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SUMMARY

A scarcity of functionally validated enhancers in the human genome presents a significant hurdle 

to understanding how these cis-regulatory elements contribute to human diseases. We carry out 

highly multiplexed CRISPR-based perturbation and sequencing to identify enhancers required 
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for cell proliferation and fitness in 10 human cancer cell lines. Our results suggest that the cell 

fitness enhancers, unlike their target genes, display high cell-type specificity of chromatin features. 

They typically adopt a modular structure, comprised of activating elements enriched for motifs of 

oncogenic transcription factors, surrounded by repressive elements enriched for motifs recognized 

by transcription factors with tumor suppressor functions. We further identify cell fitness enhancers 

that are selectively accessible in clinical tumor samples, and the levels of chromatin accessibility 

are associated with patient survival. These results reveal functional enhancers across multiple 

cancer cell lines, characterize their context-dependent chromatin organization, and yield insights 

into altered transcription programs in cancer cells.

Graphical Abstract

In brief

Chen et al., carry out large-scale CRISPR screens to identify the enhancers required for cell 

fitness in multiple cancer cell lines. They further perform massively parallel reporter assays to 

characterize the structure of active enhancers, showing that they are modular and contain both 

activating and repressive DNA elements.

INTRODUCTION

Disruption of gene regulation is a major cause of human diseases ranging from congenital 

developmental disorders to cancers. Gene regulation patterns in each cell and tissue are 
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dictated by the context-dependent interactions between cis-regulatory DNA elements in the 

genome and various transcriptional regulators. Millions of candidate cis-regulatory elements 

have been annotated in the human genome based on transcription factor (TF) binding, 

chromatin accessibility, histone modifications, and DNA hypomethylation (Hnisz et al., 

2016; Kellis et al., 2014; Moore et al., 2020). Enhancers are often located at a distance from 

their target genes and may control gene expression through long-range chromatin contacts 

in both spatial and temporal manners (Schoenfelder and Fraser, 2019; Yu and Ren, 2017; 

Zheng and Xie, 2019; Bothma et al., 2014; Small et al., 1992). Due to the sparsity of 

functionally characterized enhancers in the human genome, how these elements contribute to 

human diseases is still incompletely understood.

Large-scale profiling studies from the Encyclopedia of DNA Elements, the Roadmap 

Epigenomics Projects, and The Cancer Genome Atlas program have identified millions 

of putative enhancers from >1,000 human cell/tissue types and begun to shed light on 

the altered chromatin landscapes in different cancer types (Chen et al., 2018a; Corces 

et al., 2018; Gorkin et al., 2020; Kundaje et al., 2015; Leung et al., 2015; Moore et 

al., 2020; Weinstein et al., 2013). In addition, a recent large-scale CRISPR-Cas9-based 

loss-of-function screens further uncovered ~2,000 genes essential for proliferation in diverse 

cancer cell lines (Ghandi et al., 2019). Most of these essential genes are necessary for 

cell proliferation/survival in multiple cancer types and involved in transcriptional and 

translational processes (Hart et al., 2015). While uncontrollable cell growth is a key feature 

during tumorigenesis, the functionality of putative enhancers that control essential genes 

remains to be determined, and this gap has hindered the elucidation of gene regulatory 

programs in cancer cells.

The advance in CRISPR-based perturbation assays coupled with sequencing has 

significantly improved our ability to identify functional enhancers from genomic regions 

bearing chromatin accessibility, histone modification, or other enhancer signatures (Fulco et 

al., 2019; Gasperini et al., 2019; Reilly et al., 2021). Due to diverse chromatin accessibility 

and histone modifications from different tissue/cell types, it is necessary to design and 

generate individual screening libraries for genes of interest in each corresponding cell line 

across various tissue types. For example, while abnormal activation of key oncogene c-MYC 
has been implicated in most types of human cancer (Dang, 2012; Meyer and Penn, 2008), 

only a few of functional MYC enhancers have been characterized in a handful of cancer cell 

lines, including K562 (Fulco et al., 2016), HCT116 (Hnisz et al., 2015), and A549 (Zhang et 

al., 2016). This limitation highlights the need for a high-throughput and unbiased approach 

to systematically test candidate cis-regulatory elements bearing chromatin accessibility or 

histone modifications from different cell lines/types. Here, we adopt a tiling-path library 

design, which utilizes paired-guide RNAs (pgRNAs) targeting broader genomic regions 

harboring the genes of interest. By coupling this tiling pgRNA library design with a CRISPR 

inference (CRISPRi)-based screen, we systematically identified and characterized enhancers 

necessary for cell proliferation and fitness (hereafter referred to as essential enhancers) for 

two key oncogenes, MYC and MYB, in ten human cancer cell lines representing six major 

cancer types. Based on the features of essential enhancers identified from the pilot study, 

we then carried out large-scale CRISPRi screens to interrogate the effect of >11,000 distal 

putative enhancers on cell fitness, finding hundreds of essential enhancers. Furthermore, 
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we characterized the regulatory elements within the identified essential enhancers using 

a massively parallel reporter assay (STARR-seq) (Arnold et al., 2013), to reveal the 

organization principle of essential enhancers.

RESULTS

Characterization of pgRNA design for CRISPR-based functional perturbation screen in 
cancer cells

We previously utilized a CRISPR-Cas9-mediated deletion screen with a tiling-path pgRNA 

design to uncover functional enhancers within a given genomic region near the POU5F1 
locus in human embryonic stem cells (Diao et al., 2017). To establish a functional 

framework to characterize essential enhancers required for cancer proliferation and survival, 

we first focused on the identification of essential enhancers near two key protooncogenes, 

MYC and MYB. Sustained MYC activation is required for tumorigenesis, and the partial 

suppression of MYC in cancer cells is sufficient to cause acute tumor regression due to 

the unusual transcriptional addiction in cancer (Bradner et al., 2017; Gabay et al., 2014). 

MYB, a cell-type-specific oncogene, is vital for tumorigenesis in leukemia, colorectal, and 

breast cancers partially through the regulation of key oncogenes in those cancer types 

(Mansour et al., 2014; Ramsay and Gonda, 2008). Although these oncogenic TFs have been 

well characterized and are recognized as critical cancer drivers, it remains challenging to 

develop small molecules to target them selectively in cancer cells while avoiding harming 

the proliferation of normal cells (Chen et al., 2018b; Pattabiraman and Gonda, 2013). 

Based on previous chromatin contact maps generated from different cell lines (Rao et 

al., 2014), we designed 13,373 pgRNAs targeting ~3.6 megabase (Mb) genomic interval 

within topologically associated domains around MYC and MYB loci and another set of 

1,455 pgRNAs to use as negative controls (including non-targeting controls, which are the 

genomic sequence lacking protospacer-adjacent motifs for targeting by CRISPR-Cas9 or 

safe-targeting genomic loci, which are the validated genomic regions that do not cause 

growth defects in CRISPR-Cas9-based deletion screen (Morgens et al., 2017)) (Table S1). 

The mean genomic distance between the gRNAs in each pair was ~3 kilobase (kb), and 

the genomic spans of adjacent pgRNAs overlapped by 2.7 kb on average (Figure 1A). 

We reasoned that this tiling path library will interrogate candidate enhancers from cell 

lines/types with different chromatin accessibility or histone modifications. To compare the 

performance of our pgRNA library design to the common approaches, we also designed 

a single-guide RNA (sgRNA) library targeting all DNase-hypersensitive sites (DHSs) 

and H3K27ac peaks around those two key oncogenes identified from chronic myeloid 

leukemia K562 cells (Figure 1A). We next carried out a proliferation-based screen to 

characterize essential enhancers (Figure 1B) using a pgRNA library coupled with CRISPR-

Cas9 nuclease (CRISPRn) or a sgRNA library coupled with CRISPR inference (CRISPRi). 

To identify essential enhancers from the CRISPR-based perturbation screens, we applied 

two computational methods, RELICS and CRISPY, which determine the perturbation effects 

based on the sgRNA or pgRNA read counts before and after 14 double times (see STAR 

Methods; Figure S2C). In addition, we considered a 500 bp genomic region up/downstream 

target sequence of each gRNA in the pair as the area of effect for a CRISPRi-based screen 

(Thakore et al., 2015). RELICS uses a generalized linear mixed model framework (Fiaux 
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et al., 2020) to jointly describe the observed gRNA counts across time points under two 

models: a regulatory model (gRNAs target a regulatory sequence) and a background model 

(gRNAs do not target a regulatory sequence). CRISPY is a software pipeline based on a 

strategy we reported previously (Diao et al., 2017) that uses negative binomial statistics 

to identify the depleted gRNA species after 14 doubling times. Our results showed that 

several known essential enhancers for MYC (Fulco et al., 2016) are identified from the 

CRISPRi-sgRNA screen but not from the CRISPRn-pgRNA screen (Figure S1), indicating 

that applying tiling-based deletion to cancer cells could be confounded by aneuploidy of the 

cancer genome (Aguirre et al., 2016). Based on this observation, we adopted the CRISPRi-

based screen together with the tiling design of pgRNAs. When we compared the effects of 

sgRNAs and pgRNAs using the CRISPRi-based cell proliferation screen in K562, we found 

that the tiling-path pgRNAs have comparable performance in detecting essential enhancers 

as the sgRNA screen (Figures 1C–1E and S2), indicating that both approaches provide 

similar resolution to uncover essential enhancers. Moreover, we observed that pgRNAs 

achieved greater effects on cell growth than sgRNAs after silencing of the same essential 

enhancers (Figure 1F).

A previous CRISPRi-based proliferation screen identified seven functional enhancers (e1-

e7) for MYC in K562 cells (Fulco et al., 2016), and our CRISPRi screen using the tiling 

pgRNA library only identified three of them (e1-2 and e6). We further tested the four (e3, 

e4, e5, and e7) previously reported enhancers by CRISPRi individually but did not observe 

significant growth defects in wild-type K562, except for a subtle reduction in MYC gene 

expression for three of them (e3-e4, e7) (Figures S3A–S3E). We also performed a second 

CRISPRi screen with the same pgRNA library using a genetically modified K562 cell 

line with a fluorescent reporter gene inserted downstream of the MYC locus (Figure S3F) 

and identified two additional functional enhancers (e3-e4) together with the three essential 

enhancers (e1-2, e6) based on MYC gene expression (Figure S3G). Depending on the type 

of readout chosen in the tiling pgRNA-based CRISPRi screen, the cell proliferation assay 

could identify essential enhancers that show detectable growth defects and strong effects on 

target gene expression in our experimental system.

The CRISPRi-pgRNA screen identifies essential enhancers in the MYC and MYB loci 
across multiple cancer cell lines

We next carried out a proliferation-based screen using CRISPRi with the above tiling 

pgRNA library to identify essential enhancers near the MYC and MYB loci in ten different 

human cancer cell lines representing six major cancer types (lung, breast, liver, colorectal, 

prostate, and leukemia) (Figure S5A). As expected, we found that the pgRNAs read counts 

were highly reproducible between biological replicates (Pearson’s R = 0.69–0.97), and the 

abundance of pgRNAs targeting the promoter of essential genes consistently decreased 

after 14 doubling times (Figure S4). Overall, we identified 24 robust and reproducible 

essential enhancers (Figures S5B and S5C; Table S4), which were found by both statistical 

approaches, including three and one previously characterized enhancers for MYC in K562 

and HCT116, respectively (Fulco et al., 2016; Hnisz et al., 2015) (Figures 2A, S5B, and 

S5C). The majority of these essential enhancers were located hundreds of kilobases away 

from MYC (median genomic distance = 224,114 bp; Figure S5D) and exhibited chromatin 
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contacts with the MYC promoter, as evidenced by proximity ligation-assisted ChIP-seq 

(PLAC-seq) experiments (Fang et al., 2016) with an H3K4me3 antibody (Figure 2B). 

We further verified that silencing the essential enhancers near the MYC and MYB loci 

individually by KRAB-dCas9 led to a significant reduction in target gene expression and 

cell proliferation (Figures 2C and S5E–S5H). In addition, our data showed that essential 

enhancers overlapped with ~4.3% and ~5% of DHSs or K27ac around target genes, 

respectively (Figure 2D). Further analysis revealed that these essential enhancers were 

strongly associated with active enhancer marks, such as DHS and H3K27ac, in the cell lines 

where they were identified (Figure 2E). Together, we established a functional framework 

that enables functional characterization of a large number of putative enhancers bearing 

chromatin accessibility or histone modifications across multiple cancer cell lines in a high-

throughput, accurate, and reproducible manner.

Large-scale identification of essential enhancers in colorectal cancer cells

Aberrant activation of enhancers is a crucial signature in colorectal cancers (Akhtar-Zaidi 

et al., 2012; Cohen et al., 2017), but only a small number of enhancers with validated 

function in colorectal cancer cells (CRCs) are known. Based on our findings that essential 

enhancers are strongly associated with active enhancer marks and spatially interact with 

target promoters from the pilot study (Figure 2), we used a pooled CRISPRi screen to 

interrogate the function of 6,642 putative distal enhancers, as determined by H3K27ac 

ChIP-seq signals and at least 3 kb apart from the known transcriptional start sites, located 

within 500 kb from 532 previously reported essential genes in the HCT116 CRC line 

(Hart et al., 2014, 2015). In addition, we also included additional 4,554 cell-line-specific 

active enhancers identified from HCT116 (Figure 3A). We designed five sets of pgRNAs 

for each distal putative enhancer and the promoter of 1,017 essential genes as positive 

controls, respectively. We reasoned that the utilization of multiple pgRNAs could minimize 

false negatives due to the potential low targeting efficiency from certain gRNA-targeting 

sequences. As negative controls, we designed 1,913 non-targeting pgRNAs and 5,215 

pgRNAs that target 460 genomic control regions that do not show growth defects in 

previous CRISPR-Cas9 deletion-based proliferation screens (Morgens et al., 2017) and the 

promoters of 583 non-essential genes (Table S2). To identify candidate essential enhancers, 

we utilized a modified robust ranking aggregation algorithm (Kolde et al., 2012) from the 

MAGeCK method (Li et al., 2014), which is widely used to examine gene essentiality in 

genome-wide CRISPR-Cas9 knockout screen, and consider the effects on cell fitness from 

multiple pgRNAs targeting the same putative enhancer.

We first generated multiple stable KRAB-dCas9-expressed clones and observed a good 

correlation in H3K27ac levels with parental cells (Pearson’s R = 0.85), indicating that 

expression of KRAB-dCas9 had minimal non-specific effects on the activity of distal 

enhancers (Figure S6). Next, we performed a large-scale CRISPRi screen in two biological 

replicates from two independent KRAB-dCas9-expressed clones, respectively, to avoid the 

clonal-level bias. We obtained reproducible results evidenced by a strong correlation in 

the depletion index, which is the measured growth defects upon the perturbation in the 

negative selection screen, between the two clonal cell lines (Pearson’s R = 0.77). As 

expected, pgRNAs targeting the promoters of essential genes showed a greater reduction 
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in fitness scores than pgRNAs targeting non-essential genes (Figure 3B). Furthermore, 

we used the read counts of non-targeting pgRNAs to estimate the null distribution when 

calculating the p values. To determine the optimal threshold to select candidate essential 

enhancers, we generated a receiver operating characteristic curve using 1,017 essential genes 

as positive controls along with 583 non-essential genes with low or undetectable levels 

of expression as negative controls. We identified candidate essential enhancers using a 

threshold that recovers 75% of the positive controls with empirical FDR < 0.02 (Figure 3C). 

The empirical FDR was calculated based on the percentage of candidate targets identified 

from negative controls above this selected threshold, including non-essential genes and 

safe-target control genomic regions to account for the possible toxicities from the silencing 

mediated by KRAB-dCas9. In general, we found that four out of five pgRNAs (on average) 

targeting candidate essential enhancers in the library can achieve detectable growth defects 

(Figure 3D; Table S4). Furthermore, we did not observe the enrichment of pgRNAs with 

low specificity scores (<0.2) targeting the candidate essential enhancers and no significant 

differences in the DNA copy number at essential enhancer loci (Figures 3D and 3F), 

affirming that the growth defects associated with the identified pgRNAs were unlikely due to 

potential off-target toxicity. Nevertheless, to identify essential enhancers at high confidence, 

we further excluded candidate essential enhancers targeted by multiple pgRNAs with low 

target specificity scores (<0.2) or were not selected by GuideScan software (Perez et al., 

2017).

Overall, we identified 488 candidate essential enhancers (Figure 3E; Table S4). As expected, 

most essential enhancers are located within the 500 kb genomic range near the essential 

genes (observed = 334/expected = 290; hypergeometric test; p = 4.08 × 10−6). We further 

predicted their targets by integrating genome-wide maps of chromatin interactions centered 

at active or poised gene promoters determined using H3K4me3 PLAC-seq data and scores of 

gene dependence from previous genome-wide CRISPR-Cas9 knockout screens (see STAR 

Methods). We reasoned that the targets of essential enhancers are likely also crucial for 

cell survival/proliferation. Together, we predicted a total of 190 enhancer/gene pairs (E-G 

pairs) between 150 essential enhancers and 190 target genes (Table S4). Consistent with the 

notion that enhancers often control gene expression at tens to hundreds kilobases distant 

from their target genes, we observed significant longer genomic distances (median genomic 

distance = 211,399 bp) between essential enhancers and predicted target genes than the 

distances between the essential enhancers to the nearest genes (p = 6.6 × 10−23; Figure 3G). 

Interestingly, the predicted target genes tended to be ubiquitously expressed across various 

cell types (Figure S7A), with 94.4% of them found to be essential in 6 or more cell types 

(Figure S7B) (Hart et al., 2015), and participate in essential biological processes (Figure 

S7C). Furthermore, we also validated the role of essential enhancers to regulate several 

target genes by CRISPRi individually (Figure S7D).

The essential enhancers generally harbor both activating and repressive DNA elements

To further characterize the enhancer activity of the essential enhancers identified above 

and to delineate the cis-regulatory DNA elements within each of them, we performed 

massively parallel reporter assays, using the strategy known as STARR-seq (Arnold et 

al., 2013). We constructed a STARR-seq plasmid library consisting of 12,833 of 190-bp 
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DNA fragments inserted downstream of a reporter gene driven by a minimum promoter 

made from the bacterial plasmid origin-of-replication (Muerdter et al., 2018). For each 

essential enhancer, we designed on average 23 of 190 bp-long DNA oligos to tile 1 kb 

upstream to 1 kb downstream with a 120 bp step size (Figure 4A). In addition, we included 

60 oligonucleotides tiling 4 known MYC enhancers previously identified from HCT116 

(Hnisz et al., 2015) and SV40 enhancer (Herr and Clarke, 1986; Schirm et al., 1987) as 

positive controls, and 2,095 oligonucleotides randomly selected from the yeast open reading 

frame (ORF) sequences as negative controls (see STAR Methods; Table S3). The plasmid 

library was transfected into HCT116 cells by electroporation in triplicate. Two days after 

transfection, we extracted DNA and RNA from the transfected cells and sequenced the 

plasmid DNA and reporter RNA transcripts containing the oligonucleotides in the library. 

We defined the regulatory activity of individual DNA element by comparing the RNA 

counts to the plasmid DNA counts (see STAR Methods) and showed that the RNA/DNA 

ratios were highly reproducible among three biological replicates (Pearson’s R > 0.9). 

Using a method described from the previous study (Yan et al., 2021), we determined 

DNA elements with enriched and depleted RNA counts using negative binomial regression 

statistics. With an empirically defined FDR threshold of 0.05 based on the set of yeast ORF 

oligonucleotides, we found 1,101 oligonucleotides with significant activating activity and 

1,318 oligonucleotides with repressor activities (Figure 4B; see STAR Methods). Of the 488 

HCT116 essential enhancers, 369 contained at least one activating element (median = 2), 

and 437 harbored at least one repressive element (median = 2) (Figures 4E and 4F).

Unexpectedly, we found that 331 essential enhancers contained both activating and 

repressive elements. Using ATAC-seq data generated from HCT116, we found that the 

activating elements were strongly enriched at or near the accessible chromatin regions, 

while the repressive elements were broadly distributed outside of ATAC-seq peaks (Figures 

4G and S8C). We also found that the activating DNA elements within the essential 

enhancers were centered at the binding sites of TCF7L2 (Figures 4C and 4D), which is 

a key transcriptional effector of Wnt/β-catenin signaling pathway (Frietze et al., 2012; 

He et al., 1998). Oncogenic mutations in APC and KRAS are frequently found in the 

majority of CRC (Cancer Genome Atlas Network, 2012) and are known to drive cancer 

proliferation by activating Wnt/β-catenin and Ras-Raf-MEK-ERK (MAPK/ERK) signaling 

pathways, respectively (Fearon and Vogelstein, 1990; Papke and Der, 2017; Pylayeva-Gupta 

et al., 2011). Through the motif analysis on activating elements, we identified motifs 

of Jun-AP1 and FOSL2 and chromatin binding of JunD, which acts downstream of the 

MAPK/ERK signaling pathway, were enriched at the activating DNA elements (Figures 

4C, 4E, and S8A), indicating that activating elements within essential enhancers are crucial 

transcriptional hubs downstream of the signaling pathways driven by oncogenic mutations in 

CRC. Consistent with the hypothesis that Jun-AP1 plays key roles in cancer proliferation via 

the interaction with activating elements, inactivation of Jun-AP1 has been shown to attenuate 

intestinal cancer development in Apc Min mice (Nateri et al., 2005). Furthermore, our motif 

analysis also revealed that zinc-finger protein X-linked (ZFX), which was required for cell 

proliferation in HCT116 and the elevated expression was associated with poor outcomes in 

CRC (Jiang and Liu, 2015), was enriched at active elements within the essential enhancers 

(Figure 4E).
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Interestingly, the TF binding motifs enriched at the repressive elements corresponded 

to TFs known as tumor suppressors or involved in the signaling pathway to suppress 

CRC proliferation (Figures 4F and S8B). The NK homeobox 2.2 (Nkx2.2) and growth 

factor-independent 1 (Gfi1) were both identified as tumor suppressor genes in CRC. 

Overexpression of those two TFs reduced cell proliferation in HCT116 in vitro and in 
vivo (Chen et al., 2019; He et al., 2020). In addition, Smad3 is one of the critical 

TFs downstream of the transforming growth factor β signaling pathway, which has been 

shown to inhibit cell proliferation, induce apoptosis, and suppress tumorigenicity in CRC 

(Massagué and Wotton, 2000; Wang et al., 2008). To determine whether activating elements 

within HCT116 essential enhancers were selectively activated in this cancer cell line, we 

further carried out the same STARR-seq assay in K562 cells. Our data indicated that 311 

and 153 of activating and repressive elements were only active in HCT116, respectively 

(Figure 4H). Together, these results support a model that essential enhancers have modular 

structures containing both activating and repressive elements. They would be dynamically 

regulated by both transcriptional activating and repressor factors in the cell to control 

gene expression. Because the essential enhancers that we tested using STARR-seq assays 

were activating target genes to support cell proliferation and survival, they are more 

likely bound by transcriptional activators in these cells than repressors. Therefore, the 

chromatin accessibility within these enhancers would more likely occur at the binding sites 

of activators than the binding sites of the repressor proteins.

Essential enhancers have lineage-specific roles in cell fitness

The STARR-seq data indicated that activating elements within 202 HCT116 essential 

enhancers display regulatory activity in both K562 and HCT116, raising the question 

of whether those essential enhancers are also required for cell proliferation in K562. To 

characterize the function of essential enhancers, we interrogated the requirement of the same 

set of distal putative enhancers for cell proliferation in K562 cells by carrying out CRISPRi 

screens in duplicate with the same pgRNA library. As expected, we observed moderate 

correlation in the depletion index from biological replicates (Pearson’s R = 0.51) and a 

greater reduction in cell fitness when pgRNA targeting essential genes than non-essential 

genes. Using the same criteria to select candidate essential genes/enhancers as our previous 

screen in HCT116, we identified 617 essential genes and 81 essential enhancers from K562 

cells (Figures 5A and 5B). Interestingly, only 8 of the 488 essential enhancers identified 

in HCT116 cells were also found to be essential in K562 cells, while a different set of 73 

enhancers was determined to be necessary for cell fitness in K562 (Figure 5D). The K562 

essential enhancers were enriched near genes previously shown to be indispensable in K562 

(observed = 60/expected = 48; hypergeometric test; p = 3.04 × 10−3) and were generally 

found in open chromatin regions, displaying active enhancer marks, such as H3K4me1/me2 

and H3K27ac, in K562 cells (Figure 5C). These results suggest that the essential enhancers 

regulate cell proliferation in a cell-lineage-dependent manner.

To understand the molecular mechanism that governs essential enhancers, we examined 

closely the essential enhancers near the MYC locus in ten human cancer cell lines. 

Enhancers are regulated by sequence-specific TFs to promote target gene expression during 

development (Buecker and Wysocka, 2012; Heinz et al., 2010; Spitz and Furlong, 2012). 
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We found that the essential enhancers are occupied by lineage-specific TFs (Ghandi et al., 

2019; Li et al., 2012; Nakshatri and Badve, 2007; van de Wetering et al., 2002) (Figure 

S9A). Our data further supported that the lineage-specific TFs were indeed required for the 

function of essential enhancers for MYC, as their knockdown using CRISPRi resulted in 

a cell-type-specific reduction of MYC gene expression (Figure S9B). Moreover, CRISPRi 

of either lineage-specific TFs or essential enhancers alone achieved comparable levels of 

effect on MYC expression as silencing both simultaneously (Figures S9C and S9D). These 

results, taken together, support the model that lineage-specific TFs worked through essential 

enhancers to regulate MYC gene expression in different cancer cell lines.

Chromatin accessibility of HCT116 essential enhancers in colorectal cancer samples

Uncontrolled cell growth through sustained proliferative signaling or evading growth 

suppressors is the hallmark of cancer (Hanahan and Weinberg, 2011). Our results showed 

that essential enhancers play critical roles in lineage-specific proliferation and are activated 

by oncogenic TFs. To investigate the chromatin state of essential enhancers during 

tumorigenesis, we interrogated chromatin accessibility of these elements using DNase-seq 

data generated from 13 primary embryonic and 9 adult colon tissues (Meuleman et al., 

2020) and ATAC-seq data generated from a previous survey of chromatin accessibility 

in 38 colorectal cancer samples (Corces et al., 2018). Accessibility of a significant 

portion (observed = 227/expected = 155, hypergeometric test; p = 9.97 × 10−13) of 

essential enhancers was undetectable in human primary colon tissues using bulk DNase-seq 

(Meuleman et al., 2020) (Figure 6A). On the other hand, 72 of these 227 essential enhancers 

were in open chromatin from colorectal cancers samples while the remaining 155 essential 

enhancers were likely selectively activated under in vitro culture conditions in HCT116 

cells. To further examine chromatin accessibility of essential enhancers in various cell 

types from primary colon tissues, we analyzed a comprehensive single-cell ATAC-seq atlas 

across 111 major cell types from 30 adult human tissues, including colon tissues from 

four healthy donors (Zhang et al., 2021). Our data validated that chromatin accessibility of 

those 72 colorectal cancer-specific essential enhancers is undetectable across 14 cell types 

identified from primary colon tissues (Figure 6B). Motif analysis of these colorectal cancer-

specific essential enhancers showed enrichment of the same TFs, namely TCF7L2, AP1, 

and ZFX, that were enriched in the aforementioned activating elements within the essential 

enhancers (Figure 4E), indicating that oncogenic drivers in colorectal cancer samples are 

likely responsible for the activation of these de novo cancer-specific essential enhancers.

We further utilized the Cox proportional regression model to estimate the hazard ratio based 

on chromatin accessibility measured by the ATAC-seq assay from 528 pan-cancer ATAC-

seq peaks (Corces et al., 2018), which overlapped with 488 HCT116 essential enhancers. 

Chromatin accessibility at 8 of HCT116 essential enhancers was strongly associated with 

a high hazard ratio (see STAR Methods; hazard ratio > 3, multiple hypothesis testing; 

FDR < 0.1) (Figure 6C). Consistently, high chromatin accessibility of those eight essential 

enhancers was strongly associated with lower survival probability in colorectal cancer 

patients (Figures 6D–6K). As control, we did not observe this association from randomly 

selected HCT116 essential enhancer (Figure 6L). In addition, chromatin accessibility at none 

of the K562 essential enhancers was associated with poor clinical outcomes in colorectal 
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cancer samples. When we performed the same analysis using 528 randomly selected pan-

cancer ATAC-seq peaks that overlapped with 11,111 distal enhancers included in our initial 

CRISPRi screen, we did not identify any distal enhancer associated with poor clinical 

outcomes. Furthermore, the association between the essential enhancer with poor clinical 

outcomes was specific to colorectal cancer (Figure 6C), consistent with the lineage-specific 

role of these essential enhancers in the gene-regulatory program. Interestingly, no significant 

difference in overall survival probability was observed when we used gene expression of the 

predicted target genes as predictors (Table S4). Moreover, we did not observe any significant 

change in DNA copy number at essential enhancers between the high and low accessibility 

groups (Figures 6D–6K). Finally, we validated the role of those essential enhancers in cell 

proliferation after the silencing using KRAB-dCas9 in HCT116 cells (Figure 6M).

DISCUSSION

Despite the rapid progress in identifying putative enhancers in the human genome over 

recent years, the function of most annotated putative enhancers is still untested. Here, 

we utilized a robust, unbiased, and high-throughput functional screen to systematically 

examine and characterize essential enhancers in human cancer cell lines. Recent studies 

have highlighted the importance of focal and extrachromosomal oncogene amplification 

to contribute to MYC expression and facilitate genetic heterogeneity in cancer (Shoshani 

et al., 2021; Turner et al., 2017; Wu et al., 2019). Furthermore, the enhancers located on 

extrachromosomal DNA are shown to spatially interact with MYC promoter and drive MYC 
overexpression (Hung et al., 2021). From the pilot screen, we also demonstrated that this 

screening approach is capable of identifying functional MYC enhancers from cancer cell 

lines with known DNA copy amplification (SW620; colorectal cancer, NCI-H460; lung 

cancer, MCF7; breast cancer) (Turner et al., 2017), further supporting the generalized usage 

of this approach to profile functional enhancers in various cancer types. In addition, this 

systematic functional perturbation assay is highly generalizable. This strategy can be readily 

applied to discover enhancers crucial for different physiological phenotypes, such as cellular 

differentiation, cellular responses to extracellular signaling, etc. Overall, our data revealed 

the landscape of functional enhancers and established a role for lineage-specific TFs as key 

TFs that regulate the essential enhancers across multiple cancer cell lines.

Through the high-throughput perturbation screen, we generated a catalog with >500 

functional enhancers essential for proliferation and fitness in selected cancer cell lines. 

Furthermore, we dissected and characterized the regulatory elements within each of them 

with a massively parallel reporter assay (Ernst et al., 2016; Pang and Snyder, 2020). 

Interestingly, our data showed that essential enhancers generally harbor both activating 

and repressive elements, similar to the classical eve-skipped enhancers characterized from 

Drosophila (Small et al., 1992). Moreover, the activating and repressive elements are 

arranged characteristically relative to the open chromatin within each enhancer. While 

the activating elements are concentrated at the open chromatin regions and bound by 

oncogenic TFs in the cells analyzed in this study, the repressive elements are distributed 

outside the open chromatin and targeted by TFs with tumor suppressor function. These 

organization principles of essential enhancers might present an opportunity for designing 

targeted therapeutics in cancer research.
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Another interesting finding of this study is that a significant fraction of the essential 

enhancers found in HCT116 cells displays chromatin accessibility only in CRCs. In 

addition, high chromatin accessibility at a subset of these essential enhancers is significantly 

associated with poor patient survival in CRC, raising the possibility that essential enhancers 

could serve as prognostic markers. Together, our study provides a systematic framework to 

decipher the functionality of cis-regulatory elements in cancer cells, delineates organization 

principles of transcriptional enhancers, and fills a current gap to uncover the gene regulatory 

program to control cell survival and proliferation in cancer cells.

Limitations of the study

To systematically determine and characterize the sequence features of essential enhancers, 

we first examined an ~3.6 Mb genomic interval around MYC and MYB loci and identified 

24 essential enhancers from 10 cancer cell lines. While all identified essential enhancers 

were associated with the active enhancer marks, such as DHS and H3K27ac, in the cell 

lines where they were identified, the average size of identified essential enhancers was ~3 

kb, which might contain multiple DHS or H3K27ac peaks in a given cell line. Due to 

large effect size (>1 kb) generated by KRAB-dCas9-mediated silencing, further experiments 

will be necessary to resolve the functional cis-regulatory elements within. Furthermore, this 

study reports a large number of essential enhancers required for cell proliferation in several 

cancer cell lines, including the CRC line HCT116 and the chronic myeloid leukemia cell 

line K562. One limitation of this result is that the cell lines used have been cultured in vitro 
for an extended period and might not fully recapitulate chromatin accessibility or histone 

modifications from the primary tumor samples. Future studies to examine the function of 

the essential enhancers in patient-derived xenograft models or genetically engineered animal 

models would further reveal the roles of essential enhancers in vivo. In addition, we found 

that essential enhancers contain regulatory elements with different transcriptional activities 

using a massively parallel reporter assay. However, an episomal reporter assay might not 

truly reflect the function of those regulatory elements in the native chromatin context. To 

eliminate this confounding factor, mutagenesis, such as prime editing (Anzalone et al., 2019; 

Gaudelli et al., 2017), would verify their impacts on essential enhancers. Moreover, we 

identified some essential enhancers only accessible in tumor samples or associated with 

significantly shorter patient survival using the existing ATAC-seq data from 38 colorectal 

cancer samples. However, tumor tissue samples are heterogeneous and contain both tumor 

cells and surrounding non-tumor cells. Future studies that profile chromatin accessibility 

from tumor samples using single-cell ATAC-seq would provide more in-depth information to 

determine and verify the potential application of essential enhancers as prognostic marks or 

therapeutic targets.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Bing Ren (bren@ucsd.edu).
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Materials availability—All unique reagents generated in this study will be available upon 

request. Distribution of materials may require signing Material Transfer Agreement (MTA) 

in accordance with policies of University California San Diego.

Data and code availability

• Sequencing data have been deposited at GEO and are publicly available as of the 

date of publication. Accession numbers are listed in the key resources table. All 

dataset used in each figure are listed in Table S4.

• This paper does not report original code. A combination of existing pipelines 

was used for data analysis. All software used for data analysis is listed in the key 

resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line—Human chronic myeloid leukemia cell line K562 was cultured in RPMI with 

10% fetal bovine serum (FBS) (Gemini). Human liver cancer cell line HepG2, colon cancer 

cell line SW620, lung cancer cell line A549 and NCI-H460, breast cancer cell line MDA-

MB231, prostate cancer cell line DU-145 and PC3 were cultured in DMEM/F12 media 

(Thermo Fisher) with 10% FBS. Human colorectal cancer cell line HCT116 was cultured in 

McCoy’s 5A Modified media (Thermo Fisher) with 10% FBS, and human breast cancer cell 

line MCF7 was cultured in DMEM (4500mg/L glucose) (Thermo Fisher) with 10% FBS. 

All human cancer cell lines were obtained from ATCC and tested negative for mycoplasma.

MYC reporter knock-in line generation—K562 cells were electroporated with 

CRISPR expression plasmids, and donor constructs from the previous study (Xiong et al., 

2017) using cell line nucleofector Kit V (Lonza) following the manufacturer’s instructions. 

Cells were selected by puromycin (2 μg/mL) (InvivoGen) 3 days post-electroporation. After 

seven day selection, GFP positive cells were identified and isolated using a SH800S cell 

sorter (Sony) to one cell per well in a 96-well plate. The purity of the individual clone was 

examined by FACS and genotyped by PCR.

Generation of stable KRAB-dCas9 expressed clones in HCT116 cell line—
HCT116 cells were transduced with lentivirus carrying KRAB-dCas9-BFP (Addgene 

#85969). Three days after transduction, BFP positive cells were isolated using a SH800S 

cell sorter (Sony) to one cell per well in a 96-well plate. The purity of the individual clones 

was examined by FACS, and several clones with the strongest BFP signal were selected for 

the following experiment.

METHOD DETAILS

Selection of genomic targets for CRISPRi screen—In the pilot study, we selected 

two key oncogenes, MYC and MYB, that are required for cellular proliferation in various 

cancer types. We followed a similar principle as the previous study (Fulco et al., 2016) to 

identify genomic regions for the tiling CRISPRi screen. Briefly, chromatin organization is 
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known to play key roles in gene regulation, and the majority of enhancer and promoter 

interactions occur within topologically associated domains (TAD) (Dixon et al., 2012; 

Schoenfelder and Fraser, 2019). Because cell-type-specific chromatin interactions occur 

around the MYC locus, we combined Hi-C data from K562, HepG2, A549, HCT116, and 

selected genomic regions to include the entire TAD around MYC (3-Mb) and MYB (~600 

kb) loci.

Selection of genomic targets for large-scale CRISPRi screen—We first identified 

essential enhancers sharing similar features as active enhancers from the pilot screen. 

That finding provided us the rationale to focus on H3K27ac peaks. Second, we narrowed 

it down to those H3K27ac peaks located within 500 kb around target genes because 

most three-dimensional (3D) promoter-based interactions occur within a 500 kb distance 

(Javierre et al., 2016; Jung et al., 2019). Third, we validated several essential enhancers 

identified from the pilot screen, indicating cell fitness is a reliable readout to reflect the 

reduction in gene expression of essential genes. However, we are mindful of the possible 

limitation in this screen’s sensitivity to identify weak essential enhancers, which only 

slightly or moderately regulate target gene expression. Last, our screen identified several 

context-dependent essential enhancers, suggesting that the activity of essential enhancers 

might be cell-type-specific. In summary, we selected 6,642 H3K27ac peaks located near the 

essential genes and 4,554 H3K27ac peaks based on cell-type-specific activity.

gRNA design for the pilot study in MYC and MYB loci—We used the guide RNA 

design tool, CRISPR-SE (Li et al., 2021), to identify gRNAs and select single guide 

RNA (sgRNA) or paired guide RNA (pgRNA) in two genomic loci (MYB locus — chr6: 

134,923,863-135,478,863; MYC locus — chr8: 127,182,756-130,337,754). We designed 

13,373 tiling pgRNAs targeting those two loci and another set of 1,455 pgRNAs as negative 

controls (non-targeting controls or safe-target genomic loci, which are the validated genomic 

regions that do not cause growth defects in Cas9-based screen (Morgens et al., 2017)). 

The mean genomic distance between the gRNAs in each pair was ~3 kb, and the genomic 

spans of adjacent pgRNAs overlapped by 2.7 kb on average. In addition, we also designed 

sgRNAs targeting all DHS and H3K27ac peaks located within the selected genomic regions. 

In the pgRNA library, we generated 11,800 and 1,573 pgRNAs for MYC and MYB loci, 

respectively. We also included 955 pgRNAs that lacked the PAM sequence targeting MYC 

locus and 500 pgRNAs targeting safe-targeting genomic loci as negative controls, and 170 

pgRNAs targeting the promoter of essential genes (Gata1, Phb, Myb, and Myc). The guide 

RNA sequence is listed in Table S1.

Paired gRNA design for large-scale CRISPRi screen—We included 11,196 distal 

H3K27ac peaks and designed five pgRNAs targeting each peak. To maximize the genomic 

coverage of pgRNAs, we assigned sgRNAs to the same pair based on the relative location 

within each H3K27ac peak. For instance, we paired the first sgRNA closest to the start of 

the H3K27ac peak with the sixth sgRNA closest to the start of the same H3K27ac peak. 

In general, we selected the top 10 sgRNAs for each H3K27ac peak based on the improved 

criteria that we learned from the pilot tiling screen. Briefly, we found that ~40–60% sgRNAs 

located within our validated functional enhancers are effective with a higher on-target 
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score (Doench et al., 2014). Furthermore, we observed the percentage of effective sgRNAs 

increasing to ~60–90% when we only considered sgRNAs identified from CRISPR-SE (Li 

et al., 2021) and FlashFry tools (McKenna and Shendure, 2018). To minimize potential 

false-negatives due to low targeting efficiency, we selected the top 10 sgRNAs, based on 

the improved selection criteria, targeting for each distal H3K27ac peak included in the 

screen. In addition, we used the same approach to design 2,300 sgRNA pairs targeting 460 

safe-targeting genomic regions as negative controls. The safe-target genomic regions are 

the validated genomic regions that do not cause growth defects in the previous Cas9-based 

screen (Morgens et al., 2017). To assess the performance of large-scale screen in HCT116, 

we also designed five pgRNAs targeting 1,017 essential genes as positive controls and 583 

non or low-expressed nonessential genes as negative controls using sgRNA rank score from 

previous CRISPRi genome-wide screen study (Horlbeck et al., 2016). Overall, we generated 

a large-scale sgRNA library containing 55,980 pgRNAs targeting 11,196 distal H3K27ac 

peaks, 5,391 pgRNAs targeting essential genes as positive controls, and 8,673 pgRNAs 

targeting safe-target, promoter of non- or low-expressed gene, and non-targeting control as 

negative controls. sgRNA information is listed in Table S2.

CRISPRi plasmid library construction—We designed, synthesized the pool of paired-

guide RNA oligo (Agilent), and generated the pgRNA plasmid library as previously 

described (Diao et al., 2017) with the following modifications. Briefly, we amplified 

the oligo library by PCR with less than 20 cycles. After PCR, the pooled oligo library 

was purified with AMPure XP beads (Beckman Coulter). The lentiviral vector carrying 

dCas9-KRAB was obtained from Addgene (Plasmid #71236) and linearized with BsmBI 

followed by gel purification. We performed 5 or 20 Gibson assembly reactions for tiling or 

large-scale pgRNA library followed by manufacturer’s instructions (NEB) and purified DNA 

using ethanol precipitation. The purified DNA was electroporated into Endura competent 

cells (Lucigen) using 50–100 ng DNA per electroporation (we set up 6 or 24 replicate of 

electroporation for tiling or large-scale pgRNA library to maintain library complexity), and 

the colonies were harvested within 14 h at 30°C to minimize recombination activity in 

bacteria. We extracted the plasmids using the Plasmid Maxi prep kit (Macherey-Nagel).

Lentivirus generation—Briefly, 5ug of plasmid library was co-transfected with four ug 

PsPAX2 (Addgene #12260) and one ug pMD2.G (Addgene #12259) into a 10-cm dish of 

293FT cells (Thermo Fisher) in DMEM containing 10% FBS using FuGene HD (Promega). 

Scale up the number of 293FT cells and transfection depending on the yield and library size. 

The growth medium was replaced 12 h after transfection, and the lentivirus was harvested 

48 h post-transfection. The viral titer was determined for each individual cancer cell line 

using the survival cell number under puromycin selection from a serial dilution of lentivirus 

transduction.

Pooled CRISPRi screens for essentiality—We infected cells with lentiviral libraries 

at a low multiplicity of infection (MOI = 0.5) to ensure each infected cell got one viral 

particle. In general, we maintained cell numbers with at least 1000-fold coverage of the 

lentiviral library during the entire proliferation screen. For instance, we would have at least 

15 million cells survived after puromycin selection for a pooled library with 15,000 paired-
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guide RNAs. We started puromycin selection (2 μg/mL) (InvivoGen) 48 h post-transduction 

for at least two days or until no survival cell was observed from the control group. After 

puromycin selection, we recovered and cultured cells in a lower puromycin concentration 

(0.2 μg/mL) for additional two days. To start the screen, we collected at least 15 million 

cells as “doubling time 0” and sub-cultured at least 15 million cells for 14 doubling times 

in a lower concentration of puromycin (0.2 μg/mL). The cell concentration, viability, and 

doubling time were examined every two days. We sub-cultured and split cells when they 

reached more than 90% confluency. In the end, at least 15 million cells that reached 14 

doubling times were harvested. For the proliferation screen, we performed two replicate 

experiments for every human cancer cell line.

FACS-based CRISPR and CRISPRi screen—K562 MYC reporter cells were 

transduced with lentivirus carrying KRAB-dCas9 with tiling pgRNA pooled library using 

MOI = 0.3. Forty-eight hours post-transduction, cells were selected using blasticidin (8 

μg/mL) (Thermo Fisher) for nine days. The cells were split in a 1 to 4 ratio every three days. 

We used at least 60 million survived cells after blasticidin selection for a pooled library 

with 15,000 paired-guide RNAs to start the screen. Cells were sorted into six different bins 

(Bin1-6) based on GFP signals using a SH800S cell sorter (Sony).

Generation of illumina sequencing library—Genomic DNA was isolated from 

proliferation-based (D = 0 and D = 14) or sorting-based (Bin #1- #6) screens and used to 

generate illumina sequencing libraries. Briefly, we used 400 ng genomic DNA as a template 

per PCR reaction. In 1st PCR, the library was PCR amplified using Herculase II (Agilent) in 

the 96-well plate to increase the coverage for 22 cycles with the following program (98°C 

for 5 min; 98°C for 35 s, 52°C for 30 s, 72°C for 1min and repeat for 21 cycles; 72°C for 5 

min). After 1st PCR, we combined all reactions from the 96-well plate and used 2 ul of the 

mixture as the 2nd PCR amplification template. In 2nd PCR amplification, we amplified the 

library with Truseq index primers and prepared two PCR reactions per library. The 2nd PCR 

was amplified using KAPA Hi-Fi (Roche) for five cycles with the following program (95°C 

for 3 min; 98°C for 20 s, 65°C for 15 s, 72°C for 30 s and repeat for four cycles; 72°C for 

1 min). The sequencing library was combined and gel-purified (~690bp). We generated 100 

bp paired-end reads on Illumina Hiseq 4000. Primer information for illumina sequencing 

library is listed in Table S4.

Cloning individual sgRNAs—The lentiviral vector carrying dCas9-KRAB was obtained 

from Addgene (Plasmid #71236) and linearized with BsmBI followed by gel purification. 

sgRNA oligo (Table S4) was annealed and phosphorylated before the ligation. Individual 

sgRNA construct was verified using Sanger sequencing (Genewiz).

Cloning paired gRNAs—Paired gRNA cassette was PCR amplified from the gBlock 

template (Diao et al., 2017) containing tracRNA and mouse U6 promoter sequence using 

KAPA Hi-Fi (KAPA bioscience) with primers to add homology arms (Table S4) for Gibson 

assembly. We assembled a 20ng amplified cassette into a 50ng digested vector in a 20 

μL Gibson reaction (NEB). The individual construct was verified using Sanger sequencing 

(Genewiz).
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STARR-seq screen—Considering the heterochromatin spreading from KRAB-dCas9 

in the CRISPRi screen, we extended 1 kb genomic region up and downstream of 488 

essential enhancers and designed a tiling-oligonucleotide library. Each oligonucleotide 

is 190 bp and the genomic spans of adjacent oligonucleotide overlapped by 140 bp 

(except the first and last oligonucleotides only have 70 bp overlapped with adjacent 

oligonucleotide). In addition, we included 60 tiling oligonucleotides for the known 

enhancers and 2,095 negative controls that correspond to yeast open reading frames (ORFs) 

sequence (Table S3). Each oligonucleotide contains 190 bp of genomic sequence and 20 bp 

constant flanking sequences (upstream: 5′- ACACGACGCTCTTCCGATCT; downstream: 

AGATCGGAAGAGCACACGTC-3′) on both ends, which were used for amplification and 

cloning. The oligonucleotides were synthesized by Agilent. STARR-seq screen and library 

preparation were carried out as previously described (Arnold et al., 2013; Muerdter et 

al., 2018; Neumayr et al., 2019). In brief, we amplified a tiling-oligonucleotide library 

and cloned into the hSTARR-seq_ORI vector (Addgene #99296). The plasmid DNA was 

electroporated into HCT116 cells with TBK1/IKK and PKR inhibitors (Sigma). Cells were 

harvested 48 h after electroporation, and poly A+ RNA was extracted using oligotex mRNA 

kit (Qiagen). Due to the potential bias from low library complexity, we incorporated unique 

molecular identifiers (UMIs) to enable the quantification of reporter transcripts during 

sequencing library preparation. The libraries were sequenced with 2 × 100 paired-end cycles 

with Illumina NextSeq 2000 sequencer.

RNA extraction and quantitative RT-PCR—We used quantitative RT-PCR (RT-qPCR) 

to validate the effect of selected enhancers in gene regulation. In CRISPRi experiments, 

cells transduced with lentivirus carrying KRAB-dCas9 (Addgene #71236) and sgRNAs were 

harvested one week after the transduction. Total RNA was extracted using Trizol (Thermo 

Fisher) following the manufacturer’s instructions. Reverse transcription was performed for 

one hour using random priming (Promega). qPCR reactions (0.5 μL cDNA, 0.2 μM each 

primer, SYBR green Master Mix (Roche) were performed on a Roche LightCycler 480 

Real-Time PCR detection system, using primers specific for each gene (Table S4). Data 

were normalized to loading controls (Gapdh).

Chromatin immunoprecipitation-sequencing (ChIP-seq)—ChIP-seq experiments 

for H3K27ac mark were performed as described in ENCODE experiment protocols (“Ren 

Lab ENCODE Chromatin Immunoprecipitation Protocol” in https://www.encodeproject.org/

documents/) with minor modifications. The cells from ~80% confluent 10 cm dishes were 

crosslinked by adding fixation solution (1% formaldehyde, 0.1M NaCl, 1 mM EDTA, 50 

mM HEPES•KOH pH 7.6) for 10 min at room temperature. Crosslinking was quenched 

with 125 mM Glycine for 5 min. We used 1.0 million cells for each ChIP sample. Shearing 

of chromatin was performed using truChIP Chromatin Shearing Reagent Kit (Covaris) 

according to the manufacturer’s instructions. Covaris M220 was used for sonication with 

the following parameters: 410 s duration at 20.0% duty factor, 75.0 peak power, 200 cycles 

per burst at 5–9°C temperature range. For immunoprecipitation, we used 50 μL Protein 

A or Protein G Magnetic beads (NEB) and washed twice with PBS with 5 mg/mL BSA 

and 4 μg of antibody coupled in 500 μL PBS with 5 mg/mL BSA overnight at 4°C. The 

magnetic beads were washed twice with ChIP buffer (20 mM Tris-HCl pH8.0, 150 mM 
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NaCl, 2 mM EDTA, 1% Triton X-100), once with ChIP buffer including 500 mM NaCl, 

four times with RIPA buffer (10 mM Tris-HCl pH8.0, 0.25M LiCl, 1 mM EDTA, 0.5% 

NP-40, 0.5% Na•Deoxycholate), and once with TE buffer (pH 8.0). Chromatin was eluted 

twice from washed beads by adding elution buffer (20 mM Tris-HCl pH8.0, 100 mM 

NaCl, 20 mM EDTA, 1% SDS) and incubating for 15 min at 65°C. The crosslinking was 

reversed at 65°C for 6 h, and RNase A (Sigma) was added for 1 h at 37°C followed by 

proteinase K (Ambion) treatment overnight at 50°C. ChIP-enriched DNA was purified using 

Phenol/Chloroform/Isoamyl alcohol extractions in phase-lock tubes. ChIP samples were 

end-repaired, A-tailed, and adaptor-ligated using QIAseq ultralow input library kit (Qiagen) 

according to the manufacturer’s instructions. Size selection using AMpure beads (Beckman 

Coulter) was performed to get 300–500 bp DNA, and PCR amplification (8–10 cycles) was 

performed. Library quality and quantity were measured using TapeStation (Agilent) and 

Qubit (Thermo Fisher). We generated 50 bp paired-end reads on Illumina Hiseq 4000.

Cell proliferation assay—We transduced cells with lentivirus carrying KRAB-dCas9 

and sgRNA targeting candidate essential enhancers and performed puromycin (2 μg/mL) 

(InvivoGen) for three days post-electroporation to select against non-transduced cells. Seven 

days after the selection, the same number (4 × 105 cells for HCT116; 2 × 105 cells for A549) 

of viable cells was determined by trypan blue was split into 6-well plates triplicates. The 

number of viable cells was measured using trypan blue staining every 24 h in an automated 

cell counter (Bio-rad) for three days.

Proximity ligation ChIP-sequencing (PLAC-seq)—PLAC-seq libraries were prepared 

for K562, HepG2, HCT116, and A549 cells as previously described with minor 

modifications (Fang et al., 2016). In brief, cells were cross-linked for 15 min at room 

temperature with 1% formaldehyde and quenched for 5 min at room temperature with 

0.2 M glycine (Thermo Fisher). The cross-linked cells were aliquot (~3 × 106 cells) and 

resuspended in 300 μL lysis buffer (10mM Tric-HCl pH 8.0, 10mM NaCl, 0.2% IGEPAL 

CA-630) and incubated on ice for 15 min. The suspension was then centrifuged at 2,500 xg 

for 5 min and the pellet was washed by resuspending in 300 μL lysis buffer and centrifuging 

at 2,500 xg for 5 min. The pellet was resuspended in 50 μL 0.5% SDS and incubated for 10 

min at 62°C. 160 μL 1.56% Triton X-100 was added to the suspension and incubated for 15 

min at 37°C. 25 μL of 10X NEBuffer 2 and 100 U MboI were added to digest chromatin 

for 2 h at 37°C with rotation (900 rpm). Enzymes were inactivated by heating for 20 min at 

62°C. Fragmented ends were biotin labeled by adding 50 μL of a mix containing 0.3 mM 

biotin-14-dATP, 0.3 mM dCTP, 0.3 mM dTTP, 0.3 mM dGTP, and 0.8 U μl−1 Klenow and 

incubated for 60 min at 37°C with rotation (900 rpm). Ends were subsequently ligated by 

adding a 900 μL master mix containing 120 μL 10X T4 DNA ligase buffer (NEB), 100 μL 

10% TritionX-100, 6 μL 20 mg mL−1 BSA, 10 μL 400 U μl−1 T4 DNA Ligase (NEB, high 

concentration formula) and 664 μL H2O and incubated for 120 min at 23°C with 300 rpm 

slow rotation. Nuclei were pelleted for 5 min at 4°C with centrifugation at 2,500 xg. For 

the ChIP, nuclei were resuspended in RIPA Buffer (10 mM Tris (pH 8.0), 140 mM NaCl, 

1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate) with proteinase 

inhibitors and incubated on ice for 10 min. Sonication was performed using a Covaris M220 

instrument (Power 75W, duty factor 10%, cycle per bust 200, time 10 min, temperature 7°C) 
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and nuclei were spun for 15 min at 14,000 rpm at 4°C. 5% of supernatant was taken as input 

DNA. To the remaining cell lysate was added anti-H3K4me3 antibody-coated Dynabeads 

M-280 Sheep anti-Rabbit IgG (5 μg antibody per sample, Millipore, 04–745), followed by 

rotation at 4°C overnight for immunoprecipitation. The sample was placed on a magnetic 

stand for 1 min and the beads were washed three times with RIPA buffer, two times with 

high-salt RIPA buffer (10 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, 1% Triton X-100, 

0.1% SDS, 0.1% deoxycholate), one time with LiCl buffer (10 mM Tris (pH 8.0), 250 mM 

LiCl, 1 mM EDTA, 0.5% IGEPAL CA-630, 0.1% sodium deoxycholate) and two times with 

TE buffer (10 mM Tris (pH 8.0), 0.1 mM EDTA). Washed beads were treated with 10 μg 

RNase A in extraction buffer (10 mM Tris (pH 8.0), 350 mM NaCl, 0.1 mM EDTA, 1% 

SDS) for 1 h at 37°C, and subsequently 20 μg proteinase K was added at 65°C for 2 h. ChIP 

DNA was purified with Zymo DNA clean & concentrator-5. For Biotin pull down, 25 μL 

of 10 mg mL−1 Dynabeads My One T1 Streptavidin beads was washed with 400 μL of 1X 

Tween Wash Buffer (5 mM Tris-HCl (pH 7.5), 0.5 mM EDTA, 1 M NaCl, 0.05% Tween) 

and the supernatant removed after separation on a magnet. Beads were resuspended with 2X 

Binding Buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 2 M NaCl), added to the sample and 

incubated for 15 min at room temperature. Beads were subsequently washed twice with 1X 

Tween Wash Buffer and in between heated on a thermomixer for 2 min at 55°C with mixing 

and washed once with 1X NEB T4 DNA ligase buffer. Library prep was prepared using 

QIAseq Ultralow Input Library Kit (Qiagen). KAPA qPCR assay was performed to estimate 

concentration and cycle number for final PCR. Final PCR was directly amplified off the T1 

Streptavidin beads according to the qPCR results, and DNA was size selected with 0.5X and 

1X SPRI Cleanup and eluted in 1X Tris Buffer and paired-end sequenced.

Analysis of tiling CRISPRi screen from the pilot study—The abundance of paired 

gRNAs from D = 0 and D = 14 was mapped to the initially designed sequences using BWA 

(Li and Durbin, 2009). First, we analyzed the data using RELICS v1, a method specifically 

designed to analyze tiling CRISPR screens. RELICS v1 uses a Generalized Linear Mixed 

Model (GLMM) (Gelman and Hill, 2007) to model gRNA counts across different pools. 

The output is a log Bayes Factor, which is calculated by comparing the ‘background’ model 

(a guide does not target a functional sequence) against a ‘functional sequence’ model (the 

guide targets a functional sequence). The functional model parameters are estimated by 

maximum likelihood from the observed guide counts for gRNAs targeting the MYC and 

PHB promoters (both are essential genes in cancer cells and used as positive controls in 

proliferation screen). In this study, the background model parameters were estimated by 

maximum likelihood from all the remaining guides. After computing the scores from both 

models, RELICS v1 calculates a RELICS score, also referred to as “CRISPRi score” in 

the CRISPRi-based screen, for each base pair by summing the log Bayes Factors of all 

paired gRNA overlapping genomic positions. A base pair is considered to be overlapped by 

gRNAs if it is within the ‘area of effect’ (AoE) for the CRISPR system used. We use 1kb 

as the AoE for a CRISPRi-based screen (Thakore et al., 2015). We selected genomic regions 

with an averaged CRISPRi score above 5 as candidate essential enhancers. This threshold 

was chosen to correspond to FDR <0.1 based on simulated data from CRSsim (Fiaux et 

al., 2020). We further selected the reproducible candidate enhancers identified from two 

independent pipelines, RELICS v1 and CRISPY, to generate high confidence candidate 
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essential enhancers across different cell types. CRISPY is an improved pipeline developed 

from our previous study (Diao et al., 2017) and allows the flexibility of processing different 

types of screening data, data quality control, and peak calling for positive elements. RELICS 

v1 can be obtained from GitHub (https://github.com/patfiaux/RELICS/releases/tag/v1.0), 

and we used default settings for the analysis in this study. CRISPY can be obtained 

from GitHub (https://github.com/MichaelMW/crispy), and we performed the analysis with 

parameter -n 0.05, which only outputs the candidate peaks with FDR <0.05.

Analysis of large-scale CRISPRi screen—The abundance of pgRNAs from D = 0 

and D = 14 was mapped to the initially designed sequences using BWA (Li and Durbin, 

2009). We used MAGeCK (Li et al., 2014) to perform data quality assessment and identify 

candidate essential enhancers. For data quality assessment, we used the MAGeCK-mle 

module to calculate β-score (guide RNA depletion index) between biological replicates 

from two individual clones. A negative β-score indicates a target is negatively selected. 

Pearson correlation was performed to determine the correlation between β-score from two 

individual clones. Non-targeting pgRNAs were provided to generate the null distribution 

when calculating the p values. pgRNAs were ranked based on the p values, and we used the 

modified RRA algorithm from MAGeCK to obtain the RRA score for the individual target 

gene or H3K27ac peak. The threshold value for candidate essential enhancers is FDR <0.02 

based on the empirical ROC curve with 75% sensitivity. The empirical FDR was calculated 

based on the percentage of candidate targets identified from negative controls above this 

threshold, including non-essential genes and safe-target control genomic regions to account 

for the possible toxicities from the silencing mediated by KRAB-dCas9. The information of 

selected candidate essential enhancers is listed in Table S4.

Removal of candidate essential enhancers targeting by low-specificity 
pgRNAs—We computed a specificity score for all pgRNAs included in the large-scale 

screen using GuideScan (Perez et al., 2017) from the webtool to evaluate the potential 

off-target mediated toxicity to affect cellular proliferation. For every pgRNA, we used the 

lowest specificity score from one of the two sgRNAs for the representation. A previous 

study (Tycko et al., 2019) has shown that sgRNAs with specificity score <0.2 tend to have 

substantial off-target toxicity in CRISPR-based screens. To minimize false-positive hints 

by off-target toxicity in our screen, we removed candidate essential enhancers targeted by 

more than two pgRNAs (40%) with a specificity score <0.2. Total, we further removed 70 

candidate essential enhancers targeted by low-specificity pgRNAs (Table S4).

ChIP-seq data processing—Sequencing files were aligned to the human genome 

(hg38) with bowtie2 (Version 2.3.4.3) (Langmead and Salzberg, 2012). SAMtools (Version 

1.9) (Li et al., 2009) and MarkDuplicates (Picard) were used to filter (MAPQ <30) 

and clean data post alignment. The reads were then converted to reads per kilobase 

per million in 200 bp bins using deepTools2 (Version 3.5.0) (Ramírez et al., 2016). 

We obtained reproducible H3K27ac peaks in HCT116 from ENCODE and filtered out 

H3K27ac peaks located within 3-kb around annotated TSS using bedtools. For each 

distal H3K27ac peaks (n = 22,744), we obtained ChIP-seq fold enrichment over input in 

each sample using bigWigAverageOverBed (https://github.com/ENCODE-DCC/kentUtils/
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blob/master/bin/linux.x86_64/bigWigAverageOverBed). Pearson correlation was performed 

to determine the correlation of H3K27ac signal between different samples.

Analysis of key epigenetic features with essential enhancer—For key epigenetic 

features analysis, each functional enhancer peak was then scored using read-depth 

normalized signals from DNase-seq, fold-change over input from ChIP-seq data, and the 

fitness score from tiling screen using bigWigAverageOverBed to extract averaged signal for 

essential enhancer peaks across different cell types. We used spearman’s rank correlation to 

determine the correlation between key features and essential enhancers across multiple cell 

types.

PLAC-seq data processing—PLAC-seq data were processed with MAPS (Juric et 

al., 2019) to normalize reads and identify long-range chromatin interactions. Specifically, 

MAPS aligned raw paired-end reads with BWA (Li and Durbin, 2009) to the reference 

genome hg38. Uniquely mapped reads were kept and split into intra-chromosomal reads 

and inter-chromosomal reads. We used the following steps to identify intra-chromosomal 

chromatin interactions. Each chromosome was first divided into 10 kb bins. Histone 

H3K4me3 ChIP-seq peaks (downloaded from ENCODE) were used as the anchor, and 10 

kb bins overlapping with these ChIP-seq peaks were defined as the anchor bin. Depending 

on whether none, one, and two bins are the anchor bin, 10 kb bin pairs were further defined 

as ‘NOT’, ‘XOR’, and ‘AND’ sets. Only bin pairs in the ‘XOR’ and ‘AND’ sets were kept 

for downstream analysis. The raw contact frequency between two 10 kb bins in the ‘XOR’ 

and ‘AND’ sets was then fitted into a zero-truncated Poisson model to obtain the normalized 

contact frequency. Significant interactions were identified with FDR corrected p value cutoff 

of 0.01. Significant interactions were further grouped into clusters if two interactions were 

within 10 kb.

Differential chromatin interaction analysis—For differential interaction analysis in 

H3K4me3 PLAC-seq, the raw contact counts in 10 kb resolution bins were used as inputs, 

and we stratified the inputs into every 10-kb genomic distance to minimize the bias from a 

genomic distance. Since each input showed negative binomial distribution, we used edgeR 

(Robinson et al., 2010) to get the initial set of differential interactions. Next, we removed 

bins with less than 20 contact counts in each sample of two replicates from the downstream 

analysis. To avoid the antibody bias and TSS with differential H3K4me3 level, we further 

removed chromatin contacts overlapping with differential H3K4me3 ChIP-seq peaks at TSS 

(with fold-change decreased more than 50% than in HCT116). We only compared the 

chromatin contacts between different cell types at TSS of the predicted target genes with the 

same level of H3K4me3 ChIP-seq peaks.

Target gene prediction of essential enhancer—We used functional similarity and 

chromatin interaction to predict the targets of essential enhancers. From the tiling screen, 

we demonstrated the usage of cellular proliferation assay to identify strong functional 

enhancers for MYC oncogene across multiple cell types. We found that the distance between 

a majority of functional enhancers and target genes is within 500 kb. Thus, we first obtained 

a gene dependence score from the CRISPR-Cas9 knockout screen in HCT116 (Ghandi et 
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al., 2019; Hart et al., 2015). We utilized chromatin interactions generated from H3K4me3 

PLAC-seq to identify 155 enhancer and gene pairs (E-G pairs) between 115 essential 

enhancers and 115 essential genes. 145 of 155 enhancer and gene pairs (E-G pairs) were 

obtained from distal enhancers located near these essential genes, and 10 of E-G pairs were 

generated from distal enhancers that are associated with H3K27ac mark only in HCT116. 

In addition, we also connect 35 E-G pairs between 35 essential enhancers and 29 essential 

genes using the nearest essential gene. 4 of E-G pairs were generated from distal enhancers 

that are associated with H3K27ac mark only in HCT116. Overall, we identified 190 E-G 

pairs from 150 essential enhancers and predicted 144 essential genes, which included 100 

essential genes initially included in the screen. The predicted E-G pairs are listed in Table 

S4.

STARR-seq data analysis—STARR-seq reads were aligned to the oligonucleotide 

library using BWA (Li and Durbin, 2009). Similar to the previous study (Yan et al., 2021), 

an oligonucleotide with DNA counts less than 25 reads in the plasmid DNA input library, 

and RNA counts less than 5 reads in at least three biological replicate libraries were removed 

for downstream analysis. We determined enriched or depleted oligonucleotides using 

negative binomial repression from the R package edgeR (Zhou et al., 2014). Biological 

dispersion was estimated using only yeast oligonucleotides where no real variation is 

expected. The resulting p values were adjusted by the Benjamini-Hochberg procedure, and 

the significance cut-off for candidate oligonucleotides was set to limit the rate of enriched 

yeast oligonucleotide to 5%.

Survival analysis—Clinical outcome data and normalized ATAC-seq counts were 

obtained from UCSC Xena (Goldman et al., 2020). Cox proportional hazards regression 

model and the hazard ratio were computed in R using package survival. Package 

survminer was used for drawing the Kaplan-Meier plots and defining the optimal threshold 

(surv_cutpoint) using the maximally selected rank statistics (Hothorn and Lausen, 2003; 

Lausen and Schumacher, 1992).

Motif enrichment analysis—We performed both de novo and known motif enrichment 

analysis using HOMER (Heinz et al., 2010).

sci-ATAC-seq dataset analysis—Seven sciATAC-seq data including four from the 

transverse colon and two from the sigmoid colon were used to identify cell types in the 

colon tissue (Zhang et al., 2021). (1) Quality control metrics: TSS enrichment and unique 

fragments. TSS positions were obtained from the GENCODE database v31 (Frankish et al., 

2019). Tn5 corrected insertions were aggregated ±2000 bp relative (TSS strand-corrected) to 

each unique TSS genome-wide. Then this profile was normalized to the mean accessibility ± 

(1900–2000) bp from the TSS and smoothed every 11 bp. The max of the smoothed profile 

was taken as the TSS enrichment. We then filtered out all single cells that had fewer than 

1,000 unique fragments and/or a TSS enrichment of less than 7 for all data sets. (2) Overall 

clustering strategy: we utilized two rounds of clustering analysis to identify cell clusters. 

The first round of clustering analysis was performed on individual samples. We divided the 

genome into 5kb consecutive windows and then scored each cell for any insertions in these 
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windows, generating a window by cell binary matrix for each sample. We filtered out those 

windows that are generally accessible in all cells for each sample using a z-score threshold 

1.65. Based on the filtered matrix, we then carried out dimension reduction using SnapATAC 

(Fang et al., 2021) and used the leiden algorithm (Traag et al., 2019) to identify cell clusters. 

We called peaks for each cluster using the aggregated profile of accessibility and then 

merged the peaks from all clusters to generate a union peak list. Based on the peak list, we 

generated a cell-by-peak count matrix and used Scrublet (Wolock et al., 2019) to remove 

potential doublets. Next, to carry out the second round of clustering analysis, we merged 

peaks called from all samples to form a reference peak list. We then generated a single 

binary cell-by-peak matrix using cells from all samples and again performed the dimension 

reduction followed by graph-based clustering to obtain the final cell clusters across the entire 

dataset.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed with R Bioconductor by using two-sided Wilcoxon test, 

two-tailed Student’s t-test, multiple hypothesis testing, or log rank test depending on the 

experimental settings. All details regarding the statistical test employed, the size of the 

samples and p values are all included in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Large-scale screen of enhancers required for cell fitness in multiple cancer 

cell lines

• Essential enhancers are generally cell-type-specific

• Essential enhancers generally contain both activating and repressive DNA 

elements

• Chromatin accessibility of some essential enhancers is associated with poor 

prognosis
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Figure 1. Comparison of the performance of the CRISPRi screen using single or paired gRNAs
(A) Illustration of the design of the CRISPRi screen using single-guide (sgRNA) or paired 

guide RNA (pgRNA) libraries. We designed sgRNAs targeting every DNase hypersensitive 

site and a H3K27ac peak located within the 3- and 0.6-Mb MYC and MYB loci, or utilized 

tiling-based pgRNAs targeting the 3.6-Mb genomic region around MYC and MYB loci, 

respectively. Hi-C data in K562 cells were from a previous study (Rao et al., 2014).

(B) Schematic of the experimental strategy illustrates the identification of essential 

enhancers based on cell proliferation assay.
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(C) Summary of essential enhancers for MYC or MYB identified from sgRNA- or pgRNA-

based screen. Black dots and white dots indicate the presence and absence of essential 

enhancers identified from each category, respectively. Annotated functional enhancers were 

reported in a previous study (Fulco et al., 2016).

(D) Comparison between essential enhancers identified using sgRNA and pgRNA libraries 

at the MYC locus.

(E) The genome browser snapshot shows the CRISPRi scores (top) and essential enhancers 

(middle) identified from sgRNA and pgRNA libraries at the MYC (left) and MYB (right) 

loci. H3K27ac ChIP-seq signal, H3K27ac (bottom), and e1-e7 are the functional enhancers 

identified from the previous study (Fulco et al., 2016). The common essential enhancers 

identified from both screens are highlighted in yellow.

(F) The effect of perturbations using sgRNAs and pgRNAs in cell proliferation-based 

screen. The common peaks indicate essential enhancers identified from both sgRNA- and 

pgRNA-based screens. Common peaks 1 and 2 are previously identified enhancer e1 and e2, 

respectively. Fold changes represent the ratios between read counts after 14 doubling times 

(D = 14) to initial population (D = 0). p values were determined by two-sided Wilcoxon test 

(*p < 0.1; ***p < 0.001; ****p < 0.0001).
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Figure 2. Unbiased CRISPRi screen with a tiling pgRNA library identified essential enhancers 
around MYC and MYB oncogenes in 10 human cancer cell lines
(A) The genome browser snapshot shows CRISPRi score (top), essential enhancers, and 

H3K27ac ChIP-seq signal, H3K27ac (middle), or DNase signal, DHS (bottom), from the 

indicated cell lines.

(B) Chromatin interactions identified by H3K4me3 PLAC-seq at the MYC locus across four 

different cancer cell lines. The gray box represents the selected genomic region for further 

validation.
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(C) Gene expression measurement of the MYC gene by qRT-PCR after silencing the 

selected essential enhancers by CRISPRi in various cell lines (red, K562; orange, HepG2; 

purple, HCT116; blue, A549). Relative fold changes represent the ratios of gene expression 

from the CRISPRi silenced essential enhancer to the control samples. Data shown are mean 

± SD from three biological replicates performed. p values were determined by a two-tailed 

Student’s t test after silencing individual enhancer compared with control cells (**p < 0.01, 

***p < 0.001).

(D) The percentage of DHS or H3K27ac peaks that overlapped with essential enhancers 

from indicated cell lines. Gray bars indicate the number of DHS or H3K27ac peaks 

overlapped with essential enhancers (red, K562; orange, HepG2; purple, HCT116; blue, 

A549; pink, MCF7).

(E) Correlation between enhancer features (chromatin accessibility and histone 

modifications) and the function of essential enhancers across different cell types. The 

heatmap represents the chromatin accessibility and the signals of active enhancer marks 

across various cell lines. Each row represents the signal from the indicated dataset in each 

cell line and each column represents individual essential enhancers identified from the 

CRISPRi-pgRNA screen.
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Figure 3. Large-scale cell fitness-based CRISPRi screen identified essential enhancers in a 
colorectal cancer cell line
(A) Selection criteria for distal putative enhancers to be included in the screen and the design 

of experimental strategy. The red triangles represent distal H3K27ac peaks selected in this 

screen, and the gray triangles represent non-cell-type-specific H3K27ac peaks. The arrow 

indicates the transcription start site (TSS). Each distal H3K27ac peak is targeted with five 

sets of paired guide RNAs (pgRNAs), and the associated growth effect is measured from a 

pooled CRISPRi screen.

(B) Correlation of fitness effects in two independent KRAB-dCas9 stably expressed clones 

(Pearson’s R = 0.77). The paired gRNA depletion index shown is the average from two 

biological replicates in each clone. Red circled dots indicate pgRNAs targeting the promoter 

of essential genes, and blue circled dots indicate pgRNAs targeting the promoter of the 

non-essential genes. Gray dots represent pgRNAs targeting distal H3K27ac peaks.

(C) The selection of optimal thresholds to identify candidate targets from the screen. An 

empirical receiver operating characteristic (ROC) curve plots the true-positive rate against 

the false-positive rate for different possible cutoff points in negative selection. Totals of 

1,017 essential genes and 583 non-essential genes with low expression level were used 

as positive and negative in the analysis. The area under the curve (AUC) shows the 

performance of the MAGeCK algorithm.

(D) Comparison of pgRNA fitness effect with specificity score. pgRNAs targeting all 

selected distal H3K27ac peaks are labeled as yellow, while pgRNAs targeting candidate 

essential enhancers identified from the screen (empirical FDR < 0.02) are labeled as blue. 

The specificity score of pgRNA was determined using the lowest specificity score from one 

of the two sgRNAs in each pair. Fold change represents the ratios between read counts in the 

D = 14 population and the control population (D = 0).

(E) Summary of candidate targets identified from the screen. Robust ranking aggregation 

(RRA) score is generated from the MAGeCK algorithm after including the effect from 

multiple pgRNAs targeting the same distal H3K27ac peak. A target with a smaller RRA 
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score indicates a more substantial reduction in negative selection. Overall, 723 targets are 

essential genes, 488 targets are distal H3K27ac peaks, and 57 targets are non-essential genes 

or safe targets from the negative control group (empirical FDR < 0.02; 75% sensitivity).

(F) Comparison of DNA copy number at all selected distal H3K27ac peaks (n = 11,111) 

and essential enhancers (n = 488). CNV, copy number variation. No significant difference is 

observed (p = 0.11). p values were determined by the two-sided Wilcoxon test.

(G) Comparison of genomic distance between essential enhancers and nearest genes or 

predicted target genes. Significant longer genomic distance between predicted target genes 

and essential enhancers is observed (p = 6.6 × 10−23). p values were determined by the 

two-sided Wilcoxon test.
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Figure 4. Dissection of regulatory elements within the essential enhancers
(A) A schematic diagram represents the design of a tiling-based STARR-seq library to test 

the enhancer activity of DNA elements within the 488 essential enhancers identified in 

HCT116 cells.

(B) Identification of activating or repressing DNA fragments within essential enhancers. 

Oligonucleotides with significant enhancer activities are labeled as red and oligonucleotides 

with significant repressive activities are shown as blue (empirical FDR < 0.05). An empirical 

FDR of 5%, calculated based on the rate of enriched negative control yeast oligonucleotides, 

was used to determine the activating and repressive elements (Yan et al., 2021).

(C) Examples of activating and repressing elements within the same essential enhancer. 

Genome browser snapshot shows the signals of active elements from STARR-seq overlapped 

with ChIP-seq signals of H3K27ac, TCF7L2, and JUND at accessible genomic regions 
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while the signals of repressive elements are enriched in inaccessible chromatin regions at 

two representative essential enhancers.

(D) Aggregated plot shows enrichment of activating elements centered at the peak of 

TCF7L2 binding sites. A total of 125 TCF7L2 peaks overlapped with essential enhancers 

was used in this analysis.

(E and F) Top: the percentage of activating (E) and repressing (F) elements found in 

essential enhancers. Bottom: the top 3 enriched motifs associated with activating (E) 

and repressing (F) elements identified by HOMER are shown (Heinz et al., 2010). The 

percentage of enriched motifs from the foreground and background groups is shown 

nextto each motif. The foreground group contains genomic sequences with activating or 

repressing elements and the background group contains genomic sequences 1 kb up or 

downstream of the corresponding 488 essential enhancers. p values were determined using a 

hypergeometric test.

(G) Distribution of activating and repressing elements within the essential enhancers. The 

heatmap shows the enrichment of activating (left) or repressing (right) signals comprising 

the 1 kb surrounding the summit of ATAC-seq peaks overlapped with 488 essential 

enhancers. The essential enhancers are sorted from nearest to farthest according to the 

genomic distance of the activating elements to the summits of 229 ATAC-seq peaks 

overlapped with them.

(H) Comparison of the activity of activating (n = 687) and repressing elements (n = 896) 

between HCT116 and K562. p values were determined by the two-sided Wilcoxon test 

(*****p < 0.00001).
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Figure 5. Cell-type-dependent requirements of essential enhancers
(A) Correlation of fitness effects in two biological replicates from CRISPRi screen in K562 

(Pearson’s R = 0.51). Red circled dots indicate pgRNAs targeting the promoter of essential 

genes and blue circled dots indicate pgRNAs targeting the promoter of the non-expressed 

genes. Gray dots represent pgRNAs targeting distal H3K27ac peaks selected from HCT116.

(B) Summary of candidate targets identified from the K562 screen. Target with a smaller 

RRA score (identified by the MAGeCK algorithm) indicates a more substantial reduction in 

proliferation screen. Overall, 617 of the significant targets are essential genes, while 81 are 

distal H3K27ac peaks, and 35 are non-expressed genes or safe targets from negative control 

groups.

(C) Heatmap showing chromatin state of essential enhancers identified from K562. Each 

row represents the signal from the indicated dataset and each column represents individual 

essential enhancers identified in K562 cells.

(D) Venn diagram showing the number of overlapped essential genes (left) and essential 

enhancers (right) identified from K562 and HCT116 cells (yellow, K562; cyan, HCT116).
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Figure 6. Chromatin accessibility of the essential enhancers in primary colorectal cancer samples
(A) Heatmap representation of chromatin accessibility of essential enhancers in primary 

colon tissues or colorectal tumor samples, as determined by DNase-seq or ATAC-seq, 

respectively. Left and middle: heatmap shows chromatin accessibility of 488 essential 

enhancers in primary colon tissues from 22 embryo or adult samples. Right: heatmap 

showing open chromatin identified from 38 colon cancer samples. Open chromatin regions, 

ATAC-seq peaks, were determined using MACS2 (Zhang et al., 2008) from individual 

colon cancer sample. Each row represents individual essential enhancers and each column 
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represents individual samples. Seventy-two essential enhancers are overlapped with ATAC-

seq peaks from colon cancer samples and are not accessible in primary colon tissues.

(B) Chromatin accessibility of essential enhancers in 14 distinct cell types identified from 

primary colon samples using single-cell ATAC-seq. Each row represents an individual 

essential enhancer and each column represents a cell type identified in primary colon tissues 

from four individuals. Single-cell ATAC-seq data were generated from the previous study 

(Zhang et al., 2021). Cell types are sorted by decreasing cell abundance from high to low.

(C) Cox proportional hazards regression analysis of essential enhancers across 21 different 

cancer types. Hazard ratio was determined using 528 ATAC-seq peaks, which are overlapped 

with 488 essential enhancers, identified in colon cancer samples. Eight essential enhancers 

were identified with significantly increased hazard ratio (hazard ratio > 3; multiple 

hypothesis testing; FDR < 0.1). FDR was estimated by a collection of p values in 528 

ATAC-seq peaks generated from Cox proportional hazards regression analysis using qvalue 

(Storey and Tibshirani, 2003). ACC, adrenocortical carcinoma; BLCA, bladder urothelial 

carcinoma; BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA, 

esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous 

cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 

carcinoma; LGG, low-grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung 

adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; PCPG, 

pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; SKCM, skin 

cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; 

THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.

(D–K) Left: Kaplan-Meier analysis of overall survival of colon cancer samples based on 

chromatin accessibility at ATAC-seq peaks overlapped with selected essential enhancers. 

The red line indicates survival probability from the samples with higher chromatin 

accessibility at the indicated essential enhancers. p values were calculated using the log rank 

test. Right: DNA copy number at the indicated essential enhancer loci between high (red) 

and low (gray) accessibility groups. CNV, copy number variation. No significant difference 

in CNV is observed between high and low accessibility groups. p values were determined by 

the two-sided Wilcoxon test.

(L) Left: representation of Kaplan-Meier analysis of one randomly selected ATAC-seq peak 

overlapped with essential enhancers. p values were calculated using the log rank test. Right: 

DNA copy number at the indicated essential enhancer locus between high (red) and low 

(gray) accessibility groups. p values were determined by the two-sided Wilcoxon test.

(M) The effect of essential enhancers associated with poor clinical outcomes in cell 

proliferation. The measurement of cell proliferation after silencing essential enhancers with 

KRAB-dCas9 in HCT116 cells.

Chen et al. Page 41

Cell Rep. Author manuscript; available in PMC 2022 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 42

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

H3K4me3 Millipore Cat# 04-745; RRID:AB_1163444

H3K27ac Diagenode Cat# C15200184; RRID:AB_2713908

Bacterial and virus strains

Endura ElectroCompetent cells Lucigen Cat# 60242-1

MAX Efficiency DH5 α Competent cells Thermo Fisher Cat# 18258012

Chemicals, peptides, and recombinant proteins

Agencourt AMPure XP Beckman Coulter Cat# A63880

SPRISelect Reagent Beckman Coulter Cat# B23319

Herculase II Fusion DNA polymerase Agilent Cat# 600677

KAPA HiFi HotStart ReadyMix Roche Cat# KK2601

FuGene HD Promega Cat# E2311

Lipofectamine 3000 Thermo Fisher Cat# L3000008

FastDigest Esp3I Thermo Fisher Cat# FD0454

FastAP Thermo Fisher Cat# EF0651

MboI NEB Cat# R0147S

SalI-HF NEB Cat# R3138S

AgeI-HF NEB Cat# R3552S

Gibson Assembly Master Mix NEB Cat# E2611S

Quick ligation kit NEB Cat# M2200S

T4 PNK NEB Cat# M0201S

Protein A Magnetic Beads NEB Cat# S1425S

Protein G Magnetic Beads NEB Cat# S1430S

Phusion High-Fidelity DNA Polymerase NEB Cat# M0530S

Puromycin InvivoGen Cat# ant-pr-1

Blasticidin S HCl Thermo Fisher Cat# A1113903

BX-795 (TBK1/IKK inhibitor) Sigma-Aldrich Cat# SML0694

PKR inhibitor Sigma-Aldrich Cat# I9785

Trizol Thermo Fisher Cat# 15596026

KAPA SYBR Fast qPCR Kit Roche Cat# KK4600

SuperScript III Reverse Transcriptase Thermo Fisher Cat# 18080044

Critical commercial assays

Ultralow input library kit Qiagen Cat# 180492

Qubit dsDNA HS Assay kit Thermo Fisher Cat# Q32851

Oligotex mRNA mini kit Qiagen Cat# 70022

M220 Focused-ultrasonicator Covaris Cat# 500295

Deposited data
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REAGENT or RESOURCE SOURCE IDENTIFIER

H3K27ac ChIP-seq This study GEO: GSE161874

H3K4me3 PLAC-seq This study GEO: GSE161874

CRISPRi screen This study Tables S1 and S2

STARR-seq This study Table S3

K562 H3K27ac ChIP-seq (Figure 2A) ENCODE ENCFF945XHA.bigWig

HepG2 H3K27ac ChIP-seq (Figure 2A) ENCODE ENCFF764VYK.bigWig

HCT116 H3K27ac ChIP-seq (Figure 2A) ENCODE ENCFF126HQH.bigWig

SW620 H3K27ac ChIP-seq (Figure 2A) GEO GEO: GSE106923

A549 H3K27ac ChIP-seq (Figure 2A) ENCODE ENCFF256RBI.bigWig

NCI-H460 DNase-seq (Figure 2A) ENCODE ENCFF143RMC.bigWig

MCF7 H3K27ac ChIP-seq (Figure 2A) ENCODE ENCFF226GBS.bigWig

MDA-MB231 H3K27ac ChIP-seq (Figure 2A) GEO GEO: GSE103887

PC3 H3K27ac ChIP-seq (Figure 2A) ENCODE ENCFF287SLL.bigWig

K562 DNase-seq (Figure 2E) ENCODE ENCFF413AHU.bigWig

HepG2 DNase-seq (Figure 2E) ENCODE ENCFF842XRQ.bigWig

HCT116 DNase-seq (Figure 2E) ENCODE ENCFF225OLI.bigWig

MCF7 DNase-seq (Figure 2E) ENCODE ENCFF949ANK.bigWig

K562 H3K27ac ChIP-seq (Figure 2E) ENCODE ENCFF779QTH.bigWig

HepG2 H3K27ac ChIP-seq (Figure 2E) ENCODE ENCFF764VYK.bigWig

HCT116 H3K27ac ChIP-seq (Figure 2E) ENCODE ENCFF984WLE.bigWig

MCF7 H3K27ac ChIP-seq (Figure 2E) ENCODE ENCFF515VXR.bigWig

K562 H3K4me1 ChIP-seq (Figure 2E) ENCODE ENCFF761XBZ.bigWig

HepG2 H3K4me1 ChIP-seq (Figure 2E) ENCODE ENCFF058GCZ.bigWig

HCT116 H3K4me1 ChIP-seq (Figure 2E) ENCODE ENCFF774BWO.bigWig

MCF7 H3K4me1 ChIP-seq (Figure 2E) ENCODE ENCFF275KBS.bigWig

K562 H3K4me2 ChIP-seq (Figure 2E) ENCODE ENCFF491AUC.bigWig

HepG2 H3K4me2 ChIP-seq (Figure 2E) ENCODE ENCFF109QAV.bigWig

HCT116 H3K4me2 ChIP-seq (Figure 2E) ENCODE ENCFF783QRO.bigWig

MCF7 H3K4me2 ChIP-seq (Figure 2E) ENCODE ENCFF299JCQ.bigWig

HCT116 Tcf7l2 ChIP-seq (Figure 4C) ENCODE ENCFF241JHM.bigWig

HCT116 JunD ChIP-seq (Figure 4C) ENCODE ENCFF199BDI.bigWig

HCT116 ATAC-seq (Figure 4C) ENCODE ENCFF259PSA.bigWig

HCT116 Tcf7l2 ChIP-seq (Figure 4D) ENCODE ENCFF296ZZB.bed

K562 ATAC-seq (Figure 5C) ENCODE ENCFF754EAC.bigWig

K562 H3K27ac ChIP-seq ENCODE ENCFF779QTH.bigWig

K562 H3K4me1 ChIP-seq ENCODE ENCFF761XBZ.bigWig

K562 H3K4me2 ChIP-seq ENCODE ENCFF491AUC.bigWig

Experimental models: Cell lines

K562 ATCC CCL-243

Cell Rep. Author manuscript; available in PMC 2022 November 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 44

REAGENT or RESOURCE SOURCE IDENTIFIER

HepG2 ATCC HB-8065

HCT116 ATCC CCL-247

SW620 ATCC CCL-227

A549 ATCC CCL-185

NCI-H460 ATCC HTB-177

MCF7 ATCC HTB-22

MDA-MB231 ATCC HTB-26

DU-145 ATCC HTB-81

PC3 ATCC CRL-1435

293FT Thermo Fisher R70007

Oligonucleotides

Custom library Oligos for CRISPR screen This study Table S1 and S2

Custom library Oligos for STARR-seq This study Table S3

Custom PCR primers This study Table S4

Custom Sequencing primers This study Table S4

Recombinant DNA

pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-Puro Addgene Plasmid# 71236

pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP Addgene Plasmid# 71236

LentiGuide-Puro Addgene Plasmid# 52963

PsPAX2 Addgene Plasmid# 12260

pMD2.G Addgene Plasmid# 12259

hSTARR-seq_ORI Addgene Plasmid# 99296

Software and algorithms

BWA version 0.7.17 (Li and Durbin, 
2009)

https://github.com/lh3/bwa

Bowtie2 version 2.3.4.3 (Langmead and 
Salzberg, 2012)

http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

Samtools version 1.9 (Li et al., 2009) https://github.com/samtools/samtools

deepTools2 version 3.5.0 (Ramirez et al., 
2016)

https://deeptools.readthedocs.io/en/
develop/content/installation.html

GuideScan version 1.0 (Perez et al., 
2017)

http://www.guidescan.com

CRISPR-SE (Li et al., 2021) https://github.com/bil022/CRISPR-SE

edgeR version 3.12 (Robinson et al., 
2010)

https://bioconductor.org/packages/
release/bioc/html/edgeR.html

R Bioconductor version 3.6.1 R Foundation for 
Statistical 
Computing

https://www.r-project.org/

Survival version 3.2-7 (Therneau and 
Grambsch, 2000)

https://cran.r-project.org/web/
packages/survival/index.html

Survminer version 0.4.8 https://
rpkgs.datanovia.
com/survminer/
index.html

https://cran.r-project.org/web/
packages/survminer/index.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

HOMER (Heinz et al., 
2010)

http://homer.ucsd.edu/homer/
download.html

BEDTools (Quinlan and 
Hall, 2010)

https://bedtools.readthedocs.io/en/
latest/content/installation.html

MAGeCK version 0.5.9.2 (Li et al., 2014) https://sourceforge.net/projects/
mageck/files/

RELICS v1 This study https://github.com/patfiaux/RELICS/
releases/tag/v1.0

CRISPRY This study https://github.com/MichaelMW/crispy

MAPS version 1.0 (Juric et al., 
2019)

https://github.com/ijuric/MAPS

bigWigAverageOverBed ENCODE https://github.com/ENCODEDCC/
kentUtils/blob/master/bin/
linux.x86_64/
bigWigAverageOverBed

SnapATAC (Fang et al., 
2021)

https://github.com/r3fang/SnapATAC

Scrublet (Wolock et al., 
2019)

https://github.com/swolock/scrublet
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