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ARTICLE

A generalizable and accessible approach to
machine learning with global satellite imagery
Esther Rolf 1,2,9, Jonathan Proctor 3,9, Tamma Carleton 4,5,9, Ian Bolliger 2,6,9, Vaishaal Shankar1,9,

Miyabi Ishihara 2,7, Benjamin Recht1 & Solomon Hsiang 2,5,8✉

Combining satellite imagery with machine learning (SIML) has the potential to address global

challenges by remotely estimating socioeconomic and environmental conditions in data-poor

regions, yet the resource requirements of SIML limit its accessibility and use. We show that a

single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest

cover, house price, road length). Our method achieves accuracy competitive with deep neural

networks at orders of magnitude lower computational cost, scales globally, delivers label

super-resolution predictions, and facilitates characterizations of uncertainty. Since image

encodings are shared across tasks, they can be centrally computed and distributed to

unlimited researchers, who need only fit a linear regression to their own ground truth data in

order to achieve state-of-the-art SIML performance.
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Addressing complex global challenges—such as managing
global climate changes, population movements, ecosystem
transformations, or economic development—requires that

many different researchers and decision-makers (hereafter, users)
have access to reliable, large-scale observations of many variables
simultaneously. Planet-scale ground-based monitoring systems
are generally prohibitively costly for this purpose, but satellite
imagery presents a viable alternative for gathering globally
comprehensive data, with over 700 earth observation satellites
currently in orbit1. Further, application of machine learning is
proving to be an effective approach for transforming these vast
quantities of unstructured imagery data into structured estimates
of ground conditions. For example, combining satellite imagery
and machine learning (SIML) has enabled better characterization
of forest cover2, land use3, poverty rates4 and population
densities5, thereby supporting research and decision-making. We
refer to such prediction of an individual variable as a task.
Demand for SIML-based estimates is growing, as indicated by the
large number of private service-providers specializing in pre-
dicting one or a small number of these tasks.

The resource requirements for deploying SIML technologies,
however, limit their accessibility and usage. Satellite-based mea-
surements are particularly under-utilized in low-income contexts,
where the technical capacity to implement SIML may be low, but
where such measurements would likely convey the greatest
benefit6,7. For example, government agencies in low-income
settings might want to understand local waterway pollution,
illegal land uses, or mass migrations. SIML, however, remains
largely out of reach to these and other potential users because
current approaches require a major resource-intensive enterprise,
involving a combination of task-specific domain knowledge,
remote sensing and engineering expertise, access to imagery,
customization and tuning of sophisticated machine learning
architectures, and large computational resources8.

To remove these barriers, a new approach to SIML is needed
that will enable non-experts to obtain state-of-the-art perfor-
mance without using specialized computational resources or
developing a complex prediction procedure. A one-time, task-
agnostic encoding that transforms each satellite image into a
vector of variables (hereafter, features) could enable such an
approach by separating users from the costly manipulation of
imagery. Such an unsupervised encoding might be particularly
well suited for SIML problems, especially when constrasted with
deep-learning approaches to SIML that use techniques originally
developed for natural images (e.g., photos taken from handheld
cameras). Inconsistency of many key factors in natural imagery,
such as subject or camera perspective, require complex solutions
that may be unnecessary for learning from satellite imagery.
While prior work has sought an unsupervised encoding of
satellite imagery9–12, to date no single set of features has been
shown to both achieve performance competitive with deep-
learning methods across a variety of tasks and to scale globally.

Here we show that a single set of general purpose features can
encode rich information in satellite images, performing well at
predicting ground conditions across diverse tasks using only a
linear regression implemented on a personal computer. We focus
on the problem of predicting properties of small regions (e.g.,
average house price) at a single time period, using high-resolution
daytime satellite imagery as the only input. We use this imagery to
test whether a single embedding can generalize across tasks
because it is globally available from the Google Static Maps API at
fine resolution, is geo-rectified and pre-processed to remove cloud
occlusions, and has been found to perform well in SIML appli-
cations (Supplementary Note 1.2)4,13, though in principle other
data sources could also be used14. We develop a simple yet high-
performing system that is tailored to address the challenges and

opportunities specific to SIML applications, taking a fundamen-
tally different approach from leading designs. We achieve large
computational gains in model training and testing, relative to
leading deep neural networks, through algorithmic simplifications
that take advantage of the fact that satellite images are collected
from a fixed distance and viewing angle and capture repeating
patterns and objects. In addition, traditionally, hundreds or
thousands of researchers use the same images to solve different
and unrelated tasks (e.g., Fig. 1a). Our approach allows common
sources of imagery to be converted into centralized sets of features
that can be accessed by many researchers, each solving different
tasks. This isolates future users from the costly steps of obtaining,
storing, manipulating, and processing imagery themselves. The
magnitude of the resulting benefits grow with the size of the
expanding SIML user community and the scale of global imagery
data, which currently increases by more than 80TB/day15.

Results
Achieving accessibility and generalizability with Multi-task
Observation using Satellite Imagery & Kitchen Sinks
(MOSAIKS). Our objective is to enable any user with basic
resources to predict ground conditions using only satellite ima-
gery and a limited sample of task-specific ground truth data
which they possess. Our SIML system, “Multi-task Observation
using Satellite Imagery and Kitchen Sinks” (MOSAIKS, see
Methods), makes SIML accessible and generalizable by separating
the prediction procedure into two independent steps: a fixed
“featurization step” which translates satellite imagery into suc-
cinct vector representations (images→ x), and a “regression step”
which learns task-specific coefficients that map these features to
outcomes for a given task (x→ y). For each image, the unsu-
pervised featurizaton step can be centrally executed once, pro-
ducing one set of outputs that are used to solve many different
tasks through repeated application of the regression step by
multiple independent users (Fig. 1b). Because the regression step
is computationally efficient, MOSAIKS scales nearly costlessly
across unlimited users and tasks.

The accessibility of our approach stems from the simplicity and
computational efficiency of the regression step for potential users,
given features which are already computed once and stored
centrally. To generate SIML predictions, a user of MOSAIKS (i)
queries these tabular data for a vector of K features for each of
their N locations of interest; (ii) merges these features x with label
data y, i.e., the user’s independently collected ground truth data;
(iii) implements a linear regression of y on x to obtain coefficients
β – below, we use ridge regression; (iv) uses coefficients β and and
features x to predict labels ŷ in new locations where imagery and
features are available but ground truth data are not (Fig.1b).

The generalizability of our approach means that a single
mathematical summary of satellite imagery (x) performs well
across many prediction tasks (y1, y2, . . . ) without any task-specific
modification to the procedure. The success of this generalizability
relies on how images are encoded as features. We design a
featurization function by building on the theoretically grounded
machine learning concept of random kitchen sinks16, which we
apply to satellite imagery by constructing random convolutional
features (RCFs) (Fig. 1c, Methods). RCFs are suitable for the
structure of satellite imagery and have established performance
encoding genetic sequences17, classifying photographs18, and
predicting solar flares19 (see Supplementary Note 2.3). RCFs
capture a flexible measure of similarity between every sub-image
across every pair of images without using contextual or task-specific
information. The regression step in MOSAIKS then treats these
features x as an overcomplete basis for predicting any y, which may
be a nonlinear function of image elements (see Methods).
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In contrast to many recent alternative approaches to SIML,
MOSAIKS does not require training or using the output of a deep
neural network and encoding images into unsupervised features
requires no labels. Nonetheless, MOSAIKS achieves competitive
performance at a large computational advantage that grows linearly
with the number of SIML users and tasks, due to shared computation
and storage. In principle, any unsupervised featurization would
enable these computational gains. However, to date, a single set of
unsupervised features has neither achieved accuracy competitive with
supervised CNN-based approaches across many SIML tasks, nor at
the scale that we study. Below, we show that MOSAIKS achieves a
practical level of generalization in real-world contexts.

We design a battery of experiments to test whether and under
what settings MOSAIKS can provide access to high-performing,
computationally efficient, global-scale SIML predictions. Specifi-
cally, we (1) demonstrate generalization across tasks, and
compare MOSAIKS’s performance and cost to existing state-of-
the-art SIML models; (2) assess its performance when data are
limited and when predicting far from observed labels; (3) scale
the analysis to make global predictions and try recreating the
results of a national survey; and (4) detail additional properties of
MOSAIKS, such as the ability to make predictions at finer
resolution than the provided labels.

Multi-task performance of MOSAIKS in the US. We first test
whether MOSAIKS achieves a practical level of generalization by

applying it to a diverse set of pre-selected tasks in the United
States (US). While many applications of interest for SIML are in
remote and/or data-limited environments where ground truth
may be unavailable or inaccurate, systematic evaluation and
validation of SIML methods are most reliable in well-observed
and data-rich environments20.

We sample daytime images using the Google Static Maps API
from across the continental US (N= 100,000), each covering
~1 km × 1 km (256-by-256 pixels) (Supplementary Notes 2.1–
2.2). We first implement the featurization step, passing these
images through MOSAIKS’ feature extraction algorithm to
produce K= 8,192 features per image (Supplementary Note 2.3).
Using only the resulting matrix of features (X), we then
repeatedly implement the regression step by solving a cross-
validated ridge regression for each task and predict forest cover
(R2= 0.91), elevation (R2= 0.68), population density (R2= 0.72),
nighttime lights (R2= 0.85), average income (R2= 0.45), total
road length (R2= 0.53), and average house price (R2= 0.52) in a
holdout test sample (Fig. 2, Supplementary Table 2, Supplemen-
tary Notes 2.4–2.6). Computing the feature matrix X from
imagery took less than 2 hours on a cloud computing node
(Amazon EC2 p3.2xlarge instance, Tesla V100 GPU). Subse-
quently, solving a cross-validated ridge regression for each task
took 6.8 min to compute on a local workstation with ten cores
(Intel Xeon CPU E5-2630) (Supplementary Note 3.2). These
seven outcomes are not strongly correlated with one another
(Supplementary Fig. 2) and no attempted tasks in this experiment

Fig. 1 A generalizable approach to combining satellite imagery with machine learning (SIML) without users handling images. MOSAIKS is designed to
solve an unlimited number of tasks at planet-scale quickly. After a one-time unsupervised image featurization using random convolutional features,
MOSAIKS centrally stores and distributes task-agnostic features to users, each of whom generates predictions in a new context. a Satellite imagery is
shared across multiple potential tasks. For example, nine images from the US sample are ordered based on population density and forest cover, both of
which have distinct identifying features that are observable in each image. b Schematic of the MOSAIKS process. N images are transformed using random
convolutional features into a compressed and highly descriptive K-dimensional feature vector before labels are known. Once features are computed, they
can be stored in tabular form (matrix X) and used for unlimited tasks without recomputation. Users interested in a new task (s) merge their own labels (ys)
to features for training. Here, user 1 has forest cover labels for locations p+ 1 to N and user 2 has population density labels for locations 1 to q. Each user
then solves a single linear regression for βs. Linear prediction using βs and the full sample of MOSAIKS features X then generates SIML estimates for label
values at all locations. Generalizability allows different users to solve different tasks using an identical procedure and the same table of features—differing
only in the user-supplied label data for training. Each task can be solved by a user on a desktop computer in minutes without users ever manipulating the
imagery. c Illustration of the one-time unsupervised computation of random convolutional features (Methods and Supplementary Note 2.3). K patches are
randomly sampled from across the N images. Each patch is convolved over each image, generating a nonlinear activation map for each patch. Activation
maps are averaged over pixels to generate a single K-dimensional feature vector for each image.
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Fig. 2 1 km × 1 km resolution prediction of many tasks across the continental US using daytime images processed once, before tasks were chosen.
100,000 daytime images were each converted to 8,192 features and stored. Seven tasks were then selected based on coverage and diversity. Predictions
were generated for each task using the same procedure. Left maps: 80,000 observations used for training and validation, aggregated up to 20 km × 20 km
cells for display. Right maps: concatenated validation set estimates from 5-fold cross-validation for the same 80,000 grid cells (observations are never
used to generate their own prediction), identically aggregated for display. Scatters: Validation set estimates (vertical axis) vs. ground truth (horizontal
axis); each point is a ~1 km × 1 km grid cell. Black line is at 45∘. Test-set and validation set performance are essentially identical (Supplementary Table 2);
validation set values are shown for display purposes only, as there are more observations. The tasks in the top three rows are uniformly sampled across
space, the tasks in the bottom four rows are sampled using population weights (Supplementary Note 2.1); grey areas were not sampled in the experiment.
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are omitted. These results indicate that MOSAIKS is skillful for a
wide range of possible applications without changing the
procedure or features and without task-specific expertise. Note
that due to the absence of metadata describing the exact time of
observation in the Google imagery, as well as task-specific data
availability constraints, these performance measures are condi-
tional on a certain degree of unknown temporal mismatch
between imagery and task labels (Supplementary Note 1).

Comparison to state-of-the-art SIML approaches. We con-
textualize this performance by comparing MOSAIKS to existing
deep-learning based SIML approaches. First, we retrain end-to-
end a commonly-used deep convolutional neural network (CNN)
architecture21–23 (ResNet-18) using identical imagery and labels
for the seven tasks above. This training took 7.9 hours per task on
a cloud computing node (Amazon EC2 p3.xlarge instance, Tesla
V100 GPU). We find that MOSAIKS exhibits predictive accuracy
competitive with the CNN for all seven tasks (mean
R2
CNN � R2

MOSAIKS ¼ 0:04; smallest R2
CNN � R2

MOSAIKS ¼ �0:03 for
housing; largest R2

CNN � R2
MOSAIKS ¼ 0:12 for elevation) in addi-

tion to being ~250–10,000 × faster to train, depending on whether
the regression step is performed on a laptop (2018 Macbook Pro)
or on the same cloud computing node used to train the CNN
(Fig. 3a, Supplementary Note 3.1 and Supplementary Table 8).

Second, we apply transfer learning24 using the ResNet-152
CNN pre-trained on natural images to featurize the same satellite
images22,23. We then apply ridge regression to the CNN-derived
features. The speed of this approach is similar to MOSAIKS, but
its performance is dramatically lower on all seven tasks (Fig. 3a,
Supplementary Note 3.1).

Third, we compare MOSAIKS to an approach from prior
studies4,13,25 where a deep CNN (VGG1626 pretrained on the
ImageNet dataset) is trained end-to-end on night lights and then
each task is solved via transfer learning (Supplementary Note 3.1).
We apply MOSAIKS to the imagery from Rwanda, Haiti, and
Nepal used in ref. 13 to solve all eleven development-oriented
tasks they analyze. We find MOSAIKS matches prior perfor-
mance across tasks in Rwanda and Haiti, and has slightly lower
performance (average ΔR2= 0.08) on tasks in Nepal (Supple-
mentary Fig. 16). The regression step of this transfer learning
approach and MOSAIKS are similarly fast, but the transfer
learning approach requires country-specific retraining of the
CNN, limiting its accessibility and reducing its generalizability.

Together, these three experiments illustrate that with a single
set of task-independent features, MOSAIKS predicts outcomes
across a diverse set of tasks, with performance and speed that
favorably compare to existing SIML approaches. However,
throughout this set of experiments, we find that some sources
of variation in labels are not recovered by MOSAIKS. For
example, extremely high elevations (>3,000 m) are not reliably
distinguished from high elevations (2,400-3,000m) that appear
visually similar (Supplementary Fig. 9). Additionally, roughly half
the variation in incomes and housing prices is unresolved,
presumably because they depend on factors not observable from
orbit, such as tax policies or school districts (Fig. 2).

These experiments additionally reveal that patterns of predict-
ability across tasks are strikingly similar in MOSAIKS and in
alternative SIML approaches (Supplementary Figs. 16 and 17).
Together, these findings are consistent with the hypothesis that
there exists some performance ceiling for each task, due to some
factors not being observable from satellite imagery. To investigate
this further, we develop a hybrid model in which the 512 features
produced by the last layer of the ResNet-18 CNN are
concatenated with the 8,192 MOSAIKS features and included
together in a ridge regression. Performance improvements above

either MOSAIKS or the CNN are small (≤0.01R2) for most tasks,
although there is a notable performance boost for the two tasks
where both models achieve the lowest accuracy
(R2

hybrid � R2
CNN ¼ 0:04 for income; R2

hybrid � R2
MOSAIKS ¼ 0:05

for housing price; Supplementary Table 7). These results suggest
that for some tasks, combining MOSAIKS with alternative SIML
models can enhance predictive accuracy.

Evaluations of model sensitivity. There is growing recognition
that understanding the accuracy, precision, and limits of SIML
predictions is important, since consequential decisions increas-
ingly depend on these outputs, such as which households should
receive financial assistance20,27. However, historically, the high
costs of training deep-learning models have generally prevented
the stress-testing and bench-marking that would ensure accuracy
and constrain uncertainty. To characterize the performance of
MOSAIKS, we test its sensitivity to the number of features (K)
and training observations (N), as well as the extent of spatial
extrapolation.

Unlike some featurization methods, these is no known measure
of importance for individual features in MOSAIKS, so the
computational complexity of the regression step can be
manipulated by simply including more or fewer features.
Repeatedly re-solving the linear regression step in MOSAIKS
with a varied number of features indicates that increasing K above
1,000 features provides minor predictive gains (Fig. 3b). A
majority of the observable signal in the baseline experiment using
K= 8,192 is recovered using K= 200 (min 55% for income, max
89% for nighttime lights), reducing each 65,536-pixel tri-band
image to just 200 features (~250 × data compression). Similarly,
re-solving MOSAIKS predictions with a different number of
training observations demonstrates that models trained with
fewer samples may still exhibit high accuracy (Fig. 3b). A majority
of the available signal is recovered for many outcomes using only
N= 500 (55% for road length to 87% for forest cover), with the
exception of income (28%) and housing price (26%) tasks, which
require larger samples. Together, these experiments suggest that
users with computational, data acquisition, or data storage
constraints can easily tailor MOSAIKS to match available
resources and can reliably estimate the performance impact of
these alterations (Supplementary Note 2.7).

To systematically evaluate the ability of MOSAIKS to make
accurate predictions in large contiguous areas where labels are not
available, we conduct a spatial cross-validation experiment by
partitioning the US into a checkerboard pattern (Fig. 3c), training
on the black squares and testing on the white squares
(Supplementary Note 2.8). Increasing the width of squares (δ)
in the checkerboard increases the average distances between train
and test observations, simulating increasingly large spatial
extrapolations. We find that for three of seven tasks (forest
cover, population density, and nighttime lights), performance
declines minimally regardless of distance (maximum R2 decline of
10% at δ= 16∘ for population density). For income, road length,
and housing price, performance falls moderately at small degrees
of spatial extrapolation (19%, 33%, and 35% decline at δ= 4∘,
respectively), but largely stabilizes thereafter. Note that the poor
performance of road length predictions is possibly due to missing
labels and data quality (Supplementary Note 1.1 and Supple-
mentary Fig. 1). Finally, elevation exhibits steady decline with
increasing distances between training and testing data (49%
decline at δ= 16∘).

To contextualize this performance, we compare MOSAIKS to
spatial interpolation of observations, a widely used approach to
fill in regions of missing data (Supplementary Note 2.8). Using
the same samples, MOSAIKS substantially outperforms spatial
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interpolation (Fig. 3c, grey dashed lines) across all tasks except for
elevation, where interpolation performs almost perfectly over
small ranges (δ= 0.5∘: R2= 0.95), and housing price, where
interpolation slightly outperforms MOSAIKS at small ranges.
For both, interpolation performance converges to that of
MOSAIKS over larger distances. Thus, in addition to generalizing
across tasks, MOSAIKS generalizes out-of-sample across space,
outperforming spatial interpolation of ground truth in five of
seven tasks.

The above sensitivity tests are enabled by the speed and
simplicity of training MOSAIKS. These computational gains also
enable quantification of uncertainty in model performance within
each diagnostic test. As demonstrated by the shaded bands in
Figs. 3b–c, uncertainty in MOSAIKS performance due to
variation in splits of training-validation data remains modest
under most conditions.

Applying MOSAIKS at scale. Having evaluated MOSAIKS sys-
tematically in the data-rich US, we test its performance at pla-
netary scale and its ability to recreate results from a national
survey.

We test the ability of MOSAIKS to scale globally using the four
tasks for which global labels are readily available. Using a
random sub-sample of global land locations (training and
validation: N= 338,781, test: N= 84,692; Supplementary
Note 2.10), we construct the first planet-scale, multi-task
estimates using a single set of label-independent features (K=
2,048, Fig. 4a), predicting the distribution of forest cover (R2=
0.85), elevation (R2= 0.45), population density (R2= 0.62), and
nighttime lights (R2= 0.49). Note that inconsistent image and
label quality across the globe are likely partially responsible for
lowering performance relative to the US-only experiments above
(Supplementary Note 2.10).

Fig. 3 Prediction accuracy relative to a convolutional neural network and transfer learning, using smaller K and N, and over large contiguous regions
with no ground truth data. a Task-specific MOSAIKS test-set performance (dark bars) in contrast to: an 18-layer variant of the ResNet Architecture
(ResNet-18) trained end-to-end for each task (middle bars); and transfer learning based on an unsupervised featurization using the last hidden layer of a
152-layer ResNet variant pre-trained on natural imagery and applied using ridge regression (lightest bars). See Supplementary Note 3.1 for details.
b Validation set R2 performance for all seven tasks while varying the number of random convolutional features K and holding N= 64, 000 (left) and while
varying N and holding K= 8, 192 (right). Shaded bands indicate the range of predictive skill across five folds. Lines indicate average accuracy across folds.
c Evaluation of performance over regions of increasing size that that are excluded from training sample. Data are split using a checkerboard partition, where
the width and height of each square is δ (measured in degrees). Example partitions with δ= 0. 5∘, 8∘, 16∘ are shown in maps. For a given δ, training occurs
using data sampled from black squares and performance is evaluated in white squares. Plots show colored lines representing average performance of
MOSAIKS in the US across δ values for each task. Benchmark performance from Fig. 2 are indicated as circles at δ= 0. Grey dashed lines indicate
corresponding performance using only spatial interpolation with an optimized radial basis function (RBF) kernel instead of MOSAIKS (Supplementary
Note 2.8). To moderate the influence of the exact placement of square edges, training and test sets are resampled four times for each δ with the
checkerboard position re-initialized using offset vertices (see Supplementary Note 2.8 and Supplementary Fig. 10). The ranges of performance are plotted
as colored or grey bands.
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It has been widely suggested that SIML could be used by
resource-constrained governments to reduce the cost of surveying
their citizens4,13,28–30. To demonstrate MOSAIKS’s performance
in this theoretical use-case, we simulate a field test with the goal
of recreating results from an existing nationally representative

survey. Using the pre-computed features from the first US
experiment above, we generate predictions for 12 pre-selected
questions in the 2015 American Community Survey (ACS)
conducted by the US Census Bureau31. We obtain R2 values
ranging from 0.06 (percent household income spent on rent, an
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Fig. 4 A single featurization of imagery predicts multiple variables at planet-scale, predicts results from a national survey, and achieves label super-
resolution. a Training data (left maps) and predictions using a single featurization of daytime imagery (right maps). Insets (far right) marked by black
squares in global maps. Training sample is a uniform random sampling of 1,000,000 land grid cells, 498,063 for which imagery were available and could be
matched to task labels. Out-of-sample predictions are constructed using five-fold cross-validation. For display purposes only, maps depict ~50 km × 50km
average values (ground truth and predictions at ~1 km × 1 km). b Test-set performance in the US shown for 12 variables from the 2015 American
Community Survey (ACS) conducted by the US Census Bureau31. Income per household (HH) (in purple) is also shown in Figs. 2 and 3, and was selected
as an outcome for the analysis in those figures before this ACS experiment was run. c Both labels and features in MOSAIKS are linear combinations of sub-
image ground-level conditions, allowing optimized regression weights to be applied to imagery of any spatial extent (Supplementary Note 2.9). MOSAIKS
thus achieves label super-resolution by generating skillful estimates at spatial resolutions finer than the labels used for training. Shown are example label
super-resolution estimates at 2 × 2, 4 × 4, 8 × 8, and 16 × 16, along with the original 1 × 1 label resolution (See Supplementary Fig. 12 for additional
examples). Systematic evaluation of within-image R2 across the entire sample is reported in Supplementary Note 2.9 for the forest cover task.
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outlier) to 0.52 (building age), with an average R2 of 0.34 across
12 tasks (Fig. 4b). Compared to a baseline of no ground survey, or
a costly survey extension, these results suggest that MOSAIKS
predictions could provide useful information to a decision-maker
for almost all tasks at low cost; noting that, in contrast, the ACS
costs >$200 million to deploy annually32. However, some
variables (e.g., percent household income spent on rent) may
continue to be retrievable only via ground survey.

Methodological extensions. The design of MOSAIKS naturally
provides two additional useful properties: suitability to fusing
features with data from other sensors, and the ability to attribute
image-scale predictions to sub-image level regions.

Available satellites exhibit a diversity of properties (e.g.,
wavelength, timing of sampling) that can be used to improve
SIML predictions33. While most SIML approaches, including the
above analysis, use a single sensor, the design of MOSAIKS allows
seamless integration of data from additional satellites because the
regression step is linear in the features. To demonstrate this, we
include nighttime lights as a second data source in the analysis of
survey data from Rwanda, Haiti, and Nepal discussed above
(Supplementary Note 3.1). The approach mirrors that of the
hybrid MOSAIKS-ResNet18 model discussed previously in that
features extracted from the nighttime lights data are simply
concatenated with those from MOSAIKS prior to the regression
step. In all 36 tasks, predictions either improved or were
unchanged when nighttime imagery was added to daytime
imagery in the model (average ΔR2= 0.03). This approach
naturally optimizes how data from all sensors are used without
requiring that users possess expertise on each technology.

Many use cases would benefit from SIML predictions at finer
resolution than is available in training data33,34. Here we show
that MOSAIKS can estimate the relative contribution of sub-
regions within an image to overall image-level labels, even though
only aggregated image-level labels are used in training (See Fig. 4c
and Supplementary Fig. 12). Such label super-resolution predic-
tion follows from the functional form of the featurization and
linear regression steps in MOSAIKS, allowing it to be analytically
derived for labels that represent nearly linear combinations of
ground-level conditions (Supplementary Note 2.9 and Supple-
mentary Fig. 11). We numerically assess label super-resolution
predictions of MOSAIKS for the forest cover task, since raw label
data are available at much finer resolution than our image labels.
Provided only a single label per image, MOSAIKS recovers
substantial within-image signal when predicting forest cover in 4
to 1024 sub-labels per label (within-image R2= 0.54–0.32, see
Supplementary Fig. 13 for a plot of performance against number
of sub-labels and Supplementary Note 2.9 for m_ethodological
details).

Discussion
We develop a new approach to SIML that achieves practical
generalization across tasks while exhibiting performance that is
competitive with deep-learning models optimized for a single
task. Crucial to planet-scale analyses, MOSAIKS requires orders
of magnitude less computation time to solve a new task than
CNN-based approaches and it allows 1km-by-1km image data to
be compressed ~6–500 times before storage/transmission (see
Methods). Such compression is a deterministic operation that
could theoretically be implemented in satellite hardware. We
hope these computational gains, paired with the relative simpli-
city of using MOSAIKS, will democratize access to global-scale
SIML technology and accelerate its application to solving pressing
global challenges. We hypothesize that there exist hundreds of

variables observable from orbit whose application could improve
human well-being if measurements were made accessible.

While we have shown that in many cases MOSAIKS is a faster
and simpler alternative to existing deep-learning methods, there
remain contexts in which custom-designed SIML pipelines will
continue to play a key role in research and decision-making, such
as where resources are plentiful and performance is paramount.
Existing ground-based surveys will also remain important. In
both cases we expect MOSAIKS can complement these systems,
especially in resource-constrained settings. For example,
MOSAIKS can provide fast assessments to guide slower SIML
systems or extend the range and resolution of ground-based
surveys.

As real-world policy actions increasingly depend on SIML
predictions, it is crucial to understand the accuracy, precision and
sensitivity of these measurements. The low cost and high speed of
retraining MOSAIKS enables unprecedented stress tests that can
support robust SIML-based decision systems. Here, we tested the
sensitivity of MOSAIKS to model parameters, number of training
points, and degree of spatial extrapolation, and expect that many
more tests can be developed and implemented to analyze model
performance and prediction accuracies in context. To aid sys-
tematic bench-marking and comparison of SIML architectures,
the labels and features used in this study are made publicly
available; to our knowledge this represents the largest multi-label
benchmark dataset for SIML regression tasks. The high perfor-
mance of RCF, a relatively simple featurization, suggests that
developing and bench-marking other unsupervised SIML meth-
ods across tasks at scale may be a rich area for future research.

By distilling SIML to a pipeline with simple and mathemati-
cally interpretable components, MOSAIKS facilitates develop-
ment of methodologies for additional SIML use cases and
enhanced performance. For example, the ability of MOSAIKS to
achieve label super-resolution is easily derived analytically (Sup-
plementary Note 2.9). Furthermore, while we have focused here
on tri-band daytime imagery, we showed that MOSAIKS can
seamlessly integrate data from multiple sensors through simple
concatenation, extracting useful information from each source to
maximize performance. We conjecture that integrating new
diverse data, from both satellite and non-satellite sources, may
substantially increase the predictive accuracy of MOSAIKS for
tasks not entirely resolved by daytime imagery alone; such inte-
gration using deep-learning models is an active area of research35.

We hope that MOSAIKS lays the foundation for the future
development of an accessible and democratized system of global
information sharing, where, over time, imagery from all available
global sensors is continuously encoded as features and appended
to a single table of data, which is distributed and used planet-
wide. As a step in this direction, we make a global cross-section of
features publicly available. Such a unified global system may
enhance our collective ability to observe and understand the
world, a necessary condition for tackling pressing global
challenges.

Methods
Overview. Here we provide additional information on our implementation of
MOSAIKS and experimental procedures, as well as a description of the theoretical
foundation underlying MOSAIKS. Full details on the methodology behind
MOSAIKS can be found throughout Supplementary Note 2.

Implementation of MOSAIKS. We begin with a set of images I‘
� �N

‘¼1, each of
which is centered at locations indexed by ℓ= {1,…,N}. MOSAIKS generates task-
agnostic feature vectors x(Iℓ) for each satellite image Iℓ by convolving an M ×M × S
"patch”, Pk, across the entire image. M is the width and height of the patch in units
of pixels and S is number of spectral bands. In each step of the convolution, the
inner product of the patch and an M ×M × S sub-image region is taken, and a
ReLU activation function with bias bk= 1 is applied. Each patch is a randomly
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sampled sub-image from the set of training images I‘
� �N

‘¼1 (Supplementary Fig. 5).
In our main analysis, we use patches of width and height M= 3 (Supplementary
Fig. 6) and S= 3 bands (red, green, and blue). To create a single summary metric
for the image-patch pair, these inner product values are then averaged across the
entire image, generating the kth feature xk(Iℓ), derived from patch Pk. The
dimension of the resulting feature space is equal to K, the number of patches used,
and in all of our main analyses we employ K= 8,192 (i.e., 213). Both images and
patches are whitened according to a standard image preprocessing procedure
before convolution (Supplementary Note 2.3).

In practice, this one-time featurization can be centrally computed and then
features xk(Iℓ) distributed to users in tabular form. A user need only (i) obtain and
link the subset of these features that match spatially with their own labels and then
(ii) solve linear regressions of the labels on the features to learn nonlinear mappings
from the original image pixel values to the labels (the nonlinearity of the mapping
between image pixels and labels stems from the nonlinearity of the ReLU activation
function). We show strong performance across seven different tasks using ridge
regression to train the relationship between labels yℓ and features xk(Iℓ) in this
second step, although future work may demonstrate that other fitting procedures
yield similar or better results for particular tasks.

Implementation of this one-time unsupervised featurization takes about the
same time to compute as a single forward pass of a CNN. With K= 8,912 features,
featurization results in a roughly 6 to 1 compression of stored and transmitted
imagery data in the cases we study. Notably, storage and computational cost can be
traded off with performance by using more or fewer features from each image
(Fig. 3b). Since features are random, there is no natural value for K that is
specifically preferable.

Task selection and data. Tasks were selected based on diversity and data avail-
ability, with the goal of evaluating the generalizability of MOSAIKS (Supplemen-
tary Note 1.1). Results for all tasks evaluated are reported in the paper. We align
image and label data by projecting imagery and label information onto a ~1 km × 1
km grid, which was designed to ensure zero spatial overlap between observations
(Supplementary Notes 2.1 and 2.2).

Images are obtained from the Google Static Maps API (Supplementary
Note 1.2)36, and labels for the seven tasks are obtained from refs. 2,31,37–41. Details
on data are described in Supplementary Table 1 and Supplementary Note 1.

US experiments. From this grid we sample 20,000 hold-out test cells and 80,000
training and validation cells from within the continental US (Supplementary
Note 2.4). To span meaningful variation in all seven tasks, we generate two of these
100,000-sample data sets according to different sampling methods. First, we sample
uniformly at random across space for the forest cover, elevation, and population
density, tasks which exhibit rich variation across the US. Second, we sample via a
population-weighted scheme for nighttime lights, income, road length, and housing
price, tasks for which meaningful variation lies within populated areas of the US.
Some sample sizes are slightly reduced due to missing label data (N= 91,377 for
income, 80,420 for housing price, and 67,968 for population density). We model
labels whose distribution is approximately log-normal using a log transformation
(Supplementary Note 2.5 and Supplementary Table 3).

Because fitting a linear model is computationally cheap, relative to many other
SIML approaches, it is feasible to conduct numerous sensitivity tests of predictive
skill. We present cross-validation results from a random sample, while also
systematically evaluating the behavior of the model with respect to: (a) geographic
distance between training and testing samples, i.e., spatial cross-validation, (b) the
dimension K of the feature space, and (c) the size N of the training set (Fig. 3,
Supplementary Notes 2.7 and 2.8). We represent uncertainty in each sensitivity test
by showing variance in predictive performance across different training and
validation sets. We also benchmark model performance and computational
expense against an 18-layer variant of the ResNet Architecture, a common deep
network architecture that has been used in satellite-based learning tasks42, trained
end-to-end for each task and a transfer learning approach24 utilizing an
unsupervised featurization based on the last hidden layer of a 152-layer ResNet
variant pre-trained on natural imagery and applied using ridge regression
(Supplementary Notes 3.1 and 3.2).

Global experiment. To demonstrate performance at scale, we apply the same
approach used within the data-rich US context to global imagery and labels. We
employ a target sample of N= 1,000,000, which drops to a realized sample of N=
423,476 due to missing imagery and label data outside the US (Fig. 4). We generate
predictions for all tasks with labels that are available globally (forest cover, eleva-
tion, population density, and nighttime lights) (Supplementary Note 2.10).

Label super-resolution experiment. Predictions at label super-resolution (i.e.,
higher resolution than that of the labels used to train the model), shown in Fig. 4c,
are generated for forest cover and population density by multiplying the trained
ridge regression weights by the un-pooled feature values for each sub-image and
applying a Gaussian filter to smooth the resulting predictions (Supplementary
Note 2.9). Additional examples of label super-resolution performance are shown in
Supplementary Fig. 12. We quantitatively assess label super-resolution

performance (Supplementary Fig. 13) using forest cover, as raw forest cover data
are available at substantially finer resolution than our common ~ 1 km × 1 km grid.
Performance is evaluated by computing the fraction of variance (R2) within each
image that is captured by MOSAIKS, across the entire sample.

Theoretical foundations. MOSAIKS is motivated by the goal of enabling gen-
eralizable and skillful SIML predictions. It achieves this by embedding images in a
basis that is both descriptive (i.e., models trained using this single basis achieve
high skill across diverse labels) and efficient (i.e., such skill is achieved using a
relatively low-dimensional basis). The approach for this embedding relies on the
theory of random kitchen sinks16, a method for feature generation that enables the
linear approximation of arbitrary well-behaved functions. This is akin to the use of
polynomial features or discrete Fourier transforms for function approximation
generally, such as functions of one dimension. When users apply these features in
linear regression, they identify linear weightings of these basis vectors important
for predicting a specific set of labels. With inputs of high dimension, such as the
satellite images we consider, it has been shown experimentally17–19 and
theoretically43 that a randomly selected subspace of the basis often performs as well
as the entire basis for prediction problems.

Convolutional random kitchen sinks. Random kitchen sinks approximate arbi-
trary functions by creating a finite series of features generated by passing the input
variables z through a set of K nonlinear functions g(z;Θk), each paramaterized by
draws of a random vector Θ. The realized vectors Θk are drawn independently
from a pre-specified distributions for each of k= 1. . . K features. Given an
expressive enough function g and infinite K, such a featurization would be a
universal function approximator43. In our case, such a function g would encode
interactions between all subsets of pixels in an image. Unfortunately, for an image
of size 256 × 256 × 3, there are 2256×256×3 such subsets. Therefore, the fully-
expressive approach is inefficient in generating predictive skill with reasonably
concise K because each feature encodes more pixel interactions than are empirically
useful.

To adapt random kitchen sinks for satellite imagery, we use convolutional
random features, making the simplifying assumption that most information
contained within satellite imagery is represented in local image structure. Random
convolutional features have been shown to provide good predictive performance
across a variety of tasks from predicting DNA binding sites17 and solar flares19 to
clustering photographs18 (kitchen sinks have also been used in a non-convolutional
approach to classify individual pixels of hyper-spectral satellite data44). Applied to
satellite images, random convolutional features reduce the number of effective
parameters in the function by considering only local spatial relationships between
pixels. This results in a highly expressive, yet computationally tractable, model for
prediction.

Specifically, we create each Θk by extracting a small sub-image patch from a
randomly selected image within our image set, as described above. These patches
are selected independently, and in advance, of any of the label data. The
convolution of each patch across the satellite image being featurized captures
information from the entire R256 ´ 256 ´ 3 image using only 3*M2 free parameters for
each k. Creating and subsequently averaging over the activation map (after a ReLU
nonlinearity) defines our instantiation of the kitchen sinks function g(z;Θk) as g(Iℓ;
Pk, bk)= xk(Iℓ), where bk is a scalar bias term. Our choice of this functional form is
guided by both the structural properties of satellite imagery and the nature of
common SIML prediction tasks, and it is validated by the performance
demonstrated across tasks.

Relevant structural properties of satellite imagery and SIML tasks. Three
particular properties provide the the motivation for our choice of a convolution
and average-pool mapping to define g.

First, we hypothesize that convolutions of small patches will be sufficient to
capture nearly all of the relevant spatial information encoded in images because
objects of interest (e.g., a car or a tree) tend to be contained in a small sub-region of
the image. This is particularly true in satellite imagery, which has a much lower
spatial resolution that most natural imagery (Supplementary Fig. 6).

Second, we expect a single layer of convolutions to perform well because
satellite images are taken from a constant perspective (from above the subject) at a
constant distance and are (often) orthorectified to remove the effects of image
perspective and terrain. Together, these characteristics mean that a given object will
tend to appear the same when captured in different images. This allows for
MOSAIKS’s relatively simple, translation invariant featurization scheme to achieve
high performance, and avoids the need for more complex architectures designed to
provide robustness to variation in object size and orientation.

Third, we average-pool the convolution outputs because most labels for the
types of problems we study can be approximately decomposed into a sum of sub-
image characteristics. For example, forest cover is measured by the percent of total
image area covered in forest, which can equivalently be measured by averaging the
percent forest cover across sub-regions of the image. Labels that are strictly
averages, totals, or counts of sub-image values (such as forest cover, road length,
population density, elevation, and night lights) will all exhibit this decomposition.
While this is not strictly true of all SIML tasks, for example income and average
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housing price, we demonstrate that MOSAIKS still recovers strong predictive skill
on these tasks. This suggests that some components of the observed variance in
these labels may still be decomposable in this way, likely because they are well-
approximated by functions of sums of observable objects.

Additional interpretations. The full MOSAIKS platform, encompassing both
featurization and linear prediction, bears similarity to a few related approaches.
Namely, it can be interpreted as a computationally feasible approximation of kernel
ridge regression for a fully convolutional kernel or, alternatively, as a two-layer
CNN with an incredibly wide hidden layer generated with untrained filters. A
discussion of these interpretations and how they can help to understand
MOSAIKS’s predictive skill can be found in Supplementary Note 2.3.

Data availability
Code, data, a configured computing environment, and free cloud computing for this analysis
is provided via Code Ocean and is available at https://doi.org/10.24433/CO.8021636.v2. All
data used in this analysis are from publicly available sources other than the house price data.
House price data are provided by Zillow through the Zillow Transaction and Assessment
Dataset (ZTRAX) and are used under license for the current study. More information on
accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are
those of the author(s) and do not reflect the position of Zillow Group. The house price dataset
we release publicly is a subset of the pre-processed and aggregated data used in the analysis,
where grid cells containing <30 observations of recent property sales are removed to preserve
privacy. While the rest of the data that support the findings of this study are publicly available,
the re-dissemination of some of these data is restricted. Thus, we are not able to host all data
used in the study within our Code Ocean capsule. For example, both imagery and some label
data must be downloaded directly from the original providers. Whenever this is the case, we
provide download instructions in the code repository’s Readme. In addition to the data
directly supporting this study, we provide MOSAIKS features for a gridded cross-section of
the globe. This service and any related work will be accessible via http://www.globalpolicy.
science/mosaiks.

Code availability
The code used in this analysis is provided in the github repository available at https://
github.com/Global-Policy-Lab/mosaiks-paper and additionally at https://doi.org/
10.24433/CO.8021636.v2. The latter is part of the Code Ocean capsule, additionally
containing data and computing environment (see Data Availability). On GitHub, release
"v1.0” corresponds to the state of the codebase at the time of publication. See the
repository’s Readme for more detailed information.
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