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Abstract

In this paper, I combine the ideas of attention
from cognitive psychology with concept formation
in machine learning. My claim is that the use of
attention can lead to a more efficient learning sys-
tem, without sacrificing accuracy. Attention leads
to a savings in efficiency because it focuses only on
the relevant attributes, retrieves less information
from the environment, and is therefore less costly
than a system that uses every piece of information
available. I present a working algorithm for atten-
tion, built onto the CLASSIT concept formation
system, and describe results from three domains.!

1. Motivation

In cognitive psychology, selective attention refers to
focusing one’s cognitive effort (or processing power) on
only a fraction of the perceptual input. Intuitively, this
is the ability to preferentially ‘concentrate’ on a single
task. This phenomena can be observed with visual
input — we can easily attend to part of a scene, allowing
unimportant areas and details to be ignored. This is
a well-studied phenomena, and it appears in a wide
variety of tasks and applications (Treisman, 1969).

Unsupervised concept formation, like selective atten-
tion, is a basic aspect of human intelligence. Concept
formation can be viewed as a general problem that ap-
pears in a variety of practical, engineering tasks. In
statistics, this problem is known as cluster analysis
(Anderberg, 1973), and can be defined: given a set of
instances or objects, find or impose some classification
scheme on those objects. Note that the learning system
is not given a set of classified training objects; thus it
carrys out unsupervised learning. In machine learning,
concept formation systems include Lebowitz’s (1987)
UNIMEM and Fisher’s (1987) CoBWEB systems; these

IThis research grew out of work with the ICARUS
research group at UCI: Pat Langley, Kevin Thompson,
Wayne Iba and John Allen. Mike Pazzani also contributed
some key ideas about attention. This research was sup-
ported by Contract MDA 903-85-C-0324 from the Army
Research Institute, IBM Japan, and by Keio University.
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contrast with Quinlan’s (1986) Ip3 and Aha’s (1989)
IBL systems. The former do “learning from internal
feedback” (Billman & Heit, 1988), while the latter
“learning from example” systems use classified training
instances to learn concept definitions.

In this paper, I describe a system that applies selec-
tive attention to concept formation. Machine learning
is an appropriate place for such a wedding: a disci-
pline with roots in both engineering and psychology.
Most previous concept formation research (Lebowitz,
1987; Fisher, 1987) has used all available information
to make decisions. In contrast, I will assume that some
of the available input should be ignored; the task for
the attention mechanism is to find the relevant at-
tributes and allow the system to work with these alone.

My goal here is simply to demonstrate the practical
application of attention to concept formation: I expect
that attention can provide a tangible reward in terms
of efficiency. In most applications, there is a cost asso-
ciated with retrieving information about an instance.
This may be negligible in some applications, but in
others, such as diagnosis, information retrieval can be
very expensive. If an attention mechanism focuses the
system on a small percentage of the available input,
this can lead to a more efficient, cost-effective system,
without sacrificing performance accuracy.

The attention mechanism I introduce here is built on
the CLASSIT system (Gennari, Langley & Fisher, 1989;
Gennari, 1990). Although this system is not a model
of human learning, it is closely related to Billman and
Heit’s (1988) psychological model of concept formation
with attention. Their task is similar to mine: to ac-
quire knowledge about which features are most helpful
for classification. However, their model uses a rather
different representation for knowledge, and is limited
to learning rules about pairs of features. In contrast,
CLASSIT uses probabilistic concepts for representation
(as in Smith and Medin, 1983), and builds a concept
hierarchy to organize its acquired knowledge.

2. An overview of the CLASSIT system

For the CrassIT system (or for COBWEB) an im-
portant characteristics of the learning task is that it
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occurs in an incremental manner. This means that
the set of input instances is treated as a sequence over
time, and that the system must learn from each new
instance without reprocessing the previously scen in-
stances. This restriction seems intuitive from a psy-
chological perspective: humans do not remember ev-
ery instance, and are able to learn despite a virtually
infinite sequence of instances. This requirement is also
reasonable for robotic or real-time applications, where
aresponse may be needed at any point during learning.
In this way, CLASSIT differs from statistical methods in
cluster analysis and from non-incremental learning sys-
tems such as CLUSTER/2 (Michalski & Stepp, 1983).

Representation

Instances for CLASSIT are described by a simple list
of attribute-value pairs. Attributes may be symbolic,
with a finite (and usually small) range of values, or
continuous, with an infinite set of possible values. Ad-
ditionally, CLASSIT allows for missing attributes: some
instances may not have values for every attribute. This
form of representation is reasonably general, but it can-
not handle relational or structured information (see [ba
& Gennari, in press).

Like CoBwEB, CLASSIT uses probabilistic concept
descriptions to represent acquired knowledge. Thus,
rather than all-or-none conjunctive concept definitions,
this approach uses probabilities to build approximate
concepts. For symbolic attributes, these probabilities
can be computed by counting the number of times each
attribute-value appears and the number of member in-
stances. For continuous attributes, where the probabil-
ity of any single value is zero, the system uses the mean
and the standard deviation over member instances.

These concepts are organized in memory in a
general-to-specific hierarchy. Toward the top of the
tree are general concepts, summarizing many in-
stances. Lower in the tree are more specific concepts,
and the leaves may be single instances. A leaf may
also summarize a number of (very similar) instances.
In this case, the system has forgotten those individual
instances, and can only retrieve the summarizing leaf
concept.

Algorithm

CLAsSIT begins with an empty hierarchy, and adds to
its concept hierarchy as it classifies each new instance.
The algorithm presented in Table 1 is an overview
of how learning (modifying the hierarchy) and perfor-
mance (classification) occur. The system classifies in-
stances by sorting them through the concept hierarchy
from the root node down to the leaves. At each level,
CLASSIT can place the node in an existing concept or
decide that the instance is sufficiently different to war-
rant the creation of a new class. The other two choices
(operators ¢ and d in Table 1) reorganize the concept
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2. Choose

3. If the

[

. Incorporate zr into the root class.

the best of four operators:
incorporate z into a child claes,.
create a new disjunct based on z.
merge two child classes.

split a class into its children.

new class has no children, or

If the match is close enough, end.
Else, recurse on the chosen class.

a)
b)
c)
d)

Table 1: The incremental algorithm used by CLASSIT.

hierarchy; they give the system some ability to recover
from a misleading sequence of instances.

In order to avoid storing all instances, and to
avoid overfitting in noisy domains (see Gennari, 1990),
CLASSIT uses a parameter called the recognition cri-
terion as 1t classifies instances. This tells the system
that the new instance matches the current concept well
enough to consider that instance as recognized and to
halt the classification process (Step 3 in Table 1).

Evaluation function

In order to choose among the four operators, CLASSIT
uses an evaluation function. This is an expression that
evaluates the quality of a set of concepts and returns
a numeric score, allowing the system to choose the op-
erator that leads to the highest score. CLASSIT uses a
version of category utility for its evaluation function.
This function is designed to maximize the predictive
ability of classes and was originally developed by Gluck
and Corter (1985). For CLASSIT, category utility is:

I J
S 3 P(Cj)Info(Cij) — Info(Ciyp)
= -7 @

for I attributes and J classes, where P(C) is the prob-
ability of class C' and Cj, refers to attribute 7 in the
parent class. Info(C) is a function that measures the
value or quality of class C. For a symbolic attribute 2
(with V' values)

14
Info(Ci) =) P(z:|C)* |

and for a continuous attribute 1
Info(Ci) = 1/oic

where o;¢c is the standard deviation of an attribute in
class C.? To summarize, this function sums over every

2With singleton classes, this standard deviation is zero,
leading to an infinite 1/o. To solve this problem, CLAs-
SIT uses an acuity parameter that specifies a minimum
(non-zero) standard deviation. This limit corresponds
to the notion of a ‘just noticeable difference’ in psy-
chophysics — the lower limit on our ability to make per-
ceptual discriminations.



1. Select an unseen attribute with probability
based on its salience.
2. Update the salience of the selected attribute.
3. Compute the cateqfry utility score for the best
classification, X, based only on observed
attributes.
4. Consider all remaining unseen attributes and
compute scores for ‘worst-case’ scenarios:
where these attributes might match either
a) An alternative concept.
b) A new disjunct.
If either of these scores is better than X,
then go to step 1.
Else, ignore remaining attributes.

Table 2: An algorithm for attention

child concept, Cj, and subtracts the information at
the parent, Cp. Thus, it measures the gain in Info(C)
from parent to child levels of the hierarchy.

3. Attention applied to CLASSIT

In order to choose only the ‘important’ attributes,
the system must learn the relative salience of at-
tributes. Note that this is not given a priori, so at-
tention adds a second learning task to the system:
CrLAssSIT must learn both concept descriptions and
saliences of attributes. Salience is defined as the per-
attribute contribution to category utility (see Equa-
tion 1). Hence, for a given attribute 1,

J
> P(Cj)Info(Cij) — Info(Cip)

. J
Salience;

J

These scores produce a dynamic ordering of the at-
tributes from most salient (attributes that should be
inspected first) to least salient (attributes that proba-
bly need not be inspected). However, attributes are
not always inspected in exact order of salience; in-
stead, the system chooses attributes probabilistically
as a function of their salience. This allows the system
to recover from ‘incorrect’ scores: even a low-scoring
attribute may be occasionally inspected. If such an
attribute is ‘noticed’ in this way, and if that attribute
actually 1s salient, then its score will improve, and it
will be more likely to be inspected in the future.

In addition to an ordering, the system must decide
how many attributes to inspect before making a clus-
tering decision. CLASSIT resolves this ‘stopping condi-
tion’ problem by imagining a worst-case scenario where
the unobserved attributes match some other concept
perfectly, and then considering whether this informa-
tion would change the current clustering decision. If
so, ther it must continue inspecting attributes; if not,
it has inspected sufficient attributes to make a decision.

Table 2 presents the attention algorithm used in
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CrassIT. This mechanism is embedded within the ba-
sic concept formation algorithm as described in Ta-
ble 1. Attention is used whenever making a clustering
decision: choosing one of the four operators at a level
in the hierarchy. If attention chooses to ignore some
attributes, these attributes are treated as missing: the
system simply makes classification decisions based on
partial information. When CrLAsSIT descends to the
next level, attributes that were observed earlier are ‘re-
membered’ and added to the list of known attributes.
Thus, the system must inspect more attributes in order
to make more specific classifications.

With little or no previous information, all attributes
are equally salient, and the system must inspect most
or all attributes before choosing a clustering opera-
tor. However, as more instances are observed, concepts
should emerge in which some attributes contribute
heavily to the total category utility score, while others
contribute less. This means that the salience scores
for attributes become more disparate, letting the sys-
tem inspect only those attributes that have high scores.
The attribute learning process is synchronous with the
concept learning process: as the system defines con-
cepts, it learns which attributes are more salient.

As stated earlier, the purpose of an attention mech-
anism is to improve efficiency by looking at fewer at-
tributes. Yet there is no improvement in computa-
tional efficiency with this algorithm. In particular, by
applying the halting condition after observing each of n
attributes (Step 4 in the table), I have added an O(n?)
cost to the algorithm. However, I assume that the cost
of observing an attribute is far greater than the time
required for internal computation. This is reasonable
if one imagines an application to diagnosis or robotics,
where considerable work and real time may be needed
to observe features (Tan & Schlimmer, 1990).

4, Experimentation with attention

The basic claim to be verified by experimentation
is that attention can increase efficiency without a loss
of accuracy. More specifically, it should decrease the
number of attributes the system must inspect with-
out decreasing its predictive accuracy. In addition, I
should verify that the attention mechanism behaves as
expected: the number of attributes inspected should
decrease over time, and the system should focus only
on the “relevant” attributes.

In the following experiments, I measure efficiency by
counting the total number of attributes observed dur-
ing classification of each instance. For accuracy, I mea-
sure the predictive ability of the concept hierarchy on
unseen test instances. Both measures are taken with
the system in a ‘testing’ mode. Learning (the modi-
fication of the concept hierarchy) is turned off during
testing, and the recognition criterion is set at a low
level. The recognition criterion represents a trade-off
between careful learning and rapid recognition. Low-
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Figure 1: Predictive accuracy — artificial domain

ering the parameter allows the system to quickly rec-
ognize an instance at a high, general level of the tree,
allowing the attention mechanism to use only a small
number of attributes.?

Results with artificial data

As an initial experiment, it is useful to investigate
CrLASSIT’s performance with an artificial database.
With such a domain, one can guarantee that some
attributes are truly ‘irrelevant’ — their values do not
depend on class membership. In this experiment, I cre-
ated a database with 20 continuous attributes, where
12 of these had generating distributions that did not
depend on class. Any of the remaining eight attributes
can be used to distinguish among the classes, but four
are noisy: the differences between classes are small,
and the standard deviations within a class are high.

Figure 1 shows a learning curve for accuracy with
and without the attention mechanism. The predicted
attribute is attribute 13, one of the clean, relevant at-
tributes, and accuracy is measured as a simple average
of the absolute error of predictions. As expected, both
systems reach the same asymptote, although the use of
attention seems to result in a slower rate of learning.
This may be due to the additional learning task for
attention.

Figure 2 characterizes the behavior of the attention
algorithm. In this figure, the frequency of attribute
inspection is shown over time, for all attributes. Note
that the system almost always inspects the three clean,
relevant attributes (nos. 14, 15 and 16).* CrLassIT
next prefers the noisy attributes (nos. 17 through 20)

3Without the use of the recognition criterion, attention
tends to observe all (or almost all) attributes. This is be-
cause different attributes are relevant at each level of the
tree. By the time classification reaches the leaves of the
tree (singleton classes), all or most attributes are ‘known’.

* Attribute 13 is not available because it is used for the
prediction task.
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Figure 2: The frequency of attribute inspection in the
artificial domain

and only rarely does the system inspect the irrelevant
attributes (nos. 1 through 12). This figure also shows
that the system begins by inspecting many attributes
(about 12 to 15), and only after about 30 instances
does it ‘settle’ on the best attributes (inspecting about
7 attributes per instance). It is interesting that this
point in time matches the place in Figure 1 where the
two systems reach the same level of accuracy.

Results with real databases

In order demonstrate the practical use of a learning
system, one must demonstrate performance of the sys-
tem in real-world domains. Here, I present results for
two databases from the UCI machine learning database
repository: ° the voting database and the heart-disease
database. The voting database was collected from 1984
congressional records by Jeff Schlimmer, and consists
of 17 symbolic attributes per instance: 16 votes and
party affiliation. The heart disease database encodes
patient information from the Cleveland Clinic Foun-
dation and was collected by Robert Detrano (see De-
trano et al., 1990). This data includes eight numeric
attributes and six symbolic ones, including a binary
sick/healthy attribute.

Figure 3 shows the accuracy of CLASSIT on these
databases with and without the attention mechanism.
In both domains, the predicted attribute is binary and
symbolic: for the voting database, party affiliation; for
the heart-disease database, the sick/healthy attribute.
Thus, performance is measured by percentage error —
how often the prediction is incorrect. Although the
use of attention results in some loss of accuracy in the
heart-disease domain, this appears to be a minor effect.

°To obtain these databases or information about them,
send e-mail to ml-repository@ics.uci.edu, or contact Patrick
Murphy, ICS Department, UC Irvine 92717.
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Figure 3: Predictive accuracy - real domains

The attribute frequency graph for the voting
database (not shown) provides additional evidence for
the attention mechanism. Although not as dramatic
as Figure 2, it shows that CLASSIT focuses on partisan
votes such as 'aid to El Salvador’ and ‘aid to the con-
tras’, at the expense of non-partisan attributes such as
a vote about immigration. In this domain, CLASSIT
focuses almost immediately onto about 9 attributes.
A simple explanation for this rapid learning is that it
1s very easy (requires few instances) to distinguish be-
tween the two parties in this database.

The heart disease database has an attribute fre-
quency graph that indicates a more even distribution
among attributes. This suggests that all or most of
the attributes in this domain are relevant for predic-
tion. This 1s not surprising since the attributes were
selected by an expert in the domain. However, even
in this domain, CLASSIT learns to use only about 7
attributes out of a total of 13.

5. Discussion

One important domain for attention is visual pro-
cessing. This is an interesting application since real-
world images have thousands of attributes and a large
amount of irrelevant information. However, before ap-
plying attention to vision, I must improve the ‘stopping
condition’ currently used by CLASSIT. Experiments to
date have confirmed that the the current method is too
costly and too conservative about not risking accuracy.

The results presented here demonstrate that the at-
tention mechanism does work as it should: it increases
the efficiency of the system without reducing accuracy.
However, experimental results do not “prove” that this
1s the best approach, nor support this research as a
model of human attention and learning. This is sim-
ply an effort to use a known phenomena in human psy-
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chology to achieve improvement in a learning system.
In turn, I hope that as these computer systems evolve
and improve, they can lead to advances in developing
models of human cognition.
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