Lawrence Berkeley National Laboratory

LBL Publications

Title

Thermal effects on geologic carbon storage

Permalink

https://escholarship.org/uc/item/6fg5t8xg

Authors

Vilarrasa, Victor Rutqvist, Jonny

Publication Date 2017-02-01

DOI

10.1016/j.earscirev.2016.12.011

Peer reviewed

1	Thermal effects on geologic carbon storage
2	Victor Vilarrasa ^{1,2*} and Jonny Rutqvist ³
3	¹ Institute of Environmental Assessment and Water Research (IDAEA), Spanish National
4	Research Council (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
5	² Associated Unit: Hydrogeology Group (UPC-CSIC)
6	³ Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Rd, Berkeley, CA 94720,
7	USA
8	
9	
10	Accepted for publication in Earth-Sciences Reviews
11	December 15, 2016
12	https://doi.org/10.1016/j.earscirev.2016.12.011
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	*Corresponding author: victor.vilarrasa@upc.edu

24 ABSTRACT

25 One of the most promising ways to significantly reduce greenhouse gases emissions, while 26 carbon-free energy sources are developed, is Carbon Capture and Storage (CCS). Non-27 isothermal effects play a major role in all stages of CCS. In this paper, we review the literature 28 on thermal effects related to CCS, which is receiving an increasing interest as a result of the 29 awareness that the comprehension of non-isothermal processes is crucial for a successful 30 deployment of CCS projects. We start by reviewing CO₂ transport, which connects the regions 31 where CO_2 is captured with suitable geostorage sites. The optimal conditions for CO_2 32 transport, both onshore (through pipelines) and offshore (through pipelines or ships), are such 33 that CO₂ stays in liquid state. To minimize costs, CO₂ should ideally be injected at the wellhead in similar pressure and temperature conditions as it is delivered by transport. To 34 35 optimize the injection conditions, coupled wellbore and reservoir simulators that solve the 36 strongly non-linear problem of CO₂ pressure, temperature and density within the wellbore and 37 non-isothermal two-phase flow within the storage formation have been developed. CO₂ in its 38 way down the injection well heats up due to compression and friction at a lower rate than the 39 geothermal gradient, and thus, reaches the storage formation at a lower temperature than that 40 of the rock. Inside the storage formation, CO₂ injection induces temperature changes due to 41 the advection of the cool injected CO₂, the Joule-Thomson cooling effect, endothermic water 42 vaporization and exothermic CO₂ dissolution. These thermal effects lead to thermo-hydro-43 mechanical-chemical coupled processes with non-trivial interpretations. These coupled 44 processes also play a relevant role in "Utilization" options that may provide an added value to 45 the injected CO₂, such as Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane 46 (ECBM) and geothermal energy extraction combined with CO₂ storage. If the injected CO₂ 47 leaks through faults, the caprock or wellbores, strong cooling will occur due to the expansion 48 of CO₂ as pressure decreases with depth. Finally, we conclude by identifying research gaps
49 and challenges of thermal effects related to CCS.

50

Keywords: CO₂ transport; injection schemes; CO₂ storage; thermo-hydro-mechanicalchemical couplings; induced microseismicity; caprock integrity; well integrity; CO₂ leakage

54

55 **1. INTRODUCTION**

56 Huge amounts of greenhouse gases, especially carbon dioxide (CO₂), are emitted to the 57 atmosphere each year (around 36 Gt were emitted in 2014) as a result of burning fossil fuels 58 for energy production (Le Quéré et al., 2016). These greenhouse gases retain the heat coming from the sun, which alters atmospheric circulations and therefore, the climate. To mitigate the 59 60 negative effects of anthropogenic climate change, we should act quickly to significantly reduce these emissions. One of the most promising ways to reduce greenhouse gases 61 62 emissions, at least in the short-term, while carbon-free energy sources are developed, is 63 Carbon Capture and Storage (CCS) (IPCC, 2005). CCS consists in capturing CO₂ from the 64 main point sources (e.g., steel and cement industries and coal and gas-fired power plants), 65 transport the captured CO₂ to the injection wells and store it in deep geological formations.

66 CCS implies compression and expansion processes that cause pressure and temperature of 67 CO₂ to vary over a wide range of values. During these variations, CO₂ may be present in 68 gaseous, liquid or supercritical state. CO₂ properties, i.e., density, viscosity, specific heat 69 capacity and enthalpy (Span and Wagner, 1996; Pruess and Garcia, 2002), as well as its 70 solubility on water and brine (Duan and Sun, 2003; Harvey, 1996; Koschel et al., 2006) are 71 strongly dependent on pressure and temperature. To reproduce these properties, the cubic 72 equation of state of Redlich and Kwong (1949), with parameters adapted for CO₂ (Spycher et al., 2003, 2005), is usually used for its simplicity and because good predictions are obtained
(McPherson et al., 2008). Nevertheless, the equation of state of Span and Wagner (1996) is
the most accurate one, but at the expenses of a high computational cost derived from the high
complexity of its algorithm (Böttcher et al., 2012). Regardless of the equation of state that is
considered, the strong dependency of CO₂ properties on pressure and temperature complicates
the processes that occur in CCS.

Non-isothermal effects play a major role in all stages of CCS (Figure 1). However, to facilitate the understanding and solution of CCS processes, isothermal conditions have been usually considered. As a result, most of the knowledge gained on the processes involved in CCS neglects thermal effects. Nevertheless, the awareness that the comprehension of nonisothermal processes is crucial for a successful deployment of CCS projects has recently motivated an increasing interest to understand thermal effects.

85

86 Figure 1. Schematic representation of thermal effects on CCS.

87 In this review, we present the state-of-the-art of the thermal effects related to CO_2 88 transport, injection, storage and leakage. First, we detail CO_2 transport both onshore and 89 offshore. Next, we present CO_2 injection options and how CO_2 properties change inside the 90 injection well. Then, we focus on CO₂ storage in deep geological formations, looking at 91 thermo-mechanical and thermo-chemical coupled processes and to options of utilization that 92 provide an added value to the injected CO₂. Furthermore, we elaborate on potential CO₂ 93 leakage through wells and faults. Finally, we conclude by identifying the existing research 94 gaps and challenges related to thermal effects on geologic carbon storage.

95

96 **2.** CO_2 **TRANSPORT**

97 While CO₂ is mainly emitted onshore, both onshore and offshore geological formations 98 may be suitable for storage. In general, CO₂ will have to be transported from the sources 99 where it will be captured up to the storage sites. The optimum CO₂ transport options differ for 100 onshore and offshore transportation. While for onshore transportation pipelines are the only 101 feasible option (Svensson et al., 2004), both pipelines and ships can provide good solutions 102 for offshore transportation. Though other options exist for onshore transportation, such as 103 motor carriers and railways, they are not competitive because they are very expensive and of 104 limited capacity (Skovholt, 1993). As for offshore transportation, ships are more flexible than 105 pipelines, but require intermediate storage facilities, such as steel tanks or underground 106 caverns, at harbors. On the other hand, pipelines require fewer logistics than ships and provide 107 a continuous flow rate, but they imply building a new infrastructure on the seabed (Svensson et al., 2004). 108

Optimal marine transport conditions are obtained in semi-pressurized vessels of around 20,000 m³ in liquid conditions close to the triple point, at 0.65 MPa and -52 °C (Aspelund et al., 2006). These conditions yield CO_2 densities around 1,100 kg/m³, which optimize the transport in terms of volume. The most expensive process for ship transport is the liquefaction and gas conditioning previous to filling the ships. But costs could be reduced by using the liquid conditions of onshore pipelines when arriving at harbors for loading the ships. The efficiency of the system could be improved further by recovering CO_2 cold energy with a Rankine cycle during ship delivery, in which CO_2 has to be heated up to avoid injectivity issues due to ice or hydrate formation in the storage formation (You et al., 2014).

In pipelines, the best way to transport CO₂ is also in liquid state (McCoy and Rubin, 2008). 118 119 Transport in gas phase is non-economical because of its low density, which requires large 120 diameter pipes and implies high pressure drops. Pressure drop depends on the flow rate and 121 the geometric characteristics of the pipe, i.e., diameter, length, elevation gain. Transport of 122 supercritical CO₂ is preferable to transport of gaseous CO₂, but still, it induces a higher 123 pressure drop than in liquid conditions, causing a decrease in density and thus, an increase in 124 velocity, which, in turn, enhances the pressure drop. This enhanced pressure drop would lead 125 to shorter distances between booster stations. Booster stations should be placed such that twophase flow is avoided within the pipeline. Actually, operation of pipelines onshore may 126 127 present difficulties in hilly terrain because pressure will decrease at the top of the hills, where CO₂ may turn into gas, giving rise to a two-phase flow, which is complicated to handle 128 129 (Skovholt, 1993). Thus, transport of CO₂ is preferable in liquid state rather than in 130 supercritical conditions due to the lower compressibility and higher density of liquid CO₂. 131 Though liquid CO₂ has a higher viscosity than supercritical CO₂ (around 30%), CO₂ transport 132 in liquid conditions permits using smaller pipe diameters, leading to lower pressure drops and 133 thus, a more efficient transport (McCoy and Rubin, 2008; Nimtz et al., 2010).

To maintain liquid conditions, burying CO₂ pipelines can help controlling operation pressure and temperature conditions because underground temperature is more stable than surface temperature. In warm climates, where ground surface temperature can reach 65 °C at noon, the temperature 1 m underground remains below 30 °C (Zhang et al., 2006). Despite the higher installation costs derived from burying pipelines, the higher energy efficiency will offset the initial investment because operation costs are around 15 % lower for liquid than for supercritical CO₂ transport (Zhang et al., 2006). Alternatively, in warm climates, insulating the pipeline and cooling the CO₂ to maintain liquid conditions may prove economical because of the lower pressure drop and therefore, lower number of booster stations for repressurizing CO₂ (Zhang et al., 2006). Furthermore, if CO₂ remains in liquid state, pumps, which are easier to operate than compressors, can be used to boost pressure. But apart from operational and economic reasons, pipelines will likely be buried for environmental, security and safety reasons.

CO₂ is not toxic, but it can be fatal if its concentration exceeds 10 % by volume because 147 148 CO₂ produces asphyxia (Baxter et al., 1999). CO₂ could accumulate in depressions if there 149 were a CO₂ leakage in a pipeline because CO₂ is heavier than air. Since CO₂ is colorless and odorless, humans and animals cannot detect CO₂ leakage and accumulation. Adding 150 mercaptans, which people can easily identify because they are already added to natural gas, 151 152 would be very beneficial because people could quickly react in case of CO₂ leakage (Gale and 153 Davison, 2004). Nevertheless, an advisable practice would be to construct pipelines avoiding 154 human settlements and to place CO₂ detectors along pipelines.

Other safety issues are related to the depressurization of a pipeline, either because it fails or due to planned maintenance. In such case, CO_2 will experience a phase change (from liquid to gas) which will cause a strong cooling. Such cooling should be taken into account in pipeline design to avoid brittle failure. This cooling may be limited by adding impurities to CO_2 . For example, Munkejord et al. (2010) found that, for CO_2 mixtures with CH_4 , the cooling due to evaporation becomes lower as the CO_2 content decreases. However, impurities may lead to enhanced pipe corrosion.

162 The construction of pipelines for CO_2 transport should be planned carefully because scale 163 effects are relevant. For example, large diameter pipelines are much cheaper to operate than 164 several small pipelines with equivalent capacity. Thus, it is advisable to do a strategic planning to connect the source points where CO_2 will be captured with the storage regions using a single large pipeline, rather than several smaller pipelines. A significant experience with CO_2 pipelines exists in the USA, where an extensive CO_2 pipeline infrastructure (several thousands of km) already exists, mainly carrying naturally occurring CO_2 for enhanced oil recovery (EOR). These pipelines have proven to be safe in terms of potential for CO_2 release and thus, they do not represent a serious public hazard (Gale and Davison, 2004).

171

172 **3. INJECTION OPTIONS**

173 Since CO₂ will remain in supercritical conditions at the pressure and temperature 174 conditions of storage formations, it is usually assumed that CO₂ will be injected in supercritical state. However, CO₂ needs to be transported from the source points, which are 175 usually large industries or power plants, to the injection wells, which will likely be separated 176 177 by several tens or even hundreds of km. CO₂ transport will be done through pipelines if it is onshore or through ships or pipelines if it is offshore. The optimum conditions for 178 179 transporting CO₂ is in liquid conditions both for pipelines and ships (see Section 2). Thus, 180 CO₂ will reach the wellhead in liquid state. For this reason, injecting in liquid state seems the 181 most reasonable option.

182 Liquid CO₂ injection has some advantages. Silva et al. (2011), who proposed to inject CO₂ 183 directly in liquid state, showed that liquid CO₂ injection is an energetically efficient injection 184 concept. For the pressure and temperature ranges typical of injection wells, the density of 185 liquid CO₂, which may reach values close to those of water density (in the order of 750 to 950 kg/m³), is significantly higher than that of supercritical CO_2 (in the order of 250 to 700 kg/m³) 186 187 (Figure 2). Thus, just by gravity, liquid CO₂ flows downwards more easily, which implies that a lower compression energy is required to inject CO₂ (Vilarrasa et al., 2013). However, liquid 188 CO₂ injection has been feared because of its cold temperature, which induces thermal 189

190 contraction and associated stress reduction that may cause fracture instability in the storage191 formation, the caprock, and/or the wellbore.

Thermal stresses induced by temperature difference between the wellbore and the surrounding rock may lead to casing failure (Teodoriu, 2015). These stresses may become large if the temperature change in the wellbore is large and fast (Kaldal et al., 2015). Furthermore, if thermal cycling occurs as a result of alternating periods of CO_2 injection (cooling) with shut-downs (heating), radial fractures or debonding of the cement may occur, which could lead to CO_2 leakage (Roy et al., 2016). To minimize the risk of damaging the cement, the use of non-shrinking cements is recommendable (McCulloch et al., 2003).

199 Apart from the cold temperature, the high pressure of liquid CO_2 has also been suspected 200 to potentially induce stability issues in the storage formation and caprock. Nimtz et al. (2010) argued that liquid CO₂ might fracture the storage formation and caprock due to the high 201 202 overpressure that liquid injection would induce. However, Nimtz et al. (2010) did not couple 203 the pressure at the bottom of the injection well resulting from CO_2 injection along the 204 wellbore with the pressure at the injection well induced by CO₂ injection into the reservoir. 205 Actually, when coupling the wellbore simulator with the reservoir simulator, it has been 206 shown that the injection of 1 Mt/yr of CO₂ in a 100 m-thick reservoir with a permeability of 10⁻¹³ m² can be done maintaining liquid conditions along the wellbore and without inducing a 207 208 large overpressure in the reservoir (Vilarrasa et al., 2013). Thus, excessive overpressure is not 209 necessarily an issue of liquid CO₂ injection. Nevertheless, thermal effects may still be a 210 concern (see Section 5b). But to avoid cooling in the reservoir, and thus, inject in supercritical conditions, CO₂ would need to be heated. At Ketzin, Germany, CO₂ was heated before 211 212 injecting it, leading to a temperature at the bottom of the injection well slightly higher than that of the reservoir (Liebscher et al., 2013). The CO₂ injection rates at the pilot test site of 213 214 Ketzin were lower than 1 kg/s, so the energetic cost of heating was not excessive. However, at industrial scale, heating would dramatically increase the energetic cost of injection in CO₂
storage projects (Möller et al., 2014; Goodarzi et al., 2015). Goodarzi et al. (2015) estimated
the cost of heating to avoid cooling the reservoir in 0.75 \$/m³, which for an injection of 1
Mt/yr would represent a heating cost higher than 1 million dollars per year.

Pipelines can also be used for transporting CO_2 offshore. In this case, the pipeline lies on the seabed and CO_2 thermally equilibrates with the seawater. Seawater is usually below the CO_2 critical temperature, i.e., 31.04 °C, and thus, liquid conditions will be easily maintained within the pipeline. The transported liquid CO_2 will generally be injected directly into the injection well, as happened at Snøhvit, Norway (Hansen et al., 2013). At Snøhvit, the water of the North Sea is cold (about 4 °C at the seabed), so the compression costs for injecting CO_2 are minimized because CO_2 has a high density at these temperatures.

226 When offshore transport is done through ships, CO₂ stays at -52 °C. If CO₂ injection is 227 performed just by compressing CO₂ as it arrives in the ship, CO₂ would reach the storage formation at a temperature well below that of hydrate formation (around 12 °C) and freezing 228 229 (around 0 °C) temperatures, which would block the pores surrounding the injection well 230 (Krogh et al., 2012). To heat up CO₂ before injection, seawater may be used (Aspelund et al., 231 2006). However, using seawater to heat CO_2 implies losing energy that could otherwise be 232 recovered. For example, cold energy is already recovered from liquefied natural gas (Shi and 233 Che, 2009; Choi et al., 2013; Wang et al., 2013) and it can also be recovered for the cold CO₂ 234 transported in ships. You et al. (2014) proposed to use a Rankine cycle between the CO_2 235 transported in ships and the injection conditions to produce electricity. They found that using ammonia as the working fluid in the Rankine cycle yielded the best performance in terms of 236 237 power generation. The energy that can potentially be recovered in the heating process from ship transport conditions to injection conditions is estimated to be 33.6.10⁶ kWh for a mass 238 239 flow rate of 1 Mt/yr. The energy that could be effectively recovered by the Rankine cycle is about $28.8 \cdot 10^6$ kWh for a mass flow rate of 1 Mt/yr (You et al., 2014), which is equivalent to the mean electricity consumed by 5,780 people in the EU (Eurostat, 2016).

- 242

243 **4.** CO_2 ALONG THE WELLBORE

244 When injecting CO₂ along the injection well, CO₂ exchanges heat with the surrounding rock (Brill and Mukherjee, 1999). Not only does this heat exchange influence the CO₂ flow 245 246 pattern inside the well, but also the surrounding rocks and well components are affected by CO₂-induced temperature changes. CO₂ is heated as it flows downwards because of 247 248 compression and frictional forces, but usually at a lower rate than that of the geothermal 249 gradient (Lu and Connell, 2008; Luo and Bryant, 2010). Thus, CO₂ within the well is, in 250 general, colder than the rock, especially at high flow rates (Paterson et al., 2008; 2010). For example, the CO₂ temperature at the bottom of the injection well at Cranfield, Mississippi, 251 252 increased by 16 °C when the mass flow rate was reduced by a factor of 4 (Luo et al., 2013), 253 showing that high flow rates of injection lead to lower injection temperatures. Another 254 representative example is the CO₂ injection at In Salah, Algeria, where CO₂ temperature at the wellhead coincided with that of the surface temperature, but CO₂ reached the storage 255 256 formation at 1800 m deep 45 °C colder than the temperature corresponding to the geothermal 257 gradient (Bissell et al., 2011).

The lower temperature of CO_2 cools down the rock surrounding the well. But the heat exchange between CO_2 and the surrounding rock is usually limited in time when a constant mass flow rate is injected and thermal equilibrium may be reached within hours or a few days (Lu and Connell, 2008). Once thermal equilibrium between CO_2 and the surrounding rock is reached, adiabatic conditions occur within the injection well. Transient effects are sometimes neglected to simplify calculation (Nimtz et al., 2010). However, heat exchange cannot be neglected in the case of blowouts (Lindeberg, 2011) or if CO₂ injection is not continuous (Lu
and Connell, 2014a).

266 Current wellbore simulators, e.g., T2Well (Pan and Oldenburg, 2014), are capable of handling transient effects. For instance, Lu and Connell (2014a) developed a transient non-267 268 isothermal wellbore flow model for multispecies mixtures. Lu and Connell (2014a) found that 269 steady heat transfer models might be inappropriate for unsteady flows. Previous models based 270 on steady or quasi-steady flow models (e.g., Lu and Connell, 2008), partly or fully neglected 271 the effects of storage and inertial terms in the flow equations. This quasi-steady approach is 272 acceptable for injections of months or years, but not for unsteady conditions, e.g., non-273 uniform flow rate. Lu and Connell (2014a) presented an example of Enhanced Coal Bed 274 Methane (ECBM). ECBM is a method to produce methane from coal beds by injecting CO_2 , which adsorbs in the coal, displacing methane. Lu and Connell (2014a) obtained a good 275 276 fitting of pressure and temperature at both the wellhead and bottomhole. CO₂ was injected in liquid conditions from a tanker truck (at around 1.5 MPa and -30 °C, very close to the 277 saturation line), and two-phase flow conditions took place within the first meters of the well 278 279 due to partial vaporization of the liquid CO₂.

280 Another field test of CO₂ injection for ECBM purposes was carried out at Yuhbari, 281 Hokkaido, Japan, between 2003 and 2007 (Sasaki et al., 2009). The coal seam was at 900 m deep, with a pressure and temperature of approximately 15.5 MPa and 28 °C, respectively. 282 Sasaki et al. (2009) found that coal permeability decreased up to a factor of 15 as the coal 283 284 became saturated in CO₂ due to swelling of coal. However, this swelling effect decreased for successive injection experiments. Furthermore, the intrinsic permeability around the injection 285 286 well increased for successive injection experiments up to a factor of 6 due to fracturing of the 287 rock. CO₂ was injected at 68.5 °C, but CO₂ reached the bottom of the injection well in liquid conditions, i.e., below 31.04 °C, due to heat loss along the injection well. The reason for such 288

high injection temperature was the intention to inject CO_2 in supercritical conditions rather than in liquid state because the lower viscosity of supercritical CO_2 would facilitate CO_2 injection in such a low permeable formation. However, even insulating the injection tubing was not enough to increase CO_2 temperature at low flow rates (4.5 ton/day). It was estimated that to achieve supercritical conditions at the bottom of the injection well, a flow rate higher than 12 t/day, i.e., 0.14 kg/s or 4380 t/yr, would be necessary.

295 These examples illustrate that pressure, temperature and density profiles along the wellbore 296 can be complex (Figure 2) and significantly vary for small changes in the pressure and 297 temperature at the wellhead (Vilarrasa et al., 2013). Since density depends on both pressure 298 and temperature, the system is strongly coupled and the CO₂ flow along the wellbore is not 299 trivial. This complexity is especially true when the injection conditions at the wellhead are close to phase change (Lu and Connell, 2014b). For example, at Ketzin, Germany, CO₂ was 300 301 initially in gas state in the shallower 100 m of the well and in liquid state in the rest, but after 302 a transient period, two-phase flow conditions extended practically all along the well 303 (Henninges et al., 2011). Another example is that of Sleipner, Norway, where two-phase (gas 304 and liquid CO₂) conditions exist at the wellhead, the two-phase flow is maintained for the first 305 250 m of the injection well, but the phase that remains below the two-phase region can be 306 liquid instead of gas for slight changes in the wellhead conditions (Lindeberg, 2011).

To complicate the process even further, the pressure, temperature and density variation with depth along the wellbore is also controlled by the overpressure induced at the storage formation for a given flow rate. Thus, the resulting pressure and temperature conditions at the wellhead will also depend on the injectivity of the storage formation. Therefore, wellbore simulators should be coupled with reservoir simulators to properly model the CO_2 pressure and temperature, which determines the density, along the injection well (Pan et al., 2011; Pan and Oldenburg, 2014; Vilarrasa et al., 2013).

Figure 2. Non-isothermal flow of CO_2 through an injection well: temperature (a), pressure (b) and density (c) profiles. Comparison between different injection conditions at the wellhead (gas-, supercritical- and liquid-phase) (injection rate of 1.5 kg/s, geothermal gradient of 0.033 °C/m, well radius of 4.5 cm, overall heat transfer coefficient of 10 W m⁻² K^{-1} (from Vilarrasa et al.,2013).

320

5. CO₂ **STORAGE**

322 a. CO₂ INJECTION IN DEEP SEDIMENTARY FORMATIONS

323 CO₂ injection in deep saline formations induces temperature changes owing to processes 324 such as Joule-Thomson cooling, endothermic water vaporization, exothermic CO₂ dissolution 325 (Han et al., 2010; 2012) and because CO₂ will, most likely, reach the storage formation at a 326 colder temperature than that corresponding to the geothermal gradient (Vilarrasa et al., 2014). 327 When CO₂ enters into the storage formation, temperature slightly drops, by some decimals of degree, in the first tens of meters around the injection well, due to Joule-Thomson cooling as 328 329 pressure drops with distance to the well (Han et al., 2010). The Joule-Thomson cooling effect 330 may be more pronounced in depleted oil and gas fields due to the expansion of CO_2 when it

enters into the low pressure reservoir (Oldenburg, 2007; Pekot et al., 2011; Singh et al., 331 332 2011a). However, the induced cooling is unlikely to cause injectivity problems due to hydrate 333 formation that could clog the well, except for initially cold reservoirs (*T*<20 °C) (Mathias et 334 al., 2010; Ding and Liu, 2014). Apart from the Joule-Thomson cooling effect, water 335 vaporization into the dry CO₂ causes an additional cooling of around 1.0-2.0 °C. Water 336 vaporization only occurs in the vicinity of the injection well, within the first tens of meters in 337 the radial distance, because further away CO_2 becomes saturated with water. Outside the 338 vaporization front, temperature rises due to the exothermic CO_2 dissolution into the brine 339 (André et al., 2010; Han et al., 2010). The temperature increase due to CO₂ dissolution is of 340 around half degree and may be used for monitoring the advancement of the CO₂ plume 341 (Bielinski et al., 2008; Zhao and Cheng, 2014). Actually, a visible temperature signal can be detectable upon CO₂ arrival at an observation well in the storage formation, as occurred at the 342 343 CO₂ injection pilot test sites of Frio, Texas (Hovorka et al., 2006) and Nagaoka, Japan (Sato et al., 2009). 344

345 The dynamics of the CO_2 plume is governed, in part, by CO_2 density. While high CO_2 density leads to a viscous dominated flow, low CO₂ density yields gravity dominated CO₂ 346 347 flow. CO₂ density depends on both pressure and temperature, which are not straightforward to 348 determine within the CO_2 plume, as shown by the existing uncertainty on the actual CO_2 349 density of the CO₂ plume at Sleipner, Norway (Nooner et al., 2007; Alnes et al., 2011). 350 Initially, pressure may be hydrostatic and predictable, but it may also vary significantly, such 351 as in depleted petroleum reservoirs. During CO₂ injection, an overpressure that is inversely proportional to permeability is induced and thus, CO₂ density will increase with injection. 352 353 However, the range of CO₂ density change due to overpressure is limited, in general, to some 354 tens of kg/m³ (Figure 3). The geothermal gradient is also site dependent, which, for the depths 355 of storage, i.e., several km, may give rise to temperature variations of tens of degrees between 356 different storage sites (Randolph and Saar, 2011b). As a result, CO₂ density can vary several 357 hundreds of kg/m³ from a storage site placed in a sedimentary basin with a high geothermal 358 gradient to a site with a low geothermal gradient (Bachu, 2003) (Figure 3). The warmer the 359 storage formation, the lower the CO₂ viscosity, which will facilitate flow and decrease overpressure (Wiese et al., 2010), but may enhance viscous fingering (Jackson et al., 2015). 360 361 Temperature also affects the surface tension and the wetting angle, which play a role in 362 capillarity (Singh et al., 2011b). The occurrence of these processes implies that it is important to account for non-isothermal effects even though CO₂ is injected in thermal equilibrium with 363 364 the storage formation (Class et al., 2009).

365

Figure 3. CO_2 density as a function of depth for several geothermal gradients at hydrostatic conditions and for a 5 MPa overpressure generated by CO_2 injection. Surface temperature is of 5, 10 and 15 °C for the geothermal gradients of 25, 33 and 40 °C/km, respectively. The shadowed region is the most appropriate depth interval for geologic carbon storage because it is deep enough to ensure a high CO_2 density that permits an efficient storage in terms of

371 volume, and also because deeper storage formations would imply higher drilling and372 injection costs.

373 Thermal effects are more evident when the injected CO_2 is colder than the storage 374 formation. In such case, CO₂ cools down the rock around the wellbore, forming a cooler 375 region that tends to reach the same temperature as that of the inflowing CO₂ (Vilarrasa et al., 376 2013). This cold region advances much behind of the desaturation front because CO₂ is heated 377 by the rock, which retards the advance of the cooling front with respect to the front of the CO₂ 378 plume. The colder CO_2 is denser and more viscous than the supercritical CO_2 that is in 379 thermal equilibrium with the storage formation. Thus, viscous forces dominate in the cooled 380 region, leading to a steep CO₂ front that sweeps most of the thickness of the storage formation 381 (Rayward-Smith and Woods, 2011). However, as CO₂ warms up, its lower density and 382 viscosity leads to gravity override and thus, CO₂ tends to advance through the top portion of 383 the storage formation (Vilarrasa et al., 2014). The denser CO₂ in the cooled region occupies a 384 smaller volume than supercritical CO₂ and thus, displaces a smaller amount of brine, which results in a slightly lower overpressure for cold CO₂ injection than for CO₂ in thermal 385 386 equilibrium with the storage formation (Vilarrasa et al., 2013; Randolph et al., 2013; Zhao and 387 Cheng, 2015). Furthermore, the cold region around the injection well remains for a long 388 period of time after the end of injection because the cooling front advances mainly by advection of the cold CO₂ during injection, but the cooled rock is heated up by heat 389 390 conduction afterwards, which leads to a period to reach thermal equilibrium that is longer than 391 the injection period.

392

393 **b.** THERMO-MECHANICAL EFFECTS

394 CO₂ injection in deep saline formations implies temperature changes that will induce stress 395 and strain (Rutqvist, 2012). The region undergoing the largest temperature change will be

396 limited to a few hundreds of meters from the injection well for a CO₂ injection of several 397 decades. This region is relatively small compared to the extent of the CO₂ plume, which may 398 reach several kilometers (Vilarrasa et al., 2014). Still, thermal stresses may be a concern (Celia et al., 2015) because CO₂ will, in general, reach the storage formation colder than the 399 400 rock, which may bring the stress state closer to failure conditions (de Simone et al., 2013). Major faults will rarely be cooled down because injection wells will be placed far from them. 401 402 However, the thermal contraction of the rock around the injection well affects the stress field 403 in the far-field through deformations and associated stress-transfer and thus, the stability of 404 faults placed far away from the well may be reduced (Jeanne et al., 2014). This contraction of 405 the rock caused by cooling also leads to a smaller surface uplift induced by cold CO₂ injection 406 compared to CO₂ injection in thermal equilibrium with the storage formation (Goodarzi et al., 2012; Fang et al., 2013). Furthermore, the lower portion of the caprock in the vicinity of 407 408 injection wells will be cooled down due to heat conduction once the cold CO₂ reaches the top 409 of the storage formation. This cooling may induce fracture instability within the caprock, 410 especially if the thermal expansion coefficients of the two formations are different (Vilarrasa 411 and Laloui, 2016).

412 Shear slip of fractures within the caprock and hydraulic fracture formation and propagation 413 across the caprock is, in principle, undesirable. However, in the presence of thick caprocks, the overall caprock sealing capacity may not be compromised even though shear or tensile 414 415 failure conditions are reached at the bottom of the caprock, as demonstrated at In Salah, 416 Algeria. At this site, no leakage has occurred in spite of the fact that cooling probably contributed to induce shear failure of the lower portion of the caprock (Vilarrasa et al., 2015). 417 Nevertheless, it is important to minimize the disturbance of the caprock integrity (Sagu and 418 419 Pao, 2013). Thus, thermal stresses should be accounted for to determine the maximum sustainable injection pressure and maximum temperature drop that can be induced withoutcompromising the caprock integrity (Rutqvist et al., 2011; Kim and Hosseini, 2014b, 2015).

422 The distribution of thermal stresses is controlled by the extension of the cold region. Analytical (Bao et al., 2014) and semi-analytical (LaForce et al., 2015) solutions have been 423 424 developed to estimate the position of the cold region and the induced thermal stresses. Even 425 though good estimates are obtained at the beginning of injection, when viscous forces 426 dominate and the CO_2 plume advances as a plug, differences arise as CO_2 moves away from 427 the injection well and gravity forces dominate, which leads to a cooling front that 428 preferentially advances along the top of the storage formation. Better estimates can be 429 obtained for the injection of brine with dissolved CO₂ because buoyancy forces are much 430 smaller than when a CO₂-rich phase is injected (Wu and Bryant, 2014). Nevertheless, this 431 thermo-hydro-mechanical coupled problem should be solved numerically to obtain accurate 432 solutions.

433 Numerical results are used to predict cooling-mediated hydraulic fracture initialization, 434 which occurs when the minimum effective stress exceeds the tensile strength of the rock 435 (Goodarzi et al., 2011, 2013; Luo and Bryant, 2011, 2013; Taylor and Bryant, 2014). 436 Hydraulic fractures, or shear slip of pre-existing fractures, may be beneficial if they are 437 confined within the storage formation because injectivity is enhanced (Goodarzi et al., 2010; 438 Rutqvist, 2012). Luo and Bryant (2014) modeled fracture propagation due to cooling in the 439 storage formation and found that stiff storage formations experience fast fracture growth, 440 leading to a low usage efficiency of the storage formation because the CO₂ plume becomes 441 elliptical as CO₂ advances preferentially along the hydraulic fracture. In contrast, soft storage 442 formations yield slow fracture propagation that may stop close to the well, giving rise to a cylindrically-shaped CO₂ plume with high usage efficiency of the storage formation. Thus, 443 using thermal stresses properly can contribute to enhance the injectivity in the storage 444

formation. However, the propagation of hydraulic fractures or shear slip of pre-existing fractures from the storage formation into the caprock should be avoided or, at least, minimized to maintain the caprock sealing capacity. Apart from the magnitude of each stress component and overpressure (Goodarzi et al., 2012; 2015), the propagation of shear or tensile failure conditions from the storage formation into the caprock is controlled by several factors, such as the stress regime, stress and strength heterogeneity between layers and the distance from the injection well to the caprock.

452 Regarding the stress regime, strike slip stress regimes (i.e., stress states in which the 453 vertical stress is the intermediate principal stress) are more likely to propagate failure 454 conditions into the caprock than normal faulting (i.e., when the vertical stress is the maximum 455 principal stress) and reverse faulting stress regimes (i.e., when the vertical stress is the minimum principal stress) (Vilarrasa, 2016). For example, simulation results of cold CO₂ 456 457 injection at In Salah, Algeria, which is characterized by a strike slip stress regime, show that 458 the lower part of the caprock is likely to reach shear and tensile failure conditions (Preisig and 459 Prevost, 2011; Gor and Prévost, 2013; Gor et al., 2013; Vilarrasa et al., 2015). However, in 460 normal faulting stress regimes, failure conditions may not occur into the caprock even though 461 shear failure conditions are reached within the storage formation (Vilarrasa and Laloui, 2015). 462 This is because cooling of the storage formation induces a thermal stress reduction in all 463 directions, but since the overburden on top of the storage formation remains constant, a local 464 discontinuity in the vertical stress between the storage formation and the caprock appears 465 around the injection well. Therefore, stress redistribution occurs around the cooled region to satisfy stress equilibrium and displacement compatibility. This stress redistribution causes the 466 467 horizontal total stresses of the lower portion of the caprock to increase, similar to an arch effect, around the cooled region. The higher horizontal stresses tighten the caprock in a 468 469 normal faulting stress regime, improving its stability (Vilarrasa et al., 2013). A similar stress

470 redistribution occurs in a reverse faulting stress regime, but in this case, since the maximum 471 principal stress is horizontal, the deviatoric stress increases in the caprock. However, due to the high confinement pressure, the decrease in stability is small, so fracture propagation 472 473 across the caprock is unlikely. Only the caprock-reservoir and baserock-reservoir interfaces may reach failure conditions, but without propagating into the caprock (Bao et al., 2014). 474 Furthermore, the stability within the storage formation may improve due to cooling in a 475 476 reverse faulting stress regime, because, in the long-term, the horizontal stresses undergo a larger thermal stress reduction than the vertical stress, which decreases the deviatoric stress 477 (Vilarrasa et al., 2014) (see Table 1 for a summary of the stress regime on rock stability 478 479 changes induced by cooling).

480 Table 1. Thermo-mechanical effects of cooling on rock stability as a function of the stress481 regime

Stress regime	Storage formation	Caprock
	Thermal stress	Stress redistribution around the cooled region
	reduction in both	increases the minimum (horizontal) principal
Normal Faulting	the maximum and	stress, reducing the deviatoric stress, which
	the minimum	tightens the caprock
Strike Slip	principal stresses	Stress redistribution around the cooled region
	brings the stress	affects equally the maximum (horizontal) and the
	state closer to	minimum (horizontal) principal stresses, so the
	failure conditions	thermal stress reduction shifts the stress state
		closer to failure conditions maintaining the
		deviatoric stress

]	Reverse faulting	Stress redistribution around the cooled region
		increases the maximum (horizontal) principal
		stress, which increases the deviatoric stress, but
		just slightly due to the high confining stress

482

483 As far as the stress anisotropy between layers is concerned, caprocks are usually softer 484 than storage formations and thus, caprocks tend to accumulate less deviatoric stress than 485 storage formations as a result of tectonic plate movements (Hergert et al., 2015). This stress 486 heterogeneity between the storage formation and the caprock makes fracture propagation into 487 the caprock less likely. For example, Goodarzi et al. (2015) modeled the Ohio River Valley, West Virginia, which is a strike slip stress regime, and therefore, thermal stresses are likely to 488 489 induce fracture propagation into the caprock, as may have occurred at In Salah, Algeria (Gor 490 et al., 2013; White et al., 2014). However, when accounting for the stress heterogeneity 491 between geological layers, hydraulic fractures may not propagate into the caprock because of 492 its higher minimum effective stress in normal faulting and strike slip stress regimes. 493 Furthermore, unlike in the storage formation, shear failure conditions may not be reached in 494 the caprock due to the lower deviatoric stress.

495 As for the position of the injection well with respect to the caprock, placing the well away 496 from the caprock may help to avoid inducing large thermal stresses in the caprock (Vilarrasa 497 et al., 2014). For example, Bonneville et al. (2014) used a 3D model with 4 horizontal wells to 498 simulate the CO₂ pilot site of FutureGen 2.0, Illinois. Tensile stresses were predicted at some 499 points close to the injection well when CO_2 was injected colder than the storage formation. 500 However, the top of the storage formation remained in compression because the cooling front 501 did not reach it during the simulation time. Nevertheless, the cooling front is likely to 502 eventually reach the caprock due to the buoyancy of CO₂. Yet, if the injection well is placed at a certain distance from the caprock, the temperature drop will be smaller than at the injection
well, as occurred at Cranfield, Mississippi (Kim and Hosseini, 2014a; Luo et al., 2013).

505

506

c. THERMO-GEOCHEMICAL PROCESSES

507 One issue related to CO₂ injection in deep saline formations is salt precipitation around the injection well (Pruess and Garcia, 2002). CO₂ will form a CO₂-rich region around the 508 509 injection well where liquid saturation will be reduced to the residual liquid saturation. CO₂ will be preferably injected dry, because if water is present, corrosion problems in pipes are 510 511 likely to occur. Thus, the residual brine will tend to evaporate into the dry CO₂, increasing the 512 salt concentration in the liquid phase (André et al., 2011). Once the equilibrium solubility is 513 reached, salt will precipitate, inducing crystallization pressure that might fracture the rock and open new percolation pathways if stresses become high enough (Osselin et al., 2013). Salt 514 515 precipitation slightly decreases porosity. But since salt precipitates close to the pore throats, the connectivity between the pores may clog, which could cause a dramatic decrease in 516 517 permeability and thus, in injectivity. Water evaporation increases at higher temperature 518 (Spycher and Pruess, 2005). Thus, a higher temperature generally results in more salt 519 precipitation (Kim et al., 2012). However, as brine is evaporated, the relative permeability to 520 CO₂ increases, which may partly compensate the permeability reduction due to salt 521 precipitation (Mathias et al., 2011).

Apart from salt precipitation, temperature affects the reaction rates of chemical reactions (Song and Zhang, 2012). Geochemical reactions are more significant in carbonate rocks than in siliciclastic rocks because carbonate minerals tend to dissolve in response to CO_2 dissolution into the brine, which gives rise to an acidic solution. The solubility of both CO_2 and carbonate rocks is higher at lower temperature. Thus, more CO_2 dissolution and carbonate (mainly calcite and dolomite) dissolution will occur within the cold region that forms around

the injection well due to cold CO₂ injection. However, cooling has a minor effect on the 528 529 increment of the mineral volume fraction that is dissolved compared with CO₂ injection in 530 thermal equilibrium with the storage formation (Tutolo et al., 2015). The porosity 531 development around the injection well, which is the zone with the largest geochemical 532 changes, is small due to the low solubility of calcite (Saaltink et al., 2013). Thus, formation of large cavities due to mineral dissolution should not be feared. If the temperature of the storage 533 534 formation is higher than 60 °C, dolomite precipitation is likely to occur, which may decrease 535 porosity and permeability. Consequently, cold CO₂ injection may inhibit precipitation of 536 carbonate minerals around the well in warm (>60 °C) storage formations and thus, injectivity 537 would not be negatively affected (André et al., 2010).

538 Geochemical reactions will lead to CO₂ mineral sequestration if carbon is fixed as carbonate minerals. Carbon mineralization permits a permanent storage of CO₂ with 539 540 negligible leakage risk (Zevenhoven et al., 2011). This process is expected to occur in the time scale of hundreds to thousands of years in deep saline aquifers (Zhang et al., 2009). 541 542 However, the mineralization process into carbonates can be dramatically speeded up in 543 basaltic rocks, with a 95 % mineralization of the injected CO₂ in less than 2 years (Matter et 544 al., 2016). Mineralization of CO₂ may also be achieved in industrial processes, such as steel 545 and iron-making slags. These chemical reactions release significant amounts of heat, which 546 could be useful in some industrial processes and affect reaction rates in geomaterials 547 (Zevenhoven et al., 2011).

548

549

d. CARBON CAPTURE, UTILIZATION AND STORAGE

Recently, it has been argued that CO_2 injection in deep saline aquifers should be accompanied by its "utilization" to provide an added value that makes CCS an economically feasible option for reducing CO_2 emissions to the atmosphere. Thus, CCS should evolve to

553 Carbon Capture, Utilization and Storage (CCUS). One of the most feasible options is 554 Enhanced Oil Recovery (EOR), which consists in injecting CO₂ in mature oil fields to 555 enhance their productivity (Brown et al., 2004; Hill et al., 2013). CO₂ is miscible in oil and reduces oil viscosity, facilitating oil production. However, most of the injected CO₂ returns to 556 557 the surface dissolved into the produced oil. At surface, CO₂ is forced to exsolve from oil and is reinjected. If more CO₂ is injected than produced, as it has been done at Weyburn, Canada, 558 559 since 2004 (Verdon et al., 2011), CO_2 storage takes place. Similarly, CO_2 can be used for 560 Enhanced Gas Recovery (EGR) in depleted gas fields, where the Joule-Thomson cooling 561 effect may be significant (Singh et al., 2012).

 CO_2 can be stored in unminable coal seams, in which CO_2 displaces the methane originally adsorbed to coal, leading to ECBM production (White et al., 2005). This CCUS option relies on the higher affinity of CO_2 than methane to adsorb to coal. The potential storage capacity of ECBM, though lower than that of saline aquifers, is large (Gale, 2004). The main limitation of ECBM may be the relatively low permeability of coal seams. To overcome this drawback, CO_2 may be injected quite warm, so that its viscosity is low and thus, overpressure does not become large (Sasaki et al., 2009).

569 Other alternative CCUS options focus on using the geothermal energy of the deep geological formations where CO_2 will be stored. One of the CO_2 storage methods that 570 571 involves geothermal energy recovery is the injection of CO₂ dissolved into brine (Pool et al., 572 2013). Since brine with dissolved CO₂ is denser than brine without dissolved CO₂, CO₂-rich 573 brine tends to sink towards the bottom of the storage formation, making long-term CO₂ storage safe, especially in sloping aquifers. This storage concept has the drawback that brine 574 575 needs to be pumped and afterwards re-injected together with CO₂, which increases drilling 576 costs and pumping/compression costs. However, these additional costs may be offset by 577 recovering the geothermal energy of the pumped brine, which has a temperature higher than578 that at the surface (Pool et al., 2013; Kervévan et al., 2014).

579 Another method for recovering geothermal energy consists in using CO₂ as the working fluid (Randolph and Saar, 2011a). The thermosiphon concept using CO₂ as a circulating fluid 580 581 in heat pipes (Ochsner, 2008) was adopted as a means of geothermal energy, partly storing 582 CO₂, in deep geological formations (Freifeld et al., 2013; Buscheck et al., 2013; Adams et al., 583 2014). Interestingly, CO_2 will circulate in the thermosiphon without the need of pumping (Pan 584 et al., 2015). Cold CO₂, and therefore dense, is injected in liquid conditions through a well 585 into a deep geologic formation. CO₂ will warm up as it moves away from the injection well, 586 becoming supercritical CO₂, and thus lighter (Vilarrasa et al., 2013). This supercritical CO₂ 587 will flow upwards due to buoyancy through another well, returning to the surface, where it will release its heat and electricity will be produced (Elliot et al., 2013). Apart from 588 589 minimizing the energy required for injection and pumping, CO₂ is more efficient than water as 590 a circulating fluid and yields higher power production (Adams et al., 2015). Once electricity 591 has been produced and the heat of CO₂ utilized, CO₂ cools down. Then, the cold CO₂ is 592 injected again into the injection well. Thus, the use of CO₂, instead of water, as the working 593 fluid, allows making use of geothermal energy without the need of mechanical pumping. 594 Furthermore, most of the injected CO₂ will remain deep underground, where it will be 595 permanently stored, and the economic benefit provided by the geothermal energy will convert 596 geologic carbon storage into a feasible option to mitigate climate change.

- 597
- 598

6. CO₂ LEAKAGE THROUGH WELLS AND FAULTS

599 CO₂ leakage is a concern in geologic carbon storage because: (i) the objective of keeping 600 CO₂ away from the atmosphere is not achieved (Hepple and Benson, 2005); (ii) freshwater 601 aquifers may undergo acidification and contamination (Lu et al., 2010; Trautz et al., 2012; Ardelan and Steinnes, 2010); and (iii) asphyxiation hazard exists if CO_2 accumulates in depressions on the land surface. CO_2 may leak from the storage formation across the caprock, through faults or along wells. CO_2 leakage may be accompanied by brine leakage, which could also be a concern if it reaches freshwater aquifers (Tillner et al., 2013). To prevent both salinization of freshwater aquifers and CO_2 leakage from reaching the surface, multibarrier systems, where saline aquifers alternate with low-permeability formations that serve as caprocks, are an effective option (Birkholzer et al., 2009).

609 Natural analogues can provide useful information on the mechanisms that may promote CO₂ leakage. Miocic et al. (2014) analyzed 49 natural CO₂ reservoirs, 10 of which were 610 611 known to leak. They found that leakage occurred either in shallow reservoirs, i.e., depths 612 shallower than 1000 m, where CO₂ was in gaseous phase, or in pressurized reservoirs where the fracture gradient had been reached. The fact that reservoirs with gaseous CO₂ are more 613 614 prone to leak than reservoirs containing supercritical CO₂ is probably due to the higher buoyancy of the less dense gaseous CO₂. On the other hand, reservoirs that are 615 underpressurized with respect to the overburden are less likely to leak than reservoirs that are 616 overpressurized with respect to the overburden. However, in geologic carbon storage, this 617 618 factor will generally not be favorable due to the overpressure induced by CO₂ injection. 619 Though it has been proposed by Réveillère and Rohmer (2011) and Réveillère et al. (2012) to 620 inject brine into the caprock to create a hydraulic barrier against CO₂ leakage, this injection 621 could jeopardize the caprock integrity because fluid injection in the caprock would 622 significantly increase pore pressure due to the low-permeability of the caprock. This pressure buildup would reduce the effective stresses and failure conditions could be reached, which 623 624 could cause the opposite effect as the pursued one.

625 Unlike caprocks, which are likely to remain stable (Vilarrasa and Carrera, 2015), wellbores 626 are the most likely conduit for CO_2 to escape from the storage formation, especially in 627 sedimentary basins where hydrocarbons have been produced. A clear example of the potential 628 effect of wellbores in hydrocarbon basins on CO₂ leakage is the Alberta Basin, Canada, which has more than 300,000 wells in 900,000 km² (Gasda et al., 2004). Some of the wellbore 629 630 simulators used for calculating CO₂ injection along the injection well (recall Section 4) can 631 also be used for calculating non-isothermal CO₂ leakage just by adding a few modifications 632 (Pan et al., 2011; Pan and Oldenburg, 2014). Furthermore, some efforts have been made to 633 explain CO₂ leakage through wells analytically (e.g., Nordbotten et al., 2004, 2005). However, the thermal effects that occur during CO₂ leakage make it very complicated to develop 634 analytical or semi-analytical solutions that give good estimates of CO₂ leakage along 635 abandoned wells. To illustrate this, Ebigbo et al. (2007) compared the semi-analytical 636 637 solutions of Nordbotten et al. (2004, 2005) for leaky wells with numerical solutions. Ebigbo et al. (2007) found that the semi-analytical solutions compare well with the numerical 638 639 simulations when the simplifying assumptions of the semi-analytical solution, which include 640 isothermal conditions, are taken into account in the numerical model. However, as the simplifying assumptions are relaxed, numerical results increasingly differ from those of the 641 642 semi-analytical solution. In particular, the semi-analytical solution fails to give good results 643 when non-isothermal effects occur. This limitation was revealed by a model in which CO₂ 644 changes from liquid to gas inside of a leaky well that connects two aquifers between 800 and 645 640 m deep, which gives rise to a 1.5 °C drop at the top of the leaky well (depth of 640 m) due 646 to the phase change.

The CO_2 dynamics in a leaky well can be very diverse. Initially, the wellbore is saturated with water. Once CO_2 starts leaking, water is initially displaced upwards due to the buoyancy of CO_2 . As CO_2 advances upwards, CO_2 saturation increases due to gas exsolution as pressure decreases at shallower depths and, due to the lower density of gaseous than supercritical CO_2 (Pan et al., 2009). This phase change occurs when the pressure becomes lower than the critical 652 CO₂ pressure of 7.4 MPa, i.e., at depths lower than about 800 m. If the amount of available 653 CO₂ for leaking into the well is unlimited, a quasi-steady state is rapidly reached, within 30 654 minutes (Pan et al., 2011). The temperature profile stabilizes when the steady state flow is reached. But before this stabilization occurs, the temperature profile along the well reaches a 655 656 maximum due to CO₂ dissolution into the water, which is an exothermic reaction, followed by 657 a local minimum caused by CO₂ expansion. However, in general, CO₂ mobility in the 658 reservoir controls the leakage rate through an open borehole and therefore, CO₂ availability will usually be limited. In particular, if the CO₂ saturation is close to the residual gas 659 660 saturation, CO₂ cannot continuously flow through the wellbore, leading to a geyser like 661 leakage (Pan et al., 2011). Furthermore, in closed reservoirs, CO₂ leakage induces a reduction 662 of the reservoir pressure, which causes a progressive reduction of CO_2 leakage rate.

In the scenarios modeled by Pan et al. (2009; 2011), CO₂ transitioned from supercritical to 663 664 gas without undergoing any phase change. This may be the case in the presence of high geothermal gradient. However, liquid CO₂ may appear due to the cooling that occurs during 665 expansion when considering a broader range of geothermal gradients or for insulated wells 666 that receive very limited heat from the surrounding rock (Oldenburg et al., 2012). Long-term 667 668 CO₂ leakage may also lead to a similar situation than that of an insulated well once the 669 surrounding rock is cooled down and provides a low amount of heat to CO₂. If liquid CO₂ 670 forms, the saturation line is eventually reached at a certain depth, where liquid and gas will 671 coexist. The depth interval where liquid and gas CO₂ coexist experiences strong non-672 isothermal effects due to the Joule-Thomson effect (Burnett, 1923; Charnley et al., 1955) that occurs as a result of the expansion that takes place when liquid CO₂ boils into subcritical 673 674 gaseous CO₂ (Pruess, 2011). This cooling results in an advance, mainly upwards, of the depth interval where CO₂ stays on the saturation line (Oldenburg et al., 2012). Thus, the temperature 675 676 difference (cooling) with respect to the geothermal gradient becomes larger as the two-phase 677 conditions advance upwards. In extreme cases, CO_2 release in wells may lead to pressure and 678 temperatures at the wellhead close to those of the triple point (i.e., 0.511 MPa and -56.35 °C, 679 respectively). If such conditions are reached, CO_2 will be ejected as solid "dry ice" particles, 680 as has already occurred in EOR fields (Skinner, 2003). Similar processes would occur if CO_2 681 leakage occurs through a fault instead than through a well.

682 If CO₂ leaks through a fault or fracture, brine will start leaking before CO₂ (Rutqvist and 683 Tsang, 2002), which will induce a temperature increase along the fracture due to the warmer temperature of the upwards flowing brine (Zeidouni et al., 2014). But the leaking CO₂, which 684 685 is in supercritical conditions at the storage formation from which CO₂ leaks, may change to 686 liquid conditions as it leaks upwards through a fault (Pruess, 2005a). Simulation results of 687 Pruess (2005a) show that liquid CO₂ boils into gas at around 630 m because at this depth the pressure and temperature of CO₂ are such that they lie on the saturation line. The phase 688 689 change from liquid to gas is accompanied by a large increase in volume, i.e., a large density 690 decrease, and a decrease in viscosity. As a result of CO_2 depressurization and expansion as it 691 migrates towards shallower depths, temperature will decrease due to the Joule-Thomson 692 cooling effect. Furthermore, temperature will drop because latent heat is absorbed by the 693 phase change process. The region where CO₂ changes its phase from liquid to gas becomes a 694 3-phase region because there is water present (Pruess, 2005b). Mobility is significantly 695 reduced in this region, which hinders CO₂ upflow locally and promotes lateral spreading of 696 CO_2 . The decrease in CO_2 flow causes the temperature to increase again due to heat 697 conduction from the surrounding rock, increasing the temperature and eventually recovering a two-phase flow that allows upward CO₂ flow again. This leads to a quasi-periodic discharge 698 699 of CO₂ towards the surface that shows a tendency to increase its period with time. Pruess 700 (2005a) also performed a simulation in which temperature was artificially maintained constant by specifying very large rock specific heat. A constant temperature led to a monotonic 701

increase of leakage fluxes with time, also observed in an isothermal numerical simulation performed by Pruess and Garcia (2002), without the formation of the 3-phase region. This difference allowed Pruess (2005a) to conclude that the availability of conductive heat transfer is the limiting factor of the growth of CO_2 fluxes when non-isothermal effects are taken into account.

Simulation results show that the strong dependency of the CO_2 properties on pressure and temperature leads to complex processes that can have either positive or negative feedback on the CO_2 leakage rates. The decrease in both CO_2 density and viscosity as CO_2 migrates upwards provides a self-enhancement of the leakage rate. However, strong cooling caused by phase change from liquid to gaseous CO_2 may cause three-phase flow that self-limits leakage and may give rise to geysering (e.g., Pruess, 2008). Since thermal effects play a relevant role in CO_2 leakage processes, measuring temperature along wells can be useful to detect leakage.

714 The temperature signal can be used to detect not only CO₂ leakage, but also brine leakage. 715 If brine leakage occurs, temperature will increase because of the warmer temperature of the 716 brine that comes from deeper depths. But if brine leakage is followed by CO₂ leakage, cooling will take place once CO₂ reaches a certain depth due to CO₂ expansion. The main drawback of 717 718 leakage detection using temperature signals is that the leakage-induced temperature changes 719 cover a small volume around the leakage pathway, which makes it difficult to detect unless 720 the monitoring well is very close to where leakage occurs (Tao et al., 2013). In contrast, the 721 pressure signal extends rapidly over large distances, but increases regardless of the fluid that 722 is leaking. Thus, a combination of pressure with temperature monitoring is recommendable, because pressure monitoring can detect pressure perturbations which origin is located far 723 724 away from the measurement point and if the temperature measurements are close to leakage, 725 information on the leaking fluid can be obtained (Hurter et al., 2007).

726 Underground temperature and pressure monitoring can be combined with deformation 727 measurements to detect leakage because deformation spreads instantaneously in response to 728 overpressure (Rutqvist, 2012). Surface uplift evolution can be measured with InSAR, as it 729 was successfully done at In Salah, Algeria (Vasco et al., 2008). Even though deformation 730 measurements do not directly inform about thermal effects, their interpretation using coupled 731 thermo-hydro-mechanical numerical simulations may allow determining the extension of the 732 cooled region around injection wells because the contraction of the rock induced by cooling 733 reduces the magnitude of the surface uplift (Goodarzi et al., 2015).

734 Temperature can be monitored using point measurements, wireline-deployed instruments 735 or fiber-optic distributed temperature sensing (DTS) cables (Reinsch et al., 2013; Nuñez-736 Lopez et al., 2014). The wireline-deployed instruments provide logs of temperature as a 737 function of depth and the DTS produces continuous temperature measurements both in time 738 and space along the cable. DTS can provide, after careful calibration, resolution and accuracy 739 as small as 0.02 and 0.3 °C, respectively, as reported for a gas-hydrate monitoring application 740 at around 1,200 m deep (Henninges et al., 2005). Hoang et al. (2011) used DTS to infer the 741 productive zones after hydraulic fracturing operations from temperature measurements 742 outside of the well. Concerning geologic carbon storage, temperature measurements have 743 already been performed at CO₂ pilot test sites, like Frio, Texas (Hovorka et al., 2006) and 744 industrial scale sites, like Cranfield, Mississippi (Hovorka et al., 2013).

745

746

7. RESEARCH GAPS AND CHALLENGES

Based on the review of thermal effects on geologic carbon storage, a series of research
gaps and challenges have been identified. The following list suggests future research lines to
address them:

The effect of impurities on corrosion of pipelines needs to be better understood. Pipeline corrosion may lead to the failure of pipelines and thus, it is crucial to develop guidelines for the metal requirements of pipelines depending on the flue gas composition. These guidelines should take into account the possibility of strong cooling caused by expansion of CO₂ if normal operation is interrupted suddenly.

The connection between CO₂ transport and injection into the well is still associated
with significant uncertainties. Huge amounts of energy can be saved, and even generated, by
employing smart ways of using the high pressure at which liquid CO₂ is transported through
pipelines.

- Wellbore and reservoir simulators are usually decoupled. However, the pressure and temperature at the bottom of the injection well should coincide with those in the storage formation at the injection well. Coupling these two simulators will permit obtaining realistic injection conditions that could be used to optimize the pressure and temperature at the wellhead.

- The thermo-mechanical effects of cold CO₂ injection have not been widely investigated and are not fully understood. In particular, different studies on caprock stability due to cooling give results that are not in full agreement. Thus, the processes that govern caprock stability are still not well-known and further investigation is required.

- The effect of geochemical reactions (dissolution/precipitation) on the geomechanical properties and responses of different rock types has not been addressed in detail. The combined work of geochemist with geomechanical experts is required to shed light on this coupled effect.

Coupled thermo-hydro-mechanical-chemical processes have not been investigated yet
 in detail due to the high complexity of this problem that involves extremely high

computational cost. To address this coupled problem, more efficient numerical simulators arerequired.

- Further investigation is needed to understand three-phase (water, gaseous CO₂ and liquid CO₂) relative permeability and hysteresis. Three-phase may form in CO₂ leakage pathways and may lead to a self-limiting feedback that decreases the leakage rate. However, the capillary properties of three-phase flow are not well-known.

The geomechanical implications of CO₂ leakage related to cooling effects, especially
 when liquid CO₂ is formed, have not been investigated yet.

CCUS: one of the main barriers to put in practice CCS is its elevated cost. To reduce
its cost, adding a "utilization" that provides an economic benefit is highly recommendable.
More efforts should be devoted to develop CCUS options.

Finally, to achieve a successful deployment of CCS and CCUS, there should be a
transition from pilot to demonstration scale sites. The Boundary Dam Carbon Capture Project,
in Saskatchewan, Canada, has been the first commercial-scale CCS project. This is a great
first start, but it should be followed by many other industrial scale projects.

789

790 ACKNOWLEDGMENTS

V.V. acknowledges financial support from the "TRUST" project (European Community's
Seventh Framework Programme FP7/2007-2013 under grant agreement n 309607) and from
"FracRisk" project (European Community's Horizon 2020 Framework Programme H2020EU.3.3.2.3 under grant agreement n 640979). This work was funded in part by the Assistant
Secretary for Fossil Energy, National Energy Technology Laboratory, National Risk
Assessment Partnership, of the U.S. Department of Energy under Contract No. DEAC0205CH11231.

799 **REFERENCES**

- Adams, B. M., Kuehn, T. H., Bielicki, J. M., Randolph, J. B., & Saar, M. O. (2014). On the
 importance of the thermosiphon effect in CPG (CO₂ plume geothermal) power systems. *Energy*, 69, 409-418.
- Adams, B. M., Kuehn, T. H., Bielicki, J. M., Randolph, J. B., & Saar, M. O. (2015). A
 comparison of electric power output of CO₂ Plume Geothermal (CPG) and brine
 geothermal systems for varying reservoir conditions. *Applied Energy*, *140*, 365-377.
- Alnes, H., Eiken, O., Nooner, S., Sasagawa, G., Stenvold, T., & Zumberge, M. (2011). Results
- from Sleipner gravity monitoring: updated density and temperature distribution of the CO₂
 plume. *Energy Procedia*, *4*, 5504-5511.
- André, L., Azaroual, M., Peysson, Y., & Bazin, B. (2011). Impact of porous medium
 desiccation during anhydrous CO₂ injection in deep saline aquifers: Up scaling from
 experimental results at laboratory scale to near-well region. *Energy Procedia*, *4*, 44424449.
- André, L., Azaroual, M., & Menjoz, A. (2010). Numerical simulations of the thermal impact
 of supercritical CO₂ injection on chemical reactivity in a carbonate saline reservoir. *Transport in porous media*, 82(1), 247-274.
- Ardelan, M. V., & Steinnes, E. (2010). Changes in mobility and solubility of the redox
 sensitive metals Fe, Mn and Co at the seawater-sediment interface following CO₂ seepage. *Biogeosciences*, *7*(2), 569-583.
- 819 Aspelund, A., Mølnvik, M. J., & De Koeijer, G. (2006). Ship Transport of CO₂: Technical
- 820 Solutions and Analysis of Costs, Energy Utilization, Exergy Efficiency and CO₂ Emissions.
- 821 Chemical Engineering Research and Design, 84(9), 847-855.
- 822 Bachu, S. (2003). Screening and ranking of sedimentary basins for sequestration of CO₂ in
- geological media in response to climate change. *Environmental Geology*, 44(3), 277-289.

- Bao, J., Xu, Z., & Fang, Y. (2014). A coupled thermal-hydro-mechanical simulation for
 carbon dioxide sequestration. *Environmental Geotechnics*, doi: 10.1680/envgeo.14.00002.
- 826 Baxter, P. J., Baubron, J. C., & Coutinho, R. (1999). Health hazards and disaster potential of
- ground gas emissions at Furnas volcano, Sao Miguel, Azores. *Journal of Volcanology and Geothermal Research*, 92(1), 95-106.
- Bielinski, A., Kopp, A., Schütt, H., & Class, H. (2008). Monitoring of CO₂ plumes during
 storage in geological formations using temperature signals: Numerical investigation. *International Journal of Greenhouse Gas Control*, *2*(3), 319-328.
- 832 Birkholzer, J. T., Zhou, Q., & Tsang, C. F. (2009). Large-scale impact of CO₂ storage in deep
- saline aquifers: a sensitivity study on pressure response in stratified systems. *International Journal of Greenhouse Gas Control*, 3(2), 181-194.
- 835 Bissell, R. C., Vasco, D. W., Atbi, M., Hamdani, M., Okwelegbe, M., & Goldwater, M. H.
- (2011). A full field simulation of the In Salah gas production and CO 2 storage project
 using a coupled geo-mechanical and thermal fluid flow simulator. *Energy Procedia*, *4*,
 3290-3297.
- 839 Bonneville, A., Nguyen, B. N., Stewart, M., Hou, Z. J., Murray, C., & Gilmore, T. (2014).
- Geomechanical evaluation of thermal impact of injected CO₂ temperature on a geological
 reservoir: application to the FutureGen 2.0 Site. *Energy Procedia*, 63, 3298-3304.
- 842 Böttcher, N., Taron, J., Kolditz, O., Park, C. H., & Liedl, R. (2012). Evaluation of thermal
- 843 equations of state for CO₂ in numerical simulations. *Environmental Earth Sciences*, 67(2),
 844 481-495.
- Brill, J., Mukherjee, H., (1999). Multiphase Flow in Wells. Henry L. Doherty Memorial Fund
 of AIME, Society of Petroleum Engineers Inc., Richardson, TX.
- Brown, G., Carvalho, V., Wray, A., Smith, D., Toombs, M., & Pennell, S. (2004). Monitoring
- 848 alternating CO₂ and water injection and its effect on production in a carbonate reservoir

- using permanent fiber-optic distributed temperature systems. In *SPE Annual Technical Conference and Exhibition*, Houston, Texas, 26–29 September 2004.
- Burnett, E. S. (1923). Experimental study of the Joule-Thomson effect in carbon dioxide. *Physical Review*, *22*(6), 590.
- 853 Buscheck, T. A., Elliot, T. R., Celia, M. A., Chen, M., Sun, Y., Hao, Y., Lu, C., Wolery, T. J. &
- Aines, R. D. (2013). Integrated geothermal-CO₂ reservoir systems: reducing carbon
 intensity through sustainable energy production and secure CO₂ storage. *Energy Procedia*,
 37, 6587-6594.
- Celia, M. A., Bachu, S., Nordbotten, J. M., & Bandilla, K. W. (2015). Status of CO₂ storage in
 deep saline aquifers with emphasis on modeling approaches and practical simulations.
- 859 *Water Resources Research*, 51(9), 6846-6892.
- Charnley, A., Rowlinson, J. S., Sutton, J. R., & Townley, J. R. (1955). The isothermal JouleThomson coefficient of some binary gas mixtures. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences*, 230(1182), 354-358.
- 863 Choi, I. H., Lee, S., Seo, Y., & Chang, D. (2013). Analysis and optimization of cascade
 864 Rankine cycle for liquefied natural gas cold energy recovery. *Energy*, *61*, 179-195.
- 865 Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., Audigane, P.,
- B66 Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S. E., Jin, M., Krug, S.,
- Labregere, D., Beni, A. N., Pawar, R. J., Sbai, A., Thomas, S. G., Trenty, L., & Wei, L.
- 868 (2009). A benchmark study on problems related to CO₂ storage in geologic formations.
- 869 Computational Geosciences, 13(4), 409-434.
- 870 de Simone, S., Vilarrasa, V., Carrera, J., Alcolea, A., & Meier, P. (2013). Thermal coupling
- 871 may control mechanical stability of geothermal reservoirs during cold water injection.
- 872 Physics and Chemistry of the Earth, Parts A/B/C, 64, 117-126.

- B73 Ding, T., & Liu, Y. (2014). Simulations and analysis of hydrate formation during CO₂
 B74 injection into cold saline aquifers. *Energy Procedia*, 63, 3030-3040.
- B75 Duan, Z., & Sun, R. (2003). An improved model calculating CO₂ solubility in pure water and
 aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. *Chemical geology*,
 193(3), 257-271.
- Ebigbo, A., Class, H., & Helmig, R. (2007). CO₂ leakage through an abandoned well:
 problem-oriented benchmarks. *Computational Geosciences*, *11*(2), 103-115.
- 880 Elliot, T. R., Buscheck, T. A., & Celia, M. (2013). Active CO₂ reservoir management for
- sustainable geothermal energy extraction and reduced leakage. *Greenhouse Gases: Science and Technology*, 3(1), 50-65.
- 883 Eurostat (2016). Consumption of Energy. ec.europa.eu/eurostat/statistics-
- explained/index.php/Consumption_of_energy. Consulted on July 25, 2016.
- Fang, Y., Nguyen, B. N., Carroll, K., Xu, Z., Yabusaki, S. B., Scheibe, T. D., & Bonneville, A.
- 886 (2013). Development of a coupled thermo-hydro-mechanical model in discontinuous
 887 media for carbon sequestration. *International Journal of Rock Mechanics and Mining*888 *Sciences*, 62, 138-147.
- 889 Freifeld, B., Zakim, S., Pan, L., Cutright, B., Sheu, M., Doughty, C., & Held, T. (2013).
- 890 Geothermal energy production coupled with CCS: a field demonstration at the SECARB
- 891 Cranfield Site, Cranfield, Mississippi, USA. *Energy Procedia*, *37*, 6595-6603.
- Gale, J., & Davison, J. (2004). Transmission of CO₂—safety and economic considerations. *Energy*, 29(9), 1319-1328.
- Gale, J., (2004). Geological storage of CO₂: What do we know, where are the gaps and what
 more needs to be done? *Energy 29*, 1329-1338.

- Gasda, S. E., Bachu, S., & Celia, M. A. (2004). Spatial characterization of the location of
 potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. *Environmental geology*, 46(6-7), 707-720.
- Ghassemi, A., Tarasovs, S., & Cheng, A. D. (2007). A 3-D study of the effects of
 thermomechanical loads on fracture slip in enhanced geothermal reservoirs. *International Journal of Rock Mechanics and Mining Sciences*, 44(8), 1132-1148.
- Goodarzi, S., Settari, A., Zoback, M. D., & Keith, D. (2010). Thermal aspects of
 geomechanics and induced fracturing in CO₂ injection with application to CO₂
 sequestration in Ohio River Valley. In *SPE International Conference on CO₂ Capture*, *Storage*, *and Utilization*. New Orleans, Louisiana, 10-12 November 2010.
- Goodarzi, S., Settari, A., & Keith, D. (2011). Geomechanical modeling for CO₂ storage in
 Wabamun Lake Area of Alberta, Canada. *Energy Procedia*, *4*, 3399-3406.
- Goodarzi, S., Settari, A., & Keith, D. (2012). Geomechanical modeling for CO₂ storage in
 Nisku aquifer in Wabamun Lake area in Canada. *International Journal of Greenhouse Gas Control*, *10*, 113-122.
- 911 Goodarzi, S., Settari, A., Zoback, M., & Keith, D. W. (2013). Thermal effects on shear 912 fracturing and injectivity during CO₂ storage. In *ISRM International Conference for*
- 913 *Effective and Sustainable Hydraulic Fracturing*, Brisbane, Australia, 20-22 May 2013.
- 914 Goodarzi, S., Settari, A., Zoback, M.D., & Keith, D.W. (2015). Optimization of a CO₂ storage
- 915 project based on thermal, geomechanical and induced fracturing effects. *Journal of*916 *Petroleum Science and Engineering*, 134, 49-59.
- Gor, G. Y., Elliot, T. R., & Prévost, J. H. (2013). Effects of thermal stresses on caprock
 integrity during CO₂ storage. *International Journal of Greenhouse Gas Control*, *12*, 300309.

- Gor, G. Y., & Prévost, J. H. (2013). Effect of CO₂ Injection Temperature on Caprock Stability. *Energy Procedia*, *37*, 3727-3732.
- 922 Han, W. S., Stillman, G. A., Lu, M., Lu, C., McPherson, B. J., & Park, E. (2010). Evaluation
- 923 of potential nonisothermal processes and heat transport during CO₂ sequestration. *Journal*
- 924 of Geophysical Research: Solid Earth (1978–2012), 115(B7).
- 925 Han, W. S., Kim, K. Y., Park, E., McPherson, B. J., Lee, S. Y., & Park, M. H. (2012).
- Modeling of spatiotemporal thermal response to CO₂ injection in saline formations:
 Interpretation for monitoring. *Transport in porous media*, 93(3), 381-399.
- 928 Hansen, O., Gilding, D., Nazarian, B., Osdal, B., Ringrose, P., Kristoffersen, J. B., Eiken, O.
- 829 & Hansen, H. (2013). Snøhvit: the history of injecting and storing 1 Mt CO₂ in the Fluvial
- 930 Tubåen Fm. *Energy Procedia*, *37*, 3565-3573.
- Harvey, A. H. (1996). Semiempirical correlation for Henry's constants over large temperature
 ranges. *AIChE journal*, *42*(5), 1491-1494.
- Henninges, J., Huenges, E., & Burkhardt, H. (2005). In situ thermal conductivity of gashydrate-bearing sediments of the Mallik 5L-38 well. *Journal of Geophysical Research:*
- 935 Solid Earth (1978–2012), 110(B11).
- 936 Henninges, J., Liebscher, A., Bannach, A., Brandt, W., Hurter, S., Köhler, S., Möller, F. &
- 937 CO2SINK Group. (2011). PT-ρ and two-phase fluid conditions with inverted density
 938 profile in observation wells at the CO₂ storage site at Ketzin (Germany). *Energy Procedia*,
 939 4, 6085-6090.
- Hepple, R. P., & Benson, S. M. (2005). Geologic storage of carbon dioxide as a climate
 change mitigation strategy: performance requirements and the implications of surface
 seepage. *Environmental Geology*, *47*(4), 576-585.

- 943 Hergert, T., Heidbach, O., Reiter, K., Giber, S.B. & Marschall, P. (2015). Stress field
 944 sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland.
 945 *Solid Earth*, 6, 533-552.
- Hill, B., Hovorka, S., & Melzer, S. (2013). Geologic carbon storage through enhanced oil
 recovery. *Energy Procedia*, *37*, 6808-6830.
- Hoang, H., Mahadevan, J., & Lopez, H. D. (2011). Interpretation of wellbore temperatures
 measured using distributed temperature sensors during hydraulic fracturing. In *SPE Hydraulic Fracturing Technology Conference*. Society of Petroleum Engineers.
- 951 Hovorka, S. D., Benson, S. M., Doughty, C., Freifeld, B. M., Sakurai, S., Daley, T. M.,
- 952 Kharaka, Y. K., Holtz, M. H., Trautz, R. C., Nance, H. S., Myer, L. R., & Knauss, K. G.
- 953 (2006). Measuring permanence of CO₂ storage in saline formations: the Frio experiment.
- 954 Environmental Geosciences, 13(2), 105-121.
- 955 Hovorka, S. D., Meckel, T. A., & Treviño, R. H. (2013). Monitoring a large-volume injection
- at Cranfield, Mississippi—project design and recommendations. *International Journal of Greenhouse Gas Control*, 18, 345-360.
- 958 Hurter, S., Garnett, A. A., Bielinski, A., & Kopp, A. (2007). Thermal signature of free-phase
- 959 CO₂ in porous rocks: detectability of CO₂ by temperature logging. *SPE Offshore Europe*,
- 960 SPE 109007, Aberdeen, Scotland, UK, 4-7 September.
- 961 IEAGHG (2013). CO₂ pipeline infrastructure. Report 2013/18.
- 962 IPCC (Intergovernmental Panel on Climate Change) (2005). In: Metz, B., Davidson, O., de
- 963 Coninck, H.C., Loos, M. & Mayer, L.A. (eds). Special report on carbon dioxide capture964 and storage. Cambridge University Press, Cambridge.
- Jackson, S. J., Stevens, D., Giddings, D., & Power, H. (2015). Dynamic-wetting effects in
 finite-mobility-ratio Hele-Shaw flow. *Physical Review E*, 92(2), 023021.

- Jeanne, P., Rutqvist, J., Dobson, P. F., Walters, M., Hartline, C., & Garcia, J. (2014). The
 impacts of mechanical stress transfers caused by hydromechanical and thermal processes
 on fault stability during hydraulic stimulation in a deep geothermal reservoir. *International Journal of Rock Mechanics and Mining Sciences*, *72*, 149-163.
- Kaldal, G. S., Jónsson, M. Þ., Pálsson, H., & Karlsdóttir, S. N. (2015). Structural Analysis of
 Casings in High Temperature Geothermal Wells in Iceland. *Proceedings of World Geothermal Congress 2015*, Melboune, Australia, 19-25 April 2015.
- 974 Kervévan, C., Beddelem, M. H., & O'Neil, K. (2014). CO₂-DISSOLVED: a Novel Concept
- 975 Coupling Geological Storage of Dissolved CO₂ and Geothermal Heat Recovery–Part 1:
- Assessment of the Integration of an Innovative Low-cost, Water-based CO₂ Capture
 Technology. *Energy Procedia*, 63, 4508-4518.
- Kim, K. Y., Han, W. S., Oh, J., Kim, T., & Kim, J. C. (2012). Characteristics of saltprecipitation and the associated pressure build-up during CO₂ storage in saline aquifers. *Transport in porous media*, 92(2), 397-418.
- 981 Kim, S., & Hosseini, S. A. (2014a). Above-zone pressure monitoring and geomechanical
 982 analyses for a field-scale CO₂ injection project in Cranfield, MS. *Greenhouse Gases:*983 *Science and Technology*, 4(1), 81-98.
- Kim, S., & Hosseini, S. A. (2014b). Geological CO₂ storage: Incorporation of porepressure/stress coupling and thermal effects to determine maximum sustainable pressure
 limit. *Energy Procedia*, 63, 3339-3346.
- 987 Kim, S., & Hosseini, S. A. (2015). Hydro-thermo-mechanical analysis during injection of cold
 988 fluid into a geologic formation. *International Journal of Rock Mechanics and Mining*989 *Sciences*, *77*, 220-236.

- 990 Koschel, D., Coxam, J. Y., Rodier, L., & Majer, V. (2006). Enthalpy and solubility data of CO₂
- 991 in water and NaCl (aq) at conditions of interest for geological sequestration. *Fluid Phase*992 *Equilibria*, 247(1), 107-120.
- Strogh, E., Nilsen, R., & Henningsen, R. (2012). Liquefied CO₂ Injection Modelling. *Energy Procedia*, *23*, 527-555.
- 995 LaForce, T., Ennis-King, J., & Paterson, L. (2015). Semi-analytical temperature and stress
- profiles for nonisothermal CO₂ injection. In *Proceedings of the World Geothermal Congress*, Melbourne, Australia, 19-25 April 2015.
- Le Quéré, C., Moriarty, R., Andrew, R. M., et al. (2015). Global carbon budget 2015. *Earth System Science Data*, 7(2), 349-396.
- 1000 Liebscher, A., Möller, F., Bannach, A., Köhler, S., Wiebach, J., Schmidt-Hattenberger, C.,
- 1001 Weiner, M., Pretschner, C., Ebert, K., & Zemke, J. (2013). Injection operation and
- 1002 operational pressure–temperature monitoring at the CO₂ storage pilot site Ketzin, Germany
- 1003 —Design, results, recommendations. *International Journal of Greenhouse Gas Control*,
 1004 15, 163-173.
- Lindeberg, E. (2011). Modelling pressure and temperature profile in a CO2 injection well. *Energy Procedia*, *4*, 3935-3941.
- Lu, J., Partin, J. W., Hovorka, S. D., & Wong, C. (2010). Potential risks to freshwater
 resources as a result of leakage from CO₂ geological storage: a batch-reaction experiment. *Environmental Earth Sciences*, 60(2), 335-348.
- 1010 Lu, M., & Connell, L. D. (2008). Non-isothermal flow of carbon dioxide in injection wells
 1011 during geological storage. *International journal of greenhouse gas control*, 2(2), 248-258.
- 1012 Lu, M., & Connell, L. D. (2014a). Transient, thermal wellbore flow of multispecies carbon
- 1013 dioxide mixtures with phase transition during geological storage. *International Journal of*
- 1014 *Multiphase Flow*, 63, 82-92.

- 1015 Lu, M., & Connell, L. D. (2014b). The transient behaviour of CO₂ flow with phase transition
- in injection wells during geological storage–Application to a case study. *Journal of Petroleum Science and Engineering*, 124, 7-18.
- 1018 Luo, Z., & Bryant, S. L. (2010). Influence of thermo-elastic stress on CO₂ injection induced
- 1019 fractures during storage. In SPE International Conference on CO₂ capture, storage, and
- 1020 *utilization*, New Orleans, Louisiana, 10-12 November 2010.
- Luo, Z., & Bryant, S. (2011). Influence of thermo-elastic stress on fracture initiation during
 CO₂ injection and storage. *Energy Procedia*, *4*, 3714-3721.
- 1023 Luo, Z., Bryant, S., & Meckel, T. (2013). Application of improved injection well temperature
- 1024 model to Cranfield measurements. *Energy Procedia*, *37*, 4128-4135.
- 1025 Luo, Z., & Bryant, S. (2013). Can we Overcome Thermo-elastic Limits on CO₂ Injection
 1026 Rates in Horizontal Wells?. *Energy Procedia*, *37*, 3299-3306.
- 1027 Luo, Z., & Bryant, S. (2014). Impacts of injection induced fractures propagation in CO₂
- geological sequestration—is fracturing good or bad for CO₂ sequestration. *Energy Procedia*,
 63, 5394-5407.
- 1030 Mathias, S. A., Gluyas, J. G., Oldenburg, C. M., & Tsang, C. F. (2010). Analytical solution for
- 1031 Joule–Thomson cooling during CO₂ geo-sequestration in depleted oil and gas reservoirs.
- 1032 International Journal of Greenhouse Gas Control, 4(5), 806-810.
- 1033 Mathias, S. A., Gluyas, J. G., González Martínez de Miguel, G. J., & Hosseini, S. A. (2011).
- 1034 Role of partial miscibility on pressure buildup due to constant rate injection of CO₂ into
- 1035 closed and open brine aquifers. *Water Resources Research*, 47(12), W12525.
- 1036 Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E.
- 1037 S., ... & Axelsson, G. (2016). Rapid carbon mineralization for permanent disposal of
- anthropogenic carbon dioxide emissions. *Science*, *352*(6291), 1312-1314.

McCoy, S. T., & Rubin, E. S. (2008). An engineering-economic model of pipeline transport of
 CO₂ with application to carbon capture and storage. *International Journal of Greenhouse*

1041 *Gas Control*, *2*(2), 219-229.

McCulloch, J., Gastineau, J., Bour, D. L., & Ravi, K. (2003). Life cycle modeling of wellbore
cement used for enhanced geothermal system development. *Geothermal Resources*

1044 Council Transactions, 27, 147-154.

- McPherson, B. J., Han, W. S., & Cole, B. S. (2008). Two equations of state assembled for
 basic analysis of multiphase CO₂ flow and in deep sedimentary basin conditions. *Computers & Geosciences*, *34*(5), 427-444.
- 1048 Miocic, J. M., Gilfillan, S., McDermott, C., & Haszeldine, R. S. (2013). Mechanisms for CO₂
- 1049 Leakage Prevention–A Global Dataset of Natural Analogues. *Energy Procedia*, 40, 320-1050 328.
- 1051 Möller, F., Liebscher, A., Martens, S., Schmidt-Hattenberger, C., & Streibel, M. (2014).
- Injection of CO₂ at ambient temperature conditions–pressure and temperature results of the
 "cold injection" experiment at the Ketzin pilot site. *Energy Procedia*, 63, 6289-6297.
- 1054 Munkejord, S. T., Jakobsen, J. P., Austegard, A., & Mølnvik, M. J. (2010). Thermo-and fluid-
- 1055 dynamical modelling of two-phase multi-component carbon dioxide mixtures.
 1056 *International Journal of Greenhouse Gas Control*, 4(4), 589-596.
- 1057 Nimtz, M., Klatt, M., Wiese, B., Kühn, M., & Joachim Krautz, H. (2010). Modelling of the
- 1058 CO₂ process-and transport chain in CCS systems—Examination of transport and storage
 1059 processes. *Chemie der Erde-Geochemistry*, *70*, 185-192.
- 1060 Nooner, S. L., Eiken, O., Hermanrud, C., Sasagawa, G. S., Stenvold, T., & Zumberge, M. A.
- 1061 (2007). Constraints on the in situ density of CO_2 within the Utsira formation from time-
- 1062 lapse seafloor gravity measurements. *International Journal of Greenhouse Gas Control*,
- 1063 1(2), 198-214.

- 1064 Nordbotten, J. M., Celia, M. A., & Bachu, S. (2004). Analytical solutions for leakage rates 1065 through abandoned wells. *Water Resources Research*, *40*(4).
- 1066 Nordbotten, J. M., Celia, M. A., Bachu, S., & Dahle, H. K. (2005). Semianalytical solution for
- 1067 CO2 leakage through an abandoned well. *Environmental science & technology*, 39(2), 602-1068 611.
- 1069 Nuñez-Lopez, V., Muñoz-Torres, J., & Zeidouni, M. (2014). Temperature monitoring using
 1070 Distributed Temperature Sensing (DTS) technology. *Energy Procedia*, 63, 3984-3991.
- 1071 Ochsner, K. (2008). Carbon dioxide heat pipe in conjunction with a ground source heat pump

1072 (GSHP). *Applied Thermal Engineering*, 28(16), 2077-2082.

- 1073 Oldenburg, C. M. (2007). Joule-Thomson cooling due to CO₂ injection into natural gas
 1074 reservoirs. *Energy Conversion and Management*, *48*(6), 1808-1815.
- 1075 Oldenburg, C. M., Doughty, C., Peters, C. A., & Dobson, P. F. (2012). Simulations of long1076 column flow experiments related to geologic carbon sequestration: effects of outer wall
 1077 boundary condition on upward flow and formation of liquid CO₂. *Greenhouse Gases:*1078 *Science and Technology*, 2(4), 279-303.
- 1079 Osselin, F., Fen-Chong, T., Fabbri, A., Lassin, A., Pereira, J. M., & Dangla, P. (2013).
- 1080 Dependence on injection temperature and on aquifer's petrophysical properties of the local
- stress applying on the pore wall of a crystallized pore in the context of CO2 storage in deep
- saline aquifers. *The European Physical Journal Applied Physics*, 64(02), 21101.
- Pan, L., Oldenburg, C. M., Wu, Y. S., & Pruess, K. (2009). Wellbore flow model for carbon
 dioxide and brine. *Energy Procedia*, 1(1), 71-78.
- 1085 Pan, L., Oldenburg, C. M., Pruess, K., & Wu, Y. S. (2011). Transient CO₂ leakage and
- injection in wellbore-reservoir systems for geologic carbon sequestration. *Greenhouse Gases: Science and Technology*, 1(4), 335-350.

- Pan, L., & Oldenburg, C. M. (2014). T2Well—an integrated wellbore–reservoir simulator. *Computers & Geosciences*, 65, 46-55.
- 1090 Pan, L., Freifeld, B., Doughty, C., Zakem, S., Sheu, M., Cutright, B., & Terrall, T. (2015).
- Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO₂ as the
 working fluid. *Geothermics*, 53, 100-113.
- 1093 Paterson, L., Lu, M., Connell, L., & Ennis-King, J. P. (2008). Numerical modeling of pressure1094 and temperature profiles including phase transitions in carbon dioxide wells. In *SPE*
- 1095 *Annual Technical Conference and Exhibition*. Society of Petroleum Engineers.
- 1096 Paterson, L., Ennis-King, J. P., & Sharma, S. (2010). Observations of thermal and pressure
- transients in carbon dioxide wells. In *SPE Annual Technical Conference and Exhibition*.
 Society of Petroleum Engineers.
- Pekot, L. J., Petit, P., Adushita, Y., Saunier, S., & De Silva, R. L. (2011). Simulation of twophase flow in carbon dioxide injection wells. *Offshore Europe*, SPE-144847-MS, 6-8
 September, Aberdeen, UK.
- Pool, M., Carrera, J., Vilarrasa, V., Silva, O., & Ayora, C. (2013). Dynamics and design of
 systems for geological storage of dissolved CO₂. *Advances in Water Resources*, *62*, 533542.
- Preisig, M., & Prévost, J. H. (2011). Coupled multi-phase thermo-poromechanical effects.
 Case study: CO₂ injection at In Salah, Algeria. *International Journal of Greenhouse Gas Control*, 5(4), 1055-1064.
- Pruess, K., & Garcia, J. (2002). Multiphase flow dynamics during CO₂ disposal into saline
 aquifers. *Environmental Geology*, 42(2-3), 282-295.
- Pruess, K. (2005a). Numerical studies of fluid leakage from a geologic disposal reservoir for
 CO₂ show self-limiting feedback between fluid flow and heat transfer. *Geophysical research letters*, 32(14).

- Pruess, K. (2005b). Numerical simulations show potential for strong nonisothermal effects
 during fluid leakage from a geologic disposal reservoir for CO₂. *Dynamics of Fluids and*
- 1115 *Transport in Fractured Rock*, 81-89.
- Pruess, K. (2008). On CO₂ fluid flow and heat transfer behavior in the subsurface, following
 leakage from a geologic storage reservoir. *Environmental Geology*, 54(8), 1677-1686.
- Pruess, K. (2011). Integrated modeling of CO₂ storage and leakage scenarios including
 transitions between super-and subcritical conditions, and phase change between liquid and
 gaseous CO₂. *Greenhouse Gases: Science and Technology*, 1(3), 237-247.
- Randolph, J. B., & Saar, M. O. (2011a). Combining geothermal energy capture with geologic
 carbon dioxide sequestration. *Geophysical Research Letters*, *38*(10).
- 1123 Randolph, J. B., & Saar, M. O. (2011b). Coupling carbon dioxide sequestration with
 1124 geothermal energy capture in naturally permeable, porous geologic formations:
 1125 Implications for CO₂ sequestration. *Energy Procedia*, *4*, 2206-2213.
- 1126 Randolph, J. B., Saar, M. O., & Bielicki, J. (2013). Geothermal energy production at geologic
- 1127 CO₂ sequestration sites: impact of thermal drawdown on reservoir pressure. *Energy*1128 *Procedia*, *37*, 6625-6635.
- 1129 Rayward-Smith, W. J., & Woods, A. W. (2011). Some implications of cold CO₂ injection into
 1130 deep saline aquifers. *Geophysical Research Letters*, *38*(6).
- Redlich, O., & Kwong, J. N. (1949). On the thermodynamics of solutions. V. An equation of
 state. Fugacities of gaseous solutions. *Chemical reviews*, 44(1), 233-244.
- 1133 Reinsch, T., Henninges, J., & Ásmundsson, R. (2013). Thermal, mechanical and chemical
- 1134 influences on the performance of optical fibres for distributed temperature sensing in a hot
- 1135 geothermal well. *Environmental Earth Sciences*, *70*(8), 3465-3480.

- 1136 Réveillère, A., & Rohmer, J. (2011). Managing the risk of CO₂ leakage from deep saline
 aquifer reservoirs through the creation of a hydraulic barrier. *Energy Procedia*, *4*, 31871138 3194.
- 1139 Réveillère, A., Rohmer, J., & Manceau, J. C. (2012). Hydraulic barrier design and
 applicability for managing the risk of CO₂ leakage from deep saline aquifers. *International Journal of Greenhouse Gas Control*, 9, 62-71.
- 1142 Roy, P., Walsh, S. D., Morris, J. P., Iyer, J., Hao, Y., Carroll, S., Gawell, K., Todorovic, J., &
- 1143 Torsæter, M. (2016). Studying the Impact of Thermal Cycling on Wellbore Integrity during
- 1144 CO₂ Injection. *Proceedings of the American Rock Mechanics Association*, paper 16-0668,
- 1145 Houston, Texas, 26-29 June, 2016.
- 1146 Rutqvist, J., & Tsang, C. F. (2002). A study of caprock hydromechanical changes associated 1147 with CO₂-injection into a brine formation. *Environmental Geology*, *42*(2-3), 296-305.
- 1148 Rutqvist, J., Liu, H. H., Vasco, D. W., Pan, L., Kappler, K., & Majer, E. (2011). Coupled non-
- isothermal, multiphase fluid flow, and geomechanical modeling of ground surfacedeformations and potential for induced micro-seismicity at the In Salah CO₂ storage
- 1151 operation. *Energy Procedia*, *4*, 3542-3549.
- Rutqvist, J. (2012). The geomechanics of CO₂ storage in deep sedimentary formations. *Geotechnical and Geological Engineering*, *30*(3), 525-551.
- 1154 Saaltink, M. W., Vilarrasa, V., De Gaspari, F., Silva, O., Carrera, J., & Rötting, T. S. (2013). A
- 1155 method for incorporating equilibrium chemical reactions into multiphase flow models for
- 1156 CO₂ storage. *Advances in Water Resources*, 62, 431-441.
- 1157 Sagu, O. L., & Pao, W. K. (2013). In-situ stress perturbation due to temperature around
- borehole during carbon injection. *Asian Journal of Applied Sciences*, 6(1), 40-49.

- Sasaki, K., Yasunami, T., & Sugaia, Y. (2009). Prediction model of bottom hole temperature
 and pressure at deep injector for CO₂ sequestration to recover injection rate. *Energy Procedia*, 1(1), 2999-3006.
- 1162 Sato, K., Mito, S., Horie, T., Ohkuma, H., Saito, H., Watanabe, J., & Yoshimura, T. (2009). A
- 1163 monitoring framework for assessing underground migration and containment of carbon 1164 dioxide sequestered in an onshore aquifer. *Energy Procedia*, *1*(1), 2261-2268.
- Shi, X., & Che, D. (2009). A combined power cycle utilizing low-temperature waste heat and
 LNG cold energy. *Energy conversion and management*, *50*(3), 567-575.
- Silva, O., Carrera, J., & Vilarrasa, V. (2011). An efficient injection concept for the geological
 storage of CO₂. 6th *Trondheim CCS Conference*, Trondheim, Norway, 14-16 June 2011.
- 1169 Singh, A. K., Goerke, U. J., & Kolditz, O. (2011a). Numerical simulation of non-isothermal
- compositional gas flow: application to carbon dioxide injection into gas reservoirs. *Energy*,
 36(5), 3446-3458.
- 1172 Singh, A. K., Böttcher, N., Wang, W., Park, C. H., Görke, U. J., & Kolditz, O. (2011b). Non-
- 1173 isothermal effects on two-phase flow in porous medium: CO₂ disposal into a saline aquifer.
- 1174 *Energy Procedia*, 4, 3889-3895.
- 1175 Singh, A. K., Baumann, G., Henninges, J., Görke, U. J., & Kolditz, O. (2012). Numerical
- analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: a
- theoretical case study for the Altmark gas field. *Environmental Earth Sciences*, 67(2), 497-509.
- 1179 Skinner, L. (2003). CO₂ blowouts: An emerging problem. *World Oil*, 224(1), 38-42.
- 1180 Skovholt, O. (1993). CO₂ transportation system. *Energy Conversion and Management*, 34(9),
 1181 1095-1103.
- 1182 Song, J., & Zhang, D. (2012). Comprehensive review of caprock-sealing mechanisms for
- 1183 geologic carbon sequestration. *Environmental science* & *technology*, 47(1), 9-22.

- Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid
 region from the triple-point temperature to 1100 K at pressures up to 800 MPa. *Journal of physical and chemical reference data*, *25*(6), 1509-1596.
- Spycher, N., Pruess, K., & Ennis-King, J. (2003). CO₂-H₂O mixtures in the geological
 sequestration of CO₂. I. Assessment and calculation of mutual solubilities from 12 to 100°
- 1189 C and up to 600 bar. *Geochimica et Cosmochimica Acta*, 67(16), 3015-3031.
- 1190 Spycher, N., & Pruess, K. (2005). CO₂-H₂O mixtures in the geological sequestration of CO₂.
- II. Partitioning in chloride brines at 12–100° C and up to 600 bar. *Geochimica et Cosmochimica Acta*, 69(13), 3309-3320.
- 1193 Svensson, R., Odenberger, M., Johnsson, F., & StrÖmberg, L. (2004). Transportation systems
- 1194 for CO₂—application to carbon capture and storage. *Energy Conversion and Management*,
 1195 45(15), 2343-2353.
- Tao, Q., Bryant, S. L., & Meckel, T. A. (2013). Modeling above-zone measurements of
 pressure and temperature for monitoring CCS sites. *International Journal of Greenhouse Gas Control, 18*, 523-530.
- Taylor, J., & Bryant, S. (2014). Quantifying thermally driven fracture geometry during CO₂
 storage. *Energy Procedia*, 63, 3390-3404.
- Teodoriu, C. (2015). Why and When Does Casing Fail in Geothermal Wells: a Surprising
 Question?. *Proceedings of World Geothermal Congress 2015*, Melboune, Australia, 19-25
 April 2015.
- Tillner, E., Kempka, T., Nakaten, B., & Kühn, M. (2013). Brine migration through fault
 zones: 3D numerical simulations for a prospective CO₂ storage site in Northeast Germany.
- 1206 International Journal of Greenhouse Gas Control, 19, 689-703.
- 1207 Trautz, R. C., Pugh, J. D., Varadharajan, C., Zheng, L., Bianchi, M., Nico, P. S., Spycher, N.
- 1208 F., Newell, D. L., Esposito, R. A., Wu, Y., Dafflon, B., Hubbard, S. S., & Birkholzer, J. T.

- 1209 (2012). Effect of dissolved CO₂ on a shallow groundwater system: A controlled release
 1210 field experiment. *Environmental Science & Technology*, 47(1), 298-305.
- 1211 Tutolo, B. M., Kong, X. Z., Seyfried, W. E., & Saar, M. O. (2015). High performance reactive
- 1212 transport simulations examining the effects of thermal, hydraulic, and chemical (THC)
- 1213 gradients on fluid injectivity at carbonate CCUS reservoir scales. *International Journal of*
- 1214 *Greenhouse Gas Control*, 39, 285-301.
- 1215 Vasco, D. W., Ferretti, A. & Novali, F. (2008). Reservoir monitoring and characterization
 1216 using satellite geodetic data: interferometric synthetic aperture radar observations from the
 1217 Krechba field, Algeria. *Geophysics*, *73*(6), WA113–WA122.
- 1218 Verdon, J. P., Kendall, J. M., White, D. J., & Angus, D. A. (2011). Linking microseismic event
- observations with geomechanical models to minimise the risks of storing CO₂ in geological
 formations. *Earth and Planetary Science Letters*, 305(1), 143-152.
- 1221 Vilarrasa, V., Silva, O., Carrera, J., & Olivella, S. (2013). Liquid CO₂ injection for geological
 1222 storage in deep saline aquifers. *International Journal of Greenhouse Gas Control*, *14*, 84-
- 1223 96**.**
- 1224 Vilarrasa, V., Olivella, S., Carrera, J., & Rutqvist, J. (2014). Long term impacts of cold CO₂
- 1225 injection on the caprock integrity. *International Journal of Greenhouse Gas Control*, 24, 1-1226 13.
- 1227 Vilarrasa, V., Rutqvist, J., & Rinaldi, A. P. (2015). Thermal and capillary effects on the
 1228 caprock mechanical stability at In Salah, Algeria. *Greenhouse Gases: Science and*1229 *Technology*, 5, 449-461.
- 1230 Vilarrasa, V., & Carrera, J. (2015). Geologic carbon storage is unlikely to trigger large
 1231 earthquakes and reactivate faults through which CO2 could leak. *Proceedings of the*1232 *National Academy of Sciences*, *112*(19), 5938-5943.

- 1233 Vilarrasa, V., & Laloui, L. (2015). Potential fracture propagation into the caprock induced by
 1234 cold injection in normal faulting stress regimes. *Geomechanics for Energy and the*1235 *Environment*, *2*, 22-31.
- 1236 Vilarrasa, V., & Laloui, L. (2016). Impacts of thermally induced stresses on fracture stability
 1237 during geological storage of CO₂. *Energy Procedia*, *86*, 411-419.
- 1238 Vilarrasa, V. (2016). The role of the stress regime on microseismicity induced by overpressure
 1239 and cooling in geologic carbon storage. *Geofluids*, doi: 10.1111/gfl.12197
- Wang, H., Shi, X., & Che, D. (2013). Thermodynamic optimization of the operating
 parameters for a combined power cycle utilizing low-temperature waste heat and LNG
- 1242 cold energy. *Applied Thermal Engineering*, 59(1), 490-497.
- 1243 White, C.M., Smith, D.H., Jones, K.L., Goodman, A.L., Jikich, S.A., LaCount, R.B., DuBose,
- 1244 S.B., Ozdemir, E., Morsi, B.I., & Schroeder, K.T., (2005). Sequestration of carbon dioxide
- in coal with enhanced coalbed methane recovery a review. *Energy & Fuels 19*, 659-724.
- 1246 White, J.A., Chiaramonte, L., Ezzedine, S., Foxall, W., Hao, Y., Ramirez, A., & McNab, W.
- 1247 (2014). Geomechanical behaviour of the reservoir and caprock system at the In Salah CO2
- storage project. Proceedings of the National Academy of Sciences, *111*, 8747–8752.
- 1249 Wiese, B., Nimtz, M., Klatt, M., & Kühn, M. (2010). Sensitivities of injection rates for single
- 1250 well CO₂ injection into saline aquifers. *Chemie der Erde-Geochemistry*, *70*, 165-172.
- 1251 Wu, Y., & Bryant, S. L. (2014). Optimization of field-scale surface dissolution with 1252 thermoelastic constraints. *Energy Procedia*, *63*, 4850-4860.
- 1253 You, H., Seo, Y., Huh, C., & Chang, D. (2014). Performance analysis of cold energy recovery
- from CO₂ injection in ship-based Carbon Capture and Storage (CCS). *Energies*, 7(11),
 7266-7281.

- 1256 Zeidouni, M., Nicot, J. P., & Hovorka, S. D. (2014). Monitoring above-zone temperature
 1257 variations associated with CO₂ and brine leakage from a storage aquifer. *Environmental*1258 *Earth Sciences*, 72:1733–1747.
- 1259 Zevenhoven, R., Fagerlund, J., & Songok, J. K. (2011). CO₂ mineral sequestration:
 1260 developments toward large-scale application. *Greenhouse Gases: Science and Technology*,
 1261 *1*(1), 48-57.
- Zhang, W., Li, Y., Xu, T., Cheng, H., Zheng, Y., & Xiong, P. (2009). Long-term variations of
 CO₂ trapped in different mechanisms in deep saline formations: a case study of the
- 1264 Songliao Basin, China. *International journal of greenhouse gas control*, 3(2), 161-180.
- 1265 Zhang, Z. X., Wang, G. X., Massarotto, P., & Rudolph, V. (2006). Optimization of pipeline
- transport for CO₂ sequestration. *Energy Conversion and Management*, 47(6), 702-715.
- 1267 Zhao, R., & Cheng, J. (2015). Non-isothermal modeling of CO₂ injection into saline aquifers
 1268 at a low temperature. *Environmental Earth Sciences*, *73*(9), 5307-5316.