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Abstract

Towards Understanding Treatment Effect Heterogeneity

by

Linqing Wei

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Jingshen Wang, Chair

Understanding treatment effect heterogeneity has been an increasingly important task in
various fields. Treatment effect heterogeneity not only adds granularity to the understanding
of everyday matters, but also assists better-informed decision making on many scientific fron-
tiers. In biomedical studies, learning treatment effect heterogeneity helps clinicians to apply
personalized treatments to patient subpopulations with different genetic profiles. Instead of
prescribing one drug for all, refined prescription strategies can potentially improve patients’
overall welfare. In social science studies, evaluating the treatment effect heterogeneity of
candidate policies provides guidance for policy makers to implement future social programs.
In technology companies, understanding treatment effect heterogeneity helps decision makers
to depict market segregation, so that advertisement budgets can be strategically allocated
to particular consumer subpopulations among which a new product is more likely to earn
profits.

This dissertation provides a set of statistical methodologies for understanding treatment
effect heterogeneity and is organized into three chapters with three separate aims: (1) es-
timating treatment effect heterogeneity, (2) confirming treatment effect heterogeneity, and
(3) designing adaptive experiments toward learning treatment effect heterogeneity

Chapter 1 introduces a statistical methodology aiming to estimate treatment effect het-
erogeneity efficiently. We take a model-free semiparametric perspective and aim to efficiently
evaluate the heterogeneous treatment effects of multiple subgroups simultaneously under
the one-step targeted maximum-likelihood estimation framework. When the number of sub-
groups is large, we further expand this path of research by looking at a variation of the
one-step TMLE that is robust to the presence of small estimated propensity scores in finite
samples.

Chapter 2 proposes a statistical methodology for confirming the estimated heterogeneous
treatment effects. Understanding the impact of the most effective treatments on an outcome
variables is crucial in various disciplines. Due to the widespread winner’s curse phenomenon,
conventional statistical inference assuming that the top policies are chosen independent of
the random sample may lead to overly optimistic evaluations of the best policies. In addition,
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given the increased availability of large datasets, such an issue can be further complicated
when researchers include many covariates to estimate the policy or treatment effects in an
attempt to control for potential confounders. To simultaneously address the above-mentioned
issues, we propose a resampling-based procedure that not only lifts the winner’s curse in
evaluating the best policies observed in a random sample, but also is robust to the presence
of many covariates. The proposed inference procedure yields accurate point estimates and
valid frequentist confidence intervals that achieve the exact nominal level as the sample size
goes to infinity for multiple best policy effect sizes.

Chapter 3 provides an alternative perspective of studying the treatment effect hetero-
geneity. While much of the existing work in this research area has focused on either analyzing
observational data based on untestable causal assumptions or conducting post hoc analyses
of existing randomized controlled trial data, little work has gone into designing randomized
experiments specifically for uncovering treatment effect heterogeneity. In this chapter, we
develop a unified adaptive experimental design framework towards better learning treatment
effect heterogeneity by efficiently identifying subgroups with enhanced treatment effects from
a frequentist viewpoint. The adaptive nature of our framework allows practitioners to sequen-
tially allocate experimental efforts adapting to the accrued evidence during the experiment.
The resulting design framework can not only complement A/B tests in e-commerce but also
unify enrichment designs and response adaptive randomization designs in clinical settings.
Our theoretical investigations illustrate the trade-offs between complete randomization and
our adaptive experimental algorithms.
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Chapter 1

Efficient Estimation of Heterogeneous
Treatment Effects for Multiple
Subgroups

1.1 Introduction

Motivation and our contribution

In biomedical studies with observational data, investigators often aim to assess the hetero-
geneity of treatment effects in subpopulations of patients. Such analyses may provide useful
information for patient care and for future medical research. For example, existing studies
suggest that statins–a class of commonly prescribed coronary artery disease (CAD) drugs
for lowering low-density lipoprotein cholesterol concentration–may reduce Alzheimer’s dis-
ease (AD) risk in some, but not all population ([188]). Understanding the heterogeneous
treatment effects of statin usage may provide new insights for personalizing drug prescrip-
tions to prevent AD.

In this chapter, we aim to make valid inference on heterogeneous treatment effects in
a user-supplied family of subgroups after adjusting for potential confounding factors with
state-of-the-art machine learning algorithms. Motivated by our case study (Section 1.7), we
work under the setting that the treatment and outcome variables are binary. The extension of
our method to continuous outcomes is discussed in Appendix 1.9. Our parameter of interest
includes relative risk under a treatment versus a control in d pre-specified subgroups of

interest: αRR = (αRR,1, . . . αRR,d)
⊺, αRR,j =

P
(
Y (1)=1|X∈Aj

)
P
(
Y (0)=1|X∈Aj

) , j = 1, . . . , d, where P
(
Y (1) =

1|X ∈ Aj

)
(or P

(
Y (0) = 1|X ∈ Aj

)
) is the conditional expectations of the potential outcome

under treatment (or control) evaluated in the subgroup Aj. We denote X ∈ Rp as the
potential confounders, and denote {Aj}dj=1 as pre-specified possibly overlapped subgroups.
We work under the classical semi-parametric inference framework, in which we aim to make
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inference on the low-dimensional target parameter αRR in the presence of high-dimensional
nuisance parameters (see Section 1.4 for rigorous statements).

In this context, two potential issues emerge when one evaluates the treatment effects
for multiple subgroups. On the one hand, while a commonly used method is to serially
divide individuals into subgroups based on relevant pre-treatment characteristics and then
estimate the treatment effect in each subgroup with either the (augmented) inverse propen-
sity score weighting ([137]) or the targeted maximum likelihood estimator (TMLE) ([104]),
this “one-group-at-a-time” approach can be computationally costly (see Section 1.3 for a
concrete example). On the other hand, when the estimated propensity scores or subgroup
proportions are close to zero or one in finite samples (a phenomenon refereed to as “practi-
cal positivity violation” in [127]), such approaches can be numerically unstable due to the
inverse propensity score or inverse subgroup proportion weights tending to infinity.

To address such potential issues, we work with a one-step targeted maximum likelihood
estimator that “targets” multiple subgroup treatment effects simultaneously. The so-called
“targeting” step here involves fluctuating the initial plug-in estimator of the nuisance param-
eters in semiparametric models in directions which maximally adjust those initial estimates
per change in the log-likelihood. Furthermore, we propose a variation of the one-step TMLE
that not only targets multiple subgroups simultaneously but is also robust to the presence
of small estimated propensity scores in finite samples. Deviating from the mainstream lit-
erature on the targeted learning, we also look into the problem from an optimization point
of view, where we further demonstrate that such a variation of the one-step TMLE can be
viewed as a reparametrized dual formulation of the primal optimization problem.

From our theoretical investigations, we show that the proposed estimator for multiple
subgroup treatment effects attains the semiparametric efficiency bound, and it converges in
distribution to a multivariate Gaussian distribution when the sample size becomes large.
This result thus allows us to construct valid simultaneous confidence intervals and develop
powerful multiple testing procedures fully utilizing the joint dependence among the subgroup
specific test statistics. In addition to these large sample guarantees, through simulation stud-
ies, we demonstrate that the proposed estimator has substantial finite sample improvements
relative to either applying the classical targeted learning approach [103] or the “double ma-
chine learning” frequently adopted in the econometrics literature [33]. From an application
point of view, leveraging the observational data collected from the UK Biobank study, we
analyze the differential effects of inheriting rs12916-T allele (a proxy for statin usage) in
decreasing AD risk across multiple subgroups.

Related literature

The proposed method builds on the foundation of the targeted learning framework which is,
broadly speaking, a meta-learning framework allowing various machine learning algorithms
to enter the process of estimating desired target parameters ([103]). [104] propose the original
version of TMLE, which uses maximum likelihood in a least favourable direction and then
performs k-step updates using the estimated scores, in an effort to better estimate the target



CHAPTER 1. EFFICIENT ESTIMATION OF HETEROGENEOUS TREATMENT
EFFECTS FOR MULTIPLE SUBGROUPS 3

parameter. [186] introduce the cross-validated TMLE, which relaxes the stringent Donsker
condition via sample splitting for the initial estimation of the nuisance parameters. [100]
further advances the original TMLE by designing different sets of candidate scores. A recent
advancement in the targeted learning framework is the one-step TMLE ([99]), which adopts a
“universal least favorable submodel” to avoid excessive data fitting in the locally least favor-
able submodel. In terms of estimating a vector of multi-dimensional parameters with TMLE,
seminal works by [103] and [99] develop a universal canonical one-dimensional submodel such
that the one-step TMLE, only maximizing the log-likelihood over a univariate parameter,
solves the multivariate efficient influence curve equation. A recent work ([110]) adopts this
general TMLE approach for estimating the variance of the stratum-specific treatment effect
functions. We also note that the general strategy of TMLE that targets multi-dimensional
parameters have also been discussed for estimating survival curves (see, [102], Chapter 5 for
example).

Our proposal contributes to the semiparametric statistics literature. Early work on semi-
parametric statistics ([123]) provides general efficiency results for the development of semi-
parametric estimators. Based on these efficiency results, [135] propose a general estimating
equation approach that solves for the parameter of interest by setting the efficient score equa-
tions to zero. The estimating equation approach is further discussed in [101]. [21] develop
a one-step estimator that adds the empirical average of the efficient influence function to
an initial estimator. [124] advances the semiparametric efficiency results by accounting for
the nonparametric estimation of nuisance parameters. [161] discusses the use of maximum
likelihood estimator and parametric submodel in semiparametric estimation.

Our work is also tied to the literature on heterogeneous treatment effect estimation in
causal inference. Different from our parameter of interest, [31], building on the debiased
double machine learning framework ([33]), propose to estimate the average treatment effect
conditional on a small subset of the potential confounders. [98] and [3] propose meta-learning
frameworks that estimates the average treatment conditional on all possible confounders.
Unlike our approach, which efficiently evaluates the treatment effects in pre-specified sub-
groups, [86] formulate the problem on heterogeneous treatment effect identification from a
variable selection perspective. In this thread on heterogeneity identification, [154] propose
a recursive partitioning tree approach to identify treatment heterogeneity across subgroups.
[162] provide a nice overview of subgroup selection problems encountered in practice.

1.2 Causal Framework and Identification

Let {Oi}ni=1 = {(Yi, Ti, Xi)}ni=1 be an independent and identically distributed (i.i.d.) random
sample of the observed binary response variable Y , the treatment indicator variable T , and
potential confounders X ∈ Rp. In accordance with the Neyman-Rubin causal model ([125,
148]), we define the potential outcome Y (T ) as the outcome we would have observed under
the treatment assignment T . The observed outcome is thus the potential outcome variable
corresponding to the received treatment, i.e., Y = TY (1) + (1 − T )Y (0). This framework
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allows us to characterize the multi-subgroup disease risk under different treatment arms as:
αt = (αt,1, . . . αt,d)

⊺, αt,j = P
(
Y (t) = 1|X ∈ Aj

)
, t ∈ {0, 1}, j = 1, . . . , d, where Aj

denotes a pre-specified subgroup j. Here, we allow different subgroup to overlaps, and we
assume that the variables used to define the subgroups of interest are based on X. When
comparing disease risks between two treatment arms, our framework allows practitioners
to estimate three popular causal effect measures: relative risk, odds ratio, and absolute
risk difference, across different subgroups, defined as αRR = (αRR,1, . . . αRR,d)

⊺, αRR,j =
α1,j/α0,j,αOR = (αOR,1, . . . αOR,d)

⊺, αOR,j =
(
α1,j/(1−α1,j)

)
/
(
α0,j/(1−α0,j)

)
, and αARD =

(α1,1 − α0,1, . . . , α1,d − α0,d) (Section 1.3).
The three causal quantities described above are not observable because the potential

outcomes are subject to missingness, meaning that for each individual we observe either the
potential outcome under the control, Y (0), or the potential outcome under the treatment,
Y (1), but never both. Following the mainstream literature in causal inference, we impose the
unconfoundedness, positivity, and stable unit treatment value assumptions (SUTVA) below
to identify our causal parameters of interest:

Assumption 1 (Unconfoundedness). Conditional on X, the treatment assignment is as good
as random, that is T ⊥ Y (1), Y (0)|X.

Assumption 2 (Positivity). For any x ∈ X, t ∈ {0, 1}, there exists a constant c ∈ (0, 1)
such that c < P (T = t|X = x,X ∈ Aj) < 1− c and c < P (Aj) < 1− c, for j = 1, . . . , d.

Assumption 3 (SUTVA). If unit i receives treatment Ti, the observed outcome Yi equals
the potential outcome Yi(Ti), meaning that the potential outcome for unit i under treatment
Ti is unrelated to the treatment received by other units.

Under Assumption 1-3, we are able to identify αt,j as αt,j = P
(
Y (1) = 1|X ∈ Aj

)
=

EX

[
P (Y = 1|T = t,X ∈ Aj)

]
. Here, by “identify” we mean that under Assumption 1, the

causal effect involving unobserved potential outcomes can be first written as a function of
observed data. Then, within an i.i.d. sample {(Yi, Ti, Xi)}ni=1, under Assumption 2 and 3,
the causal parameter can be estimated (or point identified) at a regular parametric root-n
rate [94].
Notation We use P to denote the probability operator and E to denote the expectation
operator. We use capitalized letters to denote random variables, e.g. T , and lower case
letters to denote the realizations of random variables, e.g. t. For t ∈ {0, 1}, we denote
pt(X) = P (Y = 1|T = t,X) as the conditional probability of Y = 1 given T = t and X.
et(X) = P (T = t|X) denotes the conditional probability of T = t given X. Lastly, we define
expit(x) = 1

1+e−x and logit(x) = log( x
1−x

).

1.3 Multiple Subgroup Targeted Learning

In this section, to simplify presentation, we first introduce our method on estimating the
conditional average risk αt for group t ∈ {0, 1} and defer the estimation for other causal
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parameters to Section 1.3 and Appendix 1.9. We shall review the classical one-step tar-
geted maximum likelihood estimator (TMLE) ([99]) in a single subgroup case, followed by
discussing its limitations when naively generalizing it to the multi-subgroup case. We then
introduce the one-step TMLE that directly targets the multi-subgroup treatment effects
simultaneously.

Limitation of the classical one-step TMLE

To estimate αt, a natural choice is to apply the one-step TMLE in each subgroup sep-
arately. For a subgroup j, one-step TMLE starts with some initial estimates of pt(X)
and et(X) using the observations in the subgroup Aj, denoted as p̂Inittj (X) and êtj(X).
These initial estimates can be obtained from any state-of-art machine learning methods–
such as random forest, gradient boosting ([22]), or Highly Adaptive Lasso (HAL) ([20])–as
long as they are not too far away from the target estimands (see Assumption 5 in Sec-
tion 1.4 for rigorous specifications). Within a random sample, because p̂Inittj (X) and êtj(X)
may substantially deviate from the truth, the targeted learning approach identifies a cor-
rection term, ε̂ · Ŝtj(X), that pushes the initial estimates to “concentrate/target” on the

estimand: p̂tj(Xi) = expit
(
logit

(
p̂Inittj (Xi)

)
+ ε̂ · Ŝtj(Xi)

)
, Ŝtj(Xi) =

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êtj(Xi)

. Here,

P̂ (Aj) =
∑n

i=1 1(Xi∈Aj)

n
, ε̂ captures the magnitude of the correction Ŝtj(Xi) (so called “clever

covariate” in [104]), and it is the estimated coefficient of Ŝtj(Xi) in the logistic regression:

Yi ∼ logit
(
p̂Inittj (Xi)

)
+ εŜtj(Xi), i ∈ Atj, (1.1)

that regresses Yi on logit
(
p̂Inittj (Xi)

)
and Ŝtj(Xi) with a fixed coefficient 1 for logit

(
p̂Inittj (Xi)

)
.

Here Atj = Aj ∩ {i : Ti = t} contains the subjects with Ti = t in the subgroup Aj. After
this one-step correction, the final estimate α̂one-step

t,j takes the empirical average of p̂tj(Xi):

α̂one-step
t,j = 1

ntj

∑n
i=1 p̂tj(Xi), where ntj is the cardinality of the set Atj.

The regression problem defined in Eq (1.1) is the essence of the one-step TMLE. Such a
regression problem adaptively learns the difference between p̂Inittj (·) and ptj(·) from the data,
aiming to find an ε̂ that locally improves the empirical fit of the initial estimator p̂Inittj (·).
We choose ε̂ in a data adaptive fashion because when the initial estimate of the conditional
probability is identical to the true conditional probability, we hope to set ε̂ = 0. It is
only when the initial estimate p̂Inittj (·) drifts away from ptj(·), ε̂ accounts for their difference
and updates p̂Inittj (·) accordingly. Furthermore, because our goal is to estimate αt,j, the
clever covariate Stj(Xi) specifies the updating direction of the initial estimator that yields
a maximal change (or maximal information gain) in the target parameter. Benefiting from
such an update, the final estimator α̂one-step

t,j attains the semiparametric efficiency bound
under the regularity conditions in Section 1.4. In addition, because the one-step TMLE
applies an “expit” transformation on the sum of logit

(
p̂Inittj (Xi)

)
and the inverse propensity

score, the estimated conditional risk α̂one-step
t,j never falls out of the range between 0 and 1

regardless of how small êtj(·) is (see Section 1.6 for numerical verification).
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Table 1.1: Computational time (in seconds) of the conventional TMLE and the proposed
method with sample size n = 228, 466 on a Lenovo NeXtScale nx360m5 node (24 cores
per node) equipped with Intel Xeon Haswell processor. The core frequency is 2.3 Ghz and
supports 16 floating-point operations per clock period.

Classical one-step TMLE iTMLE
1441.36 924.51

Nevertheless, naively carrying out the above procedure one subgroup at a time can be
computationally inefficient in the presence of many subgroups. In a simple comparison pro-
vided in Table 1.1, our proposed estimator directly targeting the multi-subgroup parameter
αt as a whole improves the computational speed by about 35% compared to this one-group-
at-a-time approach, when the initial estimator p̂Inittj (·) and the estimated propensity scores
êtj(·) are obtained via GLMs.

One-step TMLE targeting multiple subgroups

Procedure overview

To avoid the discussed potential problems of the conventional one-step TMLE, we amend
the one-step TMLE estimator so that it directly targets αt. A natural idea is to re-
place the univariate clever covariate with a multi-dimensional vector of clever covariates(
Ŝt1(Xi), . . . , Ŝtd(Xi)

)⊺
in the logistic regression

Yi ∼ logit
(
p̂Initt (Xi)

)
+

d∑
j=1

εt,j · Ŝtj(Xi), i ∈ {i : Ti = t}, (1.2)

where Ŝtj(Xi) =
1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

. Note that here we generate the initial estimates p̂Initt (Xi)

and êt(Xi) with the entire available sample. We then construct the estimator for αt with

α̂one-step
t =

( 1

nt1

n∑
i=1

p̂t1(Xi), . . . ,
1

ntd

n∑
i=1

p̂td(Xi)
)⊺
, (1.3)

where p̂tj(Xi) = expit
(
logit

(
p̂Initt (Xi)

)
+ ε̂t,j · Ŝt,j(Xi)

)
.

In the presence of multiple subgroups with large d, we may observe small P̂ (Aj) or

êt(Xi) within a random sample. In this situation, given that P̂ (Aj) and êt(Xi) enter the
regression problem in Eq (1.2) as denominators, the above procedure can potentially produce
numerically unstable estimates, which may inflate the variance of α̂one-step

t . We hope to
further robustify the above procedure by considering a simple variation, where we shall also
demonstrate that the algorithm proposed below is a reparametrized dual problem of the
above (primal) problem defined in Eq (1.2).
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Our proposed procedure operates as follows, for each iteration k,

Yi ∼ logit
(
p̂
(k−1)
t (Xi)

)
+ γS̃

(k−1)
t (Xi), (1.4)

p̂
(k)
t (Xi) = expit

(
logit

(
p̂
(k−1)
t (Xi)

)
+ γ̂(k) · S̃(k−1)

t (Xi)
)
, i ∈ {i : Ti = t}, k = 1, . . . , K,

where γ̂(k) is the estimated regression coefficient obtained in the logistic regression (1.4).

p̂
(1)
t (Xi) denotes the initial estimate. p̂

(k−1)
t (Xi) denotes the estimate from the previous

iteration, and S̃
(k−1)
t (Xi) is the customized “clever covariate” that directly targets αt:

S̃
(k−1)
t (Xi) =

∑d
j=1

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

·
(∑n

l=1 ϕ̂
(k−1)
j (Yl, Tl, Xl)

)
√∑d

j=1

(∑n
l=1 ϕ̂

(k−1)
j (Yl, Tl, Xl)

)2 , (1.5)

where ϕ̂
(k−1)
j (Yi, Ti, Xi) =

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

(Yi − p̂(k−1)
t (Xi)). The intuition of S̃

(k−1)
t (Xi) shall

be explained in the next section. When the maximum number of iterations K is reached or
when γ̂ is sufficiently close to 0, we take the final estimate p̂t(Xi) = p̂

(K)
t (Xi) and estimate

αt again with:

α̂t =
(∑i∈A1

p̂t(Xi)

nt1

, . . . ,

∑
i∈Ad

p̂t(Xi)

ntd

)⊺
, (1.6)

where ntj =
∑n

i=1 1(Ti = t)1(Xi ∈ Aj) denotes the subgroup j’s sample size in the arm t.
We refer to the estimator in Eq (1.6), which is obtained from Eq (1.4), as the iterative

version of the one-step TMLE (iTMLE) targeting multiple subgroups of interest.

Intuitive explanation of our proposal

Note that although the proposed estimators in Eq (1.3) and Eq (1.6) are asymptotically
equivalent as n → ∞, we provide some heuristic explanations of the benefits of adopting
our procedure defined in Eq (1.4) compared to the procedure defined in Eq (1.2) in finite
samples.

First, given that the performance of the one-step TMLE defined by Eq (1.2) depends
on the initial estimator p̂Initt (Xi), our revised procedure in Eq (1.4) works with an improved
initial estimator in each iteration. Concretely, in Eq (1.4), the initial estimator entering each
iteration is constantly being updated, leading to increased estimation efficiency and reduced
estimation bias compared to the procedure defined in Eq (1.2). Such improvements can be
rather prominent in finite samples (See Appendix 1.9 for simulation comparisons).

Second, the form of the clever covariate S̃t(Xi) in Eq (1.4) may have the added benefit
of being robust to the presence of small estimated propensity scores, because the estimated
propensity scores only enter the estimation process after being self-normalized in S̃t(Xi).
Small propensity scores are often encountered in datasets with unbalanced covariate distri-
bution across the treatment and control groups. Such an imbalance can lead to conventional
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estimators having substantial biases and large variances [37, 127]. Many numerical studies
have found that similar self-normalization of propensity scores provides much more stable
estimates of the treatment effects in finite samples ([70]). While the original formulation
of the primal problem in Eq (1.2) involves a sum over d inverse propensity score weighted
clever covariates, its performance can be sensitive to the presence of small propensity scores
in finite samples. Even though the estimator obtained by Eq (1.4) and the estimator ob-
tained by Eq (1.2) are asymptotically equivalent, the estimator obtained by Eq (1.4) may
have finite sample improvements when the estimated propensity scores are small.

Third, the estimator obtained from Eq (1.4) not only remains semi-parametric efficient
and “doubly robust,” but also solves the direct sample analogue of the efficient influence
function. To see why it is semiparametric efficient, we set the derivative of the objective
function of the logistic regression in (1.2) with respect to ε to zero, which reduces to (see
Appendix 1.9 for detailed derivations)

d∑
j=1

(
1

n

n∑
i=1

1(Xi ∈ Aj)

P̂ (Aj)

Ti
êt(Xi)

(Yi − p̂t(Xi))

)2

= 0. (1.7)

This indicates that our estimator α̂t = (α̂t,1, . . . , α̂t,d)
⊺ solves the direct sample analogue

of the efficient influence function: 1
n

∑n
i=1

1(Xi∈Aj)

P̂ (Aj)

{
Ti

êt(Xi)
(Yi − p̂t(Xi)) + p̂t(Xi)

}
− α̂t,j =

0, j = 1, . . . , d. Therefore, it attains the semiparametric efficiency bound ([21]) under ap-
propriate conditions imposed on the nuisance parameter estimators (Theorem 1). Regarding
the “doubly robustness,” for any model-based estimators êt(·) and p̂t(·), our estimator com-
bines regression imputation and inverse propensity score weighting, and remains consistent if
either the model et(·) or pt(·) is misspecified (see Section 1.6 for simulation results). In Sec-
tion 1.4, we shall provide further heuristic explanations of the targeted maximum likelihood
estimator from a semiparametric inference point of view.

Extension to relative risk, odds ratio, and absolute risk difference
estimations

Given that α1 and α0 are the building blocks of the multi-subgroup relative risk and odds
ratio, estimation for these two parameters of interest largely follows our proposal in Section
1.3. The iterative version of the one-step TMLE needs a slight modification in that at each
iteration k, we adopt the following logistic regression problem: Yi ∼ logit

(
p̂(k−1)(Ti, Xi)

)
+

γ1S̃
(k−1)
1 (Xi) + γ0S̃

(k−1)
0 (Xi), k = 1, . . . , K, and perform the updating as p̂(k)(Ti, Xi) =

expit
(
logit

(
p̂(k−1)(Ti, Xi)

)
+ γ̂

(k)
1 · S̃(k−1)

1 (Xi) + γ̂
(k)
0 · S̃(k−1)

0 (Xi

)
. Then we estimate αRR,

αOR, and αARD with α̂RR =
(

α̂1,1

α̂0,1
, . . . ,

α̂1,d

α̂0,d

)
, α̂OR =

(
α̂1,1

1−α̂1,1

/
α̂0,1

1−α̂0,1
, . . . ,

α̂1,d

1−α̂1,d

/
α̂0,d

1−α̂0,d

)
,

and α̂ARD =
(
α̂1,1 − α̂0,1, . . . , α̂1,d − α̂0,d

)
As for constructing simultaneous confidence intervals, we apply the Delta method on

(α1,α0) to estimate the sample covariance matrices of the relative risk and the odds ratio
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estimators following a recipe similar to Section 1.5. To avoid redundancy, we leave the
detailed descriptions to Appendix 1.9.

1.4 Theoretical Investigations

Properties of the proposed estimator

In this section, we introduce the main theoretical results and some necessary notation. We
defer additional notation and regularity conditions to Section 1.4. Recall that {Oi}ni=1 :=
{(Yi, Ti, Xi)}ni=1 is an i.i.d. random sample defined on the space O with respect to a proba-
bility measure P . Denote o = (y, t, x) as a realized data point, o ∈ O.

Theorem 1. Under Assumptions 1-5, we define the vector of the efficient influence function
φt = (φt,1, . . . , φt,d)

⊺, where φt,j is the efficient influence function (as given in Eq (8))
measured at a realized data point o = (y, t, x) for the subgroup j. The proposed conditional
risk estimator α̂t = (αt,1, . . . , αt,d)

⊺ ∈ Rd, after scaling by
√
n, converges to a multivariate

Gaussian random variable with mean 0 and covariance matrix P [φtφ
⊺
t ] when n → ∞, that

is
√
n
(
α̂t −αt

)
⇝ N

(
0, P [φtφ

⊺
t ]
)
. (See the precise definition of φt,j in Section 1.4).

Theorem 1 says that our conditional risk estimator converges in distribution to a multi-
variate Gaussian distribution. For any subgroups under consideration, the variance of our
conditional risk estimator attains the semiparametric efficiency bound. Theorem 1 also jus-
tifies the validity of the simultaneous confidence interval provided in Eq to be presented
(1.18) in Section 1.5.

Derivations of the efficient influence functions for relative risk, odds ratio and absolute
risk difference estimators are provided in Appendix 1.9. We summarize the large sample
properties of αRR, αOR, and αARD in the following Proposition 1, which demonstrates that
the variance of the proposed causal effect estimators attains the semiparametric efficiency
bound. The proof of the proposition below can be found in Appendix 1.9.

Proposition 1. Under Assumptions 1 - 5, define the vector of the efficient influence function

φRR = (φRR,1, . . . , φRR,d)
⊺,

the vector of the efficient influence function

φOR = (φOR,1, . . . , φOR,d)
⊺,

and the vector of the efficient influence function

φARD = (φARD,1, . . . , φARD,d)
⊺,

where φRR,j, φOR,j, and φARD,j are the efficient influence functions (as given in Eq (9)-
(11)) measured at a realized data point o = (y, t, x). The proposed causal effect estima-

tors satisfy that as n → ∞,
√
n
(
α̂RR − αRR

)
⇝ N

(
0, P [φRRφ

⊺
RR]
)
,
√
n
(
α̂OR − αOR

)
⇝
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N
(
0, P [φORφ

⊺
OR]
)
and
√
n
(
α̂ARD−αARD

)
⇝ N

(
0, P [φARDφ

⊺
ARD]

)
(See the precise defini-

tions of φRR,j, φOR,j, and φARD,j in Section 1.4).

Regularity conditions

In this section, we introduce additional notation and assumptions adopted in the theoret-
ical results. Recall that {Oi}ni=1 := {(Yi, Ti, Xi)}ni=1 are i.i.d. random variables defined
on the space O with respect to a probability measure P . If F is a collection of real-
valued functions defined on O, we assume that Pf =

∫
fdP exists for each f ∈ F . Note

that such a notation can be more helpful as it allows us to conveniently work with ran-
dom functions. We use EX [f(X)] to denote the expectation taken with respect to the
random variable X when it is more convenient to simplify notation. Given the proba-
bility measure P , our target parameter αt can also be written as a statistical function
of P , denoted as αt(P ). Let H be a convex set of functions such that the true nui-
sance parameter η0 ≜ (e(x), p1(x), p0(x), P (A1), . . . , P (Ad)) ∈ H. Let Hn ⊂ H denote the
nuisance estimator realization set, i.e., the estimator of the nuisance parameters satisfy
η̂ = (êt(x), p̂1(x), p̂0(x), P̂ (A1), . . . , P̂ (Ad)) ∈ Hn.

Let c, q, and C be fixed strictly positive constants, where q > 2. Let (ξn)
∞
n=1 and (∆n)

∞
n=1

be sequences of positive constants approaching 0. Denote the lq-norm with respect to a
probability measure P as ||·||P,q, e.g. ||f(X)||P,q := (

∫
|f(x)|qdP (x))1/q. For o ∈ O, we define

φt(o;αt,η0) ≜
(
φt,1, . . . , φt,d

)⊺
as the vector of the efficient influence function for estimating

αt, φRR(o;αRR,η0) ≜
(
φRR,1, . . . , φRR,d

)⊺
as the vector of the efficient influence function for

estimating αRR, φOR(o;αOR,η0) ≜
(
φOR,1, . . . , φOR,d

)⊺
as the vector of the efficient influence

function for estimating αOR, and φARD(o;αARD,η0) ≜
(
φARD,1, . . . , φARD,d

)⊺
as the vector

of the efficient influence function for estimating αARD, where for j = 1, . . . , d,

φt,j ≜ φt,j(o;αt,η0) =
1(x ∈ Aj)

P (Aj)

[(
y − pt(x)

)1(T = t)

et(x)
+ pt(x)− αt,j

]
, (1.8)

φRR,j ≜ φRR,j(o;αRR,η0) =
1(x ∈ Aj)

P (Aj)

[ 1

α0,j

((
y − p1(x)

) t

e1(x)
+ p1(x)− α1,j

)
(1.9)

+
α1,j

α2
0,j

( 1− t

e0(x)

(
y − p0(x)

)
+ p0(x)− α0,j

)]
,

φOR,j ≜ φOR,j(o;αOR,η0) =
1(x ∈ Aj)

P (Aj)

[ 1− α0,j

α0,j(1− α1,j)2

((
y − p1(x)

) t

e1(x)
+ p1(x)− α1,j

)
(1.10)

− α1,j

α2
0,j(1− α1,j)

( 1− t

e0(x)

(
y − p0(x)

)
+ p0(x)− α0,j

)]
.

φARD,j ≜ φARD,j(o;αARD,η0) =
1(x ∈ Aj)

P (Aj)

[((
y − p1(x)

) t

e1(x)
+ p1(x)− α1,j

)
(1.11)

−
( 1− t

e0(x)

(
y − p0(x)

)
+ p0(x)− α0,j

)]
.
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Assumption 4. The function class {φ(o;αt,η),η ∈ H} is a Donsker class.

Assumption 5. The nuisance parameter estimator η̂ satisfies that supη∈Hn
||η − η0||2 =

oP (1) and ||ê(X) − e(X)||P,2 × ||p̂t(X) − pt(X)||P,2 ≤ ξnn
−1/2 holds with probability 1 when

n tends to infinity.

Assumption 2 assumes that all units have non-zero probabilities of being assigned to the
treatment or the control arm. Such an assumption has been frequently considered in the
causal inference literature. In addition, because we estimate the treatment effects across
multiple subgroups, we require each subgroup to satisfy the positivity condition as well.
Assumption 4 assumes the Donsker class condition for the class of efficient influence functions.
This Donsker class condition can be weakened by conducting cross-fitting (see Appendix
1.9 for implementation details) and at the expense of more complicated proofs (see [186],
for example). Additionally, [20] propose the highly adaptive lasso (HAL) estimator which
guarantees

√
n-rate of convergence in the initial estimation step. Assumption 5 imposes

regularity conditions on the nuisance parameter estimator. The second part in Assumption
5 bounds the product of errors of the nuisance parameter estimators p̂t(X) and ê(X).

Duality theory

In this section, we provide an alternative explanation of the iterative one-step TMLE from
a duality theory perspective. Recall that in the discussed method, we replace the univariate
clever covariate Ŝtj(Xi) with a multi-dimensional vector of clever covariate in the logistic
regression in Eq (1.2). Because we hope to limit the sum of the squared influences of the
clever covariates on updating pt(·) when d is a large number, we impose a constraint that
∥ε∥2 ≤ δ, where ε = (ε1, . . . , εd)

⊺. Thus, solving for ε can be equivalently reformulated as
iteratively solving the constraint optimization problem below

ε̂(k) = argmin
||ε||≤δ

− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂
(k−1)
t (Xi)

)
+

d∑
j=1

εj · Ŝt,j(Xi)
)

(1.12)

− log
(
1 + explogit

(
p̂
(k−1)
t (Xi)

)
+
∑d

j=1 εj ·Ŝt,j(Xi)
)]
.

where Ŝt,j(Xi) =
1(Xi∈Aj)

P(Aj)
1(Ti=t)
êt(Xi)

. We refer to the above problem as the primal problem. We

show that the above optimization problem has the following dual:

λ̂(k) = argmax
λ≥0

− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂
(k−1)
t (Xi)

)
+ S̃t(Xi) ·

||ϕ̂(Xi)||2
λ

)
(1.13)

− log
(
1 + explogit

(
p̂
(k−1)
t (Xi)

)
+S̃t(Xi)·

||ϕ̂(Xi)||2
λ

)]
− λδ,

where S̃t(Xi) is defined in Section 1.3. Providing that the strong duality holds, this primal-
dual relationship says that we can estimate the regression coefficient ε̂(k) in the primal
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problem by either solving the primal problem (1.12) or by solving the dual problem (1.13) and

then exploiting the primal-dual relationship. After reparametrizing (1.13) with γ = ||ϕ̂(Xi)||2
λ

,
in Lemma 1, we demonstrate that the unconstrained optimization problem:

γ̂(k) = argmin
γ≥0

− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂
(k−1)
t (Xi)

)
+ S̃t(Xi) · γ

)
(1.14)

− log
(
1 + explogit

(
p̂
(k−1)
t (Xi)

)
+S̃t(Xi)·γ

)]
,

which is the reparametrized dual problem of the primal problem, and the updated estimate
obtained from primal problem with large d yields the same estimate as what we propose
whenever δ is sufficiently close to zero.

Lemma 1 (Primal and dual relationship). The optimization problems (1.12) and (1.13)

form a primal-dual pair, and their solutions satisfy ε
(k)
j =

ϕ̂
(k−1)
j (Yi,Ti,Xi)

λ
, j = 1, . . . , d, where

recall ϕ̂
(k−1)
j (Yi, Ti, Xi) is defined as

ϕ̂
(k−1)
j (Yi, Ti, Xi) =

1(Xi ∈ Aj)

P̂(Aj)

11(Ti = t)

êt(Xi)
(Yi − p̂(k−1)

1 (Xi)).

Reparametrizing γ = ||ϕ̂(Xi)||2
λ

in the dual problem (1.13). Whenever ||ϕ̂(Xi)||2 · δ/γ → 0, the
dual problem can be represented as

argmin
γ>0
− 1

n

n∑
i=1

[
Yi

(
logit

(
p̂
(k−1)
1 (Xi)

)
+ S̃1(Xi) · γ

)
− log

(
1 + explogit

(
p̂
(k−1)
1 (Xi)

)
+S̃1(Xi)·γ

)]
,

(Reparametrized dual problem)

which yields the same solution as the primal problem.

The dual formulation in the discussed method has several benefits. In the reparametrized
dual problem (1.14), because the estimated propensity score only enters the estimation pro-
cess after being self-normalized in S̃t(Xi), the discussed approach has the added benefit
of being robust to the presence of small estimated propensity scores. Small propensity
scores are often encountered in datasets with unbalanced covariate distribution across the
treatment and control groups, and such unbalancedness can lead to conventional estimators
having substantial bias and large variances. Many numerical studies have found that similar
self-normalization of propensity scores provides much more stable estimates of the treatment
effects in finite samples. While the original formulation of the primal problem involves a sum
over d inverse propensity score weighted clever covariates, its performance can be sensitive
to the presence of small propensity score in finite samples.
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Heuristics of TMLE from a semiparametric inference perspective

To fully appreciate the one-step targeted maximum likelihood estimator introduced in Sec-
tion 1.3 from a semiparametric perspective, we start with introducing some basics of the
classical semiparametric inference framework. To facilitate the discussion, we slightly abuse
notations in using α0 = EX [EY |X,T=t[Y |X,T = t]] (the mean outcome under the treat-
ment arm t) to denote the target parameter and in using P0 to denote the true prob-
ability measure. Specifically, in a semiparametric model, we observe an i.i.d. sample
{Oi}ni=1 = {(Yi, Ti, Xi)}ni=1 defined on the space O with a probability measure P0 that pos-

sesses a density. The density belongs to the classM =
{
p
(
o;α, η

)
, α ∈ A, η ∈ H

}
, with

respect to some dominating measure ν, where A ⊂ R, and H is an infinite-dimensional
set. We denote the true density that generates the data by p0

(
o;α0, η0

)
∈ M. Then, the

parameter of interest is the finite-dimensional parameter α0, and the nuisance parameter is
the infinite-dimensional parameter η0 =

(
pt(x), e(x), f(x)

)
, where pt(x) is the conditional

density function of Y given T = t and X = x, e(x) is the propensity score, and f(x) is the
marginal density of X evaluated at x. Given the probability measure P0, we can also write
the target parameter α0 as a statistical function of P0, denoted as α0(P0).

Under the above semiparametric statistics framework, a natural question raised here:
how to evaluate the statistical efficiency of estimators for α0 in a semiparametric model?
As is often the case in semiparametric statistics, infinite-dimensional problems are tackled
by first working with a finite-dimensional problem as an approximation and then taking
limit to infinity ([161]). Therefore, the first step in a semiparametric model is to consider
a simpler finite-dimensional “parameteric submodel” contained in M, and use the theory
and methods developed in classical parametric models to obtain an efficient estimator (that
typically attains the Cramèr-Rao lower bound) of α0. Similar to the Cramèr-Rao lower
bound in parametric models, we use “semiparametric efficiency lower bound” as a metric
for evaluating the asymptotic behavior of the semiparametric estimators. Heuristically, the
semiparametric efficiency lower bound is simply the supremum of the Cramèr–Rao bounds
for all “parametric submodels” for estimating α0 ([158]).

Formally, we define a parametric submodel as Mα,ηε,Sh
=
{
p
(
o;α, ηε,Sh

)
, α ∈ A, ε ∈

E ⊂ R
}
, where Sh is the score function indexed by h which is, intuitively, the direction

we perturb the nuisance parameter, and ε is the perturbing magnitude. In this parametric
submodel, the true density is obtained by setting α = α0 and ε = 0. Following the above
definition, [99] have shown that in a parametric submodel with sufficient smoothness, the
Cramèr-Rao lower bound CR(α0, Sh) for estimating α0 in the submodelMα,ηε,Sh

satisfies

CR(α0, Sh) = lim
ε→0

(
α(Pε,Sh

)− α(P0)
)2

−2EO

[
log p(O;α0, ηε,Sh

)− log p(O;α0, η0)
] . (1.15)

This suggests that CR(α0, Sh) captures the square change in the target parameter divided
by the change in the log-likelihood at an infinitesimal ε.
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Because the semiparametric efficiency bound (SPEB) is the supremum of the Cramèr-
Rao lower bound for all parametric submodels, in order to find an estimator of α0 that
attains the SPEB, the targeted learning approach looks for a submodel in which a small
change in the log-likelihood yields the maximal change in target parameter ([104]). Such a
parametric submodel, which maximizes the Cramèr-Rao lower bound defined in Eq (1.15),
is known as the “least favorable submodel” in the semiparametric literature ([161, 103]).
One can thus view the classical targeted learning approach as a principled approach of
constructing the least favorable submodel. The one-dimensional least favorable submodel
constructed by TMLE allows us to directly work with the conditional likelihood related to
the target parameter and perform the usual updating step as in MLE. While the classical
MLE method cannot be extended to semiparametric models due to the infinite-dimensional
nuisance parameter component, TMLE makes the MLE method feasible in semiparametric
models.

Nevertheless, the least favorable submodel satisfying Eq (1.15) is only “locally least
favorable” because the density p(O;α0, ηε,Sh

) maximizes the Cramèr-Rao lower bound locally
at ε = 0. This suggests a practical drawback presents if an initial estimate p̂Init0 (o) is far
away from p0(o), yielding a large ε̂ as more calibration is needed to push p̂Init0 (o) towards the
truth. A larger calibration yields a larger denominator in Eq (1.15) and thus smaller change
in the target parameter. The consequence is that even though we can iteratively update the
initial estimate until ε̂ ≈ 0, the sample variance has been inflated because each updating
step fails to maximize the change in the target parameter while maintaining minimal change
in the log-likelihood.

To resolve the issue that the maximal change in the target parameter is only attained
at ε = 0, [99] introduce the concept of “the universal least favorable submodel,” denoted

as Mα,ηε,Sh
=
{
p
(
o;α, ηε,Sh

)
, α ∈ A, ε ∈ E ⊂ R

}
. Mα,ηε is the universal least favorable

submodel if

∂

∂ε

[
log p(o;α0, ηε,Sh

)− log p(o;α0, η0)
]
= φ(o;α0, ηε,Sh

), ∀ε ∈ E ⊂ R.

The universal least favorable submodel defined above achieves maximal change in the target
parameter as long as ε ∈ E ⊂ R. The practical benefit of adopting the universal least
favorable submodel is that we can avoid inflating the sample variance while performing
TMLE updates, especially when the sample size is small.

In our example for estimating α0, the universal least favorable submodel takes the form

Mα,ηε,Sh
=
{
p
(
o;α, ηε,Sh

)
, α ∈ A, ε ∈ E ⊂ R

}
, where the nuisance parameter is

ηε,Sh
=
(
pε,Sh
t (x), e(x), f(x)

)
, pε,Sh

t (x) = expit
(
logit

(
pt(x)

)
+ ε · Sh

)
, Sh = t/et(x).

(1.16)

Therefore, provided with an initial estimate of the nuisance parameter

η̂ε,Sh
= (p̂Initt (x), êt(x), f̂(x))
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obtained from an i.i.d. sample, the one-step TMLE tries to find ε̂ that minimizes the
denominator of the ratio defined in (1.15), or equivalently, maximizes the likelihood based
on the observed data:

ε̂ = argmin
ε

− En

[
log p(O;α0, η̂ε,Sh

)− log p(O;α0, η0)
]

= argmin
ε

− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂t(Xi)

)
+ ε · Ŝt(Xi)

)
− log

(
1 + explogit

(
p̂t(Xi)

)
+ε·Ŝt(Xi)

)]
,

where Ŝt(Xi) = 1(Ti = t)/êt(Xi). Then, we see that ε̂ is equivalent to the estimated
coefficient from running the logistic regression discussed in Section 1.3.

1.5 Simultaneous Confidence Intervals

To construct a level-q confidence interval for a single subgroup j, we work with α̂t,j±Φ−1(1−

q/2) ·
(

Σ̂t,jj

n

)1/2
, where Σ̂t is the estimated covariance matrix with

Σ̂t =
(
Σ̂t,jk

)d
j,k=1

=
1

n

n∑
i=1

φ̂t,iφ̂
⊺
t,i, φ̂t,i =

(
φ̂t,1(Yi, Ti, Xi), . . . , φ̂t,d(Yi, Ti, Xi)

)⊺
,

φ̂t,j(Oi) =
1

n

n∑
i=1

1(Xi ∈ Aj)

P̂ (Aj)

[( Ti
êt(Xi)

(
Yi − p̂t(Xi)

)
+ p̂t(Xi)− αt,j

)
. (1.17)

To construct a simultaneous level-q confidence interval though, let κ̂(q, Σ̃t) be a consistent
estimate of the (1 − q)-th quantile of maxj∈1,...,d |Zj|, where (Z1, . . . , Zd)

⊺ ∼ N
(
0, Σ̃t

)
with

Σ̃t =
(
Σ̃t,jk

)d
j,k=1

and Σ̃t,jk =
Σ̂t,jk√

Σ̂t,jjΣ̂t,kk

. Then, the constructed simultaneous confidence

interval satisfies

lim
n→∞

P

(
α̂t,j ± κ̂(q, Σ̃t) ·

(Σ̂t,jj

n

)1/2
, j = 1, . . . , d

)
= 1− q. (1.18)

Such a simultaneous confidence interval ensures that all the confidence intervals cover the
corresponding true subgroup parameter at the same time.

1.6 Simulation Studies

To demonstrate the merit of the proposed method (iTMLE), we compare it with some con-
ventional estimators under overlapping and non-overlapping subgroups cases. We compare
the proposed method with a doubly robust (DR) estimator and a generalized linear model
estimator (GLM), and we compare the cross-fitted version of iTMLE with the double ma-
chine learning (DML) method, since DML also utilizes cross-fitting. Before we present our
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simulation results, we summarize two main takeaways from the simulation studies for our
readers: (1) The proposed method has smaller bias, smaller variance, and lower family-wise
error rate (FWER) compared to the considered estimators in finite samples. Recall that
FWER refers to the probability of at least one constructed simultaneous confidence inter-
val excluding the truth; (2) With cross-fitting, the proposed method shows enhanced finite
sample performance in terms of smaller bias than the implementation without cross-fitting.

We measure the performance of various estimators according to their
√
n-scaled biases

(computed as the root-n sum of mean differences between the Monte Carlo estimates and the
true parameter across multiple subgroups), standard deviations (computed as the root-n sum
of standard deviations of the Monte Carlo estimates across multiple subgroup), and FWER
(computed as the proportion of Monte Carlo samples in which at least one constructed
confidence interval for multiple subgroups excluding the truth). We scale the bias and
variance by the sample size as they converge to zero as n goes to infinity.

Simulation design

Our simulation design mimics observational studies where treatments are assigned based on
covariates. We simulate 1000 random Monte Carlo samples from: X = (X1, . . . , X5)

⊺ ∼
N(0,Σ),Σij = 0.5|i−j|, T ∼ Bernoulli

(
expit(X1 − 0.5 · X2 + 0.25 · X3 + 0.1 · X4)

)
, and

Y |T,X ∼ Bernoulli
(
expit(21+T +27.4 ·X1+13.7 ·X2+13.7 ·X3+13.7 ·X4)

)
. We consider

this specific simulation design because the design has been frequently adopted in the causal
inference literature ; see [91, 85] for example. This enables us to better compare our approach
with existing methods. Kindly pointed out by an anonymous reviewer, the above simulation
design produces rather deterministic outcomes, and we thus provide additional simulation
results under an alternative simulation design in Appendix 1.9.

We consider two types of subgroups: overlapping subgroups and non-overlapping sub-
groups. Overlapping subgroups with moderate d, d = 4, are generated by A1 = {X1 >
Φ−1(0.1)},A2 = {Φ−1(0.1) < X2 < Φ−1(0.9)},A3 = {X3+X4 > −2},A4 = {1X4>0.5 > −1}.
Non-overlapping subgroups with large d, d = 10, are generated by Aj =

{
QX1(j/10) <

X1 < QX1((j+1)/10)
}
, j = 1, . . . , 10. For simplicity, in the following simulation studies, the

considered parameter is α1 = (α1,1, . . . , α1,d)
⊺.

Comparison with conventional estimators

We generate initial estimates of et(·) and pt(·) through logistic regression, random forest,
or gradient boosting, implemented in R packages stats, ranger ([176]), and xgboost
([28]). We compare the proposed iterative one-step TMLE method (iTMLE) with the doubly
robust estimator, a simple regression adjustment estimator, and the inverse propensity score

estimator, which are defined as α̂DR
t,j = 1

nj

∑
i∈Aj

[
Ti

êt(Xi)
(Yi − p̂Initt (Xi)) + p̂Initt (Xi)

]
, α̂GLM

t,j =
1
nj

∑
i∈Aj

p̂Initt (Xi), α̂
IPW
t,j = 1

nj

∑
i∈Aj

Ti

êt(Xi)
Yi. Simultaneous confidence intervals for these
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estimators are constructed using standard large sample theory adopted in the literature (see
[68] for the doubly robust estimator and [170] for the IPW estimator). We provide finite-
sample comparisons through Figure 1.1(A) – (C) for overlapping subgroups, and Figure
1.1(D) – (E) for non-overlapping subgroups. As the IPW estimator has much larger variance
than the other estimators, we exclude its results from these figures. From Figure 1.1, we
observe that the iTMLE estimator outperforms the others for bias, standard deviation, and
FWER, regardless of how e1(·) and p1(·) are estimated in the first stage. This is in-line
with our theoretical results because the proposed estimator consists of a data-adaptive bias
correction term (Section 1.3), which largely improves its finite sample performance. In
addition, among all three initial estimators, random forest overall seems to be a winner.

Comparison with the double machine learning

In this part of the simulation study, we compare the performance of the cross-validated
version of iterated one-step TMLE for multiple parameters with the double machine learning
(DML) method ([33]). DML also involves the estimations of the propensity score model
and the conditional mean model, and it is a meta-learning method that relies on Neyman
orthogonal score and cross-fitting to generate debiased estimates for the causal estimands.
The simulation results of the three-fold cross-validated iTMLE and DML (implemented with
the R package DoubleML ([16])) are presented in Figure 1.2. There are two takeaways from
the summarized results in Figure 1.2. First, the performance of CV-iTMLE surpasses DML.
Although DML is rather robust compared to the doubly robust estimator, it still yields
larger bias and variance than CV-iTMLE. Second, compared to the iTMLE implementation
without cross-fitting (Figure 1.1), CV-iTMLE shows a faster convergence rate. We conjecture
that the sample splitting step allows the non-parametric estimators in the initial stage to
converge faster and thus shows more robust performance (smaller bias, smaller standard
deviation, and smaller FWER).

1.7 Case Study in UK Biobank Data

Statins are the most commonly prescribed cholesterol-lowering medications in the United
States. Cholesterol’s role in β-amyloid processing and the potential link between serum
cholesterol levels and AD pathology ([132]) have led to the argument that cholesterol-
moderating drugs such as statins could reduce the risk of AD onset and progression. However,
this argument is controversial by current evidence. Several cohort studies found a negative
association between statin usage and AD ([188]), while others have failed to replicate those
findings. These inconsistent findings might be due to the effect of statins on AD varying
across gender, age, and other subgroups ([188]). Thus, we hypothesize that statin usage has
significant benefits of reducing AD risk in some (but not all) subgroups. To test this hypoth-
esis, we analyzed data in the UK Biobank to investigate the heterogeneous treatment effect of
inheriting rs12916-T allele, a proxy for statin usage, on AD risk in the White British subpop-
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Figure 1.1: Comparison of bias, standard deviation (scaled by root-n), and (1-FWER) in
overlapping and non-overlapping subgroups. “iTMLE” denotes the proposed estimator.
“DR” denotes the doubly robust estimator. “GLM” denotes the generalized linear mod-
els. The maximum Monte Carlo standard error is 0.026 for iTMLE, 0.028 for DR, and 0.022
for GLM. “The maximum Monte Carlo standard error of (1-FWER)” refers to the largest
standard error of (1-FWER) (out of all three considered estimators for the propensity score
and the conditional expectation of the outcome based on logistic regression, random forest,
and gradient boosting) computed from Monte Carlo samples.
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Figure 1.2: Comparison of the cross-validated iTMLE implementation and the double ma-
chine learning method. “iTMLE-CV” denotes the proposed method with cross-fitting.
“DML” denotes the double machine learning method. The maximum Monte Carlo stan-
dard error of (1-FWER) is 0.024 for CV-iTMLE and 0.026 for DML. “The maximum Monte
Carlo standard error of (1-FWER)” refers to the largest standard error of (1-FWER) (out
of all three considered estimators for the propensity score and the conditional expectation of
the outcome based on logistic regression, random forest, and gradient boosting) computed
from Monte Carlo samples.
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ulations. We considered a cross-sectional study design by looking at the disease prevalence
at the end of year 2021.

Study design

The UK Biobank study recruited 502,536 participants aged from 40 to 69 in the United
Kingdom from 2006 to 2010. We defined AD status by integrating information provided by
Hospital Episode Statistics, death registries, and self-reported diagnoses (see details in Ap-
pendix 1.9). We restricted our study to 293,929 White British individuals. These individuals
are unrelated and had passed standard quality control steps.

Instead of directly adopting statin usage as a treatment variable, we adopted a genetic
variant rs12916-T as a surrogate treatment variable. This means that if the subject carries
the variant rs12916-T, the treatment indicator variable is set to be T = 1; otherwise, T is set
to be zero. We adopted this genetic surrogate biomarker as the treatment variable for two
reasons. On the one hand, the rs12916-T allele only affects the LDL cholesterol concentration
through HMGCR inhibition, and it is thus functionally equivalent to statin usage ([155, 65]).
More specifically, the decreased LDL cholesterol level associated with statin usage is similar
to the association pattern with rs12916-T (R2 = 0.94) [177], thus rs12916-T is a sensible
surrogate treatment variable for statin usage. On the other hand, given that genetic variants
are randomly inherited from parents, our treatment variable (whether or not the individual
carries rs12916-T) is thus independent of unmeasured confounding factors such as lifestyle
modifications after statin usage, potentially making Assumption 1 more plausible.

To account for genetic pleiotropy, we adjusted for SNPs that are associated with LDL.
Briefly, we selected 385 independent genome-wide significant SNPs (with p-values less than
5 × 10−8 and R2 < 0.01) associated with LDL according to the published genome-wide
association study (GWAS) results harmonized in GWAS Catalogue ([116]). We further
adjusted for age and gender variables, which may improve estimation efficiency given their
associations with the outcome. It was our hope that this study design could increase the
plausibility of Assumption 1.

We investigated the effect of inheriting rs12916-T allele on AD risk in the following
subgroups: (1) males, (2) females, (3) age < 65, (4)age ≥ 65, (5) individuals with high AD
genetic risk, and (6) individuals with low AD genetic risk. Notably, “high AD genetic risk”
was defined as either a subject’s parents or siblings being diagnosed with AD, while “Low
AD genetic risk” was defined as neither a subject’s parents nor siblings being diagnosed with
AD. We compared the performance of the proposed method (CV-iTMLE) with the double
machine learning (DML) method and the widely used generalized linear models (GLM). We
used the random forest as our first stage estimator as it provides the most robust results in
our simulation studies.

Because statin usage may increase the risk of T2D ([155]), as a secondary analysis, we
further investigated the effect of inheriting rs12916-T allele on T2D to evaluate the potential
heterogeneous side effects. The study design and study results of this secondary analysis can
be found in Appendix 1.9.
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Results

Figure 1.3 summarizes the effect of inheriting rs12916-T (a proxy for statin usage) on AD
risk in considered subgroups. As the GLM was applied to each subgroup separately and the
sample size was much smaller, leading to non-significant associations for all the subgroups.
The DML method also did not find any significant effects in all subgroups. This might be
caused by small estimated propensity scores, leading to large variability in finite samples.
In contrast, by targeting all subgroups simultaneously, the proposed method suggested that
carrying rs12916-T allele is protective against AD in the subgroup younger than 65 (RR: 0.92,
95% CI: 0.86–0.98). In sum, our proposed method showed shortened confidence intervals
with improved statistical power in detecting significant subgroups, while the GLM and DML
methods tend to lose power.

Lastly, we acknowledge that the current study design has several potential limitations.
First, our study only investigated the treatment effect of carrying rs12916-T allele or not.
Although this genetic variant is a sensible proxy for statin usage, the findings from this study
need to be interpreted cautiously. Second, our study was based on UK Biobank data and
only focused on White British population. UK Biobank participants were healthier (e.g.,
fewer self-reported health conditions) than the general population. Thus, our findings may
not be generalizable to other populations.

1.8 Discussions

In this chapter, we propose a semiparametric efficient method for simultaneous heteroge-
neous treatment effect estimation across multiple subgroups. The proposed method allows
us to construct a powerful multiple testing procedure leveraging the subgroup dependence
structure. In our empirical studies, the proposed method demonstrates finite sample im-
provements compared to other conventional methods, including the doubly robust estima-
tor, the classical one-step TMLE, and the double machine learning method. This chapter
opens a variety of possibilities for future research. From a methodological perspective, our
current method can be extended to work with other types of outcomes. For example, if
the outcome is continuous, one can either modify the updating step [63], or dichotomize a
continuous outcome into binary values (more details can be found in Appendix 1.9). From
an application perspective, the proposed method can be flexibly adapted to various clinical
studies and assist the evaluation of other subpopulations of interest.
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Figure 1.3: The effect of inheriting rs12916-T allele (a proxy for statin usage) on the
risk of developing Alzheimer’s disease (AD) in the UK Biobank white British population
(n = 293, 929). “DML” denotes the double machine learning method. “GLM” denotes the
generalized linear models. GLM is used for association test and does not imply causal rela-
tionships. “CV-iTMLE” denotes the cross-validated iTMLE method.
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1.9 Supplementary Materials

Proof of Theorems

Proof of Theorem 1

Suppose that {Oi}ni=1 := {(Yi, Ti, Xi)}ni=1 are i.i.d. random variables defined on the space
O with probability measure P . For a real-valued function f on X , the empirical measure
Pn is defined by Pn(f) :=

1
n

∑n
i=1 f(Oi), and the empirical mean is defined as En[f(X)] :=

1
n

∑n
i=1 f(Xi). If F is a collection of real-valued functions defined on X , then {Pnf : f ∈ F}

is the empirical measure indexed by F . We assume that Pf =
∫
fdP exists for each f ∈ F .

Note that such a notation can be more helpful as we can treatment random functions. We
use EX [f(X)] to denote expectation taken with respect to the random variable X when it
is more convenient to simplify notations. Our procedure estimates the joint distribution of
(Yi, Ti, Xi), and the estimated density evaluated at (y, t, x) ∈ X is p̂t(Yi = y|Xi = x) · êt(x) ·
p̂(x). We denote the joint density of (Yi, Ti, Xi) as p(y, t, x) which can be decomposed into
the product p(y, t, x) = pt(x)et(x)p(x). Here et(x) = te(x) + (1 − t)(1 − e(x)). We denote
the probability measure defined by such an estimated density as P∗

n. Given the probability
measure P , our target parameter αt can also be written as a statistical function of P , denoted
as αt(P ). Similarly, our proposed estimator can be written as αt(P∗

n). The vector of efficient
influence function of our target parameter αt(P ) is denoted as

ψ
(
o;αt(P ),η(P )

)
:=
(
ψ1

(
o;αt(P ),η(P )

)
, . . . ,ψJ

(
o;αt(P ),η(P )

))⊤
,

where η contains the nuisance parameters. We decompose the efficient influence function
into two parts:

ψ
(1)
j

(
o;η(P )

)
=
1{x ∈ Aj}
P (Aj)

[1{t = 1}
e(x)

+
1{t = 0}
1− e(x)

](
y − pt(x)

)
,

ψ
(2)
j

(
o;αt(P ),η(P )

)
=
1{x ∈ Aj}
P (Aj)

(
pt(x)− αt

)
,

where the first part does not depend on the target parameter, and αt =
∫
ptdP = EX [pt(X)]

is a scalar. Similarly, we then decompose the vector of efficient influence into

ψ
(
o;αt(P ),η(P )

)
= ψ(1)

(
o;η(P )

)
+ψ(2)

(
o;αt(P ),η(P )

)
.

Our estimator satisfies the following expansion:

α̂t(P∗
n)−αt(P ) = (Pn − P )ψ(o;αt(P ),η(P )) + In1 + In2, (1.19)

where the remainder terms are derived in Section 1.9

In1 = Rn2 +Rn3 = (Pn − P )
(
ψ(o;αt(P ),η(P∗

n))−ψ(o;αt(P ),η(P ))
)
,

In2 = Rn4 = Pψ
(
o;αt(P ),η(P∗

n)
)
= P

[
ψ
(
o;αt(P ),η(P∗

n)
)
−ψ

(
o;αt(P ),η(P )

)]
.
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Let αt(P ) = αt and η(P ) = η0, and let the estimated parameters α̂t(P∗
n) = α̂t and η(P∗

n) =
η̂. The above remainder terms simplify to

In1 = (Pn − P )
(
ψ(o;αt, η̂)−ψ(o;αt,η0)

)
,

In2 = Pψ
(
o;αt, η̂

)
= P

[
ψ
(
o;αt, η̂

)
−ψ

(
o;αt,η0

)]
.

For any η in the nuisance estimator realization set Hn, the term In1 = oP (1) uniformly over
P ∈ Pn under Assumption 4.2. To bound In2, we introduce the function

f(r) = P
[
ψ
(
o;αt,η0 + r(η̂ − η0)

)]
.

By Taylor expansion and the fact that f(0) = 0, we have

f(1) = f ′(0) + f ′′(r̃)/2, for some r̃ ∈ (0, 1).

We will next verify in Step 1 that f ′(0) = 0 and verify in Step 2 that supr∈[0,1) ||f ′′(r)|| =
oP (1/

√
n). This finishes our proof.

Step 1. For any η ∈ Hn, the first order derivative is equal to

f ′(0) = ∂ηPψ
(
o;αt,η0

)
[η − η0]

= ∂r{P
[
ψ
(
o;αt,η0 + r(η − η0

)]
}
∣∣
r=0

,

First, we want to show ψ is Neyman orthogonal, such that f ′(0) = 0.
We denote η = (ě(X), p̌1(X), p̌0(X), P̌(A1), . . . , P̌(AJ)). The Gateaux derivative in the

direction of η−η0 =
(
ě(X)−e(X), p̌1(X)−p1(X), p̌0(X)−p0(X), P̌(A1)−P (A1), . . . , P̌(AJ)−

P (AJ)
)
is

∂r{E
[
ψ
(
o;αt,η0 + r(η − η0

)]
}

=



∂rE

[
1{x∈A1}

P (A1)+r
(
P̌(A1)−P (A1)

)[( 1{t=1}
e(x)+r

(
ě(x)−e(x)

) + 1{t=0}
1−e(x)−r

(
ě(x)−e(x)

))
·
(
y − pt(x)− r

(
p̌t(x)− pt(x)

))
+
(
pt(x) + r(p̌t(x)− pt(x))− αt

)]]
,

...

∂rE

[
1{x∈AJ}

P (AJ )+r
(
P̌(AJ )−P (AJ )

)[( 1{t=1}
e(x)+r

(
ě(x)−e(x)

) + 1{t=0}
1−e(x)−r

(
ě(x)−e(x)

))
·
(
y − pt(x)− r

(
p̌t(x)− pt(x)

))
+
(
pt(x) + r(p̌t(x)− pt(x))− αt

)]]


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The Gateaux derivative for each subgroup j is

= ∂rE

[
1{x ∈ Aj}

P (Aj) + r
(
P̌(Aj)− P (Aj)

)[( 1{t = 1}
e(x) + r

(
ě(x)− e(x)

) + 1{t = 0}
1− e(x)− r

(
ě(x)− e(x)

))
·
(
y − pt(x)− r

(
p̌t(x)− pt(x)

))
+
(
pt(x) + r(p̌t(x)− pt(x))− αt

)]]
,

= ∂rE

[
1{x ∈ Aj}

P (Aj) + r
(
P̌(Aj)− P (Aj)

) · (pt(x) + r(p̌t(x)− pt(x))− αt)

+
1{x ∈ Aj}

P (Aj) + r
(
P̌(Aj)− P (Aj)

) · (y − pt(x)− r(p̌t(x)− pt(x)))
·
[ 1{t = 1}
e(x) + r

(
ě(x)− e(x)

) + 1{t = 0}
1− e(x)− r

(
ě(x)− e(x)

)]],
= E

[
1{x ∈ Aj}

P (Aj) + r
(
P̌(Aj)− P (Aj)

)(p̌t(x)− pt(x))
−

1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2 (pt(x) + r(p̌t(x)− pt(x))− αt

)
+

1{x ∈ Aj}
P (Aj) + r

(
P̌(Aj)− P (Aj)

) · (y − pt(x)− r(p̌t(x)− pt(x)))·
·
[
−

1{t = 1}
(
ě(x)− e(x)

)(
e(x) + r

(
ě(x)− e(x)

))2 +
1{t = 0}

(
ě(x)− e(x)

)(
1− e(x)− r

(
ě(x)− e(x)

))2]
+
[−1{x ∈ Aj}(p̌t(x)− pt(x))
P (Aj) + r

(
P̌(Aj)− P (Aj)

) − 1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2
·
(
y − pt(x)− r(p̌t(x)− pt(x))

)]
·
[ 1{t = 1}
e(x) + r

(
ě(x)− e(x)

) + 1{t = 0}
1− e(x)− r

(
ě(x)− e(x)

)]].
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Set r = 0,

= E

[
1{x ∈ Aj}
P (Aj)

(p̌t(x)− pt(x))−
1{x ∈ Aj}

(
P̌(Aj)− P (Aj)

)(
P (Aj)

)2 (
pt(x)− αt

)
+
1{x ∈ Aj}
P (Aj)

(
y − pt(x)

)[
−
1{t = 1}

(
ě(x)− e(x)

)(
e(x)

)2 +
1{t = 0}

(
ě(x)− e(x)

)(
1− e(x)

)2 ]
+
[−1{x ∈ Aj}(p̌t(x)− pt(x))

P (Aj)
−
1{x ∈ Aj}

(
P̌(Aj)− P (Aj)

)(
P (Aj)

)2 ·
(
y − pt(x)

)]
·
[1{t = 1}

e(x)
+
1{t = 0}
1− e(x)

]]
.

Given that

E[pt(x)− αt|x] = 0, E[t = 1|X] = e(x),

E[t(y − pt(x))|x] = 0, E[(1− t)(y − pt(x))|x] = 0,

the first-order Gateaux derivative for each subgroup j is 0. Thus f ′(0) = 0 for all the
subgroups.
Step 2. The second order remainder term satisfies

||f ′′(r̃)/2|| ≤ sup
r∈(0,1)

||f ′′(r)/2||.
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For each subgroup j,

∂2rfj(r)

= E

[
−
1{x ∈ Aj}(p̌t(x)− pt(x))

(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2 −

1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2 (p̌t(x)− pt(x))
+ 2

1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)2(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))3 (pt(x) + r(p̌t(x)− pt(x))− αt

)
+

1{x ∈ Aj}
P (Aj) + r

(
P̌(Aj)− P (Aj)

) · (y − pt(x)− r(p̌t(x)− pt(x)))·
· 2
[ 1{t = 1}

(
ě(x)− e(x)

)2(
e(x) + r

(
ě(x)− e(x)

))3 − 1{t = 0}
(
ě(x)− e(x)

)2(
1− e(x)− r

(
ě(x)− e(x)

))3]
+
[−1{x ∈ Aj}(p̌t(x)− pt(x))
P (Aj) + r

(
P̌(Aj)− P (Aj)

) − 1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2
·
(
y − pt(x)− r(p̌t(x)− pt(x))

)]
·
[
−

1{t = 1}
(
ě(x)− e(x)

)(
e(x) + r

(
ě(x)− e(x)

))2 +
1{t = 0}

(
ě(x)− e(x)

)(
1− e(x)− r

(
ě(x)− e(x)

))2]
+
[−1{x ∈ Aj}(p̌t(x)− pt(x))
P (Aj) + r

(
P̌(Aj)− P (Aj)

) − 1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2
·
(
y − pt(x)− r(p̌t(x)− pt(x))

)]
·
[−1{t = 1}

(
ě(x)− e(x)

)(
e(x) + r

(
ě(x)− e(x)

))2 +
1{t = 0}

(
ě(x)− e(x)

)(
1− e(x)− r

(
ě(x)− e(x)

))2].
+
[1{x ∈ Aj}(p̌t(x)− pt(x))

(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2
+
1{x ∈ Aj}

(
P̌(Aj)− P (Aj)

)
· (p̌t(x)− pt(x))(

P (Aj) + r
(
P̌(Aj)− P (Aj)

))2
+ 2

1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)2(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))3 · (y − pt(x)− r(p̌t(x)− pt(x)))]
·
[ 1{t = 1}
e(x) + r

(
ě(x)− e(x)

) + 1{t = 0}
1− e(x)− r

(
ě(x)− e(x)

)]].
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Simplify the second-order Gateaux derivative we have

∂2rf(r) = E

[
− 2

1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2 (p̌t(x)− pt(x))
]

+ E

[
2
1{x ∈ Aj}

(
P̌(Aj)− P (Aj)

)2(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))3 (pt(x) + r(p̌t(x)− pt(x))− αt

)]

+ E

[
1{x ∈ Aj}

P (Aj) + r
(
P̌(Aj)− P (Aj)

) · (y − pt(x)− r(p̌t(x)− pt(x)))·
· 2
[ 1{t = 1}

(
ě(x)− e(x)

)2(
e(x) + r

(
ě(x)− e(x)

))3 − 1{t = 0}
(
ě(x)− e(x)

)2(
1− e(x)− r

(
ě(x)− e(x)

))3]
]

+ E

[
2
[−1{x ∈ Aj}(p̌t(x)− pt(x))
P (Aj) + r

(
P̌(Aj)− P (Aj)

) − 1{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2
·
(
y − pt(x)− r(p̌t(x)− pt(x))

)]
·
[
−

1{t = 1}
(
ě(x)− e(x)

)(
e(x) + r

(
ě(x)− e(x)

))2 +
1{t = 0}

(
ě(x)− e(x)

)(
1− e(x)− r

(
ě(x)− e(x)

))2]
]

+ E

[[ 21{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))2 (p̌t(x)− pt(x))
+

21{x ∈ Aj}
(
P̌(Aj)− P (Aj)

)2(
P (Aj) + r

(
P̌(Aj)− P (Aj)

))3 · (y − pt(x)− r(p̌t(x)− pt(x)))]
·
[ 1{t = 1}
e(x) + r

(
ě(x)− e(x)

) + 1{t = 0}
1− e(x)− r

(
ě(x)− e(x)

)]].
Set r = r̃, by Assumption 4.3, for some constants C and ξn,

|f ′′
j (r̃)| ≤ C||ě(x)− e(x)||2||p̌t(x)− pt(x)||2 ≤ δnn

−1/2, j = 1, . . . , J,

||f ′′(r̃)||∞ ≤ sup
r∈[0,1)

||f ′′(r)||∞ = oP (1/
√
n).

In sum,

f(1) = f ′(0) + f ′′(r̃)/2 = oP (1/
√
n), r ∈ [0, 1).
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Derivation of the expansion (1.19)

It holds trivially true that our estimator satisfies

α̂t −αt = −
∫
ψ(1)

(
o; η̂
)
dP +

(
α̂t −αt +

∫
ψ(1)

(
o; η̂
)
dP
)

:=

∫
ψ(1)

(
o; η̂
)
dPn −

∫
ψ(1)

(
o; η̂
)
dP +Rn1

= Pnψ
(1)(o; η̂)− Pψ(1)(o; η̂) +Rn1

= (Pn − P )ψ(1)(o;η0) + (Pn − P )
(
ψ(1)(o; η̂)−ψ(1)(o;η0)

)
+Rn1

= (Pn − P )ψ(1)(o;η0) +Rn2 +Rn1,

where the second equality is guaranteed by our proposed procedure, and

Rn1 = α̂t −αt +

∫
ψ(1)

(
o; η̂
)
dP

= En

[
p̂t(X)

]
− EX

[
pt(X)

]
+ EY,T,X

[
1{X ∈ Aj}

P̂(Aj)

(1{T = 1}
ê(X)

+
1{T = 0}
1− ê(X)

)(
Y − p̂T (X)

)]
=En

[
p̂t(X)

]
− EX

[
p̂t(X)

]
+ EX

[
p̂t(X)

]
− EX

[
pt(X)

]
+ EY,T,X

[
1{X ∈ Aj}

P̂(Aj)

(1{T = 1}
ê(X)

+
1{T = 0}
1− ê(X)

)(
Y − p̂T (X)

)]
=(Pn − P )p̂t + Pψ

(
o;αt, η̂

)
=(Pn − P )(p̂t − pt) + (Pn − P )pt + Pψ

(
o;αt, η̂

)
=(Pn − P )ψ(2)(o;α,η0) + (Pn − P )(p̂t − pt) + (Pn − P )pt + Pψ

(
o;αt, η̂

)
.

To this end, we have the final expansion:

α̂t −αt = (Pn − P )ψ(o;α,η0) +Rn2 +Rn3 +Rn4,

where

Rn2 = (Pn − P )
(
ψ(1)(o; η̂)−ψ(1)(o;η0)

)
,

Rn3 = (Pn − P )(p̂t − pt)
Rn4 = Pψ

(
o;αt, η̂

)
.

Proof of semiparametric efficiency results with delta method

[161] shows that the asymptotic variance obtained by the delta method indeed achieves the
semiparametric efficiency bound (Chapter 25.7). Since the results in [161] are formulated
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using notation different from ours, in what follows, we provide a justification to show why the
asymptotic variances of α̂RR and α̂OR attain the semiparametric efficiency In what follows,
we justify why the asymptotic variances of α̂ARD, α̂RR, and α̂OR attain the semiparametric
efficiency bound. For simplicity, we shall not discuss the subgroup case, but the justifications
below can be easily extended to subgroup α̂ARD, α̂RR, and α̂OR.

First, denote the joint density of (Y,T,X) as

f(y, t, x) =
(
f1(y|x)e(x)

)t(
f0(y|x)(1− e(x))

)1−t
f(x),

where e(x) := f(t|x) denotes the propensity score, f1(y|x) denotes the conditional density
of y given x under treatment, and f0(y|x) denotes the conditional density of y given x under
control. Assume the parametric submodel indexed by parameter θ is

f(y, t, x; θ) =
(
f1(y|x; θ)e(x; θ)

)t(
f0(y|x; θ)(1− e(x; θ))

)1−t
f(x; θ),

where θ is indexed a finite-dimensional parameter β and an infinite-dimensional parameter
η, i.e. θ = (β, η). The score function of the above parametric submodel is

s(y, t, x|θ) = ts1(y|x; θ) + (1− t)s0(y|x; θ) +
t− e(x; θ)

e(x; θ)(1− e(x; θ))
e′(x; θ) + p(x; θ), (1.20)

where s1(y|x; θ) = d
dθ
log f1(Y |X; θ), s0(y|x; θ) = d

dθ
log f0(Y |X; θ), p(x; θ) = d

dθ
log f(X; θ),

and e′(x; θ) = d
dθ
e(x; θ). From the score function Eq (1.20) we obtain the tangent space T

spanned by the score function ts1(y|x)+ (1− t)s0(y|x)+ t−e(x)
e(x)(1−e(x))

e′(x)+ p(x). Now assume
θ can be parametrized by β1 and β0, that is

β1(θ) =

∫ ∫
yf1(y|x; θ)f(x; θ)dydx,

β0(θ) =

∫ ∫
yf0(y|x; θ)f(x; θ)dydx.

β1(θ) and β0(θ) represent the conditional mean of outcome under treatment and control,
respectively. The pathwise derivatives of β1(θ) and β0(θ) are

∂β1(θ0)

∂θ
=

∫ ∫
ys1(y|x; θ0)f1(y|x)f(x)dydx+

∫ ∫
β1(x)p(x; θ0)f(x)dx,

∂β0(θ0)

∂θ
=

∫ ∫
ys0(y|x; θ0)f0(y|x)f(x)dydx+

∫ ∫
β0(x)p(x; θ0)f(x)dx,

where θ0 denotes the true parameter. If the target parameter of interest is the absolute risk



CHAPTER 1. EFFICIENT ESTIMATION OF HETEROGENEOUS TREATMENT
EFFECTS FOR MULTIPLE SUBGROUPS 31

difference (ARD),

∂βARD(θ0)

∂θ
=

∂βARD(θ0)

∂
(
β1(θ0), β0(θ0)

) ∂(β1(θ0), β0(θ0))
∂θ

= (1 − 1)

(
∂β1(θ0)

∂θ
∂β0(θ0)

∂θ

)
=
∂β1(θ0)

∂θ
− ∂β0(θ0)

∂θ
,

=

∫ ∫
ys1(y|x; θ0)f1(y|x)f(x)dydx+

∫ ∫
β1(x)p(x; θ0)f(x)dx

−
∫ ∫

ys0(y|x; θ0)f0(y|x)f(x)dydx−
∫ ∫

β0(x)p(x; θ0)f(x)dx.

Similarly, if the target parameter of interest is the relative risk,

∂βRR(θ0)

∂θ
=

∂βRR(θ0)

∂
(
β1(θ0), β0(θ0)

) ∂(β1(θ0), β0(θ0))
∂θ

=
(

1
β0(θ0)

−β1(θ0)

β2
0(θ0)

)(∂β1(θ0)
∂θ

∂β0(θ0)
∂θ

)
=

1

β0(θ0)

∂β1(θ0)

∂θ
− β1(θ0)

β2
0(θ0)

∂β0(θ0)

∂θ
,

=
1

β0(θ0)

(∫ ∫
ys1(y|x; θ0)f1(y|x)f(x)dydx+

∫ ∫
β1(x)p(x; θ0)f(x)dx

)
− β1(θ0)

β2
0(θ0)

(∫ ∫
ys0(y|x; θ0)f0(y|x)f(x)dydx+

∫ ∫
β0(x)p(x; θ0)f(x)dx

)
.

If the target parameter of interest is the odds ratio,

∂βOR(θ0)

∂θ
=

∂βOR(θ0)

∂
(
β1(θ0), β0(θ0)

) ∂(β1(θ0), β0(θ0))
∂θ

=
(

1−β0(θ0)
β0(θ0)(1−β1(θ0))2

−β1(θ0)

β2
0(θ0)(1−β1(θ0))

)(∂β1(θ0)
∂θ

∂β0(θ0)
∂θ

)
,

=
1− β0(θ0)

β0(θ0)(1− β1(θ0))2
∂β1(θ0)

∂θ
− β1(θ0)

β2
0(θ0)(1− β1(θ0))

∂β0(θ0)

∂θ
,

=
1− β0(θ0)

β0(θ0)(1− β1(θ0))2
(∫ ∫

ys1(y|x; θ0)f1(y|x)f(x)dydx

+

∫ ∫
β1(x)p(x; θ0)f(x)dx

)
− β1(θ0)

β2
0(θ0)(1− β1(θ0))

(∫ ∫
ys0(y|x; θ0)f0(y|x)f(x)dydx

+

∫ ∫
β0(x)p(x; θ0)f(x)dx

)
.
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Now let

φARD(Y, T,X) =
T

e(X)

(
Y − β1(X)

)
− 1− T

1− e(X)

(
Y − β0(X)

)
+ β1(X)− β0(X)− (β1 − β0),

φRR(Y, T,X) =
1

β0

( T

e(X)

(
Y − β1(X)

)
+ β1(X)− β1

)
− β1
β2
0

( 1− T
1− e(X)

(
Y − β0(X)

)
+ β0(X)− β0

)
,

φOR(Y, T,X) =
1− β0

β0(1− β1)2
( T

e(X)

(
Y − β1(X)

)
+ β1(X)− β1

)
− β1
β2
0(1− β1)

( 1− T
1− e(X)

(
Y − β0(X)

)
+ β0(X)− β0

)
.

Taking the product of φ(Y, T,X) and the score function in Eq (1.20), we observe that

∂βARD(θ0)

∂θ0
= E[φARD(Y, T,X) · s(Y, T,X|θ0)],

∂βRR(θ0)

∂θ0
= E[φRR(Y, T,X) · s(Y, T,X|θ0)],

∂βOR(θ0)

∂θ0
= E[φOR(Y, T,X) · s(Y, T,X|θ0)].

The above derivations suggest that φARD(Y, T,X), φRR(Y, T,X), and φOR(Y, T,X) ∈ T ,
and thus the semiparametric efficiency bounds of ARD, RR, and OR can be computed as

E
[(
φARD(Y, T,X)

)2]
, E
[(
φRR(Y, T,X)

)2]
, and E

[(
φOR(Y, T,X)

)2]
, respectively.

The above derivations suggest that the semiparametric efficiency results in Theorem 1
can be generalized to various estimators of interest.

Proof of Lemma 1

To simplify notation, suppose we work with a single update and denote the initial estimate
as p̂Initt (·). The primal optimization problem is:

min
ε∈RJ

− 1

n

n∑
i=1

[
Yi

(
logit

(
p̂Initt (Xi)

)
+

J∑
j=1

εj ·
1(Xi ∈ Aj)

P(Aj)

1(Ti = t)

ê(Xi)

)
− log

(
1 + exp

logit
(
p̂Initt (Xi)

)
+
∑J

j=1 εj ·
1(Xi∈Aj)

P(Aj)

1(Ti=t)

ê(Xi)

)]
,

s.t. ||ε||2 − δ ≤ 0.
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The Lagrangian associated with the primal problem is

L(ε, λ) = − 1

n

n∑
i=1

[
Yi

(
logit

(
p̂Initt (Xi)

)
+

J∑
j=1

εj ·
1(Xi ∈ Aj)

P(Aj)

1(Ti = t)

ê(Xi)

)
− log

(
1 + exp

logit
(
p̂Initt (Xi)

)
+
∑J

j=1 εj ·
1(Xi∈Aj)

P(Aj)

1(Ti=t)

ê(Xi)

)]
+ λ(||ε||2 − δ),

where λ ≥ 0 is the Lagrange multiplier. The Lagrangian primal problem is defined as

min
ε
Lprimal(ε, λ) = min

ε
max
λ≥0

L(ε, λ).

The Lagrangian dual function is thus defined as

Ldual(λ) = min
ε
L(ε, λ),

and the Lagrangian dual problem is

max
λ≥0

Ldual(λ) = max
λ≥0

min
ε
L(ε, λ).

Given our optimization problem is a convex problem, there is no duality gap between the
primal and dual problems.

Next, we solve for ε̂j by taking derivative of the dual function.

∂Ldual(ε̂, λ)

∂εj
= − 1

n

∑
i:Ti=t

{
Yi
1(Xi ∈ Aj)

P(Aj)

1(Ti = t)

ê(Xi)

−
exp
(
logit

(
p̂Initt (Xi)

)
+
∑J

j=1 ε̂j ·
1(Xi∈Aj)

P(Aj)
1(Ti=t)
ê(Xi)

)
1 + exp

(
logit

(
p̂Initt (Xi)

)
+
∑J

j=1 ε̂j ·
1(Xi∈Aj)

P(Aj)
1(Ti=t)
ê(Xi)

)
· 1(Xi ∈ Aj)

P(Aj)

1(Ti = t)

ê(Xi)

}
+ λεj,

= − 1

n

∑
i:Ti=t

{[
Yi −

exp
(
logit

(
p̂Initt (Xi)

)
+
∑J

j=1 ε̂j ·
1(Xi∈Aj)

P(Aj)
1(Ti=t)
ê(Xi)

)
1 + exp

(
logit

(
p̂Initt (Xi)

)
+
∑J

j=1 ε̂j ·
1(Xi∈Aj)

P(Aj)
1(Ti=t)
ê(Xi)

)]
· 1(Xi ∈ Aj)

P(Aj)

1(Ti = t)

ê(Xi)

}
+ λεj,

= − 1

n

∑
i:Ti=t

{(
Yi − p̂t(Xi)

)
· 1(Xi ∈ Aj)

P(Aj)

1

ê(Xi)

}
+ λεj,

∂Ldual(ε̂, λ)

∂λ
= −ϕ̂j(Xi) + λεj = 0,

=⇒ ϕ̂j(Xi) = λεj, εj =
ϕ̂j(Xi)

λ
.
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By plugging in εj =
ϕ̂j(Xi)

λ
, we have the Lagrangian dual function equals to

Ldual(λ) = −
1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂Initt (Xi)

)
+

J∑
j=1

ϕ̂j(Xi)Ŝj(Xi)

λ

)
− log

(
1 + explogit

(
p̂Initt (Xi)

)
+
∑J

j=1

ϕ̂j(Xi)Ŝj(Xi)

λ

)]
+ λ(

||ϕ̂(Xi)||2
λ

− δ).

Hence, the dual problem reduces to

max
λ≥0

− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂Initt (Xi)

)
+

J∑
j=1

ϕ̂j(Xi)Ŝj(Xi)

λ

)
− log

(
1 + explogit

(
p̂Initt (Xi)

)
+
∑J

j=1

ϕ̂j(Xi)Ŝj(Xi)

λ

)]
+ λ(

||ϕ̂(Xi)||2
λ

− δ).

With the following substitution,

J∑
j=1

ϕ̂j(Xi)Ŝj(Xi)

λ
=

∑J
j=1 ϕ̂jŜj(Xi)

||ϕ̂(Xi)||2
· ||ϕ̂(Xi)||2

λ
= S̃t(Xi) ·

||ϕ̂(Xi)||2
λ

,

the dual problem satisfies

argmax
λ≥0

− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂Initt (Xi)

)
+ S̃t(Xi) ·

||ϕ̂(Xi)||2
λ

)
− log

(
1 + explogit

(
p̂Initt (Xi)

)
+S̃t(Xi)·

||ϕ̂(Xi)||2
λ

)]
+ λ(

||ϕ̂(Xi)||2
λ

− δ),

=argmax
λ≥0

− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂Initt (Xi)

)
+ S̃t(Xi) ·

||ϕ̂(Xi)||2
λ

)
− log

(
1 + explogit

(
p̂Initt (Xi)

)
+S̃t(Xi)·

||ϕ̂(Xi)||2
λ

)]
− λδ.

Through the reparametrization γ = ||ϕ̂(Xi)||2
δ

, the dual problem can be reformulated as

argmin
γ>0
− 1

n

∑
i:Ti=t

[
Yi

(
logit

(
p̂
(k−1)
t (Xi)

)
+ S̃t(Xi) · γ

)
− log

(
1 + explogit

(
p̂
(k−1)
t (Xi)

)
+S̃t(Xi)·γ

)]
− ||ϕ̂(Xi)||2 · δ

γ
,

where ||ϕ̂(Xi)||2·δ
γ

is sufficiently close to 0.



CHAPTER 1. EFFICIENT ESTIMATION OF HETEROGENEOUS TREATMENT
EFFECTS FOR MULTIPLE SUBGROUPS 35

Additional Remarks

Remark 1. The multivariate local least favorable submodel defined in Eq (2) implies a one-
dimensional universal least favorable submodel. The resulting one-step TMLE along this
universal least favorable submodel corresponds with iteratively maximizing log likelihood for
the multivariate least favorable submodel in ε under a constraint that ||ε|| = γ for some small
γ, and noting that this MLE ε is known in closed form and equals γ · Pnφ

||Pnφ|| . One stops the

iteration when the log-likelihood reaches its maximum. Our proposed method in Eq (3) can
be viewed as a variation of this in the targeted learning literature.

Remark 2. The above theoretical results can be readily extended to infinitely many subgroups
cases. Concretely, we denote αt(ν) as a set of subgroup parameters indexed by a continuous
vector ν defined on a compact parameter space, where αt(ν) = P

(
Y (t) = 1|X ∈ A(ν)

)
, and

we define the vector of efficient influence functions as φt(ν). As long as αt(ν) is a smooth
function of ν the function class {φ(o;αt(ν),η),η ∈ H} is a Donsker class, our theoretical
results suggest that

√
n(α̂t(ν)−αt(ν)) converges to a Gaussian process.

Extension of the Proposed Method

Extension to continuous outcomes

There are two options to adapt our proposed method to continuous outcomes. The first
option is to use a different updating procedure for continuous outcomes [63]. For example,

p̂
(k)
t can be obtained through a linear update:

p̂
(k)
t (Xi) = p̂

(k−1)
t (Xi) + γ̂(k) · S̃(k−1)

t (Xi), i ∈ {i : Ti = t},

where

S̃
(k−1)
t (Xi) =

∑d
j=1

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

·
(∑n

l=1 ϕ̂
(k−1)
j (Yl, Tl, Xl)

)
√∑d

j=1

(∑n
l=1 ϕ̂

(k−1)
j (Yl, Tl, Xl)

)2 ,

and ϕ̂
(k−1)
j (Yi, Ti, Xi) =

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

(Yi − p̂(k−1)
t (Xi)). γ̂

(k) can then be obtained by mini-

mizing a user specified loss function L(·),

γ̂(k) = argmin
γ≥0

1

n

∑
i:Ti=t

L
(
Yi, p̂

(k−1)
t (Xi), γ, S̃

(k−1)
t (Xi)

)
.

For example, one can consider the l2-loss [63], that is

γ̂(k) = argmin
γ≥0

1

n

∑
i:Ti=t

||Yi − p̂(k)t (Xi)||22.

The second option is to dichotomize a continuous outcome into a binary outcome [111,
103]. Then the proposed methodology in the main chapter can be directly applied.
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Simultaneous confidence intervals of absolute risk difference,
relative risk, and odds ratio

Let κ̂(q, J) be a consistent estimate of the (1 − q)-th quantile of maxj∈1,...,J |Zj|, where
Z1, . . . , ZJ are i.i.d. standard normal random variables. Then,

α̂ARD,j ± κ̂ARD,q/2

(Σ̂ARD,jj

n

)1/2
, α̂RR,j ± κ̂RR,q/2

(Σ̂RR,jj

n

)1/2
, α̂OR,j ± κ̂OR,q/2

(Σ̂OR,jj

n

)1/2

lim
n→∞

P

(
α̂ARD,j ± κ̂(q, J) ·

(Σ̂ATE,jj

n

)1/2
, j = 1, . . . , J

)
= 1− q,

lim
n→∞

P

(
α̂RR,j ± κ̂(q, J) ·

(Σ̂RR,jj

n

)1/2
, j = 1, . . . , J

)
= 1− q,

lim
n→∞

P

(
α̂OR,j ± κ̂(q, J) ·

(Σ̂OR,jj

n

)1/2
, j = 1, . . . , J

)
= 1− q,

where Σ̂ARD =
(
Σ̂ARD,jk

)J
j,k=1

= 1
n

∑n
i=1 φ̂ARD,iφ̂

′
ARD,i,

φ̂ARD,i =
(
φ̂ARD,1(Yi, Ti, Xi), . . . , φ̂ARD,J(Yi, Ti, Xi)

)′
. Similarly, we can construct the covariance matrix Σ̂RR and Σ̂OR. The plug-in estimates of
the efficient influence functions are,

φ̂ARD,j(Oi) =
1(Xi ∈ Aj)

P̂(Aj)

[( Ti
ê1(Xi)

(
Yi − p̂1(Xi)

)
+ p̂1(Xi)− α̂1

)
−
( 1− Ti
ê0(Xi)

(
Yi − p̂0(Xi)

)
+ p̂0(Xi)− α̂0

)]
,

φ̂RR,j(Oi) =
1(Xi ∈ Aj)

P̂(Aj)

[ 1

α̂0

( Ti
ê1(Xi)

(
Yi − p̂1(Xi)

)
+ p̂1(Xi)− α̂1

)
− α̂1

α̂2
0

( 1− Ti
ê0(Xi)

(
Yi − p̂0(Xi)

)
+ p̂0(Xi)− α̂0

)]
,

φ̂OR,j(Oi) =
1(Xi ∈ Aj)

P̂(Aj)

[ 1− α̂0

α̂0(1− α̂1)2

( Ti
ê1(Xi)

(
Yi − p̂1(Xi)

)
+ p̂1(Xi)− α̂1

)
− α̂1

α̂2
0(1− α̂1)

( 1− Ti
ê0(Xi)

(
Yi − p̂0(Xi)

)
+ p̂0(Xi)− α̂0

)]
.

We obtain the efficient influence functions for αARD, αRR, and αOR by applying multi-
variate delta method on (α1,α0).
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Proof of Eq (7) in Section 1.3

In this part, we aim to derive the score function under the iterative procedure. For simplicity,
denote the final update as p̂1(X), ε̂. The conditional likelihood function of Y given (T,X)
is:

L(Y |T,X) = p(T,X)Y ·
(
1− p(T,X)

)1−Y
.

Proof.

∂logL(Y |T,X; ε)

∂ε
=

1

n

n∑
i=1

J∑
j=1

{
YiS̃1(Xi)

−
expit

(
logit

(
p̂
(K−1)
1 (Xi)

)
+ ε̂ · S̃1(Xi)

)
1 + expit

(
logit

(
p̂
(K−1)
1 (Xi)

)
+ ε̂ · S̃1(Xi)

) · S̃1(Xi)
}
= 0,

=
1

n

n∑
i=1

J∑
j=1

{[
Yi

−
expit

(
logit

(
p̂
(K−1)
1 (Xi)

)
+ ε̂ · S̃1(Xi)

)
1 + expit

(
logit

(
p̂
(K−1)
1 (Xi)

)
+ ε̂ · S̃1(Xi)

)] · S̃1(Xi)
}
= 0,

=
1

n

n∑
i=1

J∑
j=1

{(
Yi − p̂1(Xi)

)
· S̃1(Xi)

}
= 0,

=
1

n

n∑
i=1

J∑
j=1

{(
Yi − p̂1(Xi)

)
· 1(Xi ∈ Aj)

P̂(Aj)

Ti
ê1(Xi)

·
1
n

∑n
i=1 ϕ̂j(Yi, Ti, Xi)√∑J

m=1

(
1
n

∑n
i=1 ϕ̂m(Yi, Ti, Xi)

)2},

=

∑J
j=1

{
1
n

∑n
i=1

{
ϕ̂j(Yi, Ti, Xi)

}
1
n

∑n
i=1

{
ϕ̂j(Yi, Ti, Xi)

}}√∑J
m=1

(
1
n

∑n
i=1 ϕ̂m(Yi, Ti, Xi)

)2 ,

=

∑J
j=1

(
1
n

∑n
i=1 ϕ̂j(Yi, Ti, Xi)

)2
√∑J

m=1

(
1
n

∑n
i=1 ϕ̂m(Yi, Ti, Xi)

)2
=

√√√√ J∑
j=1

(
1

n

n∑
i=1

ϕ̂j(Yi, Ti, Xi)

)2

= 0.
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Implementation Details

Implementation details of cross-fitted TMLE

As mentioned in the main chapter, the Donsker class condition on the efficient influence
function can be relaxed by cross-fitting. Here, we briefly discuss the implementation details
of the cross-fitted iterative version of the one-step TMLE of the multivariate dimensional
parameters. The non-iterative version can be carried out similarly.

Step 1. Randomly split the sample into V equal-sized subsamples.

Step 2. For v ← 1 to V :

(a) Use subsample v as the validation data and the rest as training data. Generate
initial estimates of pt(X) and et(X) by fitting the model on the training set, and predict

on the validation set, denoted as p̂
(0)
t,v (X) and êt,v(X).

(b) For k ← 1, . . . , K (or until converge):

ε̂(k)v = argmax
ε∈R

{
1

nv

∑
i:Ti=t,i∈v

[
Yi

(
logit

(
p̂
(k−1)
t,v (Xi)

)
+ εS̃

(k−1)
t,v (Xi)

)
− log

(
1 + explogit

(
p̂
(k−1)
t,v (Xi)

)
+εS̃

(k−1)
t,v (Xi)

)]}
,

where

S̃
(k−1)
t,v (Xi) =

∑d
j=1

1
nv

∑
l∈v ϕ̂

(k−1)
j (Yl, Tl, Xl)√∑d

m=1

(
1
nv

∑
i∈v ϕ̂

(k−1)
m (Yi, Ti, Xi)

)2 · 1(Xi ∈ Aj)

P̂(Aj)

Ti
ê(Xi)

,

and ϕ̂
(k−1)
j,v =

1(Xi∈Aj)

P̂(Aj)

Ti

êt(Xi)
(Yi − p̂(k−1)

t,v (Xi)).

(c) Update the conditional risk via:

p̂
(k)
t,v (Xi) = expit

(
logit

(
p̂
(k−1)
t,v (Xi)

)
+ ε(k)v · S̃

(k−1)
t,v (Xi)

)
.

(d) Estimate αj,v by:

α̂j,v =

∑
i∈v 1(Xi ∈ Aj) · p̂(K)

t,v (Xi)∑
i∈v 1(Xi ∈ Aj)

.
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Step 3. Aggregate estimates from the validation sets by:

α̂j =
1

V

V∑
v=1

α̂j,v.

Implementation details of the relative risk and odds ratio
estimators

Step 1. Randomly split the sample into V equal-sized subsamples.

Step 2. For v ← 1 to V :

(a) Use subsample v as the validation data and the rest as training data. Generate
initial estimates of p1(X), p0(X), e1(X) and e0(X) by fitting the model on the training

set, and predict on the validation set, denoted as p̂
(0)
1,v(X), p̂

(0)
0,v(X), ê1,v(X), and ê0,v(X).

(b) For k ← 1, . . . , K (or until converge):

ε̂
(k)
t,v = argmax

ε∈R

{
1

nv

∑
i∈v

[
Yi

(
logit

(
p̂
(k−1)
t,v (Xi)

)
+ εS̃

(k−1)
t,v (Xi)

)
− log

(
1 + explogit

(
p̂
(k−1)
t,v (Xi)

)
+εS̃

(k−1)
t,v (Xi)

)]}
,

where

S̃
(k−1)
t,v (Xi) =

∑d
j=1

1
nv

∑
l∈v ϕ̂

(k−1)
j (Yl, Tl, Xl)√∑d

m=1

(
1
nv

∑
i∈v ϕ̂

(k−1)
m (Yi, Ti, Xi)

)2 · 1(Xi ∈ Aj)

P̂(Aj)

1(Ti = t)

ê(Xi)
,

and ϕ̂
(k−1)
j,v =

1(Xi∈Aj)

P̂(Aj)

Ti

êt(Xi)
(Yi − p̂(k−1)

t,v (Xi)).

(c) Update the conditional risk via:

p̂
(k)
t,v (Ti, Xi) = expit

(
logit

(
p̂
(k−1)
t,v (Xi)

)
+ ε

(k)
t,v · S̃

(k−1)
1,v (Xi)

)
.

(d) Estimate αj,v by:

α̂tj,v =

∑
i∈v 1(Xi ∈ Aj) · p̂(K)

t,v (Xi)∑
i∈v 1(Xi ∈ Aj)

.

Step 3. Aggregate estimates from the validation sets by:

α̂tj =
1

V

V∑
v=1

α̂tj,v.



CHAPTER 1. EFFICIENT ESTIMATION OF HETEROGENEOUS TREATMENT
EFFECTS FOR MULTIPLE SUBGROUPS 40

Step 4. Estimate αRR and αOR as

α̂RR =
( α̂1,1

α̂0,1

, . . . ,
α̂1,d

α̂0,d

)
, α̂OR =

( α̂1,1

1− α̂1,1

/ α̂0,1

1− α̂0,1

, . . . ,
α̂1,d

1− α̂1,d

/ α̂0,d

1− α̂0,d

)
.

Additional Simulation Results

Comparison of the targeted learning approaches discussed in
Section 1.3

In this simulation study, we compare the proposed iTMLE method with the conventional
targeted learning approach without targeting multiple subgroups. That is, we compare the
performances for four estimators: (1) “TMLE-single,” which is the TMLE without targeting
multiple subgroups as discussed in Section 1.3, (2) “TMLE-multiple,” which is the one-step
TMLE estimator that targets multiple subgroups discussed in Eq (2), (3) “TMLE-multiple-
ulfm,” which is the same method as (2) but operates under the universal least favorable
submodel, and (4) “iTMLE,” which is an iterative version of the one-step TMLE estimator
discussed in Eq (3).

Figure 1.4 demonstrates that when d = 4, iTMLE has smaller bias, smaller variance, and
lower FWER. When the number of subgroups is not too large (d = 4), targeting one subgroup
at a time (“TMLE-single”) yields smaller bias than targeting multiple subgroups (“TMLE-
multiple”), while “TMLE-single” loses control over bias, variance, and FWER when the
number of subgroups is large. “TMLE-multiple-ulfm” shows similar performance to iTMLE,
but with slightly larger bias and variance.

Misspecified propensity score model

In this section, we compare the performance of the discussed method with other conventional
estimators under the mis-specified propensity score model. The results from Figure 1.5 and
Figure 1.6 are in-line with simulation studies in Section 6 of the main chapter.

An alternative simulation design

Kindly pointed out by an anonymous reviewer, the simulation design adopted in our main
chapter produces rather deterministic outcomes. Therefore, we provide additional simulation
results under an alternative simulation design:

X = (X1, . . . , X5)
⊺ ∼ N(0,Σ), Σij = 0.5|i−j|,

T ∼ Bernoulli
(
expit(X1 − 0.5 ·X2 + 0.25 ·X3 + 0.1 ·X4)

)
,

Y |T,X ∼ Bernoulli
(
expit(T + ·X1 + ·X2 + ·X3 + ·X4)

)
.
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Figure 1.4: Comparison of four TMLE estimators under overlapping (d = 4) and non-
overlapping subgroups (d = 10). The considered methods include (1) iTMLE; (2) TMLE-
single; (3) TMLE-multiple; (4) TMLE-multiple-ulfm. All four methods use the random forest
for the initial estimations. The maximum Monte Carlo standard error of (1-FWER) across
the four estimators is 0.027. “The maximum Monte Carlo standard error of (1-FWER)”
refers to the largest standard error of (1-FWER) (out of all three considered estimators
for the propensity score and the conditional expectation of the outcome based on logistic
regression, random forest, and gradient boosting) computed from Monte Carlo samples.



CHAPTER 1. EFFICIENT ESTIMATION OF HETEROGENEOUS TREATMENT
EFFECTS FOR MULTIPLE SUBGROUPS 42

Figure 1.5: Comparison of iTMLE with the conventional methods. “iTMLE” denotes the
discussed method. “DR” denotes the doubly robust estimator. “GLM” denotes the gener-
alized linear models. The maximum Monte Carlo standard error of (1-FWER) across the
four estimators is 0.030. “The maximum Monte Carlo standard error of (1-FWER)” refers
to the largest standard error of (1-FWER) (out of all three considered estimators for the
propensity score and the conditional expectation of the outcome based on logistic regression,
random forest, and gradient boosting) computed from Monte Carlo samples.

We provide the distribution of pt(X) = P (Y = 1|T = t,X) under the alternative sim-
ulation design in Figured 1.7 (A) and (B), and under the simulation design adopted in the
main chapter in Figured 1.7 (C) and (D).
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Figure 1.6: Comparison of CV-iTMLE with the double machine learning method. “CV-
iTMLE” denotes the discussed method with cross-fitting. “DML” denotes the double ma-
chine learning method. The maximum Monte Carlo standard error of (1-FWER) across the
four estimators is 0.028. “The maximum Monte Carlo standard error of (1-FWER)” refers
to the largest standard error of (1-FWER) (out of all three considered estimators for the
propensity score and the conditional expectation of the outcome based on logistic regression,
random forest, and gradient boosting) computed from Monte Carlo samples.

The results are summarized in Figure 1.8 and 1.9. From these new simulation results, we
observe that the conclusions overall do not substantially differ from our previous simulation
results. The

√
n-scaled standard deviation of all the estimators increase compared to the
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Figure 1.7: Panels (A) and (B) provide the distribution of pt(X) under the new simulation
design, and Panels (C) and (B) provide the distribution of pt(X) under the original simulation
design.

previous simulation design. We conjecture that the increased variances are due to the higher
variability of the outcome variables under the new simulation setup.
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Figure 1.8: Comparison of bias, standard deviation (scaled by root-n), and (1-FWER) in
overlapping and non-overlapping subgroups. “iTMLE” denotes the proposed estimator.
“DR” denotes the doubly robust estimator. The maximum Monte Carlo standard error
of (1-FWER) across the four estimators is 0.030. “The maximum Monte Carlo standard
error of (1-FWER)” refers to the largest standard error of (1-FWER) (out of all three con-
sidered estimators for the propensity score and the conditional expectation of the outcome
based on logistic regression, random forest, and gradient boosting) computed from Monte
Carlo samples.
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Figure 1.9: Comparison of bias, standard deviation (scaled by root-n), and (1-FWER) in
overlapping and non-overlapping subgroups. “iTMLE” denotes the proposed estimator.
“DML” denotes the double machine learning method. The maximum Monte Carlo stan-
dard error of (1-FWER) across the four estimators is 0.031. “The maximum Monte Carlo
standard error of (1-FWER)” refers to the largest standard error of (1-FWER) (out of all
three considered estimators for the propensity score and the conditional expectation of the
outcome based on logistic regression, random forest, and gradient boosting) computed from
Monte Carlo samples.
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Details on the Case Studies

UK Biobank data preprocessing details

In UK Biobank study, participants provided lifestyle, medical history, and other health-
related information through electronic questionnaires and physical measurements at one of
the 22 assessment centers. Blood samples were also collected for genotyping. The UK
Biobank study gained approval from the National Health Service’s National Research Ethics
Service North West (11/NW/0382).

The individuals we investigated are unrelated and had passed standard quality control
steps, including removal of outliers for heterozygosity or genotype missing rate, withdrawal
of informed consent, and mismatch between reported and inferred sex by genotypes.

We obtain phenotype and genotype data from UK Biobank with the following steps.
For phenotype data, first, we download encoded data in .enc format from UK Biobank’s
Access Management System (AMS). To decrypt the encoded data, we download three helper
programs: ukb md5, ukb unpack, and ukb conv. Note that the helper programs are only
supported by Windows and Linux systems. Second, we verify the integrity of the encoded
data via ukb md5 and unpack them into .enc ukb format with ukb unpack. To convert the
data into readible format, we use ukb conv to convert the .enc ukb data into .csv format
(other options include txt, r, sas stata or bulk format). The data dictionary can be obtained
using ukb conv with docs option. After decrypting and converting the encoded data, we
obtain a dataset with sample size n = 502, 481 and 20, 502 variables. In our study, since
we only work with the phenotypes at the baseline to avoid confounding issues, we extract
baseline variables with the suffix “-0.0”. The phenotype data we extract include gender,
age at recruitment, AD family history, International Statistical Classification of Disease 9th
revision (ICD 9) and 10th revision (ICD 10) codes and self-report for T2D and AD.

For genotype data, first, we download imputed genotypes and associated sample infor-
mation for 23 chromosomes. Imputation BGEN and Imputation sample can be obtained via
ukb gene program. Imputation BGI and Imputation MAF+info can be downloaded di-
rectly from UK Biobank resources 1965 and 1967. Second, we use the Imputation sample file
to remove individuals without genotype information, which yields sample size n = 407, 057.
Finally, we read in BGEN files with snp readBGEN function in R package bigsnpr using
HapMap3 as the reference genomes. snp readBGEN converts the BGEN files into an R ob-
ject comprising of two elements: genotype and map, where genotype represents the imputed
genotypes in a matrix format and map contains the features of SNPs (chromosome, rsid,
physical position, major and minor alleles and allele frequency). We only extract the geno-
type matrix from genotype and rsid from map as our genotype data. We restrict our sample
to subjects used for the principle components (PCs) computation, since those individuals
are unrelated. From the extracted genotype data, we obtain the treatment variable: rs12916
(on chromosome 5), a functionally equivalent SNP of statins.

Since rs12916 and T2D are associated with some other SNPs due to pleiotropy, we adjust
for low-density lipoprotein (LDL) and T2D related SNPs in our study. To find disease-



CHAPTER 1. EFFICIENT ESTIMATION OF HETEROGENEOUS TREATMENT
EFFECTS FOR MULTIPLE SUBGROUPS 48

associated SNPs, we rely on the published GWAS studies from the GWAS catalogue. In
our study, we define the disease-associated SNPs as SNPs associated with LDL or T2D with
p-values less than 5× 10−8. To determine the p−values for multiple correlated SNPs in the
same locus, we use the linkage disequilibrium clumping procedure with R2 < 0.01. Our
filtration criteria yield 385 disease-associated SNPs.

Disease status definition

We identify T2D cases from three sources: doctor diagnosis, and self-reports. If one’s self-
reported T2D status is missing, we define the self-reported T2D as the following: self-
reported diabetes =1 and self-reported gestational diabetes = 0 and self-reported type 1
diabetes = 0. To identify AD cases, we reply on self-reports , family-reports, and ICD codes.
We use ICD-10 codes: G309, G301, F002, F000, G308, G300, F009, F001, and ICD-9 codes:
3310.

Case study: T2D as the outcome

Because statin usage may increase the risk of T2D ([155]), as a secondary analysis, we fur-
ther investigated the effect of rs12916-T allele on T2D under the same considered subgroups
to evaluate the potential heterogeneous side effects. We still considered the “high AD ge-
netic risk” subgroup and the “low AD genetic risk” subgroup in this setting because existing
studies suggest that insulin resistance links T2D and AD [27]. As some genetic variants are
shared between T2D and AD [61], people with high AD genetic risk may be more vulnerable
to T2D risk and thus is more sensitive to the side effects of statins use. Therefore, we hy-
pothesized that the effect of carrying rs12916-T allele on T2D risks could be heterogeneous
in subgroups with different AD genetic risks and evaluated our hypothesis through subgroup
analysis. We compared the performance of the proposed method (CV-iTMLE) with the dou-
ble machine learning (DML) method and the widely used generalized linear models (GLM).
We used the random forest as our first stage estimator as it provides the most robust results
in our simulation studies.

Figure 1.10 demonstrated that the treatment effect of carrying rs12916-T allele on T2D
risk is heterogeneous across considered subgroups. Both the proposed method and the dou-
ble machine learning (DML) method suggested that carrying rs12916-T allele increases T2D
risk in females and in individuals under 65. For the significant subgroup, the confidence
interval of the proposed method was much shorter than that of DML, indicating that the
proposed method is more efficient. Furthermore, our results showed that the effect of inher-
iting rs12916-T allele on T2D risk is heterogeneous in subgroups with different AD genetic
risks, which potentially implies that subjects with higher AD genetic risk can be more vul-
nerable to statin usage. Such findings could be partially explained by the similar pathological
pathways shared between T2D and AD [112]. Some of our above findings are in-line with
current believes in the existing literature. For example, the results from one randomized
clinical trial (JUPITER trial [120]) indicate that statins may increase T2D risk more signifi-
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cantly in females than in males. The significant adverse effect of carrying rs12916-T allele (a
proxy for statin usage) in individuals with high AD genetic risk is a rather novel finding. We
conjecture that this is because insulin resistance links T2D and AD [27], and some genetic
variants are also shared between T2D and AD [61]. These findings warrant further clinical
studies.

In this secondary analysis, our proposed method again showed shortened confidence in-
tervals and hence improved power in detecting significant subgroups, while the GLM and
the double machine learning method tend to lose power. We conjectured that the dou-
ble machine learning method failed to detect the adverse effect of rs12916-T allele on the
high AD genetic risk subpopulation because of the large variance caused by small estimated
propensity scores. In contrast, the proposed method is rather robust to the small estimated
propensity scores.

Efficient Influence Function and Delta Method

Efficient influence function derivation for subgroup conditional
risk

Suppose our parameter of interest is α = E[Y |T = 1, X ∈ Aj].
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Figure 1.10: The effect of inheriting rs12916-T allele (a proxy for statin usage) on the type
2 diabetes (T2D) risk in the UK Biobank white British population (n = 293, 929). “DML”
denotes the double machine learning method. “GLM” denotes the generalized linear models.
GLM is used for association test and does not imply causal relationships. “CV-iTMLE”
denotes the cross-validated iTMLE method.
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Proof. Given α(P0) = E[Y (1)|X ∈ Aj] and the ε-perturbed distribution is P h
ε ,

∂

∂ε
α(P h

ε )
∣∣
ε=0

= lim
ε→0

1

ε

{∫
y∈R

t · y · dα(P h
ε )− α(P )

}
,

= lim
ε→0

1

ε

{∫
y∈R

∫
x∈R

t · y · 1(x ∈ Aj) · f(x, y, t;α)(1 + εs(x, y, t;α))dxdy,

−
∫
y∈R

∫
x∈R

t · y · 1(x ∈ Aj) · f(x, y, t;α)dxdy
}
,

=

∫
y∈R

∫
x∈R

t · y · 1(x ∈ Aj) · f(x, y, t;α)s(x, y, t;α)dxdy,

=

∫
y∈R

∫
x∈R

t · y · 1(x ∈ Aj) ·
(
s(y|x · 1(x ∈ Aj), t;α)

· f(y|x · 1(x ∈ Aj), t;α) · f(t|x · 1(x ∈ Aj);α) · f(x · 1(x ∈ A);α
)
dxdy,

=

∫
y∈R

∫
x∈R

t · y · 1(x ∈ Aj) ·
(
s(y|x · 1(x ∈ Aj), t;α)

· f(y, x · 1(x ∈ Aj), t;α)

f(t|x · 1(x ∈ Aj);α)f(x · 1(x ∈ Aj);α)

)
dxdy,

=

∫
y∈R

∫
x∈R

t · y · 1(x ∈ Aj)

·
(
s(y|x · 1(x ∈ Aj), t;α) ·

f(y, x · 1(x ∈ Aj), t;α)

e(x;α) · f(x · 1(x ∈ Aj);α)
dxdy,

given
∫
x∈R f(x · 1(x ∈ Aj;α)dx = P (Aj;α),

=
1(x ∈ Aj)

P (Aj;α)

∫
y∈R

∫
x∈R

t · y
e(x;α)

(
s(y|x · 1(x ∈ Aj);α) · f(y, x · 1(x ∈ Aj;α)dxdy,

=E
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T

e(X;α)
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]
.

Next, we follow the standard technique and obtain the efficient influence function as

φ1,j(Y,D,X) =
1(X ∈ Aj)

P(Aj)

( T

e(X)

(
Y − p1(X)

)
+ p1(x)− α1,j

)
,

φ0,j(Y,D,X) =
1(X ∈ Aj)

P(Aj)

( 1− T
1− e(X)

(
Y − p0(X)

)
+ p0(X)− α0,j

)
.
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Delta method

The efficient influence functions of ATE, the relative risk and the odds ratio can be derived
by applying the delta method on the efficient influence functions of (α1,α0).

φATE = (φ1,φ0) ·
∂fATE(α1,α0)

∂(α1,α0)

=

φ1,1 φ0,1
...

...
φ1,J φ0,J

( 1
−1

)
=

φ1,1 − φ0,1
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φ1,J − φ0,J

 ,

φOR = (φ1,φ0) ·
∂fOR(α1,α0)

∂(α1,α0)

=

φ1,1 φ0,1
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φ1,J φ0,J

( 1−α0

α0(1−α1)2

− α1

α2
0(1−α1)

)
=
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 .



53

Chapter 2

Inference on the Best Policies with
Many Covariates

2.1 Introduction

Motivation and our contribution

Many empirical work requires an understanding of the impact of the most effective policies or
treatments on a relevant response variable of interest. For instance, in randomized (factorial)
experiments with multiple treatments, researchers may be interested in the most effective
policies (combinations). In online platforms, decision makers may be interested in the top
five advertising strategies. In financial portfolio management, managers might want to learn
about the best-performing strategies among many alternatives. In practice, after different
policy effect sizes are estimated from a random sample, researchers may naturally look into
those policies with the largest effect sizes. Accurately measuring the performance of top
policies allows policy makers to deliver better-informed decisions for forecasting the effects
of future policy implementations.

Nevertheless, given the well-recognized “winner’s curse” phenomenon, there can be con-
siderable uncertainties concerning if the top policies with large estimated effect sizes are
indeed effective in the population (see Section 2.1 for a literature review). In fact, due to the
winner’s curse phenomenon, literature documents that the estimated effect sizes of the best-
performing policies without additional adjustments tend to be overly optimistic, rendering
under-covered confidence intervals [108, 8]. In this manuscript, we refer to the optimistic
bias introduced by the winner’s curse phenomenon as the winner’s curse bias. To mitigate
this bias issue, we focus on the problem of constructing accurate point estimates and valid
confidence intervals for the true effect sizes of the (observed) best policies. By the best poli-
cies, we refer to a user-supplied number of policies that have the largest (estimated) effects
among a set of candidate policies (see Section 2.2 for a concrete problem setup), as we would
expect that in practice researchers might want to focus on a few top policies of interest.

Other than the winner’s curse phenomenon discussed above, an additional consideration
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gains prominence in the evaluation of the most effective policies. Since policy (or interven-
tion) variables are often not exogenous, researchers may adopt observational methods to
estimate their effects. In recent years, given the increased availability of large datasets with
rich covariate information, one commonly adopted approach in empirical works is to assume
that the policy variables are exogenous after controlling for a sufficiently large set of factors
or covariates. Such a consideration demandingly requires empirical researchers to estimate
the policy effects in the presence of many covariates.

To simultaneously address the above-mentioned issues, in this article, we propose a pro-
cedure that not only is robust to the presence of many covariates, but also provides accurate
point estimates and valid frequentist confidence intervals for multiple best policy effect sizes.
By many covariates, we allow the number of covariates qn to diverge with the sample size
n as long as lim supn→∞ qn/n < 1. Note that this does not rule out the cases where qn is
fixed or qn = o(n). In other words, our inferential method remains valid when the dimen-
sion of the covariates qn is fixed or qn = o(n). Our proposed confidence intervals are built
upon resampling methods, and we demonstrate that they achieve exact nominal coverage as
the sample size goes to infinity under fairly moderate assumptions. Our empirical evidence
shows that conventional estimates ignoring the winner’s curse issue are substantially upward
biased, while our corrections reduce the winner’s curse bias and increase coverage. As far
as we know, valid statistical inferential tools on multiple best policies that lift the winner’s
curse while incorporating possibly many covariates have been lacking, and the contribution
of our work is to bridge this gap and help policy makers deliver well-informed decisions in
practice.

We illustrate our method with two empirical applications. In the first case study, we use
the charitable giving data from [92] to evaluate the best pricing policies that motivate donors
to give. Our results suggest that simple methods without adjusting for the winner’s curse
bias could be potentially overly optimistic in identifying the most effective polices. After
accounting for the winner’s curse bias, we do not find sufficient evidence to support that
the second best pricing policy–asking the donor to give 25% more than his/her highest his-
torical donation–is effective, implying that asking for a more “expensive” donation may not
encourage donors to give. We nevertheless note that given our calibration only marginally
reduces the effect size of the second best policy, the above conclusion might not warrant a
different economic interpretation. In the second case study, we evaluate the effectiveness of
the national supported work (NSW) program in different groups of workers. The NSW pro-
gram is a job training program designed to prepare disadvantaged workers for employment,
and it has been investigated in various studies [39, 107]. We apply the proposed approach
to evaluate the performance of the NSW program on the most-affected subgroups of workers
observed in the dataset. Our study results potentially suggest that married black workers
might benefit from the NSW program with an average increase of $4,410 for their annual
income.
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Connection to the existing literature

One fundamental trend that drives the motivation of the methodology developed in this
manuscript is the increasing availability of massive datasets and the associated increasing
dimensionality. Such a trend brings scientists opportunities to deliver better-informed poli-
cies but, at the same time, presents challenges in developing econometric and statistical
tools; see [54], [19], [52], [25] for example. A recent book [58] provides a thorough discussion
of analytical methods that aim to address such challenges. Specifically, the increasing data
availability brings challenges and also opportunities to better understand various policies
whose effects can be inferred from data. Along this line, our manuscript aims at providing
understating for policies that are estimated and selected to be the most effective from a pool
of policies.

The winner’s curse phenomenon and its related issues have been widely recognized in
economics, statistics, and data science at large. Seminal works by [56, 55] point out that
spurious discoveries can easily arise when target parameters are selected through data mining
and statistical machine learning algorithms. Recent work by [8] considers performing condi-
tional and unconditional inference on observed best policy and [9] extends the work to more
general ranking problems, which is still different from our goal in conducting unconditional
inference on multiple top policies. Moreover, while the conditional approaches in [8] and [9]
produce optimal confidence intervals for the observed policy effects, their point estimates
and confidence intervals can be conservative when they are applied unconditionally. [45]
considers a method to handle the winner’s curse bias with Tweedie’s formula concerning the
empirical Bayes theory. [108] consider a plug-in correction of the winner’s curse bias and pro-
pose to construct confidence interval based on bootstrapping in the context of A/B testing,
but the proposed method lacks theoretical justifications. In clinical trials for evaluating the
largest observed treatment effect in multiple subpopulations, [64] propose a bootstrap-based
confidence interval that achieves the exact nominal level as the sample size goes to infinity,
though generalizing their method to make inference on several top policies might not be
straightforward, especially in the presence of many covariates.

Our manuscript builds upon the literature on linear regression models with many or
high dimensional covariates; see [84], [117], [115], [5], [50], [24], [23], [89] and the reference
therein. In particular, [117] has established the asymptotic normality results for any contrasts
of the ordinary least squares (OLS) coefficient vector estimator, when the dimension of the
covariates divided by the sample size vanishes asymptotically. More recently, [25] have shown
that a small subset of the OLS estimators for the regression coefficients are asymptotically
normal without restricting the dimension of the covariates to be a vanishing fraction of the
sample size. Moreover, [25] have proposed a robust covariance matrix estimator for the subset
of the the OLS estimator under fairly general conditions. [89] has proposed an alternative
covariance matrix estimator that can deal with designs with even large number of covariates
under additional assumptions (Assumption 9 in the current manuscript).

Making inference on the best-performing policies is related to the literature on construct-
ing confidence intervals for extrema parameters with bootstrap; see [7], [51], [178], [29], [35]
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and the reference therein. Given the asymptotic distributions of extrema parameter estima-
tors are often not normal, bootstrap-based methods can face serious difficulties when used
to replicate the distribution of extrema of parameter estimators [117, 118]. While subsam-
pling could overcome this issue faced by the classical bootstrap, it can exhibit very poor
finite-sample performance because of the noise introduced by the vanishing subsample size.
Different from our goal in constructing confidence intervals that achieve the exact nomi-
nal level, [72] and [29] propose to construct conservative bootstrap confidence intervals for
extrema of parameters. In our current problem setup with many covariates, the problem
becomes even more acute as [49] show through a mix of simulation and theoretical analyses
that the bootstrap is fraught with problems in moderate high dimensions. In the context of
meta-analyses, [35] propose an approach to make inference on ordered fixed study-specific
parameters when different parameters are estimated independently from multiple studies.

Our method also contributes to the rapidly growing literature on program evaluations;
see [59], [19], [97], [13], [2], [32], [57], [163] among many others. Under our asymptotic
regime where the number of covariates qn grows with the sample size n, the Neyman or-
thogonalization based approaches often need to work with models with sparse regression
coefficients [19]. Rather than imposing such a sparsity assumption, our approach estimates
the policy effects with regression adjustments without requiring the regression coefficients
to be sparse. Because our approach only requires a consistent covariance matrix estimation
for different policy effect estimators, we expect that the proposed framework on evaluating
the best policies can be generalized when different policy effects are estimated with other
off-shelf methods and we relegate such extensions for future work.
Notation. We work with triangular array data {ωi,n : i = 1, . . . , n;n = 1, 2, . . .} where for
each n, {ωi,n : i = 1, . . . , n} is defined on the probability space (Ω,S, Pn). All parameters
that characterize the distribution of {ωi,n : i = 1, . . . , n} are implicitly indexed by Pn and
thus by n. We write vectors and matrices in bold font, and use regular font for univariate
variables and constants.

2.2 Model setup and methodology

Problem setup and a revisit to the winner’s curse phenomenon

Suppose we have a random sample {(yi,n,x′
i,n,w

′
i,n)

′}ni=1, we pose the problem in the frame-
work of a linear regression model under heteroscedasticity

yi,n = x′
i,nβ +w′

i,nγn + ui,n, i = 1, . . . , n, (2.1)

where yi,n is the outcome variable, xi,n ∈ Rd are the treatment or policy variables of interest,
wi,n ∈ Rqn contains the confounding factors, ui,n is an unobserved error term, and the coeffi-
cient vector β = (β1, . . . , βd)

′ contains the treatment effect of xi,n on the outcome yi,n. We al-
low the linear model (2.1) to hold approximately by allowing E[ui,n|{xi,n}ni=1, {wi,n}ni=1] ̸= 0.
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We are also in a scenario where wi,n is high-dimensional, in the sense that qn can be a van-
ishing fraction of the sample size n as long as lim supn→∞ qn/n < 1. To simplify notations,
we drop subscript n in univariate random variables in the rest of the manuscript. That is,
for example, we denote γj,n as γj.

We write the ordered values of β1, . . . , βd as β(1) ≥ . . . ≥ β(d). We adopt the ordinary

least-squares (OLS) estimator β̂ (see Remark 4 for other possible estimates) to estimate β
and write the order statistics of β̂ as β̂(1) ≥ . . . ≥ β̂(d). Because researchers in practice might
hope to focus on a few top policies, given that d0 is a user-supplied positive integer, our
goal is to construct accurate point estimates and valid confidence intervals for two sets of
quantities:

(1) the best policy effect sizes in the population: β(1), . . . , β(d0),

(2) the observed best policy effect sizes: βĵ, where ĵ =
∑d

k=1 k · 1(β̂k = β̂(j)), for j =
1, . . . , d0.

The first set of quantities characterizes the effects of the top d0 policies in the population
and are thus fixed parameters. The second set of quantities describes the true effect sizes of
the best performing policies observed in the random sample, and these quantities are thus
“data-dependent parameters.” Both sets of quantities can be of interest in different empirical
applications [38, 30, 130], and our proposed procedure can be used to deliver valid statistical
inference on both quantities (Theorem 2 and Corollary 1).

Remark 3 (Ties in the estimated policy effects). The second set of parameters is well defined
if the observed policies do not have exact ties in the sense that β̂(1) > . . . > β̂(d). When the
policies effect estimators solve to the interior points of the feasible parameter space, it is likely
that no exact ties appear in the random sample. On the other hand, there can exist scenarios
where, for example, d0 is set as 2 but there are multiple policy effect sizes that tie at rank 2.
In this case, one may choose instead a data-dependent d̂0 = max{k : β̂(k) > β̂(2)−C1 ·n−0.25}.
This new random d0 will asymptotically be able to incorporate all the effect sizes that actually
are equal to the true effect size associated with β̂(2). In this way, the limiting value of d̂0 will
not necessarily be 2, but can be a larger number than 2 to incorporate “very close” effect
sizes with the rank-2 effect size. We also provide some related discussions in Remark 6.

Remark 4 (Other possible estimators of β). In the presence of many covariates when qn
is potentially large (lim supn→∞ qn/n → 1 in our asymptotic regime) without assuming the
coefficient γn to be sparse, we adopt the OLS estimator to estimate β, because the OLS es-
timator has been thoroughly studied in the existing literature and enjoys favorable theoretical
guarantees. In high dimensions when qn ≫ n, other estimators of β that incorporate model
selection procedures can be adopted as well. Our procedure can produce valid statistical in-
ference as long as the covariance matrix of β̂ can be consistently estimated. For example,
under the sparsity assumption on γn documented in the literature [58], we may adopt the
covariance matrix estimator from the de-sparsified Lasso procedure [160, 182].
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To fully realize the challenges on delivering valid statistical inference on these two sets of
parameters in our current problem setup, we revisit the winner’s curse phenomenon. When
first discussed in common-value auctions, the winner’s curse refers to the bidding behavior
where bidders systematically overbid, resulting in an expected loss [26]. In our context of
policy evaluations, the winner’s curse refers to the issue that the observed best policies have
the tendency to over-estimate the best policies in the population. We would thus often
expect that neither E[β̂(j)−β(j)] nor E[β̂(j)−βĵ] is close to zero, and the resulting confidence
interval may fail to reach the nominal level. Such an issue becomes even more acute as we
have many covariates wi,n entering the inferential process.

We next illustrate the winner’s curse issue through Example 1 with a simple simulation
study, where we observe substantial winner’s curse bias and under-covered confidence inter-
vals for the top polices. In particular, Figure 1(b) demonstrates that coverage probabilities
are worsened when a larger number of covariates are incorporated for estimating β. It is
worth pointing out that when d = 3, β̂(2) is the median policy effect. Thus, the estima-
tion bias is around 0, and the true standard deviation is much smaller than the estimated
standard deviation, resulting in a confidence interval with close to 100% coverage. When
d increases, the coverage probability gradually drops due to a larger estimation bias and
inaccurately estimated standard deviation.

Example 1 (A simulation study demonstrating the winner’s curse phenomenon with many
covariates). We generate 1000 Monte Carlo samples following the setup in Model (2.1). We
generate xi,n ∼ N (0,Σ) with Σjk = 0.5|j−k| for j, k = 1, . . . , d, wi,n = 1(w̃i,n ≥ Φ−1(0.98))
with w̃i,n ∼ N (0, Iqn), where Iqn is a qn-dimensional identity matrix. We consider the case
where no policy is effective (so that β = 0, β1̂ = β2̂ = 0) and γj = 1/j, for j = 1, . . . , qn. We

report the asymptotic bias of the conventional estimator (i.e.,
√
n · E[β̂(j) − β(j)]) as well as

the coverage probability of confidence intervals constructed based on normal approximation
with the Eicker-White [47, 175] covariance matrix estimator defined in Eq (2.6).

Methodology

Our method starts with the ordinary least-squares (OLS) estimator of β, that is

β̂ =
( n∑

i=1

v̂i,nv̂
′
i,n

)−1( n∑
i=1

v̂i,nyi,n

)
,

where v̂i,n =
∑n

j=1(Mn)i,jxj,n, and (Mn)i,j ≜ 1(i = j) −w′
i,n

(∑n
k=1wk,nw

′
k,n

)−1

wj,n. As

we focus on the case when qn can be a non-vanishing fraction of n, n → ∞, we adopt the
robust covariance matrix estimator proposed in [89]. We try to follow the author’s notation
as closely as possible:

Ω̂KJ
n ≜ Γ̂−1

n Σ̂KJ
n Γ̂−1

n ,
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(a) Winner’s curse bias (qn = 141) (b) Coverage probability

Figure 2.1: Demonstration of the winner’s curse phenomenon following the simulation setup
in Example 1. The maximum Monte Carlo standard error for the asymptotic bias is 0.88.
Panel (a) captures the asymptotic winner’s curse bias when qn = 141; Panel (b) captures
the coverage probability when qn ∈ {141, 631} and the nominal level is 0.95.

where

Γ̂n =
1

n

n∑
i=1

v̂i,nv̂
′
i,n, Σ̂KJ

n ≜
1

n

n∑
i=1

v̂i,nv̂
′
i,nyi,núi,n,

where úi,n =
ûi,n

(Mn)i,i
, ûi,n =

∑n
j=1(Mn)i,j(yj,n − x′

j,nβ̂), for i = 1, . . . , n. Such an estimator

is well-defined as long as mini(Mn)i,i > 0. If mini(Mn)i,i = 0, it means that the auxiliary
regression produces a perfect prediction. So the observation does not carry information on
β and can be ignored.

As shown in Example 1, the estimated top policy effect sizes with β̂(1), . . . , β̂(d0) are often
biased upward for our target parameters due to the winner’s curse phenomenon. Inspired
by the procedure proposed by [35]1 for meta-analyses, we generate replicates of β̂ from a
multivariate normal distribution

β̂∗∣∣{(yi,n,x′
i,n,w

′
i,n)

′}ni=1 ∼ N (β̂, Ω̂KJ
n /n), where β̂∗ = (β̂∗

1 , . . . , β̂
∗
d)

′, (2.2)

and we denote the ordered values of the vector β̂∗ as β̂∗
(1) ≥ . . . ≥ β̂∗

(d). Note that the

above description of β̂∗ differs from some previous work on bootstrapping insofar we have
1Note that there is a typo in [35] for the definition of the near tie set. Although the near tie H(j) in

their manuscript was originally defined as H(j) =
{
k : |βk − β(j)| = O(n− 1

2 ), k = 1, . . . , d
}
, their proof goes

through when the near tie set is defined with H(j) =
{
k : |βk − β(j)| = o(n− 1

2 ), k = 1, . . . , d
}
.
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suppressed the role of “multiplier variables,” and we have defined β̂∗ as a sample from
N (β̂, Ω̂KJ

n /n). Different from [35] that requires different estimators to be estimated from
independent studies with non-overlapping random samples, our approach relaxes such an
requirement and allows β̂1, . . . , β̂d to be correlated.

Next, given properly chosen bL and bR so that bL − bR = O(n−δ) with δ ∈ (0, 1
2
) (see

Supplementary Materials Section C.1 for their data-adaptive choices, and robustness to
different choices of tuning parameters in Supplementary Materials, Section C.2), we estimate
a “near tie” set that captures policies that have similar effect sizes to the j-th largest policy:

Ĥ(j) =
{
k : β̂∗

(j) − bL ≤ β̂∗
k ≤ β̂∗

(j) + bR, k = 1, . . . , d
}
.

We then record the averages of β̂∗
1 , . . . , β̂

∗
d and of β̂1, . . . , β̂d in the estimated tie set Ĥ(j) as

β̃∗
(j) =

∑
k∈Ĥ(j)

β̂∗
k

|Ĥ(j)|
, and β̃(j) =

∑
k∈Ĥ(j)

β̂k

|Ĥ(j)|
, (2.3)

where |Ĥ(j)| denotes the cardinality of the set Ĥ(j).
Finally, we apply the above resampling procedure to construct point estimates and confi-

dence intervals for β(j) as well as βĵ (as defined in Section 2.2 and in Eq (2.5)), j = 1, . . . , d0.

Specifically, for confidence interval construction, we generate B independent samples of β̃∗
(j)

as in Eq (2.3), and then define q̂(j)(α/2) to be the empirical α/2-quantile of the B ≥ 1
samples (and similarly for q̂(j)(1−α/2)), leading to a level-α confidence interval for β(j) with[

q̂(j)(α/2), q̂(j)(1− α/2)
]
, j = 1, . . . , d0.

Corollary 1 demonstrates that the above confidence interval also serves as an asymptotically
exact level-α prediction interval for βĵ. For point estimates, we may either use β̃(j) or the

averaged resampled statistics β̃∗
(j) to estimate β(j) and βĵ.

2.3 Theoretical investigation

Notations and assumptions

Before discussing the theoretical results in detail, we revisit and introduce some notations
and assumptions adopted in the manuscript. We denote the sample {(yi,n,x′

i,n,w
′
i,n)

′}ni=1 as
{zi,n}ni=1. Recall ui,n is the random error in the considered linear model (2.1), we define

εi,n = ui,n − E[ui,n|{wi,n}ni=1, {xi,n}ni=1], vi,n = xi,n − E[xi,n|{wi,n}ni=1], i = 1, . . . , n.
(2.4)
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Let ei,n = E[ui,n|{wi,n}ni=1, {xi,n}ni=1], we further denote

σ2
i,n = E[ε2i,n|{wi,n}ni=1, {xi,n}ni=1], ṽi,n =

n∑
j=1

(Mn)i,jvj,n,

ρ1n =

∑n
i=1 E

[
e2i,n
]

n
, ρ2n =

∑n
i=1 E

[
E
(
ei,n|{wi,n}ni=1

)2]
n

,

Qi,n = E
[
xi,n −

( n∑
j=1

E[wj,nw
′
j,n]
)−1

n∑
j=1

E[wj,nx
′
j,n]
∣∣∣{wi,n}ni=1

]
,

Q̃i,n =
n∑

j=1

(Mn)i,jQi,n.

For a policy j, we define the near tie set in the population as:

H(j) =
{
k : |βk − β(j)| = o(n− 1

2 ), k = 1, . . . , d
}
.

Next, let êj denote a d-dimensional (sparse) vector with

êj = (êj,1, . . . , êj,d), êjk =
1(k ∈ Ĥ(j))

|Ĥ(j)|
, k = 1, . . . , d.

We will use the notation P(·|{zi,n}ni=1) to refer to the probability that is conditional on the
random variables {zi,n}ni=1.

We make following assumptions throughout this section. Note that Assumptions 6-9
listed below largely follow the assumptions in [25] and [89], we list these assumptions along
with their interpretations to present a full picture for our readers.

Assumption 6 (Sampling). The errors εi,n are uncorrelated across i conditional on {xi,n}ni=1

and {wi,n}ni=1. Let {N1, . . . , NGn} represents a partition of {1, . . . , n} with max
1≤g≤Gn

|Ng| = O(1)

such that {(εi,n,vi,n), i ∈ Ng} (defined in (2.4)) are independent across g conditional on
{wi,n}ni=1.

Assumption 6 generalizes the classical independent and identically distributed (i.i.d.)
setting to allow for repeated measurements or group structures in the observed data. For
example, Assumption 6 allows the observed data to form clusters of finite sample sizes,
and within-cluster dependency is allowed as long as the observations between clusters are
independent.

Assumption 7 (Design). The dimension of the covariates wi,n satisfies that

lim sup
n→∞

qn/n < 1.
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The minimum eigenvalue of the matrix
∑n

i=1wi,nw
′
i,n is bounded away from 0 with probability

approaching one, that is

lim
n→∞

P
(
λmin

( n∑
i=1

wi,nw
′
i,n

)
> 0
)
= 1.

Lastly,

max
1≤i≤n

{
E[ε4i,n|{wi,n}ni=1, {xi,n}ni=1],

1

σ2
i,n

,

E[v4i,n|{wi,n}ni=1], 1/λmin

(∑n
i=1 E

[
ṽi,nṽ

′
i,n|{wi,n}ni=1

]
n

)}
= Op(1).

Assumption 7 contains three conditions. The first condition allows the dimension of the
covariateswi,n to grow at the sample rate as the sample size n. The second condition requires
the matrix

∑n
i=1wi,nw

′
i,n to be full rank, which is necessary otherwise the OLS estimator

would not be able to calculate the matrix Mn. Furthermore, as noted in [25], such an
assumption can be imposed by dropping any covariates in wi,n that are collinear. The third
condition contains conventional moment conditions for the covariates and heteroscedasticity.

Assumption 8 (Linear model approximation).
∑n

i=1 E[||Qi,n||2]/n = O(1), ρ1n + n(ρ1n −
ρ2n) + ρ1n ·

∑n
i=1 E[||Qi,n||2] = o(1), and max

1≤i≤n
||v̂i,n||/

√
n = op(1), nρ

1
n = O(1).

Assumption 8 mainly characterizes the difference between the mean squares of the condi-
tional errors ρ1n and the projection ρ2n into the covariate space {wi,n}’s. The characterization
of this difference involves

∑n
i=1 E[||Qi,n||2] where Qi,n describes the deviation of xi,n from its

population linear projection. Residuals of this linear projection, represented by v̂i,n’s, are as-
sumed to satisfy a negligibility condition after a maximization over all i’s. This negligibility
condition regularizes the distributional connection between xi,n’s and wi,n’s. We note that
if the mean squares of xi,n’s are bounded and that an exogeneity condition ei,n = 0 holds
for all i and n, then the linear model approximation assumption naturally holds. Other-
wise, if the exogeneity condition does not hold, Assumption 8 requires a small-bias condition
nρ1n = O(1).

Assumption 9 (Variance estimation). limn→∞ P(mini

(
Mn

)
i,i
> 0) = 1,

P
(
min

i

(
Mn

)
i,i
> 0
)
= Op(1),

∑n
i=1 ||Q̃i,n||4

n
= Op(1),

and maxi ||µi,n||/
√
n = op(1) with µi,n = E

[
yi,n|{xi,n}ni=1, {wi,n}ni=1

]
.

Assumption 9 has two major parts. The first part regularizes the diagonal elements
(Mn

)
i,i
’s, essentially requiring the smallest diagonal element to be consistently bounded

away from zero when n tends to infinity. Even though it is difficult to provide broadly
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general primitives to validate this assumption, Assumption 2 of [25], Assumption 4 of [89],
and the discussions therein provide sufficient conditions for this assumption to hold. The
second part regularizes µi,n’s and Q̃i,n’s in order to control the variance of yi,n’s and the
variance of E(vi,n|{wi,n}ni=1)’s.

Assumption 10 (Policy effect sizes). For δ ∈ (0, 1
2
), the asymptotic distance between the

effects of policy k ̸∈ H(j) and j ∈ H(j) diverges as n→∞:

nδ · min
k ̸∈H(j)

∣∣β(j) − βk∣∣→∞, as n→∞, j = 1, . . . , d.

Assumption 10 requires that any policies outside the near tie set H(j) have effect sizes
sufficiently different from the ones in H(j). In fixed dimensions when qn does not grow with
n, the underlying policy effect sizes β1, . . . , βd are constant with respect to the sample size
n. The near tie set reduces to a “precise” tie set H(j) =

{
k : βk = β(j), k = 1, . . . , d

}
,

suggesting that mink ̸∈H(j)

∣∣β(j) − βk∣∣ is a positive constant bounded away from zero. In such
a case, Assumption 10 is automatically satisfied.

Properties of the proposed estimator

For the proposed estimator, we show that the following theorem holds:

Theorem 2. Under Assumptions 6-10, for any t ∈ R, for the resampled statistics, the
following holds

lim
n→∞

P

(√
n
(
β̃∗
(j) − β̃(j)

)
(ê′jΩ̂

KJ
n êj)

1
2

≤ t
∣∣∣{(yi,n,x′

i,n,w
′
i,n)

′}ni=1

)
= Φ(t).

For the original statistics, it holds that

lim
n→∞

P

(√
n
(
β̃(j) − β(j)

)
(ê′jΩ̂

KJ
n êj)

1
2

≤ t

)
= Φ(t).

Furthermore, we have that limn→∞ P
(
P
(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
≤ s
)
= s.

Theorem 2 confirms that our proposed confidence interval for β(j) achieves exact 1 − α
coverage probability as the sample size goes to infinity when B is sufficiently large, which
distinguishes the proposed inference procedure from simultaneous methods. Furthermore,
Theorem 2 says that β̃(j) is a root-n consistent estimator of β(j), in the sense that ∀ε > 0,

there exists M > 0 such that P
(
|
√
n(β̃(j) − β(j))| > M

)
≤ ε, for n ≥ 1.

As for the observed best policies, recall that we denote the observed j-th largest policy
as

ĵ =
d∑

k=1

k · 1(β̂k = β̂(j)). (2.5)
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The following corollary suggests that the proposed confidence interval for β(j) can also serve
as an exact prediction interval for βĵ. Therefore, the proposed procedure in Section 2.2 can
also be used to make inference on the observed top policies in a random sample:

Corollary 1. Under Assumptions 6-10, we have that limn→∞ P
(
P
(
β̃∗
(j) ≤ βĵ|{zi,n}ni=1

)
≤

s
)
= s. Furthermore, β̃(j) is a “root-n consistent” estimator of the data-dependent parameter

βĵ in the sense that ∀ε > 0, there exists M > 0 such that P
(
|
√
n(β̃(j) − βĵ)| > M

)
≤ ε, for

n ≥ 1.

Remark 5 (Regression models with fixed effects). The proposed resampling-based approach
can be used to calibrate multiple best policies when fixed effects are introduced in linear regres-
sion models (see [164] for comprehensive discussion). This suggests that our approach not
only applies to independently sampled data, but also remains valid when there are repeated-
measurements present in the data. These may include short panel data, and datasets in
which, for example, two individuals have sampled from each household. To conserve space in
the main manuscript, we have leave the detailed discussion in the Supplementary Materials
(Section D).

Remark 6 (Data dependent choice of d0). In addition to a deterministic choice of d0,
another practically relevant scenario is a data dependent choice of d0. An example of such
a data dependent choice is d̂0 = max{k : β̂(k) > C}, where C is a user-specified threshold
for the effect size. A relatively complicated situation is that C coincides with some of the
policy sizes in β1, β2, · · · , βd. In this situation, it is possible that no matter how large n
is, d̂0 does not converge to a deterministic value but instead to a non-degenerate random
variable. For the purpose of separation, we may adjust d̂0 = max{k : β̂(k) > C} to be

d̂′0 = max{k : β̂(k) > C +C1 ·n−0.25}, where C1 is a constant that does not depend on n. The

choice of −0.25 is tunable and may be of independent interest. By this new choice of d̂′0, the
policy effects that exactly equal C will be eliminated almost surely when n tends to infinity.
This elimination exactly matches the target to select all the policy sizes that are larger than
C. In the limit of n tending to infinity, max{k : β̂(k) > C + C1 · n−0.25} will converge almost
surely to a set that contains all effect sizes larger than C. Therefore, the large-sample theory
results for a pre-specified deterministic integer would still hold by plugging in d̂′0.

2.4 Simulation studies

Simulation design

We generate i.i.d. Monte Carlo samples of {(yi,n,x′
i,n,w

′
i,n)}ni=1 from the model

yi,n = x′
i,nβ +w′

i,nγn + εi,n, i = 1, . . . , n.
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We consider various data generating processes (DGP) for different choices of the policy
variable xi,n, the covariates wi,n and the random noise εi,n. The first DGP follows a similar
setup taking from [89] and [25], where we generate many (sparse) dummy variables entering
the estimation of β. We generate xi,n ∼ N (0,Σ) with Σjk = 0.5|j−k| for j, k = 1, . . . , d,
wi,n = 1(w̃i,n ≥ Φ−1(0.98)) with w̃i,n ∼ N (0, Iqn) and Iqn is a qn-dimensional identity
matrix, and εi,n ∼ N (0, 1). The second DGP considers a case with dummy policy random
variables and normal covariates, where we generate xi,n = 1(x̃i,n > 0) with x̃i,n ∼ N (0,Σ),
wi,n ∼ N (0, Iqn) and εi,n ∼ N (0, 1). In the Supplementary Materials, we have further
included DGPs with more realistic error terms beyond normal distribution, including error
terms with asymmetric and bimodal distributions. For most of the DGPs, we investigate
both homoscedastic as well as heteroscedastic models. See Supplementary Materials Section
C for detailed description and simulation results.

As for the coefficients, we consider three DGPs that vary in β and γn. The first DGP
considers the case in which no policy is effective (meaning that β = 0), and the coefficient
γj = 1/j, for j = 1, . . . , qn. We refer to this case as the “homogeneity” case since βj’s take
the same value zero. The second and the third DGPs consider cases where policy effects
are generated from βj = Φ−1

(
j

d+1

)
for j = 1, . . . , d, and the coefficients are either γn = 0

or γj = 1/j, for j = 1, . . . , qn. We refer to this case as the “heterogeneity(1)” case and
“heterogeneity(2)” case, respectively, since different policies have heterogeneous effects.

We set the sample size n ∈ {700, 2000} to mimic the sample size in our case stud-
ies, the number of policies d ∈ {5, 10}, and the dimension of the covariates qn from qn ∈
{1, 141, 281, 421, 561, 631}. All statistics reported below are computed based on over 1,000
Monte Carlo replications. To avoid redundancy, we present the results for n = 700 and d = 5
in the main manuscript, and rests are provided in the Supplementary Materials (Section C).

To demonstrate the robustness of the adopted covariance matrix estimator, we compare
our proposal with three alternative covariance matrix estimators. The first one we compare
with is the covariance matrix estimator proposed by [25]: Ω̂HCK

n = Γ̂−1
n Σ̂HCK

n Γ̂−1
n , where Σ̂HCK

n ≜
1
n

∑n
i=1

∑n
j=1 κ

HCK
ij,n v̂i,nv̂

′
i,nû

2
j,n, ûj,n =

∑n
k=1(Mn)j,k(yk,n − x′

k,nβ̂), and

κHCKn =

M
2
11,n · · · M2

1n,n
...

. . .
...

M2
n1,n · · · M2

nn,n


−1

= (Mn ⊙Mn)
−1,

with ⊙ denoting the Hadamard product. The estimator Σ̂HCK
n is well-defined whenever (Mn⊙

Mn) is invertible. We use the acronym “HCK” to denote this estimator in the following parts.
The second one we compare with is the classical Eicker-White covariance matrix estimator
[47, 175] of the form:

Ω̂EW
n = Γ̂−1

n Σ̂EW
n Γ̂−1

n , (2.6)

where Σ̂EW
n ≜

1
n

∑n
i=1 v̂i,nv̂

′
i,nû

2
i,n and ûi,n =

∑n
j=1(Mn)i,j(yj,n − x′

j,nβ̂). We use the acronym
“EW” to denote this estimator in our simulation results section. Huber-Eicker-White stan-
dard error is also known as the HC0 standard error, where HC stands for “heteroskedasticity
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robust.” The last covariance matrix estimator we adopted is a variant of the HC0 estimator:

Ω̂HC3
n = Γ̂−1

n Σ̂HC3
n Γ̂−1

n , where Σ̂HC3
n ≜

1

n

n∑
i=1

v̂i,nv̂
′
i,n

û2i,n
(Mn)2i,j

. (2.7)

The above estimator upward reweights regression residuals, and we use the acronym “HC3”
to denote this estimator in our simulation results section.

Simulation results

We summarize our main takeaways from the simulation results presented in Table 2.1-2.3,
where we have compared our proposed approach (“Proposed + KJ”) in Section 2.2 with four
other methods. “Proposed + EW”, “Proposed + HC3”, and “Proposed + HCK” refer to
methods adjusting for the winner’s curse bias but use Ω̂EW

n , Ω̂HC3
n , and Ω̂HCK

n , respectively, to
estimate the covariance matrix of β. “No adjustment+KJ” refers to the approach with no
adjustment for the winner’s curse bias and adopts the robust covariance matrix estimator
proposed by [89] to make inference on the best policies. We present the coverage probabilities
and
√
n-scaled biases for the top two policies in the population, i.e., β(1) and β(2). As the

simulation results are rather similar for the observed top two policies in the random sample,
i.e., β1̂, β2̂, we present these results in the Supplementary Materials (Section C.4).

Our simulation results confirm our theoretical results presented in Theorem 2. When no
policy is effective, our proposed method not only successfully suppresses the winner’s curse
bias for the top two policies but also attains near nominal coverage (Table 2.2). Similar
pattern can also be observed when top policies are effective (i.e., βj’s are heterogeneous, and
Table 2.1 in particular). In nearly all designs and for a range of considered values of qn, our
proposal yields close to nominal confidence interval, though some under coverage is observed
for large values of qn. The method with no adjustment is obviously biased upward due to the
winner’s curse phenomenon, thus it provides under-covered confidence intervals and point
estimates with rather large biases. In all considered cases, both the EW-based method and
the HC3-based method tend to lose coverage when qn ≥ 141, and the HCK-based method
tends to produce under-covered confidence interval whenever qn ≥ 561. In moderately high
dimensions so that qn/n is approximately one half, the proposed method with the HCK
variance estimator has comparable performances with our approach.

2.5 Case studies

Case study I: Charitable giving

In the past half century, charitable giving by individuals in the United States has grown and
it has contributed to more than two percent of the annual GDP since 1998 [114]. Charitable
giving is often driven by altruism, while as suggested by many field experiments, improper
policies adopted by the demand side–fundraisers–may impair the supply side’s (individual
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Table 2.1: Simulation results (d = 5, heterogeneity, β(1))

βj = Φ−1
(

j
d+1

)
, γn = 0, j = 1,. . . , d

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)√
nBias -0.04(0.06) -0.03(0.04) -0.03(0.04) -0.04(0.05) 0.05(0.06)

qn = 141 Cover 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)√
nBias -0.04(0.05) -0.04(0.04) -0.04(0.04) 0.06(0.06) 0.06(0.07)

qn = 281 Cover 0.96(0.01) 0.95(0.01) 0.82(0.02) 0.80(0.01) 0.94(0.01)√
nBias -0.05(0.06) -0.06(0.05) -0.06(0.03) -0.10(0.07) -0.08(0.08)

qn = 421 Cover 0.95(0.02) 0.94(0.01) 0.79(0.01) 0.76(0.01) 0.78(0.01)√
nBias -0.05(0.05) -0.06(0.05) -0.07(0.05) -0.12(0.09) 0.11(0.09)

qn = 561 Cover 0.95(0.01) 0.92(0.01) 0.65(0.02) 0.63(0.01) 0.68(0.01)√
nBias -0.07(0.07) -0.09(0.07) -0.17(0.10) -0.20(0.12) 0.15(0.13)

qn = 631∗ Cover 0.93(0.01) 0.91(0.01) 0.51(0.02) 0.48(0.01) 0.55(0.01)√
nBias -0.17(0.08) -0.19(0.10) -0.28(0.11) -0.35(0.22) -0.26(0.13)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed + EW No adjustment+KJ

qn = 1 Cover 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.96(0.01) 0.97(0.01)√
nBias -0.02(0.07) -0.02(0.04) -0.01(0.03) -0.07(0.11) -0.05(0.09)

qn = 141 Cover 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01) 0.96(0.01)√
nBias -0.02(0.03) -0.02(0.02) -0.03(0.02) 0.11(0.12) -0.06(0.12)

qn = 281 Cover 0.95(0.01) 0.94(0.01) 0.87(0.01) 0.85(0.01) 0.95(0.01)√
nBias -0.03(0.04) -0.03(0.03) -0.04(0.02) 0.14(0.12) -0.08(0.13)

qn = 421 Cover 0.95(0.01) 0.94(0.01) 0.78(0.01) 0.76(0.01) 0.75(0.01)√
nBias -0.03(0.03) -0.05(0.04) -0.08(0.05) -0.19(0.17) 0.19(0.14)

qn = 561 Cover 0.95(0.01) 0.92(0.01) 0.63(0.02) 0.61(0.01) 0.63(0.01)√
nBias -0.04(0.04) -0.08(0.06) -0.19(0.10) -0.30(0.26) -0.24(0.22)

qn = 631 Cover 0.94(0.01) 0.91(0.01) 0.49(0.02) 0.45(0.01) 0.68(0.01)√
nBias -0.06(0.07) -0.11(0.09) -0.23(0.13) -0.42(0.20) 0.39(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(1) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(1). “ * ” indicates that Ω̂KJ
n is not positive semi-

definite in some Monte Carlo samples.

donors) motivation of giving [6]. Therefore, to effectively attract resources from individual
donors, fundraisers need to properly design donation incentives. One of the donation incen-
tives is matching grant which means that a matching donor pledges to match any donation
from other donors with certain ratio and up to some threshold. As the price elasticity of
matching donation may differ from other donation incentives, we hope to carefully inves-
tigate different pricing policies in a matching donation and study if the observed top two
performing policies are indeed effective.

We work with the charitable giving data in [92]. [92] conduct a field experiment that
explores the price elasticity in a matching donation. The field experiment involves 50, 083
previous donors to a political charity. Individuals are randomly assigned to two groups:
treatment (n = 33, 396) and control (n = 16, 687). In the control group, individuals receive
a standard letter with no matching details. In the treatment group, each potential donor
receives a letter with three strategies: (1) match ratio, (2) match size, and (3) ask amount.
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Table 2.2: Simulation results (d = 5, homogeneity, β(1))

β = 0, γj = 1/j

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.93(0.02) 0.90(0.01)√
nBias 0.02(0.03) 0.02(0.03) 0.03(0.03) 0.03(0.03) 1.64(0.04)

qn = 141 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.89(0.02) 0.88(0.01)√
nBias 0.03(0.04) 0.04(0.04) 0.03(0.04) 0.12(0.04) 1.78(0.04)

qn = 281 Cover 0.96(0.01) 0.94(0.01) 0.90(0.02) 0.85(0.01) 0.83(0.01)√
nBias 0.03(0.04) 0.04(0.04) 0.05(0.04) 0.22(0.03) 2.03(0.05)

qn = 421 Cover 0.95(0.01) 0.93(0.01) 0.82(0.02) 0.79(0.01) 0.74(0.02)√
nBias 0.05(0.05) 0.18(0.05) 0.24(0.06) 0.36(0.03) 2.63(0.06)

qn = 561 Cover 0.95(0.01) 0.93(0.01) 0.67(0.02) 0.73(0.01) 0.63(0.02)√
nBias 0.08(0.09) 0.51(0.05) 0.74(0.06) 0.44(0.04) 3.74(0.09)

qn = 631∗ Cover 0.93(0.01) 0.89(0.01) 0.53(0.02) 0.50(0.01) 0.45(0.02)√
nBias 0.18(0.09) 1.21(0.09) 1.84(0.11) 2.42(0.06) 5.10(0.12)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.90(0.01)√
nBias 0.03(0.04) 0.04(0.05) 0.05(0.05) 0.07(0.07) 2.75(0.06)

qn = 141 Cover 0.96(0.01) 0.96(0.01) 0.93(0.01) 0.90(0.01) 0.83(0.01)√
nBias 0.05(0.05) 0.05(0.06) 0.17(0.07) 0.31(0.07) 3.29(0.08)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.90(0.01) 0.88(0.01) 0.75(0.02)√
nBias 0.07(0.08) 0.07(0.07) 0.31(0.08) 0.54(0.05) 3.59(0.08)

qn = 421 Cover 0.95(0.01) 0.95(0.01) 0.85(0.01) 0.86(0.01) 0.65(0.02)√
nBias 0.04(0.04) 0.10(0.11) 0.73(0.13) 0.64(0.06) 4.58(0.11)

qn = 561 Cover 0.93(0.01) 0.90(0.02) 0.59(0.02) 0.61(0.01) 0.53(0.02)√
nBias 0.13(0.07) 0.19(0.13) 2.00(0.13) 1.73(0.08) 5.90(0.13)

qn = 631 Cover 0.90(0.01) 0.78(0.02) 0.38(0.02) 0.30(0.01) 0.33(0.02)√
nBias 0.50(0.12) 2.47(0.16) 5.16(0.19) 7.68(0.18) 6.51(0.19)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(1) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(1). “ * ” indicates that Ω̂KJ
n is not positive semi-

definite in some Monte Carlo samples.

Within each strategy, individuals are randomly assigned to a sub-policy detailed below.
For the match ratio strategy, there are three sub-policies: (1) 1:1 (the matching donor

contributes the same amount as the individual donor), (2) 2:1 (the matching donor con-
tributes twice as many as the individual donor), (3) 3:1 (the matching donor contributes
three times as many as the individual donor). For the match size strategy, there are four
sub-policies with different pledge amounts: (1) $25,000, (2) $50,000, (3) $100,000, and (4)
unstated amount. For the ask amount strategy, individual donors are asked to give same
amount, 25% more or 50% more than their largest past donation.

In our study, we focus on the treatment “ask amount” with three pricing policies, and
we study the subpopulation (n = 7, 938) of unmarried males living in red counties or red
states. Red county (state) refers to a county (state) in which residents predominantly vote
for the Republican Party. The outcome of interest is the donation amount. We have adjusted
qn = 1, 049 covariates including the donors’ demographic information (26 variables), census
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Table 2.3: Simulation results (d = 5, heterogeneity, β(2))

βj = Φ−1
(

j
d+1

)
, γn = 0

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01)√
nBias 0.02(0.06) 0.02(0.06) 0.01(0.06) -0.05(0.07) -0.04(0.07)

qn = 141 Cover 0.97(0.01) 0.96(0.01) 0.93(0.01) 0.94(0.01) 0.94(0.01)√
nBias -0.02(0.04) -0.02(0.04) -0.04(0.03) -0.06(0.06) -0.07(0.08)

qn = 281 Cover 0.95(0.01) 0.94(0.01) 0.88(0.02) 0.89(0.01) 0.85(0.01)√
nBias -0.03(0.04) -0.03(0.03) -0.07(0.03) -0.11(0.10) 0.19(0.11)

qn = 421 Cover 0.95(0.01) 0.94(0.02) 0.81(0.02) 0.80(0.01) 0.77(0.01)√
nBias -0.03(0.03) -0.03(0.04) -0.10(0.06) -0.15(0.12) -0.23(0.15)

qn = 561 Cover 0.95(0.01) 0.94(0.02) 0.67(0.02) 0.65(0.01) 0.63(0.01)√
nBias 0.03(0.03) 0.05(0.06) 0.12(0.08) -0.17(0.13) -0.26(0.18)

qn = 631∗ Cover 0.94(0.01) 0.93(0.01) 0.56(0.02) 0.53(0.01) 0.50(0.01)√
nBias -0.07(0.07) -0.18(0.06) -0.23(0.08) -0.26(0.17) 0.47(0.22)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.96(0.01) 0.98(0.01)√
nBias -0.08(0.12) -0.09(0.12) -0.10(0.13) 0.09(0.12) -0.07(0.10)

qn = 141 Cover 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.97(0.01)√
nBias -0.09(0.12) -0.10(0.13) -0.12(0.13) 0.09(0.13) -0.08(0.10)

qn = 281 Cover 0.97(0.01) 0.97(0.01) 0.90(0.01) 0.87(0.01) 0.96(0.01)√
nBias -0.11(0.14) -0.10(0.14) -0.15(0.14) -0.18(0.14) -0.10(0.11)

qn = 421 Cover 0.96(0.01) 0.95(0.02) 0.80(0.02) 0.75(0.01) 0.94(0.01)√
nBias 0.14(0.16) -0.16(0.18) -0.20(0.18) -0.22(0.17) -0.15(0.15)

qn = 561 Cover 0.96(0.01) 0.94(0.02) 0.63(0.02) 0.60(0.01) 0.92(0.01)√
nBias 0.14(0.18) 0.20(0.23) -0.24(0.22) -0.30(0.23) 0.19(0.20)

qn = 631 Cover 0.94(0.01) 0.93(0.02) 0.58(0.02) 0.55(0.01) 0.52(0.01)√
nBias 0.15(0.20) 0.24(0.26) 0.28(0.25) -0.35(0.13) 0.56(0.24)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(2) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(2). “ * ” indicates that Ω̂KJ
n is not positive semi-

definite in some Monte Carlo samples.

information (27 variables), and their two-way interaction terms. Our results are summarized
in Table 2.4.

Results in Table 2.4 suggest that, without any calibration, asking the donor either to
give the same amount or to give 25% more than their highest past donation seems to be
the best policies that significantly increase the donation amount. Specifically, our results
from running a simple linear regression model suggest that asking the individual donor to
give the same amount of their largest past donation appears to be the most effective pricing
policy, and it on average raises $0.67 (95% CI = (0.09, 1.25), p-value = 0.023) per donor.
Asking the individual donor to give 25% more than their largest past donation is the second
most effective policy, with an increased donation by $0.66 (95% CI = (0.01, 1.31), p-value
= 0.046) per donor.

Because we pick the most effective policies from a random sample, these estimates are
potentially subject to the winner’s curse bias. We thus apply the proposed method to
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Method Policies(Ask amount) Est (95% CI) p-value

Uncalibrated Same 0.67 (0.09, 1.25) 0.023*

25% more 0.66 (0.01, 1.31) 0.046*

50% more 0.33 (-0.21, 0.86) 0.235

Calibrated Same 0.63 (0.10, 1.20) 0.025*

25% more 0.56(-0.01, 1.07) 0.052

Table 2.4: Estimated treatment effects (Est), 95% confidence intervals (95% CI), and two-sided
p-values for the three “ask amount” policies. “Uncalibrated” refers to the study results obtained
without any adjustment, and the confidence intervals are constructed based on normal approxima-
tion with the estimated covariance matrix Ω̂KJ

n . “Calibrated” refers to our proposed methodology.
The computational time is 741 seconds on a Lenovo NeXtScale nx360m5 node (24 cores per node)
equipped with Intel Xeon Haswell processor.

carefully examine these seemly effective policies. After calibrating for the winner’s curse
bias, we confirm that the asking for the same amount policy remains as the most effective
policy, though with a slightly smaller estimated effect size (Est = $0.63, 95% CI = (0.10,
1.20), p-value = 0.025). This result is moderately aligned with the analysis in [92], whose
results suggest that donors from red states or red counties are more willing to contribute,
partially because the collaborating charity is politically oriented. However, for the effect of
the second best policy–asking to donate 25% more than past donation–is shifted downward,
and it no longer has significant impact in promoting the donation amount (Est = $0.56,
95% CI = (-0.01, 1.07), p-value = 0.052). This result might be partially explained by the
observation that donors are more motivated by a lower “price” of donation [173]. In sum, our
analyses suggest that the best pricing policy of charitable giving for unmarried males living
in the Republican Party dominated voting regions could be asking for the same amount
as their highest previous donation, and asking for more donations may not incentivize the
donors to give. Though given the obtained p-value before and after calibration for the second
best policy is rather close to the 5 percent threshold, we note that such a conclusion should
also be viewed with caution.

Case study II: National supported work (NSW) program

In this case study, we revisit a dataset from the National Supported Work (NSW) program.
The NSW program is a labor training program implemented in 1970’s that provides work
experience to disadvantaged workers. Our proposed method can also be used to evaluate if
the job training program is indeed beneficial for certain groups of workers. To do so, the
structural component xi,n in the model (2.1) would include variables representing the inter-
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actions between the treatment variable (the job training program) and different subgroup
indicator variables of interest.

We use the field experiment dataset adopted in [39] (n = 455), in which 185 workers
are in the treatment group and 260 workers are in the control group. This dataset consists
of a treatment indicator variable, an outcome variable measured by the participant post-
treatment earnings in 1978, and eight baseline variables ( including age, years of education,
an indicator for high school degree, indicators for Black and Hispanic, marital status, and
pre-treatment earnings in 1974 and 1975). We further add three sets of additional covariates
following the setup in [59]: (1) 1(1974 earnings =0) and 1(1975 earnings =0); (2) all first-
order interactions; (3) all polynomials up to the 2nd-order. The final dataset includes 51
covariates. We aim to investigate the effectiveness of the NSW program in four groups of
workers: (1) married Black workers, (2) unmarried Black workers, (3) married Non-Black
workers, and (4) unmarried Non-Black workers. The summarized results are shown in Table
2.5.

Method Subgroups Est (95% CI) ($103) p-value

Uncalibrated Black, married 4.35 (0.89, 7.81) 0.014*

Black, unmarried 1.10(-0.55, 2.75) 0.190

Non-Black, married 1.33(-6.63, 9.29) 0.743

Non-Black, unmarried 1.40(-2.61, 5.40) 0.494

Calibrated Black, married 4.41(1.74, 8.50) 0.009*

Table 2.5: Estimated treatment effects (Est), 95% confidence intervals (CI), in units $103/year,
and two-sided p-values for the four subgroups in the NSW study (n = 445, qn = 51). “Uncali-
brated” refers to the study results obtained without any adjustment, and the confidence intervals
are constructed based on normal approximation with the estimated covariance matrix Ω̂KJ

n . “Cali-
brated” refers to our proposed methodology. The computational time is 122 seconds on a Lenovo
NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell processor.

Table 2.5 demonstrates that without adjusting for the winner’s curse bias, married Black
workers (estimated treatment effect = 4.35, 95% CI = (0.89, 7.81), p-value = 0.014, in units
$103) seem to benefit from the program the most. After accounting for the winner’s curse
bias issue, our approach potentially confirms that the treatment effect of the NSW program
for the married Black workers is still significant, and the calibrated treatment effect remains
roughly the same ( Est= 4.41, 95% CI = (1.74, 8.50), p-value = 0.009, in units $103/year).

The dataset collected from the NSW program has been frequently analyzed in the past
decade, and our results are largely in-line with current understandings gathered in past stud-
ies. For example, although not focusing on the same groups of workers, [86] suggest that
married and unemployed Black workers with some college education have increased their
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post-treatment earnings for about 38%. [39] show that the job training program yields posi-
tive treatment effect on the overall Black participants. In this case study, our approach may
help to confirm the seemly effective subgroup observed in a random sample while providing
a statistically justified estimate accounting for the winner’s curse bias.

2.6 Discussion

In this article, we have introduced an approach to evaluate multiple best policies based on
resampling in the context of a linear model with many covariates. While our approach is
numerically reliable and theoretically grounded, it is worthwhile to generalize our frame-
work so that the policy effects can be estimated with other off-shelf methods that are, for
example, robust to the high-dimensional confounders or to the presence of interference and
noncompliance. Our current theoretical analysis suggests that our proposed approach can
be readily extended as long as the covariance matrix between different policies can be con-
sistently estimated. It is thus desirable for us to provide a general framework to broaden
future applications for other disciplines in general.

2.7 Supplementary Materials

Theorem 1

Review of notations and assumptions

We denote the sample {(yi,n,x′
i,n,w

′
i,n)

′}ni=1 as {zi,n}ni=1. Recall ui,n is the random error in
the considered linear model:

yi,n = x′
i,nβ +w′

i,nγn + ui,n, i = 1, . . . , n, (2.8)

we define

εi,n = ui,n − E[ui,n|{wi,n}ni=1, {xi,n}ni=1], vi,n = xi,n − E[xi,n|{wi,n}ni=1], i = 1, . . . , n.
(2.9)
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Let ei,n = E[ui,n|{wi,n}ni=1, {xi,n}ni=1], we further denote

ûi =
n∑

j=1

(Mn)i,j(yj,n − x′
j,nβ̂), v̂i,n =

n∑
i=1

(Mn)i,jxj,n,

(Mn)i,j = 1(i = j)−w′
i,n

( n∑
k=1

wk,nw
′
k,n

)−1

wj,n,

σ2
i,n = E[ε2i,n|{wi,n}ni=1, {xi,n}ni=1], ṽi,n =

n∑
j=1

(Mn)i,jvj,n,

ρ1n =

∑n
i=1 E

[
e2i,n
]

n
, ρ2n =

∑n
i=1 E

[
E
(
ei,n|{wi,n}ni=1

)2]
n

,

Qi,n = E
[
xi,n −

( n∑
j=1

E[wj,nw
′
j,n]
)−1

n∑
j=1

E[wj,nx
′
j,n]
∣∣∣{wi,n}ni=1

]
.

We will use the notation P(·|{zi,n}ni=1) to refer to the probability that is conditional on the
random variables {zi,n}ni=1.

For a policy j, recall our definition of the near tie set:

H(j) =
{
k : |βk − β(j)| = o(n− 1

2 ), k = 1, . . . , d
}
.

This suggests that ∀k ∈ H(j), there exist a sequence δn → 0 as n→ 0, such that

βk = β(j) + n− 1
2 · δn, ∀k ∈ H(j).

Next, let êj denote a d-dimensional (sparse) vector based on the estimated tie set Ĥ(j) with

êj = (êj,1, . . . , êj,d), êjk =
1(k ∈ Ĥ(j))

|Ĥ(j)|
, k = 1, . . . , d,

and define a d−dimensional sparse index vector based on the true near-tie set H(j) as

ej = (ej,1, . . . , ej,d), ejk =
1(k ∈ H(j))

|H(j)|
, k = 1, . . . , d. (2.10)

We make following assumptions throughout this section:

Assumption 11 (Sampling). The errors εi,n are uncorrelated across i conditional on

{xi,n}ni=1

and
{wi,n}ni=1.

Let {N1, . . . , NGn} represents a partition of {1, . . . , n} with max
1≤g≤Gn

|Ng| = O(1) such that

{(εi,n,vi,n), i ∈ Ng} (defined in (2.9)) are independent across g conditional on {wi,n}ni=1.
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Assumption 12 (Design). The dimension of the covariates wi,n satisfies that

lim sup
n→∞

qn/n < 1.

The minimum eigenvalue of of the matrix
∑n

i=1wi,nw
′
i,n is bounded away from 0 with prob-

ability approaching one, that is

lim
n→∞

P
(
λmin

( n∑
i=1

wi,nw
′
i,n

)
> 0
))

= 1.

Lastly,

max
1≤i≤n

{
E[ε4i,n|{wi,n}ni=1, {xi,n}ni=1],

1

σ2
i,n

,

E[v4i,n|{wi,n}ni=1], 1/λmin

(∑n
i=1 E

[
ṽi,nṽ

′
i,n|{wi,n}ni=1

]
n

)}
= Op(1).

Assumption 13 (Linear model approximation).
∑n

i=1 E[||Qi,n||2]/n = O(1), ρ1n + n(ρ1n −
ρ2n) + ρ2n ·

∑n
i=1 E[||Qi,n||2] = o(1), and max

1≤i≤n
||v̂i,n||/

√
n = op(1), nρ

1
n = O(1).

Assumption 14 (Variance estimation). limn→∞ P(mini

(
Mn

)
i,i
> 0) = 1,

P
(
min

i

(
Mn

)
i,i
> 0
)
= Op(1),

∑n
i=1 ||Q̃i,n||4

n
= Op(1),

and maxi ||µi,n||/
√
n = op(1) with µi,n = E

[
yi,n|{xi,n}ni=1, {wi,n}ni=1

]
.

Assumption 15 (Policy effect sizes). For δ ∈ (0, 1
2
), the asymptotic distance between the

effects of policy k and j diverges as n→∞:

nδ · min
k ̸∈H(j)

∣∣β(j) − βk∣∣→∞, as n→∞, j = 1, . . . , d.

Proof of Theorem 2

In this section, we show the following theorem holds:

Theorem 3. Under Assumptions 11-15, for any t ∈ R, for the resampled statistics, the
following holds precisely

P

(√
n
(
β̃∗
(j) − β̃(j)

)
(ê′jΩ̂

KJ
n êj)

1
2

≤ t
∣∣∣{(yi,n,x′

i,n,w
′
i,n)

′}ni=1

)
= Φ(t).
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For the original statistics, it holds that

lim
n→∞

P

(√
n
(
β̃(j) − β(j)

)
(ê′jΩ̂

KJ
n êj)

1
2

≤ t

)
= Φ(t).

In addition, we show that

lim
n→∞

P
(
P
(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
≤ s
)
= s.

Proof. Our proof of Theorem 1 entails the following steps:

Step 1. Under Assumptions 11-13, [89] has shown the following holds

(Ω̂KJ
n )−

1
2
√
n(β̂ − β)⇝ N(0, Id),

where Id is a d-dimensional identity matrix. Therefore, following the definition of ej
in Eq (2.10), we have

(e′jΩ̂
KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂k

|H(j)|
−
∑

k∈H(j)
βk

|H(j)|
)
⇝ N (0, 1). (2.11)

Step 2. Because of Lemma 2, we have

lim
n→∞

P(Ĥ(j) ̸= H(j)) = 0.

Combing this with (2.11), we have

Φ(t) = lim
n→∞

P
(
(e′jΣ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂k

|H(j)|
−
∑

k∈H(j)
βk

|H(j)|
)
≤ t
)

= lim
n→∞

[
P
(
(e′jΣ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂k

|H(j)|
−
∑

k∈H(j)
βk

|H(j)|
)
≤ t
∣∣∣Ĥ(j) = H(j)

)
P(Ĥ(j) = H(j)) + oP(1)

]

= lim
n→∞

P
(
(e′jΣ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂k

|H(j)|
−
∑

k∈H(j)
βk

|H(j)|
)
≤ t
∣∣∣Ĥ(j) = H(j)

)
,

in which oP(1) is lower bounded by zero and upper bounded by P(Ĥ(j) ̸= H(j)), which
tends to zero when n tends to infinity. We use this same oP(1) notion throughout this
proof. Now we have

lim
n→∞

P
(
(ê′jΣ̂

KJ
n êj)

− 1
2 ·
√
n
(∑k∈Ĥ(j)

β̂k

|Ĥ(j)|
−
∑

k∈Ĥ(j)
βk

|Ĥ(j)|
)
≤ t
∣∣∣Ĥ(j) = H(j)

)
= Φ(t).
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Next, we have

lim
n→∞

P
(
(ê′jΣ̂

KJ
n êj)

− 1
2 ·
√
n
(∑k∈Ĥ(j)

β̂k

|Ĥ(j)|
−
∑

k∈Ĥ(j)
βk

|Ĥ(j)|
)
≤ t
)

= lim
n→∞

[
P
(
(ê′jΣ̂

KJ
n êj)

− 1
2 ·
√
n
(∑k∈Ĥ(j)

β̂k

|Ĥ(j)|
−
∑

k∈Ĥ(j)
βk

|Ĥ(j)|
)
≤ t
∣∣∣Ĥ(j) = H(j)

))
P(Ĥ(j) = H(j)) + oP(1)

]

= lim
n→∞

P
(
(ê′jΣ̂

KJ
n êj)

− 1
2 ·
√
n
(∑k∈Ĥ(j)

β̂k

|Ĥ(j)|
−
∑

k∈Ĥ(j)
βk

|Ĥ(j)|
)
≤ t
∣∣∣Ĥ(j) = H(j)

)
=Φ(t)

The following holds precisely following the definition of the resampling procedure:

P
(
(e′jΣ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂∗
k

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)
≤ t
∣∣{zi,n}ni=1

)
= Φ(t). (2.12)

We now show that

lim
n→∞

P
(
(ê′jΣ̂

KJ
n êj)

− 1
2 ·
√
n
(∑k∈Ĥ(j)

β̂∗
k

|Ĥ(j)|
−
∑

k∈Ĥ(j)
β̂k

|Ĥ(j)|
)
≤ t
∣∣{zi,n}ni=1

)
= lim

n→∞

[
P
(
(ê′jΣ̂

KJ
n êj)

− 1
2 ·
√
n
(∑k∈Ĥ(j)

β̂∗
k

|Ĥ(j)|
−
∑

k∈Ĥ(j)
β̂k

|Ĥ(j)|
)
≤ t
∣∣{zi,n}ni=1, Ĥ(j) = H(j)

)
P(Ĥ(j) = H(j)) + oP(1)

]

= lim
n→∞

[
P
(
(e′jΣ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂∗
k

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)
≤ t
∣∣{zi,n}ni=1, Ĥ(j) = H(j)

)
P(Ĥ(j) = H(j)) + oP(1)

]

= lim
n→∞

P
(
(e′jΣ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂∗
k

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)
≤ t
∣∣{zi,n}ni=1

)
=Φ(t).

Recall our definition in the main manuscript

β̃∗
(j) =

∑
k∈Ĥ(j)

β̂∗
k

|Ĥ(j)|
, and β̃(j) =

∑
k∈Ĥ(j)

β̂k

|Ĥ(j)|
, (2.13)
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we thus have reached the conclusion presented in the theorem:

lim
n→∞

P
(
(ê′jΣ̂

KJ
n êj)

− 1
2 ·
√
n
(
β̃∗
(j) − β̃(j)

)
≤ t
∣∣{zi,n}ni=1

)
= Φ(t).

Step 3. Lastly, to prove the bootstrap consistency, we show that

lim
n→∞

P
(
P
(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
≤ s
)
= s.

Note that

lim
n→∞

P
(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
= lim

n→∞
P
(
(e′jΩ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

β̂∗
k

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)

≤(e′jΩ̂KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

βk

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)∣∣{zi,n}ni=1

)
= lim

n→∞
Φ((e′jΩ̂

KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

βk

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)
).

Therefore, by the bounded convergence theorem, we have

lim
n→∞

P
(
P
(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
≤ s
)

= P( lim
n→∞

Φ((e′jΩ̂
KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

βk

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)
) ≤ s)

= P( lim
n→∞

(e′jΩ̂
KJ
n ej)

− 1
2 ·
√
n
(∑k∈H(j)

βk

|H(j)|
−
∑

k∈H(j)
β̂k

|H(j)|
)
≤ Φ−1(s))

= P(N(0, 1) ≤ Φ−1(s))

= s.

Lemmas and corollary

Lemma 2

Lemma 2. Suppose wk,(j) = 1(k ∈ Ĥ(j)), for j, k = 1, . . . , d, under Assumptions 11-15, we
have the following argument holds ∀ε > 0,

lim
n→∞

P
(
|wk,(j) − 1(k ∈ H(j))| > ε

)
= 0.
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Proof. We start with reviewing and introducing some notations to pave the way for a clear
proof. Recall that β̃∗

(j) is the j-th largest effect size for the resampled statistics β̂(1), . . . , β̂(d),

suppose β̃∗
(j) is resampled statistics from the normal distribution centered at β̂ǰ, that is

β̃∗
(j)

∣∣{zi,n}ni=1 ∼ N (β̂ǰ, (Σ̂
KJ
n )ǰǰ), ǰ =

d∑
k=1

k · 1(β̂∗
k = β̃∗

(j)),

where (Σ̂KJ
n )ǰǰ is the ǰth component in the diagonal of the matrix Σ̂KJ

n .
Recall we define the near tie H(j) set as

H(j) =
{
k : |βk − β(j)| = o(n− 1

2 ), k = 1, . . . , d
}
.

We further define two sets of policies that have effect sizes lower/larger than the policies in
the set H(j):

HL
(j) =

{
k : βk < min

m∈H(j)

{βm} k = 1, . . . , d
}
, HU

(j) =
{
k : βk > max

m∈H(j)

{βm} k = 1, . . . , d
}
.

As for the estimated near tie set, we have for any j ∈ Ĥ(j) that

−bL ≤ β̂∗
k − β̃∗

(j) ≤ bR, with |bR − bL| = O(n−δ),

where δ ∈ (0, 0.5). Thus, there exists a positive constant C such that

|β̂∗
k − β̃∗

(j)|
n−δ

< C, ∀j ∈ Ĥ(j).

Our proof is composed of the following three steps:

Step 1. We first show that the policy with the jth largest policy effect size in the resampled
statistics falls into the set H(j) with high probability, that is

lim
n→∞

P
(
ǰ ∈ H(j)

)
= 1. (2.14)

Because β̂∗
ǰ
∈ [minj∈H(j)

β̂∗
j ,maxj∈H(j)

β̂∗
j ] by definition, coupled with the fact that{

max
k∈HL

(j)

β̂∗
k < min

j∈H(j)

β̂∗
j ≤ max

j∈H(j)

β̂∗
j < min

k∈HU
(j)

β̂∗
k

}
⊂
(
ǰ ∈ H(j)

)
,

it is suffice to show

lim
n→∞

P

(
max
k∈HL

(j)

β̂∗
k < min

j∈H(j)

β̂∗
j ≤ max

j∈H(j)

β̂∗
j < min

k∈HU
(j)

β̂∗
k

)
= 1.
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Under Assumption 15, by Lemma 3, for any k ∈ HL
(j) and m ∈ H(j), we have

lim
n→∞

P
(
β̂∗
k < β̂∗

m

)
= 1.

Similarly, for any k ∈ HU
(j) and m ∈ H(j), we have

lim
n→∞

P
(
β̂∗
m < β̂∗

k

)
= 1.

Step 2. We then show, for k ̸∈ H(j)

lim
n→∞

P
(
wk,(j) > ε, k ̸∈ H(j)

)
= 0.

For any ε > 0 and k ̸∈ H(j), we have the following holds

P
(
wk,(j) > ε

)
= P

(
1(k ∈ Ĥ(j)) > ε

)
= P

(
1(k ∈ Ĥ(j)) > ε|k ∈ Ĥ(j)

)
· P
(
k ∈ Ĥ(j)

)
+ P

(
1(k ∈ Ĥ(j)) > ε|k ̸∈ Ĥ(j)

)
· P
(
k ̸∈ Ĥ(j)

)
≤ P

(
k ∈ Ĥ(j)

)
Def
= P

( |β̂∗
k − β̂∗

(j)|
n−δ

< C
)

= P
( |β̂∗

k − β̂∗
ǰ
|

n−δ
< C

)
= P

(
|β̂∗

k − β̂∗
ǰ | < n−δ · C

)
= P

(
|(β̂∗

k − βk)− (β̂∗
ǰ − βǰ) + (βk − βǰ)| < n−δ · C

)
≤ P

(
nδ|βk − βǰ| − nδ|β̂∗

k − βk| − nδ|β̂∗
ǰ − βǰ| < C

)
= P

(
nδ|β̂∗

k − βk|+ nδ|β̂∗
ǰ − βǰ| > nδ|βk − βǰ|+ C

)
By definition, for k ̸∈ H(j)

P
(
nδ|βk − βǰ| < C

)
≤ P

(
nδ|βk − βǰ| < C, ǰ ∈ H(j)

)
+ P

(
ǰ ̸∈ H(j)

)
≤ max

j∈Hj

P
(
nδ|βk − βj| < C, j ∈ H(j)

)
+ P

(
ǰ ̸∈ H(j)

)
.

Under Assumption 15, Lemma 3 and the conclusion in Eq (2.14) in Step 1 suggest
that by letting n→∞ on both side, we have the above probability converges to zero.
Based on above derivation, we have shown that limn→∞ P

(
wk,(j) > ε, k ̸∈ H(j)

)
= 0,

for k ̸∈ H(j).
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Step 3. We are left to prove that for all k ∈ H(j), the following holds ∀ε > 0:

lim
n→∞

P
(
|wk,(j) − 1| > ε

)
= 0.

Following similar arguments, for a positive constant C, we have for k, j ∈ H(j) the
following statement holds

P
(
|wk,(j) − 1| > ε

)
= P

(
|1(k ∈ Ĥ(j))− 1| > ε

)
= P

(
|1(k ∈ Ĥ(j))− 1| > ε|k ∈ Ĥ(j)

)
· P
(
k ∈ Ĥ(j)

)
+ P

(
|1(k ∈ Ĥ(j))− 1| > ε|k ̸∈ Ĥ(j)

)
· P
(
k ̸∈ Ĥ(j)

)
≤ P

(
k ̸∈ Ĥ(j)

)
Def
= P

( |β̂∗
k − β̂∗

(j)|
n−δ

≥ C
)

= P
( |β̂∗

k − β̂∗
ǰ
|

n−δ
≥ C

)
= P

(
|(β̂∗

k − βk)− (β̂∗
ǰ − βǰ) + (βk − βǰ)| ≥ n−δ · C

)
≤ P

(
|β̂∗

k − βk|+ |β̂∗
ǰ − βǰ|+ |βk − βǰ| ≥ n−δ · C

)
≤ P

(
n

1
2 |β̂∗

k − βk|+ n
1
2 |β̂∗

ǰ − βǰ|+ n
1
2 |βk − βǰ| ≥ n

1
2
−δ · C

)
.

By definition of the near-tie set, for k ∈ H(j), we have

P
(
n

1
2 |βk − βǰ| < C

)
≤ P

(
nδ|βk − βǰ| < C, ǰ ∈ H(j)

)
+ P

(
ǰ ̸∈ H(j)

)
≤ max

j∈Hj

P
(
nδ|βk − βj| < C, j ∈ H(j)

)
+ P

(
ǰ ̸∈ H(j)

)
.

Again, under Assumption 15, Lemma 3 and the conclusion in Eq (2.14) we have derived
in Step 1, by letting n→∞ on both side, we have the above probability converges to
1.

Lemma 3

Lemma 3. Under Assumption 15, we show that for all k ∈ {1, . . . , d}, any positive constant
C and δ ∈ (0, 1

2
), the following statement holds

lim
n→∞

P
(
|β̂∗

k − βk| ≥ n−δ · C
)
= 0.
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Proof. Note that
√
n(β̂∗

k − βk) =
√
n(β̂k − βk) +N

(
0, (Ω̂KJ

n )k,k
)
. (2.15)

Because
√
n(β̂k − βk) converges in distribution to a finite-value random variable and Ω̂KJ

n

converges in probability to a finite-value matrix when n tends to infinity [89], for any given
ϵ > 0, there exists an M , such that

P(
√
n|β̂∗

k − βk| > M) < ϵ. (2.16)

Then, for any n such that

n >
(M
C

) 1
1
2−δ

we have that
P
(
|β̂∗

k − βk| ≥ n−δ · C
)
< ϵ

and therefore
lim sup
n→∞

P
(
|β̂∗

k − βk| ≥ n−δ · C
)
< ϵ.

Note that the above inequality holds for arbitrary ϵ > 0. Therefore, we have

lim sup
n→∞

P
(
|β̂∗

k − βk| ≥ n−δ · C
)
= 0,

completing the proof.

Lemma 4. Denote the selected policy as

ĵ =
d∑

k=1

k · 1(β̂k = β̂(j)),

we show that

lim
n→∞

P
(
ĵ ∈ H(j)

)
= 1.

Proof. This is a direct result from Step 1 and Step 2 in the proof for Theorem 2.

Corollary 1

Corollary 2. Under Assumptions 11-15, we have that limn→∞ P
(
P
(
β̃∗
(j) ≤ βĵ|{zi,n}ni=1

)
≤

s
)
= s.

Proof. Because of the consistency in Lemma 3, we have

lim
n→∞

P(βĵ = β(j)) = 1.

Therefore,

lim
n→∞

|P
(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
− P

(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
| ≤ lim

n→∞
P(β(j) ̸= β̂(j)|{zi,n}ni=1) = 0.

The result then follows by applying Step 3 in the Proof of Theorem 2.
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Additional simulation and empirical results

Practical implementation

In this section, we discuss the choice of tuning parameters (including B, δ, bL and bR)
of the proposed method in Section 2.2. For the number of repetitions for our resampling
procedure, we recommend using B = 2, 000 as a good balance between computational load
and statistical inference accuracy.

For the tuning pair (bR, bL), from our theoretical analysis, we need to ensure that the
distance between bR and bL is of the order nδ with δ ∈ (0, 0.5) to guarantee the statistical
validity of our proposed procedure. To achieve this goal, for the policy β(j), we adopt the
tuning pair of the form

bjL = n−δ · sδ
ĵ
· cjL, bjR = n−δ · sδ

ĵ
· cjR,

where sĵ is the ĵth element in the diagonal of the estimated covariance matrix Ω̂KJ
n , cjL and

cjR are positive constants.
The constants cjL and cjR can significantly impact the performance of the proposed ap-

proach in finite samples. In the extreme cases, on the one hand, if both cjL and cjR are overly
large, the estimated near tie set might include more policies than necessary and our approach
is only valid if all true policy effects are closely ties. On the other hand, if cjL and c

j
R are both

closer to zero, our approach reduces to a standard parametric bootstrap approach, which is
problematic in the presence of tied policy effects. To present a robust algorithm in finite
samples, we thus adopt the following “double-bootstrap” method as discussed in [35] (note
that double-bootstrapped statistics are labelled with double-star superscripts):

1. For j = 1, ..., d, set β∗
j = ∆ ·

∑d
j=1 β̂j

d
+ (1−∆) · β̂j, where

∆ = min
{
1,

∑d
j=1 sĵ

n
∑d

j=1(β̂j −
¯̂
β)2
× n0.05

}
.

2. For every candidate pair (cL, cR) such that cL ∈ CL and cR ∈ CR, do

For t← 1 to T , do

i. Generate β̂∗ = (β̂∗
1 , ..., β̂

∗
d) from N (β∗, Ω̂KJ

n /n), where β
∗ = (β∗

1 , . . . , β
∗
d)

′, and
denote the ordered values in β∗ as β∗

(1) ≥ . . . ≥ β∗
(d).

ii. For r ← 1 to R, do

A. Generate double bootstrap statistics β̂∗∗ ≜ (β̂∗∗
1 , ..., β̂

∗∗
d )′ from N (β̂∗, Ω̂KJ

n /n),

and denote the ordered values of β̂∗∗ as β̂∗∗
(1) ≥ ... ≥ β̂∗∗

(d).

B. Record w∗∗
k,(j) = 1{−cL · n−δ · sδ

ĵ
≤ (β̂∗∗

k − β∗∗
(j)) ≤ cR · n−δ · sδ

ĵ
} and β̃∗∗

(j) =∑d
k=1w

∗∗
k,(j)β̂

∗∗
j /
∑d

k=1w
∗∗
k,(j), for j = 1, . . . , d.
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iii. Calculate Bj,t(cL, cR) =
1
R

∑R
r=1 1

(
β̃∗∗,r
(j) ≤ β∗,r

(j)

)
, for j = 1, . . . , d.

3. Record the loss function

Lj(cL, cR) =
1

T

T∑
t=1

(
Bj,(t)(cL, cR)−

t

T + 1

)2
, (2.17)

where Bj,(t)(cL, cR) is the t-th smallest statistics in Bj,1(cL, cR), . . . , Bj,T (cL, cR).

4. Choose the pair (cjL, c
j
R) for inferring β(j) and βĵ that minimizes Lj(cL, cR), that is

(cjL, c
j
R) = min

(cL,cR)∈C
Lj(cL, cR), j = 1, . . . , d0.

Note that we only use the above procedure to choose the tuning parameters cjL and cjR,
meaning that we do not use the resampled statistics in Step 1 to carry out inference on β(j).
In Step 1, ∆ is adopted to stabilize the performance of the tuning parameter selection in
finite samples, and ∆ only takes a close-to-zero value whenever limited variation is found
between policy effect estimates.

Following Theorem 2, we know that P
(
β̃∗
(j) ≤ β(j)|{zi,n}ni=1

)
roughly follows Unif(0, 1)

when the sample size n is large. Given a desirable tuning pair (cL, cR), we would thus expect
that Bj,(1)(cL, cR), ..., Bj,(T )(cL, cR) share a similar distribution with the ordered statistics of
i.i.d. Unif(0, 1) random variables. The loss function defined in Eq (2.17) measures the average
of squared differences between Bj,(t)(cL, cR) and the expected value of the order statistics of
the Unif(0, 1) random variables. Given the rational above, we would expect that the optimal
tuning pair (cjL, c

j
R) minimize such a loss.

We further comment on several implementation details. Our numerical results suggest
using R = 200 and T = 40 can provide reasonable choice of the tuning parameters in
finite samples. In addition, when the loss function Lj(cL, cR) do not fluctuate substantially
over all considered pairs (cL, cR). In this case, let γ denote the 97.5th percentile of LU =
1
T

∑T
t=1(U(b) − t

T+1
)2 and U(1), ..., U(T ) are ordered observations from Unif(0, 1) distribution,

we choose (c̄jL, c̄
j
R) which is the mean of all plausible pairs such that Lj(cL, cR) < γ. Lastly,

as for the candidate region of cL and cR, we first consider selecting cL from 0 to
2(β̂(1)−β̂(j))n

δ

sδ
ĵ

and cR from 0 to
2(β̂(j)−β̂(d))n

δ

sĵδ
. Then based on the values of Lj(cL, cR) for different tuning

pairs, we may choose to expand or shrink the candidate region to make our algorithm more
efficient.

Robustness to different tuning choice

We summarizing our simulation results with different choices of the tuning parameter δ ∈
{0.05, 0.15, 0.25}, R ∈ {200, 500} and T ∈ {40, 100, 200}. To avoid redundancy, we showcase
the results with β = 0 and βj = Φ−1

(
j

d+1

)
, j = 1, . . . , d while qn takes value 141 or 561. We
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report the coverage probabilities and asymptotic biases for estimating the top two policies
(i.e., d0 = 2) β(1) and β(2). Supplementary Materials Table 2.6 summarizes the simulation
results with different choice of δ and fixed R = 200 and T = 40. There, we observe that
the performance of our method is overall robust to the choice of different δ in a variety of
settings. Though when qn is large and no policy is effective, smaller δ likely leads to under-
covered confidence intervals. Supplementary Materials Table 2.7 summarizes the simulation
results under R ∈ {200, 500} and T ∈ {40, 100, 200}, while fixing δ = 0.25. Our results
demonstrate that when R or T increases, the coverage probabilities are slightly increased
and biases are marginally reduced. Overall, we observe that the proposed method is not very
sensitive to the choice of various tuning parameters δ, T , and R. To guide readers for the
selection of tuning parameters to reach an optimal accuracy and computational efficiency
trade-off, we further provide the computational time under various choices of T and R in
the Supplementary Materials Table 2.8. In practice, to reduce computational cost while
maintaining valid statistical inference, we adopt the following tuning set in the rest of the
numerical studies: R = 200, T = 100, and δ = 0.25.

Table 2.6: Coverage probability and asymptotic bias with different choices of δ

No policy is effective, β(1) = β(2) = 0
qn = 141 qn = 561

δ=0.05 δ=0.15 δ=0.25 δ = 0.05 δ=0.15 δ=0.25
β(1) Cover 0.97(0.00) 0.95(0.01) 0.96(0.01) 0.93(0.01) 0.92(0.01) 0.96(0.01)√

nBias 0.01(0.02) 0.03(0.04) -0.02(0.02) 0.03(0.01) 0.03(0.01) -0.01(0.01)

β(2) Cover 0.98(0.00) 0.94(0.01) 0.97(0.01) 0.93 (0.01) 0.93(0.01) 0.96(0.01)√
nBias 0.00(0.01) 0.02(0.01) 0.01(0.01) 0.03(0.01) 0.02(0.01) 0.01(0.01)

Top two policies are effective, β(1) = 0.97, β(2) = 0.43
qn = 141 qn = 561

δ=0.05 δ=0.15 δ=0.25 δ = 0.05 δ=0.15 δ=0.25
β(1) Cover 0.94(0.01) 0.98(0.00) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.94(0.01)√

nBias 0.05(0.05) -0.03(0.04) -0.04(0.05) -0.07(0.06) -0.06(0.07) -0.07(0.07)

β(2) Cover 0.94(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)√
nBias 0.08(0.08) 0.05(0.06) 0.06(0.06) 0.08(0.08) 0.07(0.08) 0.08(0.09)

Note: We fix R = 200 and T = 40. “Cover” is the empirical coverage of the 95% confidence interval
for β(j) and “

√
nBias ” captures the root-n scaled Monte Carlo bias for estimating β(j). Monte Carlo

standard errors are provided in the parenthesis.

Computational time with different tuning parameters

In this section, we summarize computational time with respect to various choices of R, T ,
and n to make the computational costs transparent for readers. Here, we fix δ at 0.25
and select 20 candidate tuning parameters. Table 2.8 demonstrates that the computational
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costs are largely determined by T and R. When both T and R reach 500, running our
method once takes approximately one hour. For simulation study with multiple iterations,
we recommend setting R = 200 and T ≤ 200 to achieve a reasonable trade-off between
accuracy and computational efficiency.

Table 2.7: Coverage probability and asymptotic bias with different choices of T and R

No policy is effective, β(1) = β(2) = 0
qn = 141 qn = 561

T = 40 T = 100 T = 200 T = 40 T = 100 T = 200
β(1) R = 200 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.02) 0.96(0.02)√

nBias -0.02(0.02) 0.03(0.06) 0.02(0.06) -0.01(0.01) -0.01(0.12) 0.01(0.12)

R = 500 Cover 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.97(0.01) 0.96(0.01) 0.96(0.01)√
nBias 0.01(0.02) -0.02(0.04) 0.01(0.02) 0.01(0.01) 0.01(0.01) 0.01(0.01)

β(2) R = 200 Cover 0.96(0.01) 0.96(0.01) 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)√
nBias 0.01(0.01) -0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) -0.01(0.01)

R = 500 Cover 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01)√
nBias 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.00(0.01)

Top two policies are effective, β(1) = 0.97, β(2) = 0.43
qn = 141 qn = 561

T = 40 T = 100 T = 200 T = 40 T = 100 T = 200
β(1) R = 200 Cover 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)√

nBias -0.04(0.05) 0.02(0.08) 0.02(0.08) -0.07(0.07) 0.07(0.16) 0.06(0.18)

R = 500 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)√
nBias 0.02(0.04) 0.01(0.04) 0.01(0.05) 0.05(0.07) 0.05(0.07) 0.04(0.07)

β(2) R = 200 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01)√
nBias 0.06(0.06) 0.05(0.06) 0.05(0.06) 0.08(0.09) 0.07(0.08) 0.07(0.09)

R = 500 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)√
nBias 0.06(0.08) 0.05(0.06) 0.05(0.06) 0.07(0.08) 0.07(0.08) 0.06(0.09)

Note: We fix δ = 0.25. “Cover” is the empirical coverage of the 95% confidence interval for β(j) and “√
nBias ” captures the root-n scaled Monte Carlo bias for estimating β(j). Monte Carlo standard errors

are provided in the parenthesis.

Simulation results: βĵ

The simulation results presented in Table 2.9 and 2.10 help us confirm our theoretical anal-
yses in Corollary 1, and we observe similar trends compared to the results in the main
manuscript.

Simulation results: d = 10

This section provides an additional set of simulation results when d = 10, which is larger
than the setting (d = 5) adopted in the main manuscript. We investigate the performance
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Computational time with respect to various n, qn, T , and R

qn = 141 (s× 103) qn = 561 (s× 103)
T = 40 T = 200 T = 500 T = 40 T = 200 T = 500

n = 500 R = 200 0.10 0.48 1.27 0.11 0.48 1.35
R = 500 0.23 1.20 3.31 0.24 1.38 3.50

n = 2000 R = 200 0.10 0.50 1.29 0.12 0.51 1.40
R = 500 0.26 1.23 3.44 0.27 1.39 3.98

n = 5000 R = 200 0.11 0.52 1.32 0.14 0.55 1.51
R = 500 0.27 1.25 3.50 0.30 1.40 4.05

Table 2.8: The unit: 1,000 seconds. We fix δ = 0.25 and set 20 candidate tuning pairs for (cL, cR). The
simulations are performed on a Lenovo NeXtScale nx360m5 node (24 cores per node) equipped with Intel
Xeon Haswell processor. The core frequency is 2.3 Ghz and supports 16 floating-point operations per clock
period.

of the five methods for estimating β(2), β(5), and β(10). Table 2.11 - 2.14 demonstrate that
without adjustment, the coverage probabilities for β(5) fall below 80% when qn ≥ 281, while
our proposed method reaches nominal level coverage regardless the ranking of βj. “Proposed
+ EW”, “Proposed + HCK”, and “Proposed + HC3” show similar trends compared to those
when d = 5.

Simulation results: realistic error terms

In this section, we consider two DGPs of generating more practical errors beyond simple
i.i.d. Gaussian noises. For the first DGP, we generate covariates from xi,n ∼ N (0,Σ) and
wi,n ∼ N (0, Iqn), and then generate random noise from (1) an asymmetric distribution
with the density function 0.5ϕ(ε|−0.5, 0.25) + 0.5ϕ(ε|0.5, 1); (2) a bimodal distribution with
the density function 0.5ϕ(ε|−1.5, 0.25) + 0.5ϕ(ε|1.5, 1), where ϕ(ε|µ, σ2) denotes the density
function of a normal random variable with mean µ and variance σ2. The simulation results
are summarized in Supplementary Materials Table 2.16. We further study this setting with
a larger sample size, n = 2, 000. This sample size is closer to the sample size adopted in
our case study I. The simulation results under n = 2, 000 are summarized in Supplementary
Materials Table 2.18. We also consider the design with both β ̸= 0 and γ ̸= 0. The simulation
results are summarized in Supplementary Materials Table 2.15–2.18.

For the second DGP, we consider heteroscedastic errors following the setup in [25] with:
xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98)) with w̃i,n ∼ N (0, Iqn), and εi,n ∼ N (0, 1) with
V[εi,n|xi,n,wi,n] = cε(1+(t(x1,i,n)+l

′wi,n)
2/4) and V[xk,i,n|wi,n] = cxk

(1+(l′wi,n)
2/4), where

xk,i,n denotes the kth component of the vector xi,n. The constants cε and cxk
are chosen so

that V[εi,n] = V[xk,i,n] = 1 and t(a) = a1(−1 ≤ a ≤ 1) + sgn(a)(1 − 1(−1 ≤ a ≤ 1)). l is
the conformable vector of ones. The simulation results are summarized in Supplementary
Materials Table 2.15.
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Table 2.9: Simulation results (d = 5, heterogeneity, β1̂)

βj = Φ−1
(

j
d+1

)
, γn = 0, j = 1, . . . , d

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)√
nBias 0.04(0.06) 0.04(0.05) 0.04(0.05) -0.04(0.05) 0.04(0.06)

qn = 141 Cover 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.95(0.01)√
nBias 0.07(0.07) 0.06(0.07) 0.07(0.06) 0.06(0.06) 0.05(0.07)

qn = 281 Cover 0.94(0.01) 0.95(0.01) 0.84(0.01) 0.82(0.01) 0.94(0.01)√
nBias -0.09(0.08) -0.07(0.07) -0.10(0.08) -0.11(0.07) -0.07(0.08)

qn = 421 Cover 0.94(0.01) 0.91(0.01) 0.76(0.02) 0.75(0.01) 0.93(0.01)√
nBias -0.09(0.10) -0.10(0.09) -0.15(0.09) -0.16(0.09) -0.10(0.09)

qn = 561 Cover 0.94(0.01) 0.90(0.01) 0.67(0.02) 0.65(0.01) 0.78(0.01)√
nBias -0.15(0.14) -0.12(0.10) -0.17(0.23) -0.25(0.12) 0.15(0.11)

qn = 631∗ Cover 0.92(0.01) 0.89(0.02) 0.45(0.02) 0.42(0.01) 0.68(0.01)√
nBias -0.19(0.18) -0.22(0.13) -0.35(0.29) -0.54(0.22) 0.28(0.18)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.97(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01)√
nBias -0.05(0.10) -0.06(0.09) -0.06(0.10) -0.10(0.11) -0.04(0.09)

qn = 141 Cover 0.97(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.95(0.01)√
nBias -0.06(0.11) -0.08(0.12) -0.07(0.11) 0.13(0.12) 0.09(0.12)

qn = 281 Cover 0.96(0.01) 0.94(0.01) 0.86(0.02) 0.85(0.01) 0.95(0.01)√
nBias -0.09(0.13) -0.10(0.13) -0.10(0.13) -0.15(0.12) -0.09(0.13)

qn = 421 Cover 0.94(0.01) 0.93(0.01) 0.75(0.02) 0.72(0.01) 0.93(0.01)√
nBias 0.11(0.17) -0.12(0.13) 0.18(0.17) -0.20(0.17) 0.14(0.14)

qn = 561 Cover 0.94(0.01) 0.90(0.01) 0.51(0.02) 0.48(0.01) 0.92(0.01)√
nBias -0.15(0.22) -0.21(0.20) -0.25(0.23) -0.46(0.26) -0.21(0.20)

qn = 631 Cover 0.91(0.01) 0.90(0.01) 0.48(0.02) 0.45(0.01) 0.80(0.01)√
nBias -0.21(0.20) -0.23(0.22) 0.41(0.30) -0.53(0.20) 0.35(0.22)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β1̂ and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β1̂. “ * ” indicates that Ω̂
KJ
n is not positive semi-definite

in some Monte Carlo samples.

Table 2.15 shows that, under the second DGP, our proposed method has slightly com-
promised performance, but still reaches nominal level coverage when qn ≤ 421. Table 2.16
and 2.17 demonstrate that the performance of our method is robust even when both β ̸= 0
and γ ̸= 0, and qn ≤ 561. Table 2.18 suggests that when sample size increases, our proposed
method has smaller bias and improved coverage probabilities when qn = 631. The other
considered methods show similar trends to the settings under homoscedastic errors.

Additional analysis for case study I

In this section, we revisit case study I with a much smaller model that only includes the main
effects. The results are summarized in Table 2.19. Table 2.19 shows that, overall, the results
under a smaller model do not change substantively. But “asking 25% more” no longer has a
significant impact on donation amount even without calibration.
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Table 2.10: Simulation results (d = 5, heterogeneity, β2̂)

βj = Φ−1
(

j
d+1

)
, γn = 0, j = 1, . . . , d

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.97(0.01) 0.97(0.01) 0.96(0.01) 0.97(0.01)√
nBias -0.04(0.06) -0.03(0.06) -0.03(0.06) -0.04(0.07) -0.04(0.06)

qn = 141 Cover 0.96(0.01) 0.96(0.02) 0.88(0.02) 0.90(0.01) 0.94(0.01)√
nBias -0.05(0.08) -0.05(0.08) -0.10(0.08) -0.09(0.06) -0.07(0.07)

qn = 281 Cover 0.95(0.01) 0.94(0.02) 0.86(0.02) 0.84(0.01) 0.91(0.02)√
nBias 0.07(0.09) 0.07(0.09) 0.13(0.08) -0.15(0.10) 0.12(0.10)

qn = 421 Cover 0.94(0.01) 0.93(0.02) 0.77(0.02) 0.72(0.02) 0.71(0.02)√
nBias -0.10(0.13) -0.12(0.13) -0.15(0.11) -0.17(0.13) -0.19(0.17)

qn = 561 Cover 0.94(0.01) 0.92(0.02) 0.65(0.02) 0.60(0.01) 0.69(0.02)√
nBias -0.16(0.17) -0.18(0.16) -0.18(0.15) 0.20(0.13) 0.35(0.22)

qn = 631∗ Cover 0.93(0.01) 0.92(0.02) 0.44(0.02) 0.42(0.01) 0.50(0.02)√
nBias -0.18(0.17) -0.23(0.21) -0.45(0.19) -0.49(0.17) 0.48(0.30)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.98(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01)√
nBias -0.08(0.13) -0.07(0.13) -0.10(0.12) 0.09(0.12) -0.10(0.10)

qn = 141 Cover 0.96(0.01) 0.96(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01)√
nBias 0.09(0.14) 0.10(0.14) 0.13(0.14) 0.12(0.13) 0.10(0.14)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.90(0.01) 0.95(0.01)√
nBias -0.11(0.16) -0.11(0.15) 0.17(0.15) 0.19(0.14) 0.13(0.17)

qn = 421 Cover 0.95(0.01) 0.92(0.02) 0.82(0.02) 0.78(0.01) 0.94(0.01)√
nBias 0.18(0.20) -0.20(0.20) -0.25(0.20) -0.32(0.17) -0.20(0.20)

qn = 561 Cover 0.94(0.01) 0.92(0.02) 0.67(0.02) 0.64(0.01) 0.73(0.01)√
nBias -0.26(0.24) 0.22(0.24) -0.41(0.23) -0.48(0.23) 0.27(0.25)

qn = 631 Cover 0.92(0.01) 0.87(0.02) 0.52(0.02) 0.48(0.01) 0.50(0.01)√
nBias 0.30(0.27) 0.41(0.29) 0.50(0.28) -0.65(0.13) 0.55(0.28)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β2̂ and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β2̂. “ * ” indicates that Ω̂
KJ
n is not positive semi-definite

in some Monte Carlo samples.

Extension to regression models with fixed effects

As stated in the main manuscript, our approach extends to linear panel data models with
fixed effects. We shall briefly discuss this connection below. Because it is a common prac-
tice to include the subscript t to denote time in panel data analyses, to avoid using triple
subscript, we drop subscript n in all considered random variables in the discussion below.

Suppose we have access to one panel data with cross-sectional observations denoted by
i ∈ N = {1, . . . , N} and time periods t ∈ T = {1, . . . , T}. Consider the following fixed
effects panel data model

yit = β
′xit + ci + edit + uit, i = 1, . . . , N, t = 1, . . . , T,

where ci is an unobserved effect that varies across sections but is assumed to be constant over
time, yit ∈ R is the observed outcome, xit ∈ Rd×1 contains the policy variables of interest,
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Table 2.11: Simulation results (d = 10, heterogeneity, β(2))

βj = Φ−1
(

j
d+1

)
, γn = 0, j = 1, . . . , d

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.97(0.01) 0.94(0.01)√
nBias -0.05(0.07) -0.04(0.07) -0.05(0.06) -0.06(0.07) 0.06(0.06)

qn = 141 Cover 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01) 0.94(0.01)√
nBias -0.06(0.07) -0.07(0.07) 0.07(0.08) -0.07(0.07) -0.06(0.06)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.89(0.01) 0.92(0.01)√
nBias -0.07(0.09) -0.08(0.09) 0.15(0.10) -0.18(0.08) 0.20(0.08)

qn = 421 Cover 0.96(0.01) 0.94(0.01) 0.88(0.01) 0.80(0.02) 0.90(0.01)√
nBias -0.08(0.11) -0.10(0.11) 0.20(0.11) -0.25(0.10) -0.25(0.09)

qn = 561 Cover 0.95(0.01) 0.94(0.01) 0.75(0.01) 0.67(0.02) 0.89(0.01)√
nBias 0.14(0.15) 0.15(0.15) -0.27(0.16) -0.31(0.13) -0.28(0.12)

qn = 631∗ Cover 0.93(0.01) 0.91(0.01) 0.65(0.01) 0.57(0.02) 0.88(0.01)√
nBias 0.22(0.20) 0.27(0.19) -0.33(0.20) 0.35(0.17) 0.38(0.16)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.97(0.01) 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01)√
nBias -0.05(0.11) -0.07(0.11) 0.06(0.12) -0.08(0.11) -0.09(0.09)

qn = 141 Cover 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.94(0.01)√
nBias 0.07(0.12) 0.10(0.13) 0.13(0.13) 0.15(0.13) 0.10(0.11)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.88(0.01) 0.93(0.01)√
nBias 0.14(0.15) 0.16(0.16) 0.20(0.13) -0.28(0.15) -0.29(0.13)

qn = 421 Cover 0.94(0.01) 0.93 (0.01) 0.85(0.01) 0.76(0.01) 0.92(0.01)√
nBias 0.20(0.19) 0.22(0.18) 0.25(0.17) 0.37(0.18) 0.32(0.16)

qn = 561 Cover 0.93(0.01) 0.93(0.01) 0.77(0.01) 0.67(0.02) 0.90(0.01)√
nBias 0.22(0.23) 0.25(0.23) -0.30(0.19) 0.41(0.22) 0.44(0.19)

qn = 631 Cover 0.90(0.01) 0.88(0.01) 0.67(0.01) 0.60(0.02) 0.88(0.01)√
nBias 0.31(0.25) 0.45(0.26) -0.48(0.13) 0.55(0.25) 0.61(0.23)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(2) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(2). “
∗” indicates that Ω̂KJ

n is not positive semi-definite
in some Monte Carlo samples.

and error terms uit’s are uncorrelated conditional on xit and dit. edit is an unobserved effect
indexed by an observed indexing variable dit ∈ {1, . . . , G}, and is assumed to be constant
across all observations that share the same value of dit. When edit = 0, this model reduces to
the one-way fixed effects model studied in [153], otherwise the above model coincides with
the one studied in [164].

To concretely introduce the connection of the above model and our model setup, consider
the case when edit ̸= 0, we stack the data over cross-sectional observations and time periods.
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Table 2.12: Simulation results (d = 10, homogeneity, β(5))

β = 0, γj = 1/j, j = 1, . . . , qn

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.92(0.01)√
nBias 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.04(0.02)

qn = 141 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.82(0.01)√
nBias -0.01(0.01) -0.01(0.01) 0.02(0.02) 0.02(0.01) -0.17(0.02)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.80(0.01)√
nBias 0.02(0.02) 0.02(0.02) 0.02(0.02) 0.05(0.02) -0.18(0.02)

qn = 421 Cover 0.93(0.02) 0.93(0.02) 0.93(0.01) 0.80(0.02) 0.78(0.01)√
nBias -0.02(0.02) -0.02(0.02) 0.05(0.04) 0.17(0.03) 0.21(0.03)

qn = 561 Cover 0.93(0.02) 0.92(0.02) 0.93(0.01) 0.75(0.02) 0.76(0.01)√
nBias 0.02(0.02) -0.03(0.02) 0.05(0.04) 0.32(0.04) -0.28(0.04)

qn = 631∗ Cover 0.91(0.02) 0.90(0.01) 0.90(0.01) 0.73(0.02) 0.75(0.01)√
nBias -0.12(0.05) -0.30(0.05) 0.14(0.09) 0.36(0.06) -0.34(0.05)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed + EW No adjustment+KJ

qn = 1 Cover 0.95(0.01) 0.95(0.02) 0.94(0.01) 0.93(0.02) 0.91(0.01)√
nBias 0.01(0.01) 0.01(0.01) -0.02(0.02) 0.01(0.01) 0.06(0.03)

qn = 141 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.81(0.01)√
nBias -0.01(0.01) -0.01(0.01) -0.02(0.02) 0.01(0.00) 0.19(0.03)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.78(0.01)√
nBias 0.02(0.02) 0.02(0.02) -0.02(0.03) 0.06(0.02) -0.21(0.04)

qn = 421 Cover 0.93(0.01) 0.93 (0.01) 0.92(0.02) 0.80(0.01) 0.75(0.01)√
nBias -0.01(0.00) -0.01(0.00) -0.04(0.03) 0.17(0.03) 0.37(0.05)

qn = 561 Cover 0.93(0.01) 0.93(0.01) 0.92(0.01) 0.75(0.02) 0.70(0.01)√
nBias 0.03(0.02) 0.03(0.02) -0.08(0.06) 0.18(0.04) -0.48(0.05)

qn = 631 Cover 0.92(0.01) 0.92(0.01) 0.91(0.01) 0.75(0.02) 0.66(0.01)√
nBias -0.12(0.05) -0.30(0.05) -0.32(0.11) 0.36(0.06) -0.65(0.09)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(2) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(2). “
∗” indicates that Ω̂KJ

n is not positive semi-definite
in some Monte Carlo samples.

Define

y =(y11, . . . , y1T , y21, . . . , y2T , . . . , yN1, . . . , yNT )
′ ∈ RNT×1,

x =(x11, . . . ,x1T ,x21, . . . ,x2T , . . . ,xN1, . . . ,xNT )
′ ∈ RNT×d,

w =
(
g1,g2

)
∈ RNT×(N+G),

g1 =
(
1(i=j)

)j∈N
(i,t)∈N×T , g2 =

(
1(dit=d)

)d∈{1,...,G}
(i,t)∈N×T ,

γn =(c1, . . . , cN , e1, . . . , eG)
′ ∈ R(N+G)×1,

u =(u11, . . . , u1T , u21, . . . , u2T , . . . , uN1, . . . , uNT )
′ ∈ RNT×1.

With the above notations, the fixed effects panel data model can be written as the following

y = xβ +wγn + u. (2.18)



CHAPTER 2. INFERENCE ON THE BEST POLICIES WITH MANY COVARIATES91

Table 2.13: Simulation results (d = 10, heterogeneity, β(5))

βj = Φ−1
(

j
d+1

)
, γn = 0, j = 1, . . . , d

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.95(0.01) 0.92(0.02) 0.96(0.01) 0.94(0.01)√
nBias 0.06(0.07) 0.07(0.07) -0.12(0.09) 0.07(0.07) 0.06(0.06)

qn = 141 Cover 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.92(0.01) 0.94(0.01)√
nBias 0.08(0.08) 0.08(0.08) -0.12(0.08) 0.12(0.08) -0.07(0.07)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.91(0.01) 0.93(0.01)√
nBias 0.08(0.08) 0.08(0.08) -0.13(0.09) 0.12(0.08) 0.10(0.07)

qn = 421 Cover 0.95(0.01) 0.95(0.01) 0.84(0.02) 0.82(0.02) 0.93(0.01)√
nBias 0.10(0.11) 0.11(0.11) -0.13(0.07) 0.14(0.11) -0.12(0.09)

qn = 561 Cover 0.94(0.01) 0.94(0.01) 0.80(0.01) 0.79(0.02) 0.92(0.01)√
nBias 0.12(0.13) 0.13(0.13) -0.18(0.06) 0.20(0.12) -0.15(0.10)

qn = 631∗ Cover 0.93(0.01) 0.92(0.01) 0.78(0.01) 0.76(0.01) 0.90(0.01)√
nBias 0.16(0.14) 0.18(0.14) -0.28(0.26) 0.24(0.13) 0.18(0.12)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)√
nBias 0.05(0.11) 0.06(0.11) -0.08(0.11) 0.08(0.11) -0.06(0.09)

qn = 141 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01)√
nBias 0.06(0.11) 0.08(0.11) -0.11(0.12) 0.10(0.11) 0.09(0.10)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.95(0.01)√
nBias 0.12(0.13) 0.12(0.13) 0.10(0.10) 0.14(0.12) -0.10(0.11)

qn = 421 Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.90(0.01) 0.95(0.01)√
nBias 0.11(0.14) 0.15(0.15) -0.20(0.08) 0.25(0.14) -0.12(0.12)

qn = 561 Cover 0.94(0.01) 0.94(0.01) 0.85(0.01) 0.83(0.02) 0.94(0.01)√
nBias -0.15(0.18) -0.16(0.17) -0.26(0.20) 0.28(0.18) -0.15(0.15)

qn = 631 Cover 0.93(0.01) 0.92(0.01) 0.75(0.01) 0.72(0.02) 0.93(0.01)√
nBias 0.25(0.20) 0.30(0.19) -0.70(0.34) 0.68(0.20) 0.28(0.18)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(2) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(2). “
∗” indicates that Ω̂KJ

n is not positive semi-definite
in some Monte Carlo samples.

This indicates that our approach also goes through in linear panel data models, as long as we
can construct an estimator of β that converges to a Gaussian distribution with its covariance
matrix being consistently estimated.

[89] has shown that the covariance matrix estimator Ω̂KJ
n remains consistent in one-way

fixed effect panel data regression models when edit = 0. This suggests that our approach
can be naturally extended to make inference on multiple best policies in one-way fixed effect
models. In addition, [25] have shown that the covariance matrix estimator Ω̂HCK

n is consistent
in both one-way and two-way fixed effect panel data regression models. Since our resampling
based approach only requires a consistent covariance matrix estimator to calibrate multiple
best policy effects, this suggests that in two-way fixed effect models, what our approach can
be adopted when using Ω̂HCK

n to estimate the covariance matrix of β̂. Lastly, we note that our
Assumption 1 in the main manuscript requires error terms to be conditionally uncorrelated
within each observation i. This condition does rule out dynamic models as those discussed
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Table 2.14: Simulation results (d = 10, heterogeneity, β(10))

βj = Φ−1
(

j
d+1

)
, γn = 0, j = 1, . . . , d

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.94(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01)√
nBias 0.06(0.07) 0.03(0.06) 0.06(0.06) 0.07(0.07) -0.04(0.05)

qn = 141 Cover 0.93(0.02) 0.93(0.02) 0.92(0.02) 0.92(0.02) 0.94(0.01)√
nBias 0.06(0.06) 0.06(0.06) 0.08(0.07) 0.08(0.06) 0.06(0.06)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.90(0.01) 0.89(0.01) 0.94(0.01)√
nBias 0.07(0.08) 0.08(0.08) 0.11(0.08) 0.10(0.07) 0.07(0.07)

qn = 421 Cover 0.94(0.01) 0.94(0.01) 0.84(0.01) 0.82(0.02) 0.93(0.01)√
nBias 0.08(0.09) 0.09(0.09) 0.16(0.10) 0.17(0.09) -0.11(0.08)

qn = 561 Cover 0.93(0.01) 0.91(0.01) 0.68(0.02) 0.61(0.02) 0.91(0.01)√
nBias 0.16(0.14) 0.18(0.14) 0.20(0.10) 0.24(0.13) 0.15(0.12)

qn = 631∗ Cover 0.92(0.01) 0.90(0.01) 0.53(0.02) 0.50(0.02) 0.82(0.01)√
nBias 0.20(0.18) 0.23(0.18) -0.50(0.12) 0.55(0.18) -0.30(0.17)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.01)√
nBias 0.08(0.11) 0.08(0.11) 0.11(0.12) 0.09(0.11) -0.08(0.09)

qn = 141 Cover 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.94(0.01)√
nBias 0.10(0.12) 0.11(0.12) 0.14(0.13) 0.15(0.12) 0.11(0.11)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.88(0.01) 0.84(0.01) 0.94(0.01)√
nBias 0.11(0.15) 0.12(0.15) 0.16(0.14) 0.19(0.15) 0.12(0.13)

qn = 421 Cover 0.94(0.01) 0.94(0.01) 0.85(0.01) 0.82(0.01) 0.94(0.01)√
nBias 0.14(0.16) 0.16(0.16) 0.20(0.16) 0.25(0.16) 0.15(0.15)

qn = 561 Cover 0.93(0.02) 0.93(0.01) 0.65(0.01) 0.62(0.02) 0.92(0.01)√
nBias 0.19(0.20) 0.23(0.21) -0.24(0.15) 0.30(0.21) -0.24(0.20)

qn = 631 Cover 0.94(0.01) 0.92(0.01) 0.57(0.01) 0.50(0.02) 0.91(0.01)√
nBias 0.26(0.29) 0.30(0.28) -0.85(0.23) 0.88(0.31) -0.33(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(10) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(10). “∗” indicates that Ω̂KJ
n is not positive semi-

definite in some Monte Carlo samples.

in [164].
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Table 2.15: Simulation results (d = 5, heteroscedasticity, heterogeneity, β(1))

βj = Φ−1
(

j
d+1

)
, xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98)), j = 1, . . . , d

γn = 0

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.95(0.01)√
nBias 0.06(0.07) 0.07(0.07) 0.07(0.07) 0.07(0.07) 0.07(0.07)

qn = 141 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.88(0.02) 0.94(0.01)√
nBias -0.12(0.12) -0.12(0.12) -0.12(0.12) -0.16(0.07) -0.12(0.12)

qn = 281 Cover 0.95(0.01) 0.93(0.02) 0.92(0.01) 0.79(0.01) 0.94(0.01)√
nBias -0.11(0.13) -0.13(0.13) -0.33(0.13) -0.35(0.12) -0.12(0.12)

qn = 421 Cover 0.94(0.01) 0.93(0.01) 0.89(0.01) 0.73(0.02) 0.93(0.01)√
nBias -0.14(0.15) -0.18(0.15) -0.44(0.15) -0.52(0.15) -0.19(0.15)

qn = 561 Cover 0.93(0.01) 0.91(0.01) 0.82(0.02) 0.66(0.02) 0.91(0.01)√
nBias -0.22(0.19) -0.32(0.19) -0.67(0.18) -0.71(0.19) -0.33(0.18)

qn = 631∗ Cover 0.92(0.01) 0.90(0.01) 0.76(0.02) 0.56(0.02) 0.90(0.01)√
nBias -0.34(0.24) -0.50(0.26) -0.73(0.30) -0.80(0.24) -0.46(0.24)

γk = 1/k, k = 1, . . . , qn

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)√
nBias 0.08(0.09) 0.08(0.09) 0.09(0.09) 0.09(0.09) 0.09(0.09)

qn = 141 Cover 0.95(0.01) 0.94(0.01) 0.92(0.01) 0.87(0.01) 0.94(0.01)√
nBias 0.12(0.16) 0.14(0.16) 0.17(0.14) 0.36(0.14) 0.14(0.14)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.88(0.01) 0.82(0.01) 0.93(0.01)√
nBias -0.13(0.14) 0.14(0.14) -0.33(0.11) -0.45(0.13) 0.15(0.12)

qn = 421 Cover 0.93(0.01) 0.92(0.01) 0.80(0.01) 0.73(0.01) 0.92(0.01)√
nBias -0.21(0.18) -0.24(0.18) -0.40(0.11) -0.56(0.11) -0.24(0.13)

qn = 561∗ Cover 0.92(0.01) 0.91(0.01) 0.67(0.01) 0.53(0.02) 0.91(0.01)√
nBias -0.28(0.22) -0.35(0.21) -0.47(0.17) -0.51(0.19) -0.37(0.20)

qn = 631∗ Cover 0.91(0.01) 0.89(0.01) 0.59(0.01) 0.51(0.02) 0.88(0.01)√
nBias -0.29(0.25) -0.33(0.26) -0.55(0.21) -0.61(0.18) -0.42 (0.22)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(1) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(1). In this heteroscedastic design, w̃i,n ∼ N (0, Iqn),
εi,n ∼ N (0, 1), V[εi,n|xi,n,wi,n] = cε(1+(t(x1,i,n)+l

′wi,n)
2/4), and V[xk,i,n|wi,n] = cxk

(1+(l′wi,n)
2/4),

where xk,i,n denotes the kth component of the vector xi,n. The constants cε and cxk
are chosen so that

V[εi,n] = V[xk,i,n] = 1 and t(a) = a1(−1 ≤ a ≤ 1) + sgn(a)(1 − 1(−1 ≤ a ≤ 1)). l is the conformable

vector of ones. “∗” indicates that Ω̂KJ
n is not positive semi-definite in some Monte Carlo samples.
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Table 2.16: Simulation results (d = 5, heteroscedasticity, heterogeneity, β(1))

βj = Φ−1
(

j
d+1

)
, j = 1, . . . , d, γk = 1/k, k = 1, . . . , qn

xi,n ∼ N(0,Σ), wi,n ∼ N(0, Iqn), εi ∼ f(ε) = 0.5ϕ(ε| − 0.5, 0.25) + 0.5ϕ(ε|0.5, 1)
Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01)√
nBias -0.02(0.05) -0.02(0.05) -0.02(0.05) -0.02(0.05) 0.05(0.05)

qn = 141 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.94(0.01)√
nBias -0.05(0.06) -0.05(0.06) -0.05(0.06) -0.07(0.06) 0.06(0.06)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.89(0.02) 0.94(0.01)√
nBias 0.06(0.06) 0.06(0.06) -0.10(0.07) 0.14(0.06) 0.07(0.07)

qn = 421 Cover 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.73(0.02) 0.92(0.01)√
nBias -0.09(0.09) -0.12(0.09) -0.14(0.09) 0.17(0.09) -0.10(0.08)

qn = 561∗ Cover 0.93(0.02) 0.92(0.01) 0.92(0.01) 0.58(0.02) 0.92(0.01)√
nBias -0.12(0.13) -0.15(0.13) -0.15(0.12) -0.20(0.13) 0.14(0.12)

qn = 631∗ Cover 0.94(0.01) 0.91(0.01) 0.90(0.01) 0.44(0.02) 0.91(0.01)√
nBias 0.17(0.17) 0.18(0.16) 0.17(0.13) 0.25(0.17) 0.19(0.17)

xi,n ∼ N(0,Σ), wi,n ∼ N(0, Iqn), εi ∼ f(ε) = 0.5ϕ(ε| − 1.5, 0.25) + 0.5ϕ(ε|1.5, 1)
Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01)√
nBias -0.07(0.10) -0.08(0.10) -0.09(0.10) -0.08(0.10) -0.08(0.09)

qn = 141 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.94(0.01)√
nBias -0.10(0.12) -0.10(0.12) -0.12(0.12) -0.13(0.12) 0.12(0.10)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.94(0.01)√
nBias -0.11(0.12) -0.11(0.12) -0.12(0.12) -0.14(0.12) -0.13(0.13)

qn = 421 Cover 0.94(0.01) 0.94(0.01) 0.92(0.02) 0.78(0.02) 0.93(0.01)√
nBias -0.14(0.15) -0.14(0.15) -0.16(0.15) -0.20(0.15) -0.17(0.16)

qn = 561∗ Cover 0.94(0.01) 0.92(0.01) 0.91(0.01) 0.64(0.02) 0.92(0.01)√
nBias -0.20(0.21) -0.23(0.21) -0.26(0.24) 0.42(0.22) -0.24(0.19)

qn = 631∗ Cover 0.93(0.01) 0.92(0.01) 0.90(0.01) 0.47(0.02) 0.87(0.01)√
nBias -0.29(0.28) -0.31(0.28) -0.33(0.17) 0.85(0.29) 0.41(0.29)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(1) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(1). “
∗” indicates that Ω̂KJ

n is not positive semi-definite
in some Monte Carlo samples.



CHAPTER 2. INFERENCE ON THE BEST POLICIES WITH MANY COVARIATES95

Table 2.17: Simulation results (d = 5, heterogeneity, β(1))

βj = Φ−1
(

j
d+1

)
, j = 1, . . . , d, γk = 1/k, k = 1, . . . , qn

xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98))

Proposed+KJ Proposed+HCK Proposed + HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.95(0.01) 0.96(0.01) 0.98(0.01) 0.96(0.01) 0.96(0.01)√
nBias 0.05(0.05) 0.05(0.05) 0.04(0.05) 0.05(0.05) 0.05(0.06)

qn = 141 Cover 0.94(0.01) 0.93(0.01) 0.95(0.01) 0.91(0.01) 0.94(0.01)√
nBias -0.06(0.06) -0.10(0.06) -0.06(0.06) -0.12(0.06) 0.06(0.06)

qn = 281 Cover 0.94(0.01) 0.93(0.01) 0.94(0.01) 0.88(0.02) 0.94(0.01)√
nBias 0.07(0.07) 0.10(0.07) 0.07(0.07) 0.13(0.07) 0.07(0.08)

qn = 421 Cover 0.94(0.01) 0.93(0.01) 0.94(0.01) 0.78(0.02) 0.91(0.01)√
nBias 0.09(0.09) 0.12(0.09) 0.09(0.09) 0.14(0.09) 0.10(0.09)

qn = 561∗ Cover 0.93(0.02) 0.89(0.01) 0.92(0.01) 0.59(0.02) 0.90(0.01)√
nBias -0.10(0.13) -0.15(0.13) 0.13(0.12) -0.19(0.13) 0.14(0.12)

qn = 631∗ Cover 0.93(0.01) 0.92(0.01) 0.92(0.01) 0.43(0.02) 0.82(0.01)√
nBias 0.19(0.17) 0.17(0.16) 0.16(0.13) -0.30(0.18) 0.21(0.16)

xi,n = 1(x̃i,n > 0), wi,n ∼ N (0, I)

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.95(0.01)√
nBias 0.08(0.09) 0.09(0.09) 0.09(0.09) 0.08(0.09) -0.09(0.09)

qn = 141 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)√
nBias -0.10(0.11) -0.10(0.11) -0.11(0.11) -0.11(0.11) 0.11(0.11)

qn = 281 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01) 0.95(0.01)√
nBias 0.11(0.12) 0.11(0.12) 0.12(0.11) 0.14(0.12) 0.12(0.12)

qn = 421 Cover 0.94(0.01) 0.94(0.01) 0.93(0.02) 0.73(0.02) 0.94(0.01)√
nBias -0.14(0.15) -0.14(0.15) -0.14(0.14) -0.22(0.15) -0.15(0.15)

qn = 561 Cover 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.61(0.02) 0.93(0.01)√
nBias 0.19(0.19) 0.21(0.19) 0.20(0.16) 0.44(0.20) -0.20(0.19)

qn = 631∗ Cover 0.94(0.01) 0.93(0.01) 0.90(0.01) 0.50(0.02) 0.91(0.01)√
nBias 0.24(0.26) 0.30(0.28) 0.35(0.21) 0.72(0.28) 0.32(0.28)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(1) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(1). “
∗” indicates that Ω̂KJ

n is not positive semi-definite
in some Monte Carlo samples.
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Table 2.18: Simulation results (d = 5, heteroscedasticity, heterogeneity, β(1), n = 2000)

βj = Φ−1
(

j
d+1

)
, xi,n ∼ N (0,Σ), wi,n = 1(w̃i,n ≥ Φ−1(0.98)), j = 1,. . . , d

γn = 0

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)√
nBias 0.02(0.03) 0.03(0.03) 0.03(0.03) 0.03(0.03) 0.03(0.03)

qn = 141 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.91(0.02) 0.94(0.01)√
nBias -0.04(0.04) -0.04(0.04) -0.04(0.04) -0.06(0.04) -0.04(0.04)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.93(0.01) 0.88(0.01) 0.93(0.01)√
nBias 0.04(0.05) 0.05(0.05) 0.07(0.05) -0.12(0.05) 0.07(0.05)

qn = 421 Cover 0.94(0.01) 0.94(0.01) 0.91(0.01) 0.85(0.01) 0.93(0.01)√
nBias -0.05(0.05) -0.05(0.05) -0.09(0.05) -0.15(0.05) -0.07(0.05)

qn = 561 Cover 0.94(0.01) 0.93(0.01) 0.91(0.01) 0.82(0.01) 0.91(0.01)√
nBias -0.05(0.05) -0.06(0.05) -0.10(0.05) -0.18(0.05) -0.11(0.05)

qn = 631∗ Cover 0.93(0.01) 0.91(0.01) 0.90(0.01) 0.78(0.01) 0.90(0.01)√
nBias -0.07(0.05) -0.09(0.05) -0.12(0.05) -0.22(0.05) -0.14(0.05)

γk = 1/k, k = 1, . . . , qn

Proposed+KJ Proposed+HCK Proposed+HC3 Proposed+EW No adjustment+KJ

qn = 1 Cover 0.96(0.01) 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01)√
nBias 0.04(0.05) 0.05(0.05) 0.05(0.05) 0.05(0.05) 0.05(0.05)

qn = 141 Cover 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.93(0.01) 0.94(0.01)√
nBias 0.07(0.08) 0.08(0.08) 0.08(0.08) 0.11(0.08) 0.08(0.08)

qn = 281 Cover 0.94(0.01) 0.94(0.01) 0.94(0.01) 0.92(0.01) 0.94(0.01)√
nBias 0.08(0.08) 0.10(0.08) 0.13(0.08) 0.14(0.08) 0.08(0.08)

qn = 421 Cover 0.94(0.01) 0.93(0.01) 0.92(0.01) 0.88(0.01) 0.92(0.01)√
nBias 0.08(0.08) 0.12(0.08) 0.14(0.08) 0.18(0.08) 0.15(0.08)

qn = 561∗ Cover 0.94(0.01) 0.91(0.01) 0.90(0.01) 0.83(0.02) 0.90(0.01)√
nBias 0.09(0.08) 0.15(0.08) 0.17(0.07) 0.23(0.08) 0.18(0.08)

qn = 631∗ Cover 0.92(0.01) 0.90(0.01) 0.86(0.01) 0.76(0.01) 0.85(0.01)√
nBias 0.12(0.08) 0.17(0.08) 0.20(0.05) 0.28(0.08) 0.23(0.08)

Note: “Cover” is the empirical coverage of the 95% confidence interval for β(1) and “
√
nBias ” captures

the root-n scaled Monte Carlo bias for estimating β(1). In this heteroscedastic design, w̃i,n ∼ N (0, Iqn),
εi,n ∼ N (0, 1), V[εi,n|xi,n,wi,n] = cε(1+(t(x1,i,n)+l

′wi,n)
2/4), and V[xk,i,n|wi,n] = cxk

(1+(l′wi,n)
2/4),

where xk,i,n denotes the kth component of the vector xi,n. The constants cε and cxk
are chosen so that

V[εi,n] = V[xk,i,n] = 1 and t(a) = a1(−1 ≤ a ≤ 1) + sgn(a)(1 − 1(−1 ≤ a ≤ 1)). l is the conformable

vector of ones. “∗” indicates that Ω̂KJ
n is not positive semi-definite in some Monte Carlo samples.
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Method Policies(Ask amount) Est (95% CI) p-value

Uncalibrated Same 0.70(0.10, 1.29) 0.023*

25% more 0.67(-0.04, 1.37) 0.065

50% more 0.38(-0.21, 0.96) 0.205

Calibrated Same 0.66(0.07, 1.24) 0.026*

Table 2.19: Uncalibrated and calibrated results under a smaller model with main effects only
(n = 7, 938, p = 53). Estimated treatment effects (Est), 95% confidence intervals (95% CI),
and two-sided p-values for the three “ask amount” policies. “Uncalibrated” refers to the
study results obtained without any adjustment, and the confidence intervals are constructed
based on normal approximation with the estimated covariance matrix Ω̂KJ

n . “Calibrated”
refers to our proposed methodology. The computational time is 533 seconds on a Lenovo
NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell processor.
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Chapter 3

Adaptive Experiments Toward
Learning Treatment Effect
Heterogeneity

3.1 Introduction

Motivation

Understanding and characterizing treatment effect heterogeneity have become increasingly
important in many scientific fields. For example, in precision health, identifying differential
treatment effects serves as an important step towards materializing the benefits of precision
health because it provides evidence regarding how groups of patients with specific character-
istics respond to a given treatment either in efficacy or in adverse effects [133]. As another
example, in large internet companies and social science research, studying the impact of
marketing offers on consumer purchases and evaluations of the effectiveness of government
programs or public policies across different subgroups inform more effective policy-making
[93, 95].

Existing literature in this research area has mostly focused on conducting retrospective
post hoc analyses in observational or randomized experiment data. Even with large-scale
observational data or carefully collected randomized experiment data, statistical bias in these
analyses can not only arise due to the violation of untestable causal assumptions and the
presence of unmeasured confounders in observational data [14, 12, 74, 131, 41, 83], but
also may arise due to the widespread winner’s curse phenomenon when ignoring seemingly
promising heterogeneous treatment effects are selected from the data in an ad hoc fashion
[64, 66, 169, 119, 36].

More concretely, in observational studies, causal conclusions are commonly established
under a set of causal assumptions. For example, one of the commonly imposed causal
assumptions in practice is the unconfoundedness assumption, which states that conditional
on measured confounders, the treatment assignment is as good as random [see 126, for
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example]. Given the unconfoundedness assumption is untestable, there is no guarantee as
to whether established causal conclusions under this assumption are valid [87]. In classical
randomized experiment data, although carrying out valid causal conclusion does not require
imposing untestable causal assumptions, exploring treatment effect heterogeneity could still
be susceptible to the winner’s curse bias when researchers iteratively search for subgroups
with high treatment levels and then only report the results for those subgroupns with large
effects [64, 8, 152].

Our contribution

In this chapter, rather than conducting retrospective analysis in existing datasets, we look
into the problem from a different perspective and propose an adaptive data collection
mechanism–adaptive randomized experiments–to gather reliable causal evidence specifically
targeted toward learning treatment effect heterogeneity. By adaptive, we mean that exper-
imenters are allowed to sequentially allocate and modify experimenter measurement efforts
(such as the treatment allocation probability and the proportions of sequentially enrolled
subgroups) and adapt to the accrued evidence during the experiment [141, 79, 149, 166,
165, 143, 179, 60, 141]; see Section 3.1 for literature review and Section 3.2 for a detailed
introduction. To collect robust evidence towards learning treatment effect heterogeneity, we
formalize our experimental design goal as maximizing the probability of correctly selecting
subpopulations (or subgroups) who respond favorably to the treatment under the language
of large deviation theory (Section 3.3). Without loss of generality, we refer to the best sub-
population or the best subgroup as the subpopulation with the highest treatment level in this
chapter. In what follows, we further break down our contributions from two perspectives:

On the methodology side, our proposed adaptive experiment strategy offers two potential
benefits compared with classical retrospective analysis. On the one hand, compared with
conducting post hoc analysis in observational data, because treatments are still randomly
assigned in adaptive experiments and the treatment variables are independent of any poten-
tial unmeasured confounding variables, the proposed adaptive experiment design strategy
generates samples enabling valid causal conclusions without imposing any untestable causal
assumptions. On the other hand, compared with conducting post hoc analysis from ran-
domized experiment data, our design is equipped with the flexibility to sequentially revise
the experimental strategy. Thus, the proposed adaptive experimental design strategy pos-
sesses the ability to periodically detect individuals who respond favorably to the treatment
and then optimize experimental effort spending based on the inferred context. As a part of
this endeavor, this design feature offers advantages in improving the statistical efficiency of
detecting treatment heterogeneity compared to completely randomized experiments (Propo-
sition 2).

On the theoretical side, we first leverage the large deviation principle to find target “or-
acle” allocation strategies to spend the experimental efforts (Section 3.3), and demonstrate
these oracle allocations are attainable using our proposed design strategies (Lemma 5). In
particular, compared with completely randomized experiments, the derived oracle allocations
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demonstrate the benefit of our design in terms of statistical efficiency gain (Proposition 2)
and the ability to maintain a high correct selection probability of the best subgroup while
allowing the top few subgroups to have closely tied treatment effects (Proposition 3). Next,
unlike classical response adaptive designs, throughout this chapter, we do not restrict the
outcome to following any parametric forms, alleviating the burden of choosing what type of
parametric assumptions should be used in practice. Under mild moment restrictions on the
outcome variables, we show that the proposed design delivers an asymptotic normally dis-
tributed estimator for the subgroup with the highest treatment level, and its variance can be
consistently estimated (Theorem 4 and Theorem 6). Third, because the adopted allocations
during the experiment and the subgroup treatment effect estimator rely on the sequentially
accumulated historical data, characterizing the statistical properties of our proposed design
and making inferences on the proposed estimator can be rather challenging, and some of
the theoretical results might be of independent interest (see Supplementary Materials for
details).

Existing literature

Adaptive experiments have been commonly adopted in clinical trials where patients are en-
rolled sequentially based on certain eligibility criteria, and in recent years they have been
quickly picked up by online platforms to complete A/B tests or digital randomized experi-
ments. Existing adaptive experiment design strategies can be roughly divided into covariate
adaptive design, response adaptive design, and (adaptive) enrichment design. Covariate
adaptive design has been widely used in modern clinical trials to balance treatment assign-
ments across important prognostic factors. This design refers to a randomized treatment
allocation scheme that depends solely on participant covariate information but is indepen-
dent of the observed outcomes. Response adaptive design often refers to the design strategy
in which the treatment assignment probabilities are adapted during the experiment based
on the accrued evidence in the outcomes, with the goal of simultaneously achieving the
experimental objectives and preserving statistical inference validity [79, 69, 60, 139]. Adap-
tive enrichment designs are often adopted in clinical trials and use interim data to iden-
tify treatment-sensitive patient subgroups by changing patient enrollment criteria. In these
designs, experimenters often partition the population into pre-defined subgroups based on
biomarkers measured at baseline and enroll patients in multiple stages [143]. In what follows,
we provide a more detailed literature review of the above-mentioned adaptive experimental
design strategies and their connections and differences to our design strategy.

In the response adaptive design literature, the early design can be traced back to Pólya’s
urn model [46]. Based on a randomized urn model and Zelen’s play-the-winner-rule [180], Wei
and Durham later developed the randomized play-the-winner rule in clinical trial settings
[174]. More discussions on the urn-based designs can be found in [141] and [139]. The
asymptotic properties of urn models are discussed in [88] and [17]. Besides the urn type
of designs, another conventional class of response adaptive designs is the doubly adaptive
biased coin (DBCD) design. The early DBCD design can be found in [48], which has its root
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in Efron’s biased coin design [44]. The asymptotic properties of DBCD designs are studied in
various works [80, 159, 81]. However, much of the existing work on response adaptive designs
aims to optimize the estimation efficiency of the overall treatment effect but is not tailored
to study treatment effect heterogeneity [140, 78]. Although many response adaptive designs
are carried out in fully adaptive settings, Hahn et al. propose a design in a multi-stage
setting (Table 3.1). More specifically, this work proposes to revise the treatment assignment
probability by minimizing the asymptotic variance of the average treatment effect estimator.
Nevertheless, this design is carried out in two stages and is not designed to identify treatment
effect heterogeneity.

Instead of relying solely on the outcome variable to optimize for the experimental goals,
one may further incorporate covariate information. RAR that further incorporate covariate
information is known as covariate-adjusted response adaptive (CARA) designs [18, 142, 184].
Early work in [128] and [181] proposes to balance covariates based on the biased coin design.
Hu et al. propose a family of CARA designs that could account for both efficiency and
ethics [82]. Aletti et al. generalize the CARA design framework to incorporate nonparametric
estimates of the conditional response function [4]. Some other CARA designs are discussed in
[113], [167], and [185]. In addition, the theoretical framework for the rerandomization design,
that is, to balance covariates in different treatment arms before conducting experiments, is
established in [122], and [121]. Later, Zhou et al. extend from the prior work and propose to
conduct sequential rerandomization where subjects are sequentially enrolled in groups [187].

In the adaptive enrichment design literature, the early work in [60] considers revising the
enrollment proportions of two discrete patient subgroups defined by a single biomarker and
provides conditions under which the type I error rate is preserved. Some later work with
the similar setup includes [172], [144], and [145]. Simon and Simon develop a more general
framework of adaptive enrichment designs that can handle multiple biomarkers at the interim
analysis. Stallard considers overlapping subgroups defined by a continuous biomarker [151].
However, much of the existing work on adaptive enrichment designs aims to preserve the type
I error rate instead of identifying the best subgroup with high probability. In addition, many
adaptive enrichment designs are carried out across multiple stages but are not conducted in
a fully adaptive manner.

Our work also leverages the mathematical framework provided by the large deviation
theory [77, 40, 157]. The general large deviation theory shares a natural connection with
concentration inequality. An early theorem in large deviation framework–Sanov’s theorem–
lays out the foundation for various concentration inequality results [75, 76, 43].

3.2 A synthesized adaptive experiment framework

In this section, we introduce a unified design framework in a two-arm (a treatment arm
and a control arm) experiment along with notation. Our design framework integrates both
classical response adaptive randomization (RAR) design and enrichment design frequently
adopted in practice.
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Suppose the experiment participants are sequentially enrolled in T stages. The total
number of enrolled subjects is N =

∑T
t=1 nt, where nt denotes the number of subjects in

Stage t, for t = 1, . . . , T . For the data collected in Stage t, we denote subject i’s treatment
assignment status as Dit ∈ {0, 1}, i = 1, . . . , nt, with Dit = 1 being the treatment arm and
Dit = 0 being the control arm. Denote subject i’s covariate information as Xit ∈ Rp and the
observed outcome as Yit ∈ R. To formally introduce treatment (or causal) effects, we follow
the Neyman-Rubin causal model [125, 148] in this chapter. Define Yit(d) as the potential
outcome we would have observed if subject i receives treatment d at Stage t, for d ∈ {0, 1}.
The observed outcome can then be written as

Yit = DitYit(1) + (1−Dit)Yit(0), i = 1, . . . , nt, t = 1, . . . , T.

In line with existing literature in adaptive experiments, we assume that the outcomes are
observed without delay, and their underlying distributions do not shift over time [79]. Fur-
thermore, we define the history, i.e., the collected data, up to Stage t as

Ht := {Hs}ts=1 ≜ {(Yis, Dis, Xis), i = 1, . . . , ns}ts=1.

To investigate treatment effect heterogeneity, we divide the sample space X of the covari-
ates Xit into m non-overlapping regions, denoted as {Sj}mj=1 (an extension of an overlapping
division shall be discussed in Section 3.9). In clinical settings, each division of the sample
space is frequently referred to as a subgroup [11, 96, 179]; each subgroup of subjects, by
definition, has different characteristics. Here, we assume subgroups are pre-specified. We
measure the effectiveness of the treatment in each subgroup by taking the mean difference
between the potential outcomes in the treated and controlled arms:

τj = E[Yit(1)− Yit(0)|Xit ∈ Sj], j = 1, . . . ,m.

We further denote the total number of subjects enrolled in subgroup j as Nj =
∑T

t=1 ntj.
In adaptive experiments, practitioners aim to sequentially allocate experimental efforts

to reach certain pre-specified design goals. Such efforts often include actively recruiting
subjects of different characteristics in multiple stages and revising treatment assignment
(or allocation) probabilities based on accrued evidence during the experiment. In the cur-
rent literature, there are two widely adopted design strategies focusing on dispensing these
experimental efforts differently, which we shall discuss below:

The first strategy is called response adaptive randomization (RAR) design or covariate-
adjusted response adaptive (CARA) design. In these designs, experiments can sequentially
revise the treatment assignment strategies based on responses accrued during the experiment,
but, unlike enrichment designs, often do not change the enrollment criteria across multiple
stages. RAR designs incorporating additional covariate information are more frequently
referred to as covariate-adjusted response adaptive (CARA) designs. The design goals of
response adaptive designs tend to vary in different application areas, and we refer interested
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readers for [134] for a comprehensive review. Formally, by defining the treatment assignment
probability (or propensity scores) for subjects in subject j as

et,j := P(Dit = 1|Xit ∈ Sj), t = 1, . . . , T, j = 1, . . . ,m,

RAR and CARA design aim to dynamically revise et,j to reach desired design goals.
The second strategy is called (adaptive) enrichment design, which has been frequently

carried out in clinical settings to identify patient subgroups that benefit the most from a
given treatment [60, 150, 105, 143]. In these designs, experimenters often fix the treatment
allocation probability during the entire experiment, but they sequentially enroll different
subgroups of participants over different stages. Here, the word “enrichment” spells out the
action of actively recruiting a new batch of subjects who may have characteristics different
from the previous stage, and the word “adaptive” indicates that the enrollment proportions
of subjects with different characteristics can be adaptively revised based on the current
understanding of treatment effect heterogeneity. Formally, by defining an auxiliary variable
Zit ∈ {1, 0} that indicates if subject i is enrolled at Stage t, we introduce the enrichment
proportion of subjects falling into region Sj in Stage t as

pt,j := P(Xit ∈ Sj|Zit = 1), t = 1, . . . , T, j = 1, . . . ,m.

Enrichment designs sequentially revise pt,j across multiple stages to reach their design ob-
jectives.

Our proposed adaptive experimental design framework unifies response adaptive designs
and enrichment designs by formalizing them as a sequential policy learning problem (see
Table 3.1 for a summary). We hope that this unified framework broadens the practicability
of the proposed design framework under various practical constraints. In particular, we
define a sequential policy π consisting of a sequence of policies π1, . . . , πT , and each πt is a
mapping from the historical data Ht := {Hs}ts=1 accumulated up to Stage t to either the
subgroup enrichment proportions pt+1 ≜ (pt+1,1, . . . , pt+1,m), or to the treatment assignment
probabilities et+1 ≜ (et+1,1, . . . , et+1,m), that is:

πt : {Hs}t−1
s=1 → et ≜ (et,1, . . . , et,m). Response adaptive design

πt : {Hs}t−1
s=1 → pt ≜ (pt,1, . . . , pt,m), Adaptive enrichment design.

Other than dispending different experimental strategies, practitioners can also flexibly
choose the number of stages T and the number of participants nt in each stage of the exper-
iment. We refer to experimental design strategies with large nt and finite T as multi-stage
designs, and we refer to designs with small nt and large T as fully adaptive designs. While
both designs tend to share similar large sample properties, they have different strengths
and can often be applied in scenarios with different practical constraints. On the one hand,
multi-stage designs can be preferable in clinical settings or social experiments where ex-
perimenters often have a limited number of opportunities to revise the experimental effort
allocation during the experiment (see [93, 62] for example). Fully adaptive designs are more
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Table 3.1: Examples of frequentist data collection mechanisms in adaptive experiments.

πt
nt = 1 with large T Large nt with finite T

Fully adaptive Multi-stage
Response adaptive Adaptive propensity score

Response adaptive design
[141, 149, 79, 166] [69]

{Hs}ts=1 → {es}t−1
s=1

Covariate-adjusted Sequential
response adaptive rerandomization

[167, 82, 113, 185, 4] [122, 121, 187]
Enrichment design

Not available
Frequentist enrichment design

{Hs}ts=1 → {ps}t−1
s=1 [105, 150, 60, 151, 144]

readily to be integrated into digital experiments such as online A/B testing or digital clinical
trials in which sequentially allocating experimental efforts in a large number of stages is
more practical and less costly (see [95, 134] for example). On the other hand, shall be seen
in our simulation studies in Section 3.7, benefiting from frequently updated experimental
strategy, fully adaptive designs tend to have superior finite sample performance compared
to multi-stage designs when the sample size N is rather small.

Benefiting from the above framework, while existing adaptive experiments normally tar-
get one of the experimental schemes listed in Table 3.1, the design strategies we shall propose
can be applied in all four settings. This demonstrates that the proposed design strategy is
flexible and completes existing frequentist adaptive design strategies, suggesting our designs
can be potentially applied to online experiments conducted in e-commerce platforms, clinical
trials conducted in health industries, and policy evaluation experiments conducted for social
science research. In what follows, we introduce the general goal of our design strategy.

3.3 Design objectives and oracle allocation strategies:

A large deviation perspective

When participants are enrolled sequentially in an adaptive experiment, the adoption of
multi-stage sequential policy learning allows experiment designers to sequentially modify
their policies to reach a particular design goal, either by adapting the treatment allocation
of participants or by enrolling fewer participants in non-effective treatment groups. In the
hope of collecting robust evidence towards learning treatment effect heterogeneity, our design
goal aims to inform practitioners that the identified subgroups who mostly benefited (or
were harmed) from the treatment in the experiment are indeed the best-performing (or
worst-performing) subgroups in the population.

To illustrate the importance of correctly identifying the best-performing subgroup from
experiments, we shall provide an example. MONET1 study is a randomized controlled
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trial aiming to evaluate the treatment efficacy of a new drug (motesanib combined with
carboplatin/paclitaxel) on advanced nonsquamous nonsmall-cell lung cancer (NSCLC). Re-
searchers identify that the East Asian subgroup exhibits the largest treatment effect [96].
In light of the identified best-performing subgroup, Amgen, the drug company, invests a
large amount of budget in moving forward with this drug. Unfortunately, the follow-up
trial concludes that the identified best-performing subgroup is, in fact, not significant. The
failure of MONET1 suggests that correctly identifying the best-performing subgroup from
the experiment is crucial for further generalizing scientific findings.

To formulate our design objective from a statistical standpoint, when the experiment
ends, we aim to construct reliable estimators of the subgroup average treatment effect so that
the probability of correctly identifying the subgroups with the most beneficial (or harmful)
effects is maximized. More formally, without loss of generality, we assume that the pop-
ulation subgroup average treatment effects satisfy τ1 > τ2 > . . . > τm (generalizations to
other possible effect orders are provided in Section 3.9), and we have constructed consistent
estimators τ̂1, . . . , τ̂m of τ1, . . . , τm based on the collected data at the end of the experiment.
Because the joint distribution of τ̂1, . . . , τ̂m not only depends on the underlying data dis-
tribution of the potential outcome and covariates but also crucially relies on the treatment
assignment mechanism and subgroup enrollment proportions, these estimators can also be
viewed as a function of the historical data and the corresponding policy adopted in the adap-
tive experiment. Then, in a simple case where we aim to find the best subgroup with the
largest treatment effect in the population (i.e., the first subgroup S1), our design objective is
to find a sequential policy π belonging to a set of feasible policies Π, so that the probability
of the estimated first subgroup treatment effect margins out the others is maximized. As in
this simple case, the first subgroup has the largest treatment effect in the population, the
correction selection probability can be written as P

(
τ̂1 ≥ max2≤j≤m τ̂j

)
.

Unfortunately, without imposing additional parametric distributional assumptions on the
historical data, directly searching for a policy that maximizes the correct selection probability
results in an intractable optimization problem, as deriving a general analytic form of the
correct selection probability is nearly impossible. One seemingly natural alternative is to
consider solving this optimization problem in an asymptotic sense. Because by letting the
total sample size N go to infinity, we can approximate the distribution of τ̂j with a Gaussian
distribution under mild conditions. Nevertheless, given τ1 > τ2 and for any policy π, the
correct selection probability P(τ̂1 ≥ max2≤j≤m τ̂j) grows exponentially fast to one as N →∞
and thus is no longer a function of π, suggesting that directly searching for a sequential
policy maximizing the correct selection probability in an asymptotic sense is infeasible.

To avoid the above-mentioned issues, for now, we abandon the study of a sequential
policy maximizing correct selection probability and instead study in an ideal but unrealistic
situation. For us, the ideal situation is that, before the experiment starts, we acquire perfect
knowledge about the joint distribution of the potential outcomes and the covariates. Such
an oracle then allows us to study the best strategy to allocate experimental efforts so that
the correct selection probability is maximized. Nevertheless, depending on the underlying
distribution, because the correct selection probability can still take a complicated form with
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finite N or tend to 1 with large N , searching for the oracle allocation strategy remains a
challenging task. This motivates us to further magnify the correction selection probabil-
ity through the lens of the large deviation principle [77, 40], which allows us to precisely
characterize the correction selection probability with the minimum of a set of rate functions
{G(S1,Sj)}mj=2, that is

lim
N→∞

1

N
log
(
1− P

(
τ̂1 ≥ max

2≤j≤m
τ̂j
))

= − min
2≤j≤m

G(S1,Sj; e1, p1, ej, pj).

and we defer the mathematical details of the above derivation to Section 3.6. The rate
functionG(S1,Sj; e1, p1, ej, pj), which often has a closed-form expression relying on treatment
allocations and subgroup enrichment proportions in the best subgroup and subgroup j,
measures the exponential decay rate of the probability of the rare event that the estimated
best subgroup treatment effect τ̂1 is smaller than the estimated subgroup treatment effect τ̂j
as the sample size N →∞.

Borrowing the language similar to [42] and [53], we are ready to define oracle allocation
strategies in the response adaptive designs and the enrichment designs as the following. In re-
sponse adaptive designs, when the enrollment criteria are fixed, and the subgroup proportions
cannot be modified, we define the oracle treatment allocation probabilities e∗ ≜ (e∗1, . . . , e

∗
m)

as the solution to the following constraint optimization problem:

max
e∈(0,1)m

{
min

2≤j≤m
G(S1,Sj; e1, ej) :

m∑
j=1

pjej = c1, c2 ≤ ej ≤ 1− c2
}
,

where c1 and c2 are pre-specified positive constants between zero and one. Similarly, in
enrichment designs, when the treatment assignment probabilities in different subgroups are
fixed, and the propensity scores e = (e1, . . . , em) cannot be modified, we define the oracle
subgroup enrichment proportions p∗ ≜ (p∗1, . . . , p

∗
m) as the solution to the following constraint

optimization problem

max
p∈(0,1)m

{
min

2≤j≤m
G(S1,Sj; p1, pj) :

m∑
j=1

pj = 1, pj ≥ 0
}
.

The closed-form solution of the above two optimization problems critically relies on the spe-
cific choice of the subgroup treatment effect estimators, and we thus leave more detailed
discussions of the oracle allocation strategies for the response adaptive design and the en-
richment design in Sections 3.4 and 3.5. As shall be made clear in later sections, the oracle
allocation strategies offer considerable advantages over traditional adaptive experimental
designs, including improving the efficiency in estimating the best subgroup treatment effect
(Proposition 2) and allowing the population treatment effect of the second-best subgroup to
stay closer to that of the best subgroup (Proposition 3).

In practice, when experimenters have no prior knowledge about the joint distribution of
the subgroup treatment effect estimators, adaptive experiments offer a natural environment
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to sequentially learn the unknown parameters in each subgroup and adjust the allocation
of experimental efforts during the experiment. In the following sections, we aim to answer
the following two research questions: When we have no prior information about the data-
generating process, is it possible to carry out adaptive experimental design strategies that
sequentially study the joint distribution of the underlying data and meanwhile use learned
information to better allocate experimental efforts as the experiment progresses? When the
experiment is finished, can such designs produce subgroup treatment effect estimators that
have competing performances with the ones under the oracle allocation strategies?

3.4 Response adaptive design with adaptive

treatment allocation

In this section, we start with introducing the oracle treatment allocation strategy in response
adaptive designs. We propose two design strategies for fully adaptive and multi-stage settings
(Table 3.1).

Oracle treatment allocation in response adaptive designs

As the rate function depends on the choice of the subgroup treatment effect estimators, in
this section, we adopt the classical inverse propensity score weighting (IPW) [138] to estimate
the subgroup treatment effects

τ̂j =
1

N

N∑
i=1

{
1(Xi∈Sj)

pj

DiYi
ej

}
− 1

N

N∑
i=1

{
1(Xi∈Sj)

pj

(1−Di)Yi
1− ej

}
, j = 1, . . . ,m. (3.1)

We leave an extension with the augmented IPW estimator [136] to Section 3.9.
Benefiting from the simple form of the above IPW estimator and based on the Gartner-

Ellis Theorem [40, ch.2.3] in the large deviation theory, we are able to derive a closed form
expression of the rate function G(S1,Sj; e) with

G(S1,Sj; e1, ej) =
(τj − τ1)2

2
(
σ2
1(e1) + σ2

j (ej)
) , σ2

j (ej) =
V[Y (1)|X ∈ Sj]

pjej
+

V[Y (0)|X ∈ Sj]
pj(1− ej)

,

(3.2)

where σ2
j (ej) measures the variance of τ̂j.

With the closed-form expression of the rate function in hand, we are now ready to explore
the oracle treatment allocation e∗ ≜ (e∗1, . . . , e

∗
m), which solves the following optimization
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problem:

max
e

min
2≤j≤m

(τj − τ1)
2

2
(
σ2
1(e1) + σ2

j (ej)
) , ← Maximize correct selection probability

Problem A

s.t.
m∑
j=1

pjej = c1, ← “Cost”/practical constraint

c2 ≤ ej ≤ 1− c2, j = 1, . . . ,m, ← Feasibility constraints

where c1 and c2 are positive constants between 0 and 1. Here, the “cost” or practical
constraint restricts the proportion of subjects receiving the treatment, and the feasibility
constraint restricts the treatment assignment probability in each subgroup to be bounded
away from zero and one. Because the objective function is the minimum of m − 1 rate
function, the above optimization problem is nonlinear. We instead work with its equivalent
epigraph representation:

max
e

z, ← Linear objective function

Problem B

s.t.
m∑
j=1

pjej = c1, ← “Cost”/practical constraint

c2 ≤ ej ≤ 1− c2, j = 1, . . . ,m, ← Feasibility constraints

(τj − τ1)
2

2
(
σ2
1(e1) + σ2

j (ej)
) − z ≥ 0, j = 2, . . . ,m.← Equivalent to maximize

correct selection probability

The above epigraph representation, on the one hand, yields a concave optimization prob-
lem that can be efficiently solved by open-source software such as IPOPT [168] and GUROBI
[67]; on the other hand, it allows us to explore the Lagrangian dual problem and derive a
neat form of the oracle treatment allocations in some simplified cases (see Remark 7 below),
providing statistical insights into the proposed design strategy.

Remark 7 (Oracle treatment allocation in a simplified case). Let c1 = 1/2, that is half of
the subjects can be assigned to treatment, and assume (1) the expectation of the conditional
variance of the potential outcome is the same in the treatment and control arms for each
subgroup, that is V[Y (1)|X ∈ Sj] = V[Y (0)|X ∈ Sj], for j = 1, . . . ,m, and (2) each subgroup
has equal proportion with pj = 1

m
. The oracle treatment allocation can be found by solving

the following equations:
(τj−τ1)2

V[Y (1)|X∈S1]
e1(1−e1)

+
V[Y (1)|X∈Sj ]

ej(1−ej)

= (τk−τ1)2

V[Y (1)|X∈S1]
e1(1−e1)

+
V[Y (1)|X∈Sk]

ek(1−ek)

,∑m
l=1 plel =

1
2
.
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Because ej does not have closed-form expression, we shall provide some intuitions on ej
in Figure 3.1. We consider three subgroups and two difference scenarios: (I) Let τ1 = 3,
τ3 = 0.5, σ1 = σ2 = σ3 = 2. We show the change of e2 with respect to τ2. (II) Let τ1 = 3,
τ2 = 2, τ3 = 1, and σ1 = σ3 = 2. We show the change of e2 with respect to σ2.

Figure 3.1: The change of oracle treatment allocation in subgroup 2.

If we further assume σ2
1(e1) ≪ σ2

j (ej), we can derive the closed-form expression of the
oracle treatment allocation as

e∗j =
αj

2
m

∑m
j=1 αj

,
(
αj −

1

2

)2
=
∣∣∣1
4
− C × V[Y (1)|X ∈ Sj]

(τj − τ1)2
∣∣∣ ∈ (0, 1

4

)
, j = 2, . . . ,m, (3.3)

where C is a known constant ensures αj ∈ (0, 1) and its specific form can be found in the
Supplementary Material Section B, and e∗1 is the solution to the following equation:

e21(1− e1)2

V[Y (1)|X ∈ S1](2e1 − 1)
=

d∑
j=2

e∗2j (1− e∗j)2

V[Y (1)|X ∈ Sj](2e∗j − 1)
.

Figure 3.1 provides some intuitions on the oracle treatment allocation strategy. Intu-
itively, when τj is closer to τ1 or when the variance in subgroup j increases, subgroup j
will require more experimental efforts to explore, and thus the oracle treatment allocation
design will assign a larger portion of subjects to the treatment arm in subgroup j. The term
V[Y (1)|X∈Sj ]

(τj−τ1)2
in Eq (3.3) shares the similar interpretation.

After obtaining the oracle treatment allocation, we want to approximate the oracle treat-
ment allocation with accrued data in an adaptive experiment environment. In what follows,
we shall discuss our proposed adaptive treatment allocation strategy in fully adaptive settings
and multi-stage settings.
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Fully adaptive case with large T and small nt

In this section, we provide our proposed design strategy in the fully adaptive setting with
large T and small nt (Table 3.1). The derived sequential policy πFA-RA = (π1, . . . , πt−1)
enables us to dynamically allocate the experimental efforts so that the derived subgroup
treatment effect estimator shares the same performance as the one delivered by the oracle
allocation strategies.

Stage 1. Enroll a portion of subjects from all the considered subgroups. Then randomly
assign subjects in each subgroup to the treatment arm with a pre-specified propensity score,
such as e1j =

1
2
, j = 1, . . . ,m.

As we have no prior information about enrolling participants, Stage 1 of our design serves
as an explorations stage, in which we obtain initial estimates of the subgroup treatment
effects τ̂1j and their standard errors σ̂2

1j:

τ̂1j =

∑n1

i=1 1(Xi1∈Sj)Di1Yi1∑n1

i=1 1(Xi1∈Sj)Di1

−
∑n1

i=1 1(Xi1∈Sj)(1−Di1)Yi1∑n1

i=1 1(Xi1∈Sj)(1−Di1)
,

σ̂2
1j =

∑n1

i=1

(
Yi1Dis1(Xi1∈Sj) − 1

n1

∑n1

i=1{Yi1Di11(Xi1∈Sj)}
)2∑n1

i=1 1(Xi1∈Sj)Di1

−
∑n1

i=1

(
Yi1(1−Di1)1(Xi1∈Sj) −

∑n1

i=1{Yi1(1−Di1)1(Xi1∈Sj)}
)2∑n1

i=1 1(Xi1∈Sj)(1−Di1)
.

Stage t, for t = 2, . . . , T − 1. Obtain ê∗t by solving the sample analogue of Problem B,
that is

ê∗t = argmax
e

{
z :

m∑
j=1

p̂t,jej = c1, c2 ≤ ej ≤ 1− c2, min
2≤j≤m

(τ̂t−1,j − τ̂t−1,1)
2

2
(
σ̂2
t−1,1(e1) + σ̂2

t−1,j(ej)
) − z ≥ 0

}
,

(3.4)

where

τ̂t−1,j =

∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)DisYis∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)Dis

−
∑t−1

s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)Yis∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)
,

σ̂2
t−1,j(ej) =

t−1∑
s=1

1

ns

ns∑
i=1

(
YisDis1(Xis∈Sj) − 1

ns

∑ns

i=1{YisDis1(Xis∈Sj)}
)2

p̂t−1,jej

−
t−1∑
s=1

1

ns

ns∑
i=1

(
Yis(1−Dis)1(Xis∈Sj) − 1

ns

∑ns

i=1{Yis(1−Dis)1(Xis∈Sj)}
)2

p̂t−1,j(1− ej)
.

Assign treatment according to the learned policy πt : {Hs}t−1
s=1 → ê∗t = (ê∗t,1, . . . , ê

∗
t,m).
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In each Stage t, based on the newly collected data from the previous stage {Ht−1}, we
renew our understanding of the underlying data distribution and obtain a pair of updated
estimates (τ̂t−1,j, σ̂

2
t−1,j) for each subgroup. These updated estimates thus enable us to better

mimic the behavior of the oracle treatment allocation strategy by solving a refined optimiza-
tion problem defined in Eq (3.4) and revise the treatment assignment accordingly. In Stage
t, we assign treatments based on ê∗T using the historical data collected up to Stage T − 1.

Statistical inference after Stage T . Construct the final subgroup treatment effect esti-
mator along with its standard error:

τ̂j =
n1

N
·
( 1

n1

n1∑
i=1

1(Xi1∈Sj)Di1Yi1

ê1 · p̂j
− 1

n1

n1∑
i=1

1(Xi1∈Sj)(1−Di1)Yi1

(1− ê1) · p̂j

)
(3.5)

+
N − n1

N

( 1

N − n1

T∑
s=2

ns∑
i=1

1(Xis∈Sj)DisYis

ê∗s · p̂j
− 1

N − n1

T∑
s=2

ns∑
i=1

1(Xis∈Sj)(1−Dis)Yis

(1− ê∗s) · p̂j

)
,

σ̂2
j =

n1

N

( 1

n1

n1∑
i=1

(
Yi1Di11(Xi1∈Sj) − Ȳ1j

)2
ê1 · p̂j

+
1

n1

n1∑
s=1

(
Yi1(1−Di1)1(Xi1∈Sj) − Ȳ0j

)2
(1− ê1) · p̂j

)
(3.6)

+
N − n1

N

( 1

N − n1

T∑
s=2

ns∑
i=1

(
YisDis1(Xis∈Sj) − Ȳ1j

)2
ê∗s · p̂j

(3.7)

+
1

N − n1

T∑
s=2

ns∑
i=1

(
Yis(1−Dis)1(Xis∈Sj) − Ȳ0j

)2
(1− ê∗s) · p̂j

)
.

where p̂j =
∑T

s=1

∑ns
i=1 1(Xis∈Sj)

N
,

Ȳ1j =
1

N

T∑
s=1

ns∑
i=1

YisDis1(Xis∈Sj),

and

Ȳ0j =
1

N

T∑
s=1

ns∑
i=1

Yis(1−Dis)1(Xis∈Sj).

Then, identify the best subgroup as the one exhibiting the maximal treatment effect size:

j∗ = argmax
1≤j≤m

τ̂j. (3.8)

Lastly, construct a two-sided level-α confidence interval for the selected best subgroup as[
τ̂j∗ ± Φ−1(1− α/2) · σ̂j∗/

√
N

]
. (3.9)
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Multi-stage case with small T and large nt

In this section, we provide an alternative multi-stage design strategy with small T and large
nt, when experimenters can not revise the treatment assignment strategy too frequently.
Stage 1 and the statistical inference after Stage t are the same in fully adaptive and multi-
stage settings. In Stage t, however, the multi-stage setting requires an additional step, as
shown below:

Stage t, for t = 2, . . . , T −1. (a) Solve for ê∗t as in the fully adaptive setting. (b) In each
subgroup, assign subjects to the treatment arm with probability ẽ∗tj, where

ẽ∗tj =
1

ntj

((
ê∗tj

t∑
s=1

nsj

)
−

t−1∑
s=1

nsj ẽ
∗
sj

)
, j = 1, . . . ,m, t = 2, . . . , T.

To understand the extra step in the multi-stage setting, we can consider a scenario with
T = 2. Recall that our experimental goal is to maximize the correct selection probability of
identifying the best subgroup, and the correct selection probability is maximized under the
proposed oracle treatment allocation. Therefore, we want the actual treatment allocation
after Stage 2 to approximate the oracle treatment allocation. Considering that the initial
stage treatment allocation ê1j might be far away from the oracle treatment allocation, we
want to account for the number of subjects already assigned to the treatment arm in Stage
1 when allocating subjects in Stage 2 following the step shown above.

3.5 Adaptive enrichment design

In this section, we start by introducing the oracle enrichment design. We then propose two
design strategies for multi-stage and fully adaptive settings (Table 3.1).

Oracle subgroup enrichment proportions

Based on the Gartner-Ellis Theorem, we are able to derive the closed-form expression of the
rate function in the subgroup enrichment design:

G(S1,Sj;p) =
(τj − τ1)2

2
(
σ2
1(p1) + σ2

j (pj)
) , σ2

j (pj) =
E[σ2

1(X)|X ∈ Sj]
pjej

+
E[σ2

0(X)|X ∈ Sj]
pj(1− ej)

.

(3.10)
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With the closed form of the rate function, we can find the oracle subgroup enrichment
proportion p∗ ≜ (p∗1, . . . , p

∗
m) that solves the following optimization problem:

max
e

z, ← Linear objective function

Problem C

s.t.
m∑
j=1

pj = 1, pj > 0, j = 1, . . . ,m, ← Feasibility constraints

(τj − τ1)
2

2
(
σ2
1(p1) + σ2

j (pj)
) − z ≥ 0, j = 2, . . . ,m.← Equivalent to maximize

correct selection probability

The feasibility constraints suggest that the subgroup enrichment proportions should sum up
to 1, and each subgroup enrichment proportion is non-negative. To provide some intuition
on the oracle enrichment proportion p∗, we present the closed-form expression of p∗ in a
simplified setting (Remark 8).

Remark 8. In a simplified setting, we assume σ2
1(p1) ≪ σ2

j (pj). Let σ2
j := E[σ2

1(X)|X ∈
Sj]/ej + E[σ2

0(X)|X ∈ Sj]/(1− ej). The closed-form expression of the oracle enrichment
proportion is

p∗j =
βj∑m
j=1 βj

, βj =

{
σ2
j/(τj − τ1)2 j ̸= 1,

σj
√∑

l ̸=1 β
2
l /σ

2
l j = 1.

(3.11)

From Eq (3.11), we observe that for subgroup j, the enrichment proportion depends on
both the subgroup variance and the squared distance between subgroup j’s treatment effect
and the best subgroup’s treatment effect. Intuitively, when τj is closer to τ1 or when subgroup
j has a larger variance σ2

j , p
∗
j increases, and experimenters will enroll a larger proportion of

subjects from subgroup j.

Proposed adaptive enrichment designs

In this section, we illustrate our proposed enrichment design in the multi-stage setting with
large nt and small T (Table 3.1). The derived sequential policy πMS-AE = (π1, . . . , πt−1)
enables us to adaptively revise subgroup enrichment proportions so that the estimated sub-
group treatment effect estimator achieves the similar performance as the one obtained by
the oracle enrichment strategy.

Stage 1. Enroll subjects from all the considered subgroups and set the subgroup enrichment
proportion as p1j =

1
m
. In each subgroup, randomly assign the subjects to the treatment arm
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with e1j =
1
2
. We estimate τ̂1j and σ̂2

1j as

τ̂1j =

∑n1

i=1 1(Xi1∈Sj)Di1Yi1∑n1

i=1 1(Xi1∈Sj)Di1

−
∑n1

i=1 1(Xi1∈Sj)(1−Di1)Yi1∑n1

i=1 1(Xi1∈Sj)(1−Di1)
,

σ̂2
1j =

1

n1

n1∑
i=1

(
Yi1Dis1(Xi1∈Sj) − 1

n1

∑n1

i=1{Yi1Di11(Xi1∈Sj)}
)2

p1j ·
∑n1

i=1Di1

+
1

n1

n1∑
i=1

(
Yi1(1−Di1)1(Xi1∈Sj) − 1

n1

∑n1

i=1{Yi1(1−Di1)1(Xi1∈Sj)}
)2

p1j ·
∑n1

i=1(1−Di1)
.

Here, we consider p1j =
1
m
, j = 1, . . . ,m, meaning that an equal number of subjects are

enrolled from each subgroup. Choosing equal enrichment proportions at the initial stage
is sensible because we want to start exploring each subgroup with the same amount of
experimental effort.

Stage t, for t = 2, . . . , T−1. (a) Obtain p̂∗t by solving for the sample analogue of Problem
C, that is

p̂∗t = argmax
p

{
z :

m∑
j=1

pj = 1, pj > 0, j = 1, . . . ,m, min
2≤j≤m

(τ̂t−1,j − τ̂t−1,1)
2

2
(
σ̂2
t−1,1(p1) + σ̂2

t−1,j(pj)
) − z ≥ 0

}
,

where

τ̂t−1,j =

∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)DisYis∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)Dis

−
∑t−1

s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)Yis∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)
,

σ̂2
t−1,j(pj) =

t−1∑
s=1

1

ns

ns∑
i=1

(
YisDis1(Xis∈Sj) − 1

ns

∑ns

i=1{YisDis1(Xis∈Sj)}
)2

pj êt−1,j

+
t−1∑
s=1

1

ns

ns∑
i=1

(
Yis(1−Dis)1(Xis∈Sj) − 1

ns

∑ns

i=1{Yis(1−Dis)1(Xis∈Sj)}
)2

pj(1− êt−1,j)
.

(b) Sample new subjects from each subgroup with probability p̃∗tj, where

p̃∗tj =
1

nt

((
p̂∗tj

t∑
s=1

ns

)
−

t−1∑
j=1

ntj

)
, j = 1, . . . ,m.

Following the similar reasoning in Section 3.4, we re-scale the estimated optimal subgroup
enrichment proportion p̂∗tj by the number of enrolled subjects in the previous stages. In Stage
T , we enrich subjects from each subgroup based on p̂∗T .
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Statistical inference after Stage T . Construct the final subgroup treatment effect esti-
mator:

τ̂j =

∑T
s=1

∑ns

i=1 1(Xis∈Sj)DisYis∑T
s=1

∑ns

i=1Dis1(Xis∈Sj)

−
∑T

s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)Yis∑T
s=1

∑ns

i=1(1−Dis)1(Xis∈Sj)

, (3.12)

σ̂2
j =

∑T
s=1

∑ns

i=1

(
YisDis1(Xis∈Sj) − 1

ns

∑ns

i=1{YisDis1(Xis∈Sj)}
)2∑T

s=1

∑ns

i=1Dis1(Xis∈Sj)

(3.13)

+

∑T
s=1

∑ns

i=1

(
Yis(1−Dis)1(Xis∈Sj) − 1

ns

∑ns

i=1{Yis(1−Dis)1(Xis∈Sj)}
)2∑T

s=1

∑ns

i=1(1−Dis)1(Xis∈Sj)

.

Then, identify the best subgroup as the one exhibiting the maximal treatment effect size:

j∗ = argmax
1≤j≤m

τ̂j.

Lastly, construct a two-sided level-α confidence interval for the identified best subgroup j∗ as[
τ̂j∗ ± Φ−1(1− α/2) · σ̂j∗/

√
N

]
, j = 1 . . . ,m.

In a fully adaptive setting, after solving for p̂∗tj in Stage t, we sample subjects from each
subgroup with probability p̂∗tj. The initial stage and the inferential step after Stage T follow
the same procedures as the multi-stage setting.

3.6 Theoretical investigation

In this section, we investigate the theoretical properties of our proposed adaptive experiment
strategies. We start with listing assumptions followed by their interpretations. Then we
introduce the theoretical properties of our proposed adaptive experiment strategies. Because
the statistical properties of our proposed adaptive experiment in the fully adaptive case are
similar to the multi-stage setting, we focus on the fully adaptive setting in this section. We
work with the following assumptions in this section:

Assumption 16. For t = 1, . . . , T , i = 1, . . . , nt and d ∈ {0, 1}, the potential outcome
Yit(d) has bounded first and 2 + δ moments for some δ > 0, that is E|Yit(d)| < ∞ and
E|Yit(d)|2+δ <∞.

Assumption 16 puts a mild moment condition on the potential outcomes over different
stages.

Assumption 17. There are total m ≥ 2 subgroups, and the subgroup treatment effects can
be monotonically ordered with τ1 > τ2 > . . . > τm.
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For simplicity, here we assume there are no exact ties among the population subgroup
treatment effects.

Assumption 18. We assume subgroup proportions pj are bounded away from 0 and 1 by a
positive constant, j = 1, . . . ,m.

Assumption 18 is required for the response adaptive design, which assumes that the
proportion of each considered subgroup be bounded away from 0 and 1.

In what follows, we first establish the strong consistency result of the treatment allocation
probabilities and the enrichment proportions adopted in our designs:

Lemma 5. For j = 1, . . . ,m, as T →∞, for the response adaptive design, under Assump-
tions 16-18, we have ∑T

s=1

∑ns

i=1Dis1(Xis∈Sj)

Nj

→ e∗j , almost surely,

where Nj = N · pj. For the adaptive enrichment design, under Assumptions 16-17,∑T
s=1

∑ns

i=1 1(Xis ∈ Sj)
N

→ p∗j almost surely.

Lemma 5 suggests that under our proposed response adaptive design and adaptive en-
richment design, the total number of subjects allocated to the treatment arm in subgroup j
or enrolled from subgroup j converges to the oracle treatment allocation or the oracle enroll-
ment proportions almost surely as the number of stages (or sample size, equivalently) goes
to infinity. In other words, although our proposed designs in Section 3.4 and 3.5 utilize no
prior knowledge about the underlying data distribution before the experiment starts, they
can allocate experimental efforts in a similar fashion to the oracle strategies when the sample
size is sufficiently large. Given the stochastic nature of our proposed designs, we prove the
above result leveraging the concept of downcrossing and stopping times [73]. The proof is
provided in Supplementary Materials Section B.

Theorem 4. Suppose n1

N
→ c, with c being a positive constant between 0 and 1, as N →∞,

the subgroup treatment effects and the standard deviations of the estimated subgroup treatment
effects can be consistently estimated almost surely. For the response adaptive design, under
Assumptions 17 to 18,

τ̂RAj − τj = O
(√ log logN

N

)
, almost surely, σ̂2RA

j − σ2
j (e

∗
j ) = O

(√ log logN

N

)
, almost surely,

where σ2
j (e

∗
j ) =

E[σ2
1(X)|X ∈ Sj ]

pje∗j
+

E[σ2
0(X)|X ∈ Sj ]
pj(1− e∗j )

.
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For the adaptive enrichment design, under Assumptions 17 to 16,

τ̂AEj − τj = O
(√ log logN

N

)
, almost surely, σ̂2AE

j − σ2
j (p

∗
j ) = O

(√ log logN

N

)
, almost surely,

where σ2
j (p

∗
j ) =

E[σ2
1(X)|X ∈ Sj ]

p∗jej
+

E[σ2
0(X)|X ∈ Sj ]
p∗j (1− ej)

.

Lastly, the estimated subgroup treatment effects converge to Gaussian distributions when N
tends to infinity, that is

√
N
(
τ̂RAj − τj

)
→ N

(
0, σ2

j (e
∗
j)
)
,
√
N
(
τ̂AEj − τj

)
→ N

(
0, σ2

j (p
∗
j)
)
.

where j = 1, . . . ,m.

The first part of the consistency results provided above leverages the law of the iterated
logarithm and martingale methods [79, 71], and demonstrates that the standard error for
each subgroup converges to the one reached by the oracle strategy. The second part of the
asymptotic normality result leverages the martingale central limit theorem [71].

The theoretical results established in Theorem 4 suggest that the selected best subgroup
treatment effect τ̂j∗ is a strongly consistent estimate of τ1 and its variance can be well
estimated by σ̂2

j∗ . This suggests that the constructed confidence interval for the best subgroup
in Eq (3.9) reaches the nominal coverage when the sample size goes to infinity.

In this section, we have demonstrated the statistical validity of our design. In particular,
our designs provide competing performances with the ones given by the oracle strategies.
To further demonstrate the benefits of our design, in the next section, we compare the
asymptotic property of our proposed response adaptive design with the one reached by the
completely randomized design.

Comparison with completely randomized experiments

In this section, we shall compare our proposed response adaptive design with completely
randomized experiments in which the treatment is randomly assigned, often with 1/2 prob-
ability throughout the entire experiment. The comparisons shall be illustrated from three
aspects: (1) the large deviation rate, (2) the semiparametric efficiency, (3) and the distance
between τ1 and τ2.

First, we shall compare the large deviation rates between the two designs. We start with
establishing a finite sample lower bound on the correct selection probability in Theorem 6
followed by the large deviation rate comparion in Lemma 5.

Lemma 6. Under Assumptions 17-18, suppose n1

N
→ c with c being a positive constant

between 0 and 1, there exist some positive constants C1, . . . , Cm such that the correct selection
probability is lower bounded by:

P(τ̂1(ê∗1) ≥ max
2≤j≤m

τ̂j(ê
∗
j )) ≥ 1− C1 exp

(
− (τ1 − τ2)

2cN

8σ2
1(e

∗
1)m

)
−

m∑
j=2

Cj exp
(
−

(τ2 − τj +
τ1−τ2

2 )2

2σ2
j (e

∗
j )m

)
.
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The above theoretical result suggests that the identified best subgroup j∗ after Stage
T (see Eq (3.8) in Section 3.4) is the best subgroup (i.e., the subgroup with the largest
treatment effect) with high probability when the number of stages goes to infinity. Note
that n1

N
→ c is commonly assumed in response adaptive design literature [79]. Following

Theorem 6, we compare the large deviation rates under the proposed response adaptive
design and the complete randomization design in Lemma 5.

Theorem 5 (Large deviation rate comparison). Under Assumptions 17-18 and suppose
n1

N
→ c with c being a positive constant between 0 and 1,

lim
N→∞

1

N
log (1− P(τ̂1(ê∗1) ≥ max

2≤j≤m
τ̂j(ê

∗
j))) ≤ lim

N→∞

1

N
log (1− P(τ̂1(1/2) ≥ max

2≤j≤m
τ̂j(1/2))).

Lemma 5 suggests that the large deviation rate under our proposed response adaptive
design converges to zero exponentially faster than the complete randomization as the sample
size goes to inifinity. In other words, our proposed response adaptive design is able to
correctly identify the best subgroup with an efficient use of the samples.

Second, we shall compare the asymptotic efficiency gain of the proposed design for es-
timating the best subgroup treatment effect with the complete randomization design. To
provide a fair comparison, we again do not restrict the potential outcome to follow any
parameter models. In this case, as the treatment is randomly assigned independent of the
potential outcomes, any subgroup treatment effect estimators obtained from response adap-
tive designs and complete randomization share the same form of a variance lower bound
derived by [69], that is

Vj(ej) =
E[σ2

1(X)|X ∈ Sj]
pjej

+
E[σ2

0(X)|X ∈ Sj]
pj(1− ej)

+
V[E(Y (1)− Y (0)|X ∈ Sj)]

pj
. (3.14)

Based on the treatment assignment probability adopted in different designs, the achievable
variance lower bound for complete randomization is obtained by replacing ej with 1/2, that
is Vj(1/2), and the achievable variance lower bound for the response adaptive design is
obtained by replacing ej with e

∗
j , that is Vj(e

∗
j). Note that the variance lower bound Vj(e

∗
j)

is achievable under our design when the augmented IPW estimator, instead of IPW, is
adopted to estimate the subgroup treatment effects. These two variance lower bounds thus
allow us to compare the performance of our design with complete randomization when the
most efficient estimator is adopted to estimate the subgroup treatment effects. To provide
further insights into this comparison, we consider a simple case formalized in Proposition 2.

Proposition 2 (Efficiency comparison). In a simplified setting, we assume (1) V[Y (1)|X ∈
Sj] = V[Y (0)|X ∈ Sj] = σ2

j , j = 1, . . . ,m, and (2) V[Y (1)|X ∈ S1] = 0. Then,Vj(e
∗
j) ≤ Vj(1/2), if

(τj−τ1)2

σ2
j
≤ 4,

Vj(e
∗
j) > Vj(1/2), if

(τj−τ1)2

σ2
j

> 4.
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Proposition 2 shows the efficiency comparison between our proposed response adaptive
design and the complete randomization design. When estimating the best subgroup treat-
ment effect, the asymptotic variance under our proposed response adaptive design is always
smaller than the complete randomization design. However, when τj is far away from τ1 or
when the expected variance of the outcome in subgroup j is small, our proposed response
adaptive design is less likely to have efficiency gain. Proposition 2 entails the efficiency
trade-off between our proposed design and the complete randomization design.

Figure 3.2: Comparison between the proposed response adaptive design and the complete
randomization design with respect to various distances between τ1 and τ2.

Next, we shall compare the allowed distance between τ1 and τ2 in order to reach a fixed
correct selection probability level under the two designs.

Proposition 3 (Distance comparison). Assume V[Y (1)|X ∈ Sj] = V[Y (0)|X ∈ Sj] = σ2
j .

Suppose we aim to reach a correct selection probability of at least 1 − ε. For some positive
constants C < ∞ and C ′ < ∞, under the complete randomization design, the distance
between τ1 and τ2 is characterized as

τ1 − τ2 ≥ N− 1
2 ·
∣∣∣C · log(ε) · σ2

∣∣∣ 12 .
Under our proposed response adaptive design, the distance between τ1 and τ2 is characterized
as

τ1 − τ2 ≥ N− 2
3 ·
∣∣∣C ′ · log(ε) · σ2

∣∣∣ 12 .
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Proposition 3 says that to reach a correct selection probability level of 1 − ε, while the
completely randomizated design requires τ1 to be well-separated from τ2 by a distance of N− 1

2

order, our proposed adaptive design strategy allows τ2 to stay within the N
1
2 -neighborhood

of τ1. This implies that our proposed design allows τ2 to be closer to τ1 compared to the
completely randomized experiment. Furthermore, we note that methods performing valid
post hoc analysis on τ1 require the distance between τ1 and τ2 to be a positive constant, and
our approach relaxes this assumption and allows the second best subgroup treatment effect
τ2 to stay in a vanishing neighborhood of the best subgroup.

To verify Proposition 3, we provide a simple simulation in Figure 3.2. We set τ1 = 1.6,
τ3 = 1.4, and τ2 = τ1 − δ, where δ = c(0.03, 0.06, 0.09, 0.12, 0.15). We compare the correct
selection probability under the proposed design and the complete randomization design with
respect to various distances between τ1 and τ2. Figure 3.2 demontrates that to reach a certain
correct selection probability level, our proposed design allows τ2 to stay closer to τ1. In other
words, when τ1 is close to τ2, our proposed response adaptive design correctly distinghuish
the best subgroup from the second best subgroup with a higher probability.

The implication of Figure 3.2 also provides some insights regarding the winner’s curse
bias mitigation under our proposed design, which shall be illustrated in Remark 9.

Remark 9. The winner’s curse bias of the estimated best subgroup treatment effect can be
expressed as

E[τ̂1]− τ1 = E
[
E[τ̂1|1(τ̂1 ≥ max

2≤j≤m
τ̂j)]
]
− τ1 = E[τ̂1] · P(τ̂1 ≥ max

2≤j≤m
τ̂j)− τ1.

The winner’s curse bias not only depends on the consistent estimation of τ1 but also the
correct identification of the best subgroup membership. Given that our adaptive experiment
strategy is specifically designed for best subgroup identification, the winner’s curse bias is
mitigated by maxizing the probability of correctly selecting subgroup 1 as the best subgroup.

3.7 Simulation studies

In this section, we investigate the performance of our proposed response adaptive design and
adaptive enrichment design. We summarize the takeaways from our simulation studies as
follows. First, our proposed adaptive experiment strategies are able to maximize the correct
selection probability. Compared to other conventional experimental strategies, our proposal
takes a smaller sample size to reach the same level of correct selection probability. Second,
under the proposed adaptive experiment strategies, the winner’s curse bias on estimating the
best subgroup treatment effect is mitigated. Third, compared to complete randomization,
our proposed response adaptive design has a smaller variance when estimating the best
subgroup treatment effect, which further confirms the efficiency comparison in Section 3.6.
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Synthetic case studies

Our simulation design mimics adaptive experiments in our first case study. We have four
non-overlapping subgroups representing clothing category, and we denote the subgroup mem-
bership for each subject i as S =

(
1(Xi ∈ S1), . . . ,1(Xi ∈ S4)

)⊺
. We generate the potential

outcome as
Yi(d)|Xi ∈ Sj ∼ N (µd,j, σd,j).

We obtain the following parameters from the real data: µ1 = (4.14, 4.12, 4.43, 4.48)⊺, µ0 =
(4.83, 3.72, 4.02, 4.31)⊺,σ1 = (1.17, 1.06, 0.80, 0.90)⊺, and σ0 = (0.39, 1.57, 1.23, 1.10)⊺. The
subgroup proportions are p = (0.20, 0.16, 0.56, 0.08)⊺. We denote

τ = (−0.69, 0.38, 0.41, 0.18)⊺

as the true subgroup treatment effects. The treatment assignment Di is decided based on our
adaptive experiment strategies, which shall be discussed later in the section. We investigate
two adaptive experiment strategies: (1) response adaptive design and (2) adaptive enrich-
ment design. For each adaptive experiment strategy, we consider the multi-stage setting and
the fully adaptive setting.

For the response adaptive design in the multi-stage setting, we consider various sample
sizes for the first stage, that is, n1 ∈ {150, 222, 294, . . . , 800}. For the number of experiment
stages, we consider T = 2 and T = 4. When T = 2, we set n2 = 200; when T = 4,
we set n2 = n3 = n4 = 100. In the multi-stage setting, we compare two methods: (1) our
proposed response adaptive design and (2) the complete randomization design. The complete
randomization design is a non-adaptive design commonly adopted in traditional randomized
controlled trials. In the complete randomization design, one sets etj =

1
2
across all the stages,

t = 1, . . . , T, j = 1, . . . ,m. Our proposed response adaptive design in multi-stage settings
follows the procedures in Section 3.4.

For the response adaptive design in the fully adaptive setting, we fix stage 1 sample size as
n1 = 250 and nt = 1 for t = 2, . . . , T , where T ∈ {30, 90, 150, 210, 270, 330, 400}. The fully
adaptive setting is commonly seen in conventional response adaptive designs. Therefore,
besides the complete randomization design, we will also compare our proposed response
adaptive design with an existing response adaptive design. In this setting, we compare three
designs: (1) our proposed response adaptive design, (2) the complete randomization design,
and (3) the doubly adaptive biased coin design [183].

For the adaptive enrichment design, we follow the same simulation setup as in the re-
sponse adaptive design. In the fully-adaptive setting, we compare two designs: (1) our
proposed adaptive enrichment design and (2) the equal enrichment design. The equal en-
richment design is a non-adaptive design, where one sets ptj = 1

m
, t = 1, . . . , T . For our

proposed enrichment design, we follow the procedures in Section 3.5. In the multi-stage
setting, we compare three designs: (1) our proposed adaptive enrichment design, (2) equal
enrichment design, and (3) adaptive enrichment with combination testing. The combination
testing approach distributes the type I error rate across experimental stages. Based on the
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computed type I error rate each stage aims to reach, one can estimate the corresponding
enrichment proportions. We implement the combination testing approach using R package
rpact [106].

We evaluate the performance of each adaptive experiment strategy from two aspects.
First, we compare the experimental efforts (i.e., sample size) needed to reach various correct
selection probability levels: {0.75, 0.8, 0.85, 0.9, 0.95, 0.99}. Second, we compare the

√
N -

scaled bias of the estimated best subgroup treatment effect.

Simulation results

Figure 3.3 and Figure 3.4 show the comparison of our proposed response adaptive design
with the other conventional designs in the fully adaptive setting and the multi-stage setting,
respectively. From the two figures, we observe that our proposed response adaptive design
has efficiency gain in two aspects. First, our proposed design makes efficient use of the
experimental efforts. More concretely, to reach the same correct selection probability level,
our proposed response adaptive design takes a much smaller sample size compared to the
other two designs. We conjecture that the reason is two-fold. On the one hand, the complete
randomization design does not revise treatment allocation adaptively. Thus the design may
continue assigning subjects to the subgroup that has already been well-explored. On the
other hand, although the doubly adaptive biased coin design is a response adaptive design,
its experimental goal is to minimize the variance of the estimated treatment effect instead
of identifying the best subgroup. While our proposed response adaptive design is tailored to
the goal of maximizing the probability of correctly identifying the best subgroup.

Second, our proposed response adaptive design is efficient in estimating the best subgroup
treatment effect. The bias of the estimated best subgroup treatment effect has a smaller
variance compared to the other conventional designs, which confirms our theoretical results
in Section 3.6. In Section 3.6, we show that our proposed response adaptive design has
an efficiency gain in estimating the best subgroup treatment effect. We observe a similar
efficiency gain in both fully adaptive and multi-stage settings.

Besides the above-mentioned efficiency gain, Figure 3.4 also shows that when estimat-
ing the best subgroup treatment effect, the complete randomization design and the doubly
adaptive biased coin design yield upward biases, especially when the sample size is small.
The upward bias is the winner’s curse bias [45, 8]. Our proposed method can mitigate the
winner’s curse bias when estimating the best subgroup treatment effect.

Figure 3.5 and Figure 3.6 show the comparison of our proposed adaptive enrichment
design with the conventional enrichment designs. These two figures demonstrate that our
proposed adaptive enrichment design takes the smallest sample size to reach the same correct
selection probability as the conventional designs. As for the bias comparison, our proposed
adaptive enrichment design yields a smaller bias in estimating the best subgroup treatment
effect when the sample size is small.

The simulation results confirm the theoretical investigations in Section 3.6. In practice,
when an experimenter can only enroll a limited number of subjects, our proposed adaptive
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Figure 3.3: Comparison of the proposed response adaptive design, the complete random-
ization design, and the doubly adaptive biased coin design under the fully adaptive setting.
(A) shows the sample size comparison under various correct selection probability levels. (B)
shows the

√
N -scaled winner’s curse bias comparison with respect to different sample sizes.

experiment strategies demonstrate more efficient use of the samples to identify the best
subgroup with a higher probability and can reduce the winner’s curse bias on estimating the
best subgroup treatment effect.

3.8 Case studies

In this section, we investigate the application of our proposed adaptive experiment strategy
in two case studies. In the first case study, we investigate which clothing category would
benefit the most from an inclusive advertising strategy. In the second study, we investigate
which patient subgroup would benefit the most from genetically-guided therapy.

Case study I

For online clothing websites, an essential advertising strategy is to display images of human
models wearing clothing products. Some studies suggest that there exists a “pro-thin” bias
in fashion advertising; that is, clothing websites tend to display idealized human models
wearing size small clothes [109, 1]. In light of the recent social campaigns calling for fashion
marketing inclusiveness, some fashion companies have revised their advertising strategies by
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Figure 3.4: Comparison of the proposed response adaptive design and the complete ran-
domization design under the multi-stage setting (T = 2 and T = 4). (A) shows the sample
size comparison under various correct selection probability levels. (B) shows the

√
N -scaled

winner’s curse bias comparison with respect to different sample sizes.

incorporating images of human models in a broader range of body shapes [34]. Although it
is hypothesized that the inclusive advertising strategy could improve customer satisfaction,
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Figure 3.5: Comparison of the proposed adaptive subgroup enrichment design and the equal
enrichment design under the multi-stage setting (T = 2 and T = 4). (A) shows the sample
size comparison under various correct selection probability levels. (B) shows the

√
N -scaled

winner’s curse bias comparison with respect to different sample sizes.

it remains unknown which clothing category benefits the most from the inclusive advertising
strategy [90]. In this case study, our goal is to identify which clothing category benefits the
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Figure 3.6: Comparison of the proposed adaptive subgroup enrichment design and the equal
enrichment design under the fully adaptive setting. (A) shows the sample size comparison
under various correct selection probability levels. (B) shows the

√
N -scaled winner’s curse

bias comparison with respect to different sample sizes.

most from displaying inclusive body shape images.
In this case study, we use e-commerce data from ModCloth, a women’s clothing website.

The data are collected and processed by [171]. The original dataset contains 99, 893 observa-
tions collected from 2010 to 2019. For each clothing product, the website may display one of
the two types of human model images: (1) a model wearing size small; (2) a model wearing
size small, and a model wearing size large (Figure 3.7). We define the treatment variable as
D = 1 if displaying “small/large” images and D = 0 if only displaying “small” images. We
consider four clothing categories: (1) bottoms, (2) tops, (3) dresses, and (4) outwear. To
quantify customer satisfaction, we use customer ratings on a scale from 0 to 5.

We assume that customers visit the website sequentially. At each time point t, one
customer views only one product. We adaptively revise the probability of displaying inclusive
body shape images. To initialize the experiment, we enroll n1 = 300 customers in the first
stage. We randomly sample nt = 1 customer in the following stages, where t = 2, . . . , 100. We
compare three adaptive experiment strategies: (1) our proposed response adaptive design, (2)
the complete randomization design, and (3) the doubly adaptive biased coin design. We then
evaluate the treatment effect of the inclusive advertising strategy (i.e., display “small/large”
images) in each clothing category. The results are summarized in Figure 3.8.

Figure 3.8 shows that, under our proposed response adaptive design, the advertising
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Figure 3.7: An example of two different advertising strategies taken from ModCloth website.
The left panel shows an inclusive advertising strategy of displaying both small and plus-size
human models. The right panel shows a conventional advertising strategy of only displaying
human models wearing size small.

strategy of displaying inclusive body shape images has the largest improvement in customer
ratings in the outwear clothing category. Compared to the other two conventional designs,
our proposed response adaptive design estimates the treatment effect in the outwear clothing
category with high efficiency. In the other clothing categories, our response adaptive design
does not have significant efficiency gains, which supports our theoretical results in Section 3.6
(Proposition 2). The case study results suggest that, on the one hand, under our proposed
response adaptive design, one can identify the clothing category that benefits the most from
the inclusive advertising strategy with smaller experimental efforts. On the other hand,
the inclusive advertising strategy could have practical marketing benefits and positive social
impacts because such an advertising strategy could not only improve customer satisfaction
but also boost customer self-esteem and reduce body-focused anxiety [34, 90].

Case study II

CYP2D6 (cytochrome P450 2D6)-substrate drugs are commonly prescribed for treating ma-
jor depressive disorder (MDD), yet MDD patients may respond differently to CYP2D6-
substrate drugs due to patients’ heterogeneous metabolic behavior [15]. The heterogeneous
metabolic behavior is related to the CYP2D6 enzyme, which catalyzes the metabolism of
CYP2D6-substrate drugs, and this enzyme is encoded by the CYP2D6 gene [146]. With
the presence of polymorphisms in the CYP2D6 gene, the side effects of taking CYP2D6-
substrate drugs might be prominent [129, 10]. In this case, a genetically-guided therapy that
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Figure 3.8: The estimated treatment effects in the four clothing categories under the complete
randomization design, the doubly adaptive biased coin design, and our proposed response
adaptive design. The initialization stage includes n1 = 300 customers. In the following
stages, we have nt = 1, where t = 2, . . . , 100.

prescribes CYP2D6-substrate drugs based on the CYP2D6 gene could potentially provide
a more precise and beneficial treatment for MDD patients. In this study, we use synthetic
data from CYP-GUIDES (Cytochrome Psychotropic Genotyping Under Investigation for
Decision Support) trial [147] to investigate which MDD patient subgroup would benefit the
most from the genetically-guided therapy.

The original trial is conducted at the Institute of Living at Hartford Hospital, consist-
ing of 1459 patients that are genotyped for CYP2D6 [156]. In this study, there are two
considered therapies: (1) the standard therapy (D = 0), which does not rely on CYP2D6
functional status; (2) the genetically-guided therapy (D = 1), in which the drugs are pre-
scribed based on CYP2D6 functional status. More specifically, for the genetically-guided
therapy, patients who have abnormal CYP2D6 function are proscribed medications metabo-
lized by the CYP2D6 enzyme. The outcome of interest is the length of stay in the hospital,
measured by hours. The shorter the length of stay, the more beneficial the therapy is. In
addition, we consider six patient age subgroups: (1) 18-20; (2) 21-30; (3) 31-40; (4) 41-50;
(5) 51-60; (6) > 60.

We assume that patients are administered sequentially, and physicians treat one patient
at a time. We adaptively revise the probability of applying genetically-guided therapy. To
initialize the experiment, we enroll n1 = 100 patients in the first stage. We randomly sample
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Figure 3.9: The estimated treatment effects in the six age subgroups under the complete
randomization design, the doubly adaptive biased coin design, and our proposed response
adaptive design. The initialization stage includes n1 = 100 patients. In the following stages,
we have nt = 1, where t = 2, . . . , 200.

nt = 1 patient in the following stages, where t = 2, . . . , 200. To generate synthetic outcomes,
for example, if patient A’s outcome under the genetically-guided therapy is not observed
in the original data, we would match patient A with patient B who shares similar baseline
characteristics but is treated by the genetically-guided therapy. Then we use the matched
patient’s outcome as the outcome we would have observed for patient A under the genetically-
guided therapy. We compare three adaptive experiment strategies: (1) our proposed response
adaptive design, (2) the complete randomization design, and (3) the doubly adaptive biased
coin design. We then evaluate the treatment effect of the genetically-guided therapy in each
patient age subgroup. The results are summarized in Figure 3.9.

Figure 3.9 demonstrates that the genetically-guided therapy reduces the length of stay
the most in patients who are older than 60 under our proposed response adaptive design.
Compared to the other two designs, our proposed response adaptive design estimates the
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treatment effects in the age group older than 60 and the age group 18-20 with high efficiency.
Our response adaptive design does not have significant efficiency gains in the other age
subgroups, which verifies the theoretical results in Proposition 2. This case study’s results
suggest that prescribing drugs for MDD patients based on individual CYP2D6 functional
status could potentially deliver more informed medical treatments and thus better improve
patients’ welfare, especially for patients who are older than 60.

3.9 Discussion

In this manuscript, we propose an adaptive experimental framework specifically designed
to study treatment effect heterogeneity. It encompasses both response adaptive design and
adaptive enrichment design in either fully adaptive or multi-stage experimental settings. Our
proposed adaptive experimental framework allows various future extensions. First, instead
of only identifying the best subgroup, decision-makers may also want to look into the top-
performing subgroups. The current framework could be naturally extended to identify the
top-performing subgroups with high probability. Second, in the current setting, we restrict
subgroups to be non-overlapped. In practice, overlapping subgroups are also frequently
seen in various settings; therefore, extending the adaptive experimental framework to handle
overlapping subgroups could be of practical interest. Third, in the current framework, we
assume there are no near or exact ties among the population subgroup treatment effects. In
future work, we would like to relax this assumption by allowing subgroups to have near ties
or exact ties.

3.10 Supplementary Materials

Proof of Remark 1

To prove Remark 1 in the main manuscript, we rely on the following lemma:

Lemma 7. (a) The rate function under the adaptive treatment allocation design is

G(S1,Sj, e) =
(τj − τ1)2

σ2
1(e1) + σ2

j (ej)
,

σ2
j (ej) =

V[Y (1)|X ∈ Sj]
pjej

+
V[Y (0)|X ∈ Sj]
pj(1− ej)

,

(b) and the following equality holds:

G(S1,Sj, e) = G(S1,Sk, e).
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Lemma 8. By assuming V[Y (1)|X ∈ Sj] = V[Y (0)|X ∈ Sj], the following holds:

ej(1− ej)
ek(1− ek)

=
pk(τk − τ1)2/V[Y (1)|X ∈ Sk]
pj(τj − τ1)2/V[Y (1)|X ∈ Sj]

+Rn,

where Rn = pk(τk−τ1)2/V[Y (1)|X∈Sk]
pj(τj−τ1)2/V[Y (1)|X∈Sj ]

·
1
Aj

− 1
Ak

1
A1

+ 1
Ak

, 1
Aj
− 1

Ak
=

pjej(1−ej)

V[Y (1)|X∈Sj ]
− pkek(1−ek)

V[Y (1)|X∈Sk]
, and 1

A1
=

p1e1(1−e1)
V[Y (1)|X∈S1]

. We assume Rn = 0 by assuming V[Y (1)|X ∈ S1] = 0.

Proof. By Lemma 7, we have

G(S1,Sj; e) = G(S1,Sk; e),
(τj − τ1)2

σ2
1(e1) + σ2

j (ej)
=

(τk − τ1)2

σ2
1(e1) + σ2

k(ek)
.

Therefore,

(τj − τ1)2
V[Y (1)|X∈S1]

p1e1
+ V[Y (0)|X∈S1]

p1(1−e1)
+

V[Y (1)|X∈Sj ]

pjej
+

V[Y (0)|X∈Sj ]

pj(1−ej)

=
(τk − τ1)2

V[Y (1)|X∈S1]
p1e1

+ V[Y (0)|X∈S1]
p1(1−e1)

+ V[Y (1)|X∈Sk]
pkek

+ V[Y (1)|X∈Sk]
pk(1−ek)

.

In Remark 1, we assume V[Y (1)|X ∈ Sj] = V[Y (0)|X ∈ Sj]:

(τj − τ1)2
V[Y (1)|X∈S1]
p1e1(1−e1)

+
V[Y (1)|X∈Sj ]

pjej(1−ej)

=
(τk − τ1)2

V[Y (1)|X∈S1]
e1(1−e1)

+ V[Y (1)|X∈Sk]
ek(1−ek)

.

By Lemma 8, we have

(τj − τ1)2
V[Y (1)|X∈Sj ]

pjej(1−ej)

=
(τk − τ1)2
V[Y (1)|X∈Sk]
pkek(1−ek)

,

ej(1− ej)
ek(1− ek)

=
V[Y (1)|X ∈ Sj]/pj(τj − τ1)2

V[Y (1)|X ∈ Sk]/pk(τk − τ1)2
.

One can compute ej as

e∗j =
1

2
± 1

2

√
1− 4

V[Y (1)|X ∈ Sj]
pj(τj − τ1)2

, j ̸= 1.
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Proof of Lemma 7

Proof. (a) The large derivation theory states that for some random variable x,

I(x) = sup
λ
(λx− Λx(λ)),

where Λx(λ) is the log moment generating function (MGF) of x. In our problem, we have
two random quantities τ̂1 and τ̂j, which are the estimates of τ1 and τj, respectively. We want
to derive the rate function I(τ̂1, τ̂j) starting with deriving the log MGF.

Step 1. Derive log MGF

The log MGF of τ̂1, τ̂j is Λτ̂1,τ̂j(λ1, λj) = log
(
E
(
eλ1τ̂1eλj τ̂j

))
. We want to incorporate p1

and pj into the log MGF.

log
(
E
(
e

λ1
p1

p1τ̂1+
λj
pj

pj τ̂j))
= p1 log

(
E
(
e

λ1
p1

τ̂1
))

+ pj log
(
E
(
e

λj
pj

τ̂j))
,

Ip1,pj(τ̂1, τ̂j) = sup
λ1,λj

(λ1τ̂1 − p1Λ1(λ1/p1) + λj τ̂j − Λj(λj/pj)),

= sup
λ1

(λ1τ̂1 − p1Λ1(λ1/p1)) + sup
λj

(λj τ̂j − pjΛj(λ1/pj)),

= p1 sup
λ1/p1

(
λ1
p1
τ̂1 − p1Λ1(λ1/p1)) + pj sup

λj/pj

(
λj
pj
τ̂j − pjΛj(λ1/pj)),

= p1I(τ̂1) + pjI(τ̂j).

Therefore, Ip1,pj(τ̂1, τ̂j) = p1I(τ̂1) + pjI(τ̂j).
Step 2. Derive the general form of G(S1,Sj;π)
According to the large deviation principle, for a set B such that

inf
x∈Bo

I(x) = inf
x∈B̄

I(x),

where Bo and B̄ denote the interior and the closure of set B respectively,

G(S1,Sj;π) = inf
τ̂1≤τ̂j
{p1I(τ̂1) + pjI(τ̂j)}.

The form of G(S1,Sj;π) can be further simplified. First, we inspect the functional form
of I1(τ̂1) and Ij(τ̂j). Assume τ̂1 is asymptotically normally distributed with mean τ1 and

variance σ2
1, then I1(τ̂1) =

(τ̂1−τ1)2

2σ2
1

. Similarly, Ij(τ̂j) =
(τ̂j−τj)

2

2σ2
j

. The functional form of I1(τ̂1)

suggests that I1(τ̂1) is a function which decreases in τ̂1 when τ̂1 < τ1, and increases in τ̂1
when τ̂1 > τ1. Ij(τ̂j) shares the similar functional behavior. Therefore, we can search for the
region τj ≤ τ̂1 ≤ τ̂j ≤ τ1, that is

G(S1,Sj;π) = inf
τ̂∈[τj ,τ1]

{p1I1(τ̂) + pjIj(τ̂)},

= inf
τ̂
{p1I1(τ̂) + pjIj(τ̂)}.
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Step 3. Derive the explicit form of G(S1,Sj;π)
First, we derive the rate function under adaptive allocation design.

∂
(
p1I1(τ̂) + pjIj(τ̂)

)
∂τ̂

=
p1(τ̂ − τ1)

σ2
1

+
pj(τ̂ − τj)

σ2
j

= 0,

τ̂ ∗ =
p1/σ

2
1

p1/σ2
1 + pj/σ2

j

· τ1 +
pj/σ

2
j

p1/σ2
1 + pj/σ2

j

· τj,

Plug in τ̂ ∗j , G(S1,Sj;p) =
(τj − τ1)2

2(σ2
1/p1 + σ2

j/pj)
,

G(S1,Sj; e) =
(τj − τ1)2

2(σ2
1(e1) + σ2

j (ej))
.

(b) Given G(S1,Sj; e) = (τj−τ1)2

σ2
1(e1)+σ2

j (ej)
, the optimization problem is

max
e

min
2≤j≤m

G(S1,Sj; e),

s.t.
m∑
l=1

plel ≤ c1,

c2 ≤ el ≤ 1− c2, l = 1, . . . ,m.

The original problem can be transformed via the epigraph representation

max
e

z,

s.t. G(S1,Sj; e) ≥ z, j = 2, . . . ,m,
m∑
l=1

plel ≤ c1, 0 < c1 < 1,

c2 ≤ el ≤ 1− c2, l = 1, . . . ,m, c > 0.

The Lagrangian associated with the above problem is

L(e,λ, γ,α,β, z) = z +
m∑
j=2

λj
(
G(S1,Sj; e)− z

)
+ γ
(
c1 −

m∑
l=1

plel
)
+

m∑
l=1

αl(el − c2) +
m∑
l=1

βl(1− c2 − el).

The Lagrangian primal problem is

max
e

Lprimal(e,λ, γ,α,β, z) = max
e

min
λ,γ,α,β,z

L(e,λ, γ,α,β, z).
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The Lagrangian dual problem is

min
λ,γ,α,β,z

max
e

L(e,λ, γ,α,β, z) = min
λ,γ,α,β,z

Ldual(e,λ, γ,α,β, z).

By taking derivative of L(e,λ, γ,α,β, z), we can obtain the following:

∂L(e,λ, γ,α,β, z)

∂ej
= λj

∂G(S1,Sj; e)
∂ej

− γpj + αj − βj = 0, (3.15)

∂L(e,λ, γ,α,β, z)

∂e1
=

m∑
j=2

λj
∂G(S1,Sj; e)

∂e1
− γp1 + α1 − β1 = 0, (3.16)

∂L(e,λ, γ,α,β, z)

∂z
= 1−

m∑
j=2

λj = 0 =⇒
m∑
j=2

λj = 1, (3.17)

∂L(e,λ, γ,α,β, z)

∂λj
= G(S1,Sj; e)− z = 0, j = 2, . . . ,m. (3.18)

By Condition (4), we have

G(S1,Sj; e) = G(S1,Sk; e).

Proof of Lemma 8

Proof. By Lemma 7,

(τj − τ1)2
V[Y (1)|X∈S1]
p1e1(1−e1)

+
V[Y (1)|X∈Sj ]

pjej(1−ej)

=
(τk − τ1)2

V[Y (1)|X∈S1]
p1e1(1−e1)

+ V[Y (1)|X∈Sk]
pkek(1−ek)

.
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Let A1 =
V[Y (1)|X∈S1]
p1e1(1−e1)

, Aj =
V[Y (1)|X∈Sj ]

pjej(1−ej)
, Ak =

V[Y (1)|X∈Sk]
pkek(1−ek)

,

(τj − τ1)2

A1 + Aj

=
(τk − τ1)2

A1 + Ak

,

(τj − τ1)2
1

(A1 + Aj)
= (τk − τ1)2

1

(A1 + Ak)
,

(τj − τ1)2
1

( 1
A1

+ 1
Aj
)A1Aj

= (τk − τ1)2
1

( 1
A1

+ 1
Ak

)A1Ak

,

(
1

A1

+
1

Aj

)A1Aj(τk − τ1)2 = (
1

A1

+
1

Ak

)A1Ak(τj − τ1)2,

Aj(τk − τ1)2

Ak(τj − τ1)2
=

1
A1

+ 1
Ak

1
A1

+ 1
Aj

,

V[Y (1)|X∈Sj ]

pjej(1−ej)
· (τk − τ1)2

V[Y (1)|X∈Sk]
pkek(1−ek)

· (τj − τ1)2
=

1
A1

+ 1
Ak

1
A1

+ 1
Aj

,

1
A1

+ 1
Ak

1
A1

+ 1
Aj

· ej(1− ej)
ek(1− ek)

=
pk(τk − τ1)2/V[Y (1)|X ∈ Sk]
pj(τj − τ1)2/V[Y (1)|X ∈ Sj]

,

ej(1− ej)
ek(1− ek)

=
pk(τk − τ1)2/V[Y (1)|X ∈ Sk]
pj(τj − τ1)2/V[Y (1)|X ∈ Sj]

·
1
A1

+ 1
Aj

1
A1

+ 1
Ak

,

ej(1− ej)
ek(1− ek)

=
pk(τk − τ1)2/V[Y (1)|X ∈ Sk]
pj(τj − τ1)2/V[Y (1)|X ∈ Sj]

·
(
1 +

1
Aj
− 1

Ak

1
A1

+ 1
Ak

)
,

ej(1− ej)
ek(1− ek)

=
pk(τk − τ1)2/V[Y (1)|X ∈ Sk]
pj(τj − τ1)2/V[Y (1)|X ∈ Sj]

+
pk(τk − τ1)2/V[Y (1)|X ∈ Sk]
pj(τj − τ1)2/V[Y (1)|X ∈ Sj]

·
1
Aj
− 1

Ak

1
A1

+ 1
Ak︸ ︷︷ ︸

Rn

,

where
1

Aj

− 1

Ak

=
pjej(1− ej)

V[Y (1)|X ∈ Sj]
− pkek(1− ek)

V[Y (1)|X ∈ Sk]
,

1

A1

=
p1e1(1− e1)

V[Y (1)|X ∈ S1]
.

To set Rn = 0, we can assume 1
A1
→∞, thus V[Y (1)|X ∈ S1] = 0.

Proof of Lemma 1

To prove Lemma 1 in the main manuscript, we rely on the following assumptions and lemma:
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Assumption 19. For t = 1, . . . , T , i = 1, . . . , nt and d ∈ {0, 1}, the potential outcome
Yit(d) has bounded first and 2 + δ moments for some δ > 0, that is E|Yit(d)| < ∞ and
E|Yit(d)|2+δ <∞.

Assumption 20. There are total m ≥ 2 subgroups, and the subgroup treatment effects can
be monotonically ordered with τ1 > τ2 > . . . > τm.

Assumption 21. We assume subgroup proportions pj are bounded away from 0 and 1 by a
positive constant, j = 1, . . . ,m.

Lemma 9. Under Assumptions 19-21, ê∗tj → e∗j , for t = 1, . . . , T , j = 1, . . . ,m, as T →∞.

Lemma 10. Under Assumptions 19-21, τ̂tj → τj, t = 1, . . . , T , T →∞.

Proof. We want to show

∑
i:i∈Sj

1(Di=1)

N
→ e∗j as N → ∞. In the fully sequential setting, in

the following proof, we will use T and N interchangeably.
Step 1. Show the number of downcrossing is finite.

Definition 1 (Downcrossing). Let φ(x;θ) : [0, 1] × Rd → [0, 1]. The function t(θ) : Rd →
[0, 1] is a generalized downcrossing of φ if for any θ ∈ Rd,

∀x < t(θ), φ(x;θ) ≥ t(θ), and ∀x > t(θ), φ(x;θ) ≤ t(θ).

In our setting, t(θ) is equivalent to e∗j , which denotes the optimal treatment allocation.
More concretely, we let e∗j := t(τj, σj) and êtj := t(τ̂t−1,j, σ̂t−1,j), t = 1, 2, . . . , T , T →∞. φ(.)

is an allocation rule, φ(gt; τ̂t,j, σ̂t,j), where gt =

∑
i:i∈Sj

1(Di=1)

t
denotes the actual treatment

allocation up to stage t. We can see φ(gt; τ̂t,j, σ̂t,j) is decreasing in gt because when gt is larger
than the optimal allocation proportion, we tend to allocate fewer subjects to the treatment
arm; when gt is smaller than the optimal allocation proportion, we tend to allocate more
subjects to the treatment arm.

Given that φ(gt; τ̂t,j, σ̂t,j) is decreasing in gt, there exists a unique downcrossing. Next,

we will show

∑
i:i∈Sj

1(Di=1)

N
→ e∗j as Nj →∞ leveraging the unique downcrossing.

Step 2. Convergence of the actual allocation
Denote the martingale process at each stage t as {Mt;Ft}, whereMt =

∑
i:i∈Sj ,i≤t∆Mi =∑

i:i∈Sj ,i≤t{Di − E[Di|Ft−1]}. We denote Ft as the σ-algebra up to stage t (F1 denotes the

trivial σ-field). Ft = σ(D1, . . . , Dt;Y1, . . . , Yt).
Assume in the first stage, two treatment arms of subgroup j are assigned with equal

number of subjects. We denote the total number of subjects in stage 1 as n1. Let λt =
max{s : n1 + 1 ≤ s ≤ t, gs ≤ t(τ̂sj, σ̂sj)}. λt represents the maximum number of subject
before the downcrossing. By Definition 1, at each step i ≤ λt, φ(gi; τ̂ij, σ̂ij) ≥ t(τ̂sj, σ̂sj); at
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each step i > λt, φ(gi; τ̂ij, σ̂ij) ≤ t(τ̂sj, σ̂sj). Let Dt :=
∑

i:i∈Sj ,i≤tDi,

Dt = Dλt+1 +
∑

i:i∈Sj ,λt+2≤i≤t

{Di − E[Di|Fi−1] + E[Di|Fi−1]},

= Dλt+1 +
∑

i:i∈Sj ,λt+2≤i≤t

∆Mi +
∑

i:i∈Sj ,λt+2≤i≤t

φ(gi−1; τ̂i−1,j, σ̂i−1,j),

≤ Dλt + 1 +Mt −Mλt+1 +
∑

i:i∈Sj ,λt+2≤i≤t

t(τ̂i−1,j, σ̂i−1,j).

Since Dλt ≤ λt · t(τ̂λt , σ̂λt), we have

Dt ≤ λt · t(τ̂λt , σ̂λt) + 1 +Mt −Mλt+1 +
∑

i:i∈Sj ,λt+2≤i≤t

t(τ̂i−1,j, σ̂i−1,j),

= λt · t(τ̂λt , σ̂λt) + 1 +Mt −Mλt+1+

+
∑

i:i∈Sj ,1≤i≤t

t(τ̂i−1,j, σ̂i−1,j)−
∑

i:i∈Sj ,2≤i≤λt+1

t(τ̂i−1,j, σ̂i−1,j)− t(τ̂1,j, σ̂1,j),

=
(
λt · t(τ̂λt , σ̂λt)−

∑
i:i∈Sj ,2≤i≤λt+1

t(τ̂i−1,j, σ̂i−1,j)
)

+Mt −Mλt+1 + 1− t(τ̂1,j, σ̂1,j)

+
∑

i:i∈Sj ,1≤i≤t

t(τ̂i−1,j, σ̂i−1,j) + nt(τ̂λn , σ̂λn)− nt(τ̂λn , σ̂λn),

Dt − nt(τ̂n, σ̂n) ≤
(
λt · t(τ̂λt , σ̂λt)−

∑
i:i∈Sj ,2≤i≤λt+1

t(τ̂i−1,j, σ̂i−1,j)
)

+Mt −Mλt+1 + 1− t(τ̂1,j, σ̂1,j)

−
(
n · t(τ̂n, σ̂n)−

∑
i:i∈Sj ,1≤i≤n

t(τ̂i−1,j, σ̂i−1,j)
)
.

By Lemmas 9 and 10, we have

t(τ̂n,j, σ̂n,j)→ t(τj, σj), that is t(τ̂n,j, σ̂n,j)→ e∗j , a.s.

∴ lim
n→∞

1

n

(
n · t(τ̂n, σ̂n)−

∑
i:i∈Sj ,1≤i≤n

t(τ̂i−1,j, σ̂i−1,j)
)
= 0, a.s.

and lim
n→∞

1

n

(
λt · t(τ̂λt , σ̂λt)−

∑
i:i∈Sj ,2≤i≤λt+1

t(τ̂i−1,j, σ̂i−1,j)
)
= 0, a.s.,

since λt →∞ as t→∞ (i.e., N →∞). Therefore,

Dt −N · t(τ̂N,j, σ̂N,j)

N
→ 0, a.s.
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Given that t(τ̂N,j, σ̂N,j)→ e∗j ,

lim
N→∞

∑
i:i∈Sj

Di

N
= e∗j , a.s.

Proof of Lemma 9

From the proof of Lemma 7, we denote the Lagrangian dual function under the adaptive
experiment setting as Gt and under the oracle setting as g. Supppose ||Gt − g||∞ → 0.
Let K be a bounded and compact set and fix ε. We let Kε = K − Bε(e

∗
j). Kε is a

compact, bounded, and closed set. For some e∗j,ε ∈ Kε, g(e
∗
j,ε) < g(e∗j) by definition. Define

δ = supK g − supKε
g > 0. Suppose ||Gt − g||∞ < δ/2, we have

sup
K
Gt < sup

Kε

g +
δ

2
= g(e∗j)−

δ

2
,

sup
K
Gt ≥ Gt(e

∗
j) > g(e∗j)−

δ

2
= g(e∗j)−

δ

2
.

Because ê∗tj ∈ Bε(e
∗
j),

P(||Gt − g||∞ < δ/2) ≤ P(||ê∗tj − e∗j || < ε),

P(||ê∗tj − e∗j || ≥ ε) ≤ P(||Gt − g||∞ ≥ δ/2)→ 0.

Therefore, ê∗tj → e∗j as T →∞.

Proof of Lemma 10

Proof. Step 1. Show Zt is a martingale sequence.
Let Zt =

DtYt1(Xt∈Sj)

êtj
− (1−Dt)Yt1(Xt∈Sj)

1−êtj
, t = 1, . . . , T . Let (Ω,F , P ) be a probability space.

Ω denotes a set, F is a σ-algebra of subsets of Ω, and P is a probability measured defined
on F . Let Ft, t = 1, 2, . . . be an increasing sequence of σ-algebras of F sets. We want to
show Zt is a martingale sequence by verifying the following conditions:

(i) Zt is measurable with respect to Ft;

(ii) E(|Zt|) <∞;

(iii) E[Zt|Ft−1] = Zt−1 almost surely.
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Condition (i) and (ii) hold by Assumption 19. Next, we check condition (iii).

E[Zt|Ft−1] = E
[DtYt1(Xt ∈ Sj)

êtj
− (1−Dt)Yt1(Xt ∈ Sj)

1− êtj

∣∣∣Ft−1

]
,

=
E[Dt|Ft−1]E[Yt1(Xt ∈ Sj)|Ft−1]

êtj
− E[(1−Dt)|Ft−1]E[Yt1(Xt ∈ Sj)|Ft−1]

1− êtj
,

=
Dt−1Yt−11(Xt−1 ∈ Sj)

êt−1,j

− (1−Dt−1)Yt−11(Xt−1 ∈ Sj)
1− êt−1,j

= Zt−1.

Because conditions (i)–(iii) hold for Zt, Zt is a martingale sequence.
Step 2. Show optional stopping theorem holds for Zt.

Theorem 6 (Doob’s Optional Stopping Theorem). Let Z = {Zt}Tt=1 be a martingale and
S a stopping time, both with respect to a filtration {Ft}Tt=1. Suppose that any one of the
following conditions holds,

(a) There exists a positive integer c such that S ≤ c, a.s.;

(b) E[S] <∞, and there exists a positive real number C such that E[|Zt+1 − Zt|
∣∣Ft] ≤ C,

a.s. ∀t;

(c) There exists a constant C ′, such that |Zt∧S| ≤ C ′ a.s. ∀t.

Then E[ZS] = E[Z1].

Denote αi as the minimum total sample size required to have i subjects in subpopulation
j assigned to the treatment arm, i.e., αi = min{N : Nj = i}, i = 1, 2, . . .. Zi denotes the
sequence of random variables where t = 1, . . . , i, and ηi is an independent copy of Zi. Define
Wi = Zαi

1(αi <∞) + ηi1(αi = +∞).
Let S be a stopping time. we want to show E[ZS] = E[Z1] using Doob’s optional stopping

theorem. We first write the stopped process as

WS = W1 +
S−1∧t−1∑

t=1

(Wt+1 −Wt),

|WS| ≤ |Z1|+
S−1∧t−1∑

t=1

|Wt+1 −Wt|,

≤ |Z1|+
∞∑
t=1

|Wt+1 −Wt| · 1(S > t),
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by the monotone convergence theorem,

E
[
|Z1|+

∞∑
t=1

|Wt+1 −Wt| · 1(S > t)
]

= E[|Z1|] +
∞∑
t=1

E[|Wt+1 −Wt| · 1(S > t)].

Under Assumption 19, condition (c) in Theorem 6 is satisfied. If αi < ∞, condition (a) is
satisfied. If condition (b) holds,

E[|Z1|] +
∞∑
t=1

E[|Wt+1 −Wt| · 1(S > t)],

= E[|Z1|] +
∞∑
t=1

E
[
E[|Wt+1 −Wt|

∣∣Ft] · 1(S > t)]
]
,

≤ E[|Z1|] + c
∞∑
t=1

P(S > t),

= E[|Z1|] + cE[τ ] <∞.

Therefore, we can use Theorem 6 to conclude E[Wi] = E[W1] = E[Z1], where Wi =
Zαi

1(αi <∞) + ηi1(αi = +∞).
Step 3. Consistency of τ̂j.
E[WS] = E[W1] = E[Z1] implies that Wi = Zαi

1(αi < ∞) + ηi1(αi = +∞) has a
common distribution the same as that of Z1.

1

T

T∑
t=1

Wt =
1

T

T∑
t=1

Zt =
1

T

T∑
t=1

Z1 = Z1,

=

∑n1

i=1DiYi1(Xi ∈ Sj)∑n1

i=1(Di1(Xi ∈ Sj))/n1j

−
∑n1

i=1(1−Di)Yi1(Xi ∈ Sj)∑n1

i=1((1−Di)1(Xi ∈ Sj))/n1j

.

Since we assume that stage 1 generates consistent estimate of τj, that is τ̂1j → τj, we can
conclude that τ̂tj → τj, a.s. by the strong law of large numbers for martingale sequence, and

τ̂tj − τj = O(
√

log log T
T

) a.s.
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Proof of Theorem 1

Proof. In this proof, we want to show the asymptotic normality of τ̂j by checking the condi-
tions for using martingale central limit theorem (CLT).

τ̂j =
1

N

N∑
t=2

( DtYt
P(Dt = 1|Ft−1)

)
−
( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)
,

Let Zt =
( DtYt
P(Dt = 1|Ft−1)

)
−
( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)
− τj

{Zt}Nt=1 is a martingale difference sequence because

E[Zt|Ft−1] = E
[( DtYt

P(Dt = 1|Ft−1)

)
−
( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)
− τj

∣∣∣Ft−1

]
= 0.

To apply martingale CLT, the martingale difference sequence needs to satisfy the following
conditions

(a) E[Z2
t ] = σ2

tj(e
∗
j),

1
N

∑N
t=1 σ

2
tj(e

∗
j) → σ2

j (e
∗
j) as N → ∞, where σ2

j (e
∗
j) =

V[Y (1)|X∈Sj ]]

pje∗j
+

V[Y (0)|X∈Sj ]]

pj(1−e∗j )
, σ2

tj(e
∗
j) =

V[Y (1)|Xt∈Sj ]

pje∗j
+

V[Y (0)|Xt∈Sj ]

pj(1−e∗j )
.

(b) E[|Zt|r] <∞, r > 2;

(c) 1
N

∑N
t=1 Z

2
t → σ2

j (e
∗
j) as N →∞.

Step 1. Check condition (a) Let

σ2
j (e

∗
j) =

V[Y (1)|X ∈ Sj]]
pje∗j

+
V[Y (0)|X ∈ Sj]]

pj(1− e∗j)
,

σ2
tj(e

∗
j) =

V[Y (1)|Xt ∈ Sj]
pje∗j

+
V[Y (0)|Xt ∈ Sj]

pj(1− e∗j)
,

E[Z2
t ]− σ2

tj(e
∗
j) = E

[( DtYt
P(Dt = 1|Ft−1)

− (1−Dt)Yt
1− P(Dt = 1|Ft−1)

− τj
)2]

︸ ︷︷ ︸
A

− V[Y (1)|Xt ∈ Sj]
pje∗j

− V[Y (0)|Xt ∈ Sj]
pj(1− e∗j)

.
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A = E
[( DtYt

P(Dt = 1|Ft−1)
− (1−Dt)Yt

1− P(Dt = 1|Ft−1)
− τj

)2]
,

= E
[( DtYt

P(Dt = 1|Ft−1)

)2]
+ E

[( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)2]
+ E[τ 2j ]

− 2E
[( DtYt

P(Dt = 1|Ft−1)

)( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)]
− 2E

[( DtYt
P(Dt = 1|Ft−1)

− (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)
· τj
]
,

= E
[( DtYt

P(Dt = 1|Ft−1)

)2]
+ E

[( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)2]
+ τ 2j

− 2E
[
E
[( DtYt

P(Dt = 1|Ft−1)
− (1−Dt)Yt

1− P(Dt = 1|Ft−1)

)
· τj
]∣∣∣Ft−1

]
,

= E
[( DtYt

P(Dt = 1|Ft−1)

)2]
+ E

[( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)2]
− τ 2j .

E[Z2
t ]− σ2

tj(e
∗
j) = E

[( DtYt
P(Dt = 1|Ft−1)

)2]
+ E

[( (1−Dt)Yt
1− P(Dt = 1|Ft−1)

)2]
− τ 2j

− V[Y (1)|Xt ∈ Sj]
pje∗j

− V[Y (0)|Xt ∈ Sj]
pj(1− e∗j)

,

≤ E
[∣∣∣( DtYt

P(Dt = 1|Ft−1)

)2
−
(DtYt
e∗j

)2∣∣∣]+ E
[∣∣∣( (1−Dt)Yt

1− P(Dt = 1|Ft−1)

)2
−
((1−Dt)Yt

1− e∗j

)2∣∣∣]− τ 2j ,
≤ C · E

[∣∣∣( DtYt√
P(Dt = 1|Ft−1)

)
−
(DtYt√

e∗j

)∣∣∣]+ E
[∣∣∣( (1−Dt)Yt√

1− P(Dt = 1|Ft−1)

)
−
((1−Dt)Yt√

1− e∗j

)∣∣∣]− τ 2j ,
≤ C1 · E

[∣∣∣(√P(Dt = 1|Ft−1DtYt

)
−
(
DtYt

√
e∗j

)∣∣∣]
+ C2 · E

[∣∣∣((1−Dt)Yt
√
1− P(Dt = 1|Ft−1)

)
−
(
(1−Dt)Yt

√
1− e∗j

)∣∣∣]− τ 2j .
By Lemma 9,

√
P(Dt = 1|Ft−1)− e∗j → 0,

E[Z2
t ]− σ2

tj(e
∗
j)→ 0, and

1

N

N∑
t=1

σtj(e
∗
j)→ σ2

j (e
∗
j).
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Step 2. Check condition (b)
Condition (b) is satisfied because E[Yt] <∞ and 1

êtj
<∞.

Step 3. Check condition (c)
To check condition (c), we bound

Z2
t − E[Z2

t |Ft−1] + E[Z2
t |Ft−1]− σ2

j (e
∗
j),

where 1
N

∑N
t=1 Z

2
t −E[Z2

t |Ft−1]→ 0, by the weak law of large numbers for martingale differ-
ence sequence.

Proof of Lemma 2

Proof. Denote τ̂ rj as the estimated causal effect of subpopulation j under sample size r. The
correct selection event can be expressed as

E :=
N⋂

r=n1

{{
τ̂ r1 ≥

τ1 + τ2
2

}⋂{⋂
j ̸=1

{
τ̂ rj ≤

τ1 + τ2
2

}}}
,

:=
N⋂

r=n1

{{
τ̂ r1 ≥ τ1 −

τ1 − τ2
2

}⋂{⋂
j ̸=1

{
τ̂ rj ≤ τj + τ2 − τj +

τ1 − τ2
2

}}}
.

The correct selection probability can be characterized as

1− P(τ̂1 ≤ max
j=2,...,m

τ̂j)

≥ 1− P(Ec)

≥ 1−
N∑

r=n1

[
P
(
τ̂ r1 < τ1 −

τ1 − τ2
2

)
+

m∑
j=2

P
(
τ̂ r1 > τj + τ2 − τj +

τ1 − τ2
2

)]
,

≥ 1−

[
∞∑

r=n1

P
(
τ̂ r1 < τ1 −

τ1 − τ2
2

)
+

m∑
j=2

∞∑
r=n1

P
(
τ̂ r1 > τj + τ2 − τj +

τ1 − τ2
2

)]
,

≥ 1−

[
∞∑

r=n1

exp
(
− (τ1 − τ2)2r

8σ2
1(p

∗
1)

)
+

m∑
j=2

∞∑
r=n1

exp
(
−

(τ2 − τj + τ1−τ2
2

)2r

2σ2
j (p

∗
j)

)]
,

≥ 1−

[
exp

(
− (τ1−τ2)2n1

8σ2
1(p

∗
1)m

)
1− exp

(
− (τ1−τ2)2(n2−n1)

8σ2
1(p

∗
1)

) +
m∑
j=2

exp
(
− (τ2−τj+

τ1−τ2
2

)2n1

2σ2
j (p

∗
j )m

)
1− exp

(
− (τ2−τj+

τ1−τ2
2

)2(n2−n1)

2σ2
j (p

∗
j )

)],
= 1−

[
C ′

1 exp
(
− (τ1 − τ2)2n1

8σ2
1(p

∗
1)m

)
+

m∑
j=2

C ′
j exp

(
−

(τ2 − τj + τ1−τ2
2

)2n1

2σ2
j (p

∗
j)m

)]
,
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where

C1 =
1

1− exp
(
− (τ1−τ2)2(n2−n1)

8σ2
1(p

∗
1)

) =
1

1− exp
(
− (τ1−τ2)2

8σ2
1(p

∗
1)

) ,
Cj =

1

1− exp
(
− (τ2−τj+

τ1−τ2
2

)2(n2−n1)

2σ2
j (p

∗
j )

) =
1

1− exp
(
− (τ2−τj+

τ1−τ2
2

)2

2σ2
j (p

∗
j )

) ,
given that n2−n1 = 1 in fully sequential experiments. Similarly, the rate of correct selection
probability is bounded by

1− P(τ̂1 ≤ max
j=2,...,m

τ̂j)

≥ 1−

[
C ′

1 exp
(
− (τ1 − τ2)2n1

8σ2
1(p

∗
1)m

)
+

m∑
j=2

C ′
j exp

(
−

(τ2 − τj + τ1−τ2
2

)2n1

2σ2
j (e

∗
j)m

)]
,

C ′
1 =

1

1− exp
(
− (τ1−τ2)2(n2−n1)

8σ2
1(e

∗
1)

) =
1

1− exp
(
− (τ1−τ2)2

8σ2
1(e

∗
1)

) ,
C ′

j =
1

1− exp
(
− (τ2−τj+

τ1−τ2
2

)2(n2−n1)

2σ2
j (e

∗
j )

) =
1

1− exp
(
− (τ2−τj+

τ1−τ2
2

)2

2σ2
j (e

∗
j )

) .

Proof of Theorem 2

Proof. Following Lemma 2, we can show that under our proposed design:

1

N
log (1− P(τ̂1 ≥ max

2≤j≤m
τ̂j)) ≤ −

(τ1 − τ2)2c
8σ2

1(e
∗
1)m

+
1

N
log
(
1 + exp

(
−

(τ2 − τj + τ1−τ2
2

)2

2σ2
j (e

∗
j)m

+
(τ1 − τ2)2n1

8σ2
1(e

∗
1)m

))
.

Under the complete randomization design:

1

N
log (1− P(τ̂1 ≥ max

2≤j≤m
τ̂j)) ≤ −

(τ1 − τ2)2c
8σ2

1(1/2)m

+
1

N
log
(
1 + exp

(
−

(τ2 − τj + τ1−τ2
2

)2

2σ2
j (1/2)m

+
(τ1 − τ2)2n1

8σ2
1(1/2)m

))
.

When N →∞, we have

lim
N→∞

1

N
log (1− P(τ̂1(e∗1) ≥ max

2≤j≤m
τ̂j(e

∗
j))) = −

(τ1 − τ2)2c
8σ2

1(e
∗
1)m

,
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and

lim
N→∞

1

N
log (1− P(τ̂1(1/2) ≥ max

2≤j≤m
τ̂j(1/2))) = −

(τ1 − τ2)2c
8σ2

1(1/2)m
.

By our optimization problem setup, e∗1 maximizes the rate function. Therefore,

lim
N→∞

1

N
log (1− P(τ̂1(e∗1) ≥ max

2≤j≤m
τ̂j(e

∗
j))) ≤ lim

N→∞

1

N
log (1− P(τ̂1(1/2) ≥ max

2≤j≤m
τ̂j(1/2))).

Proof of Proposition 1

Proof.

VProposed =
V[Y (1)|X ∈ Sj]]

pjej
+

V[Y (0)|X ∈ Sj]]
pj(1− ej)

,

VCR =
V[Y (1)|X ∈ Sj]]

pj · 1/2
+

V[Y (0)|X ∈ Sj]]
pj · 1/2

.

Assume V[Y (1)|X ∈ Sj]] = V[Y (0)|X ∈ Sj]],

VProposed =
V[Y (1)|X ∈ Sj]]
pjej(1− ej)

, VCR =
V[Y (1)|X ∈ Sj]]
pj · 1/2 · 1/2

,

When
VCR

VProposed
=

V[Y (1)|X∈Sj ]]

pj ·1/2·1/2
V[Y (1)|X∈Sj ]]

pjej(1−ej)

≥ 1,

V[Y (1)|X ∈ Sj]]
pj · 1/2 · 1/2

≥ V[Y (1)|X ∈ Sj]]
pjej(1− ej)

,

4 ≥ 1

ej(1− ej)

Given
(τj−τ1)2

V[Y (1)|X∈Sj ]]
= 1

ej(1−ej)
,

VProposed ≤ VCR, when
(τj − τ1)2

V[Y (1)|X ∈ Sj]]
≤ 4.

Proof of Proposition 2

To reach a correct selection probability level of 1− δ, we have, we have

1− δ ≥ 1− C1 exp
(
− (τ1 − τ2)2cN

8σ2
1(e

∗
1)m

)
−

m∑
j=2

Cj exp
(
−

(τ2 − τj + τ1−τ2
2

)2

2σ2
j (e

∗
j)m

)
.
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As N →∞,

δ = C1 exp
(
− (τ1 − τ2)2cN

8σ2
1(e

∗
1)m

)
,

1

N
log δ · σ2

1(e1) = (τ1 − τ2)2,

1

N
log δ ·

(V(Y (1)|X ∈ S1)
p1e1

+
V(Y (0)|X ∈ S1)

p1(1− e1)

)
= (τ1 − τ2)2.

We assume V(Y (1)|X ∈ Sj) = V(Y (0)|X ∈ Sj). Under the complete randomization design,

1

N
log δ ·

(V(Y (1)|X ∈ S1)
p1 · 12

+
V(Y (0)|X ∈ S1)

p1 · 12

)
= (τ1 − τ2)2,

1

N
log δ ·

(2V(Y (1)|X ∈ S1)
p1 · 12

)
= (τ1 − τ2)2,

1

N
1
2

·
√
log δ · C = τ1 − τ2.

Under our proposed design,

1

N
log δ ·

(V(Y (1)|X ∈ S1)
p1 · e∗1

+
V(Y (1)|X ∈ S1)
p1 · (1− e∗1)

)
= (τ1 − τ2)2,

1

N
log δ · C ′ · (τ1 − τ2)

1
2 = (τ1 − τ2)2,

1

N
2
3

log δ · C ′ = τ1 − τ2.

In the following proof, we derive the closed-form expression of e∗1 under a simplified
setting.

Proof. Assume E[Y (1)|X ∈ Sj] = E[Y (0)|X ∈ Sj],

σ2
j (ej) =

V[Y (1)|X ∈ Sj]]
pjej

+
V[Y (1)|X ∈ Sj]]

pj(1− ej)
=

V[Y (1)|X ∈ Sj]]
pjej(1− ej)

.

Step 1. Derive Optimal treatment allocation for subgroup j ̸= 1.
Using the first-order optimality condition G(S1,Sj, e) = G(S1,Sk, e):

(τj − τ1)2

σ2
1(e1) + σ2

j (ej)
=

(τk − τ1)2

σ2
1(e1) + σ2

k(ek)
,

(τj − τ1)2
V[Y (1)|X∈S1]]
p1e1(1−e1)

+
V[Y (1)|X∈Sj ]]

pjej(1−ej)

=
(τk − τ1)2

V[Y (1)|X∈S1]]
p1e1(1−e1)

+ V[Y (1)|X∈Sk]]
pkek(1−ek)

.
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Assume V[Y (1)|X∈S1]]
p1e1(1−e1)

≪ V[Y (1)|X∈Sj ]]

p1ej(1−ej)
, j = 2, . . . , d,

(τj − τ1)2
V[Y (1)|X∈Sj ]]

pjej(1−ej)

=
(τk − τ1)2
V[Y (1)|X∈Sk]]
pkek(1−ek)

,

(τj − τ1)2

(τk − τ1)2
=

V[Y (1)|X∈Sj ]]

pjej(1−ej)

V[Y (1)|X∈Sk]]
pkek(1−ek)

=
V[Y (1)|X ∈ Sj]]
pjej(1− ej)

· pkek(1− ek)
V[Y (1)|X ∈ Sk]]

, (3.19)

ej(1− ej)
ek(1− ek)

=
pk(τk − τ1)2/V[Y (1)|X ∈ Sk]]
pj(τj − τ1)2/V[Y (1)|X ∈ Sj]]

.

From Eq (1), (τj − τ1)2 = V[Y (1)|X∈Sj ]]

pjej(1−ej)
, one can compute e∗j as

e2j − ej +
V[Y (1)|X ∈ Sj]]
pj(τj − τ1)2

= 0,

e∗j =
1

2
± 1

2

√
1− 4

V[Y (1)|X ∈ Sj]]
pj(τj − τ1)2

, j ̸= 1.

Step 2. Derive Optimal treatment allocation for subgroup 1.
Using the first-order optimality condition

∑m
j=2

∂G(S1,Sj ,e)/∂e1
∂G(S1,Sj ,e)/∂ej

= 1. Assume V[Y (1)|X∈S1]]
p1e1(1−e1)

≪
V[Y (1)|X∈Sj ]]

p1ej(1−ej)
, j = 2, . . . , d.

∂G(S1,Sj, e)
∂e1

= −(τj − τ1)2
(
σ2
1(e1) + σ2

j (ej)
)−2

·
(−V[Y (1)|X ∈ S1]]

p1e21
+

V[Y (1)|X ∈ S1]]
p1(1− e1)2

)
.

∂G(S1,Sj, e)
∂ej

= −(τj − τ1)2
(
σ2
1(e1) + σ2

j (ej)
)−2

·
(−V[Y (1)|X ∈ Sj]]

pje2j
+

V[Y (1)|X ∈ Sj]]
pj(1− ej)2

)
.

m∑
j=2

{∂G(S1,Sj, e)/∂e1
∂G(S1,Sj, e)/∂ej

}
=

m∑
j=2

{(−V[Y (1)|X ∈ S1]]
p1e21

+
V[Y (1)|X ∈ S1]]
p1(1− e1)2

)/(−V[Y (1)|X ∈ Sj]]
pje2j

+
V[Y (1)|X ∈ Sj]]
pj(1− ej)2

)}
,

=
m∑
j=2

{(V[Y (1)|X ∈ S1]](2e1 − 1)

p1e21(1− e1)2
)/(V[Y (1)|X ∈ Sj]](2ej − 1)

pje2j(1− ej)2
)}

= 1,
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1 =
(V[Y (1)|X ∈ S1]](2e1 − 1)

p1e21(1− e1)2
)
·

d∑
j=2

pje
2
j(1− ej)2

V[Y (1)|X ∈ Sj]](2ej − 1)
,

p1e
2
1(1− e1)2

V[Y (1)|X ∈ S1]](2e1 − 1)
=

m∑
j=2

pje
2
j(1− ej)2

V[Y (1)|X ∈ Sj]](2ej − 1)
.

Let a := p1, b := V[Y (1)|X ∈ S1]], d :=
∑m

j=2

pje
2
j (1−ej)

2

V[Y (1)|X∈Sj ]](2ej−1)
,

ae21(1− e1)2

b(2e1 − 1)
= d,

Let c =
bd

a
,

e41 − 2e31 + e21 − 2c · e1 + c = 0,

e∗1 = −
−2
4
± S ± 1

2

√
−4S2 − 2p± q

S
,

where p =
−1
2
, q = −2c,

S =
1

2

√
−2

3
(−1

2
) +

1

3
(Q+

∆0

Q
),

Q = (
∆1 +

√
∆2

1 − 4∆3
0

2
)1/3,

∆0 = 1, ∆1 = 2 + 108c.

e∗1 =
1

2
± S ± 1

2

√
−4S2 + 1± −2c

S
,

S =
1

2

√
1

3
+

1

3
(Q+

1

Q
), Q =

((2 + 108c) +
√
(2 + 108c)2 − 4

2

)1/3
Therefore, e∗1 = C ′(τ2 − τ1)

1
2 .

Proof for the multi-stage setting

Policy consistency proof

Proof.

êj =

∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)Di∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
,

=

∑n1

i=1 1(Xi1 ∈ Sj)Di +
∑T

t=2

∑nt

i=1 1(Xit ∈ Sj)Di∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
,
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Let Ui be an i.i.d uniform random variable in [0, 1], e1j =
1
2
,

êj =

∑n1

i=1 1(Xit ∈ Sj)1(Ui ≤ e1j) +
∑T

t=2

∑nt

i=1 1(Xit ∈ Sj)1(Ui ≤ êtj)∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
,

=
n1

N

1
n1

∑n1

i=1 1(Xit ∈ Sj)1(Ui ≤ e1j)

1
N

∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
+

T∑
t=2

nt

N

1
nt

∑nt

i=1 1(Xit ∈ Sj)1(Ui ≤ êtj)

1
N

∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
,

where =
1

n1

n1∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e1j)− E[1(Xit ∈ Sj)1(Ui ≤ e1j)] + E[1(Ui ≤ e1j)]

= E[1(Xit ∈ Sj)1(Ui ≤ e1j)] +Op(
1
√
n1

),

= e1jP(Sj) +Op(
1
√
n1

).
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Next, we work on
√
nt

1
nt

∑nt

i=1 1(Ui ≤ êtj):

1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ êtj)−
1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e∗tj)

+
1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e∗tj),

+
√
ntE[1(Xit ∈ Sj)1(Ui ≤ e∗tj)]−

√
ntE[1(Xit ∈ Sj)1(Ui ≤ êtj)]

−
√
ntE[1(Xit ∈ Sj)1(Ui ≤ e∗tj)] +

√
ntE[1(Xit ∈ Sj)1(Ui ≤ êtj)]

=
1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e∗tj) +
√
ntE[1(Xit ∈ Sj)1(Ui ≤ êtj)]

−
√
ntE[1(Xit ∈ Sj)1(Ui ≤ e∗tj)]

−
√
nt

( 1

nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e∗tj)− E[1(Xit ∈ Sj)1(Ui ≤ e∗tj)]
)

+
√
nt

( 1

nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ êtj)− E[1(Xit ∈ Sj)1(Ui ≤ êtj)]
)
,

=
1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e∗tj) +
√
ntE[1(Xit ∈ Sj)1(Ui ≤ êtj)]

−
√
ntE[1(Xit ∈ Sj)1(Ui ≤ e∗tj)] + oP (1),

=
1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e∗tj)

+
∂

∂e∗tj

(
E[1(Xit ∈ Sj)1(Ui ≤ e∗tj)]

)√
nt(êtj − e∗tj) + oP (1),

=
1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ e∗tj)

+
∂

∂e∗tj

(
e∗tj

)√
nt(êtj − e∗tj) + oP (1),

= e∗tjP(Sj) +Op(
1
√
nt

) +
√
nt(êtj − e∗tj) + oP (1),

In sum,
1
√
nt

nt∑
i=1

1(Xit ∈ Sj)1(Ui ≤ êtj) = e∗tjP(Sj) +Op(
1
√
nt

).
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Therefore,

êj =
n1

N

1
n1

∑n1

i=1 1(Xit ∈ Sj)1(Ui ≤ e1j)

1
N

∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
+

T∑
t=2

nt

N

1
nt

∑nt

i=1 1(Xit ∈ Sj)1(Ui ≤ êtj)

1
N

∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
,

=
n1

N

e1jP(Sj) +Op(
1√
n1
)

1
N

∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
+

T∑
t=2

nt

N

e∗tjP(Sj) +Op(
1√
nt
)

1
N

∑T
t=1

∑nt

i=1 1(Xit ∈ Sj)
,

=
n1

N
(e1j +Op(

1
√
n1

) +
T∑
t=2

nt

N

(
e∗tj +Op(

1
√
nt

)
)
,

= e∗j +Op(
1√
N
)

Proof of Theorem 1

Proof. Let τ̂j = τ̂Tj − τ̂Cj . We want to show τ̂Tj − τTj = Op(n
−1/2) and τ̂Cj − τCj = Op(n

−1/2).

τ̂Tj =
1∑T

t=1 ntj

( n1∑
i=1

1(Xi ∈ Sj)DiYi
e1

+
T∑
t=2

nt∑
i=1

1(Xi ∈ Sj)DiYi
êtj

)
,

=
1∑T

t=1 ntj

( n1∑
i=1

1(Xi ∈ Sj)DiYi
P(Di = 1, Xi ∈ Sj)/P(Sj)

+
T∑
t=2

nt∑
i=1

1(Xi ∈ Sj)DiYi
P(Di = 1, Xi ∈ Sj)/P(Sj)

)
,

=
1∑T

t=1 ntj

(∑n1

i=1 1(Xi ∈ Sj)DiYi∑n1

i=1
1(Xi∈Sj)Di

n1j

+
T∑
t=2

∑nt

i=1 1(Xi ∈ Sj)DiYi∑nt

i=1
1(Xi∈Sj)Di

ntj

)
,

=
1∑T

t=1 ntj

(
n1j ·

∑n1

i=1 1(Xi ∈ Sj)DiYi∑n1

i=1 1(Xi ∈ Sj)Di

+
T∑
t=2

ntj ·
∑nt

i=1 1(Xi ∈ Sj)DiYi∑nt

i=1 1(Xi ∈ Sj)Di

)
.

Since the second stage data depend on the first stage data, we introduce a uniform random
variable Ui, such that the first stage treatment is defined as Di = 1(Ui ≤ e1j), and the
following stage treatment is defined as Di = 1(Ui ≤ êtj), Therefore,

τ̂Tj =
1∑T

t=1 ntj

(
n1j

n1 · 1
n1

∑n1

i=1 1(Xi ∈ Sj)1(Ui ≤ e1)Yi

n1 · 1
n1

∑m
i=1 1(Xi ∈ Sj)1(Ui ≤ e1)

+
T∑
t=2

ntj

nt · 1
nt

∑nt

i=1 1(Xi ∈ Sj)1(Ui ≤ êtj)Yi

nt · 1
nt

∑nt

i=1 1(Xi ∈ Sj)1(Ui ≤ êtj)

)
.
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For the numerators,

1

n1

n1∑
i=1

1(Xi ∈ Sj)1(Ui ≤ e1)Yi = E[1(Xi ∈ Sj)1(Ui ≤ e1)Yi] +Op(n
−1/2),

= e1E[Yi(1)|Xi ∈ Sj]P(Sj) +Op(n
−1/2),

= e1 · τTj · P(Sj) +Op(n
−1/2),

1
√
nt

nt∑
i=1

1(Xi ∈ Sj)1(Ui ≤ êtj)Yi =
1
√
nt

nt∑
i=1

1(Xi ∈ Sj)1(Ui ≤ e∗tj)Yi

+
∂

∂e∗tj
E[1(Xi ∈ Sj)1(Ui ≤ e∗tj)Yi]

·
√
n(êtj(Xi)− e∗tj) +Op(1),

=
1
√
nt

nt∑
i=1

1(Xi ∈ Sj)1(Ui ≤ e∗tj)Yi

+
∂

∂e∗tj

(
e∗tjτ

T
j (X)P(Sj)

)
·
√
n(êtj(X)− e∗tj(X)) +Op(1),

=
1
√
nt

nt∑
i=1

1(Xi ∈ Sj)1(Ui ≤ etj)Yi +
(
τTj P(Sj)

)
·Op(1) +Op(1),

=
√
nt(etj · τTj · P(Sj) +Op(1)),

1

nt

nt∑
i=1

1(Xi ∈ Sj)1(Ui ≤ êtj)Yi = etj · τTj · P(Sj) +Op(n
−1/2).

For the denominators,

1

n1

n1∑
i=1

1(Xi ∈ Sj)1(Ui ≤ e1j)

= E[1(Xi ∈ Sj)1(Ui ≤ e1j)] +Op(n
−1/2)),

= e1jP(Sj) +Op(n
−1/2)),

1

nt

nt∑
i=1

1(Xi ∈ Sj)1(Ui ≤ êtj(X)),

= e∗tj(X) · P(Sj) +Op(n
−1/2)).
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Therefore,

τ̂Tj =
1∑T

t=1 nt

(
n1j ·

n1 ·
(
e1jτ

T
j P(Sj) +Op(n

−1/2)
)

m ·
(
e1jP(Sj) +Op(n−1/2)

)
+

T∑
t=2

ntj ·
nt ·

(
etjτ

T
j P(Sj) +Op(n

−1/2)
)

nt ·
(
etjP(Sj) +Op(n−1/2)

) )
,

=
n1j · τTj +

∑T
t=2 ntj · τTj∑T

t=1 ntj

+Op(n
−1/2),

= τTj +Op(n
−1/2).

Similarly, τ̂Cj = τCj +Op(n
−1/2).

Next, we want to prove the asymptotic normality of the proposed estimator in the multi-
stage setting. Denote τT(Xi) := E[Yi(1)|Xi], τ

C(Xi) := E[Yi(0)|Xi].

√
N(τ̂j − τj) =

1√
N

(
n1∑
i=1

1(Xi ∈ Sj)
P(Sj)

(D∗
i

e1j

(
Yi − τT(Xi)

)
+ τT(Xi)

)
+

T∑
t=2

nt∑
i=1

1(Xi ∈ Sj)
P(Sj)

(D∗
i

etj

(
Yi − τT(Xi)

)
+ τT(Xi)

))

− 1√
N

(
n1∑
i=1

1(Xi ∈ Sj)
P(Sj)

(1−D∗
i

1− e1j
(
Yi − τC(Xi)

)
+ τC(Xi)

)
+

T∑
t=2

nt∑
i=1

1(Xi ∈ Sj)
P(Sj)

(1−D∗
i

1− etj
(
Yi − τC(Xi)

)
+ τC(Xi)

))
− τj + op(1)

=

√
n1√
N
D +

T∑
t=2

√
nt√
N
E + op(1),

where D :=
1
√
n1

n1∑
i=1

1(Xi ∈ Sj)
P(Sj)

(D∗
i

e1j

(
Yi − µ1(Xi)

)
+ µ1(Xi)

)
− 1(Xi ∈ Sj)

P(Sj)

(1−D∗
i

1− e1j
(
Yi − µ0(Xi)

)
+ µ0(Xi)

)
− τj,

E :=
1
√
nt

nt∑
i=1

1(Xi ∈ Sj)
P(Sj)

(D∗
i

etj

(
Yi − µ1(Xi)

)
+ µ1(Xi)

)
− 1(Xi ∈ Sj)

P(Sj)

(1−D∗
i

1− etj
(
Yi − µ0(Xi)

)
+ µ0(Xi)

)
− τj.
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D
d−→N

(
0,E

[1(Xi ∈ Sj)
P2(Sj)

( 1

e1j
(Yi − µ1(Xi))

2

+
1

1− e1j
(Yi − µ0(Xi))

2 +
(
µ1(Xi)− µ0(Xi)− τj

)2)])
,

E
d−→N

(
0,E

[1(Xi ∈ Sj)
P2(Sj)

( 1

etj
(Yi − µ1(Xi))

2

+
1

1− etj
(Yi − µ0(Xi))

2 +
(
µ1(Xi)− µ0(Xi)− τj

)2)])
,

√
n1√
N
D

d−→N

(
0,E

[1(Xi ∈ Sj)
P2(Sj)

(n1/N

e1j
σ2
1(Xi)

+
n1/N

1− e1j
σ2
0(Xi) +

n1

N

(
τT(Xi)− τC(Xi)− τj

)2)])
,

√
nt√
N
E

d−→N

(
0,E

[1(Xi ∈ Sj)
P2(Sj)

(nt/N

etj
σ2
1(Xi)

+
nt/N

1− etj
σ2
0(Xi) +

nt

N

(
τT(Xi)− τC(Xi)− τj

)2)])
,

√
N(τ̂j − τj) =

√
n1√
N
D +

T∑
t=2

√
nt√
N
E + op(1),

√
N(τ̂j − τj)

d−→ N

(
0,E
[1(Xi ∈ Sj)

P2(Sj)

((n1/N

e1j
+

T∑
t=2

nt/N

etj

)
σ2
1(Xi)

+
( n1/N

1− e1j
+

T∑
t=2

nt/N

1− etj
)
σ2
0(Xi)

+
(
τT(Xi)− τC(Xi)− τj

)2)])
,

where µ1(Xi) = E[Yi(1)|Xi], µ0(Xi) = E[Yi(0)|Xi].
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[168] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming”. In: Mathematical
programming 106.1 (2006), pp. 25–57.

[169] Stefan Wager and Susan Athey. “Estimation and inference of heterogeneous treatment
effects using random forests”. In: Journal of the American Statistical Association
(2017). doi: doi.org/10.1080/01621459.2017.1319839.

[170] Willem M van der Wal and Ronald B Geskus. “ipw: an R package for inverse proba-
bility weighting”. In: Journal of Statistical Software 43 (2011), pp. 1–23.

[171] Mengting Wan et al. “Addressing marketing bias in product recommendations”. In:
Proceedings of the 13th international conference on web search and data mining. 2020,
pp. 618–626.

[172] Sue-Jane Wang, Robert T O’Neill, and HM James Hung. “Approaches to evaluation
of treatment effect in randomized clinical trials with genomic subset”. In: Pharma-
ceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry
6.3 (2007), pp. 227–244.

[173] Mal Warwick. Testing, Testing 1, 2, 3: Raise More Money with Direct Mail Tests.
John Wiley & Sons, 2003.

[174] LJ Wei and S Durham. “The randomized play-the-winner rule in medical trials”. In:
Journal of the American Statistical Association 73.364 (1978), pp. 840–843.

[175] Halbert White. “A heteroskedasticity-consistent covariance matrix estimator and a
direct test for heteroskedasticity”. In: Econometrica: journal of the Econometric So-
ciety (1980), pp. 817–838.

[176] Marvin N Wright, S Wager, and P Probst. “Ranger: A fast implementation of random
forests”. In: R package version 0.12 1 (2020).

https://doi.org/doi.org/10.1080/01621459.2017.1319839


BIBLIOGRAPHY 167
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