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ABSTRACT OF THE DISSERTATION

Functoriality for the su(3) Khovanov Homology

by

David Allan Clark

Doctor of Philosophy in Mathematics

University of California San Diego, 2008

Professor Justin Roberts, Chair

We prove that Morrison and Nieh’s categorification of the su3 quantum link in-

variant [MN] is functorial with respect to tangle cobordisms. This is in contrast

to the categorified su2 theory [Kho00, BN05], which was not functorial as origi-

nally defined [Jac04, CMW].

We use methods of Bar-Natan [BN07] to construct explicit chain maps for

each variation of the third Reidemeister move. Then, to show functoriality, we

modify arguments used by Clark, Morrison, and Walker [CMW] to show that

induced chain maps are invariant under Carter and Saito’s movie moves [CS93,

CRS97].
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Chapter 1

Introduction

1.1 Background

In 1984 Jones discovered his famous polynomial invariant of links in the

three-sphere and inaugurated the field of quantum topology. Interest was wide-

spread. Algebraists, for example, saw a novel application of subfactors of von

Neumann algebras and would soon embark upon the study of quantum groups,

while physicists noticed connections with statistical mechanics and quantum

field theory. Topologists, on the other hand, recognized a link invariant of un-

expected power. Even more exciting was the fact that the Jones polynomial

admitted a very simple combinatorial definition [Kau87], making it highly com-

putable. Proofs of the long-standing Tait conjectures for alternating knots fol-

lowed shortly thereafter [Mur87], as did this extension: for any simple Lie alge-

bra g, there is a quantum group Uq(g) and a link invariant that is a polynomial

in q; this extends to a three-manifold invariant for q a root of unity [Oht96].

For all the computational power these new tools provided, however, they

lacked the transparency of classical invariants like the Alexander polynomial or

Arf invariant. Classical invariants, on the one hand, are geometrically grounded

in the objects they are trying to study. Applying and interpreting them is rel-

atively easy, since they were invented with such utilities in mind. Quantum

invariants like the Jones polynomial and its generalizations, on the other hand,

1
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were discovered in settings removed from topology proper. As such, they are

not intrinsically geometric, nor is it often clear how to apply them or even what

they mean.

It’s not surprising, then, that concerted efforts to better understand quan-

tum invariants have come from a variety of directions, including operator alge-

bras, graph theory and combinatorics, perturbation theory, and quantum group

representation theory. Witten’s work with Feynman path integrals and topo-

logical quantum field theories (TQFT) [Wit94] provided some geometric back-

drop for the Jones polynomial, but his results were not mathematically rigorous

and could provide only philosophical explanations. The Kontsevich integral

[Kon94] gives a highly geometric definition of quantum invariants, but is unfor-

tunately very difficult to compute. Until recently, similar attempts have failed

to bear significant fruit.

However, quantum topology was revolutionized in 2000 by Mikhail Kho-

vanov. His original theory [Kho00] was a “categorification” of the Jones poly-

nomial V (L) (the link invariant associated to g = su2), so described because it

associates to any link L a complex Khi,j(L) of bigraded modules whose graded

Euler characteristic is V (L). Not only is the homotopy type of Khi,j(L) a link

invariant, but it contains geometric information about cobordisms into and out

of L (ie, knotted surfaces in 4-space) that appears nowhere in V (L) itself.

This versatility quickly led to new geometric results, the first of which was

discovered by Jacob Rasmussen [Ras]. Given a knot K, he uses the algebraic

structure of Khovanov homology to define an integer s(K) that gives a lower

bound on the smooth slice genus of K. (In fact, his invariant is sharp for alter-

nating knots.) In the same short paper he gives a purely combinatorial proof of

the Milnor Conjecture (specifying the slice genus of a torus knot), which prior to

Rasmussen’s previous work on Oszvath-Szabo homology had only been proven

using gauge theory.

Indeed, it was a wonderful surprise that information about smooth four-

dimensional topology could be derived from such an algebraic construction.

The hope now is that a great deal more geometric information can be extracted
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from the algebraic structure of Khovanov’s homology theory and its various in-

carnations. With this goal in mind, we shall now focus on a particular variation

of Khovanov homology: the case in which g = su3.

1.2 The su3 link invariant and its categorification

Khovanov first categorified the su3 link invariant in [Kho04]; it was later

generalized by MacKaay and Vaz in [MV07]. Independently, in [MN], Morrison

and Nieh give a local geometric construction in the spirit of Bar-Natan [BN05],

using the language of planar algebras and canopoleis1. Indeed, the su3 quan-

tum link invariant can be thought of as a map of planar algebras, defined on

generators by

7→ q2 − q3

7→ −q−3 + q−2

and subject to the relations of Kuperberg’s su3 spider [Kup96]

= q2 + 1 + q−2 (1.1)

= q + q−1 (1.2)

= + (1.3)

which will reduce a Z[q, q−1]-linear combination of trivalent graphs (“webs”) to

a polynomial.

Morrison and Nieh use a technique similar to Bar-Natan’s [BN05] to cate-

gorify this map of planar algebras. The new source category (technically a ca-

nopolis) Ortang is that of oriented tangles and their cobordisms, and the target
1We find this to be a pleasing plural form of canopolis, and surely the purest from the

standpoint of Greek etymology (cf. metropolis, metropoleis [Wik08]). By way of analogy,
formulae : formulas : : canopoleis : canopolises.
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category Kob (su3) consists of formal complexes of webs with chain maps given

by seamed cobordisms (“foams”). In [MN], it is shown that this categorified

map, which we’ll call Kh(su3) (technically a canopolis morphism), is well-defined

on objects, i.e., isotopy of a tangle does not change the homotopy type of the

image complex. Put yet another way, “Kh(su3) is a link invariant.”

1.3 Main result

What’s not shown in [MN] is whether Kh(su3) is truly functorial, i.e., that it

is also well-defined on morphisms (up-to-isotopy tangle cobordisms), and thus

an honest map of canopoleis. Conveniently, we can view a tangle cobordism in

4-space as a sequence of tangle diagrams called a “movie”.2 Further, any cobor-

dism admits a movie presentation such that the tangles in subsequent frames

differ by either a single Reidemeister move or a single Morse move (the birth

or death of a circle, or the splicing of two strands). This partitioning of a cobor-

dism C into simple combinatorial steps gives us an obvious way to attempt a

definition of a chain map Kh(su3)(C).

Thanks to Carter and Saito [CRS97, CS93] (and also Roseman [Ros98]), there

is also a way to view isotopies of tangle cobordisms in this movie presentation

context: two tangle cobordisms are isotopic if and only if they are related by a

sequence of the movie moves3 in Figure 1.1. Thus Kh(su3) is only well-defined

if it yields homotopic chain maps when applied to the cobordism on each side

of every movie move.

This turned out not to be the case in for the categorified su2 invariant [Kho00,

BN05], as first documented by Jacobsson [Jac04]: certain movie moves changed

the sign of the induced chain map. This issue was resolved in [CMW] with

a modified construction designed to incorporate a previously neglected piece

of representation theory: the fact that the fundamental representation of su2 is

2There is some subtlety here about being able to assume that such cobordisms are in general
position; this is addressed carefully in [CMW].

3In an oriented theory, like the one in this paper, one must consider all possible orienta-
tions of these moves, in addition to the usual variations resulting from reflections and crossing
changes.
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MM1 MM5MM2 MM43MM

MM6

MM10

MM7

MM9

MM8

MM13 MM14 MM15MM11 MM12

Figure 1.1: Carter and Saito’s unoriented movie moves, numbered according
to Bar-Natan [BN05]. Note that first ten moves are circular, and so should be
paired with the constant movie of the first frame.

antisymmetrically self-dual, and the source of the sign anomaly.

Such an issue does not exist for su3, which is not self-dual at all. This, along

with some experimental evidence, led Morrison and Nieh to conjecture that

their theory is in fact functorial. In this paper, we’ll prove it as a theorem.

Theorem 1.3.1. Kh(su3) : Ortang → Kob (su3) is a canopolis morphism; in par-

ticular, oriented tangle cobordisms induce well-defined (up to homotopy) chain maps in

Kob (su3).

It would be a natural next step to extend this theory to WebCob, the cate-

gory of knotted webs and seamed cobordisms in four-space. For objects, well-
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definition relies on two additional Reidemeister-type moves: sliding a strand

past a vertex (R4), and flipping a vertex upside-down4(R5). Unfortunately, the

complexes associated to each side of these moves are not quite chain homotopy

equivalent: there are extra grading shifts in the way. (Somewhat incidentally,

we treat the R4 case fully in Section 3.2.) An extension to knotted webs will thus

require a renormalized skein theory, and our webs will probably need to carry

a framing. This makes morphisms more complicated, since it’s not clear ex-

actly what a “framed” seamed cobordism should be, or what the corresponding

movie move list might look like. We hope to address this in a future paper.

In Chapter 2 we’ll review the su3 theory of Morrison and Nieh. Much of the

work comes in Chapter 3, when we explicitly define the induced maps for ori-

ented Reidemeister moves. Finally, in Chapter 4 we’ll look at the induced maps

on each side of the movie moves, and see that in each case they are homotopic.

4This is equivalent to changing the cyclic ordering of the edges around the vertex



Chapter 2

The su3 theory

2.1 Planar algebras and canopoleis

We’ll give a brief recap of the construction of Morrison and Nieh here, and

refer the reader to [BN05], [MN], and [Web07] for more technical details regard-

ing planar algebras and canopoleis.

Recall that an oriented planar arc diagram is, colloquially, just an oriented

crossingless tangle in a disk with (possibly) some smaller disks removed, and

with the remaining holes given some ordering. Two such diagrams can be com-

posed whenever the outer boundary of one diagram matches one of the inner

boundaries of the other: we just shrink the first diagram and paste it into the sec-

ond, giving a new planar arc diagram. More generally, let P be a planar arc dia-

gram with n holes; we’ll label each from 1 up to n, and think of the outer bound-

ary of P as the “0th hole.” If Qi is the set of planar arc diagrams that match the

boundary of the ith hole of P , then P defines an operation P : Q1×...×Qn → Q0.

See Figure 2.1 for an example.

This operation on oriented planar arc diagrams gives them the structure of a

colored operad, where the coloring just refers to the labels (incoming and outgoing

strands) on the disk boundaries. Such an operad can act on a collection of objects

in some monoidal category C: we associate to each color si an object P(si), and

to each collection of composable colors s1, ..., sn, s0 we associate the space of

7
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1
2

:


1

,

1

2

 7−→
1

2
3

Figure 2.1: Composition in the oriented planar arc diagram operad.

maps Hom (P(s1)× ...× P(sn),P(s0)). Of course, a properly colored planar arc

diagram P specifies a map P(s1)× ...× P(sn)→ P(s0).

Definition 2.1.1. A planar algebra in C is a collection (P(si)) ∈ Ob(C) that admits

the above action of the operad of oriented planar arc diagrams.

1
2

:

 ,

 7−→

Figure 2.2: A planar algebra: the operad action on oriented tangle diagrams.

Practically speaking, this structure gives us an associative way of “multiply-

ing” elements of our collection, in a planar fashion. As an easy example, the

set of oriented tangle diagrams forms a planar algebra in the category of sets

(see Figure 2.2), with generating set
{

,

}
; we shall, of course, con-

sider these diagrams up to Reidemeister equivalence. Similarly, Kuperberg’s

su3 spider forms a planar algebra in the category of Z[q, q−1]-modules, where

we quotient by the su3 spider relations (Equations 1.1); the spider is generated,

as a planar algebra, by
{

,

}
. We can thus view the su3 quantum link

invariant as a map of planar algebras, which is convenient for both computa-

tional efficiency and organizing philosophy.
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The goal, then, is to categorify this local picture of a quantum invariant: to

do this, we invoke the notion of a canopolis, first appearing in [BN05].

Definition 2.1.2. A canopolis is a planar algebra in some (monoidal1) category of

categories (C(si)). In particular, both the collection of objects and the collection of mor-

phisms form planar algebras.

Now a planar arc diagram P will define a functor P : C(s1) × ... × C(sn) →
C(s0). We can view each category C(s) as a “can” (rather than just a disc) with

a specified label s that can be plugged into a cylinder with a matching label in

P × [0, 1]: objects will live on the tops and bottoms of cans, and morphisms

will live inside cans. Further, the fact that P defines a functor guarantees that

planar operations commute with the usual composition of morphisms within

their categories. Thus, we can build a “city of cans” by composing vertically

or horizontally in any order. It will also be useful to talk about maps between

canopoleis.

Definition 2.1.3. A canopolis morphism C→ C′ is a collection of functors

(C(si))→ (C ′(si))

that commute with all planar algebra operations.

Our first example of a canopolis will be the categorification of the set of ori-

ented tangles. Let Ortang(s) be the category of tangle cobordisms with fixed

boundary denoted by s ∈ S, where S indexes the set of strand intersections

with the boundary circle and their orientations, up to cyclic permutation. Then

we define Ortang to be the canopolis in the category
⋃
s∈S Ortang(s). (Note

that we need more than just the cobordisms between two individual crossings

to generate all possible tangle cobordisms.) Here we want all morphisms con-

sidered up to four-dimensional isotopy; when viewing a generic morphism as a

movie of tangle diagrams, this means we mod out by the movie moves.

1Here the monoidal structure is just given by cartesian product.
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2.2 Categorifying the su3 spider

A more interesting example, because it involves relations, is the categorifica-

tion of the su3 spider. Let Cob (su3)s be the category of cans with fixed boundary

as above: the objects are su3 webs and the morphisms are seamed cobordisms

(or foams), which are just CW-complexes modeled on “Y ” × [0, 1], plus some

additional data.

Definition 2.2.1 (from [MN]). Given two webs D1 and D2 drawn in a disc, both with

boundary ∂, a seamed cobordism from D1 to D2 is a 2-dimensional CW-complex F

with

• exactly three oriented 2-cells meeting along each oriented singular 1-cell, such

that the orientations on the 2-cells all induce the same orientation on the seam;

• a cyclic ordering on those three 2-cells;

• and an identification of the boundary of F with D1 ∪D2 ∪ (∂ × [0, 1]) such that

– the orientations on the sheets induce the orientations on the edges ofD1, and

the opposite orientations on the edges of D2,

– and the cyclic orderings around the singular seams agree with the cyclic

orderings around a vertex in D1 or D2 given by its embedding in the disc;

the anticlockwise ordering for “inwards” vertices, the clockwise ordering for

“outwards” vertices.

Note that a foam is an abstract space; while its boundary is identified with lines on the

surface of the can D2× [0, 1] (and thus it is picturesque to view foams as in Figure 2.3),

the foam doesn’t literally live in the can.

We define Cob (su3) to be the canopolis in the category
⋃
s∈S Cob (su3)s (see

Figure 2.3), where, for R a ring in which 2 and 3 are invertible2, we allow formal

R-linear combinations of morphisms, and where we impose the following local

relations on foams:
2In this paper, we’ll assume R = Z[ 12 , 1

3 ].
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21
:

 ,

 7−→

Figure 2.3: Planar composition of foams in Cob (su3). It is convenient to view
these foams in cans, though really they are not embedded there.

• “Closed foam” relations:

= 0 = 3 (2.1)

= 0 = 0

• The “neck cutting” relation:

=
1

3
− 1

9
+

1

3
(2.2)

• The “airlock” relation:

= − (2.3)

• The “tube” relation

=
1

2
+

1

2
(2.4)

• The “three rocket” relation:

+ + = 0 (2.5)
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• The “seam-swap” relation: reversing the cyclic order of the three 2-cells

attached to a closed singular seam is equivalent to multiplication by −1.

• The “sheet relations” (which can be derived from the relations above):

= 0 = −3 (2.6)

= 0 = 0 (2.7)

The first of these four is the extremely useful “blister relation.”

Remark.

1. Cob (su3) is generated, as a canopolis, by the cup, cap, saddle, zip, and

unzip morphisms below.

2. As a consequence of the local relations, all closed foams in Cob (su3) can be

evaluated to scalars. (Lemma 3.3 in [MN])

As it turns out, Cob (su3) will benefit from slightly more structure. First we’ll

make it into a graded canopolis by endowing web diagrams with formal grad-

ing shifts given by powers of q. Further, define the grading of a morphism C

from qm1D1 to qm2D2 by

degC = 2χ(C)−B +
V

2
+m2 −m1 (2.8)

where B is the number of boundary points on Di and V is the total number of

trivalent vertices in the webs D1 and D2. Note that the local relations above are

degree homogeneous, and that degree is additive under canopolis composition.

Second, we form Mat (Cob (su3)) by introducing formal direct sums of ob-

jects, and allowing matrices of morphisms between these direct sums. Morrison
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and Nieh prove that the graded decategorification of Mat (Cob (su3)) is, in fact,

Kuperberg’s su3 spider.

Finally, for the coup de grace, we arrive at the canopolis Kom (Mat (Cob (su3)))

by considering chain complexes (up to chain homotopy equivalence) with ob-

jects and morphisms in Mat (Cob (su3)). We’ll have to be slightly more explicit

about the action of planar arc diagrams now that cans will be associated with

complexes and chain maps, rather than just objects and morphisms in Cob (su3).

However, the rule is simple: apply the usual construction for tensor product of

complexes, but use the planar arc diagram to “multiply” objects and morphisms

instead of ⊗. (See Appendix B.1 for details.) For convenience, let’s make the ab-

breviation Kob (su3) := Kom (Mat (Cob (su3))).

2.3 A link homology

Having defined the relevant canopoleis, Morrison and Nieh proceed to con-

struct a link homology that categorifies the su3 quantum link invariant, i.e., a

map Kh(su3) : Ob(Ortang) → Ob(Kob (su3)). Such a map is easily defined on

objects in Ortang by the following categorified skein relations:

� //

(
• // q2 // q3 // •

)

� //

(
• // q−3 // q−2 // •

)

The homological heights here are −2, −1, 0, 1, and 2; the webs with q±2 shifts

lie at height 0 in each case. (Let’s also establish the following nomenclature for

the webs in this picture: we’ll call the ones with q±2 shifts the smoothly-resolved

webs for these crossings, and the ones with q±3 shifts the I-resolved webs for

these crossings.)
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These crossings will compose under planar operations to make larger tan-

gles, as will the associated complexes. One important subtlety is that planar

composition of complexes is independent of the order of composition, up to

chain isomorphism, but this isomorphism is not the obvious permutation: one

needs to sprinkle some minus signs into the permutation to make it a chain map.

The upshot is that (1) for well-definition of complexes, all crossings in a tangle

diagram must be equipped with an ordering (of course, this is equivalent to the

ordering of holes in a planar arc diagram), and (2) there are (slightly) nontrivial

chain maps that will reorder the crossings. See Appendix B.2 for details.

To complete our map on objects, we need only check that the map Kh(su3)

is invariant under isotopy of tangles, i.e., that Reidemeister moves applied to

the source tangle do not change the homotopy type of the resulting complex.

This is essentially done in [MN] by constructing a chain homotopy equivalence

for each version of the oriented Reidemeister moves, though we will provide

additional details in Chapter 3.

2.4 A canopolis morphism?

There is a natural way to define Kh(su3) on morphisms (tangle cobordisms)

as well. Since a surface in 4-space can be presented by a movie, we can view

a cobordism as a sequence of tangles diagrams that, at each stage, differ by a

Reidemeister or Morse move. Thus we need only define chain maps for these

six generating moves. This is easy: Morse moves induce the obvious gluing of

0-, 1-, or 2-handles into a foam, and Reidmeister moves already have chain maps

defined for the link homology. Again, the heart of the issue here is whether these

induced maps are well-defined, i.e., invariant under the movie moves. If they

are, then Kh(su3) is a canopolis morphism.



Chapter 3

Reidemeister maps

3.1 The Reidemeister one and two maps

We’ll take these (more or less) directly from their definition in [MN], where

they are derived and proven to be homotopy equivalences. The Reidemeister

one maps are shown in Figures 3.1 and 3.2 for the positive (R1a) and negative

(R1b) twist, respectively.

Figure 3.1: A homotopy equivalence for R1a: the positive twist.

The Reidemeister two maps come in two flavors, parallel or antiparallel, and

the maps are given in Figures 3.3 and 3.4. Note that changing which strand

moves over top does not change our maps, except that we will always use the

following ordering convention: the negative crossing is 1, and the positive cross-

15
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Figure 3.2: A homotopy equivalence for R1b: the negative twist.

ing is 2.

+ -

id

Figure 3.3: A homotopy equivalence for R2a: parallel strands.

It’s also worth noting that our antiparallel map (Figure 3.4) is −1 times the

original map in [MN]; we’re free to multiply any of these maps by a scalar, and

some brief experimentation confirms that this particular scalar, in this particular

place, is needed for functoriality.
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+-

Figure 3.4: A homotopy equivalence for R2b: antiparallel strands.

3.2 The Reidemeister three maps

Here we have some work to do: in order to compute movie move maps, we’ll

need to know the R3 maps explicitly, for every flavor of the move. The “cate-

gorified Kauffman trick” (CKT) (first used by Bar-Natan in [BN05] and then by

Morrison and Nieh in [MN]) provides an efficient method for computing theR3

maps.

There are eight different versions of the oriented Reidemeister three move,

and we’ll use them all for the movie move calculations. To use the CKT here,

we’ll first need to look at some smaller complexes: the “before” and “after”

complexes of the move that slides a strand past a trivalent vertex. There are

eight variations of this move: the vertex can be a sink or a source, and the mov-

ing strand can lie on top or below the vertex strands and can be oriented in two

possible ways. For convenience, let’s name them based on whether the vertex

strands point I(n) or O(ut), the crossing strand is A(bove) or B(elow) the ver-

tex strands, and the crossing strand is oriented L(eft) or R(ight). The following

lemmas from [MN] provide homotopy equivalences1 for two of the variations

using Bar-Natan’s simplification algorithm [BN07].

1Note that these maps include both homological and q-grading shifts, and so are not com-
pletely honest homotopy equivalences of the two sides of the move.
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Lemma 3.2.1 (IBL variation: Lemma 4.4 in [MN]). The complex

[[
1 2

]]
=

 q4
d0=( z

z )
//

q5 ⊕
q5

d1=(−z z ) // q6


is homotopy equivalent to the complex

q8

[[ ]]
[+2] =

(
q5 u // q6

)

via the simplifying map sIBL, which separates by homological height into

sIBL,0 =
(

0
)

sIBL,1 =
(
−z ◦ d 1

)
sIBL,2 =

(
r
)
.

Here d is the debubbling map, z is the zip map, u is the unzip map, and r is the

“downward-open half barrel” cobordism.

Remark. For our movie move calculations, we’ll also need the inverse (unsim-

plifying) map tIBL, given by

tIBL,1 =

(
−b ◦ u

1

)
tIBL,2 =

(
−r̄
)
,

where b is the bubbling map and r̄ is the “upward-open half barrel.”

These maps are shown in Figure 3.5, and their origin is discussed in Ap-

pendix A.

Figure 3.5: The maps d, b, r, and r̄.
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Lemma 3.2.2 (OBL variation: Lemma 4.5 in [MN]). The complex

[[
1 2

]]
=

 q4
d0=( z

z )
//

q5 ⊕
q5

d1=( z −z ) // q6


is homotopy equivalent to the complex

q8

[[ ]]
[+2] =

(
q5 u // q6

)
via the simplifying map sOBL, given by

sOBL,0 =
(

0
)

sOBL,1 =
(

z ◦ d −1
)

sOBL,2 =
(
r
)
.

Remark. Again we’ll need the inverse map tOBL, which is given by

tOBL,1 =

(
b ◦ u

−1

)
tOBL,2 =

(
−r̄
)
.

Explicit homotopy equivalences for the other six variations of the “strand-

past-vertex” move are given below.

Lemma 3.2.3. 1. IBR: The complex

[[
1 2

]]
=

 q−6
d0=( u

−u )
//

q−5 ⊕
q−5

d1=( u u ) // q−4


is homotopy equivalent to the complex

q−8

[[ ]]
[−2] =

(
q−6 u // q−5

)
via the simplifying map sIBR, given by

sIBR,−2 =
(
r
)

sIBR,−1 =
(
−z ◦ d 1

)
sIBR,0 =

(
0
)
.
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The inverse map tIBR is given by

tIBR,−2 =
(
−r̄
)

tIBR,−1 =

(
−b ◦ u

1

)
.

2. OBR: The complex

[[
1 2

]]
=


q−6

d0=(−u
u )

//

q−5 ⊕
q−5

d1=( u u ) // q−4


is homotopy equivalent to the complex

q−8

[[ ]]
[−2] =

(
q−6 u // q−5

)

via the simplifying map sOBR, given by

sOBR,−2 =
(
r
)

sOBR,−1 =
(

z ◦ d −1
)

sOBR,0 =
(

0
)
.

The inverse map tOBR is given by

tOBR,−2 =
(
−r̄
)

tOBR,−1 =

(
b ◦ u

−1

)
.

3. IAR: The complex

[[
1 2

]]
=

 q4
d0=( z

z )
//

q5 ⊕
q5

d1=( z −z ) // q6


is homotopy equivalent to the complex

q8

[[ ]]
[+2] =

(
q5 u // q6

)
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via the simplifying map sIAR, given by

sIAR,0 =
(

0
)

sIAR,1 =
(

z ◦ d −1
)

sIAR,2 =
(
r
)
.

The inverse map tIAR is given by

tIAR,1 =

(
b ◦ u

−1

)
tIAR,2 =

(
−r̄
)
.

4. OAR: The complex

[[
1 2

]]
=

 q4
d0=( z

z )
//

q5 ⊕
q5

d1=(−z z ) // q6


is homotopy equivalent to the complex

q8

[[ ]]
[+2] =

(
q5 u // q6

)

via the simplifying map sOAR, given by

sOAR,0 =
(

0
)

sOAR,1 =
(
−z ◦ d 1

)
sOAR,2 =

(
r
)
.

The inverse map tOAR is given by

tOAR,1 =

(
−b ◦ u

1

)
tOAR,2 =

(
−r̄
)
.

5. IAL: The complex

[[
1 2

]]
=

 q−6
d0=(−u

u )
//

q−5 ⊕
q−5

d1=( u u ) // q−4
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is homotopy equivalent to the complex

q−8

[[ ]]
[−2] =

(
q−6 u // q−5

)

via the simplifying map sIAL, given by

sIAL,−2 =
(
r
)

sIAL,−1 =
(

z ◦ d −1
)

sIAL,0 =
(

0
)
.

The inverse map tIAL is given by

tIAL,−2 =
(
−r̄
)

tIAL,−1 =

(
b ◦ u

−1

)
.

6. OAL: The complex

[[
1 2

]]
=

 q−6
d0=( u

−u )
//

q−5 ⊕
q−5

d1=( u u ) // q−4


is homotopy equivalent to the complex

q−8

[[ ]]
[−2] =

(
q−6 u // q−5

)

via the simplifying map sOAL, given by

sOAL,−2 =
(
r
)

sOAL,−1 =
(
−z ◦ d 1

)
sOAL,0 =

(
0
)
.

The inverse map tOAL is given by

tOAL,−2 =
(
−r̄
)

tOAL,−1 =

(
−b ◦ u

1

)
.

Proof. See Appendix A.3.
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Remark. Notice that, modulo orientations, reflections, and rotations, the above

complexes are very similar. This leads us to make the following observations,

which we’ll use when computing the R3 moves:

1. For moves IBL, OBL, IAR, and OAR, the lowest homological component

of the s map, which originates at the doubly smoothly-resolved object, is

zero; the highest component is the half-barrel r.

2. For moves IBR, OBR, IAL, and OAL, the highest homological component

of the s map, which originates at the doubly I-resolved object, is zero; the

lowest component is r.

Before explicitly computing the eightR3 maps, we’ll need some basic results

from homological algebra.

Definition 3.2.4. Given a chain map f : A• → B•, the cone over f is C(f)• =

A•+1 ⊕B•, with differential

dC(f) =

(
dA 0

f −dB

)

Definition 3.2.5. A map r : B• → C• is a strong deformation retract2 with inverse

i if

• 1B − ir = dBh+ hdB;

• 1C = ri; and

• hi = rh = 0,

where h : B• → B•−1.

Remark. Each s map above is a strong deformation retract with inverse t; see

Appendix A.

The following two lemmas about cones were first presented and proven in

[BN05]; we’ll refer to them as “cone-reducing” lemmas:

2In [MN] this is called a simple homotopy equivalence.
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Lemma 3.2.6. If f : A• → B• is a chain map, r : B• → C• is a strong deformation

retract, and i : C• → B• is the inverse of r via the homotopy h, then the cone C(rf) is

homotopic to the cone C(f), via

C(f)• = A•+1 ⊕B•
( 1 0

0 r )
00 A
•+1 ⊕ C• = C(rf)•

(
1 0
−hf i

)
pp

Lemma 3.2.7. If f : B• → A• is a chain map, r : B• → C• is a strong deformation

retract, and i : C• → B• is the inverse of r via the homotopy h, then the cone C(fi) is

homotopic to the cone C(f), via

C(f)• = B•+1 ⊕ A• (
r 0
fh 1

) 00 C
•+1 ⊕ A• = C(fi)•

( i 0
0 1 )

pp

We’ll also need these two, which are proven analogously:

Lemma 3.2.8. If f : C• → A• is a chain map, r : B• → C• is a strong deformation

retract, and i : C• → B• is the inverse of r via the homotopy h, then the cone C(fr) is

homotopic to the cone C(f), via

C(f)• = C•+1 ⊕ A•
( i 0

0 1 )
00 B
•+1 ⊕ A• = C(fr)•

( r 0
0 1 )

pp

Lemma 3.2.9. If f : A• → C• is a chain map, r : B• → C• is a strong deformation

retract, and i : C• → B• is the inverse of r via the homotopy h, then the cone C(if) is

homotopic to the cone C(f), via

C(f)• = A•+1 ⊕ C•
( 1 0

0 i )
00 A
•+1 ⊕B• = C(if)•

( 1 0
0 r )

pp

Now we’re ready to attack the R3 complexes themselves. First, let’s name

the eight variations, six of which are braidlike and two of which are starlike. As

in [CMW], we’ll label the braidlike moves by circling anticlockwise around the

tangle boundary and recording the height of each outgoing strand (h for high,

m for middle, and l for low). The starlike moves are labeled either clockwise or



25

anticlockwise, depending on which way we have to circle to see the low, middle,

and then high outgoing strands. We also need to pick a time direction for each

move, and will use the convention that the “before” diagram has a crossing to

the right of the low strand, while the “after” diagram has a crossing to the left.

All of these labels and conventions are shown in Figure 3.6.

R3hml //

R3−1
hml

oo
R3hlm //

R3−1
hlm

oo

R3lhm //

R3−1
lhm

oo
R3mhl //

R3−1
mhl

oo

R3mlh //

R3−1
mlh

oo
R3lmh //

R3−1
lmh

oo

R3	 //

R3−1
	

oo
R3� //

R3−1
�

oo

Figure 3.6: The eight variations of the R3 move.

The CKT works by decomposing the nine-object “before” and “after” com-

plexes of anR3 move as cones over the local differential for a particular crossing.

For the time being, let’s take this to be the highest crossing. It’s important at this

point to introduce another set of conventions: the way in which we order cross-

ings. For variations hml, lmh, mlh, and �, we’ll use the following ordering: in

the initial tangle the crossings will be ordered ‘middle’, ‘low’, ‘high’, while in

the final tangle they will be ordered ‘low’, ‘middle’, ‘high’. For variations lhm,

mhl, hlm, 	, we’ll instead use the inverse ordering: the crossings of the initial

tangle will be ordered ‘low’, ‘middle’, ‘high’, and of the final tangle, ‘middle’,

‘low’, ‘high’. 3

3This ordering convention is more cumbersome still than the one used in [CMW], and even
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Consider, for example, the initial complex of the hml move:[[
1 2

3

]]
∼= C


1 2

zabove

−−−→
1 2

 ,

where zabove is the zip differential for the high crossing. Morrison and Nieh used

this decomposition, as well as the one for the final complex of the hml move, to

show that the two complexes were homotopy equivalent. We will restate their

argument from [MN] here, while fleshing out some more details to give us an

explicit map.

Remark. The initial and final tangles in the Propositions below may be rotated

relative to their definitions in Figure 3.6, for convenience.

First we need an easy lemma.

Lemma 3.2.10. The two compositions

1 2

z //
1 2

sIBL //

and

1 2 z //
1 2

sOBL // ,

using the maps defined in Lemmas 3.2.2 and 3.2.1, are equal.

Proof. This is a straightforward, object-by-object comparison; there is only foam

isotopy involved—no foam relations are necessary.

worse must be altered when we resolve the low crossing instead of the high. It is a neces-
sary evil, though, as the alert reader may notice as we work though the CKT for the different
variations.
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Proposition 3.2.11 (The hml variation of R3).

[[
1 2

3

]]
∼= C



1 2

zabove

��

1 2


'−−→
fhml

C



1 2

zbelow

��
1 2


∼=

[[ 1 2

3

]]

is a homotopy equivalence via the map

fhml =

(
1 0

−hOBL ◦ z tOBL ◦ sIBL

)
.

The homotopy inverse of this map is given by

ghml =

(
1 0

−hIBL ◦ z tIBL ◦ sOBL

)
.

The maps hOBL and hIBL are just the homotopies for the simplifications of the OBL and

IBL complexes; we won’t compute them explicitly.

Proof. We shall follow through the composition one piece at a time.

C


1 2

z−→
1 2

 ' C


1 2

sIBL◦z−−−→


= C

 1 2 sOBL◦z−−−→


' C

 1 2 z−−−→
1 2


The homotopy equivalences on the first and last lines follow from Lemma 3.2.6,

and are given by the matrices

(
1 0

0 sIBL

)
and

(
1 0

−hOBL ◦ z tIBL

)
. Equality on the

second line is exactly Lemma 3.2.10.
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We’ll now determine the homotopy equivalences for the other sevenR3 vari-

ations. The techniques for lhm,mhl, and lmh are essentially the same as for hml,

and we will omit the details of the proofs. The other four moves will require

some modification.

Proposition 3.2.12. 1. The lhm variation.

[[ 1 2

3

]]
∼= C


zabove

��


'−−→
flhm

C


zbelow

��


∼=

[[
1 2

3

]]

is a homotopy equivalence via the map

flhm =

(
1 0

−hIBR ◦ z tIBR ◦ sOBR

)
.

The homotopy inverse of this map is given by

glhm =

(
1 0

−hOBR ◦ z tOBR ◦ sIBR

)
.

2. The mhl variation.

[[ 12

3

]]
∼= C


uabove

��


'−−→
fmhl

C


ubelow

��


∼=

[[
12

3

]]

is a homotopy equivalence via the map

fmhl =

(
tOBL ◦ sIBL 0

u ◦ hIBL 1

)
.
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The homotopy inverse of this map is given by

gmhl =

(
tIBL ◦ sOBL 0

u ◦ hOBL 1

)
.

3. The lmh variation.

[[
12

3

]]
∼= C


uabove

��


'−−→
flmh

C


ubelow

��


∼=

[[ 12

3

]]

is a homotopy equivalence via the map

flmh =

(
tIBR ◦ sOBR 0

u ◦ hOBR 1

)
.

The homotopy inverse of this map is given by

glmh =

(
tOBR ◦ sIBR 0

u ◦ hIBR 1

)
.

Remark. Notice that, for the mhl and lmh variations, the interesting partial

homotopy equivalences occur at the source complexes in the cones, rather than

the target complexes. Thus the relevant cone-reducing lemma here is Lemma

3.2.7.

For the hlm, mlh, 	, and � variations of R3, the high crossing resolves par-

allel to the low strand, rather than perpendicular to it, which makes the cone

slightly more complicated. Consider, for example, the complexes in the � move.

The initial complex is[[
12

3

]]
∼= C


12

zabove

−−−→
12

 ,
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with final complex[[ 12

3

]]
∼= C

 1 2 zbelow

−−−→
12
 .

Here neither the source nor target complexes in the cones are the same; instead,

the source complexes are related by two R2 moves, and the target complexes by

a different sequence of strand-past-vertex moves. This will ultimately make our

string of homotopy equivalences longer, but the idea is essentially the same. As

before, we’ll give the gory details in only one of the cases.

First, however, we’ll need a statement analogous to Lemma 3.2.10.

Lemma 3.2.13. The two compositions

ρ1 //
12

z //
12

tIBR // 12

3

and

ρ2 //
1 2

σ //
12 z //

12

tOBR // 12

3

,

are equal. Here, ρ1 and ρ2 are the R2 tuck maps on the bottom two strands and on the

top two strands, respectively, and σ is the obvious crossing-reordering map.

Proof. Again, as in the proof of Lemma 3.2.10, this is a straightforward exercise

in foam isotopy. Just remember that σ is the identity on all objects except the

doubly I-resolved ones, on which it acts by −1.

Proposition 3.2.14 (The � version of R3).

[[
12

3

]]
∼= C



12

zabove

��

12


'−→
f�

C



12

zbelow

��
12


∼=

[[ 12

3

]]
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is a homotopy equivalence via the map

f� =

(
σ ◦ ρ2 ◦ ρ−1

1 0

sOBR ◦ tIBR ◦ z ◦ h1 sOBR ◦ tIBR

)
.

The homotopy inverse of this map is given by

g� =

(
ρ1 ◦ ρ−1

2 ◦ σ 0

sIBR ◦ tOBR ◦ z ◦ h2 sIBR ◦ tOBR

)
.

Here, the maps h1 and h2 are homotopies for theR2 equivalences, and we won’t compute

them explicitly.

Proof. This time we have the following composition:

C


12

z−→
12

 ' C


12

tIBR◦z−−−−−−−→ 12

3


' C

 tIBR◦z◦ρ1−−−−−−−→ 12

3


= C

 tOBR◦z◦σ◦ρ2−−−−−−−→ 12

3


' C

 1 2 tOBR◦z◦σ−−−−−−−→ 12

3


' C

 1 2 z◦σ−−−−−−−→
12


' C

 12 z−−−−−−−→
12


The homotopy equivalences on the first and fifth lines follow from Lemma 3.2.9,

and are given by the matrices

(
1 0

0 tIBR

)
and

(
1 0

0 sOBR

)
. The equivalences on the

second and fourth lines come from Lemma 3.2.7, and are given by the matrices(
ρ−1

1 0

tIBR ◦ z ◦ h1 1

)
and

(
ρ2 0

0 1

)
. Equality on the third line is just Lemma 3.2.13,
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and the equivalence (in fact, isomorphism) on the last line is given by the matrix(
σ 0

0 1

)
. Note that without this crossing reordering our R2 moves would fail to

be consistent in the cone.

The explicit maps for the remaining three R3 variations are computed in

much the same way, and we will omit the details.

Proposition 3.2.15. 1. The hlm variation.

[[ 12

3

]]
∼= C


zabove

��


'−−→

fhlm

C


zbelow

��


∼=

[[
12

3

]]

is a homotopy equivalence via the map

fhlm =

(
σ ◦ ρ1 ◦ ρ−1

2 0

sIBL ◦ tOBL ◦ z ◦ h2 sIBL ◦ tOBL

)
.

The homotopy inverse of this map is given by

ghlm =

(
ρ2 ◦ ρ−1

1 ◦ σ 0

sOBL ◦ tIBL ◦ z ◦ h1 sOBL ◦ tIBL

)
.

2. The mlh variation.

[[ 12

3

]]
∼= C


uabove

��


'−−→

fmlh

C


ubelow

��


∼=

[[
12

3

]]

is a homotopy equivalence via the map

fmlh =

(
sIBL ◦ tOBL 0

−h2 ◦ u ◦ sIBL ◦ tOBL σ ◦ ρ1 ◦ ρ−1
2

)
.
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The homotopy inverse of this map is given by

gmlh =

(
sOBL ◦ tIBL 0

−h1 ◦ u ◦ sOBL ◦ tIBL ρ2 ◦ ρ−1
1 ◦ σ

)
.

3. The 	 variation.

[[
12

3

]]
∼= C


uabove

��


'−→
f	

C


ubelow

��


∼=

[[ 12

3

]]

is a homotopy equivalence via the map

f	 =

(
sOBR ◦ tIBR 0

−h1 ◦ u ◦ sOBR ◦ tIBR σ ◦ ρ2 ◦ ρ−1
1

)
.

The homotopy inverse of this map is given by

g	 =

(
sIBR ◦ tOBR 0

−h2 ◦ u ◦ sIBR ◦ tOBR ρ1 ◦ ρ−1
2 ◦ σ

)
.

Remark. The proof for the hlm variation uses Lemmas 3.2.9 and 3.2.7, as in the

� case above, while the 	 and mlh variations require Lemmas 3.2.8 and 3.2.6.

Having determined theR3 maps explicitly, we see they are various and com-

plicated. However, to compute with movie moves we only need a small list of

facts that apply to all eight R3 variations. The following lemmas provide this

distillation, and apply to both the R3 moves and their inverses.

First, and briefly, we’ll reintroduce some notation from [CMW]. As we’ve

seen, the CKT essentially separates each R3 “before” and “after” complex into

two smaller complexes, which we’ll call “layers,” whose diagrams differ by the

resolution of a single crossing. We’ll denote layers that look like (a rotated ver-

sion of) either or by O, since the strands involved in the crossing
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appear to beOrthogonal to the uninvolved strand. In contrast, we’ll denote lay-

ers that look like (a rotated version of) either or byP , for “Parallel to

the uninvolved strand.” Notice that the homological ordering of the layers may

be either O → P or P → O, depending on the crossing signs and orientations

for each R3 move:

• the hml, lhm, mlh, and 	 variations are ordered O → P

• the mhl, lmh, hlm, and � variations are ordered P → O

This allows us to decompose each R3 map as

R3? = R3O→O? +R3O→P? +R3P→O? +R3P→P? ,

where ? is one of the eight variations and R3a→b? is the component from the a

layer to the b layer. Of course, we’ve already performed this decomposition in

the propositions above. For example, the matrix for f	 (from Proposition 3.2.15,

part (3)) can be written, using this notation, as
R3O→O	 R3O→P	

R3P→O	 R3P→P	

 .

Let’s also name a morphism that will arise frequently:

R = .

Lemma 3.2.16. If the layers ofR3? are arranged asO → P , then the map from the par-

allel layer to the orthogonal layer, R3P→O? , is zero. Otherwise, if the layers are arranged

as P → O, then the mapR3P→O? is zero. (That is, the diagonal map pointing backwards

in homological height is always zero.)
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Lemma 3.2.17. The map between the orthogonal layers, R3O→O? , is the identity chain

map when ? = hml, lhm,mhl, or lmh. When ? = hlm or mlh, the map R3O→O? ,

restricted to the two homologically extreme objects, is −id. When ? =� or 	, the

restriction of R3O→O? to extreme objects is the appropriate rotation of the morphism

−R.

Lemma 3.2.18. The map between the parallel layers,R3P→P? , kills the doubly smoothly-

resolved object (which resides at either the highest or lowest homological height) when

? = hml, lhm,mhl, or lmh, and kills both extreme objects when ? = hlm,mlh,�,

or 	. Further, for each variation, in the middle homological height there is a pair of

objects (one in the source complex and one in the target complex) that have the same

unoriented diagram; the component of the R3P→P? map between these objects is −id
for ? = hml, lhm,mhl or lmh, the identity for ? = hlm or mlh, and the appropriate

rotation of R for ? =� or 	. Every other entry of the R3P→P? map in the middle

homological height is some multiple of a foam that looks locally a cup, a cap, or one of

the following

near all circles or bigons in either the source or target.

These lemmas follow easily by observation of our CKT complexes and direct

calculation of the maps therein, involving only foam isotopy. It turns out we will

need one more (rather obscure) piece of data for movie move 6, which is again

easily computed: it concerns the O → O map for the � R3 variation.

Lemma 3.2.19. The R3O→O� map acts on the middle homological height objects in the

following way:

R3O→O� :





−T − 1

0 − T ′


−−−−−−−−−→
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where

T = ,

and T ′ is the appropriate rotation/reflection.

For our movie move calculations, it will also be convenient to have the anal-

ogous lemmas when we determine the O and P layers by resolving the lowest

crossing, rather than the highest. The CKT works just as well in this context,

this time using the four versions of the strand-past-vertex move we haven’t

seen so far (computed in Lemma 3.2.3). The maps look very similar to the

ones we’ve worked out above; this time, however, the hml, lmh, hlm, and mlh

variations will more closely resemble the CKT from Proposition 3.2.11, while

the mhl, lhm,�, and 	 variations will take after Proposition 3.2.14. It’s also

worth noting that a different set of crossing ordering conventions will become

much more convenient here. For variations hml, lmh, hlm, and mlh, we’ll use

the following ordering: in the initial tangle the crossings will be ordered ‘mid-

dle’, ‘high’, ‘low’, while in the final tangle they will be ordered ‘high’, ‘middle’,

‘low’. For variations mhl, lhm,�, and 	, we’ll instead use the inverse ordering:

the crossings of the initial tangle will be ordered ‘high’, ‘middle’, ‘low’, and of

the final tangle, ‘middle’, ‘high’, ‘low’. We’ll demonstrate two of these R3 ho-

motopy equivalences below (denoting them with a bar), and leave the rest as an

exercise to the reader.

Proposition 3.2.20. 1. The hlm variation.

[[
1 2

3

]]
∼= C


uabove

��


'−−→
fhlm

C


ubelow

��


∼=

[[ 1 2

3

]]
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is a homotopy equivalence via the map

fhlm =

(
tOAR ◦ sIAR 0

u ◦ hIAR 1

)
.

The homotopy inverse of this map is given by

ghlm =

(
tIAR ◦ sOAR 0

u ◦ hOAR 1

)
.

2. The lhm variation.

[[
1 2

3

]]
∼= C


uabove

��


'−−→

flhm

C


ubelow

��


∼=

[[ 1 2

3

]]

is a homotopy equivalence via the map

flhm =

(
sIAR ◦ tOAR 0

−h1 ◦ u ◦ sIAR ◦ tOAR ρ2 ◦ ρ−1
1 ◦ σ

)
.

The homotopy inverse of this map is given by

glhm =

(
sOAR ◦ tIAR 0

−h2 ◦ u ◦ sOAR ◦ tIAR σ ◦ ρ1 ◦ ρ−1
2

)
.

The following lemmas are analogous to Lemmas 3.2.16, 3.2.17, and 3.2.18:

they give the summary information we need about the R3 maps (and their in-

verses) obtained by resolving the lowest crossing, which we’ll denote R3?.

Lemma 3.2.21. If the layers of R3? are arranged as O → P , then the map from the

parallel layer to the orthogonal layer, R3?
P→O, is zero. Otherwise, if the layers are

arranged as P → O, then the map R3?
P→O is zero. (That is, the diagonal map pointing

backwards in homological height is always zero.)
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Lemma 3.2.22. The map between the orthogonal layers, R3?
O→O, is the identity chain

map when ? = hml, lmh, hlm, or mlh. When ? = mhl or lhm, the map R3?
O→O,

restricted to the two homologically extreme objects, is −id. When ? =� or 	, the

restriction of R3?
O→O to extreme objects is the appropriate rotation of the morphism

−R

Lemma 3.2.23. The map between the parallel layers,R3?
P→P kills the doubly smoothly-

resolved object (which resides at either the highest or lowest homological height) when

? = hml, lmh, hlm, or mlh, and kills both extreme objects when ? = mhl, lhm,�,

or 	. Further, for each variation, in the middle homological height there is a pair of

objects (one in the source complex and one in the target complex) that have the same

unoriented diagram; the component of the R3?
P→P map between these objects is −id

for ? = hml, lmh, hlm or mlh, the identity for ? = mhl or lhm, and the appropriate

rotation of the morphism R for ? =� or 	. Every other entry of the R3?
P→P map in the

middle homological height is some multiple of a foam that looks locally a cup, a cap, or

one of the following

near all circles or bigons in either the source or target.



Chapter 4

Checking movie moves

Here we will prove Theorem 1.3.1, which asserts functoriality for the theory.

This requires showing that chain maps in Kob (su3), induced by link cobor-

disms, are well-defined, i.e., they are invariant under changing a cobordism

presentation by a movie move. The overall strategy will be very similar to the

one used in [CMW].

4.1 Duality and homotopy isolation

We begin by stating a result about duality with respect to Hom-sets. For

tangles P and Q, denote any gluing of them by P • Q, and let Q denote the

reflection of Q. The following proposition was first presented in [CMW]:

Proposition 4.1.1. Given oriented tangles P , Q and R, there is an isomorphism be-

tween the spaces of chain maps up to homotopy

F : HomKh ([[P •Q]] , [[R]])
∼=→ HomKh

(
[[P ]] ,

[[
R •Q

]])
.

While this result was originally proven in the context of Khovanov’s su2 the-

ory, it clearly holds for the su3 case without any changes to the statement or

proof (for whose details we refer the interested reader to [CMW]). It’s impor-

tant to note, however, that the proof assumes the theory is already invariant

under MM9, the ninth movie move. As such, invariance under MM9, shown in

39
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Section 4.3, must take place with complete independence of the material in this

section.

From this we get an easy corollary, also given in [CMW], which will be

highly useful during our movie move checks. In particular, note that it applies

to (the first and last frames of) every movie move.

Corollary 4.1.2. Let T1 and T2 be tangles with k endpoints such that T1 • T2 is an

unlink with m components. Then the space of chain maps modulo chain homotopy from

[[T1]] to [[T2]] in gradingm−k is 1-dimensional, and all chain maps of grading higher than

m− k are chain homotopic to zero.

The second component of machinery we’ll need is the “homotopy isolation”

idea from [CMW].

Definition 4.1.3. Let C• and D• be complexes in a graded additive category, with A a

direct summand in some Ci. We’ll say A is C-D homotopically isolated if, for any

grading zero homotopy h : C• → D•−1, the restriction of dh+ hd to A is zero.

Lemma 4.1.4. Let f, g : C• → D• be chain maps, and say f ' αg are homotopic for

some scalar α. If f and g agree and are nonzero on a C-D homotopically isolated object

A in C•, then we have that f ' g are homotopic.

By Corollary 4.1.2, we know that any movie move (except for MM9) changes

the induced map in Kob (su3) by at most a scalar. We’ll show this scalar is

always 1 by computing with homotopically isolated objects, which have a con-

venient description in the su3 web case.

Lemma 4.1.5. Let [[T1]] and [[T2]] be the complexes for two tangle diagrams, and let D1 be

a web appearing as a direct summand somewhere in [[T1]]. Then

1. A is [[T1]]-[[T1]] homotopically isolated if D1 contains no cycles (as a graph) and is

not connected by differentials to webs containing cycles;

2. A is [[T1]]-[[T2]] homotopically isolated if [[T1]] and [[T2]] contain only acyclic webs.

To prove this, we’ll first need a more general result about Hom-sets of foams.
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Definition 4.1.6. The bare grading of a morphism C between webs D1 and D2 is

given by

deg′(C) = 2χ(C)−B +
V

2
,

where B is the number of boundary points on h and V is the total number trivalent

vertices in D1 and D2.1

Proposition 4.1.7. If D1 and D2 are acyclic then there are no nonzero morphisms with

positive bare grading between them.

Proof. Let C : D1 → D2. Our first task is to remove the closed seams from

C, producing a new foam called C̃. Begin by performing neck cutting on each

sheet incident on a closed seam. (If there are k closed seams to begin with, there

will be 3k operations). This will produce 33k terms, in which all the original

closed seams are sequestered in closed foams. We can evaluate each one of

these closed foams to a scalar by the remark in Section 2.2, leaving us with a new

presentation of C =
∑
Ci, a degree-homogeneous linear combination. Here the

Ci may still have closed seams, but only of the variety appearing in the neck

cutting relation: locally, they will all look like “choking handles”
( )

.

At this point, we can perform neck cutting once again (to remove unwanted

tubes connecting sheets) so that each Ci has the following pieces:

• 0-cells given by trivalent vertices and boundary points.

• 1-cells given by seams, boundary lines, and edges in Di.

• 2-cells given either by discs in choking handles, or by sheets that intersect

D1 ∪D2 nontrivially and that may have handles or choking handles.

Now pick anyCi 6= 0 and consider the foam C̃ obtained fromCi by removing

all handles and choking handles. Since these pieces have bare grading −1 and

0, respectively, we have that deg′(C) = deg′(Ci) ≤ deg′(C̃). Also note that C̃ has

no closed seams and no handles, and can thus be decomposed as follows:

1Here we’ve simply neglected the contributions from formal shifts of boundary webs present
in the usual Kob (su3) grading.
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• 0-cells given by trivalent vertices and boundary points.

• 1-cells given by seams, boundary lines, and edges in Di.

• 2-cells given by genus zero sheets that intersect D1 ∪D2 nontrivially.

It suffices to prove the result for this much simpler foam C̃.

Let F be the number of seams in C̃, and let S be the number of sheets. We

now claim that χ(C̃) = S − 2F , which we can see as follows. Imagine building

C̃ out of its S disjoint sheets. We’ll then add seams, joining together three sheets

at each seam. Each of these operations will reduce the Euler characteristic by 2,

giving the formula. Thus, since F = V
2

, deg′(C̃) = 2S − 3F −B.

Next we’ll show that, if D1 and D1 are acyclic, this formula can be modified

to deg′(C̃) = 2S − 4F −N , where N = π0(D1) + π0(D2), i.e., the total number of

connected components of the boundary webs. Assuming D1 and D2 are acyclic

just means that each of their components is a tree. This says that B = Vi +

2ni, where ni is the number of connected components and Vi is the number of

trivalent vertices in Di. Adding these two equations we get

2B = V1 + V2 + 2(n1 + n2)

= V + 2N

⇒ B =
V

2
+N = F +N.

Thus we have that deg′(C̃) = 2S − 3F −B = 2S − 4F −N .

Remember, our goal is to show that deg′(C̃) ≤ 0, which is now equivalent to

proving

S ≤ 2F +
N

2
. (4.1)

We’ll get there by considering the boundary 1-cells of the sheets in C̃, which, as

mentioned before, consist of seams, boundary lines, and edges inDi. It’s an easy

observation that the total number of edges, E, in D1 and D2 is just E = 2V +N .

These segments, as well as the boundary lines, can serve as part of the boundary

for a single sheet. Each seam, however, will serve as a boundary component for

three distinct sheets (from our acyclicity assumption).
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For an example, let’s say that every sheet in C̃ were a d-gon. Then we would

have that Sd = E+B+3F : each side of each sheet corresponds to a graph edge,

a boundary line, or one third of a seam. Let’s make a more general assumption:

that every sheet in C̃ has at least four sides. If this is the case, then

4S ≤ E +B + 3F

≤ (2V +N) + (F +N) + 3F

≤ 8F + 2N.

This would give us Equation 4.1. Note that there cannot be three-sided

sheets (or in fact any odd-sided sheets, by acyclicity); unfortunately, there can

be bigons. However, we observe that bigons in C̃ must have one edge in one

of the Di and the other edge a seam intersecting the same Di twice. In other

words, this bigon must be part of a zip or unzip morphism. Thus we can factor

C̃ into a stack of zips, unzips, and a foam in which each sheet has at least four

sides. Since the zip and unzip morphisms have bare degree −1, we have our

result.

Proof of Lemma 4.1.5. A degree zero homotopy is a morphism

h : qmD1 → qm−1D2.

(Here, we could have D2 in either [[T1]] or [[T2]], depending on which part of the

lemma we’re trying to prove.) Thus, by Equation 2.8, deg′(h) = 1. And by

Proposition 4.1.7, h must be the zero map.

The first part of this lemma is well-suited for the reversible movie moves

(MM6-10) and the second part for the those involving Morse moves. It’s an

easy observation that every web in the initial (and final) complex C of movie

moves 6, 7, and 8 isC-C homotopically isolated, and every web in the initial and

final complexes C and D of 11, 13, and 15 is C-D homotopically isolated. This

means we can compare induced chain maps simply by applying them to a single

object of our choice. Movie moves 12 and 14, unfortunately, do not contain

homotopically isolated objects, so we’ll need to compute the induced maps on
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all objects; luckily the complexes are small, and this is not a great burden. We’ll

handle movie moves 9 and 10 with different techniques: the former because of

the paragraph after Proposition 4.1.1, and the latter just to illustrate something

fun.

Keep in mind that, as always, all crossings in these moves must be ordered,

and they may need to be reordered to be consistent with the conventions we’ve

defined for the Reidemeister maps. (Recall the discussion about planar com-

positions of complexes in Section 2.3 and Appendix B.2) However, the chain

maps induced by crossing reorderings are trivial in every movie move except

MM6 and MM9. The signs appearing in MM6 are particularly nasty, but we

will show some sample calculations.

4.2 MM1-5

The first five movie moves are trivial; they simply say that a Reidemeister

move followed by its inverse is the identity.

4.3 MM6-10

Movie moves 6 through 10 involve no Morse moves, and so are reversible.

We only need to check one time direction, and in all cases we’ll be comparing the

map induced by the movie shown to the identity map (induced by the constant

movie).

MM6

There are 24 variations of MM6. To see this, we’ll first make use of rotational

symmetry to require that the ’horizontal’ strand (the one not involved in either
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R2 move) points from left to right. There are then sixteen possibilities for the ini-

tial frame of the movie move; these come from four choices of height orderings

and four choices of orientations. The horizontal strand can either lie entirely

above or entirely below the two vertical strands (’non-interleaved’), or it may

pass under one and over the other (’interleaved’, ’ascending’ or ’descending’).

The two vertical strands may be either parallel or anti-parallel. When they are

parallel, they may point up or down, and when they are anti-parallel they may

have a clockwise or anti-clockwise orientation. All of these variations are dis-

played in Figure 4.1.

+ +- - +- + -

+ + - - + - +-

+ +- -+ -+-

+ + - -+ - +-

Figure 4.1: 16 variations for the initial frame of MM6.

Further, the eight variations in which the strands are ’non-interleaved’ (the

first two rows of Figure 4.1) each have two sub-variations, which we don’t see

until the second frame of the movie. Of the two vertical strands, either one

can pass above the other during the R2 moves; in Figure 4.1, the ’left passing

above the right’ sub-variation is listed to the left of the slash. In the ’interleaved’

variations, there is no choice here.

We will thus treat four major cases,

• non-interleaved, parallel variations,
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• non-interleaved, anti-parallel variations,

• interleaved, parallel variations and

• interleaved, anti-parallel variations.

Non-interleaved parallel variations There are four possible initial frames that

are ’non-interleaved’ and have parallel vertical strands. Each of these initial

frames has two possible sub-variations, depending on the relative heights of

the vertical strands during the R2 moves. For each of the four initial frames, we

will treat uniformly the sub-variations in which the upper R2-induced crossing

is negative and the lower one is positive, and then indicate how to treat the

other four sub-variations.

Recall that our lemmas encapsulating the details of the R3 variations require

that we separate the initial and final complexes into layersO and P by resolving

a crossing. Maneuvering through the pair of R3s in this movie move is most

efficiently managed by resolving the R2-induced crossings: the upper one for

the first R3, and the lower one for the second R3. Notice that since the upper

crossing is negative, the first R3 will have homological ordering O → P , while

the second R3 will have ordering P → O. Since the horizontal strand could be

either above or below the vertical ones, these two crossing could be either the

high or low crossings in their respective R3 moves. Luckily, we have lemmas

that deal with either case, so we needn’t treat them separately.

Our “bundle” of maps for this subcase is given in Figure 4.2, where Os and

Ps describe whether the indicated crossing resolution has strands orthogonal

or parallel to the horizontal strand. For example is our notation for

(or, thinking ahead, if the vertical strands are anti-parallel). Also, we’ve

cheated slightly with this diagram: the fourth column should contain two ad-

ditional summands, those with mixed Os and Ps. However, while there are

non-zero maps into these summands, the R2−1 maps out are always zero. Thus

we needn’t excessively complicate things with their presence.
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Figure 4.2: MM6 maps for the non-interleaved variations.

We’re left with a sum of four compositions. The two middle compositions

are both zero, as each contains a leg (labelled with “0”) that’s zero by Lemma

3.2.16. The top composition (αi’s) is just the identity: α1 and α4 are components

of R2a moves, and α2 and α3 are each the identity, by Lemma 3.2.17. (Each map

is a component of the O → O map; when the horizontal strand lies below, the

R3 variations are lmh, lhm,mhl and hml, which are exactly the four for which

the O → O part of the R3 map is the identity, and when the horizontal strand

lies above, the R3 variations are hml, hlm, lmh and mlh, which are exactly the

four for which the O → O part of the R3 map is the identity.)

The bottom composition is slightly more mysterious, but we see that the

map β sends doubly smoothly-resolved objects to zero by Lemma 3.2.18. Thus,

if we choose a doubly smoothly-resolved object to begin with, it will map to
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the doubly smoothly-resolved object in , and thereafter to zero. Further,

as mentioned before, any initial object here is homotopically isolated, so the

computation with this particular one suffices. Note also that, with this choice,

the top composition involves only objects with smoothly resolved crossings, so

we needn’t worry about extra signs from crossing reorderings.

The other four sub-variations, in which the signs of theR2-induced crossings

are reversed, are proven analogously: note that the objects in Figure 4.2 will then

have all Os and Ps swapped.

Non-interleaved anti-parallel variations First consider those cases in which

the left vertical strand is oriented downward and the right upward. Again we’ll

be referring to Figure 4.2. Consider the object which, since the two

signs of the initial crossings now differ, has homologically extreme height.

The composition α4 ◦ α3 ◦ α2 ◦ α1 now specifies to

R2b // R3 // R3 // R2b
−1

//

� r̄ // � −1 // � −R // � −r //

where r̄ and r are the upward- and downward-opening half barrels appearing

in the the R2 (and strand-past-vertex) chain maps, and R is the (appropriately

rotated) morphism from Lemma 3.2.17, shown again below

R = .
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This composition reduces via an airlock relation to id.

Of course, starting with an extreme object also guarantees this α composition

is the only one we need to worry about, as β = 0 from Lemma 3.2.18. There’s

no crossing reordering sign here, either, but we do need to check. Below is an

example calculation for one of the variations (we leave the others as an exercise),

giving a total sign of (−1)2. Recall that a crossing reordering map σij only gives

a sign when mapping an object in which the crossings labeled i and j are both

I-resolved. The unlabeled maps have already been described above.

1 2 R2b //
1 2

3
4

R3 // 1 2
3

4

σ34 // 1 2

3

4
σ12 // 12

3

4

R3 //
12
3

4 σ34 //
12

3

4
R2b

−1
//

12
σ12 //

1 2

� // � // � −1 // � 1 //

� // � −1 // � // � 1 //

The argument for the case in which the left vertical strand is oriented up-

ward, and the right downward, is essentially the same.

Interleaved variations There are eight variations, and essentially two distinct

computations will cover them all. Start with hml−1/ �, 	 /lmh−1, mlh−1/mhl,

and lhm/hlm−1: we’ll show the calculation for the first, and explain the neces-

sary alterations for the other three versions.
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R2b //
R3−1

hml// R3� // R2b−1
//



$$JJJJJ

� //


 P→P
$$JJJJJ

�P→P//

⊕

�O→O//

⊕

� //

⊕

� P→P

%%KKKKKKKKKK

�O→O//

� O→O
%%KKKKK

4
::ttttt

⊕

0
� // 0

Notice that our first R3 map is ordered O → P and the second P → O, each

with the high crossing resolved, and that the maps for these moves are labeled

by their source and target layers; in particular, the initial O layer for the second

move and the final P layer for the first move coincide.

Lemma 3.2.16 tells us there are only four compositions we need to keep track

of here. The first map into the second row has a doubly smoothly-resolved

target in the initial P layer of R3−1
hml, which thereafter maps to zero by Lemma

3.2.18. The composition including the rest of the second row contains a blister,

and thus is the zero map; this is because the second map has a bubble from

Lemma 3.2.18, the third map unzips the bubbled bigon by Lemma 3.2.19, and

the fourth map, an R2b untuck, caps it off. The composition terminating at zero

in the third row also uses Lemma 3.2.19.

Thus we’re left with only the first row, which is easily seen to be the same

composition we saw in the non-interleaved anti-parallel case: the identity.

The calculations for the 	−1 /lmh−1, mlh−1/mhl−1, and lhm−1/hlm varia-

tions are very similar. For 	−1 /lmh−1, the initial object will have an I-resolved

left crossing and a smoothly-resolved right crossing, and we’ll resolve each R3

move into layers using the low crossing. Thus we’ll need to compute using

the R3 maps. The mlh−1/mhl and lhm/hlm−1 variations are even easier: we
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start with the doubly smoothly-resolved object in each case, and resolve into

layers using the high crossings or the low crossings, respectively. Also, in each

of these three variations, there is no need for an analogy of the obscure Lemma

3.2.19. This is because the corresponding O → O map originating in the second

row always has just one component, the identity, by Lemma 3.2.17. Crossing

reordering maps are trivial in all four of these variations.

The computations for � /hml−1, lmh−1/ 	−1, mhl−1/mlh−1, and hlm/lhm−1

are somewhat different; again, we’ll explicitly show the first.

R2b // R3� // R3hml
−1
// R2b−1

//

� //

	
$$IIIII

�O→O//

⊕

�O→O//

	 O→P
$$IIIII

⊕

� //

⊕ ⊕

�O→O// �P→P// � //

Now our first R3 map is ordered P → O with the high crossing resolved, and

the second is ordered O → P with the low crossing resolved. Again, we’ll keep

track of the layers to which objects belong by referring to the labels on the maps.

By Lemma 3.2.16, we have three compositions to consider. Two of them

factor through the second row, and thus map to a complex with the left crossing

I-resolved; since our map is a multiple of the identity, these compositions must

sum to zero. (Note that the O → O map on the second row comes from Lemma

3.2.19.) So we’re left with the first row. Using Lemma 3.2.17 for the first R3,

Lemma 3.2.22 for the second R3 (where our map comes from resolving the low

crossing), the R2b map definitions, and an application of the airlock relation, we

get the map (−r) ◦ id ◦ (−R) ◦ r̄ = −id. We’ll also get a crossing reordering sign
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here ((−1)5, shown below), giving us the identity on the nose.

1 2 R2b //
1 2

3
4

σ23 //
1

2
3

4

σ12 // 1
2 3

4

R3 // 1
2

3

4

σ23 // 12
3

4

σ12 // 1 2
3

4

σ34 // 1 2

3

4

σ23 // 1
2

3
4

R3 // 1
23

4 σ12 //
1
2

3

4 σ23 //
12
3

4 σ34 //
12

3
4
R2b−1

//
12
σ12 //

1 2

� // � −1 // � 1 // � // � −1 // � 1 // � −1 //

� 1 // � // � −1 // � 1 // � −1 // � // � 1 //

There are a few modifications necessary for lmh−1/ 	, mhl/mlh−1, and for

hlm−1/lhm. In the lmh−1/ 	 case, we start with the object with smoothly-

resolved left crossing and I-resolved right crossing, and resolve the first R3 on

low and the second on high; a crossing ordering sign will appear here. For each

of mhl/mlh−1 and hlm−1/lhm our initial object will be the doubly smoothly-

resolved one; hlm−1 and mlh−1 should be resolved on low, while mhl and lhm

should be resolved on high. In all three cases, the identity will result.

MM7

There are only four variations of MM7, depending on the orientation of the

strand, and whether the leading crossing is positive or negative. It’s easy to

check that reversing orientations has little effect on the two subsequent calcula-

tions.
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When the leading crossing is positive, we get

R1a // R1b // R2b
−1

//

� saddle // � cup // � // ,

while a negative crossing results in

R1b // R1a // R2b
−1

//

� cup // � saddle // � // .

Either composition is easily seen to be the identity morphism.

MM8

This is the only movie move involving all three Reidemeister moves. First

let’s note some symmetries. By a rotation of the whole diagram, we can assume

the R1 move happens on the horizontal strand, beginning on the right. More-

over, we can assume that the horizontal strand is oriented right to left (other-

wise, we can obtain this condition by a π rotation of its time reversal).

There are then sixteen variations, depending on whether the vertical strand

lies above or below the horizontal strand, its orientation, the sign of the crossing

introduced by the first Reidemeister move in the first frame, and finally whether

the first Reidemeister move introduces a twist on the left or right side. Figure

4.3 shows all the maps involved. The dotted/dashed lines are contingent upon

crossing signs and orientations: either all of the dotted lines will appear, and
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Figure 4.3: Possible compositions for MM8.

none of the dashed, or vice versa. Note that the crossing introduced by the

R1 move is always either the low or high crossing in the R3 move, so we will

denote its resolution with either O or P as we did in the computation for MM6.

We can also observe that any map factoring through the resolution must

be zero, since this object maps to zero under R1. Thus we need only concern

ourselves with the other two compositions in Figure 4.3.

Consider the case of a negative twist, but ignore whether the twist appears

on the left or right side of the horizontal strand, as this barely changes any of

the calculations. Our computation will work regardless of whether the ver-

tical strand is above or below the horizontal strand. If above, we’ll see the

hml, lmh,mhl, and lhm variations of R3 and use Lemma 3.2.17; if below, the

relevant R3 moves are hml, lmh, hlm, and mlh and we can apply Lemma 3.2.22.

Either way, all R3 map components we’ll encounter are just the identity. The

two compositions when the vertical strand is oriented downward are as follows:
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R1b // R2b // R3 // R2a
−1

// R1b
−1

//

� // � r̄ //

�

β ##FFFFFF

� 1 //

⊕

�−u◦d//

⊕

� s //

� 1 //

8 1

;;xxxxxx

Here β is the seamless component of the R2b map, and s is the saddle from

R1b. The bottom map in this composition is just the identity (there are clearly

no crossing reordering issues here), while the top map contains a blister, and is

thus zero.

If the vertical strand is oriented upward, we’ll see the following:

R1b // R2a // R3 // R2b
−1

// R1b
−1

//

� // � 1 //

�

b◦z $$HHHHH

� 1 //

⊕

� β //

⊕

� s //

� 1 //

6 −r

;;vvvvv

This time the top map contains a sphere, and is thus zero. The bottom map

takes some patience to see, but modulo the airlock relation its just the identity.

Crossing reordering maps act trivially here.

The calculations for the positive twist case are almost identical.
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MM9

Remember that the proof of Proposition 4.1.1 in [CMW] assumed invariance

under this movie move. Thus, since we don’t have access to Corollary 4.1.2, we

can’t know in advance that the space of chain maps between the first and last

frames is one dimensional. As such, we’ll have to calculate the map on every

object in the initial tangle complex, checking it’s the identity on each of these

objects.

There are four variations of MM9: after fixing the orientation of one strand,

we have two possible orientations for the other strand, and a choice of sign

for the initial crossing. We’ll do the calculations for both types of crossings

with a given orientation. It’s easy to see that changing orientation essentially

interchanges the maps in these two cases.

With a positive initial crossing, we have

R2a // σ12 // R2a
−1

// ,

where σ is the necessary crossing reordering map. The components of the chain

map are given by:

� 1 //
�

((QQQQQQQQQQQQQ
� 1 //

⊕

� 1 //

⊕

� 1 //
-

0
66mmmmmmmmmmmmm

� b◦z //
�

((QQQQQQQQQQQQQ
� −1 //

⊕

� −u◦d //

⊕

� 1 //
-

0
66mmmmmmmmmmmmm
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and the composition is just the identity.

With a negative crossing, we have

R2b // σ23 // R2b
−1

// ,

with the components of the chain map given by

� //

�

((QQQQQQQQQQQQQ

� 1 //

⊕

� //

⊕

� 1 //

-

0

66mmmmmmmmmmmmmm

� r̄ //
�

((QQQQQQQQQQQQQ

� −1 //

⊕

� −r //

⊕

.

� 1 //
-

0
66mmmmmmmmmmmmm

Here, again, our composition is the identity.

MM10

This move has the most frames and the most crossings, in addition to forty-

eight variations: assuming the highest strand is oriented to the right, we have

3! height orderings and 23 orientation possibilities for the other three strands.

Various shortcuts have been successfully employed in [BN05] and [CMW] for

the su2 theory; however, we will build on the technique of the latter to give a

completely computation-free proof of invariance under MM10.
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Let’s first establish that one particular variation induces the identity map. To

do this, consider the non-generic projection in Figure 4.4: a cusp over a cross-

ing. Decomposing the space of projections of smooth tangles (with our spe-

cific boundary data) into strata of “genericness”, we can view this projection

as a 3-cell in the dual complex (where a k-cell corresponds to a codimension k

stratum). Here, 0-cells correspond to generic immersions, 1-cells correspond to

Reidemeister moves, and 2-cells correspond to movie moves. The 3-cell in ques-

tion, shown in Figure 4.5, is bounded by 2-cells representing MM10, MM6, and

MM8, as well as five 2-cells corresponding to the “zeroth movie move” (two

simultaneous but distant Reidemeister moves). Since we’ve already shown that

MM6 and MM8 give the identity, we get this variation of MM10 for free.

Figure 4.4: A non-generic projection corresponding to a 3-cell involving MM10,
MM6, and MM8.

To check the remaining variations, we’ll just repeat the argument in [CMW]:

the projection in Figure 4.6 has a dual 3-cell bounded by two MM10 2-cells,

four MM6 2-cells, and six distant Reidemeister move 2-cells. Having proved

invariance for MM6, we see that invariance for either of the two MM10 vari-

ations present follows from invariance of the other. It’s then straightforward

to show that, with proper choices of strand orientations, invariance under the

MM10 variation discussed above propagates (one variation at a time) to the

other forty-seven variations. See [CMW] for details.

4.4 MM11-15

The final five movie moves involve Morse moves, and so aren’t reversible;

we’ll have to compute the map for each movie (left and right), and see that they

coincide.
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x

y
z

MM10

MM6

*

MM8

MM6

*
MM8

MM6
*

MM8

MM6

MM8

*

*

*

Figure 4.5: The 3-cell for the singularity in Figure 4.4. The 0-cells here are the
generic tangle projections neighboring this singularity, achieved by straighten-
ing (z direction) and translating (x and y directions) the kink. The 2-cells marked
with an asterisk correspond to distant Reidemeister moves.

MM11

This is easy: every complex involved consists of a single object, and the cobor-

disms on either side are clearly isotopic, in either time direction.
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Figure 4.6: A non-generic projection corresponding to a 3-cell involving MM10
and MM6.

MM12

We can’t use a homotopy isolation argument here, but a brute-force computa-

tion of all components is not difficult. Keep in mind there are two variations:

the twist could be either positive or negative. Treating the positive twist, in the

forward time direction (i.e., reading down) we’ll see on the left

∅ // R1a //

∅ � // � s // ,

while on the right we have

∅ // R1a //

∅ � // � s // .

where s is a saddle. Either way, the morphism is a bent tube.
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In reverse time, reading up, we have on the left

∅ oo R1a
−1

oo

∅ �oo

⊕

�oo

0 ,�0oo

while on the right we have

∅ oo R1a
−1

oo

∅ �oo

⊕

�oo

0 .�0oo

These maps are each just a pair of discs.

The mirror image movie move, in which the twist is negative, is similar:

the morphisms appearing will be the same, but swapped with respect to the

forward and reverse directions.

MM13

The saddle in this move restricts the possible orientations we can see, and by

symmetry we can assume that both strands are oriented upward. Let’s consider
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the case of a positive twist. In the forward time direction, we see on the left

� R1a // � saddle //

� sL // � sR // ,

and on the right,

� R1a // � saddle //

� sR // � sL // ,

where sL is a saddle to left sheet, and sR is a saddle to the right sheet. Either

way, our composition is a tube between the sheets.

In the reverse time direction, we have

�
R1a−1

oo �
saddle

oo

�
cap

oo �
sL

oo

on the left, and

�
R1a−1

oo �
saddle

oo

�
cap

oo �
sR

oo

on the right, giving us the identity compositions.

Again, the mirror image move (with a negative twist) has the same mor-

phisms, though swapped with respect to time direction.
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MM14

We have some orientation choices for this move, and the circle may end up

above or below the vertical strand. Assume first the circle is oriented anti-

clockwise, and lies above an upward-oriented vertical strand. In the forward

time direction, on the left we have

� birth // � R2b //

� // � //

�

##GGGGGGGGGGGGGG

while on the right we have

� birth // � R2b //

� // � id //

�

##GGGGGGGGGGGGGG
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The top composition in each case is just

,

while the bottom composition is given by

.

The reverse time direction is similar and easily described in words. First,

reverse all arrows and turn all morphisms upside down in the diagrams above.

Then add a negative sign to each of the two diagonal arrows, as dictated in our

definitions of the R2 maps. Clearly, the left and right sides again yield the same

compositions.

Changing orientations and strand height do not change the calculations.

MM15

By symmetry we can assume that the middle strand is oriented left to right.

The other strands must be oriented oppositely for the saddle to occur, leaving

two possible orientations, and the middle strand can either pass above or be-

low the other two. Thus there are a total of four variations, and we’ll show

calculations for one.
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In forward time, we have on the left

R2a // saddle //

� 1 //

�

&&NNNNNNNNN

� saddle //

⊕ ⊕

� //

and on the right

R2b // saddle //

� //

�

''OOOOOOOOO

� //

⊕ ⊕

� // .

We need only concern ourselves with the component of the maps going to

, and have left the other components unlabeled. Clearly, the relevant com-

position on each side is just a saddle between the lower two strands, and we

have equality.

In the reverse time direction, we have on the left

R2a
−1

oo saddleoo

�1oo �saddleoo
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and on the right

R2b
−1

oo saddleoo

�oo .�oo

Again we see a saddle between the lower strands on each side.

The other three variations are almost exactly the same, and we leave them as

an exercise.

4.5 The End

Having now shown that movie moves do not change induced maps, the

proof of Theorem 1.3.1 is complete.
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Simplifying complexes

A.1 Gaussian elimination for complexes

The following two lemmas provide a nice tool for simplifying chain com-

plexes without changing their homotopy type. Note that, throughout com-

plexes in Appendix A, we’ll write • for any maps that we don’t need to know

explicitly.

The first lemma comes from Bar-Natan [BN07].

Lemma A.1.1 (Single Gaussian elimination). Consider the complex

A
( •α )

//

B⊕
C

(
ϕ λ
µ ν

)
//

D⊕
E

( • ε ) // F (A.1)

in any additive category, where ϕ : B
∼=→ D is an isomorphism, and all other morphisms

are arbitrary (subject to d2 = 0, of course). Then there is a homotopy equivalence with

a much simpler complex, “stripping off” ϕ.

67
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A
( •α )

//
OO

( 1 )

��

B⊕
C

(
ϕ λ
µ ν

)
//

( 0 1 )

��

D⊕
E

( • ε ) //

(−µϕ−1 1 )

��

FOO

( 1 )

��
A

(α ) // C
( ν−µϕ−1λ ) //

(
−ϕ−1λ

1

)OO

E
( ε ) //

( 0
1 )

OO

F

Remark. It’s an easy check that Gaussian elimination is a strong deformation

retract (Definition 3.2.5).

By applying Gaussian elimination twice on two adjacent isomorphisms (that

aren’t composable), we get the following corollary [MN, CMW].

Lemma A.1.2 (Double Gaussian elimination). When ψ and ϕ are isomorphisms,

there’s a homotopy equivalence of complexes:

A
( •α )

//
OO

( 1 )

��

B⊕
C

(
ψ β
• •
γ δ

)
//

( 0 1 )

��

D1⊕
D2⊕
E

( • ϕ λ
• µ ν

)
//

(−γψ−1 0 1 )

��

F⊕
G

( • η ) //

(−µϕ−1 1 )

��

HOO

( 1 )

��
A

(α ) // C
( δ−γψ−1β ) //

(
−ψ−1β

1

)
OO

E
( ν−µϕ−1λ ) //

(
0

−ϕ−1λ
1

)OO

G
( η ) //

( 0
1 )

OO

H

A.2 Three isomorphisms in Kob (su3)

To put Gaussian elimination to work for us, we’ll use the following isomor-

phisms (Theorem 3.11 in [MN]).1

1. ∼= q−2 ∅ ⊕ q0 ∅ ⊕ q2 ∅, a.k.a. “delooping,” is an isomorphism via the

1These isomorphisms categorify the relations in Kuperberg’s spider (Equation 1.1), and are
readily proven using the local relations in Cob (su3) (Section 2.2)
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maps

q−2 ∅

⊕
1
3

&&MMMMMMMMMMMMMM88qqqqqqqqqqqqqq

1
3

//

1
3

&&MMMMMMMMMMMMMM q0 ∅

⊕

− 1
3

//

q2 ∅

88qqqqqqqqqqqqqq

2. ∼= q−1 ⊕q , a.k.a. “debubbling,” is an isomorphism via the maps

q−1

⊕

1
2

**UUUUUUUUUUUUUU44iiiiiiiiiiiiii

1
2

**UUUUUUUUUUUUUU

q

44iiiiiiiiiiiiii

3. ∼= ⊕ , a.k.a. “desquaring,” is an isomorphism via

−

))TTTTTTTTTTTTTTT55jjjjjjjjjjjjjjj

))TTTTTTTTTTTTTTT ⊕

−

55jjjjjjjjjjjjjjj

A.3 Proof of the strand-past-vertex moves

Proof of Lemma 3.2.3. This requires only a slight modification of the argument

given for Lemma 3.2.1 in [MN].
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Consider the IBR variation. In step 1, we desquare and deloop the two obvi-

ous objects, giving an isomorphic complex:

[[
1 2

]]
= q−6

( u
−u )

//

q−5 ⊕
q−5

( u u ) // q−4

∼=

q−6 ⊕
q−6

( • •
1 0
z z

)
//

q−4 ⊕
q−6 ⊕
q−5

( 1 • u ) // q−4 ,

where the differentials were calculated using the blister and airlock relations.

We now see two adjacent isomorphisms (identities, in fact), and proceed to step

2: apply Lemma A.1.2.

' q−6 z // q−5

Here the homotopy equivalence component at height −2 is given by ( 0
1 ) with

inverse ( 0 1 ); at height −1, the component is ( 0 −z 1 ) with inverse
( −u

0
1

)
.

Composing these components with the desquaring and delooping maps from

step 1 (and Appendix A.2), we obtain the claimed sIBR and tIBR.

Let’s consider, instead, the OBR variation. Again, we desquare and deloop:
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[[
1 2

]]
= q−6

(−u
u )

//

q−5 ⊕
q−5

( u u ) // q−4

∼=

q−6 ⊕
q−6

( • •
−1 0
−z −z

)
//

q−4 ⊕
q−6 ⊕
q−5

( 1 • u ) // q−4 ,

Applying Lemma A.1.2, we get:

' q−6 −z // q−5

with identical homotopy equivalence components to the ones we saw in IBR. Of

course, this complex is isomorphic to

∼= q−6 z // q−5

via the identity at height −2 and minus the identity at height −1. Composing

these three steps gives sOBR and tOBR.

The other four variations are proven analogously. (Note that the IAR and

OAR complexes will be horizontally reflected.)
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Homological Hoodoo

B.1 Planar compositions of complexes

Indeed, the su3 quantum link invariant can be thought of as a map of planar

Let’s consider the action of the planar arc diagram
1

2
on the following

two complexes

=

 d1A−−−→
d2A−−−→



=

 d1B−−−→
d2B−−−→


This will give us a new complex

=
1

2

 ,


that we construct by taking the double complex and direct summing along the

line y = −x. (See Figure B.1.) In this picture, the horizontal arrow originating

72
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− //

⊕

− //

⊕

//

OO

⊕

//

OO

⊕

OO

− //

OO

− //

OO OO

Figure B.1: The double complex being collapsed.

at the (i, j)th entry is the planar composition of (−1)jdiA (in hole 1) and 1Bj (in

hole 2). Similarly the vertical arrow at (i, j) is the planar composition of 1Ai and

djB. (Please refer to the sign conventions in Appendix B.2.)

Given the associativity of planar composition, this rule easily generalizes

(pairwise, if you like) to planar arc diagrams with n holes.

B.2 Sign conventions

We’ll be using the following conventions for tensor products of complexes

[GM96]; these rules will translate directly to (ordered) planar compositions.

The tensor product of two complexes (A•, dA) and (B•, dB) is defined to be

(A⊗B)• =
⊕
i+j=•

Ai ⊗Bj,

and

d(A⊗B)• =
∑
i+j=•

(−1)jdiA ⊗ 1Bj + 1Ai ⊗ djB.
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If A• lies horizontally and B• stands vertically in the double complex, this

rule just says “negate the differentials in every odd row.”

As a consequence of these signs in the tensor product construction, the iso-

morphism A•⊗B• ∼= B•⊗A• is not quite the naı̈ve permutation, which is not a

chain map. Instead, to we’ll need to define the map this way:

Ai ⊗Bj −→ Bj ⊗ Ai

(a, b) 7−→ (−1)ij(b, a).

Thus, performing a transposition in a tensor product will negate everything in

“doubly odd” degree. In the Kob (su3) picture, this means that each time we

alter the ordering of crossings by a transposition, we are really applying the

isomorphism above. The “doubly odd” objects here are the webs in which both

crossings are I-resolved, and these “doubly I-resolved” webs will pick up the

additional minus signs. All other objects are mapped via the identity.
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