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REVIEW ARTICLE

Developing Bottom-Up Induced Pluripotent Stem Cell
Derived Solid Tumor Models Using Precision Genome
Editing Technologies
Kelsie L. Becklin,1–3,{ Garrett M. Draper,1–3,{ Rebecca A. Madden,1–3 Mitchell G. Kluesner,1–3 Tomoyuki Koga,4,5

Miller Huang,6,7 William A. Weiss,8,9 Logan G. Spector,1,2 David A. Largaespada,1–3

Branden S. Moriarity,1–3,* and Beau R. Webber1–3,*

Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in
cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study
cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has
been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review
the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and
prime editing can be incorporated into ‘‘bottom-up’’ cancer modeling, a term we coined for iPSC-based cancer
models using genetic engineering to induce transformation. This approach circumvents the need to reprogram
cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression,
and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respec-
tive engineering approaches and outline experimental considerations for establishing future models.

Introduction
The breakthrough discovery that somatic cells could be

reprogrammed to pluripotency through the addition of

four transcription factors (SOX2, KLF4, cMYC, and

OCT4) was first reported nearly 15 years ago.1,2 In

most non-transformed somatic cell types, the expression

of these four factors induces global transcriptional and

epigenetic changes that result in reversion of the somatic

cell to a well-defined pluripotent state that is stably main-

tained throughout extended propagation in vitro.3,4 In the

years after this discovery, methods to differentiate iPSC

into a diverse array of somatic cell lineages were rapidly

produced.5–7

With new differentiation methods continually being

published, the fidelity of in vitro iPSC differentiation

has only increased in efficiency and efficacy.8–12 Aside

from a few cell lineages that lack effective differentiation

protocols, iPSC-based modeling represents a promising

approach to model many human cancers.13 Cellular

reprogramming has already proven useful for modeling

inherited genetic diseases, as patient-derived iPSC (pd-

iPSC) stably capture genetic alterations that underlie

disease phenotype and can be differentiated into somatic

lineages that recapitulate disease pathology.14–18

In theory, reprogramming malignant cells could cap-

ture the genome of diverse human cancers, offering the

opportunity to study the impact of genomic perturbations

on cell development and function in the context of trans-

formation.19,20 This renewable source of tumor cells

could be especially advantageous to study rare, difficult-
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to-procure tumors. However, extensive efforts to repro-

gram malignant cells have been stymied by the apparent

intransigence of many transformed cells to reprogram-

ming.21,22 Aside from the few notable exceptions dis-

cussed later, efforts to reprogram cancer cells have

been met with low efficiency or produced cells with an

ill-defined, quasi-pluripotent phenotype.23,24

The iPSC technology is best suited for isolation of

non-transformed cells, allowing for the investigation of

cancer initiation and development with the ability to ad-

dress how single and complex mutations influence the

transformation process. This has provided the impetus

to pursue alternative approaches to recapitulate the ge-

netic basis of many cancers in human iPSC models.

Over the past decade, advancements in our ability to

efficiently and precisely modify the human genome and

differentiate stem cells into somatic lineages have pro-

vided an opportunity to recapitulate many of the complex

genetic alterations linked to human cancers in cells of the

proper developmental state.25,26 In an approach we

coined ‘‘bottom-up’’ cancer modeling (Fig. 1), the com-

bined use of iPSC and genetic engineering offers a new

avenue to investigate discrete stages of cancer develop-

ment in ways that can inform novel hypotheses and

drive improved therapeutic development.

Here, we review bottom-up cancer models with a focus

on solid tumors. We highlight the current challenges in

iPSC cancer modeling and discuss the opportunities to

further improve the development of these models. We

also describe how new precision genome editing technol-

ogies, such as base and prime editing, can be combined

with iPSC technology to study genomic alterations

found in human cancer. For additional information on

iPSC modeling of hematological cancers, we refer the

reader to these excellent reviews.27–31

Current iPSC-Based Cancer Models
The value of iPSCs in cancer modeling has begun to

emerge in recent years. As we move forward into a

new era of cancer modeling, we turn to landmark studies

to help shape and guide the field. Here, we provide a brief

overview of cancer models developed using iPSC tech-

nology. We separate these models into three categories:

(1) reprogramming of primary tumor cells, (2) reprog-

ramming of patient somatic cells containing cancer-

predisposition mutations, and (3) bottom-up cancer

FIG. 1. Bottom-up cancer modeling invokes the use of iPSC derived from somatic cells, which can then be
differentiated into the cell-of-origin for a particular cancer alongside precise and timely genetic engineering to re-
create cancer associated mutation/s. These models can be studied in many ways, including drug or genetic screens,
used in organoid or mouse systems, or co-cultured with autologous or analogous immune cells to test new
immunotherapies with the desired outcome of new therapeutics or new hypotheses. iPSC, induced pluripotent
stem cell.
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models, with a particular emphasis on the engineering

technologies used to generate these models and their

unique utility.

Reprogramming tumor cells
Most cancers, particularly solid tumors, seem refractory to

the reprogramming process, limiting their potential for re-

search.32–35 It is hypothesized that this is due to the under-

lying genomic and epigenetic alterations that prevent the

cells from complete dedifferentiation, thus retaining the

genetic and epigenetic state of the original cancer; pointing

to why the initial attempts at reprogramming tumor cells

into iPSC were largely unsuccessful.21,22 However, a

handful of tumor types have now been reprogrammed suc-

cessfully (Table 1). From these tumor cell derived iPSC,

researchers have analyzed how various genetic mutations

predispose to, cause, or maintain cancer.

Reprogramming cancer-predisposed patient
somatic cells
One major benefit of iPSC technology is the ability to

‘‘capture’’ genetic backgrounds by generating stem

cells from patient-derived somatic cells.36,37 Despite the

limited success in generating iPSC from malignant

cells, there have been many descriptions of iPSC derived

from the somatic cells of patients with known germline

cancer predisposition syndromes (Table 2). These pd-

iPSC provide a novel method for in-depth studies of var-

ious genetic diseases that confer increased susceptibility

to developing cancer.

With these pd-iPSC lines, researchers have been able

to study differentiation capacity, conduct drug screens,

investigate disease mechanisms, and generate detailed

gene expression profiles on cells derived from the

iPSCs.38–47 However, iPSC derived from the somatic

cells of individuals with cancer predisposing conditions

are often devoid of obvious phenotypes, most likely

due to the lack of secondary mutations required for trans-

formation.39,45 Thus, even with cancer-predisposed pd-

iPSCs, genetic engineering can be valuable in modeling

the transformation process through the introduction of

known cooperating driver mutations.

Genetically Engineered ‘‘Bottom-Up’’ iPSC Models
Despite the novelty in combining these two fields and the

technical challenges faced, some iPSC-based cancer

modeling studies have benefited from genetic engineer-

ing strategies.41,48–52 The feasibility of this approach

has improved significantly through technological ad-

vances in gene editing methods, including reagent com-

position and delivery, allowing for more complex

engineering approaches with higher efficiency.53,54

These improvements allow the controlled introduction

of cancer-associated genetic alterations in wild-type

iPSC and their derivatives, which has unique utility in

elucidating the fundamental mechanisms underlying

transformation.55

Table 1. Successful reprogramming of primary tumor cells

Cancer diagnosis Reprogramming method

Acute myeloid leukemia Sendai virus,19 excisable lentivirus20

Juvenile myelomonocytic leukemia Lentivirus,241 sendai virus,40

lentivirus242

Chronic myeloid leukemia Episomal243

Chronic myelomonocytic leukemia Episomal,43 sendai virus244

Solid plexiform neurofibroma Retrovirus and/or sendai virus245

Pancreatic ductal adenocarcinoma Lentivirus38

Table 2. Reprogramming of somatic cells from patients with cancer-predisposition syndromes

Cancer predisposing disease Mutant gene Reprogramming method

Li-Fraumeni Syndrome TP53 Sendai virus39

Rothmund-Thomson Syndrome RECQL4 Sendai virus246

Werner Syndrome WRN Retrovirus,247,248 excisable lentivirus247,248

Diamond-Blackfan Anemia RPS19 and RPL5 Excisable lentivirus,249,250 episomal and sendai virus249,250

Myelodysplastic Syndrome del(7q) Excisable lentivirus184

Chronic Myeloproliferative Disorders KRAS, NRAS, GATA2, del(7q) Excisable lentivirus20

Congenital Neutropenia ELANE Excisable lentivirus45

Noonan Syndrome PTPN11 Retrovirus251

Gorlin Syndrome PTCH1 Sendai virus72–253

Neurofibromatosis Type I NF1 Retrovirus and sendai virus245

Multiple Endocrine Neoplasia Type 2 Syndrome RET Sendai virus254

Hereditary Papillary Renal Cell Carcinoma MET Sendai virus46

BRCA-Mutated Breast Cancer BRCA1 Non-integrating mRNA,47,255 sendai virus47,255

Non-integrating episomal plasmid256

Familial Adenomatous
Polyposis

APC Lentivirus216

Down Syndrome Trisomy 21 Retrovirus257

NF1, neurofibromatosis type 1.
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See Supplementary Table S1 for common cancer driv-

ing mutations and current gene editing tools that are suit-

able to introduce these mutations in bottom-up cancer

models.56–66 Later, we review various efforts to create

bottom-up models of solid tumors with an emphasis on

highlighting the unique ways in which these iPSC-

based models can be used.

To identify novel biomarkers of synovial sarcoma

(SS), Hayakawa et al utilized a piggyBac (PB) transposon

vector in iPSC to randomly insert and overexpress the

SYT-SSX2 fusion cDNA found in a subset of SS.67 In con-

trast to previous findings, most genes were upregulated in

iPSC by the fusion protein. To explain this confounding

data, the group then induced SYT-SSX2 in iPSC and

iPSC-derived neural crest cells (iNCC), a challenging

cell type to obtain other than through iPSC differentia-

tion. Expression of the SYT-SSX2 fusion protein in

iNCC induced changes in gene expression similar to

those observed in SS, unlike the iPSC findings, indicating

that NCCs are the likely cell-of-origin for SS.68

Pancreatic ductal adenocarcinoma (PDAC) is an ex-

tremely deadly solid tumor that lacks effective therapies

or surveillance protocol.69 In an attempt to describe novel

drug targets or biomarkers, Huang et al used lentiviral ex-

pression of dominant negative TP53 and/or constitutively

active KRAS to study PDAC genesis in iPSC.70 Geneti-

cally engineered iPSC were differentiated into 3D pancre-

atic progenitor organoids that exhibited differential

localization (cytoplasm or nuclear) of Sox9 based on the

mutational profile (mutant TP53 or KRAS). The localiza-

tion of Sox9 was assessed in patient samples and was

found to influence Sox9 localization in the same manner

as iPSC-derived organoids. Patient outcome was also asso-

ciated with Sox9 localization, thus providing a novel bio-

marker that is useful for predicting patient outcome.

As more driver genes are described in specific cancer

types, it is now possible to divide cancers into genetic

subtypes that guide the course of treatment. This includes

medulloblastoma (MB) where an iPSC-derived organoid

model was developed using PB transposon-mediated in-

tegration to express OTX2/cMYC (OM) or GFI1/cMYC

(GM), which are commonly overexpressed in G3 MB.71

On implantation into nude mice, these organoids devel-

oped tumors at 100% penetrance for both genotypes.

Further analysis showed that methylation and gene ex-

pression patterns of the iPSC-derived tumors strongly

correlated to G3 MB, but of two different G3 subtypes.

Based on the second-generation molecular subgrouping

of MB, the OM cells modeled subgroup IV, standard-

risk G3 MB whereas the GM cells depicted the subgroup

II, high-risk MB facilitating future studies to investigate

further differences in these subgroups.

In another model of MB, human iPSC-derived neuro-

epithelial stem (NES) cells were transduced with a

MYCN expression cassette and implanted orthotopically

into immunocompromised mice.72 MYCN overexpres-

sion was sufficient to generate tumors that resembled

human MB histologically, transcriptomically and epige-

netically. In fact, the iPSC-derived MYCN NES cell tu-

mors resembled sonic hedgehog (SHH) MB, whereas

MYCN-driven mouse models of MB aligned with G3

MB, a subgroup that typically shows amplification of

MYC rather than MYCN in human patients.73,74

To further investigate the phenotypic response to MYCN

expression, iPSC and primary NES cells were transduced

with a mutated MYCNT58A or MYCNWT lentivirus.75 Both

cell types formed tumors in mice regardless of which

MYCN cassette received, but the MYCNT58A iPSC-derived

tumors formed faster with a more invasive phenotype.

RNA-sequencing showed that MYCN expression in iPSC-

derived or primary neuroepithelial cells developed into

infant SHH-like MB with clinically relevant features vali-

dating the use of iPSC derived SHH-like MB models and

reducing the need to obtain challenging primary cell types.

Glioblastoma (GBM) is the most common primary ma-

lignant tumor of the central nervous system,76 and historical

mouse models of GBM have failed to capture intratumor

heterogeneity seen in human GBM.77 To develop a novel

model of GBM, Koga et al used CRISPR-Cas9 to knock

out tumor suppressor genes (TSG) PTEN and NF1, or

loss of TP53 and PDGFRA exons 8 and 9 resulting in a

truncated constitutively active receptor.49 These alterations

mimic those found in mesenchymal or proneural GBM sub-

types, respectively. Engineered iPSC clones were then dif-

ferentiated to neural progenitor cells (NPCs) and injected

orthotopically into immunocompromised mice, with result-

ing tumors resembling their respective subtypes.

Human cells were isolated from the tumors and cul-

tured as neurospheres similar to previous GBM patient-

derived xenograft experiments.78 Tumor-derived cells

showed the ability to self-renew in extreme limiting dilu-

tion assays and were able to form tumors in a secondary

engraftment with significantly shortened latency. Inter-

estingly, the researchers monitored cancer initiation and

tumor evolution by performing single cell RNA-seq on

primary and secondary spheres and tumors. They found

modest levels of intratumor heterogeneity and differ-

ences between genotypes, which only became apparent

over time. This study could aid in the creation of more ac-

curate cell-based phenotypic drug discovery approaches

in GBM reviewed elsewhere.79

Historically, modeling the genetic cancer predisposing

disease neurofibromatosis type 1 (NF1) employed im-

mortalized human Schwann cells, patient derived
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xenografts, and several mouse models.80 Recently, iPSC-

based models have been shown to recapitulate several

symptoms associated with NF1 syndrome. Anastasaki

and Wegscheid et al used CRISPR-Cas9 to engineer

NF1 patient-derived germline mutations into iPSC. Dif-

ferentiation of these NF1 mutant iPSC clones to NPCs

led to increased RAS-controlled proliferation.81

Using a cerebral organoid culture system, they found

that a subset of NF1 patient germline NF1 mutations

had normal levels of NPC proliferation, but reduced apo-

ptotic activity, resulting in an 80% reduction in immature

neurons. Dissecting the intricacies of ‘‘first hit’’ NF1

mutations in an isogenic system will allow us to better

understand the genotype-to-phenotype correlations in

NF1 patients.

Using a similar approach, Mo et al created an isogenic

iPSC line harboring patient-specific NF1 mutations.82

Although NF1�/� cells readily formed tumors in mice

when differentiated into Schwann cells before injection,

NF1�/+ and wild-type cells did not. Tumors that devel-

oped in this system were found to exhibit high SOX10 ex-

pression, leading the investigators to conclude that

SOX10 expressing cells are the cell of origin for neurofi-

bromas. To confirm this, the group inactivated Nf1 in

Sox10+ expressing cells in mice and observed tumors

that closely recapitulated the human disease.

The success of these studies has spurred a surge of in-

terest in the use of iPSC to model cancer development

and progression. As of July 2022, our analysis of the

NIH RePORTER database showed 328 active projects

using the keywords ‘‘iPSC and cancer,’’ and 101 when

searching ‘‘iPSC and cancer and CRISPR’’; the numbers

we anticipate to increase.83 As additional iPSC-based mod-

eling systems are developed, consideration must be given

to the types of mutations that are installed and the develop-

mental stage at which they are introduced. Depending on

the malignancy or disease, there are several established

and emerging genome editing tools available to precisely

create the desired genetic alterations.

Overview of Genetic Engineering Strategies
Broadly, genetic engineering is employed to change or

manipulate the genome through installation of a desired

DNA sequence, but the methods utilized to accom-

plish this have evolved as new technologies are devel-

oped.84,85 Early methods of genetic engineering relied

on plasmids, viruses, and later transposons, to insert

genetic cargo randomly into the genome with limited

control of where the cargo was inserted.86–88 Although

the advent of zinc-finger nucleases, transcription

activator-like effector nucleases, and engineered mega-

nucleases initiated the era of precision genome engi-

neering, these methods were challenging to design and

implement without specialized expertise, limiting their

widespread use.89,90

In 2013, the CRISPR-Cas9 system was shown to pro-

duce targeted double-strand breaks in mammalian cells

in a significantly more user-friendly fashion than prior

technologies.91–94 Further developments expanded the

utility of CRISPR-Cas to include the introduction of

single base changes and the insertion of genetic cargo

without introducing double-strand breaks.95–98 Here,

we highlight select CRISPR-Cas-based systems and

their utility in developing bottom-up cancer models in

iPSC. For a more detailed description of these and

other genetic engineering tools, please refer to these

other reviews.99–103

CRISPR-Cas9
CRISPR-Cas9 is an RNA-guided nuclease derived from a

prokaryotic adaptive immune system that can be utilized

to induce targeted Double strand breaks (DSBs) in hu-

man cells.91,92 The CRISPR-Cas9 system commonly

used today consists of a *100 bp chimeric single guide

RNA (sgRNA) that is bound by the Cas9 protein and lo-

calizes to the complementary DNA sequence triggering

DNA cleavage by the Cas9 enzyme (Fig. 2a). The

sgRNA is a combination of the unique *20 bp CRISPR

RNA (crRNA) complementary to the target genomic

locus and the tracr RNA, which provides the required

scaffolding for interaction with the Cas9 enzyme.91,92

One restriction of the original CRISPR-Cas9 system is

the requirement of a protospacer-adjacent motif (PAM)

tri-nucleotide sequence where N stands for any nucleo-

tide (ACGT) and GG stands for guanine adjacent to

the crRNA complementary DNA sequence.91 However,

evolved spCas9 and other Cas orthologs have been discov-

ered with broadened or reduced PAM requirements, thereby

increasing the scope of targetable sequences.104–108 For the

scope of this review, we will be discussing Streptococcus

pyogenes (SpCas9), which remains the most common Cas

system employed for genome engineering.

For information on additional Cas variants and/or uses,

refer to these other reviews.103,109,110 Site-specific Cas9

induced DSBs are repaired in human cells primarily via

non-homologous end joining (NHEJ), leaving small in-

sertions and/or deletions (indels) at the target site.91,92

Conversely, homologous recombination (HR) can be en-

gaged at the DSB site when a donor template or the sister

chromatid is used as a repair substrate.91 Variants of the

Cas9 enzyme have been developed to create only single-

strand breaks (Cas9 nickase, nCas9) or no DNA strand

breaks (dead Cas9, dCas9), allowing for expanded func-

tionality.91,111 Broadly speaking, NHEJ is typically
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FIG. 2. Precision genetic engineering tools. (a) CRISPR-Cas9 causes double-strand breaks when the sgRNA and
DNA complement, activating the Cas9 enzyme. (b) CBE produces C / T transitions through the tethered cytidine
deaminase to the nCas9 protein. (c) ABE produces A / G transitions via the tethered lab evolved DNA active
adenosine deaminase to nCas9. (d) PE has a tethered RT to Cas9 and elongated sgRNA (pegRNA) such that the
pegRNA is the template for the RT to incorporate into the DNA during repair. (e) CRISPRa/i has either an activator
or a repressor tethered to a dCas9 to allow for site-specific gene activation or repression, respectively. (f) In many
cases, an HR template will be desired for proper genetic engineering. These HR templates can be DNA plasmids,
ssODNs, and AAV, among many other options. AAV, adeno-associated virus; ABE, Adenine base editor; CBE, Cytosine
base editor; HR, homologous recombination; pegRNA, prime editor guide RNA; RT, reverse transcriptase; CRISPRa,
CRISPR activation; CRISPRi, CRISPR interference; PE, prime editor; sgRNA, single guide RNA.
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leveraged for gene knockout, whereas HR is used to spe-

cifically change endogenous DNA sequences or intro-

duce heterologous sequences.

CRISPR-derived DNA editors
Recently, new technologies have emerged to edit DNA

without the necessity of a DSB or DNA donor template,

namely Cas9 base editors (BEs) (Fig. 2b, c) and prime ed-

itors (PEs) (Fig. 2d).95–98 By replacing Cas9 nuclease

with the BE/PE technology, the introduction of specific

gene edits can be performed safely and in most cases,

more efficiently.95,96,112 The major advantages of using

BE or PE editing technologies over traditional nucle-

ase mediated HR is the high efficiency of site-specific

editing.95,96,112 This is particularly true for BE, where

depending on experimental optimization and desired

outcome, high genomic editing efficiencies—in some

cases exceeding 95%—can be achieved with regulari-

ty.113–117 Further benefits are the lack of donor DNA,

and critically, reduced or eliminated DSB, both of

which are known to be toxic to primary stem cells.118–120

Cytosine BEs (CBEs) consist of a cytidine deaminase

fused to the amino terminus of nCas9 and a uracil glycosy-

lase inhibitor tethered to its carboxyl terminus.96 A separate

sgRNA then complexes with nCas9 and targets the CBE to

the specified genomic locus, where the cytidine deaminase

acts on cytosines within a specific region of the sgRNA tar-

get site (positions 4–8), converting them to uracil. To in-

crease efficiency, the nCas9 targets the opposite strand as

the desired C / T transition causing mismatch repair path-

ways to select the nicked strand as divergent and read the

uracil as a thymine, resulting in a stable C / T transition.

A similar configuration was used to develop an ade-

nine base editor (ABE).95 Using directed evolution of a

TadA deoxyadenosine deaminase, the Liu lab created a

DNA adenosine deaminase that was tethered to nCas9

(ABE).95 The resulting ABE can efficiently deaminate

adenosine to inosine within a defined editing window

analogous to CBE. The inosine is read as guanosine by

DNA polymerase, and again, nicking of the non-edited

strand promotes the introduction of adenosine by mis-

match repair, and subsequent replication resulted in the

transition of an A / G in the absence of DSBs. Ongoing

efforts are underway to narrow or manipulate the editing

window to minimize non-target editing.97,121

Recently, the use of an imperfect-guide RNA approach

was reported to promote single base editing using CBE

and ABE, thereby improving the probability of installing

a desired single nucleotide polymorphism.122

The more recently described PE platform, on the other

hand, utilizes nCas9 fused to an optimized Moloney mu-

rine leukemia virus reverse transcriptase for so-called

‘‘search and replace’’ editing.98 Here, the nCas9 cleaves

one strand of the ‘‘R loop’’ such that a 3¢ extended

sgRNA, termed prime editor guide RNA (pegRNA),

can anneal with a freed strand based on sequence comple-

mentarity and prime reverse transcription, thereby incor-

porating a designer sequence included in the 3¢ pegRNA

extension (Fig. 2d).

The nascent DNA strand created during reverse tran-

scription is subsequently incorporated into the target site

during DNA repair. As with BE, preferential incorporation

of the desired edit during DNA repair can be stimulated

through the introduction of a proximal DNA nick on the

opposite strand using a second gRNA.98 The primary ben-

efit of PE over BE is the significantly broader diversity of

desired edits that are possible using PE, including the abil-

ity to introduce transversion and transition mutations as

well as defined deletions and insertions up to 80 and

44 bp, respectively.98 At present, the primary limitation

to PE is the lower efficiency of editing compared with

BE; however, new versions continue to emerge and effi-

ciency is likely to improve in the coming years.98,123,124

Additional considerations surrounding the use of BE-

and PE-derived technologies such as potential off-target

effects, immune response, and delivery options are thor-

oughly reviewed elsewhere.103,125

CRISPR-derived transcriptional modulators
Beyond its ability to alter DNA sequences, the CRISPR

platform has also been adapted to regulate endogenous

gene expression at the transcriptional level. Early re-

search identified that dCas9 targeted to gene regulatory

elements was capable of inhibiting transcription by inter-

fering with transcriptional regulatory protein association

with DNA, causing downregulation of target gene ex-

pression by up to *40%, a process coined CRISPR inter-

ference (CRISPRi).111 Subsequent iterations of CRISPRi

utilized dCas9 fused to transcriptional effector mole-

cules, most commonly the KRAB repressor.126–128

Alternatively, the fusion of dCas9 to transcriptional

activators such as VP16 can induce endogenous gene ex-

pression at a defined locus, a process termed CRISPR acti-

vation (CRISPRa) (Fig. 2e).129–132 These systems work by

targeting dCas9 near the transcriptional start site, thus

allowing the transcriptional effector molecule to have

local impacts on gene regulation in up to *99% of cells

tested.130 These technologies may find utility in bottom-

up cancer models where permanent gene modification is

not desired, or where the functional effects of epigenetic

changes to specific genomic loci are being investigated.

For example, epigenetic modifiers may prove useful to

untangling mechanisms underlying metastasis, which has

been increasingly associated with epigenetic alterations
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and their influence on the transient nature of the epithelial-to-

mesenchymal transition.133,134 When considering CRISPRi/

a systems it should be considered that effect can take up to

7 h for full activation/repression of your target gene, and in

settings of transient delivery, the desired effect will remain

stable for 48 h dropping to baseline after 5–6 days post-

electroporation.130 Some applications may benefit from

stable integration of CRISPRi/a machinery, with further

control offered by including drug-regulated activity that

can be used to modulate function of CRISPRa/i systems.

HR templates
To model many cancer-associated alterations, it is neces-

sary to introduce larger cargo, such as conditionally reg-

ulated gene expression cassettes, which may be several

kilobases (kb) in length. Site-specific integration of larger

cargo is typically accomplished using HR from an exog-

enous DNA donor. This process is highly inefficient in

human cells, but it can be enhanced substantially by the

introduction of a DSB at the target site, typically using

CRISPR-Cas9 or other targeted nucleases (Fig. 2f).135,136

Common HR donor vector designs entail a cargo of in-

terest flanked by regions of homology (homology arms,

HA) flanking the target locus. The HA lengths of

*1 kb are commonly employed; however, recent meth-

odologies such as microhomology-mediated end joining

and homology mediated end joining (HMEJ) can utilize

substantially smaller HA (<50 bp).137–142 Recently, sev-

eral groups have utilized recombinant adeno-associated

virus (rAAV) as a donor template for HR-mediated site

specific integration in human iPSC.143,144

One potential benefit of rAAV is its broad tropism in

human tissues, including several serotypes with demon-

strated tissue specificity, which may facilitate the trans-

duction of developmental intermediates, or allow the

selective engineering of subsets within heterogeneous

cell populations.145 One disadvantage to using rAAV is

the small carrying capacity (4.7 kb), which limits the

size of cargo that can be delivered, particularly consider-

ing the capacity that must be dedicated to HA sequences.

Single-stranded DNA oligonucleotides (ssODNs) are

another HR template with particular utility for introduc-

ing small sequence changes, including single base muta-

tions.146–148 The ssODNs have been shown to have lower

unintended integration events compared with double-

stranded DNA templates, and ssODNs have been

shown to induce point mutations at rates of 70% and in-

sertion of LoxP sites in 40% of cells, making this a reli-

able HR template for some instances.149,150 However,

limitations in synthesis technologies continue to hinder

the utility of ssODN for the introduction of larger and

more complex DNA sequences.

Cancer Driving Mutations Possible with Genetic
Engineering
The types of genetic modifications that can result in on-

cogenesis, as described in the hallmarks of cancer, are

very diverse and include both small and large alter-

ations.151 Here, we discuss many common types of muta-

tions with the potential to drive cancer along with the

ways these mutations can be genetically engineered

into wild type iPSC to develop bottom-up cancer model-

ing systems (Fig. 3).

Loss of TSG
Loss of TSG such as TP53, RB1, or BRCA1/2 is often re-

quired for cancer initiation and development.152 Thus,

to effectively model transformation, it is pertinent that

these mutations be accurately introduced in bottom-up

cancer models, especially when germline mutations

are involved in the development of cancer. The basic

CRISPR-Cas9 approach for the introduction of DSBs

will result in high efficiency gene knockout as a result

of indel formation due to error-prone NHEJ DNA

repair.153–156

An additional method to induce the loss of TSG in

iPSC is the use of ABE/CBE through the targeting of

splice sites and the introduction of premature stop co-

dons.113,114,157–159 Targeting splice sites can disrupt the

reading frame of the protein of interest, resulting in trun-

cation of the normal protein sequence. This is highly

effective at creating protein knock-outs, but much

lower efficiencies were found when a truncated pro-

tein was desired. Another method to cause loss of gene

expression is to disrupt transcription through the use of

CRISPRi.129,160

Generation of single nucleotide variants
For some TSG, recurrent point mutations drive oncogen-

esis; for example, TP53 missense mutations with domi-

nant negative function, or the truncating nonsense or

frameshift mutations common of the APC gene.161–163

For these cases, the use of CBE, ABE, and PE allows

for the introduction of specific desired mutations with-

out induction of a DSB. If the point mutation is a

C / T or A / G mutation, CBE and ABE can be

used, respectively, although it must be considered that

bystander bases within the editing window are suscepti-

ble to deamination.95

The use of editors with altered PAM requirements to

shift the editing window and/or clonal isolation and

screening may be required to isolate correctly altered

clones. Unlike CBE/ABE, the use of prime editing can

eliminate potential non-target editing within the editing

window.98 By using a user-defined RNA template to
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insert the desired mutation, PE allows more flexibility in

the types of modification that can be introduced com-

pared with standard ABE/CBE.

Activation of oncogenes
Many cancers are driven or maintained by the overexpres-

sion of oncogenes. Oncogene overexpression/activation

can be induced by a variety of gene alterations, includ-

ing but not limited to: changes in gene copy number, se-

quence or methylation changes in the promoters of the

oncogene, missense single nucleotide variants resulting

in a constitutively active protein, and chromosomal

translocations, described in the next section. Some mod-

ern genetic engineering tools can aid in the induction of

efficient and specific oncogene overexpression, such as

the use of CRISPRa that was designed specifically for

gene activation.130

In addition, the use of an HR template alongside

CRISPR-Cas9 induced DSBs allows for efficient inser-

tion of an entire gene of interest or strong promoter up-

stream of the oncogene. These approaches can increase

both copy number and expression level of oncogenes.164

If the overexpression of an oncogene of interest is caused

by a specific point mutation(s) in the promoter, such as is

the case for TERT, ABE/CBE/PE could be used to repli-

cate specific promoter mutations as well.165,166

Translocations
Several types of cancer are driven by specific transloca-

tions that produce oncogenic fusion proteins or recruit

FIG. 3. Common mutations found in cancer and suggested genetic engineering tools for induction.
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enhancers and/or promoters into the vicinity of an onco-

gene, causing dysregulated expression.167–170 The sim-

plest method to reproduce this type of alteration is the

use of dual CRISPR sgRNAs targeting each desired

breakpoint simultaneously. A subset of cells will harbor

chromosomal rearrangements and the desired transloca-

tion, but the frequency of this event is typically

low.171–174 The inclusion of a donor template or single

stranded oligodeoxynucleotides (ssODN) with homology

arms spanning sequences on two target chromosomes can

increase the frequency of translocation.174,175

In addition, a selectable marker flanked by loxP sites

can be added within the homology arms to allow drug-

based selection of translocation positive populations.176,177

An effective way to introduce the donor template in iPSC

may be through the use of rAAV6 or HMEJ, both of which

can carry the homology arm cassette in addition to other

genetic cargo such as a lox-stop-lox or fluorescent markers

to allow tracking or conditional control over translocation

activity.178,179

It must be taken into account, when using the two-

guide method, with or without a homology arm template,

that there is a potential for repair of the individual DSBs

at their respective loci, resulting in indel formation, and

potentially the induction of inversions or deletions of

chromosomal segments. Thorough sequencing should

be utilized to rule out potential chromosomal rearrange-

ments in the engineered cells before experimental use.

Although PE-mediated translocations have not been ex-

plicitly demonstrated, the simultaneous insertion of attP

and attB sites by PE and treatment with Bxb1 integrase

has been shown to mediate large inversions (40 kb) and

one can speculate that the development of similar tech-

nology could be used to create translocations.180

Chromosomal deletions
Using the CRISPR-Cas9 system employing a single

sgRNA targeting chromosome-specific repetitive se-

quences or multiple guides targeting adjacent regions

on the chromosome can result in deletion of the interven-

ing sequence and even entire chromosome loss if enough

sites are targeted by CRISPR-Cas9.181,182 It should be

considered that with any multiple guide strategy there

is a potential for inversions to occur; thus, this outcome

should be evaluated by comprehensive sequencing of

the target region.

In addition, the use of an HR template containing re-

combination sequences, such as inverted loxP sites, al-

lows for Cre-mediated excision of the internal

sequence, including large chromosomal deletions, with

the ability to control timing of the genetic change.183

This method was used to recreate the MDS associated

del(7q) in wild type cells by Kotini et al.184 Further, a re-

cent study demonstrated precise deletion of up to 10 kb in

cells using two PE simultaneously, where the 3¢ pegRNA

template of one PE encoded complementary DNA se-

quences to the nCas9 target sequence of the second PE

and vice versa (PRIME-Del).180,185,186 Advances in this

area demonstrate feasible deletion of large chromosomal

segments, although the deletion of entire chromosomes or

chromosomal arms has not been reported to date and rep-

resents an opportunity to further broaden the scope of

current cancer models.

Chromosomal duplications
Chromosomal duplications are commonly identified in

tumors, particularly tumors that utilize alternative length-

ening of telomeres for telomere maintenance or undergo

chromothripsis.187,188 Many chromosomal amplifications

found in cancer are identified as double minutes (dmin),

or extrachromosomal segments of DNA packaged as cir-

cular chromosomes that have been shown to indepen-

dently replicate, resulting in duplications.189,190 One

hypothesis for the generation of dmin is through the

breakage-fusion-bridge pathway or DNA excision and re-

pair via NHEJ. Thus, to recreate this process in a cell,

CRISPR-C was employed to determine whether dmin

are created using the CRISPR system.191

CRISPR-C uses dual CRISPR guides to cause simulta-

neous DSB and in a portion of the cells the two ends of

the DNA fragment liberated by paired DSB join, forming

a circle through NHEJ activity. Using this system, a chro-

mosome 18-derived ring structure was created in *2% of

cells tested.191 Currently, this method is limited by dilu-

tion of the circular chromosome, suggesting that addi-

tional mutations may be required to stably retain the

dmin.

Inversions
Gene inversions are commonly found in cancer and will

be important to recreate in new bottom-up modeling sys-

tems. The creation of specific inversions can be accom-

plished through the introduction of two simultaneous

DSBs, resulting in the inversion of the intervening se-

quence.192 The iPSC populations harboring such inver-

sions can be screened to isolate desired clones through

polymerase chain reaction analysis and sequencing. In a

recent study by the Liu Lab, the use of TwinPE was

able to induce inversions up to 40 kb and we anticipate

this technology could be further developed to induce

larger inversions.180

Another method to reproduce inversions is through

the addition of loxP sites on the same strand oriented in

opposite directions, such that the addition of Cre-
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recombinase will result in an inversion.193,194 The

CRISPR-Cas9 system can be used to induce a double-

strand break in combination with an HR template carry-

ing the loxP site and homology arms to the target region.

The main advantage to using loxP sites is the ability to

control timing of the inversion through the addition of

Cre-recombinase at various stages of cell differentiation,

allowing investigation into the cell stage-specific re-

sponses to the genetic insult.

Temporal control of Cre expression can be accom-

plished with the tamoxifen inducible Cre-ERT2 fusion

or doxycycline-inducible tTA/rtTA systems, where the

addition of tamoxifen or doxycycline to the cell culture

allows for the activation or suppression of Cre.195–197

Developmental regulation of Cre expression can also be

achieved by placing the Cre transgene under the control

of a tissue-specific promoter within a transgene or by

knocking at an endogenous locus.198–200 These kinds of

loxP systems require clonal selection and extensive char-

acterization to confirm insertion of the loxP sites in

trans, as well as faithful inversion after the addition of

Cre-recombinase.

Initiation of chromothripsis
Chromothripsis results from a single punctuated event in

which dozens to thousands of chromosomal rearrange-

ments occur.201 This event is common in genetically

complex cancers, such as osteosarcoma, and is believed

to drive cellular transformation through the loss of TSG

and overexpression of oncogenes.188 Although the pre-

cise mechanisms driving chromothripsis remain unclear,

one current hypothesis is that during the first cell cycle

after the induction of a DSB, chromosome misalignment

results in missegregation of the chromosome into a

micronuclei.202

During the following cell cycle, the micronucleus mal-

functions, resulting in envelope disruption and chromo-

somal shattering. The resulting chromosomal pieces are

randomly ligated back together by NHEJ in a canonical

LIG4-dependent manner, resulting in the genomic rear-

rangements that are a hallmark of chromothripsis.

Another proposed mechanism involves telomere fusion

followed by chromosome bridge formation during cell di-

vision, resulting in chromosomal breaks on segregation

followed by DNA fusion at the next cell cycle.201

Currently, inducing chromothripsis on a genome wide

scale using genetic engineering has not been accom-

plished, although there are several methods that have

shown promise. One possibility is to disrupt genes in-

volved in replication stress responses followed by DSB

induction to promote aberrant replication fork collapse

after treatment with hydroxyurea.203 An alternative

method could involve disrupting kinetochore function,

which could promote missegregation and an increase in

micronuclei formation, thereby creating an environment

that is conducive to chromothriptic events.202

The expression of Cas9 and 100 s of sgRNAs simulta-

neously targeting discrete regions throughout the genome

or, alternatively, a single sgRNA targeting repetitive se-

quences found throughout the genome could conceivably

induce a chromothripsis-like event, including mass geno-

mic rearrangements and translocations, allowing for the

study of cell behavior during and after global DNA rear-

rangement.114 It was recently shown that even on-target

Cas9 editing with a single sgRNA could potentially initi-

ate local chromothripsis, or genomic rearrangements on

the target chromosome in proximity to the cut site, illus-

trating the feasibility of inducing local and genome wide

chromothripsis events using the CRISPR system.63

Conditional systems to model developmental
cancers
One of the major benefits of using iPSC in investigating

cancer is that iPSC allows access to developmental inter-

mediate cell types that are not accessible in adult tissues.

Mouse models of pediatric cancers have affirmed that de-

velopmental tumors can originate in stem or progenitor

cells during specific developmental windows of

time.204–210 It is hypothesized that the cell of origin for

developmental cancers can inform the precise cellular

state permissive to the initial oncogenic insults that can

promote self-renewal at the expense of orchestrated dif-

ferentiation pathways.211

In this context, iPSC models provide a novel tool to

understand the developmental, temporal, and sequential

order of events en route to a mutational landscape permis-

sive to oncogenesis. As has been done in mice, oncogene

expression can be restricted to specific developmental time

points using tamoxifen-inducible Cre or doxycycline-

inducible tTA/rtTA systems, as well as through the use

of tissue-specific promoters.195–197 In this way, oncogene

expression can be tailored to occur within specific lineages

and/or specific cell-states, expanding the capacity to inves-

tigate links between development and transformation.

Remaining Challenges and Future Directions
Bottom-up cancer models show promise in recapitulating

human disease. These models provide several advantages

over current model systems, providing: (1) a renewable

source of healthy non-tumor human cells to evaluate can-

didate genetic drivers of tumorigenesis, (2) isogenic con-

trol cell lines for iPSC-derived tumors undergoing

chemical or genetic screening to filter out non-specific

activity, (3) providing systems to investigate the role of
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chromosome copy number changes in tumorigenesis, and

(4) to identify the cell types and target cells that can give

rise to a specific tumor, including embryonic tissues.

Despite these benefits, significant and complex challenges

continue to limit the realization of accurate stem cell models

of human cancer. Many of these challenges are outside the

scope of this perspective and will be discussed briefly but

have been reviewed extensively elsewhere.212,213

Any effort to apply bottom-up cancer modeling in iPSC

must consider the amenability of the specific malignancy to

this approach. Tumors with known genetic drivers that arise

from a well described cell-of-origin for which defined iPSC

differentiation protocols are available are the most straight-

forward to model using this method. Some examples

include several brain tumors, melanoma, translocation-

driven sarcomas, and colorectal cancers.71,214–217

Cancers that are driven by punctuated mass genomic

instability and complex mutational profiles such as

osteosarcoma and liposarcoma are more difficult as rep-

licating complex, less understood events such as chromo-

thripsis and kataegis presents a significant challenge.218

Similarly, cancers driven by environmental influences

or cancers where the cell-of-origin is unknown or does

not have an established method for generation from

iPSC may present additional challenges.

It is important to consider that the biological variation

between individual iPSC lines may influence results. It

was previously found that out of 711 iPSC cell lines de-

rived from 301 individuals, differences between individ-

ual donors were identified as the largest source of iPSC

heterogeneity.219 To circumvent this issue, iPSC donors

from the different ends of polygenic risk of a particular

cancer may be used to discern such influences. Additional

considerations should include the potential for sex-

specific differences, necessitating the study of tumor

models created from iPSC lines derived from both sexes.

To avoid confounding results due to the reprogram-

ming factors themselves, the use of non-integrating ap-

proaches to reprogramming should be prioritized to

remove the potential for the re-expression of reprogram-

ming transgenes and unintended gene alterations arising

from rom random and stable transgene insertion.220,221

Directed differentiation of human iPSC has been in-

formed by decades of developmental biology knowledge

and has been shown to faithfully recapitulate cellular de-

velopment across numerous cell lineages; however, some

limitations remain and should be considered.5,222–225 The

process of in vitro differentiation typically involves the

provision of specific growth factors, small molecules,

and extracellular matrices in the appropriate temporal se-

quence that is necessary to first specify the germ layer

(e.g., endoderm, mesoderm, ectoderm) followed by a lin-

eage of interest. In vitro, this occurs on a much shorter

timeframe than that of human gestation, and in some

cases results in a more immature or fetal phenotype.226–229

Despite this, the resultant cells can still serve as a valu-

able model as most of the key functions and phenotypic

attributes of the target lineage are present. Protocol effi-

ciency and heterogeneity within the final cell population

should also be considered; however, the use of immuno-

magnetic separation or fluorescence activated cell sorting

can minimize the impact of such issues. The high com-

plexity of some differentiation protocols can sometimes

pose a challenge to reproducibility. This was aptly illus-

trated in a study where the same two iPSC lines were dif-

ferentiated to neurons at five different laboratories with

divergent results and concluded that the laboratory in

which the cells were differentiated represented the largest

source of variability.230

Thus, multi-center collaborations, or at minimum rep-

licate differentiations using multiple iPSC lines should be

considered to limit the influence of differentiation proto-

col and/or iPSC source. Finally, appropriate molecular,

phenotypic, and functional assays should be performed

to validate cells derived during differentiation.

Tumors are highly heterogeneous, and this heterogene-

ity is a determinant of therapeutic response and disease

pathology.231,232 How well tumors derived from iPSC

models mimic this intratumoral heterogeneity is not

well understood. However, heterogeneity may be forced

by creating multiple iPSC-derivative tumors with differ-

ing genotypes that can be mixed to robustly evaluate the

efficacy of treatment strategies. Additional methods to re-

capitulate tumor heterogeneity in genetically engineered

human stem cell models of cancer will be critical to fu-

ture model development.

In addition, although iPSC-derived cancer cells can be

transplanted into immunocompromised animals, such

models fail to recapitulate immune infiltration and the

heterogeneous microenvironment of primary tumors.233

In particular, the lack of a functional immune system pre-

cludes the ability to evaluate immunotherapeutic ap-

proaches in vivo, although specialized murine models

with a humanized immune system may overcome this

limitation in the future.234

Recently, human stem cell models were generated in

immunocompetent mice, but the human cells were

implanted into gastrulating mouse embryos, before de-

velopment of the immune system.235 Humanized mice,

however, are costly and complex making it difficult for

most research labs to routinely use these methods, and

because the human immune cells and tumor cells did

not arise from the same patient, there is still the possibil-

ity of rejection in a humanized mouse model.
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Alternatively, using iPSC from the same person to gen-

erate both the tumor lines and immune cells will facilitate

an in vitro co-culture environment that potentially mimics

the microenvironment better than the humanized mouse

model. The potential utility of immune cells, including T

lymphocytes, natural killer cells, and macrophages, de-

rived from human Embryonic Stem Cells (ESC) or iPSC

for research of tumor biology and cancer immunotherapy

has been extensively reviewed elsewhere.236,237

Another level of genetic regulation in cancer is that of

the epigenome. Investigation of epigenetic regulation

during cancer initiation, development, and progression

will be greatly aided by the use of bottom-up cancer mod-

els and the newly developed CRISPR-based epigenetic

technologies. One such use is the use of dCas9 targeted

to specific promoters to study the impacts of demethyla-

tion or histone modifications.238,239 For additional infor-

mation on epigenetic editing using CRISPR-based

technology, here is an excellent review.240 The ability

to edit the epigenome will be essential as we continue

to develop more accurate and predictive cancer models.

Concluding Remarks
Historically, modeling cancer development beginning

with normal cells has been studied using genetically engi-

neered mouse models (GEMMs). The GEMMs have pro-

vided a breadth of knowledge and methods that we can

now leverage to usher in a new era of cancer modeling

in human iPSC. The capacity of iPSC to differentiate

into nearly any somatic cell-type coupled with their ame-

nability to manipulation at the genetic level using new

genetic engineering strategies represents an unprece-

dented opportunity to expand our mechanistic under-

standing of human cancer development.

Further, the ability to derive iPSC from easily accessi-

ble somatic cell-types has facilitated the establishment

and continued expansion of large iPSC banks from di-

verse genetic backgrounds, providing an unprecedented

opportunity to fuse epidemiology and genomics with

basic mechanistic studies at scales not previously possi-

ble. Realizing this potential will necessitate interdisci-

plinary collaboration spanning stem cell biology,

bioengineering, cancer biology, genomics, and genome

engineering. Moving forward, we envision bottom-up

cancer modeling in iPSC as a highly flexible and power-

ful approach to glean novel mechanistic insights into the

fundamental biology of human cancers.
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