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Abstract 

Deep learning networks have shown impressive performance 

in object recognition. We used the classification image method 

to probe whether a deep learning model employs the same 

features as humans in perceiving real and illusory contours. We 

adopted a deep learning network, pre-trained with natural 

images, and retrained the decision layer with laboratory stimuli 

to perform shape discrimination in the “fat/thin” task. We 

tested the network with real and illusory contour stimuli 

contaminated with luminance noise. We found that deep 

networks trained on natural images can be readily adapted to 

discriminate between psychophysical stimuli with an 

extremely high degree of accuracy. However, deep learning 

networks do not appear to represent illusory contours where 

they may aid performance in the fat/thin task, a process 

automatically performed in human vision. This divergence 

indicates an important difference between the kinds of visual 

representations formed by deep networks and by humans. 

Keywords: Deep learning, contour interpolation, 

classification images 

Introduction 

Object recognition is among the most important and 

remarkable functions of biological vision. Classifying objects 

into categories allows us to interpret a visual scene and make 

inferences about objects beyond the information present in 

the retinal image. The task of categorizing objects is made 

difficult by the vast diversity of visual features among objects 

of the same category and by the variety of contexts under 

which objects are viewed. These variations include 

differences in viewing angle, distance from the observer, 

qualities of the illuminant, and possible occluders 

fragmenting the projection of the object.  

In the past decade, computational vision researchers have 

made remarkable progress in overcoming the many 

difficulties of object recognition. Most influential has been 

the application of deep convolutional neural networks 

(DCNNs) to object recognition. DCNNs built for object 

recognition are trained with millions of labeled photographs 

of objects and animals to classify an image into one of 1000 

categories. They take an image as input and perform a series 

of matrix operations and nonlinear transformations to output 

a vector of probabilities for each of their trained categories. 

Unlike traditional neural networks, DCNNs have 

convolutional layers with filters that operate on only a subset 

of contiguous image pixels at a time. The effect is that spatial 

information is preserved in the image because two pixels 

must fall into the same convolutional window in order for 

correlations between them to be considered (LeCun, Bottou, 

Bengio & Haffner 1998). DCNN architectures have won the 

ImageNet object classification competition since their first 

entrance in 2012 (Krizhevsky, Sutskever & Hinton 2012), 

now achieving accuracies even better than human recognition 

performance.  

Similarities between DCNNs and humans, both in structure 

and performance, have raised questions about the extent to 

which the computational processes taking place in deep 

networks are similar to those in human vision. One obstacle 

to answering these questions is that most research has been 

restricted to comparisons of categorization performance 

between deep networks and humans (e.g., Dubey, Peterson, 

Khosla, Yang & Ghanem 2015; Peterson, Abbott & Griffiths 

2016). This can be a useful metric, but it can also be 

misleading if humans and artificial systems reach the same 

classification decision through very different computational 

processes. For example, consider Ringach and Shapley’s 

(1996) fat and thin Kanizsa squares (Figure 1). For humans, 

discrimination of fat and thin stimuli is aided by the 

perception of illusory contours between the inducing 

elements (Gold, Murray, Bennett & Sekuler 2000). If deep 

networks were presented with similar stimuli, usual methods 

of comparison could assess discrimination between fat and 

thin stimuli, but not how this discrimination is accomplished. 

It would be impossible to know if DCNNs interpolate 

between inducing elements as humans do, or if they make 

their classification based on other information, such as the 

orientation of the black elements. In this study, we undertake 

to apply classification image techniques (Gold et al. 2000) to 

DCNNs to study the intermediate representations that drive 

their ultimate classification decisions.  

One aspect of recognition that these methods could clarify 

is recognition of partially occluded objects. DCNNs develop 

some robustness by training with many images with different 
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Figure 1. Fat and thin modified Kanizsa squares. 

viewing contexts, for example, from non-canonical viewing 

angles or with partial occlusion. When occlusion is minimal, 

network classification remains fairly good. The VGG-19 

network (Simonyan & Zisserman, 2014) correctly classifies 

Figure 2a as a lion despite the occluding cage bars. However, 

DCNN performance drops off considerably when presented 

with more significant partial occlusion. It cannot correctly 

classify Figure 2b, which is identical apart from the addition 

of four wider occluding black bars. The assigned probability 

for “lion” goes down from .777 (first choice) in Figure 2a 

to .002 (75th choice) in the occluded image. On testing sets 

with multiple occluders, mean classification accuracy is 

between 35% and 20% among top performing DCNNs, 

depending on the number of occluders (Wang et al., 2017).  

   

Figure 2. (a) Minimally occluded lion. Found online at: 

https://c1.staticflickr.com/3/2169/3527269138_36f6ce1988_

b.jpg (b) Substantially occluded lion. 

To the extent that deep networks recognize partially 

occluded objects, they could be doing so by completion of the 

object’s shape or by recognition from partial information. In 

human perception, both strategies play a role in object 

classification, but there is substantial evidence that local 

completion is the more basic and obligatory perceptual 

process (Kanizsa 1979; Carrigan, Palmer & Kellman 2016).  

For example, it is much easier for humans to classify displays 

such as those in Figure 1 as fat or thin based on completion 

between the inducers than by looking at the orientation of 

individual elements.    

 In human perception, amodal completion (behind 

occluders) depends on the same visual mechanisms that give 

rise to illusory contour perception (Kellman, Yin & Shipley, 

1998). In displays like the Kanizsa square, people see a 

subjective contour despite a total absence of luminance 

contrast between inducers. Gold, Murray, Bennett and 

Sekuler (2000) used classification image techniques to show 

that the image region between contour inducers is influential 

in subjects’ classification of a presented Kanizsa square, or a 

partly occluded square, as fat or thin, even though the signal 

was totally absent from these regions.  

Classification images are computed by first having 

observers make decisions about hundreds of images 

containing a signal (the stimulus pertinent to the perceptual 

decision) and random visual noise. The patterns of noise in 

the images are then correlated with classification decisions in 

order to determine which pixels (i.e. regions of the image) 

were important for classifying the image into one or the other 

category. This kind of analysis can give insight into where 

the behavioral receptive fields (BRFs) – areas important to 

observers’ perceptual decisions – are in the image (see 

Murray (2011) for more information).    

In the present study, we aimed to establish a method for 

conducting psychophysical experiments on DCNNs that 

would be informative not only about the network’s final 

classification decisions, but would also provide insight into 

the stimulus information influential in the network’s final 

output. First, we adapted a pre-trained deep network to new 

perceptual tasks by replacing the final layer and learning new 

weights between it and the preceding layer in order to allow 

for testing on more tightly controlled laboratory stimuli. This 

retraining only on the decision layer preserves all the learned 

features from training for object recognition, but repurposes 

the network’s representations for a different task. We then 

used classification image techniques to systematically 

examine whether deep convolutional networks are sensitive 

to illusory contours between inducing elements. If 

classification image analyses revealed that networks formed 

behavioral receptive fields between inducers, that would be 

strong evidence of similarity between humans and such 

artificial systems. On the other hand, if networks did not 

show BRFs in the interpolating region, that would be 

evidence that DCNNs are not performing object completion, 

or at least that object completion does not involve illusory 

contour interpolation as it does in humans.    

Experiment 1 

The purpose of Experiment 1 was to develop and validate a 

method of using classification images to derive behavioral 

receptive fields in deep convolutional networks. We trained 

a network to classify wire frames as fat or thin, then tested 

the network with impoverished stimuli which had added pixel 

noise (Fig. 3). We then analyzed the noise fields from the 

testing phase to determine which image regions played a role 

in the network’s classification decision. 

Method 

Training All training and testing was done using the AlexNet 

deep network model (Krizhevsky et al. 2012). We adopted a 

pre-trained network from Matconvnet (Veldadi & Lenc 2015) 

which was trained in the standard way to classify natural 

images from the ImageNet database including 1.2 million 

images and 1000 object categories. The decision layer of 

AlexNet has 1000 nodes, one for each object category. We 

replaced this layer with a single node layer for the binary 

“fat/thin” classification. The weights between the 
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penultimate, fully connected (fc8) layer and this final 

decision node layer were trained to classify wire frames as fat 

or thin, depending on the curvature of their vertical contour 

segments.  

The network was trained to make the fat/thin classification 

from 22,000 wire frame images with the size of 227x227, half 

labeled fat, and half labeled thin. The curvature of the vertical 

segments varied from extreme (curves nearly touching in the 

thin stimulus) to negligible (horizontal position of the curves’ 

midpoint only a few pixels away from the corners of the wire 

frame). The position of the wire frames in the image also 

varied, with the constraint that the whole shape must be 

visible. We added a small amount of Gaussian noise (SD of 

contrast = .16) to every pixel in the training image, as it was 

found through experimentation that this reduced decision 

bias in the training. See Figure 3 for training examples. 

 

 

 

 
Figure 3. Sample training images from the second phase of 

training in Experiment 1. The training images varied the 

curvature of the vertical segments and location. Gaussian 

pixel noise were added to training images. 

The network was trained for 20 epochs, after which it was 

tested with a validation set of an additional 2128 wire frame 

images that had been removed from the training set. The error 

rate on the validation set was .048.  

Testing After the network had been trained to classify fat and 

thin wire frames, we conducted classification image analysis 

to examine which parts of the image were relevant to the 

network’s classification decisions. To do this, we  generated 

noise fields with a standard deviation of 0.16, then took fat 

and thin wire frames of intermediate curvature as signals with 

a contrast of 0.12, and added them atop the noise field.   

In order to derive classification images, it is necessary to 

have both correct and incorrect responses for each target 

shape. To that end, we varied the contrast of the signal over 

several thousand trials and used the Palamedes toolbox (Prins 

& Kingdom, 2009) to fit a psychometric curve to the data, 

and find the contrast at which the network correctly classified 

about 75% of presented stimuli, as is standard in 

psychophysical classification image analysis (see Figure 4).  

 

Figure 4. Sample test images from Experiment 1. Test 

images have fixed curvature but with adjusted signal 

contrast to maintain the accuracy at 75%. 

We tested the network on 100,000 stimuli, recording the 

signal, the noise field, and the network response for each trial.  

Stimuli were identical in position, size and magnitude of 

curvature. The only stimulus features that changed from trial 

to trial were the convexity of curved segments 

(corresponding to “fat” or “thin” stimuli), and the randomly 

generated noise field.  

Analysis We first analyzed the behavioral receptive fields 

from Experiment 1 using classical classification image 

methods, which was used in the human study by Gold et al. 

(2000). Trials were grouped into four categories: signal 

fat/response fat (SfRf), signal thin/response fat (StRf), signal 

thin/response thin (StRt), and signal fat/response thin (SfRt). 

We calculated the mean of the noise fields for each of these 

four kinds of trials, and then found the classification image 

by computing (1), where μ is the mean of the noise field 

corresponding to each classification type.  

(1) CI = (μ.SfRf + μ.StRf ) – (μ.StRt + μ.SfRt) 

After examining the network’s results, we found that it 

made considerably more StRf  misclassifications than SfRt 

misclassifications, caused by a bias term in the decision layer. 

Because it is important to have all response types well 

represented in classification image analysis, a biased pattern 

of response could make the derived CI less interpretable. The 

bias term in the network is unaffected by the presented 

stimulus, so to reduce its effects on the resulting classification 

images, we also performed a reverse correlation analysis. 

Rather than grouping noise fields by their four possible 

response types, we correlated each pixel intensity in the noise 

fields with the activity of the network’s response nodes across 

100,000 trials. This continuous measure was simply the dot 

product of the input to second to last network layer and the 

connection weights between the last and second to last layers. 

Conceptually, this analysis is almost identical to 

classification image analysis used in psychophysics, but it 

has the advantage of not being subject to the network’s 

response bias in shape judgments.  

Results and Discussion 

 Both the traditionally calculated classification image based 

on mean noise fields and the correlation map are shown in 

Figure 5. Gaussian smoothing was applied to both images to 

aid visualization. Darker regions correspond to areas that 

influence the network towards a “fat” classification, while 

lighter regions are areas that influence the network towards 

a “thin” classification.  

The purpose of reverse noise image correlation techniques 

is to find areas that are influential to the network’s ultimate 

classification. By analyzing the noise fields in the absence 

of the stimulus signal, psychophysicists can examine how 

random variation in the presented image can influence a 

subject’s decision one way or the other. The results of 

Experiment 1 suggest that the same techniques can be 

applied to gauge deep networks to find what areas influence 
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the artificial systems’ ultimate classification decision. In the 

wire frame experiment, there is significant correlation 

between the image region where a fat or thin vertical 

segment was overlaid and the network’s final classification.  

 
Figure 5. Left: Classification image Right: Correlation map. 

The pixel contrasts in the result images reflect the degrees 

that different locations influence the classification decision. 

 These findings validate the idea that deep networks trained 

for object recognition can be trained to do other perceptual 

tasks while preserving the features learned from training on 

natural image classification. Moreover, the correlation maps 

recovered from Experiment 1 confirm that classification 

images can be recovered from deep networks and give 

important insight into which stimulus regions are influential 

in a network’s ultimate classification.  

Experiment 2 

In Experiment 2, we used reverse correlation analyses to test 

whether deep convolutional networks interpolate illusory 

contours between inducing elements. Classification image 

analysis on human perception has found that the region 

between inducers is influential in subjects’ perceptual 

decision, even when the signal is only present at the inducers’ 

locations (Gold et al. 2000). If deep networks process visual 

scenes as humans do, we would expect the same scene 

conditions that produce an illusory contour percept in humans 

to give rise to an illusory contour in the artificial system. We 

tested this by presenting to a DCNN fat and thin Kanizsa 

square stimuli with both real and illusory contours, and 

compared the classification images from the two conditions 

to see if the network, like humans, had a representation of the 

interpolating contour in the illusory condition.  

Method 

Training The first phase of training was identical to 

Experiment 1—we used AlexNet, a DCNN that had already 

been trained to classify natural images. In the second phase, 

we retrained the connection weights between the last two 

layers, this time to classify Kanizsa squares as fat or thin. The 

training set consisted of 22,000 images of sectors of circles 

that could define fat or thin shapes depending on the 

orientation of the circle inducers. In all training stimuli, a 

curved contour was drawn to connect between the corner 

inducers, so that all training was on stimuli with real contours. 

Sample training stimuli are shown in Figure 6. The stimuli 

are slightly longer vertically than horizontally. This is done 

because DCNNs have rotation invariance, so we needed there 

to be a difference between fat and thin images regardless of 

orientation. Training images varied in curvature, from one 

degree off true vertical to 44 degrees off true vertical, and in 

position in the image. 

 

Figure 6. Training images for Experiment 2. Training 

images varied in curvature of the vertical segments and 

location. Gaussian pixel noise was added to training images. 

The network was trained for 20 epochs, after which it was 

tested on 2128 images not included in training, for which it 

had an error rate of .027.  

Testing Two testing conditions were carried out using the 

same retrained DCNN. First, we tested on stimuli with real 

contours connecting between inducers. We chose fat and thin 

signals with intermediate curvature and overlaid one or the 

other atop a randomly generated Gaussian noise field 

(standard deviation 0.16). As in Experiment 1, contrast 

between the signal and background was set so that the 

network correctly classified the image with about 75% 

accuracy (see Figure 7). We then ran 100,000 trials, half of 

which used the fat signal, and half the thin signal. The only 

stimulus features that varied across trials were the orientation 

of the inducers (angled inward for “thin” stimuli and outward 

for “fat stimuli”), the convexity of the segments between 

inducers, and the randomly generated noise field. Network 

response and the noise image were recorded for each trial.   

    

 

Figure 7. Testing images for the real and illusory contour 

condition. Test images have fixed curvature, but with 

adjusted signal contrast to maintain the accuracy at 75%. 

We also tested the network on stimuli with no physical 

contour between partial circle inducers. We used inducers 

with the same orientation as in the real contour condition, and 

varied the contrast between the signal and background to find 

the 75% accuracy threshold (Figure 7, right). We tested the 

network on 100,000 illusory contour trials, recording 

network response and the noise image for each stimulus.                  

Analysis We analyzed the data by computing the 

classification image and correlation map for both conditions, 

as in Experiment 1.  
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Results and Discussion  

The correlation map for the real contour and illusory 

condition are shown in Figure 8, along with the classification 

image derived from human subjects by Gold et al. (2000). 

The classification images were also computed, but are not 

shown because they look very similar to the correlation map, 

but with slightly less contrast between behavioral receptive 

fields and the background.  

 

Figure 8 Left panel: Correlation map for the real contour 

and illusory condition from Experiment 2, respectively. 

Right panel: Classification image for the real contour 

condition and illusory contour condition (from Gold et al. 

(2000)).  

When physical contours connect between the figure’s 

inducing elements, both the orientation of the elements and 

the contours themselves appear to be influential in 

classification. These results are similar to Experiment 1, 

except that now there are two information streams that could 

lead to correct classification—orientation of inducer and 

contour curvature. 

In the inducer-only contour condition, classification can be 

done by examining the orientation of the inducing elements, 

or by the curvature of an illusory contour connecting pairs of 

inducers. The correlation map for inducer-only stimuli looks 

dramatically different from the map for stimuli with real 

contours, and from the inducer-only condition in human 

subjects. The image region where inducers are present is 

highly influential in classification, but there appears to be no 

behavioral receptive field in the area between the partial 

circle inducers. This suggests that in the absence of real 

contours between inducers, the network classifies fat and thin 

stimuli purely based on the orientation of individual inducing 

elements, without perceiving interpolated contours between 

these elements. This is true even though real contours were 

present in all training images. Such a training regimen gives 

the network the best chance of representing illusory contours 

because the network will have learned to expect diagnostic 

information to be present between inducing elements, but 

correlation analysis reveals no contribution from the 

interpolating region. This differs from the behavioral 

receptive fields observed in humans for the same task (Fig. 8 

right), which include the illusory contour region as well as 

oriented inducer region. 

General Discussion 

The purpose of this study was to develop a method for 

conducting more rigorous psychophysical tests of deep 

convolutional networks in order to probe the nature of their 

representations and computations, and to apply this method 

specifically to the question of contour interpolation.  

Experiment 1 served as a validation for our method of 

using artificial stimuli and classification image techniques for 

probing the capabilities of DCNNs. Even though humans’ 

visual systems did not evolve to process laboratory stimuli 

typically used in vision research, psychophysicists find it 

useful to simplify the visual input in an experiment in order 

to make their findings more interpretable. The same can be 

done in deep convolutional networks by replacing the 

decision layer with one more appropriate to a given 

perceptual task. One problem that comes with training 

DCNNs with millions of parameters is the risk of overfitting, 

as when a monkey is mistaken for a person due to its 

proximity to a vehicle (Wang et al., 2017). Use of laboratory 

stimuli can mitigate this issue by more tightly controlling 

what information is available to the network in classification.   

The methodology we used in our experiments also 

provides insight into how deep convolutional networks make 

their classification decisions. In Experiment 1, we knew that 

the influential region in the wire frame images should be 

along the curved vertical contours, and we were able to 

produce classification images that confirmed this expectation. 

The structural complexity of DCNNs makes it very difficult 

to track computational processes from input to output, so a 

method like reverse image correlation is a promising tool for 

learning what information deep networks are using when they 

make one classification instead of another.  

The usefulness of such a method becomes clear when we 

look at results from Experiment 2. Most research into the 

capabilities of DCNNs has been restricted to the performance 

level. In the inducer-only condition in Experiment 2, 

evaluation of the network based solely on performance would 

seem to suggest broad similarity between human and 

artificial perceptual processes. Like humans, the deep 

network was able to accurately classify oriented inducers as 

fat or thin configurations, even when there were no real 

contours connecting them. Differences between biological 

and artificial vision are only revealed when we look past the 

performance level and analyze the information that was used 

by each system in its ultimate perceptual decision.  

Evidence that deep networks do not perceive illusory 

contours could support the notion that DCNNs do not do 

completion behind occluders, but recognize partially 

occluded objects from partial information. Unlike humans, 

the presence of illusory contour inducing edges satisfying 

geometric constraints of relatability is not sufficient to induce 

contour completion (Kellman & Shipley, 1991). An 

alternative explanation is that deep networks do amodal 

completion, but not modal completion. Under this hypothesis, 

there might be some scene requirements beyond the presence 

of tangent discontinuities and relatable edges to engage 

completion processes. Our current findings cannot decide 

between these possibilities, but it must be noted that either 

hypothesis represents a divergence from human perception, 
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where modal and amodal completion appear to depend on a 

common process (Kellman, Yin & Shipley, 1998). 

One reason deep networks might not interpolate between 

relatable inducers is that they are purely feedforward systems. 

It is possible that a deep network with recurrent connections 

would be better suited to fill in spaces between tangent 

discontinuities on a backwards pass from higher level areas. 

Importantly, though, even this would constitute a difference 

between networks and humans, for whom interpolation is 

generally thought to be a feedforward process (e.g., Heitger, 

von der Heydt, Peterhans, Rosenthaler & Kubler, 1998).  

Another reason networks might not interpolate between 

inducers is that the natural images on which they are trained 

do not have occluded target objects, so completion 

capabilities may be a low priority during training. It would be 

an interesting future direction to train networks on an image 

set with more occluded objects to test if more robust training 

would result in deep networks perceiving illusory contours.  

One limitation of this study is that classification image 

techniques assume linearity in a system’s decision-making 

process, but deep convolutional networks are inherently 

nonlinear. (We thank James Elder for bringing this issue to 

our attention). This is a subject of ongoing research, but 

preliminary findings suggest that analyses that do not assume 

linearity, such as regression using the general linear model, 

produce similar results. 

Another limitation is that in Gold et al.’s (2000) study, 

exposure time for the stimuli was limited to 500 ms. It is 

possible that given unlimited time, human observers would 

make their classification based on the orientation of 

individual partial circle inducers, rather than on the features 

of the illusory contour. Since there is no way to limit 

exposure time for DCNNs, it is possible that the same regions 

are influential in humans and deep networks, given unlimited 

viewing time. We cannot rule this out, but it seems unlikely 

given the strength of the illusory contour percept. It does not 

seem probable that human observers would be more accurate 

in their “fat/thin” classifications by attending to individual 

inducer orientations, and it would certainly make the task 

more effortful and unpleasant.  

Overall, our findings suggest that although deep 

convolutional networks resemble humans on many 

performance-based measures, there is a great deal of work to 

be done to evaluate how similar their intermediate 

computations really are to human perception. In the case of 

illusory contour displays like the Kanizsa square, the 

representations of humans and deep networks appear very 

different, as DNNs do not appear to interpolate between 

tangent discontinuities in the same way human observers do.  
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