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Abstract

We propose a hierarchy for approximate in-
ference based on the Dobrushin, Lanford,
Ruelle (DLR) equations. This hierarchy in-
cludes existing algorithms, such as belief
propagation, and also motivates novel algo-
rithms such as factorized neighbors (FN) al-
gorithms and variants of mean field (MF) al-
gorithms. In particular, we show that ex-
trema of the Bethe free energy correspond to
approximate solutions of the DLR equations.
In addition, we demonstrate a close connec-
tion between these approximate algorithms
and Gibbs sampling. Finally, we compare
and contrast various of the algorithms in the
DLR hierarchy on spin-glass problems. The
experiments show that algorithms higher up
in the hierarchy give more accurate results
when they converge but tend to be less sta-
ble.

1 INTRODUCTION

The design and analysis of approximate inference al-
gorithms for large-scale models remains one of the cen-
tral problems in the graphical models field. Much
progress has been made in recent years by taking a
variational point of view—the exact inference problem
(e.g., marginalization or maximization) is expressed as
an optimization problem, an approximation is made
to the optimization functional or the constraint set
(or both), and approximate inference algorithms are
expressed in terms of the minimization of the per-
turbed problem. Several algorithms that originally en-
tered the graphical model field as heuristics—including
mean field (MF) algorithms and belief propagation
(BP)—have been usefully recast within a variational
framework (Amit, 1992, Yedidia et al., 2001). The
variational framework has also been used to derive a

variety of new algorithms.

There are, however, some limitations to the variational
point of view. Consider first the (loopy) BP algorithm,
one of the most successful approximate inference al-
gorithms. Although BP can be viewed variationally
as the minimization of the Bethe free energy (Yedidia
et al., 2001), it is not the case that the BP iteration
is a descent step in Bethe free energy, and thus its
motivation from the variational framework is not en-
tirely straightforward. Moreover, although algorithms
that are descent algorithms can be developed, they do
not necessarily outperform BP (Yuille, 2002, Welling
and Teh, 2001, Kappen and Wiegerinck, 2002, Heskes
et al., 2003, Ikeda et al., 2004), a fact which suggests
that the behavior of BP may not be entirely under-
standable from its characterization as a variational al-
gorithm. Second, the characterization of algorithms
as variational has thus far not proved very helpful in
suggesting links between those algorithms and Markov
chain Monte Carlo (MCMC), the other main source of
approximate inference algorithms. Such links would
be helpful in the design of hybrid algorithms. Finally,
although the variational framework naturally suggests
certain kinds of approximations, there may be other
approximations that are also worth exploring.

This paper presents a framework for the design and
analysis of approximate inference algorithms that is
complementary to the variational framework. The
framework is based on a linear system of equations
known as the Dobrushin, Lanford and Ruelle (DLR)
equations (Georgii, 1988, Parisi, 1988). Solving these
equations exactly is tantamount to performing exact
inference, a task that is deemed impossible for the
purposes of this paper. Instead, we design inference
algorithms by choosing subsets of the DLR equations.
Special cases of this general approach already exist in
the literature (Leisink and Kappen, 2001, Pretti and
Pelizzola, 2003), but the framework has not yet been
exploited systematically as a source of inference al-
gorithms. In the current paper we show that many



existing approximate inference algorithms, including
BP, have fixed points corresponding to solutions of re-
duced forms of the DLR equations. In addition, we
prove that all extrema of the Bethe free energy corre-
spond to such solutions; this implies that the descent
algorithms mentioned above also fit into this frame-
work. We also show that a novel class of algorithms
that we refer to as factorized neighbor (FN) algorithms
arise naturally from the framework. Finally, we show
how the framework allows us to design novel variants
of MF algorithms.

We also show that the DLR framework has a natural
relationship to MCMC algorithms, specifically to the
Gibbs sampler. This relationship has long been known
for MF algorithms (Amit, 1992)—the current paper
extends it to BP and other algorithms.

The paper is organized as follows. Section 2 presents
the DLR equations and describes an approximation
hierarchy based on these equations. Section 3 shows
how the resulting algorithms can be related to MCMC
methods. Section 4 provides a variational interpreta-
tion of our results. Section 5 presents numerical results
and we present our conclusions in Section 6.

2 THE DLR EQUATIONS AND

THEIR APPROXIMATIONS

The DLR equations express the dependencies of sub-
sets of nodes on their Markov blanket:

P (xR) =
∑

xN(R)

P (xR|xN(R))P (xN(R)), ∀R ∈ Λ, (1)

where R is an arbitrary subset of nodes, where Λ is
the set of all such subsets (i.e., a power set), and where
N(R) is the neighborhood (i.e., Markov blanket) of the
subset R.

The DLR equations are a set of linear equations for
the unknowns P (xR). Solving these equations is im-
practical because of the cardinality of Λ; instead, we
approximate them as follows.

First, we restrict the power set Λ to a subset ΛA

and retain only the equations corresponding to sub-
sets R ∈ ΛA. Second, we define new variables bR(xR)
and BN(R)(xN(R)) to replace the marginal probabil-
ities P (xR) and P (xN(R)) on the left-hand side and
right-hand side in the DLR equations. Third, we de-
fine the variables {BN(R)(xN(R))} as functions of the
variables {bR(xR)}—different choices of functional de-
pendence yield different approximation algorithms.

This procedure yields a set of equations that we will

refer to as the reduced DLR equations:

bR(xR) =
∑

xN(R)

P (xR|xN(R))BN(R)(xN(R)), ∀R ∈ ΛA.

(2)
The reduced DLR equations are a generally nonlinear
set of equations for the variables bR(xR). As we will
see, they generally have multiple solutions.

There is also a natural class of iterative update rules
whose fixed points are solutions of equation (2). These
update rules are of form:

bt+1
R (xR) =

∑

xN(R)

P (xR|xN(R))B
t
N(R)(xN(R)), ∀R ∈ ΛA,

(3)
where the superscript t labels the iteration.

This framework yields a hierarchy of approximation
algorithms, from those that retain only singleton nodes
in ΛA to those that retain larger subsets of nodes. In
the next three sections we discuss algorithms that arise
at several levels of this hierarchy.

2.1 LEVEL 1: THE FACTORIZED

NEIGHBORS ALGORITHM

In the simplest approximation the set ΛA contains only
singletons: ΛA = {i}, where i ranges over the nodes
of the graph. We define variables bi(xi) corresponding
to the elements of ΛA.

We obtain an approximation that we refer to as the
factorized neighbors (FN) algorithm by defining the
neighborhood distribution as the factorized expression
BN(i)(xN(i)) =

∏

j∈N(i) bj(xj).

Given this definition, the reduced DLR equations are
satisfied when:

bi(xi) =
∑

xN(i)

P (xi|xN(i))B(xN(i)) , (4)

where here and elsewhere in the paper we drop the
subscript on the B variables to avoid cluttering the
notation. The corresponding iterative update takes
the form:

bt+1
i (xi) =

∑

xN(i)

P (xi|xN(i))B
t(xN(i))

=
∑

xN(i)

P (xi|xN(i))
∏

j∈N(i)

btj(xj) . (5)

It is clear that fixed points of the update rules (5) are
solutions of the reduced DLR equations (4).

Equation (4) has appeared previously in the physics
literature as the basis for the so-called “hard spin”
mean field equations (see references in Pretti and Peliz-
zola (2003)).



2.2 LEVEL 2: BELIEF PROPAGATION

AND ITS VARIANTS

The next level of the hierarchy is to set ΛA to con-
tain singletons and pairs of nodes; formally, ΛA =
{i, (i, j)}. This involves defining variables bi(xi) and
bij(xi, xj). As in belief propagation, these variables
are to be viewed as approximations to marginal prob-
abilities, and we do not require that they are consistent
during the evolution of the algorithm.

We define the DLR neighborhood approximations us-
ing the Bethe approximations:

B(xN(i)) =
∑

xi

B(xi, xN(i)),

B(xN(i,j)) =
∑

xi,xj

B(xi, xj , xN(i,j)) , (6)

where

B(xi, xN(i)) =
1

Zi
bi(xi)

∏

j∈N(i)

bij(xi, xj)

bi(xi)

=
1

Zi

∏

j∈N(i) bij(xi, xj)

{bi(xi)}ni−1
, (7)

B(xi, xj , xN(i,j)) =
1

Zij
bij(xi, xj)

∏

k∈N(i)/j

bik(xi, xk)

bi(xi)

∏

l∈N(j)/i

bjl(xj , xl)

bj(xj)
. (8)

The quantities Zi, Zij are normalization constants.
Observe that if the singleton and pairwise distributions
are locally consistent (i.e.,

∑

xj
bij(xi, xj) = bi(xi))

then the normalization constants become unnecessary
and can be set to 1.

These approximations are exact if the graph is a tree,
and they can be motivated as a tree-based reparame-
terization of the joint distribution (Wainwright et al.,
2003).

The iterative update equations are of form:

bt+1
ij (xi, xj) =

∑

xN(i,j)

P (xi, xj |xN(i,j))B
t(xN(i,j))

bt+1
i (xi) =

∑

xN(i)

P (xi|xN(i))B
t(xN(i)) . (9)

We now restrict ourselves to distributions P (x) which
have only singleton and pairwise potentials, {Ψi(.)}
and {Ψij(., .)}:

P (x) = (1/Z)
∏

i

Ψi(xi)
∏

i,j

Ψij(xi, xj) . (10)

Theorem 1. The update equations (9) for the level
2 approximation correspond to the parallel version of
the BP algorithm. The fixed points of the update algo-
rithm (9) correspond to solutions of the reduced DLR
equations:

bij(xi, xj) =
∑

xN(i,j)

P (xi, xj |xN(i,j))B(xN(i,j)) ,

bi(xi) =
∑

xN(i)

P (xi|xN(i))B(xN(i)) . (11)

Proof. It is known that BP can be ex-
pressed as the marginalizations bt+1

ij (xi, xj) =
∑

xN(i,j)
Bt(xi, xj , xN(i,j)) and bt+1

i (xi) =
∑

xN(i)
Bt(xi, xN(i)); see Wainwright et al. (2003). In

Appendix A we derive this result as a consequence of
the fact that {bi(.)} and {bij(., .)} obey the so-called
e-constraint. The e-constraint also implies (see Ap-
pendix A) that Bt(xi, xN(i)) = P (xi|xN(i))B

t(xN(i))
and Bt(xi, xj , xN(i,j)) = P (xi, xj |xN(i,j))B

t(xN(i,j)).
The update rule (9) follows, provided BP is performed
in parallel.

The fixed points of belief propagation are known
to correspond to extrema of the Bethe free en-
ergy (Yedidia et al., 2001). We now prove that any
extremum of the Bethe free energy corresponds to a
solution of the reduced DLR equations.

Theorem 2. Extrema of the Bethe free energy corre-
spond to solutions of the level 2 approximation to the
DLR equations.

Proof. The extrema of the Bethe free energy
obey the e-constraint and the m-constraint
(see Appendix A). The e-constraint implies
that P (xi|xN(i))B(xN(i)) = B(xi, xN(i)) and
P (xi, xj |xN(i,j))B(xN(i,j)) = B(xi, xj , xN(i,j)). The
m-constraint implies that bi(xi) =

∑

xN(i)
B(xi, xN(i))

and bij(xi, xj) =
∑

xN(i,j)
B(xi, xj , xN(i,j)). (Because

the factors bil(xi, xl)/bi(xi) become conditional dis-
tributions b(xl|xi) which obey

∑

xl
b(xl|xi) = 1). The

result follows.

This result implies that all algorithms which converge
to extrema of the Bethe free energy (Yuille, 2002,
Welling and Teh, 2001, Kappen and Wiegerinck, 2002,
Wainwright et al., 2003, Heskes et al., 2003, Ikeda
et al., 2004) must also converge to solutions of the
reduced DLR equations.

Theorem 2 also implies that there can be many solu-
tions to the reduced DLR equations, because there can
be many extrema of the Bethe free energy.



2.3 LEVEL 1.5: THE CP AND FN2

ALGORITHMS

We obtain other approximations, intermediate be-
tween FN and BP, by setting ΛA = {(i, j)} and only
representing the pairwise marginals bij(xi, xj) (the sin-
gletons bi(xi) are obtained by marginalization). We
use the update rule from equation (9), bt+1

ij (xi, xj) =
∑

xN(i,j)
P (xi, xj |xN(i,j))B

t(xN(i,j)).

There are two natural choices for the form of the neigh-
borhood distribution B(xN(i,j)).

The first choice is to use the Bethe approximation (8)
where the singleton distributions bi(xi) are replaced
by

∑

xj
bij(xi, xj). This rederives the CP algorithm

of Pretti and Pelizzola (2003). Pretti and Peliz-
zola (2003) compare the CP algorithm to BP and
CCCP (Yuille, 2002), showing that CP performs well
and empirically has good convergence properties.

The second choice is to use the factorized neighbor
approximation B(xN(i,j)) =

∏

k∈N(i,j) bk(xk) where

the singleton distributions are obtained by bi(xi) =
∑

j∈N(i)

∑

xj
bij(xi, xj)/|N(i)| and |N(i)| is the num-

ber of neighbors of the ith node.

We call this algorithm Second-order Factorized Neigh-
bors (FN2). The update rule for the pairwise
marginals is:

bt+1
ij (xi, xj) =

∑

xN(i,j)

P (xi, xj |xN(i,j))
∏

k∈N(i,j)

btk(xk) .

In Section 5.2 we report experimental results for this
algorithm.

2.4 MEAN FIELD ALGORITHMS

Surprisingly, mean field (MF) algorithms have not yet
appeared in our hierarchy. Traditionally, MF algo-
rithms would be considered the first level approxima-
tion with belief propagation as the second level. Yet
our approach has replaced the MF approximation by
the FN approximation.

We now show that the MF approximation can be un-
derstood as an alternative approximation to the DLR
equations.

The standard variational derivation of MF algorithms
takes as its point of departure the following free energy
functional:

Fmf [b] =
∑

x

{
∏

i

bi(xi)} log
{
∏

i bi(xi)}

P (x)
. (12)

Theorem 3. The extrema of the mean field free en-

ergy Fmf [b] obey the equations:

log bj(xj) =
∑

x/j

logP (xj |xN(j))
∏

k∈N(j)

bk(xk) + cj ,

(13)
where cj is a normalization constant and where x/j

denotes the configuration of all nodes except node j.

Proof. Express log
{
∏

i bi(xi)}

P (x) as log
bj(xj)

P (xj |xN(j))
+

log
∏

k 6=j bk(xk)

P (x/j)
. Differentiate with respect to bj(xj) and

the result follows.

This has a natural update rule:

log bt+1
j (xj) =

∑

x/j

∏

k∈N(j)

btk(xk) logP (xj |xN(j)) + cj .

(14)

Theorem 3 shows that MF gives an alternative approx-
imation to the DLR equations. But it differs from our
previous approximations by containing logarithms.

This motivates alternative MF methods to approx-
imate the DLR equations. For simplicity, we will
present them for the Ising spin model:

PI(x) = (1/Z)e
∑

ij θijxixj+
∑

i φixi , (15)

where xi ∈ {0, 1}. For this model, we have the follow-
ing result:

Theorem 4. The MF algorithm (14) for the Ising
spin model PI(x) can be expressed in the form:

bt+1
i (xi) = PI



xi|
∑

xN(i)

xN(i)B
t(xN(i))



 , (16)

with Bt(xN(i)) =
∏

j∈N(i) b
t
j(xj).

Proof. The conditional distribution for the Ising model
is

PI(xj |xN(j)) = eφjxj+xj

∑

i θijxi/Z[{xi : i 6= j}]. (17)

Substituting into the MF update equation (14) gives
the standard MF update rule for the Ising spin model:

bt+1
j (xj) =

eφjxj+
∑

i θijxj

∑

x̂i
x̂ib

t
i(x̂i)

∑

x̂j
eφj x̂j+

∑

i θij x̂j

∑

x̂i
x̂ibt

i(x̂i)
. (18)

This equation can be readily re-expressed as equa-
tion (16).

The presentation of the MF algorithm as an approx-
imation to the DLR equations for singletons moti-
vates a second-order MF (MF2) algorithm for the Ising
model by analogy to equation (16). We set

bt+1
i (xi) =

∑

xj

P (xi, xj |
∑

xN(i,j)

xN(i,j)B
t(xN(i,j))),

(19)



where B(xN(i,j)) is the factorized neighbors distribu-
tion

∏

k∈N(i)/j bk(xk)
∏

l∈N(j)/i bl(xl).

This can be re-expressed as

b̃t+1
i =

1

|N(i)|

∑

k∈N(i)

1

Zt
ik

×

∑

xk

exp(φi + φkxk + θikxk +
∑

j∈N(i,k)

θij b̃
t
j) ,

(20)

where b̃i = bi(Xi = 1) and Zt
ik =

∑

xi,xk
exp(φixi +

φkxk + θikxixk +
∑

j∈N(i,k) θij b̃
t
j).

3 MCMC,

CHAPMAN-KOLMOGOROV,

AND THE GIBBS SAMPLER

We now show that the natural update rule (3) for the
reduced DLR equations corresponds to a deterministic
approximation to Gibbs sampling.

The update rule for a Markov Chain is given by the
Chapman-Kolmogorov equations:

µt+1(x) =
∑

x′

K(x|x′)µt(x′), (21)

where K(x|x′) is the transition kernel. The kernel is
chosen to satisfy the detailed balance conditions

K(x|x′)P (x′) = K(x′|x)P (x). (22)

MCMC consists of simulating equation (21) by repeat-
edly drawing samples from the transition kernel. Pro-
vided weak conditions apply, these are guaranteed to
converge to samples from the distribution P (x).

The Gibbs sampler is KR(x|x′) =
P (xR|x

′
N(R))δx/r,x′

/r
. It can be checked that it

satisfies the detailed balance equations (22).

Substituting the Gibbs sampler into the Chapman-
Kolmogorov equations (21) and marginalizing yields
the update equations:

µt+1(xR) =
∑

x′
N(R)

P (xR|x
′
N(R))µ

t(x′N(R)). (23)

Observe that these update equations are identical
to those obtained by iterating the reduced DLR
equations—cf. equation (3)—provided we replace
µ(xR) by b(xR) and µ(xN(R)) by B(xN(R)). This gives:

bt+1(xR) =
∑

x′
N(R)

P (xR|x
′
N(R))B

t(x′N(R)) ∀R ∈ ΛA.

(24)

This shows that our approximation algorithms can
be viewed as a deterministic approximation to the
Gibbs sampler. This generalizes a result for MF meth-
ods (Amit, 1992). In particular, we obtain:

Theorem 5. The parallel BP update is a determinis-
tic version of the Chapman-Kolmogorov equations us-
ing the Gibbs sampler and the Bethe approximations
for the neighborhood distributions.

4 VARIATIONAL PRINCIPLES

Although we have motivated the DLR framework as
an alternative to the variational framework, the two
frameworks are complementary and indeed it is use-
ful to attempt to develop a variational perspective
on the algorithms that result from the reduced DLR
equations. One particularly natural choice of varia-
tional principle to capture solutions of the reduced
DLR equations are weighted sums of Kullback-Leibler
divergences (WSKL):

Fwskl[b] =
∑

R

αR

∑

xR

bR(xR) log
bR(xR)

∑

xN(R)
P (xR|xN(R))B(xN(R))

.

(25)

It is straightforward to show that the extrema of
the WSKL (25) correspond to the fixed points
of our update algorithms—provided the {αR} are
positive. This is because fixed points b∗R(xR) of
our algorithms satisfy the reduced DLR equations,
b∗R(xR) =

∑

xN(R)
P (xR|xN(R))B

∗(xN(R)), and hence

Fwskl[b
∗] = 0. This is the smallest value that Fwlk

can take (provided the {αR} are positive) and so is an
extremum of Fwlk.

Although this suggests that the weights {αR} should
be chosen to be positive, by analogy to the Bethe and
Kikuchi free energies it may also be useful to allow
some of the weights to be negative. In fact we can
also show that fixed points of our update equations
correspond to extrema of Fwskl even when the weights
can take negative values.

5 EMPIRICAL RESULTS

Many of the algorithms that we have discussed have
already been the subject of extensive numerical com-
parisons. In this section we present a brief selection
of additional empirical results that help to situate the
novel algorithms that we have discussed.



5.1 PHASE TRANSITIONS

One way to compare the different approximations is by
using them to predict the critical temperature for the
celebrated two-dimensional Ising Spin Model (Parisi,
1988). The model can be thought of an infinite square
grid with binary random variables si = ±1 and joint

distribution exp
(

∑

(ij) Jijsisj/t
)

/Z. There is a criti-

cal temperature above which the averaged spin is zero
and below which there is a spontaneous magnetization.
The critical temperature can be found by studying the
fixed point equations assuming spatial homogeneity:
Jij = 1 for all neighbors and Jij = 0 otherwise. This
model has been exactly solved and the critical tem-
perature is known to be tc = 2.269. The critical tem-
perature obtained by the MF approximation is much
higher: tMF = 4, the critical temperature obtained by
the FN/BP is tFN = 3.089/tBP = 2.885 (see Parisi,
1988). We solve the fixed point equations for the two
novel approximations and obtain tFN2 = 3.025 and
tMF2 = 3.776. This shows that the FN is a significant
improvement over MF2, which is a small improvement
compared to MF. Similarly FN2 improves over FN.

5.2 NUMERICAL RESULTS
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Figure 1: The left panel plots the L1 errors of FN
(circles) and FN2 (stars) against the errors for BP,
for different realizations of the parameters of an Ising
model. The right panel shows the corresponding re-
sults for MF (circles) and MF2 (stars).

In this section we present numerical results for ap-
proximate inference for the Ising model as defined in
equation (15). We experiment with FN, FN2, MF,
MF2 and BP on a two-dimensional grid with peri-
odic boundary conditions (i.e., a torus). The inter-
action weights, θij , are drawn from a Gaussian distri-

bution with zero mean. The singleton weights φi are
also drawn from a zero-mean Gaussian and are then
shifted so that the average of the singleton marginals
is bi = 1/2. We allow the algorithms to iterate until
convergence, assessing convergence by comparing the
difference between marginals in consecutive iterations
and stopping when this value is less than value 10−6.
(In any case we stop the algorithm when 106 iterations
have been performed.)

We start with experiments in a regime that we call
the “easy regime,” in which BP converges for almost
all random realization of the parameters, and in which
the resulting estimates are good estimates of the true
marginals. Specifically, both the interaction weights
and the singleton weights are drawn from a Gaussian
with variance equal to 0.1. We used a 4 × 4 grid.
In Figure 1 we compare results from 1000 different
values of the interactions. The left panel plots the L1
errors of the singleton marginals from FN (circles) and
FN2 (stars) against the BP errors. The right panel
shows the L1 errors of the singleton marginals from
MF (circles) and MF2 (stars) compared to those of
BP. The averaged BP error is 5.6 · 10−6 ± 4.3 · 10−6,
the FN error is 2.5 · 10−5 ± 1.9 · 10−5, the FN2 error
is 1.4 · 10−5 ± 1.1 · 10−5, the MF error is 9.6 · 10−4 ±
4.4 · 10−4, and the MF2 error is 7.0 · 10−4 ± 3.1 · 10−4.
In general, in this regime, BP provides more accurate
results than the other algorithms, although for some
realizations the accuracy of FN2 surpasses that of BP.
The FN and FN2 algorithms are more accurate than
the MF and MF2 algorithms.
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Figure 2: A semi-log plot of the evolution of Fwskl for
two different realizations of the parameters. The plot
shows a typical case in which FN converges (dashed
line) and a typical case in which FN fails to converges
(solid line). The inset is a zoom of the plot at large
values of the iteration number, where it can be verified
that the dashed line converges and the solid line does
not.

We conducted a second set of experiment in a “hard
regime” in which BP fails to converge for most re-
alizations of the parameters. This was achieved by



setting the variances of the interaction weights to 4
while retaining the variances of the singleton weights
at 0.1. Out of 1000 random choices of parameters BP
fails to converge in 712 runs. When it does converge
(in 288 runs), the average error of BP is 0.16 ± 0.16.
FN fails to converge in only 5 of the runs. Moreover,
we observed that even in the runs in which FN fails to
converge the approximate marginals oscillate around a
fixed value, and these marginals can still be useful. In
figure 2 we present a typical non-convergent run of FN
(solid line) and a typical run where FN does converge
(dashed line). The figure plots the evolution of the ob-
jective function, Fwskl, with αR = 1 for R = {i} and
αR = 0 otherwise. At convergence the objective func-
tion should vanish. The inset shows that in the case
in which the algorithm does not converge the function
Fwskl oscillates at a finite (small) distance from zero
(solid line), and when the algorithm converges, the ob-
jective function vanishes (dashed line).

The average error of FN on these 5 non-converging
cases is 0.29 ± 0.06. On the convergent cases, the FN
error is 0.32±0.07, the FN2 error is 0.28±0.09, the MF
error is 0.41 ± 0.05 and the MF2 error is 0.40 ± 0.05.
Again, we observe that FN2 improves on FN, and MF2
improves (by a smaller amount) on MF.

6 CONCLUSIONS

We have presented a unifying framework for the design
and analysis of approximate inference algorithms. The
framework is based on choosing subsets of the DLR
equations. Many existing algorithms fall within this
framework—including all those that seek to minimize
the Bethe free energy—and novel algorithms can be
obtained. We performed computer simulations to fur-
ther flesh out the DLR hierarchy. For an easy problem,
the empirical results improve as we move up the hier-
archy; in particular, BP converges reliably and yields
accurate results. For a harder problem, the sweet spot
appears to be lower down in the hierarchy—BP fails
to converge in the majority of the runs and the FN
algorithms provide the most satisfactory performance.

In addition, we showed that the DLR framework has a
simple and elegant connection with the Gibbs sampler.
This may give insight into the relationships between
deterministic methods and sampling methods and may
help motivate hybrid algorithms.
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7 APPENDIX A

This appendix presents the properties of BP and the
Bethe free energy which are needed to prove Theorems
1 and 2.

7.1 BASIC BP AND THE E-CONSTRAINT

The BP update rule, for passing a message from i to
j, is given by:

mt+1
ij (xj) =

∑

xi

Ψij(xi, xj)Ψi(xi)
∏

k 6=j

mt
ki(xi). (26)

This update equation (26) implies that the singleton
and pairwise beliefs are of the following form:

bti(xi) ∝ Ψi(xi)
∏

k

mt
ki(xi), (27)

btkj(xk, xj) ∝ Ψk(xk)Ψj(xj)Ψkj(xk, xj)

×
∏

τ 6=j

mt
τk(xk)

∏

l 6=k

mt
lj(xj). (28)

The form defined by equation (28) implies that there
is a linear relationship, the e-constraint, between the
logarithms of the singleton and pairwise beliefs.

This can be seen more easily by re-expressing the be-
liefs as:

b
t
i(xi) ∝ Ψi(xi)e

θt
i(xi), (29)

b
t
ij(xi, xj) ∝ Ψi(xi)Ψj(xj)Ψij(xi, xj)e

λt
ij(xj)+λt

ji(xi)(30)

where the variables {θi(xi)}, {λij(xj)} are related to
the messages {mij(xj)}, and to each other, as follows:

λji(xi) =
∑

k∈N(i)/j

logmki(xi),

θi(xi) =
∑

k∈N(i)

logmki(xi)

=
1

|N(i)| − 1

∑

j∈N(i)

λji(xi). (31)

The e-constraint is equivalent to the require-
ment (Wainwright et al., 2003) that the beliefs give
a re-parameterization of the probability distribution
so that:

P (x) =

∏

ij Ψi(xi)Ψj(xj)Ψij(xi, xj)
∏

i{Ψi(xi)}|N(i)|−1
,

∝

∏

ij bij(xi, xj)
∏

i{bi(xi)}|N(i)−1|
. (32)

It can be shown, using the e-constraints, that
the BP update rules (26) can be re-expressed as



marginalization of the beliefs (Wainwright et al.,
2003). bt+1

ij (xi, xj) =
∑

xN(i,j)
Bt(xi, xj , xN(i,j)) and

bt+1
i (xi) =

∑

xN(i)
Bt(xi, xN(i)).

7.2 BP AND GIBBS SAMPLER

To complete the proof of Theorem 2, we now
show that Bt(xi, xN(i)) = P (xi|xN(i))B

t(xN(i)) and
Bt(xi, xj , xN(i,j)) = P (xi, xj |xN(i,j))B

t(xN(i,j)). We
require that the beliefs satisfy the e-constraint.

To derive the result for the singleton, we express the
conditional distribution P (xi|xN(i)) as

P (xi, xN(i))
∑

x′
i
P (x′i, xN(i))

=
Ψi(xi)

∏

j∈N(i) Ψj(xj)Ψij(xi, xj)
∑

x′
i
Ψi(x′i)

∏

j∈N(i) Ψj(xj)Ψij(x′i, xj)
.

The form of equations (29,30), together with the re-
lationships in equation (31), show that this is iden-
tical to B(xi|xN(i)) = B(xi, xN(i))/

∑

x′
i
B(x′i, xN(i)),

where B(xi, xN(i)) is given by the Bethe approxima-
tion (7). We see that B(xi, xN(i)) is proportional to:

B(xi, xN(i)) ∝ Ψi(xi)

×
∏

j∈N(i)

Ψj(xj)Ψij(xi, xj)e
λji(xi)+λij(xj)e−(|Ni|−1)θi(xi),

which can be re-expressed as:

Ψi(xi)
∏

j∈N(i)

Ψj(xj)Ψij(xi, xj)e
λij(xj),

where we used θi(xi) = 1/(Ni − 1)
∑

j∈N(i) λji(xi),

equation (31), to cancel θ(xi) with the {λji(xi)}. The
result for the singleton follows. For the pairwise terms,
the true marginals are given by:

P (xi, xj |xN(i,j)) =
P (xi, xj , xN(i,j))

∑

x′
i,x

′
j
P (x′i, x

′
j , xN(i,j))

.

Using equation (8) for B(xi, xj , xN(i,j)) and equa-
tion (31) to cancel θ and λ terms, we get:

B(xi, xj , xN(i,j)) ∝ Ψi(xi)Ψj(xj)Ψij(xi, xj)

×
∏

k∈N(i)/j

Ψk(xk)Ψik(xi, xk)eλik(xk)

∏

l∈N(j)/i

Ψl(xl)Ψjl(xj , xl)e
λjl(xl).

Hence

P (xi, xj , xN(i,j))
∑

x′
i,x

′
j
P (x′i, x

′
j , xN(i,j))

=
B(xi, xj , xN(i,j))

∑

x′
i,x

′
j
B(x′i, x

′
j , xN(i,j))

,

because the λ’s cancel when we compute
B(xi, xj |xN(i,j)).

7.3 THE BETHE FREE ENERGY

The Bethe free energy is:

F [b] =
∑

ij

∑

xi,xj

bij(xi, xj) log
bij(xi, xj)

ψi(xi)ψj(xj)ψij(xi, xj)

−
∑

i

(ni − 1)
∑

xi

bi(xi) log
bi(xi)

ψi(xi)

+
∑

i,j

∑

xj

λij(xj){
∑

xi

bij(xi, xj) − bj(xj)}

+
∑

i,j

∑

xi

λji(xi){
∑

xj

bij(xi, xj) − bi(xi)},

where the λij(xj), λji(xi) are Lagrange multipliers
used to impose the m-constraints

∑

xi
bij(xi, xj) −

bj(xj) and
∑

xj
bij(xi, xj) − bi(xi).

Extremizing with respect to the beliefs shows that the
singleton and pairwise marginals are of form (29,30)
and hence satisfy the e-constraint. Imposing the La-
grange multipliers shows that the m-constraints must
also be satisfied.
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