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Abstract 

The effect of class size on student learning has numerous policy implications and has 

been a major subject of conversation and research for decades.  Despite this, few studies have 

been done on class size in the context of university settings or physics courses.  This dissertation 

helps address that gap in the literature by quantitatively analyzing the effect of class size on 

students’ understanding of physics concepts in active-learning based introductory physics 

courses for bioscience majors at a large, R1 university.  In the process, this dissertation also 

discusses the reasoning and methods behind three-level basic Hierarchical Linear Modeling 

(HLM), which is a particular form of statistical regression, along with analyzing the effects of 

several additional, non-class-size related, student and class-level characteristics on student 

understanding of physics concepts. 

In this study, a student taking a given course is part of a section which is itself part of a 

larger Lecture.  It was found that Grades, which were used as a proxy for students’ understanding 

of physics, varied a lot between individual students and also between Lectures, but varied 

relatively little between different sections within the same Lecture.  Furthermore, these Grades 

were affected substantially by the student-level factors which were part of this study, including 

academic factors like GPA and repeating a course, as well as demographic factors like race and 

ethnicity.  These Grades were also impacted greatly by Lecture-level factors that were part of 

this study, like academic term and Lecture instructor.  However, these Grades were not 

consistently impacted by any of the section-level factors that were part of this study, including 

start times and mean GPA. 
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On class size specifically, within the ranges studied here, class size did not have much of 

an effect on Grades in the courses that were part of this study.  There were some signs that larger 

Lecture sizes lead to lower Grades, but there was not enough evidence to be definitive, and there 

were no consistent trends in the impact that section size had on Grades.  However, the relatively 

low variation in Grades between sections, together with a variety of other questions, issues, and 

limitations, means that this study is certainly not the end of the story.  In particular, there are still 

open questions around the nature and meaning of Grades, as well as how class size and other 

student and class-level characteristics impact non-Grade related aspects of student, as well as 

teacher, well-being and success.  There is still much work to be done and plenty of discussions to 

be had, both theoretically and empirically, when it comes to the types of courses that were part of 

this study and the factors that affect student understanding of the material covered by these 

courses. 
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Chapter 1: Introduction and Background 

Class Size Motivation, Background, and Research 

Question 

The effect of class size on student learning (sometimes referred to as achievement or 

understanding) has been a hotly contested and heavily researched topic for quite some time now.  

Studies show that when implemented properly, classes of 15-17 students are optimal, at least in 

the early grades (often Kindergarten through third grade) [1].  However, there is also evidence 

(using Multilevel Modeling) to suggest that the effect of class size may actually vary depending 

on other factors [2].  This implies that more research is necessary to determine the conditions 

under which class size is relevant and the different ways that its effects manifest themselves 

depending on the circumstances.  It would therefore be beneficial to conduct such research in 

educational settings that have not yet been studied in the context of class size.  One of these areas 

is secondary and post-secondary education and another one is physics courses, which have both 

had relatively few studies done on the issue of class size, though there are a few exceptions 

yielding mixed results [3, 4, and 5].  This means that additional class size studies in higher 

education and physics could be of use to the education community, both to progress the 

knowledge of student learning in these settings and to help inform where educators should focus 

their limited attention and resources. 

Furthermore, physics education is moving in the direction of taking a more active 

approach to learning [6] and even with technological advancements, it is likely that for active-

learning techniques to work, teachers will still have to be physically present [7].  It also seems 
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reasonable to speculate that class size would have an even greater impact in an active-learning 

environment than it would in a more traditional environment since when students passively 

watch someone lecture, the number of students present is less likely to impact a given student’s 

understanding of the material than it would if students are working together on problems with 

guidance from the instructor.  Essentially, the number of students present has a higher chance of 

affecting classroom dynamics in the former case than the latter.  Therefore, it is especially 

desirable to study the effect of class size in the context of physics courses that employ active-

learning techniques.  Quantitatively, this speculation would lead to measures of active-learning 

moderating the effect of class size on student understanding, though at least one study has found 

no significant interaction between a school’s average class size and certain measures of active-

learning when it comes to overall science achievement [8].  However, overall science 

achievement in that study was measured by a single standardized test in secondary school and is 

therefore not necessarily indicative of class size’s effect on student understanding of physics 

material in an introductory college course. 

Given all of the above, the main research question in this study is: “What is the 

relationship between class size and students’ understanding of physics concepts in active-

learning based introductory physics courses?”  While the primary focus here is on class size, 

other factors, like student demographics, class start times, and Lecture instructors, were also 

included in this study’s analyses as controls, thereby providing an opportunity to examine the 

effect of these factors on students’ understanding of physics concepts in active-learning based 

introductory physics courses as well. 
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Statistical Motivation and Background 

Physics Education Research (PER) is a rapidly growing field which exists in the physics 

community (while drawing from, and working with, researchers in other fields, like education 

and sociology) that seeks to determine and promote best practices around teaching physics.  In 

order to make these determinations, it becomes necessary to compare and evaluate different 

teaching styles, techniques, and methods.  There are a variety of ways to make such 

comparisons, both quantitatively and qualitatively, depending on the situation.  However, since 

PER is still a relatively new field, many of these potential analyses have not been explored in a 

PER context even if they are frequently applied to other forms of education research. 

Multilevel Modeling 

One mechanism that is often used to evaluate the effectiveness of teaching interventions, 

and yet has not been widely adopted in PER thus far (though with a few notable exceptions, like 

some of the analysis in [9]), is Multilevel Modeling.  The basic motivation behind Multilevel 

Modeling is that many situations exist where data points should be grouped together (clustered) 

as a result of the larger structures that they naturally form.  One common example of this is the 

fundamental relationship between individuals and institutions, which underlies the social 

sciences, where individuals both influence, and are influenced by, the society and social 

structures that they are a part of [10, p. 1].  In this case, individuals are naturally clustered within 

institutions (schools, medical facilities, etc.) and geographic or geopolitical (municipalities, 

counties, countries, etc.) regions [11, p. 6].  Another common example involves longitudinal [10, 

p. 1] or repeated measures [12] research where observations, such as scores on a test or survey 

responses, are recorded multiple times, albeit on different occasions, for the same individual 
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making these observations clustered within individuals.  Two other interesting applications of 

Multilevel Modeling are meta-analyses where observations are clustered within studies [10, p. 1] 

and studies that involve multiple interviewers where interviewees are clustered within 

interviewers [11, p. xx]. 

For a variety of conceptual and statistical reasons, these types of situations warrant their 

own treatment rather than lending themselves to standard techniques.  Conceptually, 

interpretations should always be made at the proper level where here “level” refers to either the 

smallest units being analyzed (the “lowest level” which frequently, though not always, means 

individuals) or one of the clusters that these units are grouped into.  Trying to interpret 

something at any other level (for instance, trying to draw conclusions at the level of individuals 

based on an analysis that was done at the level of geographic regions, or vice versa) can lead to 

fallacies and inaccurate conclusions [10, p. 3-4].  Before delving into the statistical reasons for 

needing new techniques to address these types of situations, it should be mentioned that the 

underlying assumption behind Multilevel Modeling is that at each level, a random sample is 

chosen from the larger population (for instance, if the study involves students in schools, a 

random sample of schools is chosen and then a random sample of students is chosen from each 

school) [10, p. 1]. 

The main statistical reason why multilevel data (data that contains natural clustering) 

requires its own techniques has to do with observations’ independence, or lack thereof.  

Oftentimes, when standard techniques are applied to multilevel data, higher level observations 

(observations about the clusters themselves) are disaggregated, or in other words, assigned to a 

lower level like, though not necessarily, the lowest one [10, p. 2-3].  For instance, a school’s 

characteristics might be assigned to each individual student who attends that school.  The 
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problem here is that standard statistical techniques treat these lower level observations as 

independent when they clearly are not.  Even beyond higher level traits’ explicit lack of 

independence when they are disaggregated to lower levels, lower level observations that are 

naturally clustered (for instance, individual characteristics associated with students who attend 

the same school) will generally not be independent either, whether because of explicit 

relationships (for instance, all of the students at a given school being subject to the same grading 

policies which impact their individual grades) or because of implicit similarities (for instance, 

students at a given school coming from similar socioeconomic backgrounds) [10, p. 4-5].  

Incorrectly treating correlated observations as independent leads to standard errors that are 

deceptively, and inaccurately, small [10, p. 4-5] (and thus, to deceptively and inaccurately 

narrow confidence intervals) which in turn, leads to results that appear more significant than they 

actually are [10, p. 3].  On the other hand, aggregating lower level observations by assigning 

some combination of them to a higher level (for instance, averaging student grades in each of 

several schools and then assigning these averages to their respective schools) eliminates 

information and therefore, reduces statistical power (for instance, an effect that is significant and 

would otherwise be detectable may no longer be) [10, p. 3]. 

The fundamental statistical problems in both of the scenarios described above revolve 

around a combination of non-independence and different sample, as well as population, sizes at 

different levels.  Some very useful techniques have been developed over the years to deal with 

clustered and non-independent data by determining such things as effective sample sizes and 

effective variances [10, p. 5-6].  Effective quantities are mathematical tools that are designed to 

serve some computational or other practical purpose, like more accurately modeling a situation 

with non-independent observations in the case of effective sample sizes and variances.  These 
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quantities are generally different than their actual counterparts, like the actual number of 

observations in the case of sample size and the calculated variance (which is based on an 

assumption of independence) in the case of variance.  However, by definition, Multilevel Models 

inherently contain multiple sample and population sizes (for example, there will always be more 

entities, like students, at the lowest level than entities, like schools, at any higher level) [10, p. 6].  

Essentially, in Multilevel Models it is not simply the case that observations are not independent.  

Instead, on top of observations not being independent because of clustering, the actual sample 

and population sizes (i.e. number of entities) at different levels are different.  Additionally, 

Multilevel Models often include variables that naturally exist at different levels (for instance, a 

model might contain variables that are associated with students along with variables that are 

associated with schools) [10, p. 6-7].  Therefore, it makes sense to develop and use new 

statistical techniques when analyzing multilevel data rather than trying to apply standard 

techniques with some slight modifications (like effective sample sizes and variances). 

Hierarchical Linear Modeling (HLM) 

Multilevel Models derive their name from the way different groupings or clusters in the 

data constitute different levels.  For instance, if several observations are made on students in a 

few different classrooms at multiple schools during different years, the observations, students, 

classrooms, schools, and years all constitute different levels.  A special type of situation occurs 

when these levels are sequentially nested inside one another, forming a hierarchy (for instance, 

observations that are nested inside students who are nested inside classrooms which are nested 

inside schools).  However, this is not always the case with multilevel data.  For example, in the 

above situation it is unclear whether schools or years would constitute a “higher level” or in 

other words, which one (if any) is nested inside the other [12].  Despite having more restrictions 
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than general multilevel data, hierarchical situations with a strict nesting structure are relatively 

common and thus, it is useful to develop and apply techniques that are specific to these 

situations.  The name that is often given to such analyses is Hierarchical Linear Modeling 

(HLM).  In the case of nested data, HLM considers each of the sequential groupings to be a new 

level, where lower levels are nested within higher levels, and accounts for this nesting structure 

by associating each variable (along with the corresponding observations) with the appropriate 

level [11, p. xxi]. 

One of the most straightforward examples of this occurs in formal schooling where, as 

mentioned above, students are nested within classes which are themselves nested within schools 

or universities, as depicted in Figure 1 [11, p. xix].  In this example, level 1 would be the student 

level meaning all of the variables and observations describing students’ individual traits (such as 

their gender or prior test scores) would be associated with level 1.  Level 2 would be the class 

level meaning any variables and observations that have to do with the class a given student is in 

(such as the teacher’s experience or how many students are in the class, i.e. the class size) would 

be associated with level 2.  Finally, level 3 would be the school or university level meaning any 

variables and observations that have to do with the school or university a given student is in 

(such as median parental income or attendance policies) would be associated with level 3.  In 

future sections, this example will be referred to as the Students/Classes/Schools example. 
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Figure 1: Illustration of the HLM nesting structure in the Students/Classes/Schools example. 

Statistical Techniques and Random Effects 

Multilevel Modeling 

While all regression analyses involve quantitatively explaining the variation in some 

outcome (dependent) variable(s), in situations that involve multilevel data and that are analyzed 

using Multilevel Modeling, the mathematical distinction compared to standard multivariate 

regression techniques is the inclusion of random effects in addition to fixed effects [12].  

Essentially, one general way that researchers can characterize the sources of variance (a 

particular type of variation that is common in regression analyses) in a given outcome variable is 

by grouping these sources into three categories; 1) things the researchers can measure and are 

interested in (because these things help answer the research question(s)), 2) things the 

researchers are not interested in but can measure and would like to control for (because of their 

likely impact on the analyses’ results for things that the researchers are interested in), and 3) 
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things the researchers are not interested in and cannot measure but would still like to control for 

(again, because of their likely impact on the analyses’ results for things that the researchers are 

interested in) [12]. 

Starting to get into the statistical details, there are three broad ways of doing a regression 

analysis on multilevel data; a single standard regression (like in Figure 2), separate standard 

regressions that are each applied to a different cluster (like in Figure 3), or Multilevel Modeling 

(like in Figures 4 and 5).  In all of these, the first two sources of variance described above are 

accounted for using what is known as fixed effects where predictor (independent) variables are 

multiplied by coefficients (often referred to as slopes) in a regression equation.  Each of these 

coefficients, together with that coefficient’s standard deviation, tells the researchers about the 

corresponding predictor variable’s effect on the value of the outcome variable (though other 

information is often required to determine how much a given predictor variable explains the 

variance in the outcome variable). 

However, it is extremely rare that researchers can determine and include all relevant 

predictor variables or that predictor variables can fully explain all of the variance in the outcome 

variable.  Therefore, the third source of variance mentioned above leads to unaccounted for 

variance in the outcome variable, as well as related error terms (the difference between actual 

values of the outcome variable and predicted values of the outcome variable based on the 

regression equations).  A portion of this variance, known as process variance, is due to 

unaccounted for predictor variables and can be addressed through random effects, which 

essentially means having a regression analysis that allows the outcome variable’s intercept 

and/or the slopes on one or more of the predictor variables to be different for different clusters 

[12].  Furthermore, as discussed in “Statistical Motivation and Background,” not accounting for 
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natural clustering would violate the regression assumption that observations are independent.  

Not accounting for such clustering would also violate the regression assumption of 

homoscedasticity, which says that the variance in error terms is the same across all values of 

each predictor variable [11, p. xx].  Incorporating random effects is an effective way of 

accounting for such clustering while still maintaining as much statistical power (the ability to 

determine statistical significance) as possible, which would not be the case if a separate standard 

regression were applied to each individual cluster (due to drastically reduced sample size). 

For instance, expanding on the Students/Classes/Schools example, say the outcome 

variable is a student’s score on some exam.  In this example, holding all of the predictor 

variables at particular values leads to a particular value of the outcome variable (i.e. a particular 

exam score) but if the regression analysis allows the value of the outcome variable (when all of 

the predictor variables are held at particular values) to differ between classes and/or schools or 

universities (rather than assuming it is the same across classes and schools or universities), then 

this would be a situation with random intercepts. 

Now, if in the Students/Classes/Schools example a student-based predictor variable, say a 

student’s average grade on prior exams, is part of the regression analysis, then there will be a 

regression coefficient (slope) associated with this predictor variable that tells researchers how 

much a given student’s exam score changes (on average when all other predictor variables are 

held constant) when their average grade on prior exams changes by one unit (in whatever units 

grades are being measured in).  If the regression analysis allows the value of this slope to differ 

between classrooms and/or schools, then this would be a situation with random slopes.  

Similarly, if a class-based predictor variable, say the teacher’s temporal experience in years, is 

part of the regression analysis then there will be a slope associated with this predictor variable 
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that tells researchers how much a given student’s exam score changes (on average when all other 

predictor variables are held constant) when their teacher’s experience changes by 1 year.  If the 

regression analysis allows the value of this slope to differ between schools or universities, then 

this would also be a situation with random slopes.  Note that the Students/Classes/Schools 

example is a case of HLM where students are not only clustered into both classes and schools or 

universities, but classes are themselves clustered into schools or universities (i.e. classes are 

nested within schools or universities).  However, the discussion here still applies to situations 

where this nesting structure does not exist, though there are some important aspects of HLM that 

do not apply to all Multilevel Modeling situations. 

 
Figure 2: A standard regression plot, using example data, of student scores on a particular exam 

(ExamScore) vs. their average grades on previous exams (PriorGrade) in the 

Students/Classes/Schools example. 

ExamScore = 0.9989*PriorGrade + 0.4042
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Figure 3: A plot (using the same example data as in Figure 2) of ExamScore vs. PriorGrade at 

two different schools or universities in the Students/Classes/Schools example.  Note that both the 

intercepts and the slopes associated with each school or university are different compared to 

both each other and their respective values in Figure 2. 

ExamScore1 = 0.8921*PriorGrade + 0.828

ExamScore2 = 1.2846*PriorGrade - 0.4493
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Figure 4: The same plot as in Figure 3, but with an illustration of residual error terms; in this 

case the difference between a given student’s actual ExamScore (outcome variable) value and 

that which is predicted by their PriorGrade (predictor variable) value for the school or 

university (cluster) that they are part of.  ε91 is the residual error term for student 9 in school or 

university 1 while ε362 is the residual error term for student 36 in school or university 2 (ε362 on 

Figure 4 is a bit small, but is the only other labeled error term in Figure 4 besides ε91 and it is 

the only labeled error term in Figure 4 for school or university 2).  More details can be found in 

Appendix A, though note that this illustration is more akin to a two level model than a three level 

model (which is why ε does not include a number for the class that a given student is in), but the 

basic ideas here are the same. 
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Figure 5: A plot with the same axes and scaling as Figure 3, but with the trendlines from both 

Figure 2 and Figure 3 superimposed onto each other, while removing the actual data points in 

order to focus on the trendlines.  u01 is an error term that is the difference between the intercept 

of the overall trendline (in green, from Figure 2) and the intercept of the trendline for school or 

university 1 (in blue, from Figure 3).  γ10 is the slope of the overall trendline (the increase in 

outcome variable ExamScore due to a 1 unit increase in predictor variable PriorGrade based on 

all of the example data) while u12 is the difference between the slope of the overall trendline and 

the slope of the trendline for school or university 2 (in orange, from Figure 3).  More details can 

be found in Appendix A, though note that this illustration is more akin to a two level model than 

a three level model, but the basic ideas here are the same. 

HLM 

As described in “Statistical Motivation and Background,” HLM is a type of Multilevel 

Modeling that imposes additional restrictions, where levels are sequentially nested inside of one 
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another.  Despite having more limited applicability, hierarchical situations are relatively 

common, especially within education settings, and also lend themselves to more systematic 

approaches and interpretations.  In terms of numerical results, HLM is not different from any 

other type of Multilevel Modeling, but conceptually, there are interesting and useful features of 

HLM that rely on its nesting structure. 

The main reason for this is that intercepts and slopes on predictor variables are not only 

allowed to differ between different clusters, but can themselves be modeled and interpreted as 

functions of predictor variables (specifically, predictor variables associated with the next highest 

level as detailed in Appendix A).  This makes keeping track of a large number of predictor 

variables and coefficients more manageable and also naturally leads to an interpretation where 

lower level intercepts and slopes on predictor variables are partially explained through higher 

level predictor variables (along with error terms which form the mathematical basis for random 

effects).  Furthermore, it facilitates an iterative regression process where predictor variables can 

be introduced one level at a time, thereby helping researchers determine the amount of variance 

in the outcome variable that is explained by each level’s predictor variables.  Note that in this 

method of analysis and interpretation, neither intercepts nor slopes can be directly related to 

predictor variables more than one level above them, but they can be indirectly linked to such 

predictor variables through higher level equations. 

For instance, going back to the Students/Classes/Schools example, where now the nesting 

structure is being accounted for, if the outcome variable (exam score) has different intercepts 

(values of the outcome variable when all predictor variables are held at particular values) for 

different classrooms then these intercepts may be partially explained by the values of classroom 

level predictor variables.  Similarly, if the slope associated with the level 1 (student level) 
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predictor variable of average grade on prior exams is different between different classrooms then 

this slope may also be partially explained by the values of classroom level predictor variables.  In 

this example, neither the intercept nor the slope mentioned above can be directly related to level 

3 (school level) predictor variables, but they can be indirectly linked to level 3 predictor 

variables through higher level equations (i.e. level 2 coefficients being treated as functions of 

level 3 predictor variables). 

While there are more advanced HLM techniques, the most basic version requires a strict 

nesting structure and for the outcome variable to be continuous (at least interval, if not ratio, as 

opposed to categorical or ordinal), at level 1 (which is often, though not always, the level of 

individuals), and to follow an approximately Normal distribution.  Note that even though it is 

theoretically possible to have any (whole) number of levels, in practice HLM analyses often only 

include two or three levels since having more than three levels can be computationally difficult 

(i.e. lead to convergence issues) and can also be complicated to interpret [10, p. 32-33].  In 

general, the more levels are added, the more reliant researchers need to be on theoretical 

assumptions that simplify the mathematical model [10, p. 33].  Check out Appendix A for more 

details on the technicalities and equations involved in the three level version of a basic HLM 

analysis. 

Random Effects and Levels vs. Predictor Variables 

One final issue to mention here is the distinction between random effects and sets of 

categorical predictor variables (sets of dummy variables where every observation is assigned a 

value of 1 for exactly one such variable, typically the one associated with the name of the 

variable, and 0 for all of the others).  In principle, the clusters in any Multilevel Modeling 

analysis (including any HLM analysis) could be treated as a set of categorical predictor variables 
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(i.e. using fixed effects).  For instance, in the Students/Classes/Schools example, it would be 

possible to use a conventional regression analysis which includes a categorical variable for each 

class and a categorical variable for each school or university such that each of these variables has 

a value of 1 for any students who are in that class or that school or university and 0 for all 

students who are not.  A reference class and a reference school or university would then be 

chosen and the corresponding variables would be excluded from the analysis while all other such 

variables would be included (with their corresponding slopes comparing them to the reference 

class for class variables and the reference school or university for school or university variables).  

This type of analysis would also allow for interactions between these variables and any or all 

other variables, such as average grade on prior exams, teacher experience, and a school’s median 

parental income. 

However, when natural clustering is involved and the analysis does not require a 

comparison of outcome variable means between different clusters, accounting for this clustering 

using random effects creates stronger statistical power, especially when there are a large number 

of clusters [12].  Additionally, in the case of HLM, the conceptual benefits of doing such an 

analysis (mentioned previously) are another reason to account for this clustering using random 

effects and nested levels as opposed to categorical predictor variables. 

A more mathematical way to determine whether to treat clustering using random effects 

or categorical predictor variables is by calculating intraclass correlation coefficients (ICCs) for 

the situation where no predictor variables are present.  ICCs give the proportion of total variance 

in the outcome variable that exists between clusters (for instance, in the 

Students/Classes/Schools example this would mean the variance between classes or between 

schools or universities), as opposed to within clusters (for instance, the variance between 
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students within a given class in the Students/Classes/Schools example).  Check out the end of 

Appendix A for details. 
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Chapter 2: Study Set-Up 

Site, Sample, and Population 

The observations used in this study (the sample) were drawn from five years (2012 – 

2016) of data (the period of study) on student Grades as well as student, discussion/lab, and 

lecture characteristics in a sequence of three introductory physics courses (7A, 7B, and 7C) 

designed for, and taken primarily by, bioscience majors at a large, public, R1 university that is on 

the quarter system (the University).  All three of these courses are offered during all three 

quarters (Fall, Winter, and Spring) of the regular academic year, as well as during both of the 

University’s two yearly summer sessions (one during the earlier part of summer break and one 

during the later part).  The data used in this study was acquired from the University 

administration by a professor at the University for the purposes of education research. 

The three courses that were part of this study are based on active-learning techniques 

where, during the regular academic year, students attend two discussion-labs (DLs) of 2hr and 

20min each per week.  In DL, students engage in activities like working through practice 

problems (similar to discussion sections in more traditional courses) and conducting and 

analyzing experiments (similar to lab sections in more traditional courses) in groups that are 

typically composed of five students each, though the way that these groups are determined 

differs between DLs, with some being chosen randomly and others being self-selected.  During 

DL, students also synthesize material as a whole class.  Both of these components (small-group 

activities and whole-class discussions) are done with the guidance of a teaching assistant (TA).  

The main DL classrooms have room for six groups which means 30 students when there are 5 
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students per group, though this number (and thus, the number per group) can vary.  There is also 

an overflow classroom that is sometimes used and has room for four groups. 

During the regular academic year, students also attend a single weekly lecture section of 

1hr and 20min which typically provides an overview of the material, goes over some example 

problems, and is where exams and (often weekly) quizzes are administered.  Lecture instructors 

for these courses teach two identical lectures back-to-back with students from both of these 

lecture sections being part of the same DL (i.e. DLs consist of an approximately even mixture of 

students from two different lecture sections that are taught consecutively by the same Lecture 

instructor).  It is important to note that, while most class-time and class-based learning for the 

courses that were part of this study is done during DL, and Grades for these courses do include 

some slight modifications for DL participation (which tend to be approximately equal on a per 

DL basis and therefore do not impact the relative Grade differences between DLs), these Grades 

are usually based almost exclusively on quiz and final exam (and sometimes midterm, which are 

rare but not unheard of) scores.  With a few exceptions, quizzes and exams are written by the 

Lecture instructor and administered during lecture sections. 

During the summer (in each of the two yearly summer sessions), the general layout and 

policies of these courses remains largely the same as during the regular academic year, but with a 

few key differences.  First, only one lecture section of each course is offered in any given 

summer session, so Lecture instructors only teach one lecture section at a time and thus, all 

students in every DL come from the same lecture.  Summer Lectures also tend to not be full, so 

the number of students per DL (and lecture section) is often lower than it is during the regular 

academic year.  Furthermore, summer Lectures and DLs have a pace which is approximately 

double that of the regular academic year, meaning during the summer, there are four weekly DLs 
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(which are still 2hr and 20min each) plus two weekly lectures (which are 1hr and 15min each, so 

5min shorter than during the regular academic year).  Finally, external factors, including the 

number of courses a given student is taking simultaneously, the weather (the University is in an 

area that gets quite hot and dry over the summer), and the types of students who choose to take 

these courses, are different during the summer than they are during the regular academic year. 

Lastly, there is a question of what population the results of this study apply to (where this 

population is the larger group that the sample is assumed to be randomly drawn from).  Here 

things become a bit more complicated because this question essentially means, how 

generalizable is this study?  Do these results apply to all courses, all university courses, all 

physics courses, all university physics courses, etc.?  Or perhaps they apply even more narrowly.  

For instance, maybe they only apply to active-learning based courses or active-learning based 

physics courses.  Perhaps they are particular to bioscience majors or bioscience majors in active-

learning based physics courses.  Given all this uncertainty, it is best to list the populations that 

this study, and its results, definitely apply to and then provide some discussion around larger 

populations that it might apply to.  The population that this study’s results definitely applies to is 

students who take these particular courses at the University, both during and outside of the time 

period that was studied.  Getting a bit broader, it seems likely that this study’s results apply to 

active-learning based introductory physics courses taken by students who are not specializing in 

the physical sciences, math, or engineering.  This is because even though the courses in this 

study were college courses as opposed to high school courses and were taken primarily by 

bioscience majors as opposed to a general audience or non-STEM majors, it does not seem likely 

that these particular details would have a substantial impact on the results.  Lastly, it is possible 

that the results of this study apply to active-learning based introductory physics courses taken by 
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students who are specializing in the physical sciences, math, or engineering.  On the other hand, 

it does not seem likely that the results of this study would apply to upper level or graduate 

physics courses nor does it seem likely that they would apply to courses in fields beyond physics, 

with the possible exception of active-learning based introductory chemistry, math, or engineering 

courses, especially those taken by students who are not specializing in the physical sciences, 

math, or engineering (in other words, courses taken by a general audience or students who are 

specializing in bioscience or non-STEM fields). 

Levels and Outcome Variable 

This study involves HLM analyses that use three nested levels.  In these analyses, 

individual students (or really, observations, but these essentially amount to students) are at level 

1, DLs are at level 2 such that students are nested within DLs, and Lectures are at level 3 such 

that DLs are nested within Lectures.  Note that, when it comes to data from the regular academic 

year, Lectures are defined to include both lecture sections that are taught back-to-back by the 

same instructor since these two lecture sections tend to be quite similar, albeit with some 

differences, including the time, how tired the Lecture instructor is, and how experienced the 

Lecture instructor is with teaching that day’s material.  It would also be rather difficult to treat 

these two lecture sections as distinct while simultaneously maintaining the DL level (level 2) and 

a strict nesting structure (since most DLs during the regular academic year have students from 

both of these lecture sections).  The different lecture sections within the same “Lecture” during 

the regular academic year are taken into account using a dummy variable (a predictor variable 

that is binary and has a value of either 0 or 1) as described in “Level Choices and Predictor 

Variables.”  During the summer, Lectures and lecture sections are equivalent due to the way that 

lectures are structured during the summer, as described in “Site, Sample, and Population.” 
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The outcome variable in this study is Grade which represents the final numerical (on a 

4.00 scale) grade for a given student in a given Lecture of a given course (7A, 7B, or 7C) during 

a given quarter of a given year (note that the term “course” is defined in this study as one of the 

three types of courses 7A, 7B, and 7C, as opposed to a particular Lecture or DL).  There are 13 

possible Grades, corresponding to 13 possible letter grades (including pluses and minuses), 

which range from 0 (F) to 4.33 (A+) in increments of 0.33 (or 0.34 in some cases).  There are 

two main reasons for this choice of outcome variable.  First, since this study’s main research 

question involves student understanding of physics concepts, the outcome variable should 

measure this understanding, which, at least in principle, final Grades supposedly do (check out 

Appendix B for more details about the research into what grades measure and the degree to 

which they actually measure what they are supposed to, along with some discussion of this study 

as it relates to such research).  The second reason this outcome variable was chosen is because, 

regardless of their relationship to student understanding, in the context of our current society, 

grades are relevant in-and-of themselves since they are a common feature of most students’ 

educational experiences and are used as sorting or ranking mechanisms to determine who 

qualifies for certain benefits [13].  Essentially, reviewers often use grades to help determine 

which students (or former students) have access to resources and opportunities like jobs or 

additional levels of schooling (like internships, medical school, and graduate school).  This is the 

primary reason that most students tend to be concerned about their grades and the courses 

involved in this study are no exception. 

On the statistical side of things, note that Grade exists at level 1, is assumed to be 

continuous, and follows an approximately Normal distribution (as depicted in Figure 6), which 

allows analyses that use it as the outcome variable to be conducted with basic HLM techniques 
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(provided the other conditions of a basic HLM analysis are met).  The numerical Grade 

associated with an A+ letter grade was changed from its original value of 4.00 to a value of 4.33 

in order to match the association between other letter grades with pluses and their corresponding 

numerical Grades, and also because many students still try to get an A+ even when they know 

that it will not affect their GPA any differently than an A would.  Another benefit of this 

conversion is that it made the distribution of final numerical Grades closer to a Normal 

distribution than it would have been had all of the A+ Grades been assigned a value of 4.00, 

though there is still a ceiling effect and a disproportionately high number of 0s (Fs). 
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Figure 6: A histogram of Grades during the period of study for 7A during the regular academic 

year.  This distribution is similar to the distribution of Grades in 7A during the Summer as well 

as in 7B and 7C during both the regular academic year and the Summer.  The main deviation is 

in 7C during the summer where there is a slight dip at the peak.  The peak also occurs at a 

slightly higher value of Grade for 7A and 7C during the summer. 

The assumption of continuity (which also applies to the predictor variables GPA, Units, 

Mean_GPA, Mean_Units, Mean_Male, Mean_LecStart, and LecSize in this study) has two 

major components.  First off, it means that the number of possible values is fairly large, but what 

“fairly large” entails is not well defined.  For instance, both 13 values and 101 values (the 

number of integers on a 100 point scale) are discrete scales and thus, strictly speaking, neither of 

them is truly continuous in the uncountably infinite sense.  The only difference between the two 
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in this regard is how many distinct values (grades) are allowed and the amount by which 

consecutive values are separated and yet, while the legitimacy of treating letter grades as 

continuous is sometimes disputed, treating a 100 point scale as continuous is rarely questioned.  

It can be reasonably argued that 13 values are enough to qualify as continuous provided the 

second, arguably more important, criterion is met. 

The second aspect of what it means to be continuous is directly tied to the question of 

value separation and whether the difference between consecutive values is meaningful.  For 

ordinal variables, this is not assumed to be the case and consecutive values simply represent an 

ordered ranking without any meaning attached to the degree of separation.  For continuous 

(interval or ratio) variables, it is assumed that the difference between consecutive values has the 

same meaning anywhere along the spectrum of allowed values.  For instance, treating Grade as 

continuous here means that the difference between a C- (1.67) and a C (2.00) is assumed to be 

the same as the difference between a B (3.00) and a B+ (3.33), which is not necessarily the case.  

However, the same would be true on a 100 point scale where it is not necessarily the case that the 

difference between say, a 60 and a 61, is the same as the difference between an 84 and an 85, but 

in both cases this assumption needs to hold in order for numerical grades to be treated as 

continuous variables.  Furthermore, in both cases it is reasonable to assume that it holds to good 

approximation (and if it does not, then there would be a lot of other philosophical and 

pedagogical problems that would need to be contended with). 

On top of these potential issues with treating Grade as continuous (which have hopefully 

been addressed to the reader’s satisfaction), curves are sometimes implemented when it comes to 

grading introductory physics courses.  In such a situation, one could argue that the corresponding 

grades are a ranking system within a given class (an ordinal variable) but do not present an 
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interval type of knowledge since the difference between consecutive grades at one point along 

the grade spectrum does not necessarily have the same meaning as the difference between 

consecutive grades at a different point along this spectrum.  Another way that grades are 

sometimes manipulated, which may raise concerns around the degree to which they can be 

treated as continuous, is shifting the thresholds or cutoffs for obtaining a given letter grade 

(which is a different type of correction for relative difficulty than a true curve even though this 

practice is sometimes referred to as curving).  However, as far as the author is aware, the courses 

involved in this study are rarely curved and try to avoid large shifts in the thresholds for 

obtaining a given letter grade (compared to some conventional standard).  In addition, since 

grading occurs within Lectures, which are being treated as a level in an HLM framework, there is 

already a built-in mechanism to account for possible differences in grading schemes between 

different Lectures.  This means that in order for Grade to be continuous, it simply needs to be 

continuous within each Lecture rather than needing to be continuous across Lectures (i.e. while 

accounting for different grading patterns between Lectures), which is just another benefit of 

conducting the analyses in this study using Multilevel Modeling. 

Level Choices and Predictor Variables 

Before discussing the specific predictor variables in this study, it is informative to briefly 

discuss some of the choices that were made around the ways that different types of clustering 

were treated.  In this study, DLs and/or Lectures could, in principle, be treated as sets of 

categorical predictor variables.  However, given the large number of DLs and Lectures in the 

data set, along with the conceptual benefits of interpreting regression analyses using HLM when 

nested clustering exists, it is beneficial to treat these two types of clusters as (higher) levels 

within an HLM framework. 
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On the other hand, since there are a small number of quarters during the regular academic 

year (three; Fall, Winter, and Spring), it is reasonable to treat these as a set of categorical 

predictor variables rather than addressing them through random effects.  Furthermore, treating 

these using random effects in a basic HLM framework would require either making academic 

quarter level 3, and not including Lectures in the analyses, or making it a fourth level that 

Lectures are nested within, neither of which would be desirable (the former because Lectures had 

a substantial impact on Grade, and the latter for the reasons discussed at the end of the “HLM” 

portion of “Statistical Techniques and Random Effects”). 

Academic year was not included in this study’s analyses in any way (as a level or as a set 

of categorical predictor variables) since there is no reason to suspect that it would have any 

impact on Grades.  Essentially, none of the years during the period of study have any defining 

characteristics that distinguish them from any of the other years (unlike, for instance, if the data 

had included observations from 2020 or 2021 when teaching and grading at the University 

changed substantially due to the COVID-19 pandemic).  Furthermore, including academic year 

as a level would require either making it level 3, and not including Lectures in the analyses, or 

making it a fourth level that Lectures are nested within, neither of which would be desirable 

(because of the same reasons as those described above for academic quarters). 

Lecture instructor was treated as a set of categorical predictor variables since, while there 

were quite a few of them (40) during the period of study, this number was still low enough to 

manage effectively using a set of categorical predictor variables (especially since not all of 

instructors taught each of the three courses in this study during the period of study) and including 

the Lecture instructor as a level would require either making it level 3 in place of Lectures, or 

making it a fourth level that Lectures are nested within, neither of which would be desirable (the 
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former because, while the effect of Lectures on student Grades is partially due to the effect of 

Lecture instructors, the effect of Lectures is not necessarily limited to the effect of Lecture 

instructors). 

Finally, note that each course in this study (7A, 7B, and 7C) was analyzed separately to 

remove the non-independence of students with themselves (i.e. the Grades received by a given 

student who took more than one of these courses will probably not be independent from one 

another).  If the data was all analyzed together, rather than separated by course, the best way to 

account for this non-independence would be to treat observations as level 1 and students as level 

2 (and DLs as level 3 and Lectures as level 4) such that observations are nested within students.  

Since this would add a fourth level and students would not be strictly nested within DLs, or even 

Lectures, under this structure (meaning it would not be possible to use basic HLM techniques), 

analyzing these courses separately is the most effective way to address this issue.  Plus, treating 

each course separately also accounts for any unaddressed differences between the courses 

themselves.  This could also be accomplished by making a course level (that Lectures are nested 

within) or a set of categorical predictor variables for the three courses in this study, but doing so 

would complicate the analysis in other ways (such as adding a fourth level if there was a course 

level or requiring a lot of interaction terms if the courses were treated as a set of categorical 

predictor variables). 

Level 1 Predictor Variables 

Binary Sex: Male, Female, and UnS are a set of categorical variables representing the binary sex 

that students identified with.  A set of categorical variables is a set of dummy variables where 

every observation is assigned a value of 1 for exactly one such variable (typically the one that is 

associated with the name of the variable, as is the case throughout this study) and 0 for all of the 
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other variables in the set.  Sets of categorical predictor variables always have a reference 

category that the effects of the set’s other variables/categories on the outcome variable are 

determined with respect to.  The reference category here is Female since there are more female 

identifying students than male identifying students in the data (as shown by Table 2 in “Analysis 

Format and Data”).  Female is 1 for female identifying students, 0 for male-identifying students, 

and 0 for observations where neither male nor female was listed in the data provided by the 

University.  Male is 1 for male identifying students, 0 for female identifying students, and 0 for 

observations where neither male nor female was listed.  UnS was defined by the author and 

refers to Unidentified Binary Sex.  It is 1 for observations where neither male nor female was 

listed and 0 for both male and female identifying students. 

Race and Ethnicity: AF, AI, CH, EI, FP, JA, KO, LA, MX, OA, OT, PI, VT, WH, and UnE are 

a set of categorical variables representing the race and ethnicity that students identified with 

where WH (White/Caucasian) is the reference category (due to both the demographics of the 

courses in this study and the structural barriers that People of Color experience at the University 

and within the wider society).  Table 3 in “Analysis Format and Summary Data” includes the 

meaning of each category as defined by the University (with the exception of UnE, which refers 

to Unidentified Race and Ethnicity and was defined by the author as a category for observations 

where the race and ethnicity field provided by the University was blank). 

U.S. Citizenship Status: Cit, PR, NI, RF, PO, IM, and UnC are a set of categorical variables 

representing students’ U.S. citizenship status where Cit (U.S. citizen) is the reference category 

(due to both the demographics of the courses in this study and the structural barriers that non-

U.S. citizens experience at the University and within the wider society).  Table 4 in “Analysis 

Format and Data” includes the meaning of each category as defined by the University (with the 
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exception of UnC, which refers to Unidentified U.S. Citizenship Status and was defined by the 

author as a category for observations where the U.S. citizenship status field provided by the 

University was blank). 

Graduate Student Status: Grad is a dummy variable with the value 1 for graduate students and 

0 for undergraduate students. 

Course Repeats: Repeat is a dummy variable designed to account for the effect of some students 

repeating courses.  For students who repeated a given course (7A, 7B, or 7C) for a letter grade at 

least once during the period of study, Repeat has a value of 1 for each observation associated 

with that student in that course, except for the observation associated with the first time they took 

that course, since this observation is not impacted by any prior experience with said course.  

Repeat has a value of 0 for all other observations (both observations associated with students 

who did not repeat a given course and those associated with students who did repeat a given 

course but where the observation in question is the first time they took that course during the 

period of study).  Note that Repeat only accounts for repetition of a course for a letter grade and 

does not account for students who dropped a given course one or more times and then took it for 

a letter grade one or more times.  This is because students drop courses for all sorts of reasons 

that are hard to quantitatively address and also because dropping courses usually occurs within 

the first few weeks of the quarter meaning a student’s experience prior to dropping a given 

course should not have much of an effect on their understanding of the material, and thus, their 

Grade, if and when they take that course again. 

Also note that Repeat only applies to retaking the same course for a letter grade meaning 

a student who took 7A, 7B, and 7C for letter grades during the period of study but never retook 

any of these three courses would have a Repeat value of 0 for all three of the observations 



~ 32 ~ 
 

associated with them in the data.  As another example, a student who took (for letter grades) 7A, 

7B twice, and then 7C during the period of study would have a Repeat value of 1 for the second 

(chronologically) 7B observation associated with them but a Repeat value of 0 for the other two 

observations associated with them (which correspond to taking 7A and 7C), as well as for the 

observation associated with the first time they took 7B.  Similarly, a student who took 7A twice, 

7B once, and then 7C three times during the period of study would have a Repeat value of 1 for 

the second 7A observation and the second two 7C observations associated with them but would 

have a Repeat value of 0 for the 7B observation, the first 7A observation, and the first 7C 

observation associated with them. 

Because relatively few students retook these courses for a letter grade (as shown in Table 

2), and most of those who did only retook a given course once, it is sufficient to treat Repeat as a 

dummy predictor variable as opposed to including an additional level for observations such that 

observations are nested within students (which would become level 2 if this were the case since 

level 1 would be the level of observations). 

Lecture Start Time: LecStart is a dummy variable representing the start time of the lecture 

section that is associated with a given observation during the regular academic year.  Because of 

the lecture structure described in “Site, Sample, and Population,” during the regular academic 

year this variable not only accounts for lecture start times, but also accounts for other differences 

between the two lecture sections that are part of the same Lecture (i.e. that are taught back-to-

back by the same Lecture instructor).  This lecture structure is also why LecStart is at the student 

level during the regular academic year, as opposed to the Lecture level (a given Lecture during 

the regular academic year does not have a single start time due to the way that Lecture has been 

defined in this study, as described in “Levels and Outcome Variable”).  LecStart is 0 for the 
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earlier lecture time (7:30am during the regular academic year) and 1 for the later lecture time 

(9:00am during the regular academic year). 

Originally, LecStart was included as a dummy predictor variable during the summer as 

well, though at level 3 since this makes more sense than treating it as a student level predictor 

variable if it is possible to treat it as a Lecture level one, and during the summer, it is (since, as 

mentioned above, during the summer a given Lecture consists of a single lecture section while 

during the regular academic year, a given Lecture consists of two lecture sections).  This was 

done to account for the different Lecture start times in 7A and 7B during the summer (8:00am 

and 9:30am, where all summer 7C Lectures were at 8:00am).  However, when doing the 

statistical analyses, it turned out that LecStart in 7A and 7B during the summer is a linear 

combination of DL11, DL1367, and DL1617 (which represent particular summer DL start times, 

as described below).  In other words, all DLs with one of these three start times were associated 

with the later summer Lecture time (9:30am) while all DLs with any other summer start times 

were associated with the earlier summer Lecture time (8:00am).  LecStart was therefore omitted 

from the three statistical analyses involving data from the summer, but conceptually, it is still 

useful to know that 7A and 7B did have multiple Lecture start times during the summer and that 

this is accounted for through the (level 2) predictor variables DL11, DL1367, and DL1617. 

Student Academics: GPA and Units are both continuous variables that represent, respectively, 

students’ Grade-Point-Averages and the number of units that they got credit for, both specifically 

at the University prior to the quarter in which the corresponding observation was taken. 

Level 2 Predictor Variables 

Class Size: The size of different DLs was accounted for and analyzed through a set of seven 

categorical variables.  These are RlySm (under 9 students), Sm (9-14 students), Lit (15-20 
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students), Med (21-26 students), Stand (27-32 students), Lg (33-38 students), and RlyLg (over 

38 students).  Stand represents the standard range of sizes for DLs in EPS rooms (more details on 

different DL rooms below) and is therefore the reference category here.  Lit represents a range of 

DL sizes that fall around the class sizes which are generally considered ideal by the literature and 

past studies [1].  RlySm (Really Small), Sm (Small), Med (Medium), Lg (Large), and RlyLg 

(Really Large) are fairly self-explanatory.  In EPS DL rooms there are six tables (and therefore, 

six groups) so it made sense for each of these variables to incorporate six values of possible DL 

sizes.  This is also similar to the ranges used for categorical class size variables in other class size 

studies [3]. 

There are two major issues that make it preferable to treat DL size as a categorical 

variable rather than a continuous one.  First, it is possible that the effect of DL size would be 

non-linear (for instance, if students learn more in classrooms with around 18 students but learn 

less in classrooms with both greater and fewer numbers of students than this).  Secondly, DL 

sizes are strongly peaked around 30 students (the non-strictly-enforced maximum DL size in 

EPS rooms) meaning if DL size were treated as a continuous variable, relatively small DL size 

differences in this range could dominate the statistics when it is not expected that there would be 

any significant differences between DLs of say, 28 and 31 students (in other words, DLSize is 

not expected to be continuous in the second sense described in “Levels and Outcome Variable”). 

DL Start Time: DL start times are measured in hours based on a 24-hour cycle where minutes 

are converted to fractional hours given in decimal format and rounded to two decimal places.  

There are only five possible DL start times during the regular academic year.  These are 8:00am 

(8), 10:30am (10.5), 2:10pm (14.17), 4:40pm (16.67), and 7:10pm (19.17).  Because the number 

of DL start times during the regular academic year is relatively small and one might suspect that 
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the effect of DL start times on Grades would not necessarily be linear (for example, maybe really 

early and really late start times have a similar effect which is different than the effect of midday 

start times), or even necessarily a smooth, well-behaved function, it is desirable to treat DL start 

times as a set of categorical variables rather than a single continuous one.  The variables that 

correspond to the above start times are, respectively, DL8, DL105, DL1417, DL1667, and 

DL1917. 

However, because each DL meets two days per week during the regular academic year 

there are some instances where a DL will meet at one of the five standard start times on the first 

day and a different one on the second day.  In principle, any combination of two DL start times is 

possible but the ones that actually occurred in the data are DL start times of 10:30am and 

2:10pm, 8:00am and 4:40pm, 10:30am and 4:40pm, and 2:10pm and 4:40pm.  In these cases, the 

two different DL start times (in hours) were averaged to produce that DL’s recorded start time 

with one exception; 8:00am and 4:40pm was recorded as 12.34 instead of 12.33 to distinguish it 

from the 10:30am and 2:10pm situation.  Respectively, the variables corresponding to these 

situations are DL1233, DL1234, DL1358, and DL1542.  The existence of this type of 

scheduling, which may have effects beyond that of the average start time, is yet another reason to 

treat DL start times as a set of categorical variables rather than a single continuous one.  Each of 

these situations was treated as its own categorical variable in the analyses, along with categorical 

variables for each of the standard DL start times (DL8, DL105, DL1417, DL1667, and DL1917 

respectively) with DL1417 (2:10pm) serving as the reference category (since during the regular 

academic year, a large number of observations and DLs are associated with this DL start time, as 

shown by Tables 9 and 10 in “Analysis Format and Data,” and also because theoretically, 



~ 36 ~ 
 

2:10pm sections should not have the potential anomalies of sections with a really early or really 

late start time). 

During the summer, the possible DL start times are 9:30am, 11am, 12:10pm, 1:40pm, 

2:40pm, 4:10pm, and 5:10pm which corresponded to the variables DL95, DL11, DL1217, 

DL1367, DL1467, DL1617, and DL1717 respectively while DL1217 served as the reference 

category (since during the summer, a large number of observations and DLs are associated with 

this DL start time, as shown by Tables 11 and 12 in “Analysis Format and Data,” and also 

because theoretically, 12:10pm sections should not have the potential anomalies of sections with 

a really early or a really late start time).  During the summer, all four weekly sessions of a given 

DL always met at the same time. 

Classroom: ROS is a dummy variable that has a value of 1 for observations associated with a 

DL in ROS, a particular building whose rooms have particular layouts, and 0 for those associated 

with a DL in EPS, which is a different building whose rooms have a different layout than those 

in ROS.  EPS rooms were also specifically designed to accommodate DLs for the courses 

involved in this study while the overflow room in ROS was modified from its original design to 

accommodate these DLs.  Most DLs for these courses are held in EPS rooms which is why the 

variable ROS has a value of 0 for observations associated with DLs that take place in EPS. 

During the regular academic year, a few 7B DLs met in an EPS room one day per week 

and a ROS room on the other day.  Initially, these situations were accounted for using another 

dummy variable which was 1 for DLs like this and 0 for those that were not.  These DLs were, 

and are, assigned a ROS value of 0.  When doing the statistical analyses, it turned out that this 

variable is a linear combination of DL1358 and DL1542 (all DLs with either of these start times 

had one DL per week in a ROS room and the other one in an EPS room and no DLs with any 
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other start times had such an arrangement), so it was omitted from the statistical analyses, but 

conceptually, it is still useful to know that these types of DLs exist and are accounted for through 

the predictor variables DL1358 and DL1542. 

DL-Mean Predictor Variables: Finally, the DL-means of a few level 1 predictor variables were 

included as continuous predictor variables at level 2.  In particular, Mean_GPA and Mean_Units 

were included because in an active learning setting, the intention is for students to teach each 

other, and thus a DL with more overall background knowledge on the part of students (again 

assuming that grades accurately reflect students’ understanding and knowledge of the underlying 

material) might be expected to positively influence the understanding of new material that 

individual students in that DL acquire. 

Mean_Male was included because, for a variety of social reasons, the number of women 

in a classroom can also have a significant effect on student learning in that classroom.  In this 

study, the number of women in a given DL will likely be strongly related to Mean_Male (the 

fraction of students in that DL who identify as male).  Male was chosen as the level 1 binary sex 

variable to take the DL-mean of, rather than Female, because Male directly appears in 

regressions that include level 1 predictor variables, while Female does not (since Female is the 

reference category). 

Lastly, Mean_LecStart was included for regressions involving level 2 predictor variables 

and data from the regular academic year (but not those involving data from the summer) because, 

during the regular academic year, the average Grade in a given DL may be influenced by the 

fraction of students in that DL who are part of the later lecture section (due to any potential 

differences between the two lecture sections).  During the summer, LecStart is the same for all 

students in a given DL because they are all part of the same lecture section, and in fact, during 
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the summer all DLs that are part of the same Lecture are part of the same lecture section (which 

is why during the summer, lecture section and Lecture are equivalent).  The effect of lecture 

section on Grade during the summer is therefore entirely accounted for through the Lecture level 

of this study’s HLM analyses. 

Level 3 Predictor Variables 

Lecture Size: LecSize is a continuous variable representing the number of students in a given 

Lecture. 

Academic Term: Fall, Winter, and Spring are a set of categorical variables that represent the 

quarter in which a given DL was held for data from the regular academic year.  The reference 

category here varied depending on the analysis and was Fall for 7A during the regular academic 

year, Winter for 7B during the regular academic year, and Spring for 7C during the regular 

academic year.  This is because a typical student who enters 7A in the Fall of a given year and 

takes all three of the courses in this sequence without repeating any of them will take 7B in the 

Winter and 7C in the Spring, so these reference categories effectively follow this type of typical 

cohort.  Note that all three of the courses in this sequence are offered during all three quarters, as 

well as both summer sessions, but because many students do not take classes during the summer, 

while at the same time many do, the cohorts that enter 7A during any other quarter besides the 

Fall get split up more than the cohorts that enter 7A during a Fall quarter do. 

Lecture Instructor: Ins1 – Ins40 are a set of categorical variables representing the instructor 

who taught (and administered) a given Lecture since most instructors taught multiple Lectures 

during the period of study.  The reference category was different for each regression that 

included level 3 predictor variables and was defined as the Lecture instructor who had the most 
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actual observations for that regression (“Analysis Format and Summary Data” discusses what is 

meant by “actual observations”). 
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Chapter 3: Preliminary Data and Regression 

Methods 

Analysis Format and Summary Data 

This study involved six analyses; one for each of the three courses under study (7A, 7B, 

and 7C) during the regular academic year (Fall, Winter, and Spring quarters) and one for each of 

these courses during the summer (which includes both Summer Session 1 and Summer Session 

2).  Each course was analyzed separately for the reasons described in “Level Choices and 

Predictor Variables” and the summer was analyzed separately from the regular academic year 

due to the various differences between the two as described in “Site, Sample, and Population.” 

As alluded to when discussing course repeats in “Level Choices and Predictor Variables,” 

observations associated with dropping a course were excluded from the analyses in this study.  

This is because dropping a course (which initially corresponded to a Grade of 0) is a different 

outcome than failing it (which also corresponds to a Grade of 0) and even beyond this, dropping 

a course is a fundamentally distinct outcome from receiving a Grade (so it would not make sense 

to simply recode these data points as having some Grade other than 0). 

The remainder of this section is dedicated to Tables and Figures summarizing the 

(sample) data used in this study as it relates to the six analyses that were conducted and the 

predictor variables (with summary data and histograms coming from Version 17 of Stata).  Table 

1 lists the total number of initial observations for each of the six analyses, the number of 

observations that were actually part of each analysis (level 1 entities), the number of DLs that 

were part of each analysis (level 2 entities), and the number of Lectures that were part of each 
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analysis (level 3 entities).  The reason that the number of actual observations is different (and 

less) than the initial total number of observations is because GPA was not recorded in situations 

where Units was less than 12 (one quarter’s worth for a full-time student at the University) and 

the software used in this study omits observations where at least one variable is missing a value.  

This means that conclusions drawn from this study will not necessarily apply to first quarter 

freshmen, transfer students, or graduate students (groups whose members may or may not have 

taken one of these courses during their first quarter at the University) or to students who do not 

primarily attend the University (and only took a few courses at the University), because students 

from these groups are disproportionately excluded from the data used in this study’s analyses. 

Note that going from 7A to 7B to 7C, during the regular academic year the number of 

observations and DLs decrease while during the summer they increase.  Also note that the 

number of Lectures is the same for all three courses (25 during the regular academic year and 10 

during the summer). 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Total Observations 8317 1009 7401 1199 6136 1453 

Actual Observations 7416 970 6840 1178 6043 1441 

DLs 293 43 267 52 227 63 

Lectures 25 10 25 10 25 10 

Table 1: Number of entities at different levels in each of this study’s six analyses. 

Categorical and Dummy Predictor Variables 

The remaining Tables in this section list one of two types of information.  First, there are 

Tables that list the number of actual observations associated with categorical predictor variables, 

as well as the number of actual observations associated with the “1” value of dummy predictor 

variables, broken down by level and type of predictor variable.  As a reminder for comparison 
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purposes, these Tables include the total number of actual observations for each of the six 

analyses in this study.  Secondly, there are Tables that list the number of level 2 (DL) or level 3 

(Lecture) entities that are associated with categorical predictor variables at that level, as well as 

the number of level 2 or level 3 entities that are associated with the “1” value of dummy 

predictor variables at that level, broken down by type of predictor variable.  As a reminder for 

comparison purposes, these Tables include, respectively, the total number of level 2 or level 3 

entities for each of the six analyses in this study. 

In Table 2, note that Repeat does not account for any students who took one or more of 

these courses prior to the period of study and then retook one or more of them during the period 

of study, but this number is assumed to be quite small.  Also, note how, while some graduate 

students do take these courses, there are very few of them.  Lecture start times are included in 

Table 2 for all six of this study’s analyses, even though during the summer LecStart was omitted 

from the analyses. 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Actual Observations 7416 970 6840 1178 6043 1441 

Later Lecture Start Time 3773 426 3577 571 3235 0 

Course Repeats 159 59 582 182 358 151 

Graduate Student 8 2 5 1 5 0 

Female 4812 644 4423 800 3775 909 

Male 2604 326 2417 378 2267 532 

Unidentified Binary Sex 0 0 0 0 1 0 

Table 2: Numbers of actual observations associated with level 1 categorical and dummy 

predictor variables (as well as LecStart during the summer), except for those pertaining to race 

and ethnicity and U.S. citizenship status. 
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7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Actual Observations 7416 970 6840 1178 6043 1441 

African-American/Black 
(AF) 179 40 164 43 152 36 

American Indian/Native 
American (AI) 59 4 58 7 61 9 

Chinese-American/Chinese 
(CH) 1506 200 1392 241 1215 319 

East Indian/Pakistani (EI) 544 118 504 133 456 145 

Filipino/Filipino-American 
(FP) 395 64 387 59 313 97 

Japanese 
American/Japanese (JA) 171 15 147 28 116 32 

Korean-American/Korean 
(KO) 217 27 173 49 171 38 

Latino/Other Spanish (LA) 279 38 241 45 197 41 

Mexican-
American/Mexican/Chicano 

(MX) 832 112 746 139 653 125 

Other Asian (OA) 253 40 249 45 219 62 

Other (OT) 1 1 5 2 11 2 

 Pacific Islander. Other (PI) 22 3 22 3 15 8 

Vietnamese (VT) 618 87 564 101 495 178 

White/Caucasian (WH) 2195 207 2036 265 1834 322 

Unidentified Race and 
Ethnicity (UnE) 145 14 152 18 135 27 

Table 3: Numbers of actual observations associated with level 1 categorical predictor variables 

pertaining to race and ethnicity. 

In Table 4, note that almost all of the students who take the courses that were part of this 

study are U.S. citizens and most of those who are not U.S. citizens are permanent residents. 
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7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Actual Observations 7416 970 6840 1178 6043 1441 

U.S. Citizen (Cit) 6637 853 6179 1054 5419 1280 

Permanent Resident - Has 
Green Card (PR) 445 69 406 79 407 104 

Visa Holder, Undocumented, 
or Pending Asylum (NI) 325 47 247 43 207 56 

Refugee (RF) 2 0 2 0 3 0 

Asylum Granted (PO) 1 0 0 0 0 0 

Waiting for Permanent 
Resident Card -Holds a Valid 

I-485 Receipt (IM) 2 1 3 2 5 0 

Unidentified U.S. Citizenship 
Status (UnC) 4 0 3 0 2 1 

Table 4: Numbers of actual observations associated with level 1 categorical predictor variables 

pertaining to U.S. citizenship status. 

In Tables 5 and 6, note that the overflow DL room was not used all that often during the 

period of study. 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Actual Observations 7416 970 6840 1178 6043 1441 

Overflow DL Room 321 279 19 0 0 290 

Table 5: Numbers of actual observations associated with level 2 categorical and dummy 

predictor variables, except for those pertaining to DL sizes and start times. 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

DLs 293 43 267 52 227 63 

Overflow DL Room 18 12 1 0 0 14 

Table 6: Numbers of DLs (level 2 entities) associated with level 2 categorical and dummy 

predictor variables, except for those pertaining to DL sizes and start times. 
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In Tables 7 and 8, note that during the regular academic year, by far the most actual 

observations come from DLs with a size (number of students) in the Standard range (27 – 32) 

and by far the most DL sections are of a size that falls into this category.  Substantially below the 

Standard category during the regular academic year are the Medium category (21 – 26) and the 

Large category (33 – 38).  During the summer, the number of actual observations and DL 

sections in the Medium category are both on par with their respective numbers in the Standard 

category.  Across all six analyses that were part of this study, these categories are followed by 

the Literature category (15 – 20).  Essentially, the Literature category has a decent number of 

actual observations and DL sections, but still not that many.  The Really Small, Small, and 

Really Large categories (along with the Large category during the summer) have very few actual 

observations or DL sections associated with them. 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Actual Observations 7416 970 6840 1178 6043 1441 

Really Small 0 0 0 0 8 0 

Small 23 0 78 29 112 34 

Literature 309 169 200 154 228 272 

Medium 676 441 1082 488 1369 454 

Standard (in these courses) 5569 327 4706 475 3444 554 

Large 802 33 774 32 882 127 

Really Large 37 0 0 0 0 0 

Table 7: Numbers of actual observations associated with level 2 categorical predictor variables 

pertaining to DL sizes. 
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7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

DLs 293 43 267 52 227 63 

Really Small 0 0 0 0 1 0 

Small 2 0 7 3 9 3 

Literature 18 10 12 9 12 16 

Medium 31 20 48 22 58 20 

Standard (in these courses) 213 12 176 17 120 20 

Large 28 1 24 1 27 4 

Really Large 1 0 0 0 0 0 

Table 8: Numbers of DLs associated with level 2 categorical predictor variables pertaining to 

DL sizes. 

  

7A 
Regular 

Academic 
Year 

7B 
Regular 

Academic 
Year 

7C 
Regular 

Academic 
Year 

Actual Observations 7416 6840 6043 

8:00am 1320 1102 766 

10:30am 1357 1422 1479 

2:10pm 1448 1280 1270 

4:40pm 1356 1343 1398 

7:10pm 1253 1155 910 

10:30am and 2:10pm 658 493 220 

8:00am and 4:40pm 24 0 0 

10:30am and 4:40pm 0 33 0 

2:10pm and 4:40pm 0 12 0 

Table 9: Numbers of actual observations associated with level 2 categorical predictor variables 

pertaining to DL start times during the regular academic year. 
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7A 
Regular 

Academic 
Year 

7B 
Regular 

Academic 
Year 

7C 
Regular 

Academic 
Year 

DLs 293 267 227 

8:00am 52 46 30 

10:30am 52 51 50 

2:10pm 58 48 45 

4:40pm 54 50 50 

7:10pm 51 48 41 

10:30am and 2:10pm 25 20 11 

8:00am and 4:40pm 1 0 0 

10:30am and 4:40pm 0 3 0 

2:10pm and 4:40pm 0 1 0 

Table 10: Numbers of DLs associated with level 2 categorical predictor variables pertaining to 

DL start times during the regular academic year. 

  
7A 

Summer 
7B 

Summer 
7C 

Summer 

Actual Observations 970 1178 1441 

9:30am 263 272 542 

11:00am 247 261 0 

12:10pm 218 213 441 

1:40pm 179 186 0 

2:40pm 63 122 386 

4:10pm 0 124 0 

5:10pm 0 0 72 

Table 11: Numbers of actual observations associated with level 2 categorical predictor variables 

pertaining to DL start times during the summer. 
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7A 

Summer 
7B 

Summer 
7C 

Summer 

DLs 43 52 63 

9:30am 10 10 20 

11:00am 10 10 0 

12:10pm 10 10 20 

1:40pm 10 10 0 

2:40pm 3 7 19 

4:10pm 0 5 0 

5:10pm 0 0 4 

Table 12: Numbers of DLs associated with level 2 categorical predictor variables pertaining to 

DL start times during the summer. 

For level 3 categorical and dummy predictor variable data, note that Lecture instructors 

are not included in any Table since there are quite a few of them and they were labeled in an 

anonymous way, meaning it would not provide much useful information to include them. 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Actual Observations 7416 970 6840 1178 6043 1441 

Fall 2591 N/A 1452 N/A 1964 N/A 

Winter 3121 N/A 2486 N/A 1310 N/A 

Spring 1704 N/A 2902 N/A 2769 N/A 

Table 13: Numbers of actual observations associated with level 3 categorical and dummy 

predictor variables, except for LecStart during the summer and those level 3 categorical 

predictor variables pertaining to Lecture instructor. 
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7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Lectures 25 10 25 10 25 10 

Fall 10 N/A 5 N/A 10 N/A 

Winter 10 N/A 10 N/A 5 N/A 

Spring 5 N/A 10 N/A 10 N/A 

Table 14: Numbers of Lectures associated with level 3 categorical and dummy predictor 

variables, except for LecStart during the summer and those level 3 categorical predictor 

variables pertaining to Lecture instructor. 

Continuous Predictor Variables 

Like with the outcome variable Grade, histograms are the best way to display the 

distributions of continuous predictor variables in this study, and the Figures in this section do just 

that (with major deviations discussed in the captions or accompanying text) using actual 

observations, and for level 2 or level 3 predictor variables, also using level 2 entities (DLs) or 

level 3 entities (Lectures) respectively. 

In Figures 7 and 8, note that GPA and Units are both relatively Normal, but have some 

skew along with a noticeable ceiling effect for GPA and a noticeable floor effect for Units. 
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Figure 7: A histogram of GPA during the period of study for 7A during the regular academic 

year.  This distribution is similar to the distribution of GPA in 7A during the summer as well as 

in 7B and 7C during both the regular academic year and the summer.  The main deviations are a 

flatter peak for 7C during the regular academic year and a slight dip in the peak for 7B during 

the summer. 
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Figure 8: A histogram of Units during the period of study for 7A during the regular academic 

year.  This distribution has a generally similar shape (though with a slightly different peak 

location) as the distribution of Units in 7A during the summer as well as in 7B and 7C during 

both the regular academic year and the summer.  The main deviations are a less narrow peak for 

7B and 7C during the regular academic year and a second peak on the lower end (that is more 

of a peak than the floor effect shown above) for all three courses during the summer. 

In Figures 9, 10, 11, and 12, note that Mean_GPA and Mean_Units follow a distribution 

that is largely Normal, though for some of the six analyses in this study there is a small dip near 

the peak. 
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Figure 9: A histogram showing actual observations for Mean_GPA during the period of study 

for 7A during the regular academic year.  This distribution has a similar shape (though with a 

slightly different peak location) as the distribution of Mean_GPA in 7A during the summer as 

well as in 7B and 7C during the regular academic year.  The main deviation is a standard peak 

(rather than the dip) for 7B during the regular academic year.  7B during the summer has more 

of a flat distribution and 7C during the summer has more of an alternating, multiple peaks 

distribution. 
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Figure 10: A histogram showing number of DLs for Mean_GPA during the period of study for 

7A during the regular academic year.  This distribution has a similar shape (though with a 

slightly different peak location) as the distribution of Mean_GPA in 7B and 7C during the 

summer, as well as 7C during the regular academic year.  The main deviation is a standard peak 

(rather than the dip) for 7B during the regular academic year and 7A during the summer. 
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Figure 11: A histogram showing actual observations for Mean_Units during the period of study 

for 7A during the regular academic year.  This distribution has a similar shape (though with a 

slightly different peak location) as the distribution of Mean_Units in 7A during the summer as 

well as in 7B and 7C during both the regular academic year and the summer.  The main 

deviations are a standard peak (rather than the dip) for 7A during the summer and 7B during the 

regular academic year. 
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Figure 12: A histogram showing number of DLs for Mean_Units during the period of study for 

7A during the regular academic year.  This distribution has a similar shape (though with a 

slightly different peak location) as the distribution of Mean_Units in 7C during the regular 

academic year, as well as 7B during the summer.  The main deviations are a standard peak 

(rather than the dip) for 7A and 7C during the summer and 7B during the regular academic 

year. 

Note that Mean_Male had a few different distributions across the six analyses in this 

study, but most of them were mostly Normal.  The main difference when it comes to actual 

observations is in how dips appeared.  For 7A during the regular academic year (Figure 13) and 

7C during the regular academic year, they were on the sides of the peak creating a fairly standard 

Normal distribution.  For 7B during the regular academic year and 7C during the summer, they 

were at a location that one might expect to be the peak, which effectively created two peaks.  For 
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7A and 7B during the summer, the distributions had less of a discernible pattern but could be 

characterized as mostly flat with a few deviations. 

When it comes to number of DLs, 7A during the regular academic year (Figure 14) and 

7B during the regular academic year followed essentially Normal distributions with small dips at 

their peaks. 7C during the regular academic year, along with 7B and 7C during the summer, 

followed an essentially Normal distribution without a dip at the peak.  Finally, 7A during the 

summer followed a highly skewed distribution. 

 
Figure 13: A histogram showing actual observations for Mean_Male during the period of study 

for 7A during the regular academic year. 
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Figure 14: A histogram showing number of DLs for Mean_Male during the period of study for 

7A during the regular academic year. 

In Figures 15 and 16, note that Mean_LecStart during the regular academic year is 

sharply peaked around 0.5 with half of the students in a given DL coming from the earlier lecture 

section (which as a reminder, is part of a given Lecture) and half coming from the later lecture 

section, though there are some small dips, and this distribution gets a bit wider going from 7A to 

7B to 7C.  The situation during the summer is very different for the reasons mentioned in the 

Mean_LecStart part of “Level Choices and Predictor Variables.” 
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Figure 15: A histogram showing actual observations for Mean_LecStart during the period of 

study for 7A during the regular academic year.  This distribution is similar to the distribution for 

Mean_LecStart in 7B and 7C during the regular academic year. 
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Figure 16: A histogram showing number of DLs for Mean_LecStart during the period of study 

for 7A during the regular academic year.  This distribution is similar to the distribution for 

Mean_LecStart in 7B and 7C during the regular academic year. 

LecSize does not really follow a set pattern between the six analyses, but when it comes 

to actual observations, each distribution can broadly be described as consisting of one or two flat 

distributions with a few deviations.  7A during the regular academic year (Figure 17) and 7B 

during the regular academic year essentially have two superimposed flat distributions (a lower 

one and a higher one), along with a few deviations.  7A during the summer, 7C during the 

regular academic year, and 7C during the summer essentially have one flat distribution, along 

with a few deviations.  7B during the summer has an almost perfectly flat distribution. 

When it comes to number of Lectures, 7A during the regular academic year (Figure 18) 

follows a loosely Normal distribution while 7C during the regular academic year essentially has 
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two superimposed flat distributions (a lower one and a higher one), along with a few deviations.  

7A during the summer (Figure 19), 7B during the summer, and 7C during the summer, as well as 

7B during the regular academic year, follow highly skewed distributions. 

 
Figure 17: A histogram showing actual observations for LecSize during the period of study for 

7A during the regular academic year. 



~ 61 ~ 
 

 
Figure 18: A histogram showing number of Lectures for LecSize during the period of study for 

7A during the regular academic year. 
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Figure 19: A histogram showing number of Lectures for LecSize during the period of study for 

7A during the summer. 

Analysis Procedure and Methods 

Each of the six analyses in this study was conducted in four stages (regressions) that were 

done on actual observations (as defined in “Analysis Format and Summary Data”) using Version 

17 of Stata.  Each of these stages involved random intercepts, meaning the intercepts (the value 

of Grade when all predictor variables have a value of 0) were allowed to vary between different 

DLs and Lectures, but none of these regressions included random slopes, meaning the slopes on 

predictor variables were not allowed to vary between different DLs or Lectures (check out 

“Statistical Techniques and Random Effects” and Appendix A for more details about random 

intercepts and random slopes in Multilevel Modeling, as well as HLM specifically).  Slopes were 
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fixed in this study because there were no strong theoretical arguments for slopes to vary between 

either DLs or Lectures nor were there any prominent potential interactions between different 

predictor variables.  Check out Appendix C for more details about the HLM equations that were 

used at each stage of this study. 

As is the case with most HLM analyses, the goal of the first stage of each of the six 

analyses in this study was to determine the amount of total initial variance in the outcome 

variable (Grade in this study), as well as how much initial variance (as both an amount and as a 

fraction of the total initial variance) exists at each level.  In other words, a major goal of this first 

stage is to determine how much initial variance in the outcome variable (Grade) lies between 

observations within a given level 2 entity (a DL in this study), between different level 2 entities 

(DLs) within a given level 3 entity (a Lecture in this study), and between different level 3 entities 

(Lectures).  These variances are determined through a Null Model, which is a model that does 

not include any predictor variables, so the first stage of each of the six analyses in this study 

involved specifying and fitting a Null Model. 

The goal of the second stage was to control for the effects of level 1 predictor variables 

and to determine what impact they have on Grade (as well as what impact they have on the 

variance in Grade at different levels) when no level 2 or level 3 predictor variables are included.  

To do this, an Individual Model was specified and fit which included all level 1 predictor 

variables, but no predictor variables from any other levels. 

Similarly, the goal of the second stage was to control for the effects of level 2 predictor 

variables and to determine what impact they have on Grade (as well as what impact they have on 

the variance in Grade at different levels) when no level 3 predictor variables are included.  
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Therefore, at this stage a DL Model was specified and fit which included all level 1 and level 2 

predictor variables, but no level 3 predictor variables. 

The goal of the final stage was twofold.  The first goal was similar to the goals of the 

previous two stages; to control for the effects of level 3 predictor variables and determine what 

impact they have on Grade (as well as what impact they have on the variance in Grade at 

different levels).  However, the other main goal of this final stage was to finalize a determination 

of the effect that each predictor variable (all of them from all three levels) had on Grade (by 

examining their corresponding slopes and slope uncertainties).  Theoretically, the presence of 

predictor variables from a given level should not affect the slopes or slope uncertainties that are 

associated with predictor variables from other levels, nor should the presence of predictor 

variables from a given level affect the variance in Grade at other levels, but in practice, the 

presence of predictor variables from a given level does sometimes affect aspects of the 

regression that are associated with other levels.  Thus, at this stage, a Final Model was specified 

and fit which included all predictor variables (from levels 1, 2, and 3).  Of the various slopes and 

slope uncertainties that were computed in this Final Model, the most important ones for this 

study (because they are the ones that directly relate to this study’s main research question) are 

those associated with the set of DL size categorical predictor variables and, though to a lesser 

degree, those associated with the continuous Lecture size predictor variable. 
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Chapter 4: Results, Discussion, and 

Conclusions 

Regression Results and Variance Discussion 

This section is devoted to listing and describing results (variances in Grade and slopes on 

predictor variables) from the regressions that were part of this study.  It also includes 

interpretations around the meaning of Grade variances, intraclass correlation coefficients (ICCs), 

and variance changes in these results, but does not include interpretations around the meaning of 

slopes, which will be examined in “Slope Discussion and Overall Conclusions.”  While a 

regression was conducted for each of the four stages of each of the six analyses in this study, the 

slopes on predictor variables in the Individual and DL models are similar to those in the Final 

Model and the main reason Individual and DL Model regressions were run was to determine the 

resulting changes in Grade variance at each level (where theoretically, including a given level’s 

corresponding predictor variables should reduce the variance in Grade at that level, but not at 

other levels).  Because of this, slopes from the Individual and DL Models are not included here, 

but slopes from the Final Model are, along with Grade variances and related quantities (ICCs and 

changes in variance) at each level of each model.  In all of the Tables in this section, the standard 

error for a given quantity is in parentheses either below or to the right of that quantity.  These 

standard errors were either taken directly from the regression software (Stata version 17) or were 

calculated using error propagation techniques combined with standard errors taken directly from 

the regression software. 

 



~ 66 ~ 
 

Null Model 

Table 15 shows the initial variance in Grades at each level for each of the six analyses in 

this study (based on the Null Model, where no predictor variables were included in the 

corresponding regressions), along with initial DL and Lecture ICCs for each of these analyses 

(respectively, the fraction of total initial variance between different DLs within a given Lecture 

and the fraction of total initial variance between different Lectures).  Check out the end of 

Appendix A for how ICCs are calculated.  It is generally expected that the vast majority of initial 

total variance in an HLM analysis will occur between level 1 entities within a given level 2 

entity, and that is indeed the case here where for all six of the analyses in this study, the vast 

majority of initial total variance in Grade is between observations within a given DL (which is 

itself within a given Lecture). 

However, for all six of these analyses, the proportion of initial total variance in Grade 

that is between DLs within a given Lecture is quite low (well below 0.05, the informal bar that is 

often used when examining Null Model ICCs in HLM analyses).  Furthermore, the standard 

errors in the DL ICCs are rather high, with only one that is less than half of the corresponding 

ICC value (7C during the summer).  This is somewhat surprising when most of the class-time 

and class-based learning in the courses that were part of this study occurs during DL.  On the 

other hand, the proportion of initial total variance in Grade that exists between different Lectures 

is rather large (well above 0.05) for five out of six analyses (the exception being 7B during the 

regular academic year).  This is not too surprising considering Grades in these courses are largely 

determined by quizzes and exams, which are typically written by Lecture instructors, as well as 

administered during lecture sections by Lecture instructors (as discussed in “Site, Sample, and 

Population”), and a Lecture’s instructor also determines their Lecture’s overall grading scheme 
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(albeit with relatively little variation between different instructors, as mentioned in “Levels and 

Outcome Variable”). 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Initial 
Student/Observation 

Variance 
0.692 
(0.012) 

0.622 
(0.029) 

0.896 
(0.016) 

0.584 
(0.025) 

0.740 
(0.014) 

0.806 
(0.031) 

Initial DL Variance 
0.0037 
(0.0027) 

0.0129 
(0.0099) 

0.0064 
(0.0038) 

0.0143 
(0.0092) 

0.0009 
(0.0029) 

0.031 
(0.013) 

Initial Lecture 
Variance 

0.054 
(0.016) 

0.098 
(0.048) 

0.0232 
(0.0076) 

0.072 
(0.036) 

0.136 
(0.039) 

0.082 
(0.041) 

ICC2 (DL) 
0.0049 
(0.0036) 

0.018 
(0.013) 

0.0069 
(0.0041) 

0.021 
(0.013) 

0.0010 
(0.0033) 

0.034 
(0.014) 

ICC3 (Lecture) 
0.072 
(0.020) 

0.133 
(0.058) 

0.0251 
(0.0081) 

0.108 
(0.048) 

0.155 
(0.038) 

0.089 
(0.041) 

Table 15: Initial variances and ICCs for each level of each of the six analyses in this study. 

Individual Model 

Table 16 shows the variance at each level for each of the six analyses in this study after 

implementing the Individual Model (when level 1, student based, predictor variables were 

included in the corresponding regressions), along with percent changes in these variances 

relative to the Null Model, which were calculated as: 

 

% Change in Variance From Null Model =
New Variance − Initial Variance

Initial Variance
∗ 100 

 

Note that for all six analyses, the level 1 variance decreased substantially (between 36% 

and 49%).  Variances at the DL and Lecture levels changed as well, which should not have been 

the case, but they did not change in any systematic way and sometimes this happens in these 

regressions, especially with small variances.  Furthermore, with the exception of the DL variance 
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for 7C during the summer, the standard error in the percent changes for all of the DL and Lecture 

variances were quite large compared to the corresponding values of these changes.  Another 

possible factor here for the three analyses involving data from the regular academic year is that, 

for logistical reasons, LecStart is being treated as a level 1 predictor variable in these analyses 

when it would make more theoretical sense as a level 3 predictor variable. 

  

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Individual Model 
Student/Observation 

Variance 
0.3932 
(0.0066) 

0.350 
(0.016) 

0.4574 
(0.0080) 

0.372 
(0.016) 

0.4026 
(0.0075) 

0.486 
(0.019) 

Individual Model DL 
Variance 

0.0030 
(0.0016) 

0.0196 
(0.0089) 

0.0036 
(0.0020) 

0.0117 
(0.0066) 

0.0018 
(0.0017) 

0.0042 
(0.0057) 

Individual Model 
Lecture Variance 

0.045 
(0.013) 

0.119 
(0.057) 

0.0232 
(0.0071) 

0.076 
(0.037) 

0.154 
(0.044) 

0.085 
(0.040) 

% Change in 
Student/Observation 

Variance From Null 
Model 

-43.2 
(1.3) 

-43.8 
(3.7) 

-48.9 
(1.3) 

-36.3 
(3.8) 

-45.6 
(1.4) 

-39.8 
(3.3) 

% Change in DL 
Variance From Null 

Model -20. (73) 
50. 
(140) -45 (45) -18 (70.) 120 (750) -86 (19) 

% Change in Lecture 
Variance From Null 

Model -17 (35) 22 (84) 0. (45) 6 (73) 13 (46) 5 (72) 

Table 16: Individual Model variances and percent changes in variances from their initial values 

for each level of each of the six analyses in this study. 

DL Model 

Table 17 shows the variance at each level for each of the six analyses in this study after 

implementing the DL Model (when predictor variables from levels 1 and 2, meaning both 

student and DL based predictor variables, were included in the corresponding regressions), along 

with percent changes in these variances relative to the Null Model (where these percent changes 

were calculated in the same way as above).  Note that for all six analyses, the level 1 variances 
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remained largely the same as they were in the Individual Model.  Most level 2 variances, 

however, decreased substantially relative to the Null Model (between 45% and 100%), with the 

exception being 7C during the regular academic year (where the level 2 variance increased 

relative to the Null Model).  However, the standard error in the percent changes of these DL 

level variances is quite high compared to their corresponding values for four of the six analyses 

(the exceptions being 7B and 7C during the summer).  Here it is also important to mention that 

7C during the regular academic year had a particularly low amount of initial DL variance (even 

less than the other five analyses), which makes the increase in its variance likely the result of 

statistical noise (further evidence of this can be found in the extremely high standard error for the 

percent change in this variance).  Level 3 variances changed as well, which should not have been 

the case, but they did not change in any systematic way and statistical fluctuations are once again 

the likely culprit, especially given the high standard errors in these percent changes compared to 

their corresponding values. 
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7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 7C Summer 

DL Model 
Student/Observation 

Variance 
0.3931 
(0.0066) 

0.349 
(0.016) 

0.4573 
(0.0080) 

0.372 
(0.016) 

0.4026 
(0.0075) 0.481 (0.018) 

DL Model DL 
Variance 

0.0018 
(0.0015) 

0.0070 
(0.0054) 

0.0026 
(0.0019) 

0.0020 
(0.0044) 

0.0010 
(0.0016) 

0.0000000000 
(3.6E-9) 

DL Model Lecture 
Variance 

0.046 
(0.014) 

0.082 
(0.041) 

0.0237 
(0.0073) 

0.078 
(0.038) 

0.153 
(0.044) 0.097 (0.045) 

% Change in 
Student/Observation 

Variance From Null 
Model 

-43.2 
(1.3) 

-43.9 
(3.7) 

-48.9 
(1.3) 

-36.3 
(3.8) 

-45.6 
(1.4) -40.4 (3.2) 

% Change in DL 
Variance From Null 

Model -50. (54) -45 (59) -59 (38) -86 (32) 20 (440) 
-100.000000 
(1.1E-5) 

% Change in Lecture 
Variance From Null 

Model -14 (36) -16 (59) 2 (46) 8 (75) 13 (46) 18 (82) 

Table 17: DL Model variances and percent changes in variances from their initial values for 

each level of each of the six analyses in this study. 

Final Model 

Table 18 shows the variance at each level for each of the six analyses in this study after 

implementing the Final Model (when all predictor variables from all three levels, meaning those 

corresponding to students, DLs, and Lectures, were included in the corresponding regressions), 

along with percent changes in these variances relative to the Null Model (where these percent 

changes were calculated in the same way as above).  Note that for all six analyses, the level 1 

variances remained largely the same as they were in the Individual and DL Models.  Four of the 

DL level variances also remained largely the same as they were in the DL Model while two of 

them (7A and 7B during the summer) decreased substantially (though likely as a result of 

statistical fluctuations given how low these variances are and how high the corresponding 
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standard errors are).  All Lecture level variances decreased substantially relative to the Null 

Model (between 84% and 100%), as well as relative to the Individual and DL Models. 

  

7A 
Regular 

Academic 
Year 7A Summer 

7B 
Regular 

Academic 
Year 7B Summer 

7C 
Regular 

Academic 
Year 7C Summer 

Final Model 
Student/ 

Observation 
Variance 

0.3932 
(0.0066) 0.349 (0.016) 

0.4574 
(0.0080) 0.371 (0.015) 

0.4026 
(0.0075) 

0.477 
(0.018) 

Final Model 
DL Variance 

0.0019 
(0.0015) 

0.0056 
(0.0044) 

0.0025 
(0.0019) 

0.000000000 
(2.7E-8) 

0.0010 
(0.0016) 

0.000000000 
(1.1E-8) 

Final Model 
Lecture 

Variance 
0.00130 
(0.00085) 

3E-11 
(4.6E-10) 

0.0035 
(0.0016) 2E-16 (2.1E-15) 

0.0114 
(0.0038) 

0.00000000 
(3.8E-7) 

% Change in 
Student/ 

Observation 
Variance 

From Null 
Model 

-43.2 
(1.3) -44.0 (3.7) 

-48.9 
(1.3) -36.4 (3.7) 

-45.6 
(1.4) -40.8 (3.2) 

% Change in 
DL Variance 

From Null 
Model -50. (54) -57 (48) -61 (37) 

-100.00000 
(0.00019) 20. (450) 

-100.000000 
(3.5E-5) 

% Change in 
Lecture 

Variance 
From Null 

Model 
-97.6 
(1.7) 

-99.99999997 
(4.7E-7) 

-84.9 
(8.4) 

-99.9999999999998 
(2.9E-12) 

-91.6 
(3.7) 

-100.00000 
(0.00046) 

Table 18: Final Model variances and percent changes in variances from their initial values for 

each level of each of the six analyses in this study. 

The remainder of this section is devoted to listing and describing slopes from the Final 

Model for each of the six analyses in this study, broken down by level and types of predictor 

variables.  An “N/A” slope in the following Tables means that the slope does not exist because 

the corresponding predictor variable was not part of that regression, either for fundamental 

reasons (like how neither Mean_LecStart nor Winter were part of any regressions involving data 

from the summer) or because all of the actual observations in a particular regression happened to 
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have the same value for that variable (i.e. 0 since all of these situations involved dummy or 

categorical predictor variables).  In these Tables, slopes that are statistically significant at the 

95%, 99%, or 99.9% confidence levels are indicated, respectively, with an asterisk (*), two 

asterisks (**), or three asterisks (***) to the right of them.  Any reference to a slope being 

statistically significant means that it is statistically significant at the 95% confidence level or 

higher.  Since the interpretations of many of these slopes are quite similar, a few example 

interpretations will be discussed, but not all of the slopes will be mentioned. 

Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B Regular 
Academic 

Year 
7B 

Summer 

7C Regular 
Academic 

Year 
7C 

Summer 

GPA 
1.123*** 
(0.017) 

1.016*** 
(0.043) 

1.160*** 
(0.019) 

0.884*** 
(0.042) 

1.094*** 
(0.019) 

1.088*** 
(0.043) 

Units 
-0.00066* 
(0.00032) 

-0.00010 
(0.00064) 

-0.00168*** 
(0.00031) 

-0.00036 
(0.00056) 

-0.00075** 
(0.00026) 

-0.00017 
(0.00054) 

Repeat 
-0.186*** 
(0.051) 

0.050 
(0.083) 

-0.814*** 
(0.031) 

-0.231*** 
(0.053) 

-0.751*** 
(0.036) 

-0.521*** 
(0.062) 

Grad 
0.05 
(0.22) 

-0.02 
(0.43) 0.31 (0.30) 

-0.01 
(0.62) -0.51 (0.29) N/A 

LecStart 
0.022 
(0.015) N/A 

0.011 
(0.017) N/A 

0.042* 
(0.017) N/A 

Male 
0.192*** 
(0.016) 

0.174*** 
(0.042) 

0.239*** 
(0.018) 

0.184*** 
(0.040) 

0.203*** 
(0.017) 

0.145*** 
(0.039) 

Female Reference Reference Reference Reference Reference Reference 

UnS N/A N/A N/A N/A 2.06* (0.90) N/A 

Table 19: Slopes on level 1 predictor variables, except for those pertaining to race and ethnicity 

and U.S. citizenship status, in the Final Model. 

For continuous predictor variables, the corresponding slope is the average amount by 

which the outcome variable (Grade in this study) changes as a result of a one unit change in that 

predictor variable, after accounting for the effects of all other predictor variables.  For instance, 

in Table 19 the slope on GPA (a continuous level 1 predictor variable) for 7A during the regular 

academic year is 1.123 (and is statistically significant).  This means that in 7A during the regular 
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academic year, an increase of one GPA point (on a 4.00 scale, which is what GPA is measured 

in), and thus, an increase of one letter grade (for instance, from a C+ to a B+), for a given student 

is associated with an average increase of 1.123 Grade points (on a 4.00 scale, which is what 

Grade is measured in) for that student after accounting for all other predictor variables. 

For sets of categorical predictor variables, the slope on a given one of these is the average 

amount by which the outcome variable is different for observations which are affiliated with that 

category compared to observations that are affiliated with the reference category, after 

accounting for the effects of all other predictor variables.  For instance, in Table 19 the slope on 

Male (which is part of a set of level 1 categorical predictor variables) for 7A during the regular 

academic year is 0.192 (and is statistically significant).  This means that in 7A during the regular 

academic year, students who identified as Male received a Grade that was on average 0.192 

points higher than the Grade received by students who identified as Female (the reference 

category) after accounting for all other predictor variables. 

For dummy predictor variables, the corresponding slope is the average amount by which 

the outcome variable is different for observations which are assigned a value of “1” compared to 

those which are assigned a value of “0,” after accounting for the effects of all other predictor 

variables.  For instance, in Table 19 the slope on Repeat (a dummy level 1 predictor variable) for 

7A during the regular academic year is -0.186 (and is statistically significant).  This means that 

in 7A during the regular academic year, students who had previously taken 7A for a letter grade 

at least once during the period of study (i.e. those with a Repeat value of 1) received a Grade that 

was on average 0.186 points lower than the Grade received by students who were taking 7A for a 

letter grade for the first time during the period of study (i.e. those with a Repeat value of 0) after 

accounting for all other predictor variables. 
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Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

AF 
-0.254*** 
(0.049) 

-0.28** 
(0.10) 

-0.293*** 
(0.055) 

-0.09 
(0.10) 

-0.220*** 
(0.054) 

-0.22 
(0.12) 

AI 
-0.008 
(0.083) 

-0.24 
(0.30) 

0.011 
(0.090) 

0.02 
(0.24) 

0.105 
(0.083) 

-0.41 
(0.24) 

CH 
0.006 
(0.022) 

-0.010 
(0.062) 

0.072** 
(0.024) 

0.091 
(0.056) 

-0.046 
(0.024) 

-0.083 
(0.056) 

EI 
-0.109*** 
(0.030) 

-0.102 
(0.070) 

-0.104** 
(0.034) 

-0.053 
(0.066) 

-0.181*** 
(0.034) 

-0.028 
(0.070) 

FP 
-0.064 
(0.035) 

-0.148 
(0.086) 

-0.095* 
(0.038) 

-0.047 
(0.089) 

-0.090* 
(0.039) 

-0.019 
(0.081) 

JA 
0.065 
(0.050) 

-0.13 
(0.16) 

0.000 
(0.058) 

0.19 
(0.12) 

-0.020 
(0.061) 

0.30* 
(0.13) 

KO 
-0.185*** 
(0.046) 

-0.07 
(0.12) 

-0.134* 
(0.055) 

-0.007 
(0.098) 

-0.193*** 
(0.052) 

0.00 
(0.12) 

LA 
-0.278*** 
(0.040) 

-0.29** 
(0.11) 

-0.146** 
(0.046) 

-0.01 
(0.10) 

-0.163*** 
(0.048) 

-0.07 
(0.12) 

MX 
-0.222*** 
(0.026) 

-0.304*** 
(0.071) 

-0.170*** 
(0.030) 

-0.139* 
(0.066) 

-0.213*** 
(0.029) 

-0.128 
(0.074) 

OA 
-0.096* 
(0.042) 

-0.12 
(0.11) 

-0.082 
(0.046) 

0.02 
(0.10) 

-0.148*** 
(0.046) 

-0.140 
(0.098) 

OT 
0.36 
(0.63) 

-0.18 
(0.60) 

0.07 
(0.30) 

-0.13 
(0.44) 

-0.14 
(0.19) 

0.00 
(0.49) 

PI 
-0.16 
(0.14) 

-0.20 
(0.35) 

-0.17 
(0.15) 

0.21 
(0.36) 

-0.25 
(0.17) 

0.08 
(0.25) 

VT 
-0.100*** 
(0.029) 

0.020 
(0.078) 

-0.025 
(0.033) 

-0.004 
(0.073) 

-0.159*** 
(0.032) 

-0.018 
(0.066) 

WH Reference Reference Reference Reference Reference Reference 

UnE 
-0.047 
(0.055) 

0.19 
(0.16) 

0.016 
(0.058) 

-0.06 
(0.15) 

-0.082 
(0.057) 

0.22 
(0.14) 

Table 20: Slopes on race and ethnicity predictor variables in the Final Model. 
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Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Cit Reference Reference Reference Reference Reference Reference 

PR 
0.051 
(0.032) 

-0.039 
(0.077) 

0.060 
(0.036) 

0.008 
(0.074) 

0.061 
(0.034) 

0.044 
(0.073) 

NI 
0.159*** 
(0.038) 

-0.004 
(0.097) 

0.226*** 
(0.046) 

0.27** 
(0.10) 

0.164*** 
(0.047) 

0.293** 
(0.099) 

RF 
-0.55 
(0.45) N/A 

-0.52 
(0.48) N/A 

-0.34 
(0.37) N/A 

PO 
-0.06 
(0.63) N/A N/A N/A N/A N/A 

IM 
0.00 
(0.45) 

-0.25 
(0.60) 

0.03 
(0.39) 

0.53 
(0.44) 

0.42 
(0.29) N/A 

UnC 
0.02 
(0.32) N/A 

0.40 
(0.40) N/A 

-0.56 
(0.64) 

-0.27 
(0.71) 

Table 21: Slopes on U.S. citizenship status predictor variables in the Final Model. 

Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

ROS 
-0.005 
(0.064) 

-0.056 
(0.072) 

-0.20 
(0.21) N/A N/A 

-0.059 
(0.063) 

Mean_GPA 
-0.121 
(0.078) 

-0.61** 
(0.21) 

0.001 
(0.096) 

1.50*** 
(0.30) 

0.00 
(0.12) 

0.28 
(0.19) 

Mean_Units 
-0.0009 
(0.0015) 

-0.0044 
(0.0038) 

-0.0011 
(0.0014) 

0.0032 
(0.0030) 

-0.0005 
(0.0012) 

-0.0043 
(0.0034) 

Mean_Male 
-0.079 
(0.086) 

0.10 
(0.30) 

-0.104 
(0.091) 

0.64** 
(0.24) 

0.05 
(0.10) 

-0.10 
(0.24) 

Mean_LecStart 
0.056 
(0.083) N/A 

0.02 
(0.15) N/A 

-0.23 
(0.14) N/A 

Table 22: Slopes on level 2 predictor variables, except for those pertaining to DL sizes and start 

times, in the Final Model. 

In Table 22, note that the slope on Mean_GPA (a continuous level 2 predictor variable) 

for 7A during the summer is -0.61 (and is statistically significant).  This means that an increase 

of one Mean_GPA point (on a 4.00 scale, which is what Mean_GPA is measured in) within a 

given 7A DL during the regular academic year is associated with an average decrease of 0.61 

Grade points for all students in that DL after accounting for all other predictor variables. 
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Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

RlySm N/A N/A N/A N/A 
0.08 
(0.24) N/A 

Sm 
0.04 
(0.14) N/A 

0.03 
(0.13) 

0.16 
(0.14) 

-0.002 
(0.071) 

0.41** 
(0.15) 

Lit 
0.051 
(0.066) 

-0.16 
(0.12) 

-0.041 
(0.060) 

-0.058 
(0.076) 

-0.003 
(0.050) 

-0.136 
(0.081) 

Med 
0.008 
(0.033) 

-0.193* 
(0.081) 

-0.007 
(0.028) 

-0.115* 
(0.057) 

-0.009 
(0.024) 

-0.026 
(0.067) 

Stand Reference Reference Reference Reference Reference Reference 

Lg 
-0.064* 
(0.027) 

0.04 
(0.16) 

-0.047 
(0.033) 

0.14 
(0.15) 

0.009 
(0.029) 

-0.018 
(0.082) 

RlyLg 
-0.14 
(0.12) N/A N/A N/A N/A N/A 

Table 23: Slopes on level 2 predictor variables pertaining to DL sizes in the Final Model. 

In Table 23, note that the slope on Med for 7A during the summer is -0.193 (and is 

statistically significant).  This means that in 7A during the summer, all students who were part of 

a given DL that had a size in the Medium range/category received a Grade that was an average of 

0.193 points lower than the Grade received by students who were part of a DL in the Standard 

range/category (the reference category) after accounting for all other predictor variables. 
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Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7B 
Regular 

Academic 
Year 

7C 
Regular 

Academic 
Year 

DL8 
0.040 
(0.026) 

0.003 
(0.032) 

0.028 
(0.034) 

DL105 
0.002 
(0.026) 

0.021 
(0.029) 

0.021 
(0.026) 

DL1417 Reference Reference Reference 

DL1667 
0.017 
(0.026) 

0.013 
(0.029) 

0.037 
(0.026) 

DL1917 
0.042 
(0.029) 

0.053 
(0.033) 

0.070* 
(0.033) 

DL1233 
-0.011 
(0.032) 

0.002 
(0.040) 

0.038 
(0.054) 

DL1234 
0.16 
(0.14) N/A N/A 

DL1358 N/A 
0.02 
(0.18) N/A 

DL1542 N/A 
0.32 
(0.25) N/A 

Table 24: Slopes on level 2 predictor variables pertaining to DL start times during the regular 

academic year in the Final Model. 

Predictor 
Variable 

7A 
Summer 

7B 
Summer 

7C 
Summer 

DL95 
-0.123 
(0.077) 

-0.151* 
(0.077) 

0.016 
(0.061) 

DL11 
-1.56*** 
(0.27) 

-0.88*** 
(0.13) N/A 

DL1217 Reference Reference Reference 

DL1367 
-1.48*** 
(0.30) 

-0.83*** 
(0.14) N/A 

DL1467 
-0.08 
(0.11) 

-0.076 
(0.082) 

0.124* 
(0.055) 

DL1617 N/A 
-0.93*** 
(0.14) N/A 

DL1717 N/A N/A 
0.04 
(0.10) 

Table 25: Slopes on level 2 predictor variables pertaining to DL start times during the summer 

in the Final Model. 
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Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 7B Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

LecSize 
-0.00077 
(0.00053) 

-0.0196** 
(0.0076) 

0.00088 
(0.00079) 

-0.0780*** 
(0.0087) 

0.0006 
(0.0029) 

0.0028 
(0.0026) 

Fall Reference N/A 
0.18 
(0.12) N/A 

0.02 
(0.29) N/A 

Winter 
-0.282*** 
(0.082) N/A Reference N/A 

-0.31* 
(0.12) N/A 

Spring 
-0.447*** 
(0.083) N/A 

-0.092 
(0.080) N/A Reference N/A 

Table 26: Slopes on level 3 predictor variables, except for those pertaining to Lecture instructor, 

in the Final Model. 

In Table 26, note that the slope on LecSize (a continuous level 3 predictor variable) for 

7A during the summer is -0.0196 (and is statistically significant).  This means that an increase of 

one LecSize unit (i.e. one student in a Lecture) for a given 7A Lecture during the summer is 

associated with an average decrease of 0.0196 Grade points for all students in that Lecture after 

accounting for all other predictor variables. 

Also note that the slope on Spring for 7A during the regular academic year is -0.447 (and 

is statistically significant).  This means that in 7A during the regular academic year, all students 

who were part of a given Lecture that occurred in a Spring quarter received a Grade that was an 

average of 0.447 points lower than the Grade received by students who were part of a Lecture 

that occurred in a Fall quarter (the reference category) after accounting for all other predictor 

variables. 
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Predictor 
Variable 

7A 
Regular 

Academic 
Year 

7A 
Summer 

7B 
Regular 

Academic 
Year 

7B 
Summer 

7C 
Regular 

Academic 
Year 

7C 
Summer 

Ins1 N/A N/A 
-0.29* 
(0.14) N/A N/A N/A 

Ins2 N/A N/A 
-0.31* 
(0.14) N/A N/A N/A 

Ins3 
-0.541*** 
(0.069) N/A 

0.383*** 
(0.095) N/A N/A N/A 

Ins4 
-0.058 
(0.082) N/A N/A N/A N/A N/A 

Ins5 N/A N/A N/A N/A N/A 
-0.278*** 
(0.082) 

Ins6 N/A N/A N/A N/A 
0.68*** 
(0.17) N/A 

Ins7 N/A N/A 
0.43* 
(0.18) Reference N/A N/A 

Ins8 
0.049 
(0.074) N/A N/A N/A 

-0.39 
(0.27) N/A 

Ins9 N/A N/A N/A N/A 
-0.12 
(0.16) N/A 

Ins10 N/A N/A N/A N/A 
0.57** 
(0.19) N/A 

Ins11 
0.001 
(0.072) Reference 

0.18 
(0.14) 

0.76*** 
(0.10) 

0.58** 
(0.20) N/A 

Ins12 N/A N/A 
-0.18 
(0.14) N/A N/A N/A 

Ins13 
-0.115 
(0.074) N/A N/A N/A N/A N/A 

Ins14 N/A N/A N/A N/A N/A Reference 

Ins15 
0.006 
(0.074) N/A N/A N/A N/A N/A 

Ins16 N/A N/A Reference N/A Reference N/A 

Ins17 
-0.260** 
(0.083) 

0.21 
(0.19) N/A N/A N/A 

-0.140 
(0.071) 

Ins18 N/A N/A 
0.29* 
(0.12) N/A N/A 

0.613*** 
(0.098) 

Ins19 Reference N/A N/A N/A N/A N/A 

Ins20 N/A N/A 
0.310*** 
(0.090) N/A N/A N/A 

Ins21 N/A N/A N/A 
0.640*** 
(0.085) N/A N/A 

Ins22 
0.230** 
(0.082) 

1.14*** 
(0.22) N/A N/A N/A N/A 
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Ins23 N/A N/A N/A N/A N/A 
-0.540*** 
(0.082) 

Ins24 
-0.102 
(0.075) 

-0.01 
(0.11) 

0.192* 
(0.088) 

1.06*** 
(0.15) N/A N/A 

Ins25 
-0.074 
(0.064) N/A 

0.08 
(0.10) N/A 

-0.18 
(0.22) N/A 

Ins26 
0.485*** 
(0.076) N/A N/A N/A N/A N/A 

Ins27 N/A N/A N/A N/A 
-0.14 
(0.18) N/A 

Ins28 
-0.080 
(0.073) N/A N/A N/A N/A 

-0.286** 
(0.097) 

Ins29 N/A N/A N/A 
1.90*** 
(0.17) N/A N/A 

Ins30 N/A 
-0.54*** 
(0.10) N/A N/A N/A N/A 

Ins31 
-0.053 
(0.076) N/A N/A N/A N/A N/A 

Ins32 
-0.045 
(0.072) 

0.31 
(0.31) N/A N/A N/A N/A 

Ins33 N/A N/A N/A N/A 
-0.35 
(0.20) 

-0.36** 
(0.12) 

Ins34 N/A N/A N/A N/A 
0.90*** 
(0.15) N/A 

Ins35 N/A N/A N/A N/A N/A 
-0.31 
(0.21) 

Ins36 
-0.412*** 
(0.081) 

0.89*** 
(0.25) N/A 

1.50*** 
(0.19) N/A N/A 

Ins37 
-0.077 
(0.061) N/A N/A N/A N/A N/A 

Ins38 N/A N/A N/A N/A 
0.54* 
(0.24) N/A 

Ins39 N/A N/A N/A 
0.71*** 
(0.10) N/A N/A 

Ins40 N/A N/A N/A N/A 
-0.04 
(0.19) N/A 

Table 27: Slopes on level 3 predictor variables pertaining to Lecture instructor in the Final 

Model. 

In Table 27, note that the reference categories were different for each of this study’s six 

analyses (with one overlap).  They were Ins19 for 7A during the regular academic year, Ins11 for 

7A during the summer, Ins16 for 7B during the regular academic year, Ins7 for 7B during the 

summer, Ins16 for 7C during the regular academic year, and Ins14 for 7C during the summer.  
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Also note that there are a lot of N/As (basically, a lot of the Lecture instructors for the three 

courses that were part of this study only taught Lecture for one or two of these courses and/or 

were only the Lecture instructor for such courses during either the regular academic year or the 

summer, but not both). 

Slope Discussion and Overall Conclusions 

Given the large number of slopes in the Final Model, it would not be productive to 

discuss all of them.  Therefore, the discussion (and conclusions) here will be focused on patterns, 

along with slopes that are related to the main research question around the effect of class size on 

student understanding of physics concepts (which Grade was used as a proxy for).  A major 

aspect of potential patterns that will be considered here is statistical significance (at the 95% 

confidence level or higher), though this will not be the only metric that is used since, while it is a 

commonly accepted and fairly effective standard (for finding what predictor variables are 

relevant and meaningful), it is still rather arbitrary and far from perfect (especially since there are 

far more than 20 predictor variables in this study, as well as for some of the reasons discussed 

below). 

Another major aspect of different slopes’ potential patterns and importance that will be 

considered here is the magnitude (absolute value) of these slopes, sometimes described as an 

effect size, because if the magnitude of a given predictor variable’s corresponding slope is too 

small, then that predictor variable does not have much of an effect on the outcome variable, even 

if its corresponding slope is statistically significant.  For categorical and dummy predictor 

variables (where slopes represent the difference in Grade between different groups after 

accounting for all other predictor variables), in this study a small slope magnitude refers to a 

slope with a magnitude that is less than 0.11 (i.e. 1/3 of 0.33, where 0.33 is the lowest gap 
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between two consecutive Grades).  For continuous predictor variables, what constitutes a small 

slope magnitude depends on the typical range of values for that slope’s corresponding predictor 

variable.  There are different ways of deciding on, and accounting for, this typical range, but 

since this study does not involve many continuous predictor variables, their corresponding slopes 

will be discussed on a case-by-case basis as needed (though the general idea will always be about 

comparing Grade changes due to a given predictor variable to 0.11). 

When it comes to the slopes on level 1 predictor variables, it is unsurprising that 

University GPA consistently has a large positive association with Grade (considering a student’s 

University GPA is essentially just a weighted average of their past grades at the University).  

There was also a consistently negative association between Units and Grade, which was 

statistically significant for all three courses in this study during the regular academic year, 

though not during the summer.  Furthermore, while the magnitudes of these slopes may seem 

small, they are actually substantial given the range of Units in the data.  For instance, in 7A 

during the regular academic year, the minimum value of Units is 12 while the maximum value is 

196.  This means that, after accounting for the effects of all other predictor variables, a student 

who went into 7A during the regular academic year with the maximum number of Units received 

a Grade that was on average 0.12 points (on a 4.00 scale) lower than that of a student who went 

in with the minimum number of Units.  It is a bit surprising that students who have more Units 

going into the courses that were part of this study during the regular academic year receive lower 

Grades in them despite these students presumably having more experience with University 

courses and also more background knowledge in relevant areas.  However, it is true that the 

design of these courses is different than most University courses and the material covered in 

them, while related to material covered in other courses that bioscience majors at the University 
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take, is not that strongly tied to such material.  In fact, part of the reason for the large range of 

Units that students have going into these courses is because these courses are not pre-requisites 

for other courses that bioscience majors at the University are required to take (except each other 

since 7A is a pre-requisite for 7B and 7B is a pre-requisite for 7C).  It is also the case that 

bioscience majors sometimes put off these courses and perhaps those who go in with more Units 

have, on average, more aversion to such courses than those who go in with fewer Units.  Finally, 

students who go into these courses with more Units are presumably more likely to be taking 

upper-level courses simultaneously while those who go in with fewer Units are presumably more 

likely to be taking lower-level courses simultaneously, and perhaps this affects the amount of 

time and energy that different students can devote to these courses. 

Repeat had a fairly sizable and consistent (for five out of six analyses), as well as 

statistically significant, negative association with Grade, meaning students who previously took 

one of the three courses in this study for a letter grade and then retook that course got lower 

Grades than those who did not retake that course.  This is somewhat surprising because these 

students had already gone through the course material (and format), which in some ways gives 

them an advantage when encountering the material and format again.  However, it is also quite 

possible that whatever factor(s) caused them to get a low enough Grade the first time they took a 

course that they decided to retake it affected their Grade during subsequent takes as well.  During 

the regular academic year, the later Lecture start time is consistently associated with higher 

Grades, but this effect is only statistically significant for one course (7C) and the magnitudes of 

the corresponding slopes are quite small, so the practical impact this has on Grades is minimal 

even if it is a real effect (as opposed to the result of statistical fluctuations). 
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Given previous research and general knowledge about U.S. society, the reader will 

probably be unsurprised to learn that being Female (as compared to Male) or from certain 

marginalized and underrepresented racial and ethnic groups (as compared to White) gives a 

student with such identities systematic disadvantages, as evidenced in this study by consistently 

positive (and statistically significant) slopes corresponding to the Male predictor variable (where 

Female was the reference category) and consistently negative slopes corresponding to predictor 

variables representing certain marginalized and underrepresented racial or ethnic groups.  Some 

of these slopes are statistically significant and some of them are not, but the pattern is there and 

in some cases, the lack of statistical significance is likely at least partially a result of 

disproportionately low numbers of students from these groups taking the courses that were part 

of this study, which is itself often related to systematic, and systemic, disadvantages.  The same 

is true of Refugees (RF), who had systematically lower Grades than U.S. citizens (as with all 

slopes, after accounting for all other predictor variables) even though the resulting slopes were 

not statistically significant.  Given the low number of students in the RF category, these negative 

slopes could be statistical fluctuations, but they could also constitute a real pattern and be the 

result of structural factors.  Furthermore, since the slope corresponding to a given predictor 

variable is determined in the context of controlling for all other predictor variables, students who 

identify as Female, part of certain marginalized and underrepresented racial or ethnic groups, or 

as a refugee are experiencing disadvantages which are not accounted for through the other 

predictor variables in this study.  Therefore, these students are likely experiencing additional 

disadvantages as well, just ones which are obscured by this study’s other predictor variables.  For 

instance, since a student’s University GPA is essentially just a weighted average of their past 

grades at the University and these students have systematically lower grades in the courses that 
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were part of this study, it is likely that they also have disproportionately low University GPAs.  

If this is the case, then the related issues are obscured by controlling for GPA. 

On the other hand, the slopes corresponding to students who were visa holders, 

undocumented, or pending asylum (NI) were fairly consistently positive and statistically 

significant (the exception being 7A during the summer), meaning these students consistently 

received higher grades than U.S. citizens.  Note, though, that since the NI predictor variable 

represents a rather broad and diverse category, these slopes do not necessarily indicate much 

about any particular group that was part of this category.  Finally, the slope corresponding to 

Unidentified Binary Sex for 7C during the regular academic year was statistically significant and 

rather large.  However, also note that 7C during the regular academic year was the only analysis 

(out of the six that were conducted as part of this study) which had any actual observations in 

this category, and further note that it only had one, so this slope probably does not have much 

meaning (beyond an individual meaning for the single observation that it corresponds to) and 

should serve as yet another cautionary example against automatically deferring to statistical 

significance without additional context.  It is important, though, to recognize that the lack of non-

binary gender options in the data that was used for this study is itself a problem and likely 

contributes to this study’s inability to gauge the effect that identifying outside the gender binary 

has on Grades. 

When it comes to level 2 predictor variables (excluding those around DL size for now), 

the overflow DL room had a consistently negative association with Grade (for the four out of six 

regressions that included DLs which were held in this room).  However, none of the 

corresponding slopes were statistically significant and all but one of them had small magnitudes 

anyway (the exception being 7B during the regular academic year).  None of the slopes 
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corresponding to the four continuous variables that are DL means of level 1 predictor variables 

seemed to follow any consistent pattern (even though a few of them were statistically 

significant). 

During the regular academic year, all but one of the DL start times had a positive 

association with Grade compared to the 2:10pm reference category (the exception being the 

situation in 7A where one of that DL’s two weekly sessions meets at 10:30am while the other 

one meets at 2:10pm).  This is somewhat surprising when 2:10pm (i.e. early afternoon) seems 

like a time when students would be the most attentive, but this may not be the case after 

considering the rest of their schedules.  Furthermore, only one of the corresponding slopes was 

statistically significant (the exception being 7:10pm for 7C) and all but two of them were rather 

small (the exceptions being the situation where one DL session per week meets at 8:00am and 

the other one meets at 4:40pm for 7A and the situation where one DL session per week meets at 

2:10pm and the other one meets at 4:40pm for 7B).  During the summer, the association between 

DL start times and Grade (compared to the 12:10pm reference category) was largely mixed 

(despite quite a few of the corresponding slopes being statistically significant).  However, the 

11:00am, 1:40pm, and 4:10pm start times all had a consistently negative, statistically significant, 

and fairly large association with Grade.  Furthermore, recall that these DL start times are all 

affiliated with the later Lecture start time during the summer, meaning it seems like during the 

summer, students in the later Lecture start time got significantly lower Grades than students in 

the earlier Lecture start time.  It is unknown why this is though.  It could have to do with the DL 

times themselves, it could have to do with the Lecture time itself, it could have to do with one or 

more other factors that are correlated with these times, or it could have to do with a combination 

thereof. 
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When it comes to level 3 predictor variables (excluding the one around Lecture size for 

now), during the regular academic year, Grades were consistently lower during the Winter and 

Spring quarters than during the Fall quarter.  More specifically, for 7A where Fall was the 

reference category, the slopes on the Winter and Spring predictor variables were both negative 

and statistically significant.  For 7B, where Winter was the reference category, the slope on the 

Fall predictor variable was positive while the slope on the Spring predictor variable was negative 

(though neither were statistically significant) and for 7C, where Spring was the reference 

category, the slope on the Fall predictor variable was positive (though not statistically 

significant) while the slope on the Winter predictor variable was negative (and was statistically 

significant),  One possible reason for this is that most students come into Fall quarter energized 

and rested after the summer (at least in terms of academic work), whereas Winter quarter is 

known around the University to be the worst quarter (and follows a winter break that typically 

only lasts about three weeks) and Spring quarter follows a spring break of only one week. 

There were also statistically significant and rather large associations between Grade and 

many of the Lecture instructors across the six analyses that were part of this study, which makes 

sense given the fundamental and inherent relationship between Lecture instructors and Grades, 

as discussed in “Site, Sample, and Population” (among other places).  There is also evidence to 

suggest that the grading scale used in a given Lecture plays a role when determining Grades, and 

that even when the same Lecture instructor uses different grading scales, the outcomes are often 

quite different [14].  However, during the period that this study’s data was drawn from, most 

Lecture instructors were using the same grading scale.  Furthermore, if grading scale is a factor 

here, its effect is controlled for through the Lecture level of an HLM framework along with the 

Lecture instructor categorical predictor variables.  Therefore, since any such effects are not 
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related to this study’s primary research question, it is not necessary to distinguish them from the 

effects of the Lecture level or Lecture instructors for the purposes of this study.  It is interesting 

and relevant to note, though, that the traditional percentage grading scale seems to cause more 

variation in Grades between Lectures than the alternative 4.5 point grading scale does (where the 

4.5 point grading scale corresponds directly to standard letter grades while the percentage 

grading scale needs to be converted to standard letter grades) [14]. 

Class Size 

The association between Grade and both DL and Lecture size was rather mixed and did 

not follow any clear patterns.  Compared to the standard DL size reference category (27-32 

students), across the six analyses that were part of this study, there were both positive and 

negative slopes corresponding to the DL size categorical predictor variables Sm (9-14 students), 

Lit (15-20 students), Med (21-26 students), and Lg (33-38 students).  Note that it was not 

possible for this to be true of RlySm (under 9 students) or RlyLg (over 38 students) simply 

because each of these only came up in one out of the six analyses in this study.  Many (though 

not all) of the corresponding slopes also had small magnitudes, so even if there was a pattern it 

would not indicate much of a practical effect on Grades.  It is worth noting, though, that the 

slopes corresponding to Lit and Med were mostly (5 out of 6 analyses) negative, with two of 

those on Med being statistically significant.  At the same time, the slopes corresponding to Sm 

were mostly (4 out of 5 analyses that involved DLs which fell into this category) positive, with 

one of these being statistically significant.  The slopes corresponding to the continuous Lecture 

size predictor variable are very evenly split between positive and negative, though the two that 

are statistically significant are both negative.  Also, while the magnitudes of these slopes may 

seem small, most of them, including the two statistically significant ones, are actually substantial 
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given the range of Lecture sizes in the data.  For instance, in 7A during the summer, where this 

slope is statistically significant, the minimum Lecture size is 84 students while the maximum 

Lecture size is 145 students.  This means that, after accounting for the effects of all other 

predictor variables, a student in 7A during the summer whose Lecture had the maximum number 

of students received a Grade that was on average 1.20 points (on a 4.00 scale) lower than that of 

a student whose 7A summer Lecture had the minimum number of students. 

Altogether, this seems to indicate that Lecture, and especially DL, sizes do not have 

much impact on student understanding of physics concepts in the types of courses were part of 

this study (at least to a point, since a DL of say, 100 students, would be a different story that is 

beyond the scope of this study given the DL sizes that were part of the sample data).  Therefore, 

in light of this study, there is less reason to focus attention or resources on reducing the size of 

introductory university physics classes than there otherwise might have been.  However, there 

are some caveats to this. 

First off, while the slopes associated with Lecture size yielded mixed results, it is 

intriguing that two of them are statistically significant with rather large magnitudes (in the 

context of Lecture size ranges), and that both of these are negative.  It is also relevant to note that 

both of these are related to summer Lectures where Lecture size means the direct size of lecture 

sections, unlike during the regular academic year where each Lecture includes two lecture 

sections (taught back-to-back by the same Lecture instructor), and so Lecture size is not directly 

tied to the size of any given lecture section (though it is still strongly related).  Note, though, that 

7A and 7B during the summer are also the situations where the later Lecture start time, or more 

accurately, the DL start times that correspond exactly to the later Lecture start time, had large 

and statistically significant slopes.  Therefore, it is possible that the apparent effect that Lecture 
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size has on Grade here is related to the effect that these start times have on Grade through some 

additional unknown factor(s) that are associated with DL start times, Lecture start times, and 

Lecture sizes in 7A and 7B during the summer. 

When it comes to DL sizes, in addition to the issues discussed in “Limitations and Future 

Work,” the biggest confounding factor here is really the fact that a very small portion of the 

variance in Grades exists at the DL level to begin with (and the uncertainty in this variance, as 

measured by standard errors in it, is quite high compared to the variance itself).  This means that 

level 2 predictor variables, including DL size predictor variables, should not have much of an 

impact on Grades regardless of anything else since the primary purpose of predictor variables is 

to explain variance in the outcome variable and predictor variables at a given level should, at 

least theoretically, only explain variance at that level. 

In terms of why there is so little variance in Grade between DLs (within a given Lecture), 

perhaps this means that DLs are so well organized, planned, and standardized that the differences 

between them do not have much of an impact on student learning.  Another possibility, though, 

is that quizzes and exams, which are typically created and administered by Lecture instructors 

during lecture sections and are the primary determinant of Grades, may not necessarily fully or 

adequately reflect what is being taught in DLs (essentially, maybe the assumption that they do, 

which is discussed further in Appendix B as part of a discussion around content validity, does 

not hold as well as it was initially believed to).  There is also a possibility that students do most 

of their learning for the courses that were part of this study during lecture sections (even though 

that is not the intention of these courses), or even outside of class-time and class-based learning 

(which seems more plausible since, regardless of a course’s class-based format, students often 

spend a lot of time studying). 
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Finally, it is possible that student learning in the courses that were part of this study is not 

that strongly influenced by class environments or instructor guidance (in other words, maybe the 

assumption of malleability, which is discussed further in Appendix B as part of the discussion 

around content validity, does not hold as well as it was initially believed to).  In particular when 

it comes to class size, one of the principles behind these courses is for students to engage in peer 

learning, especially in their groups during DL while the TA plays a more supportive, guiding 

role.  Since DL size likely does not have a major impact on the size, composition, or functioning 

of these groups, even if it does often have a major impact on the number of groups in a given 

DL, perhaps student learning in DLs is not that strongly influenced by DL size because most 

learning during DL occurs between students in a given group regardless of their DL’s size.  Even 

in such a case, though, there is a question of how the DL and Lecture size expectations in the 

courses that were part of this study effect the structure and format of these courses.  More 

specifically, it is unknown whether or not there might be a structure or format that better 

facilitates student learning, but where implementing it would require different expectations 

around the typical sizes of DLs and/or Lectures.  For instance, smaller class sizes could make it 

possible for quizzes and exams to include more conceptual questions, which tend to take longer 

to grade than calculational problems do, but are also usually better at gauging physics 

understanding than standard calculational problems or the memorization and repetition that 

frequently accompanies them [9].  Smaller class sizes could also make it more reasonable to let 

students take multiple assessments of the same topic in such a way that more recent assessments 

replace previous ones in order to demonstrate proficiency even if their initial understanding was 

lacking [14].  The above questions would all benefit from further study. 
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Limitations and Future Work 

Appendix B discusses some limitations of this study (and some potential future work) 

around the nature and meaning of grades (like questions about what material from the courses 

that were part of this study Grades are based on), as well as possible alternative outcome 

variables (like final exam scores or scores on the FCI - the Force Concept Inventory).  The 

skewness and ceiling and floor effects that are present in some of this study’s continuous 

variables, as described in “Levels and Outcome Variable” and “Analysis Format and Summary 

Data,” also present some clear limitations to this study.  Besides these issues and the questions 

raised in “Slope Discussion and Overall Conclusions,” one obvious limitation of this study is the 

missing observations.  As discussed in “Analysis Format and Summary Data,” due to these 

missing data points coming from missing GPAs due to fewer than 12 Units being associated with 

such observations, this missing data systematically excludes first quarter freshmen, transfer 

students, and graduate students, along with students who do not primarily attend the University.  

However, beyond these groups, it is assumed that the rest of the missing observations are random 

and that they do not systematically exclude or disproportionately impact the results from any 

other groups of students who take the courses that were part of this study.  Another assumption 

of this study is that the exact definition of DL size categories does not make a significant 

difference for the results (and thus, the conclusions).  Future studies could conduct analyses 

using a few slightly different DL size category definitions (where the categories are shifted a bit 

and/or the number of students in each category is maybe 5 or 7 instead of 6) and check for 

general consistency between corresponding analyses where the only difference is in these 

definitions. 
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There are also several additional factors that may have an impact on Grade and could 

potentially be controlled for in future studies (provided access to the proper data sets is granted).  

These factors could be addressed through either new predictor variables and/or a new random 

effects/levels structure.  For instance, including a continuous predictor variable for students’ high 

school GPAs, either along with, or even instead of, overall University GPA, could help account 

for their general prior knowledge and understanding.  Similarly, including continuous predictor 

variables for students’ prior grades in the University’s introductory calculus or chemistry 

courses, either along with, or even instead of, overall University GPA, could help account for 

their prior knowledge and understanding of topics that are related to those covered by the courses 

in this study.  Including students’ socioeconomic status as a predictor variable (either a 

continuous one or a set of categorical ones) would be a good way to account for some of the 

impacts that this aspect of student backgrounds and structural barriers have on grades, the same 

way that including student gender (which should have more than two identified options), race 

and ethnicity, and U.S. citizenship status account for some of the impacts that other aspects of 

student backgrounds and structural barriers have on grades. 

Another major factor to potentially control for in future studies is a DL’s TA, especially 

since most of the class-time and class-based learning in the courses that were part of this study is 

done during DL and TAs often have their own unique styles (which has a direct effect, as well as 

an indirect effect since students sometimes try to get into a DL with a certain TA).  Given the 

large number of TAs in the data, it probably would not be reasonable to account for their effect 

through a set of categorical predictor variables (though if it was, these predictor variables would 

be at the DL level).  Instead, the best way to account for the effect of TAs would be to treat them 

as level 3 such that DLs are nested within TAs (since most TAs taught multiple DLs during the 
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years that this study covers).  However, this would not be possible while simultaneously keeping 

the Lecture level, not only because having four levels would be difficult, but also because each 

Lecture has multiple TAs and, during the years that this study covers, most TAs taught DLs that 

were associated with multiple Lectures.  This means that Lectures would not be nested within 

TAs nor would TAs be nested within Lectures.  Despite this, since Lectures have such a 

substantial effect on Grade, it would still be desirable to account for their effect in some way and 

there are a few options for accomplishing this.  One possibility would be to not include a Lecture 

level but to mean-center Grades at the Lecture level and use this as the outcome variable [10, p. 

59-69].  In other words, the Grades in each Lecture could be converted to z-scores relative to that 

Lecture (z-scores which are subsequently used as the outcome variable) by subtracting the mean 

Grade in each Lecture from each individual Grade in that Lecture and then dividing the results 

by that Lecture’s Grade standard deviation.  Another possibility would be using more advanced 

HLM techniques that do not require a strict nesting structure, though doing so in this case would 

also involve using a four level model [10, p. 171-187]. 

One last possibility to account for the effect of TAs would be to conduct a quasi-

experiment where multiple TAs (who, during the regular academic year, usually teach two 

different DL sections per quarter that are both within the same Lecture) are assigned one DL 

section with the standard number of students (27-32) and one DL section with substantially more 

or fewer students (such that it falls into the Small, Literature, Medium, or Large category, since 

the Really Small and Really Large categories naturally arise so rarely that they do not warrant as 

much study).  Comparisons could then be made between corresponding pairs of DL sections, 

while controlling for as many other factors as possible.  Such an experiment would not only 

control for the effect of TAs, but could also help improve statistical power (i.e. make it easier to 
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find relationships between DL size and Grades if these relationships exist in the population) by 

addressing the relatively low number of observations that naturally occur in all of the DL size 

categories besides the standard one.  A quasi-experiment would also help mitigate the broader 

issue of students self-selecting into certain DLs or Lecturers, which directly affects the sizes of 

different DLs and Lecturers, as well as the types of students in different DLs and Lectures (for 

instance, students with more Units, which allows them to register for classes earlier than students 

with fewer Units, may disproportionately end up in DLs with more desirable start times). 

Another idea that would be interesting to explore in the future is treating Lecture 

instructor as a level in order to compare the results of such analyses to the results obtained by 

treating Lecture instructors as a set of Lecture level categorical predictor variables, as was done 

in this study.  Here it is relevant to note that an earlier version of the analysis presented in this 

dissertation was conducted using only two levels; students (or observations) and DLs, while 

omitting the Lecture level.  This previous analysis found a substantial amount of variation in 

Grades (i.e. an ICC greater than 0.05) at the DL level, but it is now clear that most of that 

variation was actually attributable to the Lecture level.  It is therefore possible that if a Lecture 

instructor level is included, it may turn out that most of the variation in Grades at the Lecture 

level in this study really exists at the Lecture instructor level.  Treating Lecture instructor as its 

own level would also more easily facilitate the inclusion of predictor variables that are related to 

the Lecture instructor, as opposed to the Lecture itself, like their gender or teaching style, if there 

is interest in studying the effects of such things on student Grades or other outcome variables (as 

opposed to combining these effects into the singular effect of individual Lecture instructors).  

However, this type of analysis would involve either making Lecture instructor a fourth level that 

Lecturers are nested within and/or removing the DL or Lecture level.  One more idea along these 



~ 96 ~ 
 

lines could be using more advanced HLM techniques to treat the true lecture as a level rather 

than treating the combined Lecture as a level (where, during the regular academic year, a Lecture 

includes both of the lecture sections that are taught back-to-back by the same instructor). 

Similarly, it would also be interesting to explore what happens when observations are 

treated as a separate level from students in order to compare the results of such analyses to the 

results obtained by treating the observation level as effectively equivalent to the student level, as 

was done in this study.  When treated as distinct from observations, students are not strictly 

nested within DLs or Lectures due to some students taking the same course multiple times 

(Repeats) and also due to students often taking multiple courses in the sequence of three courses 

that were part of this study (where, unlike in the study presented here, this type of analysis could 

potentially combine data from all three of these courses).  Therefore, this type of analysis would 

require more advanced HLM techniques (and likely more than three levels). 

One potential future study that would be related to, but distinct from (as opposed to a 

modification of) this study, would involve logistic or logit analyses around what factors are 

associated with whether or not a student dropped one of the Lectures in this study [10, p. 112-

140].  Finally, regardless of what outcome variable(s), predictor variables, and random effects 

structure(s) are used in potential future studies, one last possibility for quantitatively studying the 

effect of class size on cognitive outcomes (those related to student achievement and 

understanding of the material) would be to incorporate random slopes and/or interactions (since 

these things were not included in this study).  Doing so would also need to involve robust 

theoretical work to determine which predictor variable(s) should have random slopes and what 

interaction(s) to include. 
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Beyond quantitative studies, it would also help answer this study’s research question if 

more qualitative work is done on the role of class size in the types of courses that were part of 

this study (using techniques like interviews with students, TAs, and Lecture instructors; DL and 

Lecture observations; open ended survey questions to students, TAs, and Lecture instructors; 

etc.).  Similarly, beyond studies of class size and cognitive outcomes, it would be helpful if some 

studies were conducted on non-cognitive outcomes (those which are not directly tied to student 

achievement) in the types of courses that were part of this study, whether qualitatively or 

quantitatively (such as by using survey prompts that incorporate Likert scales, like strongly 

agree, agree, disagree, etc.) [15].  For instance, a few relevant non-cognitive research questions 

might be: What is the relationship between DL size and how DLs operate; how do students, TAs, 

and Lecture instructors feel about different class sizes and the effect they have on student 

learning; and how do different class sizes effect the workload, as well as the quality of grading 

and other work, for TAs and Lecture instructors? 

Lastly, in order to better gauge what population the findings of this and related studies 

apply to, it would be fruitful to conduct a version of this study and/or any of those described 

above on other courses.  These could include other introductory physics courses at the 

University, different types of introductory chemistry or calculus courses at the University, or 

different types of introductory physics, chemistry, or calculus courses at other colleges or 

universities (or even high schools).  Note that here, “different types” of courses means courses 

that are conducted and formatted in different types of ways, with a focus on potential differences 

between active-learning based courses and more traditional ones. 
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Appendices 

Appendix A: General Three Level Basic HLM 

Equations 

Assuming the outcome variable is continuous and at level 1, the general equations for a basic 

three level HLM model can be written as: 

Level 1: 

OutcomeVariableijk = β0jk + β1jk ∗ Level1Variable1ijk +  .  .  .  + βMjk ∗ Level1VariableMijk + εijk 

Level 2: 

βmjk = γm0k + γm1k ∗ Level2Variable1jk +  .  .  .  + γmNk ∗ Level2VariableNjk + umjk 

∀m ∊ {0,  .  .  . ,  M} 

Level 3: 

γmnk = πmn0 + πmn1 ∗ Level3Variable1k +  .  .  .  + πmnP ∗ Level3VariablePk + νmnk 

∀m ∊ {0,  .  .  . ,  M}, ∀n ∊ {0,  .  .  . ,  N} 

Where i is an index labeling the entities that level 1 data is coming from (such as students 

in the Students/Classes/Schools example), j is an index labeling the entities that level 2 data is 

coming from (such as classes in the Students/Classes/Schools example), and k is an index 

labeling the entities that level 3 data is coming from (such as schools or universities in the 

Students/Classes/Schools example).  Similarly, m is an index labeling level 1 predictor variables, 

n is an index labeling level 2 predictor variables, and p is an index labeling level 3 predictor 

variables, which implicitly appears in the above equations through terms of the form          

πmnp ∗ Level3Variablepk.  There are M level 1 predictor variables, N level 2 predictor 
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variables, and P level 3 predictor variables.  Note that the three level model has been specified 

because reference materials (including [10], which much of this Appendix is based on) often 

focus on the two level model but, in the author’s experience, it is not always clear how to extend 

the two level model to three or more levels, whereas extending the three level model to more 

than three levels is, at least theoretically, fairly straightforward (plus, as discussed at the end of 

the “HLM” portion of “Statistical Techniques and Random Effects,” it is rare to apply HLM to 

more than three levels). 

Also note that these equations are written on a level-by-level basis.  It is possible to write 

a composite description of HLM equations by taking the equations for intercepts and slopes (i.e. 

all equations at levels beyond level 1) and plugging them into the corresponding terms in lower 

level equations, but doing so can get messy while not being all that informative when the model 

that is under consideration includes few, if any, interaction terms, so this paper will be sticking to 

the level-by-level description. 

It is important to realize that these models can get quite complicated rather quickly 

(especially with more than two levels), so while the descriptions presented in this Appendix are 

completely general, in practice, it is rare for these models to include all possible terms in their 

respective equations.  Instead, theory and empirical evidence (frequently in the form of testing a 

series of increasingly more complex models while dropping non-significant terms along the 

way), along with philosophical notions like a desire to have the simplest possible model that still 

makes sufficiently good predictions, are used to decide which terms to include and which ones to 

leave out. 

On a related note, standard regression techniques tend to fit data based on ordinary least 

squares (OLS) procedures where the best fit line is determined by minimizing the sum of the 
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squares of the residuals (error terms).  HLM, however, typically uses maximum likelihood 

estimation (MLE) where the best fit line is determined by maximizing some likelihood 

(probability) function (the details of which are beyond the scope of this paper).  MLE can also be 

used to do standard regression whereas OLS cannot be used in HLM without substantial 

modifications because in HLM there are different types of error terms at different levels and how 

to appropriately weight and properly use each of them is not well-defined unless explicitly 

specified. 

Intercepts and Regression Coefficients 

In the above equations, intercepts (β0jk, γ00k, and π000) represent the average value of 

the outcome variable when all predictor variables take on a value of 0 (either for a given jth level 

2 cluster within a given kth level 3 cluster, a given kth level 3 cluster, or overall if there is no j or 

k subscript), making them intimately tied to error terms (the difference between actual and 

predicted values of the outcome variable).  When it comes to β0jk, γ00k, and π000, the 

“prediction” here would be for a hypothetical observation where all predictor variables take on a 

value of 0. 

Slope coefficients (either for a given jth level 2 cluster within a given kth level 3 cluster, a 

given kth level 3 cluster, or overall if there is no j or k subscript) on dummy predictor variables 

(predictor variables that are binary and have a value of either 0 or 1) represent the average 

amount by which the outcome variable is different for those who have the characteristic that is 

assigned a value of “1” compared to those who have the characteristic that is assigned a value of 

“0.”  Slope coefficients (either for a given jth level 2 cluster within a given kth level 3 cluster, a 

given kth level 3 cluster, or overall if there is no j or k subscript) on predictor variables which are 

part of a set of categorical predictor variables (a set of complete and mutually exclusive dummy 
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variables where every observation is assigned a value of 1 for exactly one such variable, 

typically the one associated with the name of the variable, and 0 for all of the others) represent 

the average amount by which the outcome variable is different for those who have the 

corresponding characteristic compared to those who are part of the reference category (a chosen 

member of the compete and mutually exclusive set) after controlling for all other predictor 

variables in the model. 

Slope coefficients (again, either for a given jth level 2 cluster within a given kth level 3 

cluster, a given kth level 3 cluster, or overall if there is no subscript) on continuous predictor 

variables represent the average amount by which the outcome variable changes when the value 

of said variable increases by 1 unit after controlling for the effect of all other predictor variables 

in the model. 

For example, in the Students/Classes/Schools example, when all predictor variables have 

a value of 0, β035 is the average value of exam score within class 3 which is itself within school 

or university 5, γ005 is the average exam score within school or university 5 (accounting for all 

classes in school or university 5), and π000 is the average exam score in the overall study 

(accounting for all classes and schools or universities). 

Now say that there is a level 1 dummy variable in the Students/Classes/Schools example 

called Clubs which is labeled as level 1 predictor variable 4 and has a value of 1 for those who 

participate in extracurricular activities and a value of 0 for those who do not.  In this case, β435 is 

the average difference in exam score for those who participate in such activities compared to 

those who do not in class 3 within school or university 5 after accounting for the effect of all 

other predictor variables. 
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If, in the Students/Classes/Schools example, the level 1 continuous predictor variable 

PriorGrade (a given student’s average grade on prior exams) is labeled as level 1 predictor 

variable 2, then β235 is the average change in exam score due to a 1 unit (likely 1 point) change 

in PriorGrade for students in class 3 within school or university 5 after accounting for the effect 

of all other predictor variables.  Now suppose there is a level 2 continuous predictor variable 

TeachYrExp (the teacher’s temporal experience in years).  If TeachYrExp is labeled as level 2 

predictor variable 1, then γ015 is the average change in exam score due to a 1 unit (1 year) 

change in TeachYrExp for students in school or university 5 after accounting for the effect of all 

other predictor variables.  Finally, say there is a level 3 continuous predictor variable 

Mean_Income (the mean parental income of students in a given school or university).  If 

Mean_Income is labeled as level 3 predictor variable 4, then π004 is the average change in exam 

score due to a 1 unit (likely 1 dollar) change in Mean_Income for all after accounting for the 

effect of all other predictor variables. 

Note that in an HLM context, interactions between predictor variables (which arise due to 

predictor variables either moderating or mediating each other) are addressed slightly differently 

depending on which level(s) these predictor variables are associated with.  When they are at the 

same level, interactions are accounted for by defining a new predictor variable at that level (with 

its own corresponding slope at that level) such that this new variable is the product of the two 

interacting predictor variables. However, interactions between predictor variables at different 

levels are addressed by treating lower level slopes as functions of higher level predictor 

variables, meaning the slope on such an interaction will ultimately come from the highest level 

that is part of that interaction but will do so through this functional relationship after substituting 

higher level equations into lower level slopes (though the interpretation of what an interaction 
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means in terms of its effect on the outcome variable is the same as it is for interactions in 

standard regression analyses). 

For instance, in the Students/Classes/Schools example, the interaction between 

PriorGrade and TeachYrExp within school or university 5 would have a slope γ215 which comes 

from taking the level 1 slope on PriorGrade (β2j5 for class j) and substituting in the level 2 

equation for β2j5 which includes (among other things) both γ205 (which is related to β2j5 through 

error terms) and γ215 ∗ TeachYrExp meaning there is now a term γ215 ∗ TeachYrExp ∗

PriorGrade.  Similarly, the interaction between TeachYrExp and Mean_Income would have a 

slope π014 which comes from taking the level 1 intercept (β0jk for class j and school or 

university k), substituting in the level 2 equation for β0jk which includes (among other things) 

γ01k ∗ TeachYrExp for school or university k, and then substituting in the level 3 equation for 

γ01k which includes (among other things) both π010 (which is related to γ01k and β0jk through 

error terms) and π014 ∗ TeachYrExp meaning there is now a term π014 ∗ Mean_Income ∗

TeachYrEx.  Finally, the interaction between PriorGrade and Mean_Income would have a slope 

π204 which comes from taking the level 1 slope on PriorGrade (β2jk for class j and school or 

university k), substituting in the level 2 equation for β2jk which includes (among other things) 

γ20k for school or university k, and then substituting in the level 3 equation for γ20k which 

includes (among other things) both π200 (which is related to γ20k and β2jk through error terms) 

and π204 ∗ Mean_Income meaning there is now a term π204 ∗ Mean_Income ∗ PriorGrade. 

Interactions between predictor variables at more than two different levels can be 

systematically worked through in this type of manner as well, though including interactions 

between more than two predictor variables is rare in any regression technique (HLM or 

otherwise). 
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Error Terms 

One aspect of the above equations that may seem particularly unfamiliar are the terms 

εijk, umjk, and νmnk.  These are error terms (with the latter two forming the mathematical basis 

for random effects).  When m and n are both 0, these error terms are the difference between 

actual values of the outcome variable and the corresponding predicted (from the regression 

equations) values at each of the three levels.  When m and/or n are not 0, umjk and νmnk are the 

difference between regression coefficients (slopes) for different level 2 or level 3 clusters after 

accounting for the (fixed) effect of all predictor variables (where said slopes are associated with 

either a given level 1 predictor variable, a given level 2 predictor variable, or an interaction term 

between a given level 1 predictor variable and a given level 2 predictor variable). 

Getting a bit more specific, the residual error term εijk might seem somewhat familiar 

since it is similar to the error term in standard regression analyses, except instead of being the 

difference between the actual value of the outcome variable for a given observation and the 

overall predicted value of the outcome variable for that observation, it is the difference between 

the actual value of the outcome variable for a given observation (labeled by i) and the predicted 

value of the outcome variable for that observation within a given (jth) level 2 cluster (which is 

itself nested within a given, or kth, level 3 cluster).  Note that residual error terms within a given 

level 2 cluster are assumed to follow a Normal Distribution and homoscedasticity. 

u0jk is the difference between the actual average value of the outcome variable for a 

given jth level 2 cluster (within a given kth level 3 cluster) and the overall predicted value of the 

outcome variable in the jth level 2 cluster.  Similarly, ν00k is the difference between the actual 

average value of the outcome variable for a given kth level 3 cluster and the overall predicted 

value of the outcome variable in the kth level 3 cluster. 
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For example, in the Students/Classes/Schools example, analyzing the outcome variable 

(exam score) across multiple classes and schools or universities will yield a prediction for each 

student’s grade.  In standard regression techniques, the error term is simply the difference 

between a given student’s actual exam score and their predicted exam score, but in HLM there is 

a prediction for a given student who is in a given class which is in a given school or university.  

In this situation, ν00k is the difference between the actual average exam score in a given school 

or university and the overall predicted exam score for that school or university, u0jk is the 

difference between the average exam score in a given class in a given school or university and 

the overall predicted exam score for that class in that school or university, and εijk is the 

difference between a given student’s actual exam score and the predicted exam score for that 

student in that class in that school or university. 

When m is not 0, umjk represents the difference between the slope for the mth level 1 

predictor variable in the jth level 2 cluster within the kth level 3 cluster (i.e. βmjk) and the overall 

slope for the mth level 1 predictor variable in the kth level 3 cluster after accounting for all level 2 

predictor variables.  In the Students/Classes/Schools example, say that in school or university 4 

(so the 4th level 3 cluster) there is an overall slope (across all classes) on the level 1 predictor 

variable PriorGrade (a given student’s average grade on prior exams).  There is also a slope on 

PriorGrade for class 6 within school or university 4 which may be different than the overall slope 

for school or university 4.  The difference between these two slopes would be u264 (assuming 

PriorGrade is labeled as the second level 1 predictor variable) when the values of all class level 

variables are held constant. 

When m is 0 but n is not 0, ν0nk represents the difference between the slope for the nth 

level 2 predictor variable in the kth level 3 cluster and the overall slope for the nth level 2 
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predictor variable after accounting for all level 3 predictor variables.  In the 

Students/Classes/Schools example, say there is an overall (across all schools or universities) 

slope on the level 2 predictor variable TeachYrExp (the teacher’s temporal experience in years).  

There is also a slope on TeachYrExp for school 4 which may be different than the overall slope.  

The difference between these two slopes would be ν014 (assuming TeachYrExp is labeled as the 

first level 2 predictor variable) when the values of all school level variables are held constant. 

When neither m nor n is 0, νmnk represents the difference between the slope for the 

interaction term between the mth level 1 predictor variable and the nth level 2 predictor variable in 

the kth level 3 cluster and the overall regression coefficient for the nth level 2 predictor variable 

after accounting for all level 3 predictor variables.  In the Students/Classes/Schools example, say 

we posit that there is an interaction between the level 1 predictor variable PriorGrade and the 

level 2 predictor variable TeachYrExp (maybe teachers with more years of experience grade 

things differently than those with fewer years of experience).  Then there is an overall (across all 

classes and schools or universities) slope on this interaction term in the model.  There is also a 

slope on this interaction term for school or university 4 which may be different than the overall 

slope.  The difference between these two slopes would be ν314 when the values of all school or 

university level variables are held constant. 

Error Term Variance and Intraclass Correlation Coefficients 

As with standard regression techniques, it is possible to find the variances of, and 

covariances between, these error terms.  The variance in εijk (known as the residual variance and 

denoted σε
2) represents the variation in the outcome variable within a given level 2 cluster 

(which again, is itself nested within a given level 3 cluster) after accounting for the effects of all 

predictor variables.  Unless stated and specified otherwise, it is assumed that this variance 
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follows a Normal distribution with a mean of 0 and that it is the same for all level 2 clusters.  The 

variance in u0jk (σu0
2) represents the variation in the outcome variable between level 2 clusters 

within a given level 3 cluster after accounting for the effect of all level 2 predictor variables in 

the equation for the level 1 intercept (β0jk).  The variance in ν00k (σν00
2) represents the variation 

in the outcome variable between level 3 clusters after accounting for the effect of all level 3 

predictor variables in the equation for the level 2 intercept (γ00k). 

The variance in umjk when m is not 0 (σum
2) represents the variation in the error term 

umjk described above.  Similarly, the variance in ν0nk when n is not 0 and νmnk when neither m 

nor n is 0 (σν0n
2 and σνmn

2 respectively) represent the variation in their respective error terms 

which were also described previously.  σε
2, σu0

2, and σν00
2 can be defined in this manner as 

well, but it is informative to be more explicit about these, which is why they were discussed 

separately.  One reason for this is because they can be used to determine intraclass correlation 

coefficients (ICCs) for levels 2 and 3, which are defined (respectively) as: 

ICC2 = ρ2 =
σu0

2

σε
2 + σu0

2 + σν00
2
 

ICC3 = ρ3 =
σν00

2

σε
2 + σu0

2 + σν00
2
 

The ICC for a given level is the fraction or proportion (which can be converted to a 

percentage if desired) of total variance (total variance before any predictor variables are 

accounted for) in the outcome variable that is attributable to variation between clusters (as 

opposed to variations between observations within a given cluster) at that level [10, p. 34].  

Therefore, ICC2 is the proportion of total variance in the outcome variable that is due to 

variations between level 2 clusters in a given level 3 cluster while ICC3 is the proportion of total 

variance in the outcome variable that is due to variations between level 3 clusters.  For instance, 
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in the Students/Classes/Schools example, the total variance in exam scores can be partially 

attributed to the variation between students in a given class in a given school or university (σε
2), 

partially attributed to the variation between classes in a given school (σu0
2), and partially 

attributed to the variation between schools (σν00
2). 

It is possible to define ICC1 as the proportion of variance in the outcome variable that is 

due to variations between observations in a given level 2 cluster (which is itself nested within a 

given level 3 cluster), but this is generally not done, primarily because it is often more important 

to know what proportion of the variance exists between level 2 clusters within a given level 3 

cluster, as well as between level 3 clusters, than it is to know what proportion of the variance 

exists within a given level 2 cluster.  Secondarily, defining ICC1 would be redundant and 

unnecessary since ICC1 + ICC2 + ICC3 = 1.  The fact that variance can be parsed out and 

attributed to different types of clusters in this way is yet another example of useful information 

being garnered from Multilevel Modeling that cannot be determined through standard regression 

techniques.  In HLM, the first model that is typically analyzed is the Null Model which does not 

include any predictor variables since its objective is to figure out how much variance exists at 

different levels before any of this variance is explained by (and therefore, reduced as a result of) 

predictor variables (at one or more levels where, theoretically and conceptually, predictor 

variables that are associated with a given level should primarily or exclusively explain and 

reduce variance that is associated with that level, but not explain or reduce variance that is 

associated with other levels). 

One final role that the ICC plays is helping to determine if a given type of clustering 

should be treated using random effects, as opposed to through a set of categorical predictor 

variables (or even just not incorporating such clustering into the analysis at all).  An informal 
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rule says that if the Null Model ICC associated with a given type of clustering (such as classes or 

schools or universities in the Students/Classes/Schools example) is at least 0.05 (5%), then that 

type of clustering is a good candidate for a Multilevel Modeling approach (i.e. random effects). 
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Appendix B: Grades in the Context of Measurement 

Theory (in General and in Relation to This Study) 

Validity and Bias 

Considering the outcome variable in this study is the overall Lecture Grades for 

individual students, it is clear that the nature, meaning, legitimacy, and interpretation of grades is 

foundational to this study.  Questions around these issues are themselves questions about the 

validity of grades based on the most widely accepted definition of the term, which is essentially 

the degree to which a measurement device (“test”) actually measures whatever underlying 

construct (such as knowledge of a certain topic or level of satisfaction with a service) it is meant 

to measure, though it should be noted that there is still no fully agreed upon definition of 

measurement validity [16, p. 255].  One common form of validity is known as criterion-related 

validity and is based on a test’s relationship to (which often means its results’ correlation with 

the results of) another known test that measures the same latent trait (underlying construct).  The 

known test can either be done at the same time (known as concurrent validity) or in the future 

(known as predictive validity) [16, p. 257]. 

One frequently held belief is that grades are “what students ‘earn’ for their achievement” 

[13].  This assertion assumes that grades are based solely on students’ understanding of the 

relevant subject matter which, if true, would be useful to this study since the goal here is to 

explain and predict students’ understanding of physics principles (the latent trait of interest in 

this study).  Such understanding is an important construct for three primary reasons.  First, 

people tend to be curious about the fundamental laws of nature and studying physics is a good 

way of learning about such things.  Secondly, the problem solving skills required to analyze 
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physics problems are applicable to other scenarios as well and finally, physics concepts are 

directly useful in a variety of ways, from everyday situations, like driving, to more career 

specific pursuits, like engineering.  Furthermore, in addition to students who take physics courses 

being concerned about their physics grades because of the way that grades are used to sort people 

and determine who has access to certain opportunities (like internships and medical school), 

many of them probably have at least some curiosity about the laws of physics, both in general 

and in terms of how physics relates to their chosen fields and majors (so for the most part when it 

comes to the courses involved in this study, biological applications of physics concepts).  Since it 

is not possible to directly observe someone’s understanding of physics, this study took overall 

Lecture Grades to be a test (in the generalized sense) that measures such things [16, p. 3]. 

However, despite some commonly held beliefs, there are a range of problems with the 

assumption that grades are exclusively, or even largely, a measure of academic achievement.  

For one, in K-12 schooling, numerous studies of criterion-related validity have been conducted 

to examine the relationship between grades (sometimes aggregate grades, like GPAs, and 

sometimes grades in specific classes, like math) and outcomes on so-called “achievement” or 

“intelligence” tests.  These studies have consistently demonstrated a moderate relationship 

between the two (even as the composition of such tests, and the educational system more 

broadly, have gone through substantial changes over the years), implying a significant but 

modest relationship between grades and achievement (or “intelligence”) as defined by such tests 

(the criterion in this case) [13].  It should be noted that these sorts of studies assume that such 

tests actually measure achievement (or “intelligence”) and going even deeper, that the constructs 

of “achievement” and “intelligence” have well-defined meanings (i.e. that these tests are 

themselves valid).  While university courses are obviously different than K-12 schooling, it is 
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likely that similar relationships exist there as well, though it would be beneficial to directly make 

this determination through empirical studies.  For instance, one possible format for studies of this 

type could be to determine the relationship between student grades in introductory college 

physics courses that teach Newton’s Laws and student scores on the Force Concept Inventory 

(FCI), a well-known and commonly used assessment of conceptual (though not calculational) 

understanding of forces and Newton’s Laws.  This could be especially helpful considering there 

is reason to believe that conceptual, explanation-based questions are a better gauge of physics 

understanding (and thus, a more valid measure of this underlying construct) than questions 

centered around calculations, or even diagrams [9].  Since the FCI is multiple choice, scores on it 

would also not be subject to concerns around the consistency of different graders, as discussed in 

the context of reliability below.  In fact, some work along these lines that could be built upon has 

already been done, including some analysis involving introductory physics courses at the 

University (but ones that are taken primarily by engineering majors, as opposed to the courses 

that were part of this study, which are taken primarily by bioscience majors) [9].  In the courses 

that were part of this study, this type of analysis would also have the added benefit of helping to 

determine the role that Lecture instructors (and Lectures more broadly) play in student learning 

by separating assessments of student learning from Grades, which Lecture instructors in these 

courses influence through both their teaching and their logistical and administrative roles, as 

discussed in “Site, Sample, and Population,” among other places. 

Building off of the above, it eventually became evident through empirical studies of 

grading practices that K-12 report card grades are multidimensional measures of a variety of 

factors, both cognitive (those related to student achievement and understanding of the material) 

and non-cognitive (those which are not directly tied to student achievement), that assess, as well 
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as motivate, student learning based on what teachers value in student work.  These factors often 

include such things as achievement, substantive engagement, persistence, improvement, and 

even the consequences of grades on students’ success and feelings about their own competence 

[13].  These studies align well with teachers’ perceptions of their own grading practices as 

determined by surveys and interviews where teachers brought up the inclusion of non-cognitive 

factors in the grades they assign, along with many teachers expressing a desire to grade fairly, 

which to them meant using multiple sources, incorporating effort, and making grading policies 

clear to students.  Context and professional judgment is sometimes included as well, rather than 

relying solely on an impersonal grading algorithm.  However, teachers’ beliefs and values 

determine the purpose and extent of the impact that non-cognitive factors have on the grades 

they assign, and these vary between teachers on both an individual and group level, sometimes 

between different teachers in the same school and sometimes even between students who have 

the same teacher (due to differing contexts) [13]. 

On the group level, modern elementary school teachers largely think of grades as being 

more about communicating information to students and parents while secondary school teachers 

think of them more in terms of classroom management (accounting for student behavior and 

completion of work), along with placing a higher value on exams [13].  While it is likely that 

there exists a range of grading schemes in higher education, especially when grading standards 

are considered to be a matter of academic freedom in the U.S., one might suspect that these 

trends continue and that college instructors incorporate a variety of factors into the grades they 

assign, but emphasize the exam-based achievement side of grades more than K-12 teachers do.  

Once again, it would be beneficial for additional studies to be conducted so a more definitive 

determination can be made, but in the author’s experience this could certainly be argued in the 
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case of many introductory college physics courses, including those involved in this study where, 

as discussed in “Site, Sample, and Population,” timed exams and quizzes are the primary basis 

for course grades while participation and homework completion (non-cognitive factors) play a 

significant, but rather limited, role.  It could also be helpful for more thorough evaluations of 

grades in K-12 schooling, as well as higher education, to be done using formal factor analysis 

(both exploratory and confirmatory based on previous research) in order to better understand and 

account for the different components that go into student grades, both in general and in particular 

situations. 

One possible way to address discrepancies between the relative weights given to different 

components of grades (exam scores, engagement, completion of work, etc.) by different teachers 

would be to standardize these weights by requiring the proportion of grades attributed to each 

component be the same (or at least within some predetermined range) across all students, or at 

least all students within the same grade level and type of course.  This may not go over well with 

many teachers though and academic freedom, combined with grading autonomy, would make it 

difficult to enforce.  A related but distinct possibility would be to give separate scores for 

different components of grades, as is the case with standards-based grading (a form of grading 

that describes where a student is relative to predetermined standards for different aspects of a 

given level of a given subject) [13].  This would recognize the importance of different student 

attributes but would systematically and consistently distinguish between them, and it would even 

be possible to include a section on context or professional judgement.  In some ways, this would 

actually be analogous to how certain grading metrics, like Grade-Point-Averages (GPAs), are 

aggregated across different classes, but grades in specific classes are still typically reported as 

well, since this would simply be a further disaggregation within classes.  However, these sorts of 
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suggestions ignore the fact that some teachers consider behavior that promotes academic 

achievement to be part of academic achievement and therefore, may discount any attempts to 

separate such things on principle [13].  Furthermore, even though differential impact of a test on 

different groups is not considered “bias” on its own in measurement theory (as discussed in more 

detail below), many teachers are rightfully concerned about the negative material consequences 

that low grades, as well as their intersection with other student characteristics (like race, gender, 

and socioeconomic status), can have under the current system.  Such concerns may cause 

teachers to be reluctant to assign separate grades for different student attributes, knowing that 

low scores in certain areas will likely reproduce various forms of institutional violence (like 

forcing these students’ future-selves into low-wage jobs or inadequate housing) even when 

reported in conjunction with high scores in other areas [16, p. 478].  The only way to remedy this 

concern would be to dismantle capitalism and other forms of oppression by restructuring the way 

that society functions such that people are no longer punished simply for having low academic 

achievement scores. 

One last point that should be brought up in this discussion of grades’ criterion-related 

validity is that in K-12 schooling, grades are known to predict drop-out rates and other measures 

of success and failure in subsequent levels of schooling [13].  However, one could argue that this 

is circular reasoning since it is unsurprising that measures of “success” in schooling relate to 

other measures of “success” in schooling regardless of what underlying construct(s) any of these 

(generalized) tests actually measure.  It is interesting to note, however, that standardized 

achievement tests do not predict such things nearly as well, which raises further questions about 

the meaning, interpretation, and uses of both standardized achievement tests and grades [13]. 
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Finally, it is important to consider the content validity of grades’ achievement 

component.  Content validity refers to the degree of alignment between a test and the content 

(both knowledge, and reasoning processes and skills) that those who take the test have been 

taught [16, p. 257-258], with one way of determining content validity being an evaluation of the 

test by a content expert.  More specifically in the context of this study, since overall Lecture 

grades for the courses involved here are primarily based on quizzes and exams, it could be 

argued that they are largely reflective of student achievement.  However, even if this is true in 

some sense, it still would not necessarily guarantee that these grades accurately measure the 

same types of material (both knowledge, and ways of solving problems, which is really 

emphasized in these courses) that is taught to the students who take these courses.  Grades in 

these courses reflecting some sort of physics achievement, even if true, also would not 

necessarily guarantee that they measure the types of achievement that physics instructors believe 

they do, or that application reviewers for jobs, internships, graduate school, etc. believe they do, 

which is not necessarily the same as what physics instructors believe they do (thereby adding 

another confounding layer to questions of content validity).  There are a few reasons for these 

potential discrepancies.  One reason is that, not only are quizzes and exams just one possible 

form of assessing achievement among many, but the quizzes and exams used in the courses that 

were part of this study also tend to be timed and necessitate short, written responses (as is typical 

in introductory physics courses).  Considering how students’ understanding of physics principles 

is the construct of interest for this study, as well as the construct of interest for Lecture 

instructors and, presumably, for application reviewers who take grades from these courses into 

account, this format has a negative impact on student grades relative to the construct of interest 

by both introducing a degree of construct-irrelevant variance (variation in test scores that is due 
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to factors other than the construct of interest) and causing some degree of construct 

underrepresentation (when a test does not fully incorporate all parts of the construct of interest, 

or weighs different parts of this construct disproportionately compared to their relevance to the 

construct) [16, p. 261]. 

A few possible sources of construct-irrelevant variance in the courses that were part of 

this study are speediness, the ability to perform under pressure, reading comprehension, writing 

abilities, and handwriting.  These factors lead to some variance in quiz and exam scores that is 

independent of the construct of interest (understanding of physics principles) and may even 

introduce bias into these scores, as well as the Lecture grades that are heavily dependent on 

them.  Bias in measurement theory is defined as a situation where a test yields systematically 

different scores for respondents from different groups who are actually at the same level on the 

underlying construct (referred to as their “true score” in Classical Test Theory) [16, p. 279-280].  

Therefore, the factors mentioned above could produce bias in the courses that were part of this 

study because of the different ways that these issues affect different groups [16, p. 479].  For 

instance, if physics quizzes and exams require a certain level of reading comprehension or 

writing ability, then scores on them are likely to be lower for non-native English speakers than 

for their native English-speaking counterparts because of language barriers that have nothing to 

do with physics knowledge or understanding.  Similarly, timed exams are known to lower scores 

for women and girls disproportionately more than they lower scores for men and boys.  Much, 

though not necessarily all, bias of this sort, as well as construct-irrelevant variance more broadly, 

could be adequately addressed by quizzes and exams that follow principles of universal design, 

which seeks to eliminate construct-irrelevant factors (like wordy language, speediness, and 

cultural references) while also specifically emphasizing those factors which may systematically 
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disadvantage members of certain groups (including by offering multiple examination formats) 

[16, p. 503]. 

Construct underrepresentation in these courses could come from restricting the types of 

achievement that grades in these courses capture due to quizzes and exams focusing almost 

exclusively on an individual’s direct knowledge and calculational abilities while largely leaving 

out such things as lab skills, oral processing, and the ability to productively expand upon others’ 

ideas.  This too could potentially bias course grades because of differences in what different 

groups are socialized to value, such that certain groups may be better at the types of skills that 

are being often tested in these courses while others may be better at those that are not.  It is also 

quite possible that students in these courses end up focusing on the types of behaviors and skills 

that will yield the highest possible grades (given the primary use of grades as ranking and sorting 

mechanisms, as described previously), in which case this construct-irrelevant variance and 

construct underrepresentation could easily have the effect of shaping what students prioritize 

when trying to learn the material.  It would therefore be beneficial if future research could 

determine the types of skills that are measured by conventional physics exams and quizzes 

(perhaps using factor analysis), along with how this impacts students’ study habits.  It would 

then be up to the physics education community to decide if these are desirable skills to measure, 

as well as whether they are the only skills that should be measured, and to adjust accordingly. 

Going beyond testing mechanisms and confounding factors, it is often not even the case 

that all aspects of the material which is covered in introductory physics courses, such as those 

involved in this study, ends up being represented on the quizzes and exams that any given 

student takes, and even when it comes to the material that is represented, the breakdown of how 

much each topic contributes to students’ grades can vary widely.  It would be helpful to both 
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students and application reviewers if physics instructors could come to some sort of consensus 

on which topics should be covered in introductory courses, their breakdown in terms of grading, 

and the breakdown of difficulty levels within each topic, and then largely stick to this structure.  

However, since this is unlikely to occur, each individual instructor should at least take the time to 

think through their own feelings on these matters and be explicit with themselves, their peers, 

and their students about such things through personal specification tables which list the content 

they believe is important (and will be covering) for a given course and the level that they will be 

covering each topic at (in that course) [16, p. 269]. 

A solution to the need for content experts to evaluate quiz and exam problems is less 

clear since it would not be reasonable to require every quiz or exam problem to go through this 

process and most physics instructors would consider themselves to be content experts when it 

comes to introductory physics principles (and really, any physics content that they are teaching 

in most cases) anyway.  There is also some dispute over who would qualify as an expert in this 

regard and whether, for instance, professional physicists who are not teaching faculty would be 

effective at making these sorts of determinations [17].  However, there might be some need for 

the courses involved in this study to have their quizzes and exams, or at least a range of sample 

problems for instructors to base quizzes and exams off of, go through some sort of expert 

evaluation since these courses are not only taught with a different format than traditional lecture-

based physics courses, but they also use a different curriculum (and thus, textbook and set of 

homework problems) that physics instructors who have been trained through more conventional 

means may not be familiar with.  Obviously, none of these suggestions can be enforced is most 

cases because of academic freedom and grading autonomy, but individual instructors are still 
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able to adhere to best practices when creating assessments (like quizzes and exams) and should 

be encouraged to do so. 

One final issue around the content validity of the courses that were part of this study is 

the potential mismatch between what is taught during DL and what appears on quizzes and 

exams since, as discussed previously, DL is taught by a TA while quizzes and exams for these 

courses are usually designed and administered by the Lecture instructor and given during lecture 

sections.  The lectures for these courses are supposed to coincide with what is taught in DL, but 

this is not always the case, both in terms of the standard DL curriculum (which is rather rigid) 

and how DL is actually taught in practice (which can vary between DLs based on TA style, 

potential TA modifications, etc.).  This issue involves an extremely relevant question for this 

study since the goal of this study is to evaluate the relationship between Lecture grades and 

classroom characteristics, especially DL size, which requires Lecture grades to be a relatively 

strong measure of what is taught in DL.  For the purposes of this study, it was assumed that 

despite all of their flaws, overall Lecture grades in the courses involved here at least measure the 

same content as what is taught in DL, but it might be worth conducting a rigorous analysis of this 

relationship in the future.  Similarly, it was assumed that the students who take the courses that 

were part of this study are malleable and that their physics learning depends on the classroom 

environment and instructional guidance, since if this is not the case then DL and Lecture 

characteristics would clearly and fundamentally have no impact on their understanding of 

physics.  This too is a question that could use further study. 

Reliability 

While the validity of grades is important, both in general and as a framework to help 

guide the conclusions and limitations of this study, evaluating the merits of grades does not end 
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there.  Beyond the extent to which intended uses and interpretations of grades match what they 

actually measure, another concern that anyone who uses grades to judge student performance 

(from researchers to instructors to application reviewers) should have is simply the degree to 

which grades (as a test in the generalized measurement theory sense) consistently measure 

something, be it academic achievement or a broader multidimensional mix of traits (i.e. 

regardless of what it is the test is actually measuring).  This is where reliability comes in [16, p. 

121]. 

In general, it is possible that approaches to grading which separate out different 

components of grades, like standards-based grading, could make grades more reliable because 

each grade would then measure a single construct.  On top of this, even under more traditional 

models of grading, it has been found that as assignments are aggregated up to class (or Lecture) 

grades, the reliability of grades tends to increase regardless of what it is that they are measuring 

[13].  This means that in a typical scenario, a greater proportion of students’ “true scores” on 

whatever construct(s) a given class’ grade is measuring is represented by their overall grade in 

that course than by their grade on any particular assignment, which makes sense because one 

would expect the effect of random error to decrease as more assignments are taken into account 

[16, p. 161-162].  This implies that overall class grades are likely to be a better proxy for 

students’ understanding of physics concepts in introductory physics courses (including those 

involved here) than grades on individual assessments would, assuming that both overall class 

grades and individual assessment grades overwhelmingly measure physics understanding rather 

than a multitude of constructs (and for the courses involved in this study, it is likely that overall 

Lecture grades and individual quiz and exam grades do primarily measure some sort of physics 

understanding, as has already been discussed).  It is true, however, that even in these courses, 
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overall Lecture grades likely measure other constructs to some degree, whereas quiz and exam 

grades likely measure other factors to a lesser extent.  Because of this, it is still possible that 

grades on certain individual assessments might be better indicators of students’ physics 

understanding than overall Lecture grades and this may be a good question for future research.  It 

is for this reason, as well as the fact that overall Lecture grades for the courses involved in this 

study are largely just aggregated grades from individual quizzes and exams, that for the purposes 

of this study, the reliability of individual assessments is a vital part of any discussion around the 

reliability of overall Lecture grades, and so the reliability of individual assessments is where this 

section now turns. 

For any given individual assessment, there are a variety of reliability concerns to 

consider.  First off, there are questions of internal reliability (whether or not different items are 

measuring the same construct(s)) and alternate forms reliability (whether or not different forms 

of the assessment are measuring the same construct(s)) if different forms of the assessment are 

given.  These two types of reliability are difficult to study in general since they depend on the 

nature of the assignment in question, which can vary tremendously across instructors, classes, 

schools, etc. because of the large degree of autonomy that teachers usually have in coming up 

with assignments, both in K-12 schooling and especially in university settings where this is often 

a matter of academic freedom.  However, it is once again the case that individual instructors, 

including those who teach the courses involved in this study, could adhere to best practices and 

should strive to do so.  More specifically, even if it is not required that they do so, Lecture 

instructors could potentially address these concerns by conducting their own reliability studies 

by, for instance, finding coefficient alpha (which is essentially the correlation between different 

items or problems on a given test) [16, p. 137-139] for their own quizzes and exams, or finding 
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the correlation between alternate forms of a typical quiz or exam [16, p. 195-197] (though these 

analyses may be rather cumbersome, especially for a Lecture instructor with a lot of other tasks 

to complete).  Furthermore, administrators should encourage them to do so, both informally and 

through direct incentives like including these practices in an instructor’s (properly compensated) 

workload and taking these practices into account when conducting teacher evaluations and 

making decisions about promotions. 

A similar line of reasoning can be applied to quiz or exam item bias (using the same 

definition of bias discussed above, except for individual items within a test as opposed to a test 

as a whole) where it is difficult to study item bias in general because any such bias would be 

unique to individual problems written by individual instructors for individual classes (though one 

could conduct general studies of item bias on common types of problems, which is certainly 

something that exists in introductory physics courses).  However, as with internal and alternate 

forms reliability, whenever possible it would be good practice for individual instructors to 

conduct their own analyses of item bias and to discard items accordingly, and they should be 

encouraged to do so [16, p. 483-499]. 

Regardless of any suggestions for future practices though, there is no way to tell what the 

internal or alternate forms reliability of the quizzes and exams that were used by the Lectures 

involved in this study during the period of study were, nor is there any way to tell how biased 

they were as a result of either individual item bias or more holistic factors like those described 

earlier.  And yet, such things certainly affect the reliability and validity of Lecture grades and 

thus, the accuracy and meaning of regression analyses that include Lecture grades as a variable 

(especially the outcome variable that is being used as a proxy for student understanding of 
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underlying concepts), so these unknown pieces of information present a definite limitation to this 

study that should not be ignored. 

Another important aspect of reliability to consider is inter-rater reliability, or the 

consistency of grades that different graders would assign to a particular individual assessment 

(for instance, student 12’s quiz number 3 or maybe even problem 2 of student 12’s quiz number 

3) [16, p. 210-212].  This aspect of reliability is possible to study in general and many such 

studies (focusing on K-12 teachers, though their conclusions likely extend to university 

instructors as well given the individualized nature of grading preferences) have been conducted, 

particularly during the early 1900s [13].  These studies largely showed a significant degree of 

variation between different teachers (who were also graders) of about 5 points on a 100 point 

scale, though a few studies disagreed with this conclusion [13].  The primary sources of variation 

were an inability to distinguish between assignments of similar “merit” (which can be 

conceptualized as random error), differences between teachers’ grading standards, and 

differences between the relative weights that teachers assigned to different aspects of an 

assignment [13].  It is not much of a stretch to imagine that bias could be a relevant factor here as 

well (even if it is not one that many prominent academics thought about during the early 20th 

century) since grader biases have the potential to show up in the grades that they assign, and 

different graders have different types and levels of bias.  This variability in the grades that 

different teachers who were involved in these studies would give to the same assignment 

eventually led to the development and implementation of letter grading in an attempt to reduce 

the effect of rater uncertainty on grades, which bolsters the argument put forward in “Levels and 

Outcome Variable” that letter grades (or their numerical equivalent) is an appropriate outcome 

variable to use in this study [13]. 
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However, the methodologies used in these early studies of inter-rater reliability had their 

flaws.  For example, teachers were often sent assignments to grade without specific grading 

criteria [13].  Because of this, some of the uncertainties in grading that were identified by these 

studies could be reduced through a range of improvements, from using better grading criteria that 

incorporates student input to more collaboration among teachers when it comes to grading 

practices and standards [13].  Wider adoption of standards-based grading as discussed previously 

could also help by parsing out the different components of grades and effectively standardizing 

the aforementioned weights [13]. 

Another practice that would help accomplish these goals would be the formation and 

implementation of better grading criteria in the form of more rigorous and standardized rubrics 

[18] and/or grading by category (where similar mistakes are grouped together into a category 

such that grades are effectively determined by one or more categories, which may or may not be 

mutually exclusive) [19].  There is already some evidence to suggest that categorical grading is 

more consistent (reliable) across different graders than more traditional grading methods, both 

for quantitative (calculations and diagrams) problems and especially for conceptual ones [9].  

While part of this may be due to the 4.5-point grade scale (which directly corresponds to letter 

grades) having fewer possible grades than the 10-point scale (which directly corresponds to 

percentage grades), it turns out that graders using the 10-point scale typically assign almost the 

same number of unique grades as graders using the 4.5-point scale [14].  Research also suggests 

that inter-rater reliability, both between different graders who are all using categorical grading, 

as well as between categorical grading and more traditional grading methods, is higher for 

quantitative questions than it is for conceptual ones [9].  However, as noted above, this research 

also suggests that conceptual questions are often better at gauging physics understanding (i.e. are 
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more valid for this construct) than quantitative questions, so both of these factors should be 

accounted for when creating physics assessments [9].  In general, grade determination is most 

difficult, and grader consistency is lowest, in situations that fall on the lower end of the grading 

scale but still involve substantial student work (as opposed to being blank or close to it) [9].  

Additional research would need to be done before making stronger assertions about the 

reliability of these techniques or their application to the courses that were part of this study, but 

they seem to have at least some promise of generalizability.  Either way though, the courses in 

this study already use rubrics and grade by category and each problem is usually graded by a 

single TA anyway, so while there is always room for improvement, inter-rater reliability is 

probably not a major limitation of this study. 

One last way to potentially increase the inter-rater reliability of individual assessments, at 

least in physics courses, would be to use assessments that require less subjective grading by, for 

example, employing multiple choice questions that approximate certain aspects of free-response 

questions.  While the two will never be equivalent and many physics instructors are skeptical of 

multiple choice physics problems, there are some preliminary results suggesting that it is 

possible for multiple choice questions to mimic their free-response counterparts under the right 

circumstances [20].  This is especially true if incorrect answers on the multiple choice version of 

a problem conform to common mistakes that students often make in the free-response version 

(the fact that common mistakes can be categorized in this way is also the basis for grading by 

category), and provided that different levels of partial credit are given to incorrect multiple 

choice answers in a similar manner to how partial credit would be assigned to similarly incorrect 

free-response answers [20].  This discussion leads into a much longer discussion about the 

relative merits of different assessment formats, but purely from the perspective of measurement 
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theory, it would require, at minimum, much more extensive research on alternate forms 

reliability between free response problems (and assessments, like quizzes or exams, which are 

composed of several problems) and their multiple choice counterparts by developing a large 

question bank which includes both versions of each question; administering them to a large, 

representative sample; and finding the correlation in scores between the two versions.  

Assessments formed from these questions would also have to be evaluated for internal reliability 

and free response problems would have to be checked for inter-rater reliability during the 

research portion of such a program in order to make sure that all of these items are measuring the 

same construct and that when the multiple choice version of a question is compared to the free 

response version, there is a well-defined and agreed upon free response (partial credit) score to 

use as a reference point.  Finally, the validity of such assessments would need to be studied to 

make sure they are fully evaluating all aspects of the desired underlying construct(s) (i.e. all 

aspects of physics knowledge and understanding that they are meant to evaluate). 

Taken together, all of the above implies that overall class grades are a reflection of a 

range of important traits that the application reviewers who most frequently use them are likely 

to be interested in (provided these reviewers actually care about evaluating applicable constructs 

rather than simply reproducing social hierarchies, intentionally or not), from academic 

achievement to communication skills to team work to effort and perseverance.  However, the 

degree to which different characteristics contribute to grades can differ quite substantially across 

different classes, instructors, graders, schools, etc. and a lot of people, likely including many 

application reviewers, do not realize this and instead believe that grades are purely a reflection of 

academic achievement, which at the moment is both not typically the case and also not 

necessarily desirable given the importance of various other student attributes.  Furthermore, it 
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must be acknowledged that even the achievement component of grades does not always reflect 

the full range of academic ability that one might expect them to and plenty of people are 

probably unaware of this as well.  False beliefs about the nature and interpretation of grades can 

therefore impact the decisions that are made based on them in a way that does not properly 

reflect their true meaning or appropriate uses, which is something that should be addressed by 

administrators, managers, politicians, and others who have power over relevant policies under 

the current system. 

In some cases, though, grades do largely reflect academic ability and not much else, and 

it would seem as if overall Lecture grades for the courses involved in this study are among these 

cases, meaning these grades are a fairly good proxy for physics understanding (whether or not 

the types of physics understanding that they reflect correspond to the types of material that is 

taught in DL or the content that instructors and others believe they reflect, which are separate 

questions) and are therefore a fairly good outcome variable to use in this study.  These Grades 

are clearly not perfect, though, and there are still some problems with using them in this way that 

future research will hopefully shed more light on.  Perhaps it will turn out that grades on certain 

individual assessments, like final exams, are better for this purpose, or that something entirely 

different from grades, like scores on the FCI or an analogous assessment, would be best, but in 

the meantime, overall Lecture Grades appear to be a relatively good approximation of student 

understanding. 
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Appendix C: Sequential HLM Model Equations in 

This Study 

For all of the models used in this study, i is an index labeling individual students (or 

really, observations, but this distinction has little practical meaning), j is an index labeling DLs, 

and k is an index labeling Lectures. 

Also note that these equations are written entirely in a level-by-level form, as opposed to 

a composite form, and refer to analyses involving data from the regular academic year (a few 

modifications would be needed to get the equations for analyses involving data from the 

summer, as noted and briefly discussed below). 

Null Model 

Level 1: 

Gradeijk = β0jk + εijk 

Level 2: 

β0jk = γ00k + u0jk 

Level 3: 

γ00k = π000 + ν00k 
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Individual Model 

Level 1: 

Gradeijk = β0jk + β1jk ∗ Maleijk + β2jk ∗ UnSijk + ∑ βmjk ∗ RaceandEthnicitymijk

16

m=3

+ ∑ βmjk ∗ USCitizenshipStatusmijk

22

m=17

+ β23jk ∗ Gradijk + β24jk ∗ Repeatijk

+ β25jk ∗ LecStartijk + β26jk ∗ GPAijk + β27jk ∗ Unitsijk + εijk 

Level 2: 

β0jk = γ00k + u0jk 

βmjk = γm0k  ∀m ∊ {1, . . . , 27} 

Level 3: 

γ00k = π000 + ν00k 

γm0k = πm00  ∀m ∊ {1, . . . , 27} 

Where RaceandEthnicity3 = AF, RaceandEthnicity4 = AI, . . . , RaceandEthnicity16 =

UnE, following the order they appear in “Level Choices and Predictor Variables” while skipping 

WH since this is the reference category for Race and Ethnicity in this study. 

Similarly, USCitizenshipStatus17 = PR, 

USCitizenshipStatus18 = NI, . . . , USCitizenshipStatus22 = UnC, following the order they 

appear in “Level Choices and Predictor Variables” while skipping Cit since this is the reference 

category for U.S. Citizenship Status in this study. 

Note that LecStart was included here because it is a level 1 predictor variable during the 

regular academic year, but during the summer it would not appear in this way and the last few 

terms in the Level 1 equation above would instead be: 
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β25jk ∗ GPAijk + β26jk ∗ Unitsijk + εijk 

On a related note, during the summer m ∊ {1, . . . , 26} 

DL Model 

Level 1: 

Gradeijk = β0jk + β1jk ∗ Maleijk + β2jk ∗ UnSijk + ∑ βmjk ∗ RaceandEthnicitymijk

16

m=3

+ ∑ βmjk ∗ USCitizenshipStatusmijk

22

m=17

+ β23jk ∗ Gradijk + β24jk ∗ Repeatijk

+ β25jk ∗ LecStartijk + β26jk ∗ GPAijk + β27jk ∗ Unitsijk + εijk 

Level 2: 

β0jk = γ00k + ∑ γ0nk ∗ DLSizenjk

6

n=1

+ ∑ γ0nk

14

n=7

∗ DLTimenjk + γ015k ∗ ROSjk + γ023k

∗ Mean_GPAjk + γ022k ∗ Mean_Unitsjk + γ020k ∗ Mean_Malejk + γ021k

∗ Mean_LecStartjk + u0jk 

βmjk = γm0k  ∀m ∊ {1, . . . , 27} 

Level 3: 

γ00k = π000 + ν00k 

γ0nk = π0n0  ∀n ∊ {1, . . . , 23} 

γm0k = πm00  ∀m ∊ {1, . . . , 27} 

Where DLSize1 = RlySm, DLSize2 = Sm, . . . , DLSize6 = RlyLg, following the order 

they appear in “Level Choices and Predictor Variables” while skipping Stand since this is the 

reference category for DL sizes in this study. 

Similarly, during the regular academic year DLTime7 = DL8, 
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DLTime8 = DL105, . . . , DLTime14 = DL1542, following the order they appear in “Level 

Choices and Predictor Variables” while skipping DL1417 since this is the reference category for 

DL start times during the regular academic year in this study. 

During the summer, the sum on DLTimenjk would only go to n = 12 and the 

corresponding DL Time variables would be DLTime7 = DL95, DLTime8 =

DL11, . . . , DLTime12 = DL1717, following the order they appear in “Level Choices and 

Predictor Variables” and Table 7 in “Analysis Format and Summary Data” while skipping 

DL1217 since this is the reference category for DL start times during the summer in this study.  

The coefficients in front of the terms that come after the DLTime terms would also be 

renumbered accordingly. 

On a related note, during the summer n ∊ {1, . . . , 21}.  Also, note that the notes about 

LecStart and m above apply here as well. 

Final Model 

Level 1: 

Gradeijk = β0jk + β1jk ∗ Maleijk + β2jk ∗ UnSijk + ∑ βmjk ∗ RaceandEthnicitymijk

16

m=3

+ ∑ βmjk ∗ USCitizenshipStatusmijk

22

m=17

+ β23jk ∗ Gradijk + β24jk ∗ Repeatijk

+ β25jk ∗ LecStartijk + β26jk ∗ GPAijk + β27jk ∗ Unitsijk + εijk 
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Level 2: 

β0jk = γ00k + ∑ γ0nk ∗ DLSizenjk

6

n=1

+ ∑ γ0nk

14

n=7

∗ DLTimenjk + γ015k ∗ ROSjk + γ023k

∗ Mean_GPAjk + γ022k ∗ Mean_Unitsjk + γ020k ∗ Mean_Malejk + γ021k

∗ Mean_LecStartjk + u0jk 

βmjk = γm0k  ∀m ∊ {1, . . . , 27} 

Level 3: 

γ00k = π000 + π001 ∗ LecSizek + ∑ π00p

3

p=2

∗ Termpk + ∑ π00q

42

q=4

∗ Instructorqk +  ν00k 

γ0nk = π0n0  ∀n ∊ {1, . . . , 23} 

γm0k = πm00  ∀m ∊ {1, . . . , 27} 

Where Instructor4 = Ins1, Instructor5 = Ins2, . . . , Instructor42 = Ins40, following a 

numerical order while skipping the Lecture instructor reference category for each analysis 

(which are listed at the end of “Regression Results and Variance Discussion”). 

During the regular academic year, Term2 = Winter for 7A but Fall for 7B and 7C while 

Term3 = Spring for 7A and 7B but Winter for 7C.  Note that predictor variables related to 

academic term do not appear in analyses involving data from the summer and thus, in such 

analyses the Instructorq variables (and corresponding coefficients) would be renumbered 

accordingly. 

Also note that the above notes about LecStart, m, DL start times, and n apply here as 

well. 

Lastly, note that the slope coefficients in this Final Model that are associated with the 

DLSizen categorical predictor variables (π0n0 for n ∊ {1, . . . , 6}), as well as (though to a lesser 
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degree) the slope coefficient that is associated with the LecSize continuous predictor variable 

(π001), are the primary focus of this study and will be used to help answer the main research 

question. 




