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Abstract

Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance
and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate
assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles
of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and
geological systems that describe the distribution of objects across categories in the United States. At the level of functional
form (‘first-order effects’), these patterns are not unique to ecological systems, indicating they may reveal little about
biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order
patterns (‘second-order effects’). These results provide a roadmap for biodiversity theory to move beyond traditional
patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.
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Introduction

Decades of research have identified four central patterns that

together describe the broad-scale organization of biological

diversity [1]. These include the: abundance distribution of species

[2]; the relationship between species richness and area [3,4]; the

decrease in assemblage similarity with increasing distance [5]; and

the spatial dispersion of individuals within species [6,7]. A central

question is how local biotic and abiotic interactions and variation

in rates of speciation and extinction influence these large-scale

patterns of diversity [8]. Indeed, much of the ongoing debates

within biodiversity science result from the fact that many different

models have been proposed to explain these individual patterns

[2,4,9–12]. More recently, several theories such as maximum

entropy [13] and neutral theory [14–16] have claimed to be able

to simultaneously predict these patterns [1].

A central problem for theories of biodiversity is that they all

make similar predictions for these near-universal patterns despite

beginning from disparate assumptions [17]. One potentially

troubling implication for ecology is that these patterns may not

reflect anything unique about organizational principles of biology

or the functioning of ecological systems [11,18,19]. Instead, they

may be a statistical inevitability for any complex system with a

large number of variables influencing the system’s dynamics [20–

22]. If non-ecological systems show similar patterns, then the

fundamental validity of theories of biodiversity that invoke

ecological mechanisms as an explanation would be challenged.

Stronger tests of theory require alternative approaches.

There is an opportunity to identify a different set of patterns that

arise from only ecological processes, and which can therefore

distinguish between ecological and non-ecological systems [23,24].

We hypothesize that distinguishing biodiversity theories using

empirical patterns is possible with second-order effects but not

with first-order effects. We define first-order effects as a set of

functions that describe macroecological patterns across scales, and

second-order effects as the scale-dependent parameters of these

functions. We specifically hypothesize that:

(1) Any system where objects are partitioned in categories (species)

across space and many variables interact multiplicatively will be

described by a common set of functions, i.e. first-order effects.

These first-order effects can be predicted based on common

assumptions of multiple unified biodiversity theories [1] or are

statistically inevitable consequences of the Central Limit Theorem

[20,21]. Thus, any system should be characterized by an

approximate log-normal species-abundance distribution (SAD)

[25,26], an approximate [3,27] power law [28] species-area

relationship (SAR), a monotonically declining Jaccard similarity-
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distance function [5], and a positive intraspecific clustering

function at different distances (i.e. clumped at all scales; see

Methods) [6,29]. Many biodiversity theories predict some or all of

these patterns [1].

(2) Ecological and non-ecological patterns, however, can be

separated by changes in these patterns change with scale. Thus,

quantifying the scale-dependent parameters, i.e. second-order

effects [7,30–32] provide a novel way to assess mechanism in

macroecology. For example, ecological processes (e.g. dispersal

limitation, speciation) will have different scale dependences

depending on the system of interest. Spatial scale may affect the

slope of the species-area relationship [27] as well as the statistical

moments of the species abundance distribution [33]. Some current

unified theories of biodiversity are beginning to incorporate scale-

dependence and these second-order effects into their predictions

[13,14] while for others the role of scale remains unclear [19,34].

We hypothesize that ecological and non-ecological systems can

be distinguished based on several patterns (Table 1). Our

approach is to: 1) establish baseline expectations for first-order

effects based on different biodiversity theories; 2) identify the

potentially scale-dependent parameters of first-order effects; 3) plot

these parameters as a function of spatial scale; and 4) detect

changes in these functions from the baseline expectation. For

example, the decay of similarity with distance pattern is predicted

by several theories to be a negative exponential function (1). The

slope of this function on logarithmic scale should be scale-invariant

(2). However, a plot of the local slope of empirical data (3) might

show a peak at large distance scales (4) indicative of a second-order

effect that can only be explained by additional mechanisms not

incorporated into the original biodiversity theories.

Here we use this approach to provide general insights into the

degree to which non-ecological systems can be explained by

ecological theory. We compared first- and second-order effects

across a broad set of ecological and non-ecological systems. We

compiled five large datasets that each describe the abundance,

location, and identity of objects in multiple categories (species)

throughout the continental United States, encompassing two

ecological systems (North American birds and trees), two economic

systems (US Census county business patterns, and a commercial

database of franchise locations for several hundred major

corporations) and one geological system (USGS mineral resources

database) (Table 2). These datasets were chosen because they are

either complete censuses or are known to be well sampled, have

very large number of objects and categories, occur over the same

large region, and have high spatial resolution (Figure 1). Materials and Methods

Dataset assemblage
We generated community matrices for each of five datasets in

which the ith row and jth column represented the abundance of

Table 1. First and second order effects.

Macroecological pattern First-order effect Second-order effect

Species abundance distribution Log-normal (approximate) Changes in mean, coefficient of variation, skewness, kurtosis at different area scales

Species area relationship Power law (approximate) Changes in local slope at different area scales

Similarity-distance relationship Monotonic decreasing Changes in local slope at different distance scales

Fraction of clumped species Positive Changes in local slope at different distance scales

First-order effects describe all datasets, while second-order effects may provide scale-dependent approaches for distinguishing datasets.
doi:10.1371/journal.pone.0112850.t001

Figure 1. Distribution of objects across categories and space.
Left column, site locations for each dataset (colored as described in
Table 2). Site brightness is proportional to richness. Right column,
relative abundance distribution for log-transformed abundance data at
full scale (a first-order effect). All datasets are shown with the same axes.
doi:10.1371/journal.pone.0112850.g001
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species j at site i. Each community matrix was augmented with the

latitude and longitude of each site. Each dataset was clipped to

sites contained within the continental United States. All datasets

were transformed from their raw form to community matrices

using R for data manipulation and MATLAB for GIS analyses.

These datasets are available in Information S1.

Dataset 1: Corporate locations. We purchased a commer-

cial dataset containing the street addresses and latitude/longitudes

of all locations of several hundred major corporations (AggData,

Inc.). The data represent a census obtained between 2008 and

2010. We used shapefiles for the United States Census zip code

tabulation areas (ZCTAs) to assign these point occurrences into

assemblages. These approximately 20,000 areas cover the entire

United States. While ZCTAs have unique complex boundaries

and variable areas, they each cover roughly equivalent population

levels and are a good comparable assemblage unit for this study.

We then determined the latitude and longitude of each assemblage

as the centroid of each ZCTA.

Dataset 2: Industrial codes. We downloaded the United

States Census County Business Patterns dataset, which counts the

numbers of businesses of different size classes in each of the North

American Industrial Classification System’s (NAICS) nested

categories, within each of the counties of every state of the United

States. These data were valid for the 2007 census year. The data

include some intentional inaccuracies (low-abundance data

swapped between sites or abundances randomized) to comply

with privacy laws, but these effects are small in magnitude and

should not affect our analyses. We restricted our analysis to only

the most specific (six-digit) level of NAICS classification in order to

closely match between biological and business species. To further

improve this correspondence, we also assumed that businesses that

fell into different size classes (1–10, 10–100, 100–1000, 1000+
employees) within a given NAICS category represented different

species. We also obtained shapefiles for county boundaries and

determined the latitude and longitude of each assembly as the

centroid of each county.

Dataset 3: Birds. We obtained data from the North

American Breeding Bird Survey, which counts the abundance of

the bird species observed along hundreds of multi-kilometer

transect routes by multiple volunteer birders. We used data from

the 2007 counts. We treated each route as an assemblage and

determined its latitude and longitude as the midpoint of the route.

Dataset 4: Trees. We obtained data from the United States

Forest Service’s Forest Inventory of America, which counts the

abundances of several hundred species of trees at hundreds of

thousands of plots across the United States. At each plot, we used

data from its most recent census, which ranged from 1985–2008.

Plot data were pre-corrected for variable plot size and only

included live trees. Because of privacy laws, these data contain

intentional inaccuracies (plots on private land have their coordi-

nates fuzzed and their abundances swapped) that are small in

magnitude and do not affect our analyses. We treated each plot as

an assemblage and used the plot center for the assemblage latitude

and longitude.

Dataset 5: Minerals. We downloaded data from the United

States Geological Survey’s Mineral Resource Data System, which

describes the locations of metallic and nonmetallic minerals

throughout the world. We pooled the abundances of commodities,

ores, and gangue at each site, because we were interested in

geological processes and did not wish to stratify the data by

economic value. Because each site contained a very low number of

minerals (typically representing the useful output of a single mine)

we chose to generate an equal-area grid (100061000) covering the

bounding box of the continental United States, and pooled

mineral abundances for all sites falling within each grid cell. We

then defined the assemblage latitude and longitude as the center of

the grid cell.

Data analysis
Species-abundance distribution. We sampled the abun-

dance distribution at 100 spatial scales that logarithmically

spanned a range from 0.1u to 40u. At each scale, we chose 500

random sites. We defined a small circle on the surface of the earth

whose radius was determined by the current spatial scale and

whose center was the location of the current site. We then

intersected this circle with a polygon defining the boundary of the

region of interest (here, the continental United States). We

calculated the surface area of this new polygon (in km2) using

spherical geometry and the known radius of the earth to determine

the effective area of the site. We then pooled abundances for all

Table 2. Summary statistics for each economic, ecological, and geological dataset.

Dataset Corporate locations Industrial codes Trees Birds Minerals

Type Economy Economy Ecology Ecology Geology

Lines drawn as solid red solid orange dotted green dotted blue dashed gray

# Species 455 3,777 384 584 746

# Individuals 660,935 7,628,863 11,887,262 1,640,449 587,571

# Sites 20,936 3,106 391,981 2,251 54,837

Most common five
species

Subway, Shell,
T-Mobile,
McDonald’s,
BP

Offices of physicians
(exc mental health),
Independent artists,
writers
& performers,
Offices of
lawyers,
Offices of
dentists,
Limited-service
restaurants

Loblolly pine,
Red maple,
Sweetgum,
Sugar
maple,
White oak

Red-winged
blackbird,
European starling,
American
robin,
Mourning dove,
American crow

Gold, Sand & gravel,
Construction, Silver,
Copper

Maps display higher species richness at each site in brighter colors. In all subsequent graphs we have used the line-coloring scheme shown here.
doi:10.1371/journal.pone.0112850.t002
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species at all sites enclosed within this polygon, applied a log

transformation, and calculated the mean, coefficient of variation,

skewness, and kurtosis of this distribution.

Species-area relationship. We determined the species-area

relationship using an identical procedure as for the species-

abundance distribution, but calculated species richness instead of

abundance distribution moments within each polygon. We log-

transformed both area and richness before analysis so that the

local/global slope of the curve reflects the scale dependent/

independent power-law scaling exponent.

Similarity-distance function. We sampled the similarity-

distance function at 100 spatial scales that logarithmically spanned

a range from 0.1u to 40u. At each scale, we chose 1000 random

pairs of sites. We calculated the distance between assemblages (in

km) as the minimum arc length along the surface of the earth

joining the centers of these assemblages. Then, for each site within

each pair of sites we generated small circles centered on the

location of each site with a radius equal to the current spatial scale.

We intersected each small circle with the boundary polygon of the

region of interest (here, the continental United States). To obtain

the assemblage area we used the sum of the areas of both polygons

(in km2) calculated by the same approach described for the

abundance distribution. We also pooled all abundances within

each polygon and calculated the Jaccard similarity (number of

species in common divided by the number of species in either

polygon). To simplify the display of information results were

plotted only for assemblages whose summed area was in the 10–

100 km2 or the 1000 to 10000 km2 bins.

Intraspecific clumping. We assessed the fraction of species

that exhibited intraspecific clumping at distances ranging from 10

to 5000 km in 10 km intervals. An individual species was defined

to be intraspecifically clumped at a given distance scale if its

observed pairwise distance distribution exceeded the upper 95%

quantile of 100 samples from a null pairwise distance distribution.

We calculated the pairwise distance distribution as the vector of

distances (accounting for the curvature of the earth, as defined for

the similarity-distance function) between every pair of sites at

which this species occurred. We determined the null pairwise

distance distribution by counting the number of sites at which this

species occurred, randomly assigning that many occurrences of

this species to randomly chosen sites, and repeating the pairwise

distance calculation. This method accounts for sites that are non-

uniformly or non-randomly positioned, corrects distances for the

curvature of the earth, and generates conclusions that are

consistent with more established methods for detecting clumping

(e.g. pair correlation/o-ring function [6]). However, this method is

computationally much faster for large datasets, because distance

and intersection calculations can be pre-computed a single time.

First-order effects. Statistics were based on the metrics

calculated using the methods described in the previous section. For

the species-abundance distribution, we used abundance data at the

largest spatial scale. We fit several candidate distributions to the

data (Pareto, power-bend [35], Poisson log-normal, log-series,

Weibull) and identified the distribution with the lowest AIC. For

the species-area relationship, we used the log-transformed area

and richness values described in the previous section, then

reported the slope of the model (i.e. the power law exponent).

For the similarity-distance relationship, we constructed a linear

model using the sampled similarities and log-transformed distances

for 104 km2 assemblages and reported the slope of the model. For

these two analyses, all models were highly significant (p,0.05) but

trivially so because of the very large degrees of freedom. For the

clumping analysis, we reported the fraction of species that were

significantly clumped at the 5000 km distance scale. Because of the

very large number of degrees of freedom in all these analyses (up to

49,998), the standard error for every coefficient was much smaller

than the coefficient value. We therefore did not present these

uncertainty estimates or p-values because these statistical differ-

ences were unlikely to conclusively reflect biological differences.

Data visualization. We chose to show central trends in the

data using LOESS (locally smoothed regression) and to quantify

variation using error envelopes representing each middle quartile

of a local subset of the data.

Results

We first quantified first-order effects in each ecological,

economic, and geological dataset neglecting the effect of spatial

scale. Our analyses show that, when data are aggregating at a

continental spatial scale, each dataset is characterized by the

expected first order effects (see Methods for details). All species

abundance distributions were best fit by a log-normal distribution

(DAIC to the next-best distribution .30), except for the tree

dataset for which a log-normal or Weibull distribution were both

appropriate (DAIC = 4). All species-area relationships had log-log

slopes ranging from 0.28 to 0.50. All distance decay relationships

had log-linear slopes ranging from –0.17 to –0.72. Lastly, most

datasets showed intraspecific clumping (7–52% of species signif-

icantly clumped). The only exception was for trees, but this dataset

included many widely cultivated species. In contrast, we found

that second-order effects can distinguish between these datasets,

suggesting the operation of different processes structuring each

system across a range of scales.

We found that for scales of up to ,105 km2 the coefficient of

variation for the species-abundance distribution (Figure 2) for

skewness, and kurtosis was larger for the economic datasets than

for the ecological or geological datasets. These differences indicate

the existence of a process specific to these economic systems that

generates higher fractions of rare species at local scales. For

example, it could be the case that rapidly growing economies have

both higher birth and death rates reflected in large numbers of

new businesses. However, all datasets had lower positive skewness

at large scales, consistent with dispersal limiting the spread of rare

species across space.

Across all systems, species-area relationships displayed a range

of slopes and curvature indicating scale-dependent processes of

richness accumulation (Figure 3). Consistent with dispersal limi-

tation and a transition to novel species pools, we found a small

increase in slope at intermediate scales for the biological data, A

more striking pattern is the decrease in slope at large scales of the

economic data, consistent with convergence to similar species

pools on both coasts.

The similarity-distance function showed a range of decay rates

and minimum similarities when comparing datasets (Figure 4).

Ecological datasets decayed faster than economic or geological

datasets, and an ecological dataset (trees) had the lowest minimum

similarity at large distances. Minimum bird similarity was higher

than minimum tree similarity, presumably because of the high

dispersal potential and large range size of many birds. Economic

datasets showed an increase in similarity at very large distances,

consistent with high similarity of species pools on both coasts. This

change in similarity was weaker for the geological dataset.

Changes in the similarity-distance function with assemblage area

were also consistent with dispersal limitation being more

important in biological systems. We found that in communities

encompassing larger areas, ecological systems maintained their

decay rates and reached comparable minimum similarities, but

Macroecological Pattern and Process
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that economic systems exhibited very limited decay and high

minimum similarity.

The intraspecific clumping function showed more clumping at

longer distances in ecological data sets compared to economic or

geological datasets (Figure 5). The width of this leftmost part of the

clumping function may provide insight into the average dispersal

distance for species [6]. At intermediate distances, we found very

low levels of clumping in all datasets, indicating that species

distributions are spatially random at mid-continent scales.

However, we also found increased clumping at whole-continent

distances, especially in the economic datasets. This is broadly

consistent with low dispersal limitation of businesses, and the high

similarity of species pools on both coasts in economic systems.

Discussion

We have shown that spatial scaling can successfully separate

four universal macroecological patterns. The consistency of first-

order effects across ecological, economic, and geological systems

[23,24] indicates that they provide little power to distinguish

ecological mechanisms. We then identified second-order effects

that were able to separate these five datasets – some of which are

consistent with known ecological processes (e.g. dispersal limita-

tion), and others not. Thus, future biodiversity theories should

make simultaneous predictions for these scale-dependent second-

order effects, in order to provide stronger tests and more separable

predictions of theory. Our results indicate that theory especially

should be able to make system-dependent predictions for the

Figure 2. Central moments of the species-abundance distribution for log-transformed data. Line colors are described in Table 2.
doi:10.1371/journal.pone.0112850.g002
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spatial scaling of in skewness and kurtosis of the species abundance

distribution, as well as of the intraspecific clumping function.

Spatial scaling can become a powerful approach to distinguish

mechanisms and guide the development and testing of more

complex theories of biodiversity.

The general lack of dispersal limitation evident in economic

systems is consistent with an ‘everything is everywhere’ perspective

on economic diversity. For example, more than 80% of the major

corporations remain the same in pairs of county-sized (104 km2)

communities at distances of up to 4500 km (Figure 4). Our results

provide strong evidence for low beta diversity and high

homogeneity of economic landscapes in the United States.

Biodiversity theories will need to incorporate additional parame-

ters to make scale-dependent predictions consistent with this

finding.

Our results leave unresolved a potentially important zero-th

order effect describing each system’s state variables: the number of

species and individuals found in each dataset. Although the value

of these numbers set the scale of all first-order effects they may also

ultimately constrain levels of variation in second-order effects.

However, in all major theories of biodiversity, the number of

individuals and the number of species are treated as free

parameters [1]. Addressing the origin of the zeroth-order effect

may provide as much insight as addressing the origin of second-

order effects [36].

Our results question the importance of the species concept is to

macroecological theory. All biodiversity theories and macroecolo-

gical patterns are expressed in terms of species and individuals. For

ecological systems these are natural and potentially preferred

scales for understanding a system. However, there are many

possible ways to partition objects in to categories for non-

ecological systems, and it is unclear if any particular aggregation

method should be preferred. For example, individuals businesses

can be aggregated into NAICS codes, but the taxonomy and

resolution of these codes is necessarily a human choice. Thus,

macroecological theory may be applied best to biological species.

However, many biodiversity theories are derived from very limited

or no biological processes, suggesting that they should apply

equally well to any partitioning of objects in to categories (e.g.

taxon-invariance in the species-area relationship [37,38]). There-

fore deviations from predictions, such as our second-order effects,

should still reflect additional mechanisms.

We showed that our approach could be used for distinguishing

different datasets or detecting situations where theory could be

modified to better accommodate empirical data. We do not intend

the approach to be used for null-hypothesis significance testing, i.e.

statistically rejecting the null hypothesis of no second-order effects.

There are two reasons: first, the specific form of first-order effects

may depend on the exact mathematical formulation of a

biodiversity theory which limits our ability to derive general

equations; and second, the form of second-order effects is likely to

be more interesting than simply rejecting the ecological null

hypothesis. Nevertheless, it should be possible to develop a

mathematical formalism to infer second-order effects, a goal that

may be useful for the developers of next-generation biodiversity

theories.

The similarities in economies and ecosystems may indicate a set

of shared processes and constraints whose elucidation will have

fundamental or practical implications [24]. Ecological principles

and theories have been used to understand economic phenomena

like competition, wealth distributions and the growth of cities [39–

Figure 3. The species-area relationship distinguishes ecological
datasets at large scales. Line colors are described in Table 2.
doi:10.1371/journal.pone.0112850.g003

Figure 4. The decay in assemblage similarity with distance
depends strongly on spatial scale. The rapidity of decrease and the
minimum similarity are functions of dataset type and assemblage size.
Line colors are described in Table 2.
doi:10.1371/journal.pone.0112850.g004

Figure 5. The fraction of species for which intra-specific
clumping is consistently high at very small and very large
scales. Among datasets, the clumping varies widely in magnitude with
spatial scale. Line colors are described in Table 2.
doi:10.1371/journal.pone.0112850.g005
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41]. Because many first-order effects seem to occur regardless of

system, extant macroecological theory may have practical

consequences for other economic systems, e.g. financial networks

[42]. For example, current work on up-scaling inexpensive local

measurements of biodiversity for conservation purposes [27,43]

may be relevant to economic reporting in developing regions, or in

understanding the origin of other economic distributions [44].

Macroecological theory, because of its lack of intrinsic ecological

mechanism, may also be applicable to many economic systems. In

this way it may provide a more realistic understanding of limits to

economic growth by identifying the first-order effects that provide

universal and unavoidable constraints on economic systems, but

also by identifying the zeroth- or second-order effects that may

practically be modulated by policy shifts.

Supporting Information

Information S1 Community matrices for each dataset and

MATLAB code to replicate all analyses.
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