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ABSTRACT

In shock precursors populated by accelerated cosmic rays (CRs), the CR return current instability is believed to
significantly enhance the pre-shock perturbations of magnetic field. We have obtained fully nonlinear exact ideal
MHD solutions supported by the CR return current. The solutions occur as localized spikes of circularly polarized
Alfvén envelopes (solitons or breathers). As the conventional (undriven) solitons, the obtained magnetic spikes
propagate at a speed C proportional to their amplitude, C = CABmax/

√
2B0. The sufficiently strong solitons run

thus ahead of the main shock and stand in the precursor, being supported by the return current. This property of the
nonlinear solutions is strikingly different from the linear theory that predicts non-propagating (that is, convected
downstream) circularly polarized waves. The nonlinear solutions may come either in isolated pulses (solitons) or
in soliton-trains (cnoidal waves). The morphological similarity of such quasi-periodic soliton chains with recently
observed X-ray stripes in the Tycho supernova remnant (SNR) is briefly discussed. The magnetic field amplification
determined by the suggested saturation process is obtained as a function of decreasing SNR blast wave velocity
during its evolution from the ejecta dominated to the Sedov–Taylor stage.

Key words: acceleration of particles – cosmic rays – ISM: magnetic fields – ISM: supernova remnants –
magnetohydrodynamics (MHD) – shock waves

Online-only material: color figure

1. INTRODUCTION

The nonresonant cosmic-ray (CR) return current instability
(also termed as Bell’s instability) is expected to bootstrap
the acceleration of CR in shocks by enhancing the magnetic
field in the shock precursor. The most unstable is a circularly
polarized, field-aligned, aperiodic mode, similar to the internal
kink (Kruskal-Shafranov) mode in plasmas (see, e.g., Ryutov
et al. 2006). Regarding the CR acceleration in shocks, it was
studied by Achterberg (1983) and Shapiro et al. (1998).

Bell (2004) reawakened the interest in this instability by em-
phasizing its role in magnetic field amplification and suggested
its saturation due to magnetic tension. However, since the growth
rate decreases with the wavenumber only as

√
k, the magnetic

tension is insufficient to stabilize long waves. This opens the
door for a strong, δB � B0 field amplification. The caveat is
that the non-propagating long waves have limited (precursor-
crossing) time to grow. By contrast, the nonlinear solutions,
obtained in this Letter, can stand off ahead of the shock, thus
warranting the saturation.

Studies of the Bell’s mode saturation mechanisms are primar-
ily based on the magnetohydrodynamic (MHD) and particle-in-
cell simulations (Bell 2004; Pelletier et al. 2006; Vladimirov
et al. 2006; Reville et al. 2007; Niemiec et al. 2008; Zirakashvili
et al. 2008; Bykov et al. 2009; Luo & Melrose 2009; Riquelme &
Spitkovsky 2009; Stroman et al. 2009; Dieckmann et al. 2010).
As demonstrated in a three-dimensional (3D) MHD simulation
by Bell (2005; see also Niemiec et al. 2008), the saturation is
achieved when the Ampère force expels plasma and the helical
magnetic field radially, thus forming plasma cavities. The insta-
bility saturates only in 3D, or at least in quasi-two-dimensional
(2D) dynamics, perpendicular to the ambient field. However, the
fastest growing modes are field-aligned, i.e., initially one dimen-
sional (1D). Therefore, it is necessary to understand structures

that form at the 1D phase and particularly the nonlinear mech-
anisms of their saturation and propagation ahead of the shock.
These structures may in the main cease to grow by spreading
the saturated turbulence energy in k-space before the subsequent
3D dynamics kick in. Although this scenario may appear to be
at odds with many simulations, recent Chandra observations
of the Tycho supernova remnant (SNR), for example, indicate
the presence of quasi-1D structures (stripes), inconsistent with
the quasi-isotropic nonlinear dynamics observed in those sim-
ulations (Eriksen et al. 2011). Moreover, while being very use-
ful for our understanding of CR instabilities, simulations cover
only a tiny fraction of the dynamical range of typical SNR-
shock acceleration process and introduce artificial dissipation
in collisionless plasmas.

Alfvén waves usually saturate by modulational instability.
However, being a strong MHD aperiodic instability, Bell’s in-
stability hampers direct applications of standard methods, such
as the weak-turbulence theory (Sagdeev & Galeev 1969). The
latter typically deals with propagating and weakly interacting
eigen modes and, as a driver amplifies them, they cascade the
wave energy to the dissipation scale. The Bell’s linear mode
does not propagate and does not even exist without the driving
current. The lack of long-wave stabilization is seen from the
comparison of linear contributions to the square of the growth
rate of the driving current (∝ k) and magnetic tension (∝ k2,
Equation (12) below). A clue to saturation in a similar system of
the pressure-anisotropy-driven fire-hose instability is provided
by an exact solution due to Berezin & Sagdeev (1969). While
peak magnetic energy takes nearly all the instability free en-
ergy (B2

⊥/8π ∼ P‖ − P⊥ � B2
0/8π ), on the average only the

moderate field amplification B⊥ ∼ B0 is observed.
In this Letter, we present an exact solution of the

current-driven MHD equations (e.g., CR return current). It dif-
fers from the linearly growing solution in that it propagates
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with the velocity proportional to its (constant) amplitude and is
spatially localized.

2. BASIC EQUATIONS

The linear theory of Bell’s instability indicates that the fastest-
growing modes are field-aligned (Bell 2005). Therefore, we
consider 1D MHD equations in a CR shock precursor using a
coordinate system with the axis x along the field. The general
1D equations read

dρ

dt
+ ρ

∂

∂x
Ux = 0, (1)

dUx

dt
= − 1

ρ

∂

∂x

B2
⊥

8π
, (2)

dU⊥
dt

= B0

4πρ

∂B⊥
∂x

+
1

cρ
J × B⊥, (3)

dB⊥
dt

= B0
∂U⊥
∂x

− B⊥
∂Ux

∂x
. (4)

Here d/dt ≡ ∂/∂t + Ux∂/∂x, ρ is the gas density, Ux,B0 and
U⊥, B⊥ are the gas velocity and magnetic field components
along the field (x-direction) and in the (y, z)-plane, respectively.
The x-component of the magnetic field Bx = B0 = constant
because of ∇ · B = 0. In Equation (3), we have included the
plasma return current by representing the total plasma current as
Jtot = (c/4π )∇ ×B+J, where the term J = −JCR compensates
the CR current. Equation (3) implies that in our reference
frame J × B0 = 0. We neglect the thermal and CR pressure,
as Bell (2004) did. It should be noted, however, that the CR
pressure gradient drives an acoustic instability of the shock
precursor (also called Drury’s instability, Drury 1984; Dorfi
1984). Moreover, the acoustic instability grows faster than the
Bell’s instability for β = 8πP/B2

0 < 1 (see Malkov et al.
2010 where the studies of evolution, saturation, associated
particle transport, and cascading of magnetic energy are also
referenced).

Returning to Equations (1)–(4), we introduce a Lagrangian
mass coordinate ξ :

dξ = ρ

ρ0
(dx − Uxdt), (5)

where ρ0 is the background density. Considering scales shorter
than the precursor size, we treat ρ0 and the bulk plasma speed
Ux0 as coordinate independent (Ux0 = 0 in the plasma frame).

Next, we reduce Equations (1)–(4) to the following system
of two equations that describe the magnetic field and density
perturbations:

∂2

∂t2

B

ρ
− C2

A

∂2

∂ξ 2

B

ρ0
= i

cρ0
B0J

∂

∂ξ

B

ρ
(6)

∂2

∂t2

ρ2
0

ρ
+

∂2

∂ξ 2

|B|2
8π

= 0, (7)

where

B = By + iBz and C2
A = B2

0

4πρ0
.

The right-hand side of Equation (6) is the instability driver.
Without it, the equations describe the conventional MHD modes,

propagating at an angle ϑ = tan−1(|B̄|/B0) to the ambient
magnetic field. By choosing the averaged components By =
Bz = 0, we restrict our treatment to the parallel propagation
along the x-direction.

3. TRAVELING WAVE SOLUTIONS

We look for the solutions of the system given by Equations (6)
and (7) in the form of a traveling wave:

B = Bmaxv(ζ )e−iωt (8)

ρ = ρ(ζ ),

where ζ = ξ − Ct , C is the (constant) propagation speed of
the traveling wave, Bmax is the wave amplitude that we specify
in Equation (9) below, and ω = �ω is the wave frequency.
Note that for ω �= 0, the solution is not steady in any reference
frame. A spatially localized solution is usually called “breather”
as opposed to the soliton, customary to ω = 0 case. Integrating
then Equation (7) twice, we obtain

ρ0

ρ
= 1 − |B|2

B2
max

, (9)

where B2
max ≡ 8πρ0C

2. We have chosen the integration con-
stants in such a way that B → 0 for ρ → ρ0 (background
plasma) and B → Bmax for ρ → ∞ (flow stagnation point, if
present). This sets the interval for variation of v(ζ ) : 0 < v < 1.

Substituting B from Equation (8) and ρ from the last equation,
Equation (6) yields

∂2

∂ζ 2
(a−|v|2)v− iK

∂

∂ζ
(1−|v|2)v− ω2

C2
(1−|v|2)v = 0. (10)

Here, we have used the following notations

K = B0J

cρ0C2
− 2

ω

C
, a = 1 − 2

B2
0

B2
max

= 1 − C2
A

C2
, (11)

where C2
A = B2

0/4πρ0. The linear dispersion relation can be
recovered by letting v(ζ ) ∝ eikζ , v → 0 in Equation (10):

ω = kC ±
√

k2C2
A + B0Jk/cρ0. (12)

The arbitrary propagation speed C is a parameter of a Galilean
transformation (zero in the plasma frame), while the imaginary
part of ω is an invariant of such transformation, as it should be.
In the nonlinear treatment, the wave velocity with respect to the
plasma depends on the wave amplitude (nonlinear dispersion
relation). Meanwhile, the linear instability occurs in the long-
wave limit for −B2

0J 2/cρ0C
2
A < B0Jk < 0, for the polarization

chosen in Equation (6). It should be emphasized that only if
the quadratic B term is neglected in Equation (9), is there
no coupling to the density modulations in Equation (6). It is
interesting to note that in the strong nonlinear limit Bmax/B0 →
∞, Equation (10) degenerates into a linear equation for the
function v(1 − |v|2). This limit, however, cannot be understood
without the nonlinear solution.

To find such solution, we write

v(ζ ) = √
weiΘ, (13)
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where w(ζ ) � 0. Substituting v from Equation (13) into
Equation (10) and separating the imaginary part, for the phase
Θ we obtain the following equation:

dΘ
ds

= wP (w) + A

w(a − w)2
, (14)

where
P ≡ w2 − (3a + 1)w/2 + a.

We have introduced a new variable s = Kζ/2 and an integration
constant A. We may choose it by specifying the properties of
the solution sought. The regularity of Θ at w = 0 implies
A = 0. Next, taking the real part of Equation (10) and using
Equation (14) with A = 0, for w(s) we obtain

d2f

ds2
− w2P 2

f 3
+ 2

√
w(1 − w)

[
wP

f 2
− 2

ω2

C2K2

]
= 0, (15)

where we have denoted

f (w) ≡ √
w(a − w).

Equation (15) can be readily integrated by multiplying it by
df/ds. We choose the integration constant to select an isolated
pulse (soliton) solution of Equation (15), i.e., w → 0, as
s → ±∞. Then, the first integral reads

(
dw

ds

)2

− w2

(3w − a)2(a − w)2

4∑
n=0

Cnw
n = 0, (16)

where
C0 = 4a2(aμ2 − 1)
C1 = 2a[2(3 + a) − aμ2(7 + a)]
C2 = 8μ2a(a + 2) − a2 − 14a − 9
C3 = 2[2(3 + a) − μ2(3 + 5a)]
C4 = 4(μ2 − 1)

with

μ2 ≡ 4ω2/K2C2 =
(

1 − B0J

2cρ0Cω

)−2

.

A useful analogy between nonlinear waves and nonlinear
oscillators (e.g., Sagdeev 1966) suggests interpreting the first
term (Equation (16)) as kinetic and the second term as potential
energy. The “oscillator’s coordinate” w > 0, as a function of
“time” s, leaves w = 0+ at s = −∞ and returns there at
s = +∞. Periodic solutions (cnoidal waves) can also be easily
found by changing the integration constant.

The amplitude w0(a, μ) of the localized solution (soliton)
is obviously determined by the smallest positive root of the
polynomial in Equation (16), so that the “oscillator” bounces
between w = 0 and w = w0. In the simplest case of a small
amplitude solution

w0 ≈ −C0/C1 � a < 1

(where C0 > 0 and C1 < 0), the solution has a classical soliton
profile:

w(s) = w0

cosh2

(√
C0

2a2
s

) . (17)

Apart from the condition aμ2 > 1 (to ensure w0 > 0), i.e.,

1 −
√

1 − C2
A/C2 <

B0J

2cρ0ωC
< 1 +

√
1 − C2

A/C2

and the technical restriction aμ2 − 1 � 1 (to neglect the
n > 1 terms in Equation (16)), this solution imposes no further
constraints on ω and C. However, it has a very strong amplitude
limitation, aμ2 − 1 � 1 (virtually a wave packet of linear
waves). We are interested in an opposite case of highly super-
Alfvénic solitons that are not convected rapidly with the flow
into the subshock and may stay ahead of it, when C � CA.

A relation between ω and C (nonlinear dispersion relation)
arises from the extension of the above solution to larger w0.
Clearly, we have to pass the point w = a/3 smoothly which
requires a double root of the polynomial in Equation (16) at
w = a/3:

4∑
n=0

Cn

(a

3

)n

=
4∑

n=1

nCn

(a

3

)n−1
= 0.

Interestingly, the both conditions are met simultaneously as soon
as the following dispersion relation is satisfied:

aμ2 = 9 − a

8
. (18)

Recalling that the small amplitude soliton w0 � 1 branches off
from the trivial solution at the threshold aμ2 = 1, in the case of
CA � C, i.e., a ≈ 1, we may accept Equation (18) to be valid
in the entire parameter range aμ2 > 1.

Let us rewrite the above dispersion relation as follows:

ω = kJ C

M2
A

(
1 ±

√(
1 − M−2

A

)/(
1 + 1/8M2

A

)) ,

where we have defined the instability wavenumber (see
Equation (12)) as kJ = 2πJ/cB0. Strong solitons with MA ≡
C/CA � 1 have either high or low frequency: ω = (16/9)kJ C,
ω = kJ C/2M2

A. The spatial scale of the solitons is given by its
“wavenumber” K, Equation (11), Figure 1:

K = ±2kJ

M2
A

√(
1 − M−2

A

)/(
1 + 1/8M2

A

)
1 ±

√(
1 − M−2

A

)/(
1 + 1/8M2

A

) . (19)

Both solutions disappear (spread to infinity) in the limit J → 0,
although they have disparate scales, particularly for MA � 1.
Therefore, the external current is essential and there is no
transition to conventional simple wave MHD solutions for the
vanishing CR current.

To obtain the spatial structure of the above solutions, we
substitute Equation (18) into Equation (16). The latter takes the
following simple form:(

dw

ds

)2

= 1 − a

2a

w2

(a − w)2
Q2(w), (20)

where
Q2 ≡ w2 − 2hw + a; h = (a + 3)/4.

Equation (20) can be reduced to a quadrature:

s (w) =
√

2a

1 − a

[
cosh−1 h − w√

h2 − a
+

√
aR

]
, (21)

3
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MA

1 2 3 4 5

K
/k

J

-3

-2

-1

0

1

Figure 1. Dispersive properties of the two types of solitons: the short scale
(lower branch) and the long scale (upper brunch). The soliton wavenumber K
is shown in the units of kJ = 2πJ/cB0, as a function of MA = C/CA. For the
parameter values of interest, the CR current-carrying particles have gyroradii
rgkJ ∼ 103 (Bell 2004) which must also be larger than the soliton scale K−1,
Krg � 1 (to justify the fixed J approximation). Obviously, this restriction
(schematically shown by shaded area near abscissa) affects only the long-wave
soliton and translates into M2

A < kJrg requirement (see also Section 5).

s
-20 -10 0 10 20

B
x/

B
m

ax

-1.0

-0.5

0.0

0.5

1.0

Figure 2. Bx-component of the soliton solution as a function of dimensionless
coordinate s = Kζ/2 in units of Bmax (B2

max ≡ 8πρ0C
2): Bx/Bmax =√

w cos(Θ) shown with the solid line and the amplitude envelope, ±√
w (dashed

line). The soliton Mach number MA = C/CA = 3 corresponds to the amplitude
parameter a = 1 − M−2

A = 8/9.

where

R = ln

√
a + w − Q√
a − w + Q

− ln

√
a − √

h2 − a + h√
a +

√
h2 − a − h

.

Using Equations (14) and (20), the solution for the phase Θ(w)
can be reduced to another quadrature

Θ =
√

2a

1 − a

[
cosh−1 h − w√

h2 − a
+ R/

√
a

]

− 2

[
tan−1

(
Q − w + a√
a (1 − a) /2

)
− tan−1

(√
h2 − a − h + a√
a (1 − a) /2

)]
.

(22)

The Bx-component of the solitary solution is shown in
Figure 2 (the e−iωt -factor omitted). The wave packet in the
compressed area becomes more oscillatory, as may also be seen

s
-20 -10 0 10 20

Θ

-30

-20

-10

0

10

20

30

w
1/

2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Phase Θ as a function of coordinate s, shown with the solid line. The
amplitude of the soliton is shown with the dashed line.

from Figure 3, which shows the soliton phase Θ as a function of
dimensionless coordinate s. The local dimensionless wavenum-
ber stays approximately constant (dΘ/ds ≈ 1), apart from the
above phase steepening near the maximum amplitude, where
dΘ/ds ≈ 2.

4. MAXIMUM MAGNETIC FIELD

The isolated solitons obtained in this Letter belong to a
one-parameter family; the amplitude Bmax or Mach number
MA = Bmax/

√
2B0 can be used as such a parameter. In a CR

shock precursor, the soliton scale may be determined by the scale
of seed waves for the subsequent nonresonant instability. The
seed waves may be resonantly excited upstream of the strong
CR current zone by the high-energy CRs. Then, K ∼ r−1

g (p∗),
where rg is the gyroradius of the seed-generating CRs
of momentum p = p∗. This amounts to M2

A = kJ rg(p∗)
for the upper (long-wave, Figure 1) soliton branch in Equa-
tion (19). Note that p∗ may be � pmax due to a poor CR
confinement in the range p∗ < p < pmax (Malkov & Diamond
2006), so that the Krg � 1 requirement, to justify the formal
JCR = −J ≈ constant assumption, is still met for p > p∗.

If the CR current is sufficiently strong, kJ rg(p∗) � 1 and
only the upper-sign soliton in Equation (19) and Figure 1 can
accommodate the requirement K ∼ r−1

g (p∗) for MA � 1. Then,
the maximum magnetic field for a given soliton can be written
as B2

max/B
2
0 = 2M2

A ≈ 2kJ rg(p∗), or

B2
max = 4πVsnCRp∗, (23)

where nCR is the CR density.
The scaling of CR-enhanced magnetic energy with the

ambient density ρ and shock velocity Vs is debated in the
literature. Bell (2004) suggested B2/ρ ∝ V 3

s , whereas Völk
et al. (2005) indicate that B2/ρ ∝ V 2

s . The difference between
the two scalings is whether a fraction of mechanical energy
flux or momentum flux goes into magnetic energy. By contrast,
Equation (23) constitutes the conversion of CR energy flux into
magnetic energy. Vink (2008) summarizes the information about
the magnetic field from a number of SNR, with the two phe-
nomenological scalings superimposed, Figure 4. Note that Bmax
in Equation (23) coincides with the condition of magnetiza-
tion (trapping by the wave) of the current-carrying particles
kJ (Bmax)rg(p∗, Bmax) = 1/2, which is also (formally) similar to
the Bell’s phenomenological condition of balancing the Ampère
force and the magnetic tension for the instability saturation.

4
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Figure 4. Ratio of the magnetic field energy to ambient density ρ0 as a function
of shock velocity Vs adopted from (Vink 2008; points with error bars). The blue
dotted line is the scaling from Bell (2004), while the red dashed line is that of
Völk et al. (2005), both also taken from the Vink’s compilation. An example
of calculations, described in Section 4, is shown with the green line. The field
energy declines beyond Vs ≈ 2.7 × 104 to vanish at V0 ≈ 9 × 104 km s−1 (not
shown in the plot). At lower Vs, where the shock acceleration is inefficient, this
dependence breaks down and should transition to a low-efficiency acceleration
regime in a bistable fashion (Drury & Voelk 1981; Malkov 1997; schematically
shown with the magenta dotted line).

(A color version of this figure is available in the online journal.)

However, the saturation mechanism behind Equation (23) is
different in that Bmax is only the peak magnetic field. The
magnetic energy density would be smaller by a soliton filling
factor (cf. Berezin & Sagdeev 1969). More importantly, the ef-
ficiency of CR acceleration and subsequent conversion of their
energy into magnetic field should depend on J, Vs, and other
acceleration parameters which almost certainly rules out the
single power-law relation between B2/ρ and Vs.

Therefore, we obtain such relation in a different way, which
we outline below and will describe in detail elsewhere. Consider
a nominal SNR with the shock speed Vs slowing down from
an initial Vs = V0 = 1.34 × VST to Vs ≈ 0.1 × V0 (i.e.,
well into the Sedov–Taylor phase), where VST = 10,400 ×
E

1/2
51 (Me/M�)1/2 km s−1 (McKee & Truelove 1995). Here E51

is the explosion energy in 1051 erg and Me is the ejecta mass.
During its evolution, the SNR should follow the points sampled
from a set of supposedly similar remnants in Figure 4. Using
the Vs(t) dependence from McKee & Truelove (1995) and the
momentum p∗ ∼ pmax(t) in the nonlinear acceleration regime
from Malkov & Drury (2001, Equation (7.45)), we express p∗
in Equation (23) as a function of Vs. Next, we obtain nCR from
Equation (15) in Malkov (1997) for the evolving subshock
strength with the particle injection rate held approximately
constant in the efficient acceleration regime (see Equation (37) in
the same reference). Using these results, we finally obtain from
Equation (23) an expression for B2

max/ρ, again, as a function
of Vs. A preliminary example of such calculation is shown in
Figure 4 with the green line. In an intermediate range of Vs, the
scaling is ∝ B2

m/ρ ∝ V
11/4

s (close to the Bell’s scaling) but it
rolls over to turn to zero at Vs = V0 ≈ 9 × 104 km s−1. This
is because the magnetic field generation is pinned to the CRs
(Equation (23)) which are not yet there at Vs = V0, i.e., at t = 0.
The other strong deviation from a power law should occur at
lower Vs where acceleration bifurcates into an inefficient (test
particle) regime through a characteristic S-curve (Malkov 1997).

5. DISCUSSION

The purpose of this Letter was to understand the nonlinear
evolution of the nonresonant current-driven instability by study-
ing saturated nonlinear waves (solitons). They (or their shock
counterparts, if dissipation is efficient) may comprise the asymp-
totic state of the system. Such a scenario is supported by simpler
(but fully integrable, e.g., Kaup & Newell 1978) weakly nonlin-
ear MHD models, such as the derivative nonlinear Schroedinger
equation (see also Mjolhus & Hada 1997 for a review). In such
models, arbitrary initial conditions evolve into an asymptotic
state of quasi-independently propagating solitons, similar to
those found in the present Letter. The difference, however, is
that our system is current driven and its solutions have no MHD
analogues.

The relevant question of soliton stability should be addressed
in 2D–3D setting. The 2D–3D instability of a 1D soliton could
comprise a wave front self-focusing (Passot & Sulem 2003) and
thus elucidate the subsequent 3D structures. Such studies are
beyond the scope of this letter, but a qualitative stability criterion
may be suggested by the nonlinear dispersion relation given by
Equation (19) and Figure 1. The parts of the dispersion curves
with ∂|K|/∂C < 0 (where K and C ∝ MA are the wavenumber
and propagation speed) correspond to the solitons with negative
dispersion and should be stable. The oft-used justification of this
criterion is that a nonlinear steepening of the soliton’s leading
edge generates higher wavenumber modes and they should not
run faster than the soliton itself (negative dispersion is thus
required). It should also be noted here that, once the soliton
solutions of the driven system are obtained, they can also be
arranged in a quasi-periodic or even chaotic soliton lattice. By
adding a weak dissipation, the leading edges of these solitons
can be converted into shock fronts (Sagdeev 1966) which usually
increases the dissipation of the driver energy, thus reducing the
saturation amplitude.

There exists upper bound on Bmax since solitons with C/CA =
Bmax/

√
2B0 > Vs/CA outrun the shock and cannot be sustained

by the return current (soliton standing in the flow requires
C = Vs). However, as transients, they may promote particle
acceleration far upstream to synergistically supply themselves
with the CR return current. This might be a plausible scenario
for much-discussed CR acceleration bootstrap (e.g., Blandford
& Funk 2007). In addition, the solitons may lead to shock refor-
mation by initiating a new shock upstream. A seemingly analo-
gous phenomenon was recently observed in PIC simulations by
Gargaté & Spitkovsky (2012). Furthermore, strong solitons run-
ning ahead of the shock may become visible in X-rays as quasi-
periodic stripes, similar to those recently observed in some parts
of the Tycho SNR by Chandra (Eriksen et al. 2011). The iden-
tification of the stripe spacing with the maximum gyroradius of
accelerated particles is consistent also with our determination
of the soliton spacing in Section 4. The scale is set by the high-
est energy particles ahead of the field amplification zone. The
soliton wave length, however, should be noticeably shorter than
the distance between them. At the same time, similar structures
may result from the nonlinear evolution of the CR-pressure-
driven acoustic instability (Malkov & Diamond 2009), or shock
front rippling (Mond & O’C. Drury 1998). Both the Drury’s
and Bells’s instabilities (after adding dissipation to the soli-
ton solution) should result in considerably shorter nonlinear
shock structures than the conventional CR precursor of the stan-
dard Bohm diffusion model (Malkov et al. 2010). The magnetic
field enhancement is likely to be weaker in the acoustic case, if
it is merely due to the individual shock compression in the
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instability-generated shock-train, without subsequent vortic-
ity (and thus magnetic field) generation by interacting shocks
(Samtaney & Zabusky 1994). Alternative approaches to the
explanation of the recent Chandra observations (Eriksen et al.
2011) have also been suggested (Bykov et al. 2011; Rakowski
et al. 2011). In conclusion, the proposed mechanism of the
current-driven instability saturation is also interesting in that it
introduces such fascinating and ubiquitous objects as solitons
(e.g., Ablowitz & Segur 1981) to SNR physics. However, the
dominant instability should be selected on a case-by-case basis
by considering the alternatives in a given shock environment.

Support by the Department of Energy, grant No. DE-FG02-
04ER54738 is gratefully acknowledged.
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