Primako� transformation [16].

This method maps the �uctuations of spins onto bosons, using the large value S of an ordered

spin moment to control a 1/S expansion. Explicitly, the transformation is given by

Sz =S − a†a (1.8)

S+ =
√

2S − a†a a

S− =a†
√

2S − a†a

This is supplemented by the non-holonomic constraint 0 ≤ a†a ≤ 2S. Replacing spins

with bosons might seem bizarre at �rst glance, but such a representation is natural due to the

fact that Pauli matrices for spins on di�erent sites commmute. Several variations on this idea

exist, including bosonic representations with holonomic constraints (Schwinger bosons) and even

fermionic representations [7, 17–19].

The Holstein-Primako� transformation can be used to study the role of spin-wave correc-

tions to an ordered state. Using the replacement (1.8), we can expand S+
and S− in powers of

a†a/S. At the quadratic level, the boson problem can be diagonalized using Bogoliubov trans-

formations, and the resulting band structure yields insights into, for example, scattering proper-

ties [20, 21]. We will use this expansion in Section 3.2.2 to reproduce neutron scattering data in

the compound Ytterbium Silicate.

1.3.2 Matrix Product State Methods

From a computational perspective, the fundamental di�culty of many-body quantum mechanics

is the fact that Hilbert space grows exponentially as a function of system size. More concretely,

since our interest will be concentrated on insulating systems built out of electrons, we consider

a system of N spin-1/2 degrees of freedom on the sites of an arbitrary lattice. The Hilbert space

H of this system has a dimension given by
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dim (H) = 2N (1.9)

Given a Hamiltonian H , condensed matter physicists are typically interested in �nding its

ground state and low-lying excitations. From this perspective, the exponential growth of Hilbert

space is extraordinarily concerning: for a generic interacting problem, what hope is there of

recovering a unique vector in such a massive space? Furthermore, we have argued up to this point

that thermodynamically large systems are governed by emergent, collective degrees of freedom

that cannot necessarily be observed in small systems. It seems at �rst glance that computational

e�orts are doomed, in the sense that only systems of a su�cient size are qualitatively useful.

While this is a daunting prospect – and remains so despite the massive amount of research

in quantum many-body theory – physical principles can be used to signi�cantly reduce these

computational di�culties. There are, of course, symmetries in many systems which can signi�-

cantly constrain the results of computations [22]. Another fundamental principle which radically

simpli�es quantum mechanics is locality. Often the term locality is used to refer to the fact that

typical interactions are only strong at short-range. However, our use of the term in this context

refers to the fact that interactions typically couple a small number of local Hilbert spaces in each

term. For example, even the long-ranged Coulomb interaction is only de�ned between pairs of

charged particles. Restricting the Hamiltonian to be a sum of terms that only act on a small num-

ber of local Hilbert spaces signi�cantly restricts the sector of the many-body Hilbert space that

needs to be considered. In fact, for broad classes of problems, signi�cant evidence has been es-

tablished which shows that the overwhelming majority of quantum states cannot be eigenstates

of local Hamiltonians [23–25].

In light of these facts, it is clear that signi�cant progress can be made with a computational

method that takes advantage of locality and the tensor-product structure of Hilbert space. Such a

formalism is furnished by the theory of tensor networks, which are a class of ansatzes for many-

body wavefunctions [26]. Among these, the best developed are the so-called Matrix Product

States (MPS) which are known to faithfully represent the low-energy eigenstates of a signi�-
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Figure 1.1: A section of the geometrically frustrated kagomé lattice. The kagomé is a two dimen-

sional lattice of corner-sharing triangles.

cant class of physical Hamiltonians [27]. Moreover, there is a highly developed computational

algorithm – the Density Matrix Renormalization Group (DMRG) – which provides a variational

scheme for optimizing MPS [28]. We will encounter DMRG in Section 3.2.4, where we will use it

to quantitatively support a set of results derived from mean-�eld theory.

1.4 Frustration and the breakdown of mean-�eld theory

We have already commented on the basic structure of mean-�eld theory in Section 1.3.1. While

mean-�eld theory is a useful tool, we are of course particularly interested in situations where it

breaks down. In the context of magnetism, an interesting approach to breaking down mean-�eld

theory is to study geometrically frustrated systems. These are lattice systems whose geometric

structure is incommensurate with the local energetic constraints of a model Hamiltonian [29].

For antiferromagnetic spin models, frustration arises on lattices with triangular motifs. For

example, we could consider an antiferromagnetic Ising model on the kagomé lattice (shown in

�gure 1.1). Around a triangular plaquette, it is necessarily the case that at least two spins on that

plaquette will be parallel. Our inability to �nd a con�guration which satis�es all local energetic

constraints is a consequence of geometric frustration. More generally, competing long- and short-

range interactions will also lead to frustration.

In this context, it is clear that the best one can hope to do is to frustrate one bond per kagomé
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triangle. However, for a general �nite size system, it is not at all obvious how close one can get

to this lower bound on the energy. Moreover, the fact that these constraints are violated locally

suggests that the degeneracy of low-energy states could be very large. Indeed, there are a number

of frustrated systems for which the ground state degeneracy grows exponentially with system

size [30].

It is unsurprising that mean-�eld theory breaks down in this context. In particular, the utility

of the replacement (1.6) depends on the fact that 〈S〉 is nonzero. In a system with a massive ground

state degeneracy, it is not at all obvious that order of any kind will be established. For the most

dramatic cases, such as quantum spin liquids, all local order parameters vanish identically, and

mean-�eld theory must be abandoned [7]. In those cases, it is clear that an inherently many-body

description is necessary – a single-particle treatment is simply inappropriate.

In quantum systems, such a large ground state degeneracy provides an ideal environment to

observe quasiparticle fractionalization. A well studied example of this phenomenon occurs in the

quantum spin-ice model, whose emergent low-energy theory is a decon�ned U(1) lattice gauge

theory [31]. It is not a coincidence that geometrically frustrated magnets, de�ned by their inabil-

ity to satisfy all local energetic constraints, give rise to gauge theories [32, 33]. A closely related

phenomena occurs in the theory of topological order, illustrated by Kitaev’s toric code [34]. In

that case, the number of ground states is controlled solely by topological considerations and is

independent of system size. However, each ground state is a massive superposition of macro-

scopically distinguishable states. It is on top of this highly-entangled, �uctuating background

that the anyons of the toric code are stabilized and decon�ned [11].

From these examples, we can see that highly degenerate ground state spaces often lead to

interesting physics. Chapter 4 studies a classical model with this structure. Although less exotic

than their quantum mechanical counterparts, frustrated classical systems exhibit a remarkable

sensitivity to �uctuations. A particular interest of ours will be the phenomenon of “order by dis-

order”, which occurs when a subset of ground states is selected by thermal or quantum mechanical

�uctuations. We will discuss this phenomena in kagomé and pyrochlore antiferromagnets, and
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analyze a model which interpolates between both.
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Chapter 2

High-Field Expansions for Kagome Anti-

ferromagnets with Spin-Orbit Coupling
1

2.1 Introduction

In recent decades, the search for novel many-body phenomena in frustrated systems has been

a major focus of condensed matter physics [35–38]. Exotic phases of matter formed due to the

interplay of various physical interactions can be delicate, which requires theorists to consider

models with a range of perturbations. One such perturbation is Spin-orbit coupling (SOC), which

enters the Hamiltonian of insulating magnets via Dzyaloshinskii-Moriya interactions (DMI) [39,

40].

SOC has recently garnered increased attention [41–44]. Experimental e�orts to arti�cially

control SOC are an important aspect of spintronics [45, 46], and the competition between ge-

ometric frustration, SOC, and various symmetry-breaking perturbations has proven to contain

rich physics [47–50]. In such systems spin-wave theory has been used to extract the spectrum of

quasiparticles (particularly magnons), yielding a host of predictions for insulating ferromagnets

and antiferromagnets, with and without DMI. Through these calculations, the theory of magnon

transport has been re�ned and various experimental probes of topological order have been pro-

posed.

1
This chapter is adapted from the published work, High-�eld expansion approach to kagome antiferromagnets with

Dzyaloshinskii-Moriya interactions , Michael O. Flynn and Rajiv R.P. Singh, Phys. Rev. B 100, 121108(R) (2019).
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Despite the successes of spin-wave theory, the approach has some limitations. Linearization

of e�ective magnon Hamiltonians can forbid certain processes and leaves out terms that may

alter magnon spectra and wavefunctions, particularly for small values of the e�ective spin. It

is also important to move beyond single-magnon bands and study the physics of multi-magnon

states. Directly addressing spin-half systems would open the possibility of studying multiparticle

inelastic scattering processes and bound states in realistic systems.

This chapter takes a di�erent approach to the physics of strongly correlated magnetic sys-

tems, built from many-body perturbation theory. While perturbation theory has obvious limita-

tions, it removes the linearization inherent to spin-wave theory. The work presented here focuses

on single-magnon states, which allows us to make contact with previous studies of similar mod-

els. Multi-magnon states can also be incorporated naturally into this formalism.

In this chapter, we consider a model of localized spin-1/2 particles on the kagomé lattice

in high magnetic �elds. We consider nearest neighbor antiferromagnetic exchange and DMI

with in-plane and out-of-plane components. This model, while simple, contains two non-trivial

phases. The �rst, which is a magnetic analog of a Dirac semimetal, contains Dirac points in

the magnon spectrum. Importantly, these Dirac points are robust against arbitrary DMI and can

be manipulated in principle with modern spintronics techniques. The second phase has bulk

band gaps, but has localized conducting modes on its surface when the model is studied with a

boundary. This suggests the presence of topological order, so we compute the bulk topological

invariant (the band Chern numbers) and the thermal Hall conductivity, which is expected to be

nonzero in a topological phase. The Hamiltonian reads

H = −
∑
i

B · Si +
∑
〈ij〉

[JSi · Sj + Dij · (Si × Sj)] (2.1)

Here B is the magnetic �eld, 〈ij〉 denotes nearest neighbors, J > 0 is the antiferromag-

netic Heisenberg coupling, and Dij is the DM vector on the bond ij [51–63]. We will treat the

spin interactions as perturbations to the magnetic �eld coupling; this is valid in the polarized

phase. Remaining in the polarized phase roughly requires that |B| ' (J + |D|)/3, but more
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precisely corresponds to magnon bands without a zero-energy mode [64]. Figure 2.1 shows our

DMI conventions and reviews the lattice structure.

Studies of similar models have been conducted previously, outside of the high-�eld regime.

Mook et. al. [65] considered a ferromagnetic version of (2.1) with next nearest neighbor (NNN)

exchange. Laurell and Fiete [66] carried out a spin-wave analysis of the antiferromagnetic ver-

sion of the same model. The NNN exchange used in these works provides a mechanism for the

experimentally observed (weak) dispersion in the bottom band of a Kagome system, which would

otherwise be �at [67–69]. Although we do not explicitly include NNN interactions, our approach

ultimately produces dispersion in every band. This is because the e�ective single-particle prob-

lem generated by our analysis gives rise to long-ranged hopping of quasiparticles (see section 2.2).

Degeneracies in our band structures should therefore be taken seriously, despite the simplicity of

(2.1).

The rest of the chapter is organized as follows. In section 2.2, we will review the graphical

linked cluster technique and explain how the bands of the model (2.1) are calculated. Section 2.3

presents our results in the case of a magnetic �eld in the Kagome plane. The resulting phase is

a magnonic Dirac semi-metal with Dirac points that can be manipulated by tuning the magnetic

�eld or DMI. Section 2.4 introduces an out-of-plane magnetic �eld, which breaks the symmetry

protecting the Dirac points and gaps the spectrum. There we calculate the magnon thermal Hall

conductivity, the Chern numbers of each band, and map out a topological phase diagram using

the bulk invariant.

2.2 Linked Cluster Expansion

We will employ the linked cluster expansion technique to derive the properties of single-magnon

states. Here we will sketch the technique and establish notation; we refer the reader elsewhere

for more details and proofs of our statements [70–73]. We begin by considering a model of spins

on a lattice L with Hamiltonian
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Figure 2.1: A section of the Kagome lattice. Spins are colored according to their sublattice, and an

example of a connected graph with three bonds is highlighted (red). This graph has six (proper,

connected) subgraphs. We �x the lattice spacing so that the Bravais lattice vectors are given by

a1 = (2, 0, 0), a2 = (1,
√

3, 0) (orange). Our convention for the Dzyaloshinskii-Moriya vector

is shown in purple: cross products are oriented along indicated link directions, the out-of-plane

componentDz alternates between plaquettes, and the in-plane componentDp (not shown) points

outward from plaquette centers on the bonds of the lattice.

H = H0 + λH1 (2.2)

where H0 is a solvable Hamiltonian, λ is a small parameter, and H1 is a non-trivial per-

turbation. In our case, 1/|B| plays the role of λ, and the unperturbed Hamiltonian is that of

non-interacting spins in a magnetic �eld. The key to our analysis is to identify physical observ-

ables whose properties in the thermodynamic limit can be systematically understood by studying

�nite subsystems ofL. De�ne a connected cluster c ⊂ L to be an embedding of a connected graph

into L (see �gure 2.1). The cluster c inherits a cluster Hamiltonian Hc by setting the couplings

between all spins in c and the remainder of the lattice to zero.

Let P (L) be some physical property for the full lattice model, such as the ground state

energy. Such a property can be computed on a cluster c, P (c), using standard perturbation theory.

For a generic physical property, computing P (c) reveals little about P (L). However, we will only

consider properties which satisfy the following relation:
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P (A+B) = P (A)⊕ P (B) (2.3)

This is the so-called cluster addition property, and it guarantees that we only need to consider

connected clusters. One proceeds by de�ning the weight of a cluster, W (c),

W (c) = P (c)−
∑
g⊂c

W (g) (2.4)

where g indexes all (proper, connected) subclusters of c. In our case, the weight of a cluster

with n bonds will only contribute at order λn due to the subgraph subtraction. Therefore, given

a list of all connected graphs which have embeddings in L along with their multiplicities, we can

compute P (L) to arbitrarily high orders.

The discussion thus far works as described for simple extensive properties such as the ground

state energy. In general however we are interested in studying the excitations induced by H1

about the ground state of H0. For this purpose, the constraint (2.3) seems too strong: there is

nothing preventing a quasiparticle from hopping between disconnected clusters. Moreover the

number of excitations is not generally conserved unless it happens to be protected by a symmetry

of H . Both problems are present in the model (2.1). We can circumvent the latter di�culty by

generating e�ective Hamiltonians on subgraphs of L which forbid mixing between sectors with

di�erent quasiparticle numbers. This is done by �nding a unitary transformation U which block

diagonalizes the cluster Hamiltonian Hc:

He� = U †HcU (2.5)

The transformationU is constructed perturbatively in λ, so thatHe� self-consistently forbids

mixing up to a given order in perturbation theory. This allows us to study the single-particle band

structure in spite of the lack of quasiparticle conservation.

The possibility of excitations hopping between disconnected clusters is still present. To avoid

this we need to �nd a property related to the spectrum which satis�es (2.3). De�ne E1(i, j) =

15



Figure 2.2: The band structure of (2.1) for B = Bx̂, J = |B|/10 and various choices of DMI.

(a): Without DMI, the band structure has Dirac points at K,K′ and a dispersionless band. (b):

Introducing out-of-plane DMI (|D| = J/10) does not a�ect the Dirac points but the previously

�at band becomes weakly dispersive (not visible). An in-plane component (Dp = Dz) of the DMI

shifts the Dirac nodes o� of high-symmetry points but does not gap the spectrum. (c): The spread

of Dirac points as D is rotated into the plane. The nodes are displaced symmetrically about the

magnetic �eld axis and orthogonal to it. These points are generated with ten uniformly spaced

angular orientations of D in [0, π/2]. We set |D| = 3J for visual e�ect.
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〈i|He�|j〉 to be the hopping matrix element for a single particle state between sites i and j. Then

the following quantity has the cluster addition property:

∆1(i, j) = E1(i, j)− E0δi,j (2.6)

where E0 is the ground state energy of the cluster. We will only deal with systems invariant

under translations by Bravais lattice vectors, which leads us to consider momentum eigenstates

(N is the number of lattice sites),

|k〉 =
1√
N

∑
j

exp (ik · j) |j〉 (2.7)

In general (and indeed for the kagomé), we must allow for the possibility that the unit cells

of L contain multiple sites. Let δab denote the vector connecting two sites of the lattice in sublat-

tices a and b respectively (for the Kagome lattice, a, b = 1, 2, 3). Then the band structure of the

quasiparticles is obtained by making use of the translation invariance of ∆1:

ωab1 (k) =
∑
δab

∆1(δab) [cos (k · δab) + i sin (k · δab)] (2.8)

Diagonalizing this matrix yields the band structure. This procedure generates e�ective tight

binding Hamiltonians for one-particle excitations. In the case of the model (2.1), we �nd that all

of the matrix elements E1(i, j) are generically nonzero at su�ciently high orders in perturbation

theory. This is a re�ection of the strongly correlated nature of the magnons in this problem, and

allows a model without explicit NNN exchange to capture details of the band structure of realistic

systems.

2.3 Tunable Dirac Points

In this section we take the magnetic �eld to lie in the kagomé plane, and unless otherwise men-

tioned we will let B = x̂ (this choice is not essential to the qualitative physics). In the absence of

DMI and above the saturation �eld, the spectrum is known to contain a �at band at �nite energy
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and two dispersive bands with Dirac points at K =
(
π
3
, π√

3

)
,K′ =

(
−π

3
, π√

3

)
[74–76] (�gure

2.2). The tight binding model for the single magnon sector in this case involves only nearest-

neighbor hopping.

Upon introducing DMI, the model develops dispersion in each band. We �nd that the hop-

ping amplitudes satisfy

∆1(δab) = ∆∗1(−δab) = ∆1 (δba) (2.9)

This result is consistent with a ground state order which is spin-polarized along an axis in the

kagomé plane. Combined with (2.8), this implies that ωab1 (k) is purely real. This result is manifest

when the DMI points out of the kagomé plane, since the Hamiltonian is real; the extension to

arbitrary DMI is less obvious. This implies that any e�ective two-band Hamiltonian obtained by

projecting out the third band has an expansion of the form

H2×2 (k) = E0 + hx (k)σx + hz (k)σz (2.10)

where hx(k), hz(k) are real-valued functions and E0 > 0 is a constant energy shift. Pertur-

bations which preserve (2.10) are not expected to gap the Dirac points, which is consistent with

our �ndings: tuning the relative magnitude of the in-plane (Dp) and out-of-plane (Dz) DMI shifts

the Dirac points o� of high-symmetry lines but never gaps them. The direction of displacement

for the Dirac points also depends on the magnetic �eld orientation. This is to be contrasted with

the typical result that SOC gaps out Dirac points, demonstrated for example in graphene.

2.4 Topological Magnon Bands & Chern Numbers

With a magnetic �eld out of the Kagome plane, all lattice directions in the bulk are equivalent,

and

∆1(δab) = ∆1(−δab) = ∆∗1(δba) (2.11)
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Figure 2.3: (a): Band structure for a semi-in�nite system. The modes winding between the bulk

bands are exponentially localized on the system’s edges. (b): Phase diagram obtained by com-

puting the band Chern numbers. We have chosen J + |D| = |B|/5. Di�erent parameter choices

only adjust the location of the phase boundary. The precise location of the phase boundaries is

less signi�cant than the necessary existence of small energy gaps near the transitions. The Chern

numbers are indicated in each region from the highest to lowest energy bands; the set {1,−2, 1}
describes the narrow region in parameter space indicated by the arrow.(c): Thermal Hall conduc-

tivity for J/|D| = 1/3 both above and below the transition. We set the magnon energy scale to

5 meV in the absence of interactions, and J + |D| = 1 meV. Hence |D| = 0.75 meV and J = 0.25
meV here. The results are observed to be reasonably insensitive to this choice. The Hall conduc-

tivity changes sign across the transition by varying the ratio Dp/Dz and the curve closer to the

transition (yellow) is signi�cantly enhanced due to the smallness of the gap.
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More generally, the hopping amplitudes are invariant under rotations which map the Kagome

into itself, provided the sublattice structure is properly accounted for. ωab1 (k) is no longer real,

which violates (2.10). In two dimensions �ne tuning is therefore required to �nd gapless points

and a gapped spectrum is anticipated.

Previous work on similar models has found topological order in phases with bulk band gaps,

which leads us to study our model on a �nite strip. This strip has open boundary conditions,

and in this geometry we �nd clear evidence of localized edge states which cross the bulk band

gaps (�gure 2.3 a). Such edge states are necessarily associated with a bulk topological invariant,

namely the band Chern numbers [77]. We can map out a topological phase diagram at �xed

energy by setting J + |D| to be a constant fraction of |B| and looking for changes in the Chern

numbers (�gure 2.3 b). The most common set of Chern numbers is {1, 0,−1} (labeled from the

highest to lowest energy band). However there is also a phase with Chern numbers {−1, 0, 1}

separated from the former phase by a narrow region with Chern numbers {1,−2, 1}. From an

empirical perspective, these transitions are signi�cant because vanishing energy gaps typically

enhance transport properties. Indeed, we have computed the thermal Hall conductivity and �nd

it is enhanced signi�cantly near the phase boundary (�gure 2.3 c). We also see that the thermal

Hall conductivity changes sign across the phase boundary.

We compute the thermal Hall conductivity as follows. Letting Ωz
n(k) denote the Berry cur-

vature of band n, the (magnon) thermal Hall conductivity at temperature T is given by [78]

κxy = − k2
BT

(2π)2 ~

∑
n

∫
BZ

[
c2 [g (εnk)]−

π2

3

]
Ωz
n (k) d2k (2.12)

where g(εnk) is the usual Bose-Einstein distribution factor. The function c2(x) is

c2(x) = (1 + x)

[
ln

(
1 + x

x

)]2

− [ln(x)]2 − 2Li2(−x) (2.13)

where Li2(x) is the dilogarithm. When stacks of Kagome layers are used with an interlayer

spacing `, κ/` is naturally given in W/Km. All values reported here assume ` = 5 angstroms,
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which is fairly typical.

The values obtained for the thermal Hall conductivity are comparable to those found in other

studies, although we have chosen small values of J and |D| so that only modest magnetic �elds

are necessary to polarize the ground state. Speci�cally, �gure 2.3 assumes a magnon energy of

5 meV in the absence of interactions, with J + |D| = 1 meV. The e�ect of stronger interactions

on the thermal Hall conductivity can also be considered, but this necessarily demands a larger

saturation �eld. As a general point, we see that there can be a signi�cant bene�t to �nding

materials which naturally sit near the phase boundaries discussed in �gure 2.3. The empirical

interest in such a result should be clear to the spintronics community and others working with

tunable DMI and other interactions.

2.5 Conclusion and Future Directions

In this chapter, we have considered a “minimal model” of antiferromagnetic spins with SOC. In

the absence of DMI, the physics of magnons in the polarized phase is already well understood.

This picture becomes signi�cantly richer with the inclusion of DMI because of the coupling it

induces between spin-space and real-space. By changing the ground state ordering (in our case,

with a magnetic �eld), this coupling allows us to see qualitatively new physics, particularly more

robust and controllable Dirac points.

We have also explored the phase diagram of a polarized magnet, and the presence of topolog-

ical phase transitions opens up the possibility of �nding enhanced response functions. A search

for materials which can exhibit these enhanced responses could prove interesting.

As previously mentioned, our technique has the advantage of avoiding any linearization.

This means that multi-magnon states can be considered in detail with our technique, enabling

the study of bound states and the multi-magnon continuum.
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Chapter 3

Bose-Einstein Condensation in Yb2Si2O7
1

3.1 Empirical motivation

Through pioneering empirical and theoretical studies, models of localized spins have been shown

to contain a wealth of familiar and exotic phases of matter. Interesting orders can be achieved

by considering models with competing interactions, which naively require the satisfaction of

incompatible constraints to achieve a ground state. Nature’s creative mechanisms for resolving

these tensions within quantum mechanics is responsible for much of the diversity of phenomena

observed within many-body theory [2, 11, 35, 79–82].

A clear example of such physics is found in dimer magnets, where antiferromagnetic ex-

change is brought into tension with polarizing magnetic �elds [1,83–87]. In these systems, spins

form a collective paramagnet with zero total spin in the low-�eld ground state. A simple exam-

ple of this phenomenon is realized in the antiferromagnetic Heisenberg model on the breathing

honeycomb lattice. As illustrated in Fig. 3.1(a), each spin has a preferred neighbor due to lattice

distortion. These pairs of spins form the e�ective (dimer) degrees of freedom which are best used

to study the collective paramagnet and neighboring phases.

Applying a magnetic �eld to the singlet state generically leads to a BEC transition, where a

band of triplet excitations becomes degenerate with the S = 0 ground state and creates a magnet-

1
This chapter is adapted from the published work, Two Phases Inside the Bose Condensation Dome of Yb2Si2O7 ,

Michael O. Flynn, Thomas E. Baker, Siddharth Jindal, and Rajiv R.P. Singh, Phys. Rev. Lett. 126, 067201 (2021).

22



ically ordered state. Typically, this ordered state can be understood through spin-wave theory as

an XY antiferromagnet which cants with increasing �eld. In typical experiments [83], it has been

found that strengthening this �eld eventually polarizes the system; no other phase transitions

are observed. Recently, experiments on the compound Yb2Si2O7 have challenged this paradigm

by suggesting the presence of an intermediate magnetic phase with an unknown underlying or-

der [1]. This chapter studies a proposed modi�cation to the Heisenberg model on the breathing

honeycomb lattice whose ground state order is consistent with all available thermodynamic and

scattering data, and allows for the possibility of such a phase diagram.

On the breathing honeycomb lattice, the Heisenberg model in a magnetic �eld only real-

izes the previously mentioned collective paramagnet, canted XY antiferromagnet, and polarized

phases. It has been speculated that the physical origin of the interactions responsible for the un-

expected magnetic phase is the strong spin-orbit coupling typical of Lanthanide elements, such

as Ytterbium. In the presence of strong spin-orbit coupling, projection to the e�ective spin-1/2

subspace (or lowest Kramers doublet) typically generates anisotropic spin interactions. We will

not attempt to construct a microscopic model for Yb2Si2O7, focusing instead on a minimal class

of anisotropic interactions consistent with the available data. In particular, we will generalize the

Heisenberg model by introducing two forms of anisotropy:

H =
∑
〈ij〉,α

JαijS
α
i S

α
j − h

∑
i∈A,α

gAzαS
α
i − h

∑
j∈B,α

gBzαS
α
j (3.1)

Here i, j index lattice sites, A,B are the honeycomb sublattices, and α = x, y, z. The x, y, z

directions correspond, respectively, to the a∗, b = b∗, and c axes of the C2/m lattice structure.

In other words, we are considering an XYZ model for a breathing lattice, and allowing for the

possibility that the z-axis is not a principal axis of the g-tensor. The sublattice-dependence of

the g-tensor allows for a staggered component gAzx = −gBzx, which is essential to the universal

physics we will describe. The “minimal model” for the physics of interest is signi�cantly simpler:

it is su�cient to take Jyij > Jxij = Jzij (for all i, j) and gzy = 0, as y is a principal axis. More precise

constraints discussed below are imposed by consistency with experiments.
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Figure 3.1: (a) A section of the honeycomb lattice. Each spin (blue dots) has a preferred neighbor

(red bonds) which it interacts with more strongly than others: J1 > J2. For h = 0, the ground

state is a product of singlets along the red bonds. (b) Schematic T = 0 phase diagram obtained

from DMRG and mean-�eld theory. From left to right, the phases are a global spin singlet, Z2

symmetry breaking antiferromagnet, canted antiferromagnet, and the polarized phase. The crit-

ical points Hc1 and Hcm are in the Ising universality class while Hc2 is a crossover.
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As we will see, there is a regime of parameters which yields the phase diagram in Fig. 3.1(b).

This phase diagram matches thermodynamic data by providing a mechanism for both break-

ing and restoring an Ising symmetry in spin-space as an external magnetic �eld is tuned. For

Hc1 < H < Hm, the ground state breaks a Z2 symmetry in spin-space associated with the

global transformation Syi → −S
y
i , while for H > Hm the system exhibits no symmetry breaking.

Importantly, these e�ects are observable with weak anisotropy: we believe this can explain the

coexistence of familiar and unfamiliar features observed in Yb2Si2O7 [1].

We will use a variety of complementary techniques to develop a theory which accounts for

the observations of Yb2Si2O7. In order to motivate our model (3.1), we begin with a review of

salient experimental facts. We then use a linked cluster expansion to compute the triplon spec-

trum and critical �elds of the pure Heisenberg model,Hc1 andHc2 . Our results are consistent with

experimental �ndings and con�rm that the (unperturbed) Heisenberg model captures important

aspects of the physics of Yb2Si2O7. Spin-wave theory is then applied to the full Hamiltonian

(3.1) to show that the perturbations we have introduced produce dispersion relations which are

qualitatively consistent with neutron scattering data. We emphasize that a complete microscopic

theory supported by ab initio methods is necessary for complete quantitative agreement with

empirical data. We then develop an understanding of the new order induced by these pertur-

bations through a self-consistent mean �eld theory, which reveals the previously undetermined

ground state order to be a canted antiferromagnet with a large staggered magnetic susceptibility

and no broken symmetries. This physical picture is then quantitatively veri�ed via a density ma-

trix renormalization group (DMRG) analysis, and our concluding remarks suggest experimental

tests of our proposal.

Plausible modi�cations to the Heisenberg model are strongly constrained by the available

experimental data. To establish constraints on the parameters introduced in (3.1), we will now

review the salient experimental results [1].

1. Critical �elds and zero-�eld speci�c heat are modeled well by the pure Heisenberg model. In

Ref. [1] , it was demonstrated that the Heisenberg model �ts zero-�eld speci�c heat data.
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We will also show that the Heisenberg model is consistent with the empirical values of Hc1

and Hc2 , which do not depend sensitively on weak perturbations.

2. The XY antiferromagnet hosts an approximate Goldstone mode. Within the energy resolution

of available data, there is a gapless mode in the band structure of the planar antiferromag-

net. This is presumably due to the presence of a proximate U(1) spin-symmetry, which

constrains the XY exchange anisotropy.

3. Singularities in the speci�c heat present in weak �elds vanish with increasing �eld. In weak

�elds, an Ising-like singularity is observed as a function of temperature. Increasing the

�eld toHm ≈ 1.2 Tesla removes the singularity and leads to smooth behavior as a function

of temperature. Ultrasound velocity and neutron scattering measurements o�er additional

evidence of a phase transition at Hm.

Together, these points suggest that the Heisenberg model provides a strong basis for an anal-

ysis of Yb2Si2O7. However, it is clear that the ground state breaks di�erent (discrete) symmetries

as a function of magnetic �eld, which is not a feature of the pure Heisenberg model. Moreover,

the ground state for H > Hm smoothly crosses over to the polarized limit at H = Hc2 .

3.2 Phenomenology of a Universal Spin Model

The perturbations to the Heisenberg model which we have introduced are designed to respect

these experimental constraints while providing a mechanism for both breaking and restoring

an Ising symmetry as a magnetic �eld is applied. The key changes are to the XY Heisenberg

couplings, Jyij = (1 + λ) Jxij , and a staggered g-tensor component gzx � gzz , g
A
zx = −gBzx. By

choosing λ � 1, the �rst two experimental points are addressed: many qualitative features of

the Heisenberg model are preserved and the Goldstone mode is only weakly gapped, potentially

below empirical sensitivity. The staggered g-tensor creates a �eld-dependent competition be-

tween antiferromagnetic orders in the X-Y plane. For weak magnetic �elds in the ordered phase

(Hc1 < H < Hm), the YY coupling dominates, and the ground state breaks the Z2 spin symmetry
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of the Hamiltonian. In larger magnetic �elds (H > Hm), no symmetry is broken because the stag-

gered g-tensor selects a unique antiferromagnetic order. In spin-wave theory, Hm corresponds

to the magnetic �eld for which 〈Sy〉 = 0 everywhere. Since it breaks no symmetries, this state

can cross over smoothly to the polarized limit (H > Hc2).

We note that a staggered g-tensor is technically forbidden by the inversion symmetry of the

C2/m crystal structure. However, weak deviations from this structure due to lattice distortions are

not ruled out by available data. Such a distortion has clear experimental signatures, for example,

by nuclear magnetic resonance (NMR) techniques. The required weakness of our staggered g-

tensor element (see Fig. 3.8 and surrounding discussions) is consistent with a distortion-based

explanation.

Further, we have explored similar models with uniform g-tensors and found that they do

not reproduce the phase diagram of Fig. 3.1. Essentially, a uniform g-tensor does not lead to

a �eld-dependent competition between antiferromagnetic orders: instead, spins simply have a

polarization in the x−z plane proportional to the e�ective �eld in each direction. While we have

not completely ruled out the possibility that a model with inversion symmetry could produce the

correct universal physics, we believe that no such model is consistent with the aforementioned

experimental constraints.

The parameters we will choose throughout the following, unless otherwise noted, are λ =

0.03 and gzx = gzz/100. We take the x-component of the Heisenberg coupling to be the value

obtained experimentally for the isotropic Heisenberg model, Jx1 = 0.2173 meV, Jx2 = 0.0891

meV. Conversions to physical magnetic �elds are done with empirically determined g-factors [1].

We have found that our results do not qualitatively depend on these choices except in our DMRG

analysis, where this issue is discussed in greater detail. Data on the e�ect of parameter choices

at the mean-�eld level is also provided (see Figures 3.5 and 3.6).
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3.2.1 Linked Cluster Expansion

Here we simplify to the isotropic Heisenberg model (λ = 0) and assume the z-axis is a principal

axis of g (gzα ∝ δzα). We will perturbatively compute the critical �elds of the BEC transition

and show that the result is consistent with experiments. In the limit J2 = h = 0, the ground

state of (3.1) is a collection of independent spin singlets. For �nite J2 with J2/J1 � 1, the

ground state remains in the S = 0 sector with a gap to mobile triplet excitations. We compute

the spectrum of these “single-particle” states with the linked cluster formalism. This yields a

perturbative expression in J2/J1 which accurately describes the thermodynamic limit [71–73].

The resulting spectrum has a minimum at k = 0, and we �nd that (de�ning J2/J1 = α)

ω (k = 0) = J1

(
1− α− α2 +

5

16
α3 +O

(
α4
))

(3.2)

For h 6= 0, the Sz = 1 triplet band decreases linearly in energy leading to a gap closing. The

resulting BEC transition has been studied extensively [83, 88–93]. Choosing the couplings and

gyromagnetic factors reported in Ref. [1], we �nd the critical �eld Hc1 ≈ 0.434 Tesla, in rough

agreement with the experimental data. The upper critical �eld, Hc2 , of the Heisenberg model can

be calculated exactly by considering the energetic cost of a spin �ip in the polarized phase. We

�nd Hc2 = J1 + 2J2 ≈ 1.42 Tesla, also in agreement with experiment.

The singlet ansatz for the ground state is not correct in the presence of anisotropy when

h 6= 0. However both mean-�eld and DMRG analyses indicate that the system becomes e�ectively

paramagnetic below Hc1 in the presence of weak anisotropy (see �gure 3.7). The agreement

between these critical �elds and the experimental results provides an a-posteriori justi�cation for

our focus on perturbative adjustments to the Heisenberg model.

3.2.2 Spin-Wave Theory

We now return to the full model (3.1). By introducing anisotropy to the Heisenberg couplings, we

have broken the U(1) symmetry which is expected to provide the Goldstone mode of the ordered

phase. We therefore anticipate that the spectrum is gapped, and the Goldstone mode observed
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Figure 3.2: Band gap as a function of �eld in linear spin-wave theory. Other than the phase

transition between spin wave solutions at H = Hm (see text), the system is gapped with an

energy scale near the energy resolution of available neutron scattering data. For H > Hc2 the

band gap scales linearly with H .

experimentally is in fact massive. Here we will use linear spin-wave theory to compute the spec-

trum and show that the resulting bands are qualitatively consistent with neutron scattering data.

Our ansatz for the classical spin orientations on sublattices A,B is for a canted antiferro-

magnet:

SA = S (sin θ cosφ, sin θ sinφ, cos θ)

SB = S (− sin θ cosφ,− sin θ sinφ, cos θ) (3.3)

Minimizing the Hamiltonian as a function of θ, φ yields two solutions. In weak �elds,

cos θ =
hz

S
(
J̄z + J̄y

)
cosφ =

hx
(
J̄z + J̄y

)
(
J̄y − J̄x

)√
S2
(
J̄z + J̄y

)2 − h2
z

(3.4)

Here J̄α = Jα1 + 2Jα2 , hz = gzzh, hx = gzxh. The critical �eld Hm ≈ 1.2 Tesla is given by

the condition cosφ = 1, and agrees with experimental data. For H > Hm the system transitions

to the solution
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φ = 0

sin θ =
hz tan θ − hx
S
(
J̄z + J̄x

) (3.5)

Using the Holstein-Primako� mapping to bosons (see details below), we obtain a quadratic

Hamiltonian which can be diagonalized using standard techniques [16,94,95]. From the resulting

dispersion, we extract the band gap as a function of the magnetic �eld (Fig. 3.2). The bands are

gapped everywhere except at Hm, which separates the spin-wave solutions. The value of the

gap exceeds experimental results, which not surprising in the absence of guidance from ab initio

methods. However, key qualitative details which we expect are universal are captured, as we will

now show.

The results presented above characterize the classical energetic minima for the canted an-

tiferromagnet ansatz in terms of angles θ, φ. These de�ne local sublattice-dependent coordi-

nates in which ẑi ∝ Si. We introduce sublattice-dependent rotation matrices R(θ, φ) such that

Si = Ri(θ, φ)S̃i, where S̃ are the spins expressed in local coordinates. We then bosonize the spin

model through the Holstein-Primako� mapping,

S̃zi = S − a†iai, S̃+
i =

√
2S − a†iaiai, S̃−i = a†i

√
2S − a†iai (3.6)

To extract the band structure at leading order in 1/S, it is su�cient to keep terms which are

quadratic in boson operators. At this order, the Hamiltonian is expressed simply in terms of S̃:

H2 =
∑
〈ij〉

∑
α,β=x,y,z

[
AijαβS̃

α
i S̃

β
j

]
−h
(
Ri
zzgzz +Ri

xzgxz
)∑
i∈A

S̃zi−h
(
Rj
zzgzz −Rj

xzgxz
)∑
j∈B

S̃zj (3.7)

where A,B are the honeycomb sublattices and the parameters Aijαβ are given by

Aijαβ =
∑

µ=x,y,z

J ijµ R
i
µαR

j
µβ (3.8)

At quadratic order in the boson operators, one may take Azx = Azy = 0. As a step to-
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wards diagonalizing the boson Hamiltonian, we perform a Fourier transform which introduces

the following parameters:

Ãαβ (k) =
∑
j∈nn(i)

Aijαβ exp [ik · (ri − rj)] (3.9)

Āαβ =
∑
j∈nn(i)

Aijαβ

The �nal Hamiltonian is written compactly in terms of a vector of boson operators, with one

boson �avor (a or b) per sublattice:

Υk =
(
ak bk a

†
−k b

†
−k

)T
, H2 =

∑
k

Υ†kM(k)Υk ≡
∑
k

Υ†k

D(k) B(k)

B†(k) DT (−k)

Υk

(3.10)

The matrices D(k), B(k) are given by

D(k) =

C(k) W ∗(k)

W (k) C(k)

 , B(k) =

 0 X∗(k)

X(k) 0

 (3.11)

Where

C(k) = h
(
Ri
zzgzz +Ri

xzgxz
)
− SĀzz(k)

W (k) =
S

2

[
Ãxx(k) + Ãyy(k) + i

(
Ãxy(k)− Ãyx(k)

)]
X(k) =

S

2

[
Ãxx(k)− Ãyy(k)− i

(
Ãxy(k) + Ãyx(k)

)]
(3.12)

Finally, the Hamiltonian (3.10) can be diagonalized by a Bogoliubov transformation. Cuts of

the band structure are provided in Fig. 3.3 which are readily compared with the data shown in

Fig. 4 of Ref. [1].

3.2.3 Mean Field Theory

In order to describe the novel phase observed in Yb2Si2O7, we will now develop a qualitative un-

derstanding of the ground states of (3.1). We begin by formulating a mean-�eld theory using the
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Figure 3.3: Cuts of the spin-wave spectrum (ky = 0) for a range of magnetic �elds. Between

panels (b) and (c) (Hc1 < H < Hm), the concavity of the upper band changes, a feature which is

also observed in neutron scattering data. At precisely H = Hm (c), a linearly dispersing gapless

mode appears at Γ. The bands scale linearly with H for H > Hc2 (d).

32



bipartite structure of the honeycomb lattice and the fact that dimers are the relevant low-energy

degrees of freedom. Let MA,MB denote the average magnetic moments on sublatticesA,B. The

enhanced coupling J1 between neighbors along y = b suggests that the fundamental degree of

freedom is a dimer containing spins SA,SB embedded in an e�ective �eld. The Hamiltonian is

H = Jα1 S
α
AS

α
B + 2Jα2 (SαAM

α
B + SαBM

α
A)− h

∑
α

(
gAzαS

α
A + gBzαS

α
B

)
(3.13)

We assume gzx � gzz . The Hamiltonian (3.13) is analyzed self-consistently, starting with an

ansatz for MA,MB and calculating new values Mi ≡ 〈ψ|Si|ψ〉, where |ψ〉 is the instantaneous

ground state. These values are updated until convergence is achieved.

For su�ciently small gzx, we �nd that the solution in Fig. 3.4 is energetically favored. For

small �elds (H < Hc1), the solution is weakly magnetic due to the staggered �eld induced by gzx.

Between the critical �elds Hc1 < H < Hc2 , two phases appear, distinguished by the staggered

moment My. The �rst (H < Hm) exhibits Z2 symmetry breaking and accounts for the singular-

ity observed in the speci�c heat; the latter breaks no symmetries and crosses over smoothly to

the polarized limit, as required by the absence of thermodynamic singularities. This previously

unidenti�ed phase is a canted antiferromagnet with a strong staggered susceptibility.

We note the existence of another mean-�eld solution in which My = 0 everywhere. This

case does not support the experimental data as it does not exhibit symmetry breaking. The en-

ergetic favorability of one mean-�eld solution over another depends on the precise anisotropy

parameters chosen, and it is unclear how quantum �uctuations might impact that selection. Fur-

ther, it is not obvious that the inter-dimer coupling J2 is su�ciently small to justify a mean-�eld

description. To address these concerns, we employ DMRG to investigate the stability of our

results. By doing so, we �nd that both mean �eld solutions survive quantum �uctuations and

remain energetically competitive. Further, there is a regime of parameters in which the solution

in Fig. 3.4 is favored. Before introducing the DMRG results, we review the qualitative impact of

our model parameter choices at the mean-�eld level in �gures 3.5 and 3.6.
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Figure 3.4: Spin expectation values as a function of magnetic �eld obtained from mean �eld theory

(λ = 0.03, gzx = gzz/100). Note X and Y moments are staggered while Z is uniform. The presence

of a nonzero My for Hc1 < H < Hm indicates Z2 symmetry breaking and corresponds to the

standard magnetic phase observed on the high-�eld side of the BEC phase transition without

anisotropy. The range Hm < H < Hc2 corresponds to a canted antiferromagnet which breaks

no symmetries crosses over to the saturated regime at Hc2 .

The key parameters of our model Hamiltonian - namely the Heisenberg anisotropy λ and

o�-diagonal g-tensor element gzx - can be adjusted to shift the locations of phase boundaries.

Here we explore how the phase diagram is changed by such variations within dimer mean-�eld

theory. We remind the reader that the e�ect of quantum �uctuations should always be considered

before accepting mean-�eld results. However in our experience, the qualitative features of our

mean-�eld theory are generally reliable.

The behavior of spin expectation values for di�erent choices of λ are shown in Fig. 3.5.

At λ = 0, no symmetry breaking is exhibited (My = 0). This is an exact statement, as the

staggered g-tensor selects a unique planar order for all H . When λ 6= 0, there exists a range of

magnetic �elds in which symmetry breaking is energetically favored, and we see thatHm → Hc1

as λ → 0. Larger values of λ favor symmetry breaking over a broader range of magnetic �elds,

sending Hm → Hc2 . Returning to λ = 0.03, we now consider the e�ect of varying gzx in Fig.

3.6. In this case, we see that sending gzx → 0 forces Hm → Hc2 , and larger values of gzx send

Hm → Hc1 .

The de�ning features of the “mystery” phase in our model (Hm < H < Hc2) are the absence
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Figure 3.5: Spin expectation values for di�erent choices of Heisenberg anisotropy λ. When λ→ 0,

there is no energetic preference to break the Z2 symmetry discussed in the main text. For nonzero

λ, symmetry breaking is energetically preferred for a range of magnetic �elds, and shows that

Hm → Hc1 as λ→ 0. As λ increases, Hm → Hc2 , and the symmetry breaking regime dominates

the phase diagram for Hc1 < H < Hc2 . We note that quantum corrections to our mean-�eld

theory may shift these phase boundaries signi�cantly.
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Figure 3.6: Spin expectation values for di�erent choices of the g-tensor element gzx. Large values

of gzx suppress symmetry-breaking by sending Hm → Hc1 , while smaller values of gzx favor

symmetry breaking by sending Hm → Hc2 .
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Figure 3.7: Spin expectation values as a function of magnetic �eld from DMRG (λ = 0.03, gzx =
gzz/500). The qualitative agreement with Fig. 3.4 con�rms that the universal physics obtained

via mean-�eld theory is accurate. The data again indicates a �eld-driven phase transition from

a broken symmetry state (Hc1 < H < Hm) to a state which breaks no symmetries (Hm < H <
Hc2).

of symmetry breaking and the presence of a large staggered susceptibility along the x-axis. Taken

together, Figures 3.5 and 3.6 show that Hc1 and Hc2 are robust to changes in λ and gzx when

compared to Hm. Creating a phase diagram in which the symmetry breaking (Hc1 < H < Hm)

and non-symmetry breaking (Hm < H < Hc2) phases occupy signi�cant portions of the phase

diagram require a combined tuning of these interactions.

3.2.4 DMRG

To verify the mean-�eld solution, we use DMRG to compute ground state expectation values [96].

This tensor network method e�ciently simulates systems which are well-described by the matrix

product state (MPS) ansatz [97–101]. Our system is studied on a cylinder with a width of four

dimers and 128 total spins.

We use a single-site representation of the tensor network to update each step [102] with the

Hamiltonian (3.1). To guarantee that the proper symmetry sector is obtained, we apply pinning

�elds on the open boundaries of the system to break the Z2 symmetry of the Hamiltonian. The

pinning �eld is removed after two DMRG sweeps, and we �nd that in the symmetry breaking

region this produces a lower-energy state than unbiased DMRG.
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From the resulting ground-state wavefunction, local measurements of quantities Mα =√∑Ns

i=1〈Ŝαi 〉2/Ns are performed. The results are shown in Fig. 3.7 and qualitatively match those

from mean-�eld theory. The nonzero value of My for Hc1 < H < Hm requires Z2 symmetry

breaking. This symmetry is restored for H > Hm, allowing for a smooth crossover to the polar-

ized limit atHc2 . The regimeHm < H < Hc2 is distinguished from the polarized limit both by the

large staggered susceptibility of X-moments and the continued growth of the Z-magnetization.

We will also see below that this behavior qualitatively reproduces ultrasound velocity data in

every regime of magnetic �elds (see �gure 3.9).

The results in Fig. 3.7 are found with gxz = gzz/500. The ratio of g-tensor elements is

arbitrary and can a�ect which mean �eld solution is obtained; to account for this, Fig. 3.8 shows

the dependence of the symmetry-breaking order parameter My on gzx in a �xed magnetic �eld.

The solutions were found by �rst tuning to H = 0.9T with pinning �elds. The pinning �elds are

then removed and gzx is increased. The ground state changes from a Y-ordered antiferromagnet

to a state where My = 0 as gzx increases. The instability of the symmetry-breaking solution

to anisotropy in the g-tensor reveals that gzx is necessarily small. This is consistent with the

fact that a nonzero gzx requires deviations from the C2/m crystal structure currently proposed

experimentally; such distortions are expected to be weak. The qualitative features of the phase

diagram should be robust to other perturbations.

Another key piece of experimental data presented in Ref. [1] is the ultrasound velocity. In

Yb2Si2O7, this quantity is closely related to the scattering intensity of the (2,0,0) magnetic Bragg

peak. In our model, this Bragg peak corresponds to the total magnetization of the system. In Fig.

3.9, we present our reproduction of the ultrasound velocity from DMRG. We simply calculate

the square of the magnetization along the z-axis for a range of magnetic �elds, and compute its

derivative through �nite-di�erence methods. Our results clearly capture the qualitative features

presented in Ref. [1].
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Figure 3.8: Dependence of My on the magnitude of the staggered �eld Hx = gzxH (H = 0.9T for

each point). The value ofMy drops o� rapidly with gzx, indicating an instability of the symmetry-

breaking mean-�eld solution to anisotropy in the g-tensor. Weakness of the anisotropy is there-

fore critical to the physics.

3.3 Conclusions

With a variety of theoretical techniques, we have demonstrated that the model (3.1) reproduces

the experimentally proposed phase diagram of Yb2Si2O7. These techniques complement each

other; each of them supports the physical picture presented in this chapter. We emphasize again

that weak perturbations to the Heisenberg model can explain the observed thermodynamic re-

sponses of Ytterbium Silicate, with an associated reduction of crystallographic symmetry.

Experimental veri�cation of these details remains crucial, and our theory suggests natural

tests of itself. The structure of local magnetic moments in the material can be probed with NMR

techniques. In particular, observation of a staggered magnetization along a∗ in the regime Hm <

H < Hc2 would con�rm that a C2/m forbidden, staggered g-tensor is essential to describing

Yb2Si2O7. Further, more precise neutron scattering measurements may reveal a spin gap for

Hc1 < H < Hm, the magnitude of which would constrain the XY anisotropy of our model.

Overall, this example illustrates how perturbations such as spin-orbit coupling can be used

to induce e�ective interactions that lead to non-trivial magnetic orders. Future studies focused

on the continuum theory of this model would also be interesting as a variation on the broader

theme of Bose-Einstein condensation in magnets.
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Figure 3.9: Derivative of the scattering intensity I ∝ M2
z with respect to a magnetic �eld H ,

obtained by DMRG. Linear �ts to the data are shown for the regimes Hc1 < H < Hm (red)

and Hm < H < Hc2 (magenta); the scaling of dI/dH clearly changes in these regimes. The

qualitative behavior of our results compares favorably with the data of Ref. [1], see Fig. 3(c). We

have normalized our data such that the peak at Hc2 is equal to 1.
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Chapter 4

The Distorted Pyrochlore Heisenberg

Model
1

4.1 Motivation & De�nition of The Model

This chapter focuses on a classical model of Heisenberg spins on the sites of the pyrochlore

lattice, a non-Bravais lattice with a four-site basis. Spins in this basis occupy the vertices of a

tetrahedron, so that the full lattice is built out of vertex-sharing tetrahedra (see �gures 4.1 and 4.2).

The triangular motifs that compose these tetrahedra are responsible for an extraordinary degree

of geometric frustration, leading to the famous prediction that the nearest-neighbor Heisenberg

antiferromagnet on the pyrochlore lattice is a classical spin liquid [103]. By this, we mean that

even at arbitrarily low temperatures, any correlation function is disordered in the sense that

its average over the set of ground states decays exponentially. This remarkable behavior leads

to the breakdown of standard mean-�eld approaches, including spin-wave theory and large-N

calculations with Schwinger bosons [104, 105]. For these reasons, the pyrochlore Heisenberg

model has inspired an impressive range of studies which often pioneer novel methods in many-

body theory.

Along any <111> axis, the pyrochlore lattice can be viewed as alternating layers of kagomé

and (sparse) triangular lattice structures (see Figure 4.3). Like the pyrochlore lattice, the kagomé

lattice (�gure 1.1) is highly frustrated: it retains all of the pyrochlore’s triangular plaquettes

1
The contents of this chapter are currently unpublished. The author anticipates publication of this work with

Rajiv R.P. Singh and T.E. Baker.

41



Figure 4.1: A section of the pyrochlore lattice, built out of twelve unit cells of upward facing

tetrahedra.

Figure 4.2: A small section of the pyrochlore lattice, with an illustration of the geometric dis-

tortion in (4.1). Solid lines represent Heisenberg exchange with coupling J , while dashed lines

represent weakened exchange λJ . Three-dimensional “bowtie” structures centered on triangular-

lattice spins are natural fundamental units in this problem.
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present in a commensurate planar cut. However, the nearest neighbor Heisenberg antiferromag-

net is not a classical spin liquid on the kagomé lattice [106]. At low temperatures, the kagomé

model is known to exhibit a subtle ordering mechanism. This mechanism, dubbed order-by-

disorder, counterintuitively relies on thermal (or quantum) �uctuations to establish long-range

order [107–110]. We will review this carefully in section 4.2; for now, we note that this phe-

nomenon results in the entropic selection of co-planar ground state con�gurations at nonzero

temperatures [111]. This implies that the low-temperature limit of the kagomé Heisenberg model

has non-trivial nematic correlation functions.

The stark contrast in low temperature behavior between kagomé and pyrochlore antifer-

romagnets raises natural questions for pyrochlore materials. In particular, how is the order-by-

disorder mechanism of individual kagomé layers lost in the pyrochlore lattice? Our goal in this

chapter is to answer this question. We approach the problem by considering a model Hamil-

tonian which continuously interpolates between the Heisenberg model on decoupled kagomé

sheets (λ = 0) and the undistorted pyrochlore lattice (λ = 1) (see Figure 4.2 for an illustration

of the couplings):

H = J
∑
〈ij〉∈kag

Si · Sj + λJ
∑
〈ij〉/∈kag

Si · Sj (4.1)

where the summations are over bonds contained within kagomé layers and external to them,

respectively. After reviewing the phenomena of order-by-disorder in the kagomé Heisenberg

model, we will characterize the ground states of (4.1). In the process, we will show that there

is a critical value of the geometric distortion, λc, below which there is a quasi-two dimensional

regime that exhibits the order-by-disorder mechanism. For distortions in the range 0 < λ <

λc, we will also argue that the model exhibits a thermal crossover into a classical spin liquid

phase as the temperature is reduced. We will comment throughout on the expected behavior of

thermodynamic response functions, such as the speci�c heat.
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Figure 4.3: Cuts of the pyrochlore lattice along a <111> direction. Top: a triangular lattice layer

(green) sandwiched between two kagomé layers (blue, red). Bottom: a kagomé layer (blue) sand-

wiched between two triangular lattice layers (green, red). In both cases, bonds within kagomé

planes are shown. Bonds connecting kagomé and triangular lattice spins are ommitted for visu-

alization.
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4.2 Order-by-disorder and the kagomé Heisenberg

Model

It is generally understood that �uctuations, either of a quantum mechanical or thermal nature,

act to destroy order in many-body systems. In the context of classical statistical mechanics, this

intuition essentially follows from the thermal behavior of Boltzmann weights. This perspective

is also supported by paradigm-de�ning lattice systems, such as the two-dimensional Ising model,

whose order parameter decays monotonically with increasing temperature. After working with

standard solvable models, it might seem inconceivable that �uctuations are capable of inducing

order.

On the other hand, we are taught in statistical mechanics that systems in thermal equilibrium

select microstates which minimize the free energy F = E − TS. When considering the low-

temperature physics of a lattice model, we often neglect the role of the entropy in determining

the free energy. This is certainly reasonable for systems built out of discrete degrees of freedom

with small ground state degeneracies. However, in systems with continuous degrees of freedom,

such as Heisenberg spins, this issue becomes far more delicate due to the presence of continuous,

zero-energy distortions of many-body states. When these continuous degrees of freedom are

combined with a large ground state degeneracy due to frustration, it is clear that entropic e�ects

cannot be ignored: �uctuations may lift the ground state degeneracy and induce a systematic

preference for a particular subset of the ground states.

A general framework for understanding the role of �uctuations in thermodynamic selection

was put forward by Moessner and Chalker, which we review here [103,112]. Let x be a coordinate

in many-body con�guration space which parameterizes the ground state manifold (for all cases

considered in this chapter, this manifold is connected). If y parameterizes the distortions around

this manifold due to �uctuations, the low-temperature e�ective Hamiltonian can be expressed in

the form
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H =
∑
`

ε` (x) y2
` +O

(
y4
`

)
(4.2)

where ` runs over the dimensionality of y and ε` (x) is the harmonic cost of �uctuations at

the ground state labeled by x. Integrating over the �uctuations about the ground state at x gives

a ground state probability distribution of the form

Z(x) =

∫
dye−βH ∝

∏
`

√
kBT

ε` (x)
(4.3)

It may be the case that harmonic terms happen to vanish for speci�c ground states. If this

produces a non-integrable singularity in (4.3), order-by-disorder occurs as almost all statistical

weight is concentrated on this ill-behaved subset. By keeping higher-order terms in (4.2), a well-

de�ned expression for Z(x) follows. Moreover, equipartition directly relates the speci�c heat to

the scaling behavior of �uctuations about the selected subspace.

For these reasons, we anticipate that the ground states with the largest number of anhar-

monic (or “soft”) modes will be selected for T > 0. If this subset of ground states has distinct

symmetry properties from the set of all ground states, we conclude that introducing a small

amount of disorder can actually induce order - hence the term order-by-disorder. This can also

be understood as a discontinuity in the limiting behavior of the partition function:

lim
T→0

Z(T ) 6= Z(T = 0) (4.4)

This is precisely the qualitative behavior observed in the classical nearest-neighbor kagomé

antiferromagnet. The Hamiltonian of this model can be written as

H = J
∑
〈ij〉

Si · Sj =
J

2

∑
∆

(
S2

∆ − 3
)

(4.5)

where the last expression is a sum over all kagomé triangles. The ground states of (4.5) satisfy

S2
∆ = 0 on every plaquette. The number of ground states grows exponentially as a function of

system size, and at zero temperature each one contributes equally to computations of correlation
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Figure 4.4: An example of a co-planar state on the kagomé lattice. Spins can be in one of three

con�gurations (labeled A,B,C) in a co-planar state. A gapless “weathervane defect” is high-

lighted in red. Closed curves built out of two spin states can be rotated with zero energetic cost

about the axis of the third spin state, leading to selection of co-planar states.

functions [113].

At small but nonzero temperatures, thermal �uctuations appear. What ground states could

they prefer? A natural subspace to consider, due to their unique geometric properties, is the set

of co-planar ground states. These are ground states in which every spin lies in the same plane

as every other; combined with the local ground state constraint S2
∆ = 0, this implies that every

spin can point in one of three directions (see Figure 4.4). These directions are related by 2π/3

rotations about the axis normal to the ordering plane. Co-planar ordering implies that nematic

long-range correlation functions will be nonzero, since the normal vector to the spin plane of

each kagomé triangle will either be parallel or antiparallel to any other.

The important properties of �uctuations about a co-planar state can be understood by study-

ing a single plaquette. For a kagomé triangle, a ground state con�guration is given by

Sj = (cos (2πj/3) , sin (2πj/3) , 0) , j = 1, 2, 3 (4.6)

Now study �uctuations normal to the spin plane by �xing S1 and allowing variations of the

form
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S′2 =S2 + (0, 0, η) (4.7)

S′3 =S3 − (0, 0, η)

One can then check that the change in energy due to these �uctuations scales as η4
; note

the absence of a harmonic term. More generally, the �uctuations (4.7) can be understood as

rotations of the vectors S2,S3 about the axis de�ned by S1. It is this interpretation of the normal

�uctuations which extends to the many-body co-planar state, and leads to their selection.

More explicitly, consider an arbitrary co-planar ground state, and label the three distinct

spin orientations A,B,C (see Figure 4.4). Any curve on the lattice - open or closed - built out of

only, for example, A and B spins is associated with a quartic mode generated by rotations about

the C-axis. Remarkably, it has been shown via spin-wave theory that every co-planar state has

a number of quartic modes equal to the number of hexagons on the lattice. These “weathervane

defects” may be spatially local (i.e., on closed curves, as in Figure 4.4) or extend to in�nity on

open curves in the thermodynamic limit. Moreover, it has been proven that any non-coplanar

state has fewer quartic modes than the co-planar states. For this reason, �uctuations in the low-

temperature limit select co-planar ground state con�gurations.

This result has immediate consequences for thermodynamic properties, particularly the spe-

ci�c heat. Let Nh be the number of hexagons on the lattice (with periodic boundary conditions)

and Ns be the number of spins. Then Ns = 3Nh, and by equipartition, we �nd

C = kB (Ns −Nh/4) =
11

12
NskB (4.8)

This prediction has been veri�ed by numerical simulations, and con�rms that the low-

temperature statistical weight of �uctuations is overwhelmingly concentrated on co-planar ground

states.
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Figure 4.5: Geometric parameterization of single-tetrahedron ground states. The case shown as-

sumes λ = 1/2, but its qualitative features are generic. The continuous variables a, φ completely

parameterize the ground state manifold for a single tetrahedron, and can always be chosen inde-

pendently for λ < 1.

4.3 Isolated Tetrahedra

We now return to the distorted pyrochlore Heisenberg model, focusing initially on individual

tetrahedra (or pairs of tetrahedra). While some relevant many-body phenomena cannot be ob-

served in this context, studying a single tetrahedron is su�cient to determine the local constraints

satis�ed by all many-body ground states. We will also derive an e�ective Hamiltonian which

demonstrates the emergence of a quasi-two dimensional regime.

4.3.1 Ground States

The Hamiltonian (4.1), restricted to a single tetrahedron, is

H =J (S1 · S2 + S1 · S3 + S2 · S3) + λJ (S1 + S2 + S3) · S4 (4.9)

=
J

2

(
S2

∆ − 3
)

+ λJS∆ · S4

49



In the last line, we de�ned S∆ ≡ S1 +S2 +S3 and used the fact that |Si| = 1. In this section,

we will retain constant shifts to the Hamiltonian for the sake of clarity, but we will neglect them

in general. By varying the magnitude |S∆|, one can show that ground states of (4.9) satisfy

S∆ = −λS4 (4.10)

This result extends beyond isolated tetrahedra: ground states of the full Hamiltonian (4.1)

are those which satisfy the constraint (4.10) for every tetrahedron. The ground state energy for

these con�gurations (per tetrahedron) is found to be

Egs = −J
2

(
3 + λ2

)
(4.11)

We can see that the geometric distortion has introduced a new energy scale, λ2J . It is already

clear at this stage that this energy scale must be closely related to the thermal transition between

quasi-two dimensional and three dimensional behavior mentioned previously. This scaling will

be shown to persist following more careful considerations for many-body ground states.

Going forward, it will be useful to have an explicit geometric parameterization of these

ground state con�gurations on each tetrahedron. This problem was solved by Moessner and

Chalker in the case λ = 1 [112]. Here we will provide a simple generalization to 0 < λ ≤ 1.

By absorbing λ into S4, the constraint (4.10) can be restated as the requirement that three

vectors of unit length and one of length λ must sum to zero (see �gure 4.5). Begin by considering

spins S4 and S1. Without loss of generality, we can choose coordinates such that their sum lies

along a Cartesian direction: S1 + λS4 = aẑ, 1− λ ≤ |a| ≤ 1 + λ. Now consider the spins S2,S3.

Without loss of generality, we can select the plane in which they order, which we parameterize by

an angle φ relative to the S1,S4 plane. To satisfy (4.10), it must be the case that Sz2 = Sz3 = −a/2,

which uniquely �xes the con�gurations of S2 and S3 in the plane determined by φ. The ground

state manifold for a single tetrahedron is therefore completely parameterized by the variables

a, φ. In section 4.4.1, we will use this parameterization to argue that the many-body ground state

manifold contains no energy barriers - any ground state can be continuously deformed into any
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other without energetic cost.

Some consequences immediately follow for λ < 1. It was noted by Moessner and Chalker

that a special subset of ground states in the λ = 1 case are the collinear states, in which each

tetrahedron is divided into pairs of antiparallel spins (corresponding to a = 0 or φ = π). These

cases are pathological in the sense that the parameters a and φ cannot be chosen independently;

the fact that collinear states are not ground states for λ 6= 1 guarantees that the parameters a and

φ can always be chosen independently.

We will be particularly interested in the behavior of ground states for small values of λ, for

which thermal �uctuations are found to play a signi�cant role. When λ � 1, the spins S1,S2,

and S3 will be approximately coplanar, in the sense that |S1 + S2 + S3| ∼ O (λ2).

4.3.2 E�ective Hamiltonian: kagomé layers

In anticipation of our interest in the regime λ� 1, this section will be used to derive an e�ective

Hamiltonian by integrating out the weakly coupled spins on triangular lattice sites. We begin by

considering a pair of tetrahedra with a common triangular lattice spin. We will call these “bowtie”

structures for obvious reasons. Labeling the sum of moments in each kagomé triangle by S∆1 and

S∆2 , and the triangular lattice spin by St, the Hamiltonian in this case can be written as

H =
J

2

(
S2

∆1
+ S2

∆2

)
+ λJSt · (S∆1 + S∆2) (4.12)

An e�ective Hamiltonian He� is then obtained by integrating out St:

exp [−βHe�] ≡
∫
dSt exp [−βH] ,

He� =
J

2

(
S2

∆1
+ S2

∆2

)
− 1

β
ln

[
sinh (βλJ |S∆1 + S∆2|)

βλJ |S∆1 + S∆2|

]
(4.13)

with β ≡ (kBT )−1
. We can see that integrating out St produces an e�ective ferromagnetic

interaction between kagomé moments on opposite ends of bowtie structures, which is consistent

with the constraint (4.10). A particularly important feature of He� is its explicit dependence on
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temperature, which we will show leads to a thermal crossover between quasi-two dimensional

and three dimensional behavior.

On symmetry grounds, we anticipate the ground states of (4.13) take the form S∆1 = S∆2 ≡

Sn̂, where the unit vector n̂ is arbitrary. The energy of such a con�guration is

E(S, β) =
1

2
JS2 − 1

β
ln

[
sinh (2βλJS)

2βλJS

]
(4.14)

Extremizing the energy over S leads to the transcendental equation

2JS +
1

βS
− 2Jλ coth (2βλJS) = 0 (4.15)

Generically, we can only solve (4.15) for the kagomé moment S numerically. However, the

high and low temperature limits can be solved exactly by �rst order series expansion, with the

result

S (β →∞) = λ (4.16)

S (β → 0) = 0

The zero-temperature limit is in agreement with the ground state constraints, while the

in�nite-temperature limit represents the anticipated quasi-two dimensional regime. Indeed, states

with S = 0 correspond precisely to ground states of the Heisenberg model on decoupled kagomé

sheets. Importantly, the quasi-two dimensional solution persists down to the thermal scale kBT ∼

α2J . Assuming that S grows continuously as the temperature decreases (i.e., there is no �rst or-

der transition), a series expansion of (4.15) in powers of S is justi�ed, and a nonzero solution only

appears when

β >
3

2Jλ2
(4.17)

With this understanding of individual tetrahedra, we now move on to consider many-body

ground states. In the following, we will see that the quasi-two dimensional regime is dominated
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Figure 4.6: The square lattice with crossings. This lattice is fundamentally equivalent to the

pyrochlore, but easier to visualize. Solid and dashed lines correspond to exchange interactions

between spins. Spins colored red correspond to the apex of pyrochlore tetrahedra, so that every

exchange interaction with a red vertex has strength λJ . An example of a layer used in our proof

is highlighted in blue.

by the same �uctuations that control the low-temperature behavior of the kagomé Heisenberg

model. We will also argue that there is no entropic selection at su�ciently low temperatures.

4.4 Many-body Results

We now consider the many-body problem of the distorted pyrochlore Heisenberg model. Our

analysis will be motivated by insights obtained in the previous section for individual tetrahedra,

and our understanding of the order-by-disorder mechanism for decoupled kagomé sheets.

4.4.1 Absence of Energy Barriers Between Ground States

All remarks in this section assume that we are dealing with a system that has open boundary

conditions.

Moessner and Chalker have demonstrated previously that the ground state manifold of (4.1)

is connected for the special case λ = 1 [112]. Their argument essentially carries over to the case

0 < λ < 1, with some modi�cations that account for the absence of collinear ground states.
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Following them, our approach to the proof is to argue that, for �xed λ, any ground state can be

continuously deformed into a particular reference state without encountering energy barriers.

Our reference state is a q = 0 state, for which the magnetic unit cell is a single tetrahedron.

Using the notation of (4.9) and �gure 4.5, our reference state of choice is one in which the spins

S3,S4 are antiparallel. Using global spin-rotation symmetry, such a state can be written as (for

�xed λ)

S4 = (0, 0, 1) (4.18)

S3 = (0, 0,−1)

S2 =

√1− (1− λ)2

4
, 0,

1− λ
2


S1 =

−
√

1− (1− λ)2

4
, 0,

1− λ
2


This con�guration satis�es (4.10) on every tetrahedron in a q = 0 arrangement, and is in a

sense the closest we can get to a collinear ground state for λ < 1. It is also useful to note for

purposes of visualization that the pyrochlore is closely related to the square lattice with crossings,

illustrated in Figure 4.6. Our approach to the proof will be to go through this lattice, layer by layer,

and adjust spin con�gurations without returning to a previously visited layer. As we will see, this

is possible for the square lattice with crossings, and for essentially identical reasoning applies to

the pyrochlore lattice.

The proof will make use of the following facts.

1. On a single tetrahedron, the ground state manifold is connected. The parameterization of

ground states in �gure 4.5 demonstrates this, and guarantees that any ground state con�gu-

ration on any tetrahedron can be distorted into any other continuously without leaving the

ground state manifold. Further, if two spins on a tetrahedron are unconstrained, the other

two can be rotated arbitrarily as long as the constraint 1− λ ≤ |a| ≤ 1 + λ is maintained.
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Maintaining this constraint is not an issue, since (by assumption) we began in a ground

state and the ground state manifold is connected.

2. If two spins on a tetrahedron are held �xed, a single U(1) degree of freedom is retained for

the other pair, associated with rotation about the axis given by the sum of the two �xed

spins.

3. A useful special case of (1) is the following: with one spin on a tetrahedron held �xed,

another can be adjusted arbitrarily and continuously (as long as the constraint 1 − λ ≤

|a| ≤ 1 + λ is maintained) if the other two spins are free.

Using these statements, we can deform any ground state into our reference state by manip-

ulating layers of the lattice sequentially. The algorithm for doing this runs as follows.

For spins in the bottom layer of the lattice, we can, by (1), continuously adjust those tetra-

hedra so that S3 and S4 are in their reference con�gurations (4.18). This requires adjusting the

con�gurations of spins on higher layers in order to keep every tetrahedron in a ground state

con�guration, but this poses no di�culties since they are unconstrained at this point.

Now that the �rst layer is �xed, we move on to the second. By (2), every spin in this layer

is constrained to lie on a cone, and only needs to be rotated into the correct position. We can do

this one by one for each tetrahedron in the bottom layer, so that they are each in the reference

con�guration. Note that (3) guarantees that once a tetrahedron is in its reference con�guration,

it will not be disturbed by adjusting spins in the same layer. As we do this, spins in higher layers

can be adjusted freely to keep every tetrahedron in a ground state con�guration. Importantly, we

do not need to revisit spins in the �rst layer in this process - by (2), their �xed orientations are

commensurate with the ground state constraints and the transformations required in the second

layer.

This process can be repeated in every layer without di�culty. We have therefore shown that

the ground state manifold of the distorted pyrochlore Heisenberg model is always connected.

With this understanding established, we can now focus on the role of �uctuations in the low-
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temperature limit without considering energetic obstacles.

4.4.2 Order-by-disorder in the quasi-2D limit

For a single tetrahedron, we have seen that a quasi-two dimensional limit appears for temper-

atures that satisfy T & O (λ2). This behavior persists for many-body states, essentially for

the same reason that it appears in the single tetrahedron. This follows from integrating out all

triangular-lattice spins, as we did in the derivation of (4.13). The resulting e�ective Hamiltonian

is just a sum over the set of bowtie structures of terms of the form (4.13).

By the arguments provided in previous sections, the many-body con�guration which is se-

lected for T & O (λ2) has S∆ = 0 on all kagomé triangles. In other words, the ground states

of the e�ective many-body theory are just the ground states of the kagomé Heisenberg model

on decoupled sheets. In terms of energetics, the high temperature behavior of the distorted py-

rochlore Heisenberg model is essentially two-dimensional, but it is not at all obvious that this is

still the case after considering the e�ect of �uctuations.

To study �uctuations, we once again need to develop a systematic understanding of soft

modes about ground states of the e�ective model. A soft mode of this e�ective Hamiltonian

corresponds to a transformation which preserves the constraint S2
∆ = 0 everywhere. Any such

transformation obviously factorizes into independent transformations on every kagomé layer.

This implies that the number of zero modes in a many-body state is given by, at most, the sum

of the zero modes present in every kagomé layer. Our experience with the kagomé Heisenberg

model naturally leads us to consider the co-planar ground states, as these contain the greatest

possible number of soft modes. However, this does not provide guidance regarding the nature of

inter-plane correlations, and it is possible that the ferromagnetic interactions between kagomé

planes could destroy some of the zero modes.

We will now argue that this is not the case: no zero modes are destroyed by inter-plane

�uctuations. Moreover, the order-by-disorder mechanism does not select for a particular form of

inter-plane order. The key to this argument is to note that the e�ective inter-plane interactions
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are of the form

ln

[
sinh (x)

x

]
≈ x2

6
(4.19)

where x = βλJ |S∆1 + S∆2|. Fluctuation corrections to the spin magnitude |S∆| of order η

scale as η2
, so the leading order term in the e�ective Hamiltonian scales as η4

. As previously dis-

cussed, all zero modes of co-planar kagomé ground states have a quartic e�ective potential which

governs them. Since inter-plane �uctuation corrections evidently cannot restore a harmonic term,

all of the co-planar quartic modes are insensitive to the presence of inter-plane interactions. The

quasi-two dimensional regime mimics the thermodynamic behavior of decoupled kagomé sheets,

although we should recall that for a �xed number of unit cells, the pyrochlore lattice has 4/3 the

number of spins that the kagomé does. For this reason, we predict that the quasi-two dimensional

limit has a heat capacity per spin given by

C

Ns

=
3

4
× 11

12
=

33

48
(4.20)

4.4.3 Absence of order-by-disorder at low temperatures

As mentioned previously, the pyrochlore Heisenberg model is unlike the kagomé Heisenberg

model in that it does not exhibit order-by-disorder at low temperatures. The natural candidate

states for selection by �uctuations on the un-distorted pyrochlore lattice are collinear states.

These states support one quartic mode per tetrahedron, similar in nature to the distortion re-

sponsible for the quartic mode on every kagomé triangle discussed in Section 4.2. However, it

has been demonstrated through numerical calculations that these additional soft modes are insuf-

�cient to cause selection of collinear states: in the language of (4.3), the singularity they produce

in the partition function is integrable. Is order-by-disorder possible for λ < 1?

Fully collinear states are forbidden in the presence of distortion; the closest one can get to

a collinear con�guration is a state of the form (4.18). The de�ning property of these states is the

fact that the triangular lattice spin is parallel or antiparallel with a kagomé spin. Tetrahedra in
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these con�gurations support a single quartic mode, analogous to the quartic mode of undistorted

tetrahedra.

These are the only geometrically privileged con�gurations for a single tetrahedron - copla-

nar order is energetically forbidden for nonzero λ. In general, other tetrahedral con�gurations

are expected to support three quadratic modes, as a consequence of dimension counting. Four

Heisenberg spins have eight degrees of freedom, and the ground state condition imposes three

constraints. The ground state manifold for a single tetrahedron then has dimension �ve, which

is parameterized by the set of global rotations and the parameters a, φ of �gure 4.5. Anhar-

monic �uctuations about a ground state con�guration therefore require �ne-tuning. This once

again leaves collinear states as the only natural candidate for order-by-disorder. However, in the

distorted case, the phase space of collinear states is reduced: there can be at most one pair of

(anti)parallel spins per tetrahedron, instead of two. For this reason, collinear states must pro-

duce an even more well-behaved singularity in the distorted case, and order-by-disorder does

not occur.

4.4.4 Qualitative Phase Diagram

The qualitative phase diagram for the distorted pyrochlore Heisenberg model is shown in Figure

4.7. It contains the quasi-two dimensional phase without order by disorder, the disordered quasi-

two dimensional phase, and the disordered three-dimensional phase. Each phase boundary is a

thermal crossover.

The low temperature phases are distinguished by thermal response functions, such as the

speci�c heat: the order-by-disorder phase has a heat capacity per spin of 33/48, while the value in

the disordered three-dimensional phase is 3/4. Veri�cations of these predictions through numeri-

cal simulations by Monte Carlo methods would provide de�nitive proof that the order-by-disorder

mechanism is working as described in this chapter. Another interesting subject for future work

will be analysis of correlation functions in the disordered three-dimensional phase for λ < 1. We

suspect that this phase is still a classical spin liquid, but this requires an investigation of co-planar
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Figure 4.7: Qualitative phase diagram of the distorted pyrochlore Heisenberg model. The text

“OBD” indicates the order-by-disorder regime. The scale Tc indicates the onset of the order by

disorder regime in the kagomé limit, which occurs at approximately kBTc ≈ 0.1J . The scale λ2J
can be used to estimate the critical distortion, λc, below which order by disorder is observable.

For su�ciently small temperatures at any nonzero value of λ, the system enters a disordered

three-dimensional con�guration. Not shown is the crossover regime between two dimensional

and three dimensional behavior, which presumably takes place over a range of temperatures.
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and collinear order parameters from numerical simulations.

The class of geometric distortions discussed in this chapter is expected to be relevant to py-

rochlore, or layered kagomé, systems in general. There is tremendous empirical interest in such

materials in the search for quantum spin liquids, including, for example, Herbertsmithite [114].

We anticipate that this work is more directly relevant to studies of materials which exhibit classi-

cal spin-liquid behavior [115]. Although these distortions are presumably non-generic in undis-

torted materials, applications of di�erent forms of strain should be able to create these conditions

empirically.
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Chapter 5

Concluding Remarks

Over the last few decades, condensed matter theory has been revolutionized by a sequence of

remarkable discoveries. These discoveries are often empirically motivated, but it is already illu-

minating to consider the repercussions of those discoveries on the technical repertoire of theo-

rists. This includes our focus on the role of topology, particularly in the context of the integer

quantum Hall e�ect; a greater appreciation for the systematics of fractionalization in strongly cor-

related systems, such as frustrated antiferromagnets; and the use of gauge theories and dualities

for describing interacting systems. Perhaps the most consequential among these discoveries is

the existence of high-temperature superconductors, which has prompted a �ood of research into

their origin. Today, more than thirty years following their discovery, it is clear that many-body

theory still has surprises in store for physicists.

It is unsurprising that such exotic structures are promoted by the imposition of incompatible

energetic constraints. While the theory of high-temperature superconductors remains an active

(and highly contentious) area of research, a broad theoretical consensus has appeared around the

idea that such systems can be understood as doped Mott insulators [116]. It is therefore natural

to develop theories of the parent insulating state, which has prompted a renewed interest in the

theory of frustrated magnets. This dissertation has continued in this vein by considering frus-

trated interactions in a variety of circumstances, demonstrating the diversity of both quantum

and classical phases of matter supported by such a platform. While high-temperature supercon-

ductors may well be the most exciting many-body phenomena found to date, there is little reason

to doubt that frustrated magnets will continue to serve as a useful tool to search for other exotic
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phases of matter. Ultracold atomic and trapped-ion systems also provide a natural and exciting

extension of these ideas beyond the constraints of individual materials.

In chapter 2, we investigated how topological considerations can appear in frustrated mag-

nets. In that context, we saw that a strongly correlated system can support exponentially localized

boundary modes which are responsible for non-trivial transport properties. There has recently

been signi�cant interest in the thermal Hall conductivity (and magnon transport in general) due

to its anomalous magnitude in the pseudogap phase of the Cuprate superconductors [117]. Our

analysis reveals that such topological boundary modes are quite generic. Left unaddressed is the

origin of topological order in the cuprates. It appears that any theory of those high-temperature

superconductors must also account for this topological behavior.

Chapter 3 considered a problem which veterans of many-body theory would expect to un-

derstand well. Our model of spins on the honeycomb lattice contains an even number of spins

per unit cell: such systems can often be studied accurately with the bond-operator formalism.

Essentially, this class of systems are understood as analogues of Bose-Einstein Condensates in

the spin channel, with a spin gap that vanishes at su�ciently large magnetic �elds. Beyond that

�eld-induced critical point, magnetic order forms. While these statements are also true for our

model of Ytterbium Silicate, it seems that a previously unconsidered quantum critical point ap-

pears at the “mystery” magnetic �eld, Hm. At this point, the spin gap closes yet again (at least

in linear spin-wave theory), and the magnetic order persists on both sides of the critical point.

What role does the closing of the spin gap play in this transition? Since the transition breaks

only a discrete symmetry, there is no obvious requirement that the spin gap needs to close. Un-

derstanding the properties of this quantum critical point more generally is clearly desirable, and

may reveal more about the structure of the BEC dome for Ytterbium Silicate and other materials

with strong spin-orbit coupling.

Finally, chapter 4 presented a theory of distorted pyrochlore antiferromagnets. This problem

is essentially a classical analogue of the theory of Mott insulators or quantum spin liquids. Ge-

ometric perturbations of the type we considered can lead to an e�ective dimensional reduction,
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which leads to qualitatively novel behavior of �uctuation-induced selection mechanisms. Exper-

iments involving classical spin liquid compounds, such as various titanates, may well reveal the

crossover behavior we described. Moreover, the consequences of such perturbations for corre-

sponding quantum mechanical systems is of great interest. Pyrochlore systems are some of the

leading candidates for observing a quantum spin liquid experimentally; if anisotropic perturba-

tions are capable of inducing novel selection mechanisms, these need to be understood systemat-

ically in order to carry on the search for quantum liquid states. We hope that our analysis of these

properties in the classical limit will help shed light on the corresponding small-spin problem.

The model Hamiltonians introduced throughout this dissertation have certainly been “sim-

ple”. However, we hope that the reader can appreciate their empirical relevance - while the theory

of materials can be a highly specialized business, the techniques used in our analysis are quite

general. The process of constructing empirically relevant, theoretically amenable models is ex-

tremely important in the development of condensed matter physics. The examples worked out

here are hopefully edifying to the reader, as there is still much to do in many-body physics. To

quote X.G. Wen, “Nature never stops to surprise us” [8].

63



Bibliography

1 G. Hester, H. S. Nair, T. Reeder, D. R. Yahne, T. N. DeLazzer, L. Berges, D. Ziat, J. R. Neil-

son, A. A. Aczel, G. Sala, J. A. Quilliam, and K. A. Ross, “Novel strongly spin-orbit coupled

quantum dimer magnet: yb2si2o7,” Phys. Rev. Lett., vol. 123, p. 027201, Jul 2019.

2 E. Fradkin, Field Theories of Condensed Matter Physics. Cambridge University Press, 2 ed.,

2013.

3 R. Shankar, “E�ective Field Theory in Condensed Matter Physics,” arXiv e-prints, pp. cond–

mat/9703210, Mar. 1997.

4 K. G. Wilson, “The renormalization group: Critical phenomena and the kondo problem,” Rev.

Mod. Phys., vol. 47, pp. 773–840, Oct 1975.

5 J. Polchinski, “E�ective Field Theory and the Fermi Surface,” arXiv e-prints, pp. hep–

th/9210046, Oct. 1992.

6 M. Kardar, Statistical Physics of Fields. Cambridge University Press, 2007.

7 X.-G. Wen, Quantum Field Theory of Many-body Systems: From the Origin of Sound to an

Origin of Light and Electrons. Oxford University Press, 2004.

8 X.-G. Wen, “Quantum orders and symmetric spin liquids,” Phys. Rev. B, vol. 65, p. 165113,

Apr. 2002.

9 X.-G. Wen, “Topological order: from long-range entangled quantum matter to an uni�cation

of light and electrons,” arXiv e-prints, p. arXiv:1210.1281, Oct. 2012.

64



10 J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band struc-

tures,” Phys. Rev. B, vol. 75, p. 121306, Mar 2007.

11 L. Savary and L. Balents, “Quantum spin liquids: a review,” Reports on Progress in Physics,

vol. 80, p. 016502, Nov 2016.

12 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance

in a two-dimensional periodic potential,” Phys. Rev. Lett., vol. 49, pp. 405–408, Aug 1982.

13 S.-S. Chern, “A simple intrinsic proof of the gauss-bonnet formula for closed riemannian

manifolds,” Annals of Mathematics, vol. 45, no. 4, pp. 747–752, 1944.

14 M. Nakahara, Geometry, topology and physics. 2003.

15 S. Sachdev, Quantum phase transitions. Cambridge: Cambridge University Press, second

ed. ed., 2011.

16 T. Holstein and H. Primako�, “Field dependence of the intrinsic domain magnetization of a

ferromagnet,” Phys. Rev., vol. 58, pp. 1098–1113, Dec 1940.

17 A. Auerbach and D. P. Arovas, “Schwinger Bosons Approaches to Quantum Antiferromag-

netism,” arXiv e-prints, p. arXiv:0809.4836, Sept. 2008.

18 Y.-M. Lu, G. Y. Cho, and A. Vishwanath, “Uni�cation of bosonic and fermionic theories of

spin liquids on the kagome lattice,” arXiv e-prints, p. arXiv:1403.0575, Mar. 2014.

19 Y.-M. Lu, Y. Ran, and P. A. Lee, “z2 spin liquids in the s = 1
2

heisenberg model on the kagome

lattice: A projective symmetry-group study of schwinger fermion mean-�eld states,” Phys.

Rev. B, vol. 83, p. 224413, Jun 2011.

20 J. G. Rau, P. A. McClarty, and R. Moessner, “Pseudo-Goldstone Gaps and Order-by-Quantum

Disorder in Frustrated Magnets,” Phys. Rev. Lett., vol. 121, p. 237201, Dec. 2018.

65



21 P. A. McClarty, X.-Y. Dong, M. Gohlke, J. G. Rau, F. Pollmann, R. Moessner, and K. Penc,

“Topological magnons in kitaev magnets at high �elds,” Phys. Rev. B, vol. 98, p. 060404, Aug

2018.

22 A. Zee, Group Theory in a Nutshell for Physicists. USA: Princeton University Press, 2016.

23 X.-L. Qi and D. Ranard, “Determining a local Hamiltonian from a single eigenstate,” arXiv

e-prints, p. arXiv:1712.01850, Dec. 2017.

24 J. R. Garrison and T. Grover, “Does a Single Eigenstate Encode the Full Hamiltonian?,” Phys-

ical Review X, vol. 8, p. 021026, Apr. 2018.

25 E. Chertkov and B. K. Clark, “Computational inverse method for constructing spaces of quan-

tum models from wave functions,” Phys. Rev. X, vol. 8, p. 031029, Jul 2018.

26 R. Orús, “A practical introduction to tensor networks: Matrix product states and projected

entangled pair states,” Annals of Physics, vol. 349, pp. 117–158, Oct. 2014.

27 M. B. Hastings, “Solving gapped Hamiltonians locally,” Phys. Rev. B, vol. 73, p. 085115, Feb.

2006.

28 G. Kin-Lic Chan, A. Keselman, N. Nakatani, Z. Li, and S. R. White, “Matrix Product Opera-

tors, Matrix Product States, and ab initio Density Matrix Renormalization Group algorithms,”

arXiv e-prints, p. arXiv:1605.02611, May 2016.

29 L. Balents, “Spin liquids in frustrated magnets,” Nature, vol. 464, pp. 199–208, 2010.

30 L. Pauling, “The structure and entropy of ice and of other crystals with some randomness of

atomic arrangement,” Journal of the American Chemical Society, vol. 57, no. 12, pp. 2680–2684,

1935.

31 M. Hermele, M. P. Fisher, and L. Balents, “Pyrochlore photons: The U(1) spin liquid in a S=1/2

three-dimensional frustrated magnet,” Phys. Rev. B, vol. 69, p. 064404, Feb. 2004.

66



32 M. J. Lawler, “Emergent gauge dynamics of highly frustrated magnets,” New Journal of

Physics, vol. 15, p. 043043, Apr. 2013.

33 S. Sachdev, Quantum Phases and Phase Transitions of Mott Insulators, vol. 645, p. 381. 2004.

34 A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303,

pp. 2–30, Jan. 2003.

35 L. Balents, “Spin liquids in frustrated magnets,” Nature, vol. 464, pp. 199–208, 2010.

36 S. Yan, D. A. Huse, and S. R. White, “Spin-liquid ground state of the s = 1/2 kagome heisenberg

antiferromagnet,” Science, vol. 332, no. 6034, pp. 1173–1176, 2011.

37 P. Gegenwart and S. Trebst, “Spin-orbit physics: Kitaev matter,” Nature Physics, vol. 11,

pp. 444–445, June 2015.

38 P. Chandra, P. Coleman, and A. I. Larkin, “Ising transition in frustrated heisenberg models,”

Phys. Rev. Lett., vol. 64, pp. 88–91, Jan. 1990.

39 I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnet-

ics,” Journal of Physics and Chemistry of Solids, vol. 4, pp. 241–255, 1958.

40 T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev.,

vol. 120, pp. 91–98, Oct. 1960.

41 A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals of Physics, vol. 321, pp. 2–

111, Jan. 2006.

42 G. Jackeli and G. Khaliullin, “Mott insulators in the strong spin-orbit coupling limit: From

heisenberg to a quantum compass and kitaev models,” Phys. Rev. Lett., vol. 102, p. 017205,

Jan. 2009.

43 D. Pesin and L. Balents, “Mott physics and band topology in materials with strong spin-orbit

interaction,” Nature Physics, vol. 6, pp. 376–381, May 2010.

67



44 P. A. Lee and N. Nagaosa, “Proposal to use neutron scattering to access scalar spin chirality

�uctuations in kagome lattices,” Physical Review B, vol. 87, p. 064423, Feb. 2013.

45 G. Chen, T. Ma, A. T. N’Diaye, H. Kwon, C. Won, Y. Wu, and A. K. Schmid, “Tailoring the

chirality of magnetic domain walls by interface engineering.,” Nature communications, vol. 4,

p. 2671, 2013.

46 G. Chen and A. K. Schmid, “Imaging and tailoring the chirality of domain walls in magnetic

�lms,” Advanced Materials, vol. 27, no. 38, pp. 5738–5743, 2015.

47 L. Savary and L. Balents, “Quantum spin liquids: a review,” Reports on Progress in Physics,

vol. 80, p. 016502, Jan. 2017.

48 F.-Y. Li, Y.-D. Li, Y. B. Kim, L. Balents, Y. Yu, and G. Chen, “Weyl magnons in breathing

pyrochlore antiferromagnets,” Nature Communications, vol. 7, p. 12691, Sept. 2016.

49 S. A. Owerre, “Topological transitions of magnons in three-dimensional strained chiral an-

tiferromagnets and thermal Hall e�ect in honeycomb ferromagnet CrI$_3$,” arXiv e-prints,

p. arXiv:1811.01946, Nov. 2018.

50 S. A. Owerre, “Strain-induced topological magnon phase transitions: applications to kagome-

lattice ferromagnets,” Journal of Physics Condensed Matter, vol. 30, p. 245803, June 2018.

51 M. Elhajal, B. Canals, and C. Lacroix, “Symmetry breaking due to dzyaloshinsky-moriya

interactions in the kagomé lattice,” Phys. Rev. B, vol. 66, p. 014422, July 2002.

52 O. Cépas, C. M. Fong, P. W. Leung, and C. Lhuillier, “Quantum phase transition induced

by dzyaloshinskii-moriya interactions in the kagome antiferromagnet,” Phys. Rev. B, vol. 78,

p. 140405, Oct. 2008.

53 T. F. Seman, C.-C. Chen, R. R. P. Singh, and M. van Veenendaal, “The many faces of quan-

tum kagome materials: Interplay of further-neighbour exchange and Dzyaloshinskii-Moriya

interaction,” arXiv e-prints, p. arXiv:1508.01523, Aug. 2015.

68



54 M. Rigol and R. R. P. Singh, “Magnetic susceptibility of the kagome antiferromagnet

zncu3(OH)6cl2,” Phys. Rev. Lett., vol. 98, p. 207204, May 2007.

55 M. Hering and J. Reuther, “Functional renormalization group analysis of dzyaloshinsky-

moriya and heisenberg spin interactions on the kagome lattice,” Phys. Rev. B, vol. 95,

p. 054418, Feb. 2017.

56 V. A. Zyuzin and G. A. Fiete, “Spatially anisotropic kagome antiferromagnet with

dzyaloshinskii-moriya interaction,” Phys. Rev. B, vol. 85, p. 104417, Mar. 2012.

57 A. L. Chernyshev and P. A. Maksimov, “Damped topological magnons in the kagome-lattice

ferromagnets,” Phys. Rev. Lett., vol. 117, p. 187203, Oct. 2016.

58 C.-Y. Lee, B. Normand, and Y.-J. Kao, “Gapless spin liquid in the kagome heisenberg anti-

ferromagnet with dzyaloshinskii-moriya interactions,” Phys. Rev. B, vol. 98, p. 224414, Dec.

2018.

59 S. A. Owerre, “Magnon hall e�ect without dzyaloshinskii–moriya interaction,” Journal of

Physics: Condensed Matter, vol. 29, p. 03LT01, Nov. 2016.

60 H. Katsura, N. Nagaosa, and P. A. Lee, “Theory of the thermal hall e�ect in quantum mag-

nets,” Phys. Rev. Lett., vol. 104, p. 066403, Feb. 2010.

61 A. Rückriegel, A. Brataas, and R. A. Duine, “Bulk and edge spin transport in topological

magnon insulators,” Physical Review B, vol. 97, p. 081106, Feb. 2018.

62 W. Cai, J. Han, F. Mei, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P. Song, Z.-Y. Xue, Z.-q. Yin, S. Jia, and

L. Sun, “Observation of topological magnon insulator states in a superconducting circuit,”

Phys. Rev. Lett., vol. 123, p. 080501, Aug 2019.

63 F. Mei, G. Chen, N. Goldman, L. Xiao, and S. Jia, “Topological magnon insulator and quantized

pumps from strongly-interacting bosons in optical superlattices,” New Journal of Physics,

vol. 21, p. 095002, sep 2019.

69



64 M. E. Zhitomirsky and A. L. Chernyshev, “Instability of antiferromagnetic magnons in strong

�elds,” Phys. Rev. Lett., vol. 82, pp. 4536–4539, May 1999.

65 A. Mook, J. Henk, and I. Mertig, “Magnon hall e�ect and topology in kagome lattices: A

theoretical investigation,” Phys. Rev. B, vol. 89, p. 134409, Apr. 2014.

66 P. Laurell and G. A. Fiete, “Magnon thermal Hall e�ect in kagome antiferromagnets with

Dzyaloshinskii-Moriya interactions,” Physical Review B, vol. 98, p. 094419, Sept. 2018.

67 T. Yildirim and A. B. Harris, “Magnetic structure and spin waves in the kagomé jarosite

compound Kfe3(SO4)2(OH)6,” Phys. Rev. B, vol. 73, p. 214446, June 2006.

68 K. Matan, D. Grohol, D. G. Nocera, T. Yildirim, A. B. Harris, S. H. Lee, S. E. Nagler, and Y. S.

Lee, “Spin waves in the frustrated kagomé lattice antiferromagnet kfe3(OH)6(so4)2,” Phys.

Rev. Lett., vol. 96, p. 247201, June 2006.

69 A. L. Chernyshev, “Strong quantum e�ects in an almost classical antiferromagnet on a

kagome lattice,” Phys. Rev. B, vol. 92, p. 094409, Sept. 2015.

70 S. Trebst, H. Monien, C. J. Hamer, Z. Weihong, and R. R. P. Singh, “Strong-coupling expan-

sions for multiparticle excitations: Continuum and bound states,” Phys. Rev. Lett., vol. 85,

pp. 4373–4376, Nov. 2000.

71 M. P. Gelfand and R. R. P. Singh, “High-order convergent expansions for quantum many

particle systems,” Advances in Physics, vol. 49, pp. 93–140, Jan. 2000.

72 M. P. Gelfand, R. R. P. Singh, and D. A. Huse, “Perturbation expansions for quantum many-

body systems,” Journal of Statistical Physics, vol. 59, pp. 1093–1142, June 1990.

73 J. Oitmaa, C. Hamer, and W. Zheng, Series Expansion Methods for Strongly Interacting Lattice

Models. Cambridge University Press, 2006.

74 S. D. Huber and E. Altman, “Bose condensation in �at bands,” Phys. Rev. B, vol. 82, p. 184502,

Nov. 2010.

70



75 M. E. Zhitomirsky and H. Tsunetsugu, “Exact low-temperature behavior of a kagomé anti-

ferromagnet at high �elds,” Physical Review B, vol. 70, p. 100403, Sept. 2004.

76 S. A. Owerre, “Magnonic analogs of topological dirac semimetals,” Journal of Physics Com-

munications, vol. 1, p. 025007, Sept. 2017.

77 T. Fukui, Y. Hatsugai, and H. Suzuki, “Chern numbers in discretized brillouin zone: E�-

cient method of computing (spin) hall conductances,” Journal of the Physical Society of Japan,

vol. 74, no. 6, pp. 1674–1677, 2005.

78 R. Matsumoto, R. Shindou, and S. Murakami, “Thermal hall e�ect of magnons in magnets

with dipolar interaction,” Phys. Rev. B, vol. 89, p. 054420, Feb. 2014.

79 M. J. P. Gingras and P. A. McClarty, “Quantum spin ice: a search for gapless quantum spin

liquids in pyrochlore magnets,” Reports on Progress in Physics, vol. 77, p. 056501, May 2014.

80 F.-Y. Li, Y.-D. Li, Y. B. Kim, L. Balents, Y. Yu, and G. Chen, “Weyl magnons in breathing

pyrochlore antiferromagnets,” Nature Communications, vol. 7, Sep 2016.

81 J. B. Kogut, “An introduction to lattice gauge theory and spin systems,” Rev. Mod. Phys.,

vol. 51, pp. 659–713, Oct 1979.

82 A. Ortiz-Ambriz, C. Nisoli, C. Reichhardt, C. J. O. Reichhardt, and P. Tierno, “Colloquium: Ice

rule and emergent frustration in particle ice and beyond,” Rev. Mod. Phys., vol. 91, p. 041003,

Dec 2019.

83 V. Zapf, M. Jaime, and C. D. Batista, “Bose-einstein condensation in quantum magnets,” Rev.

Mod. Phys., vol. 86, pp. 563–614, May 2014.

84 V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison, C. D. Batista, M. Kenzelmann,

C. Niedermayer, A. Lacerda, and A. Paduan-Filho, “Bose-einstein condensation of s = 1

nickel spin degrees of freedom in nicl2−4SC(nh2)2,” Phys. Rev. Lett., vol. 96, p. 077204, Feb

2006.

71



85 M. Kofu, H. Ueda, H. Nojiri, Y. Oshima, T. Zenmoto, K. C. Rule, S. Gerischer, B. Lake,

C. D. Batista, Y. Ueda, and et al., “Magnetic-�eld induced phase transitions in a weakly cou-

pleds=1/2quantum spin dimer systemba3cr2o8,” Physical Review Letters, vol. 102, Apr 2009.

86 Y. Tsui, A. Brühl, K. Removic-Langer, V. Pashchenko, B. Wolf, G. Donath, A. Pikul, T. Kretz,

H.-W. Lerner, M. Wagner, A. Salguero, T. Saha-Dasgupta, B. Rahaman, R. Valenti, and

M. Lang, “Field-induced phase transition in a metalorganic spin-dimer system—a potential

model system to study bose–einstein condensation of magnons,” Journal of Magnetism and

Magnetic Materials, vol. 310, no. 2, Part 2, pp. 1319 – 1321, 2007. Proceedings of the 17th

International Conference on Magnetism.

87 U. Tutsch, B. Wolf, S. Wessel, L. Postulka, Y. Tsui, H. Jeschke, I. Opahle, T. Saha-Dasgupta,

R. Valentí, A. Brühl, K. Remović-Langer, T. Kretz, H.-W. Lerner, M. Wagner, and M. Lang,

“Evidence of a �eld-induced berezinskii-kosterlitz-thouless scenario in a two-dimensional

spin-dimer system,” Nature communications, vol. 5, p. 5169, 10 2014.

88 C. D. Batista and G. Ortiz, “Generalized jordan-wigner transformations,” Phys. Rev. Lett.,

vol. 86, pp. 1082–1085, Feb 2001.

89 H. Tanaka, F. Yamada, T. Ono, T. Sakakibara, Y. Uwatoko, A. Oosawa, K. Kakurai, and K. Goto,

“Magnetic quantum phase transitions from gapped spin liquid state in tlcucl3,” Journal of

Magnetism and Magnetic Materials, vol. 310, no. 2, Part 2, pp. 1343 – 1348, 2007. Proceedings

of the 17th International Conference on Magnetism.

90 D. S. Fisher and P. C. Hohenberg, “Dilute bose gas in two dimensions,” Phys. Rev. B, vol. 37,

pp. 4936–4943, Apr 1988.

91 E. Orignac, R. Citro, and T. Giamarchi, “Critical properties and bose-einstein condensation

in dimer spin systems,” Phys. Rev. B, vol. 75, p. 140403, Apr 2007.

92 O. Nohadani, S. Wessel, B. Normand, and S. Haas, “Universal scaling at �eld-induced mag-

netic phase transitions,” Physical Review B, vol. 69, Jun 2004.

72



93 T. Giamarchi, C. Rüegg, and O. Tchernyshyov, “Bose–einstein condensation in magnetic in-

sulators,” Nature Physics, vol. 4, p. 198–204, Mar 2008.

94 M. Mourigal, W. T. Fuhrman, A. L. Chernyshev, and M. E. Zhitomirsky, “Dynamical structure

factor of the triangular-lattice antiferromagnet,” Physical Review B, vol. 88, Sep 2013.

95 M. E. Zhitomirsky and A. L. Chernyshev, “Colloquium: Spontaneous magnon decays,” Re-

views of Modern Physics, vol. 85, p. 219–242, Jan 2013.

96 S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev.

Lett., vol. 69, pp. 2863–2866, Nov 1992.

97 T. E. Baker, S. Desrosiers, M. Tremblay, and M. P. Thompson, “Méthodes de calcul avec

réseaux de tenseurs en physique (basic tensor network computations in physics),” arXiv

preprint arXiv:1911.11566, 2019.

98 I. A�eck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Rigorous results on valence-bond ground

states in antiferromagnets,” Phys. Rev. Lett., vol. 59, pp. 799–802, Aug 1987.

99 F. Verstraete and J. I. Cirac, “Matrix product states represent ground states faithfully,” Phys.

Rev. B, vol. 73, p. 094423, Mar 2006.

100 U. Schollwöck, “The density-matrix renormalization group,” Rev. Mod. Phys., vol. 77, pp. 259–

315, Apr 2005.

101 U. Schollwöck, “The density-matrix renormalization group in the age of matrix product

states,” Annals of Physics, vol. 326, no. 1, pp. 96–192, 2011.

102 C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf, “Strictly single-site dmrg algorithm

with subspace expansion,” Physical Review B, vol. 91, no. 15, p. 155115, 2015.

103 R. Moessner and J. T. Chalker, “Properties of a Classical Spin Liquid: The Heisenberg Py-

rochlore Antiferromagnet,” Phys. Rev. Lett., vol. 80, pp. 2929–2932, Mar. 1998.

73



104 S. Sachdev, “Kagome- and triangular-lattice heisenberg antiferromagnets: Ordering from

quantum �uctuations and quantum-disordered ground states with uncon�ned bosonic

spinons,” Phys. Rev. B, vol. 45, pp. 12377–12396, Jun 1992.

105 U. Hizi, P. Sharma, and C. L. Henley, “Semiclassical Ordering in the Large-N Pyrochlore

Antiferromagnet,” Phys. Rev. Lett., vol. 95, p. 167203, Oct. 2005.

106 A. Chubukov, “Order from disorder in a kagomé antiferromagnet,” Phys. Rev. Lett., vol. 69,

pp. 832–835, Aug 1992.

107 J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, “Order as an e�ect of disorder,” Journal de

Physique, vol. 41, no. 11, pp. 1263–1272, 1980.

108 L. Savary, K. A. Ross, B. D. Gaulin, J. P. C. Ru�, and L. Balents, “Order by quantum disorder

in er2ti2o7,” Phys. Rev. Lett., vol. 109, p. 167201, Oct 2012.

109 M. E. Zhitomirsky, M. V. Gvozdikova, P. C. W. Holdsworth, and R. Moessner, “Quantum

order by disorder and accidental soft mode in er2ti2o7,” Phys. Rev. Lett., vol. 109, p. 077204,

Aug 2012.

110 D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, “Order-by-disorder and spiral spin-

liquid in frustrated diamond-lattice antiferromagnets,” Nature Physics, vol. 3, pp. 487–491,

July 2007.

111 J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, “Hidden order in a frustrated system:

Properties of the heisenberg kagomé antiferromagnet,” Phys. Rev. Lett., vol. 68, pp. 855–858,

Feb 1992.

112 R. Moessner and J. T. Chalker, “Low-temperature properties of classical geometrically frus-

trated antiferromagnets,” Phys. Rev. B, vol. 58, pp. 12049–12062, Nov. 1998.

113 D. A. Huse and A. D. Rutenberg, “Classical antiferromagnets on the kagomé lattice,” Phys.

Rev. B, vol. 45, pp. 7536–7539, Apr 1992.

74



114 M. R. Norman, “Colloquium: Herbertsmithite and the search for the quantum spin liquid,”

Reviews of Modern Physics, vol. 88, p. 041002, Oct. 2016.

115 S. T. Bramwell and M. J. P. Gingras, “Spin ice state in frustrated magnetic pyrochlore mate-

rials,” Science, vol. 294, no. 5546, pp. 1495–1501, 2001.

116 P. A. Lee, N. Nagaosa, and X.-G. Wen, “Doping a mott insulator: Physics of high-temperature

superconductivity,” Rev. Mod. Phys., vol. 78, pp. 17–85, Jan 2006.

117 G. Grissonnanche, A. Legros, S. Badoux, E. Lefrançois, V. Zatko, M. Lizaire, F. Laliberté,

A. Gourgout, J. Zhou, S. Pyon, T. Takayama, H. Takagi, S. Ono, N. Doiron-Leyraud, and

L. Taillefer, “Giant thermal Hall conductivity from neutral excitations in the pseudogap phase

of cuprates,” arXiv e-prints, p. arXiv:1901.03104, Jan. 2019.

75


	Abstract
	Table of Contents
	Magnetism, Quantum and Classical
	Introduction: Why Magnets?
	Band Topology
	Comments on Computational Methods
	Mean-Field Theory and Spin-Wave Theory
	Matrix Product State Methods

	Frustration and the breakdown of mean-field theory

	High-Field Expansions for Kagome Antiferromagnets with Spin-Orbit Coupling
	Introduction
	Linked Cluster Expansion
	Tunable Dirac Points
	Topological Magnon Bands & Chern Numbers
	Conclusion and Future Directions

	Bose-Einstein Condensation in Yb2Si2O7
	Empirical motivation
	Phenomenology of a Universal Spin Model
	Linked Cluster Expansion
	Spin-Wave Theory
	Mean Field Theory
	DMRG

	Conclusions

	The Distorted Pyrochlore Heisenberg Model
	Motivation & Definition of The Model
	Order-by-disorder and the kagomé Heisenberg  Model
	Isolated Tetrahedra
	Ground States
	Effective Hamiltonian: kagomé layers

	Many-body Results
	Absence of Energy Barriers Between Ground States
	Order-by-disorder in the quasi-2D limit
	Absence of order-by-disorder at low temperatures
	Qualitative Phase Diagram


	Concluding Remarks



