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ABSTRACT OF THE DISSERTATION 

 

 

 

Digital Loop-Mediated Isothermal DNA Amplification 

 

by 

 

Janay Elise Kong 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles 2017 

Professor Dino Di Carlo, Chair 

 

Nucleic acid amplification has applications in diagnostics, sequencing, genetic 

fingerprinting, among others. Currently nucleic acid amplification is treated as the “gold standard” 

method for several diagnostics; however, because of the multi-step protocols and the large 

equipment, these assays are lengthy and require laboratory settings. Digital nucleic acid 

amplifications assays developed have greatly improved several aspects of nucleic acid 

amplification by creating a more robust and sensitive assay. This is due to the reduction in 

background noise and the ability to effectively concentrate target analytes in nano- or picoliter 

volumes by compartmentalization of these samples. We were able to demonstrate a 69-fold 

fluorescence change in an isothermal nucleic acid amplification assay, with a >60% increase in 

fluorescence stability with elevated temperatures over the time course of the reaction, with the use 
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of a unique dye combination of EvaGreen and hydroxynapthol blue (HNB). Due to the 

improvements in signal, we were able to demonstrate comparable results using a mobile phone 

based fluorescence plate reader as with that of a benchtop reader. The unique dye combination was 

then applied to a digital system, demonstrating signal improvements that are crucial to developing 

a robust assay, giving a higher efficiency (percentage of “on” wells closer to the theoretical value) 

and a larger difference in fluorescence intensities for “on” versus “off” wells. Lastly, we examined 

the mechanism of the dye combination to best determine additional ways of improving the signal 

generation. By sequestering EvaGreen, HNB allows amplification to proceed without interference. 

Additionally, a Förster resonance energy transfer (FRET) interaction between the dye molecules, 

when DNA is absent from the solution, acts to lower the background fluorescence such that a 

greater fluorescence fold change occurs with DNA amplification. The EvaGreen and HNB have a 

highly-tuned binding affinity such that prior to DNA amplification, they have FRET interactions, 

and afterwards in the presence of large amounts of DNA, EvaGreen binding to DNA becomes 

more favorable. All of these developed technologies and methods work in conjunction to improve 

upon currently developed techniques for nucleic acid amplification in point of care settings. 
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Chapter 1: Sensing Nucleic Acids and Proteins Using Microfluidic Digital 

Assays 

Digital assays have been used to detect and quantify nucleic acids and proteins with greater 

reproducibility and sensitivity than conventional assays. Conventional assays have limitations 

when it comes to detecting and quantitating low concentrations of target molecules. By splitting a 

sample into distinct small volumes, single target molecules and reaction products can be 

effectively concentrated, facilitating detection in that small volume. Digital assays with their 

binary outputs have the potential for single molecule level resolution, making them ideal for 

identification of rare variants, while also being robust to assay conditions and reduced calibration 

procedures. While digital assays are able to improve sensitivity and repeatability, the assay 

complexity and equipment needs currently limit their use to laboratory-based settings. 

 

1.1 Microfluidic Digital Assays 

Microfluidics technology allows for the control and manipulation of very small amounts 

of fluids – several orders of magnitude smaller in volume than can be reasonably manipulated 

using benchtop fluid pipetting1. Using this technology large volumes containing entities (e.g. 

molecules or cells) to be detected can be fractionated into thousands of nano-, or even picoliter 

volumes that contain either one or zero of a particular entity of interest. By creating barriers to 

reaction between volumes (fractionation), using microemulsions or microwell technology, each of 

these separate volumes can be assayed individually in a high throughput manner2. Such “digital” 

assay versions of conventional molecular biology assays, including digital polymerase chain 

reaction (PCR) and digital enzyme-linked immunosorbent assay (ELISA), can provide unique 

capabilities. By splitting the sample into small enough volumes, each well or droplet will in most 
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cases have either a single target molecule present or none, such that following a sensing reaction, 

a binary output signal of “on” or “off” can be determined. By simply counting the fraction of “on” 

compartments, one can more directly see and quantify the amount of target analyte in solution, 

proving advantageous to conventional methods that require the generation of a standard curve and 

careful assay calibration (figure 1.1). However, there are also tradeoffs with digital assays. For 

example, because digital assays depend on an assumption of at most one target analyte per well, 

the dynamic range is limited by both the minimum volume of each compartment and the total assay 

volume. 

 

Figure 1.1. a. In a digital assay, large volumes are split into small compartments to produce a binary “on” 

or “off” signal if solutions are sufficiently dilute to allow Poisson occupancy statistics. This allows 

determination of the initial target concentration. b. Comparison between analog and digital readouts. 
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1.2 Sample Fractionation 

One of the key steps in a digital assay is compartmentalizing the volume into smaller 

fractions. Sample fractionation is typically achieved using a microfluidic device, either in wells3 

or in droplets4 (figure 1.2). Both approaches allow rapid fractionation of a sample to relatively 

uniform nanoliter or sub-nanoliter scale volumes, but have unique trade-offs. 

 

Figure 1.2. Different ways a sample can be fractionated, using microfluidics a. with a droplet generator. 

Adapted with permission from Hindson et al.5. Copyright 2011 American Chemical Society. b. with a system 

of wells and valves for sealing. From Ottesen et al.6. Adapted with permission from AAAS. c. with a 

SlipChip. Adapted with permission from Shen et al.7. Copyright 2011 American Chemical Society. 
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1.2.1 Microwells 

Digital assays in wells typically allow for more flexibility in sample preparation, for 

example, with beads that can be functionalized to capture target molecules and then incubated and 

washed with multi-step additions of new solutions. Additionally, viscosity, surface tension, and 

flow rates do not affect the uniformity of sample volumes which can be precisely controlled. 

However, one limitation inherent to wells as opposed to droplets, are the effects of surface fouling. 

Given the high-surface area, reaction components such as proteins, enzymes, of nucleic acids can 

adsorb to surfaces, leading to variation in reaction kinetics compared to a bulk reaction. Although 

steps can be taken to block surfaces and limit the effects of nonspecific binding, these add more 

assay complexity, and result in a surface environment that still is not similar to the bulk solution, 

often leading to reduced performance. One such technique to generate wells that also allows for 

multi-step additions of reagents is called the SlipChip8,9. Using this device allows for uniform 

volumes of fluid to fill compartments, and then a subsequent ‘slip’ step shifts the wells to have 

physical continuity with other wells such that they combine with other contained solutions on this 

different area of the chip.  

 

1.2.2 Micro-emulsions 

Droplet microfluidics and drop-based assays offer unique advantages. The generation of 

thousands of droplets per second10 enables the development of high throughput assays that allow 

for the flexibility in sample volumes tested without redesigning the device. When analyzing larger 

volumes, flowing droplets past an optical excitation and sensing point can allow for sensing each 

droplet individually using a fluorescent, colorimetric, or other readout approach. Because one can 

continually produce more droplets with the same device, droplet microfluidics can provide 

increased scalability without the need to change the device geometry or area of well arrays. As a 
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result of Poisson statistics, larger droplets shift the dynamic range (the concentration range for 

which digital readout is possible) towards a lower limit and conversely smaller droplets shift the 

dynamic range upward for the same overall tested volume. The largest and smallest volume of 

“micro-reactors” in an assay determines the assay’s dynamic range, and while it is possible to 

simply dilute out the sample in order to quantitate larger analyte concentrations, running an assay 

multiple times in order to accommodate differing concentrations is not ideal. Creating a mixture 

of both large droplets to expand the overall tested volume and small droplets to allow sampling a 

higher concentration range within the same device can allow a significant extension of the dynamic 

range. As droplet size changes with flow rate with many flow-focusing or T-junction droplet 

generators, a single device can be utilized to make a range in droplet sizes (figure 1.3). Droplets 

can also be manipulated to allow for merging, or exchange of fluid, such that multi-step reactions 

can occur in each droplet11–13. Multi-step reactions, requiring exchange of fluids, or sequential 

addition of reagents, that are possible in both droplets and wells enable greater flexibility in assay 

development. Each reaction step can operate under different reaction conditions, and reagents can 

be added only when needed to limit interference, potentially leading to an overall increase in assay 

efficiency. Standard droplet generation systems generally require precise control over fluid flow, 

which leads to larger and more bulky equipment, limiting use to laboratory settings. This makes 

this equipment harder to translate for use in the field or point-of-care diagnostics.  

In summary, both compartmentalizing in wells or droplets can enable digital assays, but 

larger volumes are difficult to analyze. Droplets have the advantage of flexibility of droplet size 

and number, enabling a larger dynamic range within a single device. Fabricated wells have the 

advantage of ease of imaging because of the precise well locations set up in a known pattern, while 

wells typically create more monodisperse volumes because of the microfabrication techniques 

employed are highly uniform. One of the current limitations of digital assays is the ability to only 
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assay a small volume, usually smaller than traditional assays because of the large number of micro-

compartments that need to be imaged per unit volume. While continuous flow droplet generation 

systems provide the ability to create more droplets, this process takes time for both droplet 

generation and imaging and further processing afterwards.  

 

Figure 1.3. a. Water in oil droplet formation at a constant water flow rate, and increasing oil flow rates 

(left to right) b. Droplet diameter and generation frequency from the above images. Adapted from Yobas et 

al.14 with permission from The Royal Society of Chemistry. 

 

1.3 Microfluidic Digital Assays 

The field of digital assays has primarily been split into two subgroups: digital nucleic acid 

amplification tests and digital immunoassays or ELISAs. These two assays are well-suited to 



 7 

digital approaches because the binary assay outputs make these assays less dependent on 

enzymatic activity of the polymerase or other signal-generating enzymes, producing more 

repeatable results with a single measurement. By treating each compartment as an individual 

micro-reactor, target analytes can be measured down to the single molecule level. In a digital assay, 

the limit of detection (LoD) often depends on the amount of sample analyzed, assuming that false 

positive compartments with signal are not prevalent. Larger compartment volumes contain more 

sample and therefore have an increased probability of containing the target molecule, but also 

potentially contaminating molecules that reduce the uniqueness of the signal. Digital assays 

improve the LoD by limiting the noise in each volume and sequestering contaminating compounds 

to a small subset of volumes instead of the entire volume, through physical barriers. For example, 

if there is contamination in a sample, a conventional assay will give a positive signal, whereas in 

a digital assay, only a small number of wells out of thousands will have a positive signal. 

 

1.3.1 Digital Nucleic Acid Amplification 

Several digital nucleic acid amplification methods have been developed and even 

commercialized15. The first demonstration by Vogelstein et al. examined the use of limiting 

dilutions in order to improve assay sensitivity and postulated that the limit of detection was only 

limited by the number and volume of compartments analyzed16. This seminal work was completed 

in both 96- and 384-well plates by pipetting, including a secondary probe addition, which made 

performing these assays very tedious. In a microfluidic format, nucleic acid amplification has been 

accomplished in both droplets and wells using the gold standard PCR, as well as a number of 

isothermal nucleic acid amplification techniques. Commercially available digital PCR 

technologies have been developed by Fluidigm, RainDance, Stilla and BioRad (table 1.1) using 

both wells and droplet-based approaches15, and new technologies continue to come to market.  
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Digital PCR often has followed the protocols of standard qPCR, but has some unique 

capabilities. Like the standard for qPCR methods, several of these technologies require the use of 

a reference dye, e.g. ROX, in order to account for differences in droplet volumes or a baseline shift 

in fluorescence. A number of these technologies also require the use of customized Taqman probes 

for each target DNA sequence. Digital PCR has been found to be more robust than standard qPCR 

when testing the reaction against possible inhibitors17. However, both with digital PCR and with 

isothermal assays such as loop-mediated isothermal DNA amplification (LAMP), the assay 

susceptibility to inhibitors varied with the inhibitor used. Specific to nucleic acid amplification 

assays, the digital systems do not take into account amplification bias for different target 

sequences.  

Table 1.1. Commercial digital PCR technologies. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Methods. Baker, M.15, copyright 2012. 
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Digital PCR can enhance performance in the presence of contaminants or non-target 

sequences. PCR is very prone to contamination, and often after several cycles, signal amplification 

occurs, even without the presence of the target DNA sequence. As discussed, physically separating 

volumes from one another limits contamination to a subset of the volumes in digital PCR and 

therefore can reduce effects of inhibitors or other contaminants. Interrogating thousands of 

individual compartments enables a highly sensitive assay that coincides with a low LoD, owing to 

the large number of compartments and sample volume analyzed. Digital nucleic acid 

amplification, as with other digital assays operate based on the idea that an absolute quantification 

of target analyte can be obtained by counting each individually amplified compartment. This is 

based on the assumption that each target analyte will not only trigger an amplification reaction, 

but also generate a signal detectable above background. While it has been demonstrated that 

digitization can improve reproducibility of PCR18,19, typically these assays underestimate target 

analyte8, making a calibration curve necessary for true quantification, despite claims otherwise. 

Target analyte underestimation can result from a variety of cases that limit amplification, such as 

target nucleic acid molecules nonspecifically binding to the walls of wells or interfaces of drops, 

damage to target molecules, decreased enzymatic activity due to surface interactions, etc. 

Reactions near surfaces or interfaces is an active area of research and further investigation will be 

necessary to uncover all of the causes of the surface-based variation in performance with these 

assays. 

 

1.3.2 Isothermal Digital Nucleic Acid Tests for Distributed Testing 

Other digital nucleic acid amplification tests, such as loop-mediated isothermal amplification may 

address challenges in achieving distributed digital nucleic acid sensors. Because of the bulky 

instrumentation requirements for pressure control and thermocycling, most digital PCR assays 
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have been limited to a laboratory based setting. Emerging isothermal amplification technologies 

such as LAMP20, strand displacement assays (SDA)21, rolling circle amplification (RCA)22, and 

nicking enzyme amplification reaction (NEAR)23, are flexible and insensitive to slight variations 

in temperature. Because of this, these assays may be able to be performed more easily, faster, or 

with increased sensitivity and specificity. Additionally, due to the thermocycling of PCR, 

commercial instruments require separate devices or instrumentation for each step of the process, 

from sample fractionation and thermocycling to imaging and readout. Like other digital assays, 

digital isothermal amplification, such as digital LAMP can also be performed in droplets24, in 

microwells17, and also can include multi-step additions to the assay8. Like digital PCR, digital 

LAMP has been shown to provide reproducible results and an improved quantitative range as 

opposed to the analog counterpart17. Moreover, by implementing a continuous flow digital assay, 

the sample volume is dynamic and can be altered depending on the needs of the assay24. However, 

these assays tend to struggle with the development of a large signal to noise ratio, leading to a 

relatively high limit of detection. Additionally, this particular assay requires the use of a reference 

dye, only adding to the imaging complexity and post-processing. In addition to a more complex 

device fabrication, this digital LAMP assay also requires a confocal imaging platform.  

Both digital PCR and digital LAMP have been shown to provide more repeatable results 

than their analog counterparts, without the need for generating a standard curve. However, there 

are a number of limitations and improvements that can be made to facilitate a more efficient, 

sensitive, and specific assay that is also easy to use. 

 

1.3.3 Digital Immunoassays 

In addition to nucleic acid amplification and detection, immunoassays such as ELISA have 

been successfully demonstrated in digital microwell formats3,25 (figure 1.4). The ability to detect 
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target analytes down to a single molecule level promises to be revolutionary for a number of 

different diagnostics. Like the digital nucleic acid amplification techniques, digital 

implementations of ELISA can improve sensitivity and detection of low analyte concentrations. 

Although highly sensitive, there are a number of improvements that can be made to facilitate the 

assay’s ease of use and further push the boundaries for lower limits of detection, shorter processing 

times, improved sensitivity, and integration with standard laboratory materials. Assay processing 

time for one reported digital ELISA approach3 is approximately 6 hours, with several wash and 

incubation steps. This compares to 4-5 hours for a standard ELISA, however, the LOD falls from 

10-15 to 10-16 M with a standard assay to 10-15 to 10-19 M with the digital assay. Both in an ideal 

sample as well as in clinically relevant samples, the long assay processing time may be worth the 

wait.  

Like analog assays, digital assays can also be multiplexed, with a multiplexed digital 

ELISA developed recently to detect four different analytes at a low to sub pg/mL level26. By 

encoding different antibody labeled beads with varying fluorophores, Rissin et al. were able to 

transform a single analyte sensor into a multiplexed assay. The ability to detect multiple target 

analytes in a single assay is extremely favorable, decreasing the number of assays needed to be 

run for a single diagnosis and allowing for calibration between analytes. The trade-off is that by 

filling wells with one of many possible targeting beads, the number of individual reactions for each 

target is reduced given the same overall tested volume, effectively decreasing the assay’s overall 

sensitivity, resulting in a higher limit of detection for each target analyte. One can improve upon 

this, by merely adding more wells, and processing the sample at a larger scale27. By utilizing over 

a million femtoliter wells, a LoD of 10 zM was achieved27. Additionally, the large number of 

reaction chambers acts to improve the assay’s dynamic range, an issue that limits all digital assays. 

With an assay this large, imaging and processing the large field of view can then become a 
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technical issue from the optical system design and computational requirements. Digital ELISAs 

and emerging technologies hold significant promise for more robust, repeatable, sensitive, and 

specific assay that can detect target analytes down to the single molecule level, but the assay 

accessibility and ease of use have much that can be improved upon in the coming years. 

 

Figure 1.4. Digital ELISA using beads and femtoliter wells. a. Target analytes are captured to form 

immunocomplexes on beads. b. Beads are loaded into wells and then an enzymatic substrate is added before 

the wells are sealed and fluorescently imaged. c. Scanning electron micrograph of beads loaded into the 

device. d. Fluorescence micrograph of a section of the device, depicting a small fraction of “on” wells. 

Reprinted by permission from Macmillan Publishers Ltd: Nature Biotechnology. Rissin, D. et al. 3, 

copyright 2010.  

 

1.4 Future Directions with Digital Assays 

One method that has been proposed to expand the dynamic range of these assays is to 

combine fractionation with an analog readout for higher concentration ranges that would lead to 

single digit numbers of molecules per well28. This approach assumes that the response is uniform 

for each molecule and can be linearly superposed. For concentrations with 70% or lower active 
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beads, a digital readout is measured and for concentrations above, an analog fluorescence 

measurement is performed. This adjustment in the way the signal is measured and subsequently 

analyzed can improve the dynamic range by almost two logs of concentration without the need to 

adjust the assay conditions. The ability to measure the fluorescent signal accurately using analog 

methods still depends primarily on the imaging system and also on the ability of the assay to 

generate a high enough differential signal such that a single amplification event can be 

distinguished from multiple. 

Digital assays have provided a robust and sensitive platform for a variety of assays from 

nucleic acid amplification tests to immunoassays. The instrumentation and devices used are also 

translatable to other assays such as single-cell analyses29–31. While the current assays hold a lot of 

promise for the detection of target analytes, these techniques are primarily limited to laboratory 

based settings. Isothermal DNA amplification techniques have made strides in the translation of 

digital nucleic acid amplification assays to the field; however, further innovations are necessary to 

transfer the entire process to field-portable settings. Low signal generation necessitates more 

expensive and sensitive optics, preventing the adoption of these techniques into point-of-care 

sensors. Compartmentalization of volumes, either in droplets or wells, typically requires the use 

of bulky equipment, such as syringe pumps to generate monodisperse droplets. Lastly, digitization 

of these assays increases processing times and can require custom or complex equipment and 

methods, making their use in point-of-care settings more challenging. Future work to address these 

challenges promises to transform the next generation of molecular diagnostic sensors, leveraging 

the significant advantages of digital assays. 
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Chapter 2: Sensitive and Stable Nucleic Acid Amplification with Cell-phone 

Based Readout  

Nucleic acid amplification tests have primarily been limited to lab settings because of their 

complexity and relatively high costs. These tests have several advantages because of their unique 

capability to amplify DNA or RNA by at least a million-fold, enabling detection of a very small 

amount of target molecules associated with disease or the presence of microorganisms. Key 

challenges with point-of-care (POC) nucleic acid tests include achieving a low cost, portable form 

factor, and stable readout, while also retaining the same robust standards of benchtop lab-based 

tests. We addressed two crucial aspects of this problem, identifying a chemical additive, 

hydroxynapthol blue (HNB), that both stabilizes and significantly enhances intercalator-based 

fluorescence readout of nucleic acid concentration, and developing a cost-effective fiber optic 

bundle-based fluorescence microplate reader integrated onto a mobile phone. Using loop mediated 

isothermal amplification (LAMP) on lambda DNA we achieve a 69-fold increase in signal above 

background, 20-fold higher than the gold standard, yielding an overall limit of detection (LoD) 

below 57 copies/μL within an hour using our mobile phone based platform. Critical for a point-of-

care system, we achieve >60% increase in fluorescence stability as a function of temperature and 

time, obviating the need for manual baseline correction or secondary calibration dyes. This field-

portable and cost-effective mobile phone based nucleic acid amplification and readout platform is 

broadly applicable to other real-time nucleic acid amplification tests by similarly modulating 

intercalating dye performance, and is compatible with any fluorescence based assay that can be 

run in a 96-well microplate format, making it especially valuable for POC and resource-limited 

settings. 
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2.1 Introduction 

Nucleic acid detection assays are used ubiquitously in medicine, from identifying viral or 

bacterial pathogens32,33 to assaying for minimal residual disease in leukemia34 and measuring 

unique sequences of circulating DNA to identify drug treatable mutations35. Point-of-care (POC) 

nucleic acid assays can provide advantages when a rapid readout or diagnostic decision is needed 

(e.g. for infectious diseases) or when assays need to be performed in a limited resource or 

distributed setting36–38. These settings and need for operation by unskilled users impose unique 

challenges for POC assays, related to cost, ease-of-use and accuracy39,40. POC nucleic acid 

detection assays require several key components including amplification, signal generation and 

signal detection methods to achieve sensitive and specific diagnostics. Amplification of nucleic 

acids is critical to increase the signal for a specific nucleic acid sequence. 

A host of new nucleic acid amplification approaches have been developed with 

characteristics suited to point-of-care assays, including e.g. rolling circle amplification, helicase-

dependent amplification, nicking endonuclease signal amplification, isothermal strand 

displacement amplification, among others41,42. A key characteristic that many of these assays, such 

as LAMP, share is decreased sensitivity to temperature fluctuations and/or isothermal 

operation20,43. Currently, POC isothermal temperature control has been achieved using low cost 

approaches. Examples include phase-change materials and either Mg-Fe alloy or CaO and water 

to generate heat with an exothermic reaction40,44. More recently, photonic heating has been used 

for precise control with minimal instrumentation45,46. LAMP has several advantages, including 

isothermal operation, and the ability to produce large amounts of amplified DNA product in a short 

amount of time with a single type of enzyme47,48.  Additionally, the reaction and readout can take 

place in a single volume as a homogeneous “one-pot” assay, making it suitable for a POC setting.  

We focus on LAMP here, although several other amplification techniques could benefit from the 
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methods introduced.  Following amplification, the presence of nucleic acids is predominantly 

measured optically. 

Two general methods for generating an optical signal after amplification are (i) by directly 

measuring the amplified nucleic acid product and (ii) by indirectly measuring the depletion or 

generation of other reaction components. Current direct nucleic acid detection dyes include 

intercalating dyes and custom sequence-specific probes. Custom probes can be multiplexed in a 

single reaction, but they lack the universality of intercalating dyes, requiring careful design for 

each new assay, and can be costly. Intercalating dyes can provide a large signal when added to a 

nucleic acid solution following an amplification reaction; however, for a POC assay, the simplicity 

of a “one-pot” homogeneous assay is preferred, where the dye is present at the beginning of the 

reaction. Intercalating dyes such as SYBR Green, Ethidium Bromide, Acridine Orange, and even 

EvaGreen are all known to interfere with the nucleic acid amplification process, and lead to 

diminished amplified product when added prior to the start of the reaction49–52, and delayed times 

for reaction completion. Alternatively, one can measure decreasing amounts of reactants or 

alternative products as amplification proceeds, such as in the case of using HNB as an indicator. 

HNB has been reported as a colorimetric metal ion indicator that changes color from sky blue to 

violet in the presence of Mg2+. The generation of pyrophosphate during nucleic acid 

polymerization sequesters magnesium in solution, such that HNB-based sensing of Mg2+ has been 

shown to provide an accurate measurement of the extent of nucleic acid amplification53,54. 

However, subtle color changes are difficult to quantify at the same level of sensitivity as 

fluorescent markers/probes. Alternatively, electronic readout of pH changes has also been 

proposed as a marker of amplification55,56, in which an unbuffered assay system is used. Buffering 

of the reaction solution in LAMP allows compatibility with a variety of sample matrices suitable 

for the POC. However, in a buffer-free reaction the no-template control run in parallel will often 
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not represent the same reaction conditions as the sample with matrix, potentially leading to 

calibration errors. Additionally, a non-standard cartridge is required to both run and read the assay 

when utilizing a pH semiconductor system to amplify and detect DNA. 

Another key element for a distributed POC diagnostics platform is that the readout method 

needs to be cost-effective, compatible with standard laboratory assay plasticware, such as well 

plates, and easy to operate. Mass produced consumer electronics, such as smartphones, now have 

sophisticated optical components and computational processing power making them ideal 

candidates for designing advanced, extremely cost-effective, field-portable biomedical 

measurement tools57,58 and have already been utilized by us and others to readout signals from 

immunoassays59,60 and nucleic acid amplification reactions61. There is even strong commercial 

interest (e.g. Biomeme) in developing POC-based readout of nucleic acid amplification with 

standard thermocycling techniques38. However, there have not been any publications describing 

the approach to couple the low fluorescence intensity of samples with a mobile phone or studies 

using this system to measure nucleic acids. 

Here, we present two innovations towards enabling highly sensitive and stable 

fluorescence-based quantification of isothermal nucleic acid assays in a well-plate format using a 

cost-effective and field-portable handheld reader that is integrated onto a smartphone. We 

discovered a new method to significantly enhance fluorescent nucleic acid intercalating dye 

performance by including HNB into the reaction mix, yielding greater than 20 times higher 

fluorescent signal change over background compared to current intercalating dyes without 

interfering with the nucleic acid amplification process. When compared to HNB alone as a 

colorimetric indicator of reaction progress, the improvement in signal over background was over 

250 times. This novel chemistry significantly reduces the technical challenge to readout 

fluorescence signals resulting from the assay and provides a bridge to enable readout and 
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quantification with a novel mobile phone based fluorescent 96-well plate reader without special 

temperature or environmental control, providing an excellent match to the needs of POC settings.  

Using LAMP, this unique chemistry and detection platform provided significantly improved 

results compared to a commercial benchtop fluorescence plate reader with standard intercalating 

dyes. Both the novel dye system and portable reader provide significant advances for distributed 

nucleic acid based diagnostics in POC or field-settings using LAMP or a range of other nucleic 

acid amplification approaches. 

 

2.2 Results and Discussions 

2.2.1 Enhancing Intercalating Dye Performance with Hydroxynapthol Blue 

Although HNB is often used as a colorimetric indicator of nucleic acid amplification alone, 

we found that it interacts with intercalating dyes to lower the fluorescence background signal and 

significantly enhance the signal fold change during amplification.  Real-time LAMP was run with 

HNB dye alone, in combination with EvaGreen, and EvaGreen without HNB.  The chemical 

structures of EvaGreen and HNB can be found in figure 2.1a and figure 2.1b, respectively. Both 

reactions were conducted using the same conditions and measured for 2.5 hours. In figure 2.1c, 

the maximum fold change from the initial fluorescence at time zero was approximately 3-fold in 

the 1.25 μM EvaGreen concentration.  However, when HNB was added, the maximum fold change 

increased to 20-fold (figure 2.1d). Even higher EvaGreen concentrations, that normally 

completely inhibit the nucleic acid amplification, were also investigated and found to generate fold 

changes as high as 69 (figure 1f, appendix A. figure 2). Reactions containing only HNB for 

colorimetric detection are shown in appendix A. figure 3 where absorbance was measured. For 

HNB alone, the signal is delayed in time and only increased about 20% above the baseline value 

following amplification. For further experiments reported in this manuscript we chose to use 1.25 
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µM EvaGreen combined with 120 µM HNB which gave a sufficiently increased signal fold change 

(20-fold) while minimizing reagent costs. As with all nucleic amplification techniques, LAMP is 

not immune to non-specific amplification, as seen in the zero DNA cases after 100 min in figure 

2.1c and 2.1d. 

These results reveal that the addition of HNB was found to interact favorably to limit the 

inhibitory effects of the addition of an intercalating dye on the DNA amplification process and 

reduced the time to amplification. For all reactions with HNB added to the solution, the time to 

double the initial fluorescence intensity is significantly less than for the reactions without HNB 

(figure 2.1e), suggesting that the inhibitory effects of intercalators, like EvaGreen on polymerase 

activity49–51 is mitigated by the presence of HNB. With increasing amounts of EvaGreen without 

the presence of HNB, the time to double the fluorescence increases dramatically, and above 2.5 

µM EvaGreen, the reaction is so slow that doubling in intensity is not achieved within the 3.5 hr 

cutoff of our experiment. However, when HNB is added to the reaction mix, the time to double 

fluorescence intensity remains steady at less than 40 minutes up to the highest concentration of 

EvaGreen tested (6.25 µM).   

In addition to increasing the signal and reducing the amplification time of our assay, the 

presence of HNB in the reaction solution was also found to allow for an increased temperature 

stability of the fluorescence intensity of the intercalating dye. Decay in the fluorescence intensity 

of EvaGreen over time is apparent in the reaction without HNB (figure 2.1c). The fluorescence 

decays over time from a maximum at time zero, when the reaction is held at 65 °C, even for the 

negative control without polymerase.  For the negative control, the fluorescence decays 

approximately 75% from its maximum value at time zero in the case without HNB, and between 

4-12% when HNB is present in solution (figure 2.1d). This suggests that the interactions between 

HNB and EvaGreen act to diminish photobleaching and/or temperature effects on dye 
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conformation or degradation over an extended time. These results suggest a strong interaction 

between HNB and the intercalating dye might be leading to the beneficial properties. Importantly, 

this reduced baseline drift eliminated the need for inclusion of separate normalization dyes or 

manual baseline correction that is often performed in commercial nucleic acid amplification 

readout62,63. 

We next identified that HNB interacts more generally with intercalating dyes to improve 

the dye performance. We observed that HNB also provided beneficial effects when combined with 

other intercalating dyes such as SYBR Green and Acridine Orange to enhance the readout of 

LAMP with these dyes present (appendix A. figure 4). The temperature stability for SYBR Green 

and Acridine Orange were both increased in the presence of HNB, however, the effects on 

temperature stability for Acridine Orange was more pronounced. In addition, the increase in fold 

change of fluorescence above the reaction start time was markedly increased for Acridine Orange 

(rising from 2-fold to 5-fold) compared to SYBR Green (2-fold to 3-fold). Since EvaGreen consists 

of a dimer of Acridine Orange, these results suggest that although HNB interacts with other 

intercalating dye structures, the interactions with Acridine Orange are particularly favorable. 
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Figure 2.1 Chemical structures of a. EvaGreen and b. Hydroxynaphthol Blue (HNB); Real-time 

fluorescence measurements of λ DNA amplification with loop-mediated DNA amplification (LAMP) with 

c. 1.25 µM EvaGreen d. 1.25 µM EvaGreen and 120 μM HNB. Each replicate of the 0 DNA condition is 

shown separately as this condition is prone to contamination. e. The time to reach 2-fold of the initial 

fluorescence for each EvaGreen concentration tested both with and without HNB. f. The overall fold 

change (150 min/0 min) for each EvaGreen concentration tested with 120 µM HNB. All error bars 

indicate s.d. 

 

Temperature stability is essential in assays developed for POC or field use, and HNB was 

observed to interact directly with EvaGreen to stabilize the fluorescence intensity with changes in 

temperature even without the presence of DNA in solution. In order to examine the interactions 

between EvaGreen and HNB directly, the fluorescence intensity of a solution of EvaGreen without 

DNA in DI water was measured over temperature cycles and compared with the same solution 

with added HNB. Figure 2.2a shows that with increasing temperature, the fluorescence decreases 

in the solution without HNB, whereas, the fluorescence of the solution with HNB increases with 

temperature. The solution without HNB displays hysteresis, with the fluorescence dependent on 

the direction of the temperature cycle. Additionally, the range of fluorescent intensities is much 
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larger in solution without HNB (6000-11000 AU) versus (1800-2800 AU) in the solution with 

HNB. Overall, the temperature-induced changes in fluorescence are much greater when HNB is 

not present in solution with EvaGreen. This large instability with temperature using EvaGreen 

alone makes it more difficult to interpret changes in fluorescence as a result of DNA amplification 

from changes due to temperature fluctuation. The ability for the fluorescence to remain stable 

across a range of temperatures is especially important in point-of-care or low-resource settings. 

Since the overall fluorescence of EvaGreen decreases with the presence of HNB, this could further 

indicate that the blue dye attenuates excitation/emission light and/or interacts with EvaGreen in 

solution to reduce effective quantum yield of the dye. The fact that intensity of EvaGreen increases 

with ramping temperature, while decreasing in a non-recoverable fashion without HNB, suggests 

that the latter is at least partly true. Increased entropic contributions at higher temperature would 

favor dissociation of a EvaGreen:HNB complex and increased quantum yield. Therefore, HNB 

and EvaGreen most likely directly interact in solution, and HNB modulates the fluorescence 

intensity and stability of EvaGreen.  

The temperature stability of the HNB-modified assay has several advantages for endpoint 

readouts that make it compatible with POC or low-resource systems. In figure 2b and c we 

evaluated the effect of the addition of HNB on fluorescence signal changes following nucleic acid 

amplification. We measured at time 0 before amplification and heating, and at warm (55 – 65 °C) 

and room temperature (20-25 °C) conditions following amplification. Without HNB, for all 

concentrations of λ DNA, the endpoint (40 min) fluorescence intensity is less than the initial 

fluorescence intensity at room temperature, which would require a separate control well to 

normalize for intensity fluctuations of the dye alone. Still using a 0 DNA control as the negative 

condition leads to a poor limit of detection when reading warm plates, and an even further reduced 

LoD when reading the plate following cooling to room temperature. In the case where HNB is 
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added to the reaction mix (figure 2.2c), not only is the endpoint fluorescence significantly higher 

than the initial fluorescence for λ DNA concentrations higher than 5.7E3 copies/µL, but even after 

cooling to room temperature, this difference between λ DNA concentrations can still be discerned. 

 

Figure 2.2. a. Fluorescence measurements taken over temperature cycles ranging from 29-65 °C for 

EvaGreen and EvaGreen with HNB in DI water; Initial and endpoint fluorescence measurements taken 

with a benchtop plate reader of λ DNA amplification with loop-mediated DNA amplification (LAMP) with 

b. 0.125 µM EvaGreen and c. 0.125 µM EvaGreen with 120 µM HNB. The warm condition is when the 

plate is measured immediately following the reaction (approximately 55-65 °C). The room temp condition 

is taken after the plate has reached room temperature (approximately 20-25 °C). Threshold values shown 

as horizontal lines are defined as the fluorescence of 0 DNA plus 3 standard deviations. All error bars 

indicate s.d. 

 

Having identified HNB as a simple additive to a nucleic acid amplification assays that 

would allow for a one-pot reaction with significantly increased fold signal above background and 

increased temperature stability useful for POC diagnostics, we next focused on developing and 

integrating this assay with a cost-effective mobile phone based fluorescence well-plate reader, to 

achieve a more complete solution for nucleic acid amplification based POC tests. When 

developing assays for POC settings, mobility and ease of use are key. The addition of HNB in the 
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assay allows for a one-pot system, removing the need for several steps and improving ease of use. 

HNB addition improves the signal above background as well as shortening the time to reach a 

detectable signal. Lastly, HNB provides stability in the fluorescence signals over a large range of 

temperatures, which is crucial in environments where temperature cannot be as closely monitored. 

To further achieve a more complete POC solution, we created a mobile phone based plate reader 

which is not only more cost-effective than standard benchtop fluorescent plate readers (~$50,000), 

but is also field-portable while achieving comparable results against its benchtop counterpart, as 

will be detailed next. 

 

2.2.2 Mobile Phone Based Fluorescent Plate Reader Performance 

Our mobile phone based fluorescent plate reader device is assembled via exchangeable 3D-

printed parts (figure 2.3a). The compactness of this fluorescence reader platform that images a 

large sample field of view of ~18 cm2 is achieved by using an optical fiber bundle to map the 

fluorescence signal of 25 wells onto a small area (dia ~10 mm) in front of the cellphone camera 

(figure 2.3b). This fiber bundle, together with the fluorescence imaging system formed by the 

cellphone lens and an external lens, create a total demagnification factor of >13 within a very 

compact design, where the overall height of the device is <10 cm (figure 2.3c and d).  In a 

single image, without any mechanical scanning this handheld device can read an array of 5x5 = 

25 wells of a conventional 96-well plate all in parallel (figure 3e, right); quite conveniently the 

plate can be inserted into the device in either direction, which means 50 wells of the same plate 

can be measured in two successive measurements. At the bottom of each well, three optical 

fibers (0.4 mm dia. each) are mounted, and at the other end of the fiber bundle, the optical fibers 

are randomly grouped. A look-up map of fiber location versus the well position was established 

before the actual experiments, which only needs to be performed once per device design. Figure 
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2.3e shows a representative fiber pattern captured on the mobile phone reader, where only 7 of 

the 25 wells were randomly loaded with fluorescein solution. This unique design has significant 

advantages: (1) the fiber bundle helps us achieve a cost-effective, compact and light-weight 

fluorescence imaging design with a large demagnification factor so that a wide sample area of 

~18 cm2 can be imaged without the need for any mechanical scanning or bulky optics; and (2) 

each one of the three fibers per well experience different amounts of spatial aberrations, noise as 

well as losses and their averaging minimize well-to-well variations of our design. Although we 

focused on blue excited, green emission fluorescent dyes that cover a wide range of intercalators 

and DNA probes in this work, the multimode optical fibers are compatible with a wide range of 

wavelengths, and by appropriately selecting the excitation/emission filters and LEDs, the same 

platform can easily be adapted for digital readout and quantification of various fluorescent and 

colorimetric assays. 

 

Figure 2.3. Design of the mobile phone fluorescence plate reader device. a. Anatomy of the mobile reader 

device. b. Schematic side view showing inner structure. c.,d. Real photographs of the device. e. 
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Representative mobile phone fluorescence image of the random optical fiber pattern, and corresponding 

well positions on the right. 

 

The performance of each well of our mobile reader device was calibrated against the 

readings of a conventional benchtop plate reader (appendix A. figure 5a), which reads each well 

in a serial manner, i.e., using a mechanical scanning system. As detailed in the Methods section, 

following image format conversion, segmentation, and intensity averaging from 3 fibers, a 

normalization factor was obtained by dividing the mean mobile phone intensity reading by the 

corresponding benchtop fluorescence reading (appendix A. figure 5a). For example, the red 

circles in appendix A. figure 5b represent a set of normalization factors for the first well position 

only, which is superimposed on its fitting curve (black), together with the rest of the calibration 

curves for the remaining 24 wells in the background. Appendix A. figure 5c shows the comparison 

between the conventional benchtop plate reader measurements (Biotek) and our mobile phone 

fluorescent plate reader. After proper calibration and normalization, a series of diluted fluorescein 

solutions were blindly tested for each well position of the mobile reader device. Based on linear 

regression between the mobile phone intensity readings and the dye concentration in the range of 

0-10 nM, the LoD was determined by a threshold of three times the standard deviation of the blank 

control samples added to their mean (appendix A. figure 6a and b). Our results illustrate that all 

25 well positions showed a LOD of <1 nM fluorescein with a mean LoD of 0.18 nM (appendix 

A. figure 7). 
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Figure 2.4. Normalized fluorescence to 0 DNA for 30, 40, 50, and 60 minute assays when imaged with a. 

a benchtop plate reader and b. mobile phone reader. Colored threshold values for each endpoint are shown 

as horizontal lines and are defined as the mean 0 DNA fluorescence value plus 3 standard deviations; c. 

Biotek Cytation 5 benchtop plate reader used as the gold standard d. novel 25-well mobile phone reader, 

suitable for point-of-care (POC) settings. All error bars indicate s.d. 

 

After establishing the LoD of our mobile fluorescent plate reader, next we applied it to 

analyze signals from enhanced LAMP reactions that included HNB. Comparing the fluorescent 

fold changes for both the benchtop plate reader and our cell phone based design (figure 2.4), we 

can clearly see that the trends match and the concentrations of λ DNA that can be distinguished 

above background are the same for both the benchtop plate reader and the POC mobile phone-

based reader. For both systems the fluorescence fold change measured above background is 

significantly elevated with the HNB additive compared to a LAMP reaction alone, which results 
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in a lower limit of detection. The amount of DNA amplification that occurs during the assay is 

dependent on the length of time the assay runs. As such, the longer the assay is run, the lower 

initial λ DNA concentration is needed in order to generate a signal above baseline. This leads to a 

lower LoD with an increased assay runtime, as shown in figure 2.5. After 60 minutes, the mobile 

phone based assay can detect as few as 127 copies/μL λ DNA which approaches the limit of 

detection of approximately 11 copies/μL DNA reported64, which was performed in a laboratory 

setting. Therefore, our system can detect a similar amount of DNA using techniques suitable for 

POC or low-resource settings. In fact, the ability to amplify DNA from ~100 copies/μL level is 

sufficient to detect a wide range of disease states, microbial populations, or rare gene mutations. 

For example, meningococcal bacterial DNA load in patients ranges from 22 – 1.6E5 copies/μL, 

with the median being 1.6E3 copies/μL65. 
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Figure 2.5. The limit of detection (LoD) of λ DNA when using the LAMP assay and measuring 

fluorescence with the mobile phone reader following amplification for increasing amounts of time 

up to 60 minutes. Characteristic fiber images of each of the λ DNA concentrations are shown 

below each of the corresponding endpoints with the LoD highlighted with a black outline. 

 

2.3 Conclusions 

We have presented two key techniques that can be used to significantly improve upon 

current POC nucleic acid based assays. We demonstrated that HNB interacts favorably with 

intercalating dyes, increasing temperature stability and decreasing temperature-dependent decays 

in fluorescence, while simultaneously decreasing interference with the amplification process and 
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allowing for the change in fluorescence intensity to be visualized earlier and with greater fold 

changes. These unique interactions allow for this dye combination to be added prior to the start of 

a reaction, providing a system where the reaction can be measured in real time, but also simplifying 

the assay steps and decreasing the risk of contamination across samples. Not only is the signal 

generated greater with the addition of HNB, but the signal is more stable with temperature changes, 

enabling measurements at POC or low-resource settings after the reaction has completed and 

cooled to room temperature. Replacing an intercalating dye or probe for this dye combination is a 

simple step to integrate with any number of nucleic acid amplification processes, including qPCR, 

rtPCR, and several other isothermal amplification techniques such as nucleic acid sequence-based 

amplification (NASBA) or the proximity ligation assay66,67. The universality of this dye 

combination allows for its use in any nucleic acid assay without the need to design custom and 

costly nucleic acid probes. Another benefit of this system is that the high signal generated can be 

easily integrated into digital DNA amplification protocols, which typically have a low signal to 

background ratio between 2 and 6.524, even after the use of a reference dye. 

In addition to significantly improving the signal strength and stability for general nucleic 

acid amplification tests, we also developed a field-portable, cost-effective and lightweight 

instrument that can easily sense this enhanced signal in a POC-friendly manner. Our mobile phone 

based fluorescent well plate reader can not only be operated in a POC setting but also can be easily 

integrated with existing standard well plate formats and materials for nucleic acid assays. Notably, 

the combination of the mobile phone based reader and dye mix requires no baseline corrections or 

reference dyes such as ROX to normalize results like in many other nucleic acid amplification 

systems, leading to a simpler and lower cost solution that does not require multiple wavelength 

readout. We have presented improvements on two aspects that can be used to improve current POC 

assays, but further challenges should be addressed for a completely integrated solution. Sample 
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preparation steps and their integration with our assay will need to be addressed. We were able to 

demonstrate how the assay would work with a purified sample of λ DNA, but further validation 

with more complex sample matrices, such as blood plasma, sputum, and other bodily fluids is 

needed. Currently, the well plates need to be heated in an oven that is held at 65 °C, but POC 

isothermal heating can be achieved using a number of approaches, including e.g., exothermic 

chemical reactions and phase changing materials40,44. Additionally, reagent storage is currently at 

-20°C and 4°C, but in order for the system to be compatible with POC settings, long-term reagent 

storage conditions will need to be addressed.  Further testing needs to be done to see if the reagents 

can be lyophilized and stored at room temperature42,68–70. As with most nucleic acid amplification 

techniques, contamination is always a concern71. However, in POC settings the risk of 

contamination is lessened because the target DNA will not be present in as high quantities as a 

testing facility that continually produces amplified target DNA product.  

The enhancements achieved from the techniques demonstrated here should also be 

compatible with digital nucleic acid amplification tests that make use of arrays of sub-nanoliter 

volumes in order to provide single-molecule counting. Signal to noise in digital LAMP systems is 

typically very low, between 2 to 6.524, and this range is only achieved after the use of a reference 

dye to remove background. The addition of the combination of EvaGreen and HNB to digital 

LAMP systems may be able to improve accuracy of detection with lower cost optical systems by 

decreasing the overall background signal and mitigating the inhibitory effects of the presence of 

an intercalating dye on reaction progress. In summary, we have shown that the mobile phone based 

reader provides comparable fluorescence quantification results to a standard benchtop plate reader, 

and when combined with the intercalator sequestering approach this unique POC platform 

achieves significantly enhanced performance compared to a benchtop reader with standard LAMP 

conditions.  
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2.3 Materials and Methods 

2.3.1 LAMP Assay 

All components of the assay reaction mixture were purchased from Sigma, and all primers 

were purchased from Invitrogen unless otherwise stated.  LAMP reaction buffer consists of 20 

mM Tris-HCL (pH 8.8), 10 mM KCL, 10 mM ammonium sulfate, 8 mM magnesium sulfate, 1 M 

Betaine, 0.1% Triton-X 100, and 1.6 mM dNTPS (Invitrogen) in ultrapure DNAse/RNAse free 

water (Invitrogen).  The LAMP reaction was carried out in 100 µl volumes on a 96-well plate in 

triplicates for time-course readings, and in 5 wells for end point readings. 10 µl of serially diluted 

λ DNA (Thermo Fisher), 0.64 µM FIP and BIP, 0.08 µM F3 and B3, 0.16 µM Loop F and Loop 

B, 32 units Bst DNA polymerase large fragment (New England Biolabs), 120 µM HNB, and 

varying amounts of EvaGreen (Biotium) were added in the LAMP reaction buffer. In the case 

where other fluorescent intercalating dyes were used, SYBR Green (Invitrogen) and Acridine 

Orange, the concentrations used are stated.  Two negative controls, 0 DNA and 0 DNA w/o 

polymerase were used. Two negative controls were used because of the high risk for contamination 

from neighboring wells with high levels of amplification. Real-time fluorescence measurements 

were taken in duplicate for triplicate wells using a Biotek Cytation 5 plate reader set at 65 °C for 

2-2.5 hours. For the experiment comparing warm and room temperature plate readings, single 

point measurements in triplicate wells were taken using the mobile phone reader and the Biotek 

Cytation 5 plate reader, and the plates were heated at 65 °C using an oven for 40 minutes. For limit 

of detection experiments, three replicate intensity measurements from 5 wells with each 

concentration were taken at the experiment endpoints. The average fluorescence intensity 

corresponding to each concentration and endpoint is calculated by averaging 15 measurements (3 

replicate measurements of 5 wells). The lowest concentrations of 5.7E-1 and 5.7E0 copies/μL were 
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only examined for the 60-minute endpoint. The threshold for a positive reading above background 

is defined as the fluorescence intensity of the 0 DNA plus three standard deviations at that 

endpoint. The LoD for each experiment was calculated by interpolating a threshold DNA 

concentration from the two sequential measured concentrations that were above and below the 

threshold. The LoD is determined to be the concentration at the intersection between the 

fluorescence threshold and a line connecting the points one standard deviation below tested 

concentrations above and below the threshold.  If for the concentrations tested, no average minus 

one standard deviation fluorescence intensities fell below threshold, the lowest concentration 

tested was used as the LoD for that experiment. The LoD shown in figure 5 was calculated by 

averaging the LoD for replicate experiments.  To validate the mobile phone fluorescence plate 

reader, all the measurements taken with the mobile phone were also repeated using a Biotek 

Cytation 5 plate reader, used as our gold standard. All measurements were taken at room 

temperature. We report the raw data from the plate reader for all data shown. This is notably 

different than standard qPCR instruments that include manual calibrations and corrections for 

baseline drift, which often require additional dyes and readout wavelengths (e.g. ROX-based 

calibration) that is difficult to implement in a POC device. 

LAMP Primers: 

FIP: CAGCCAGCCGCAGCACGTTCGCTCATAGGAGATATGGTAGAGCCGC 

BIP: GAGAGAATTTGTACCACCTCCCACCGGGCACATAGCAGTCCTAGGGACAGT 

F3: GGCTTGGCTCTGCTAACACGTT 

B3: GGACGTTTGTAATGTCCGCTCC 
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Loop F: CTGCATACGACGTGTCT 

Loop B: ACCATCTATGACTGTACGCC 

 

2.3.2 Temperature Studies with EvaGreen and HNB 

Solutions containing 1.25 μM EvaGreen in DI water and 1.25 μM EvaGreen with 120μM 

HNB in DI water were fluorescently measured over temperature cycles. The initial temperature 

cycle starts from 29 °C, and the fluorescence intensity was tracked over a range of temperatures 

up to 65 °C. Two fluorescent measurements of triplicate wells were taken using a Biotek Cytation 

5 plate reader. 

 

2.3.3 Cell-phone based portable fluorescent microplate reader 

We prepared a mobile phone based fluorescence plate reader by integrating a custom-

designed 3D printed opto-mechanical interface with the camera module of a smartphone (Nokia 

Lumia 1020). In our 3D printed optical interface, an array of 5x5 blue LEDs (470 nm, DigiKey) 

was mounted above the plate and used as the excitation light source for fluorescence. Excitation 

(465/30 nm, OD 6, 50x50 mm, Semrock) and emission (530/30nm, OD 6, 50x50 mm, Omega 

Optical) filters were placed above and below the disposable plate, respectively, and fluorescence 

signal was collected from the transparent floor of each well by three individual multimode optical 

fibers (dia. 400 μm core, FT400UMT, Thorlabs) that are all placed at a plane that is parallel to the 

well plate. A total of 75 fibers (3 fiber-optic cables per well, and 25 wells in total) were bent within 

the attachment, forming a circular common end with each fiber randomly bundled together. This 

fiber common end, composed of 75 individual fibers, was then imaged by the smartphone camera 

via a single lens (f = 15 mm, Edmund Optics) that forms an imaging system together with the 
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existing lens of the smartphone with a demagnification factor of ~2.2. Excluding the mobile phone, 

this entire fluorescent reader platform weighs < 600 g and its cost is estimated to be <100 USD 

not including the custom-fabricated large area optical filters, the cost of which can be reduced to 

<300 USD under large scale manufacturing. In a typical mobile phone based image acquisition 

experiment, an exposure time of 4 sec was used with an ISO of 100. The focus was set to infinity 

and images were saved in the raw DNG (digital negative) format. To minimize the 

autofluorescence background, black 96 well plates with clear bottoms (Corning) were used for all 

measurements.  

 

2.3.3 Characterization of the Limit of Detection (LOD) 

To characterize the fluorescence limit of detection of our mobile phone based reader, 

fluorescein solutions (0-50 nM) were loaded into the plate and imaged. The captured mobile 

images were first batch-converted to TIFF format single channel images (green channel for 

fluorescein) using ImageJ. A Matlab algorithm that can automatically locate individual optical 

fibers and measure their intensities was also developed. For each well, the intensities from three 

corresponding fibers were averaged and used as the intensity for that specific well. These average 

well intensities were then plotted against the concentration of fluorescein for each individual well, 

and linear fitting was performed within a concentration range of 0-10 nM. To better estimate the 

measurement errors, each plate for a given dye concentration was inserted, imaged, and removed 

for three independent cycles. The fluorescence LoD for each well was individually determined by 

the average signal of blank control (0 nM concentration) plus 3-timesits standard deviation. At the 

end of this process, the LoD was characterized for each well, and in total 25 LoDs were obtained. 
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2.3.4 Intensity Normalization of Wells 

A computational framework was also developed to minimize small intensity variations 

from well to well due to the spatial variations of light intensity of LEDs as well as bending induced 

light transmission differences among individual optical fibers. In order to develop a normalization 

map, fluorescent well plates with varying intensity levels were imaged by both our mobile phone 

based reader and a conventional benchtop plate reader, used as the gold standard in our 

measurements. Then, a normalization factor (F) was obtained for each well and at each assay 

concentration by using the following equation: 

F =
𝐼𝑐𝑒𝑙𝑙𝑝ℎ𝑜𝑛𝑒

𝐼𝑝𝑙𝑎𝑡𝑒 𝑟𝑒𝑎𝑑𝑒𝑟
 

where Icellphone represents the raw intensity of the mobile phone based readout, and Iplate reader 

represents the corresponding gold standard reading from a benchtop plate reader. Nonlinear curve 

fitting was then performed to the scattered plot of mobile phone raw intensity (Icellphone) versus 

normalization factor (F) to form a normalization function for each well. Finally, normalized mobile 

phone intensities were obtained by dividing the mobile phone raw intensities by the corresponding 

normalization factors determined by the fitting functions.  This normalization procedure was 

performed only once to determine the normalization function for each well and remained the same 

for the rest of the experiments. 
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Chapter 3: Digital Loop-mediated Isothermal DNA Amplification (LAMP) 

 The fluorescence emissions generated in a nucleic acid amplification are dependent on the 

fluorescence of the individual components of the assay as well as any complexes formed. In this 

work, we focused on determining the emission spectra of each component and complex formed, 

and determined when it is more favorable to form a complex between an intercalator and 

sequestration molecule versus an intercalator and a DNA molecule. By examining the absorbance 

and emission spectra of various intercalating dye and chemical additives, we were able to ascertain 

what effects they may have on the loop-mediated isothermal DNA amplification (LAMP) process 

that leads to signal improvement. Our studies showed that intercalating dyes such as EvaGreen, 

SYBR Green, and acridine orange have strong Förster resonance energy transfer (FRET) 

interactions, and this interaction leads to a decrease in the baseline fluorescence signal for solutions 

without DNA, measured at 535 nm. Additionally, when the absorbance and emission spectra for 

LAMP solutions with and without DNA are examined pre- and post-amplification, the binding 

kinetics, and the balance between the intercalating dyes, the chemical additive, DNA, and 

subsequent complexes are elucidated. We have found that EvaGreen and HNB interact in a manner 

that HNB sequesters the intercalating dye when there is only a small amount of DNA present, and 

after amplification, when there is a large accumulation of DNA, the EvaGreen binding shifts from 

the HNB to DNA and generates an increase in fluorescence signal. Understanding the mechanics 

of these dye interactions allow for further development, optimization, and discoveries for the 

addition of an intercalating dye and sequestration molecule to a nucleic acid amplification assay. 
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3.1 Introduction 

Intercalating dyes are known to interfere with the amplification process49–52, but as shown 

in chapter 2, we have identified a chemical additive to EvaGreen, hydroxynapthol blue (HNB), 

that has a mitigating effect on this interference, provide stability with temperature changes, and 

increased fluorescence fold changes. By examining the changes in absorbance and emission 

spectra, the mechanics of these interactions can be investigated. Not only was the spectra of the 

previously tested dye combination studied, but similar dye combinations were investigated as well 

to elucidate the differences in interactions and the roles that each has in altering the fluorescence 

over the course of the LAMP amplification reaction. By better understanding the mechanics of 

why this dye combination works, we can then apply this knowledge to other amplification 

techniques and work toward optimizing the fluorescence readout without interfering with the 

amplification process. The proposed mechanism for this interaction is shown in figure 3.1, prior 

to amplification, if an intercalator molecule is present is solution, the interaction with DNA will 

interfere with the amplification process. Whereas if a sequestration molecule is present, the 

molecule will sequester the intercalator, allowing amplification, and interacting via FRET to 

decrease the background signal. Once amplification occurs, the balanced for the binding kinetics 

shifts such that intercalator and DNA molecule complexes are more favorable, allowing for a 

fluorescence signal to be measured.  
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Figure 3.1. Proposed mechanism of interaction between intercalating dyes and sequestration molecules. 

 

3.2 Results and Discussion 

The emission spectra for various intercalating dyes were examined to compare the signal 

in the presence of DNA at 535 nm compared to the background without DNA (figure 3.2). While 

SYBR green shows the greatest fluorescence change, giving the highest signal to background, 

previous studies have shown that SYBR Green added prior to the amplification reaction greatly 

hinders the amplification process. The signal generated from the addition of DNA to acridine 

orange or EvaGreen is not drastically higher than the background, and in some cases, cannot be 

distinguished from the background. The absorbance and emission curves for 2.5 μM EvaGreen 

and 120 μM HNB in figure 3.3 show that there is a significant amount of overlap between the 

wavelengths absorbed by HNB and the wavelengths emitted by EvaGreen. The temperature studies 
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conducted in chapter 2 demonstrated that even in the absence of DNA, EvaGreen and HNB interact 

in solution. These absorption and emission spectra suggest that this may be a FRET interaction. 

Comparing the emission spectra for the solution containing EvaGreen versus EvaGreen and HNB 

shows that the emission peak at approximately 535 nm is greatly reduced when HNB is present, 

and when DNA is added to the solution containing the dye combination, the emission at 535 nm 

increases significantly. This is suggestive that there is a balance for binding affinities between 

DNA and EvaGreen, and HNB and EvaGreen. This further suggests that the addition of DNA to 

the solution with both dyes alters the binding kinetics such that EvaGreen and HNB FRET 

interactions are decreased. 

 

 

Figure 3.2. Chemical structures and emission spectra with and without the presence of DNA for 

intercalating dyes a. acridine orange. b. SYBR Green and c. EvaGreen 
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Figure 3.3. a. Absorbance and emission spectra for b. 2.5 μM EvaGreen, c. 120 μM HNB and d. both 2.5 

μM EvaGreen and 120 μM HNB with and without λ DNA 

 

Next, examining the absorption and emission spectra of the LAMP reaction can show the 

role of the reaction buffer and DNA amplification. The reaction buffer contains a high 

concentration of magnesium, which is known to change the absorption spectra of HNB53. 

However, the absorbance and emission spectra for EvaGreen, HNB, and their combination in 8 

mM magnesium, the concentration of the magnesium in the LAMP reaction solution, and the 

corresponding spectra in the LAMP reaction mixture have key differences. The absorbance spectra 

in the LAMP reaction is shifted towards higher wavelengths when compared to the magnesium 

buffered solution. Additionally, the emission spectra for the EvaGreen, HNB, and dye combination 

have differing profiles in the LAMP reaction mixture versus the magnesium buffered solution. For 

example, in the condition without DNA in 8mM magnesium, EvaGreen has two peaks near 535 
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and 640 nm, whereas for EvaGreen in the LAMP reaction, there is a single markedly higher peak 

near 535 nm. These differences suggest that the shift in absorbance spectra from the addition of 

magnesium is not the sole reason for the decrease in emission at 535 nm for the dye combination 

in the absence of DNA. Of particular note is the difference in fluorescence spectra of the dye 

combination before and after amplification using LAMP. The baseline fluorescence emission at 

535 nm is reduced by the addition of HNB to the solution with EvaGreen, and the emission after 

amplification occurs, 60 minutes later, can be easily distinguished from pre-amplification. 

 

Figure 3.4 Absorbance spectra for 1.25 μM EvaGreen and 120 μM HNB a. before (time 0) and b. after 60 

minutes of LAMP amplification; emission spectra for 1.25 μM EvaGreen and 120 μM HNB c. before (time 

0) and d. after 60 minutes of LAMP amplification 
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Figure 3.5 Absorbance and emission spectra for 1.25 μM EvaGreen and 120 μM HNB in 8 mM magnesium 

with and without λ DNA. 

 

The emission spectra for acridine orange is very similar in profile to EvaGreen, with a 

single peak near 535 nm. As EvaGreen is a dimer of acridine orange, it follows that the emission 

spectra would be related. Like EvaGreen, the emission at 535 nm is diminished by the addition of 

HNB to a solution containing acridine orange, and the significant increase in emission at 535 nm 

is able to be discerned when in the presence of DNA. 
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Figure 3.6 Emission spectra for a. 13.3 μM acridine orange b. 13.3 μM acridine orange with 12 μM and c. 

13.3 μM acridine orange with 120 μM HNB with and without λ DNA 

 

The emission spectra for SYBR Green is markedly different from both EvaGreen and 

acridine orange in the absence of DNA. There is a stark contrast in the emission of SYBR Green 

at 535 nm with and without DNA. This shows that SYBR Green is an excellent choice for 

intercalating dyes, as the emission is low in the absence of DNA and high in the presence of DNA. 

However, as shown previously in chapter two, the addition of SYBR Green prior to the start of the 

amplification process hinders the amount of DNA amplified such that the maximal fluorescence 

fold change from time 0 is still smaller than observed in solutions with both EvaGreen and HNB. 

Both these observations, decreased amplification in the presence of SYBR Green and the large 

difference in emission at 535 nm with and without DNA, suggest that the binding affinity of SYBR 

Green to DNA is much higher than that of EvaGreen or acridine orange. This is most likely why 

there does not appear to be a FRET interaction between SYBR Green and HNB in solution at these 

concentrations. 
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Figure 3.7 Absorbance and emission spectra for 1X SYBR Green with 12 μM and 120 μM HNB with and 

without λ DNA 

 

Lastly, high concentrations of caffeine added to EvaGreen demonstrated similar effects as 

the addition of HNB to EvaGreen. The addition of caffeine generated a more stable background 

fluorescence, visible in the 0 polymerase negative control with increased temperature for the length 

of the amplification reaction. Additionally, the fluorescence fold change increased from around 

2.5 to 14 with the addition of 50 mM caffeine. The absorbance spectra for caffeine shows that 

there is minimal absorbance across all wavelengths. This finding suggests that the improvements 

to the fold change and fluorescence stability with increased temperatures by the addition of 

caffeine to EvaGreen are not due to FRET interactions. Furthermore, the improvements in fold 

change between EvaGreen and HNB are a result of a combination of FRET effects and 

binding/sequestering interactions that mitigate interference of intercalating dyes on amplification. 
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Figure 3.8. Real-time fluorescence measurements of λ DNA amplification with loop-mediated DNA 

amplification (LAMP) with a. 1.25 µM EvaGreen b. 1.25 µM EvaGreen and 5 mM caffeine c. 1.25 µM 

EvaGreen and 50 mM caffeine. All error bars indicate s.d. 

 

Figure 3.9. Absorbance and emission spectra for EvaGreen and caffeine with and without λ DNA 

 

3.3 Conclusions 

We evaluated the absorbance and emission spectra of a number of various intercalating 

dyes and how they were affected by the addition of various chemicals such as caffeine and HNB, 

both in the presence and absence of DNA. By examining the differences in absorbance spectra for 

caffeine and HNB, we were able to establish that the interactions between EvaGreen and caffeine 

or HNB are in part a result of the ability of these chemicals to sequester EvaGreen to mitigate its 

interference in amplification. We have also shown that FRET interactions between EvaGreen and 
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acridine orange occur with HNB to improve the fluorescence fold change by reducing the baseline 

fluorescence in solutions without DNA. These studies suggest that the two major mechanisms by 

which the fluorescence fold increases with the introduction of HNB are by both sequestering the 

intercalating dye and the subsequent FRET interactions between the dye and the chemical additive 

when they are in close proximity in the absence of DNA. 

Further studies with other intercalating dyes such as the class of SYTO dyes should also 

be studied to examine the effects of the addition of HNB and caffeine. Additionally, titration 

studies with varying amounts of HNB in solutions of EvaGreen, acridine orange, and SYBR Green 

can give a deeper understanding of the binding affinities and kinetics between these dyes. Studies 

containing the LAMP reaction mix with and without DNA should also be examined to determine 

if the emission spectra are similar to the spectra for the LAMP reaction prior and post 

amplification. Lastly, studies with alternative amplification methods, such as qPCR, rt-PCR, or 

other isothermal approaches, should be conducted to determine with role of different buffers and 

reaction conditions. 

Spectral properties for these solutions provide insight into how the intercalating dyes are 

interacting with additives such as caffeine and HNB. The differences in the absorbance and 

emission of these dyes suggest that two mechanisms in which these interactions are able to improve 

the fluorescence fold change above background. By understanding these mechanisms, we can now 

move forward to both apply these concepts to new dye combinations and also improve upon the 

dye combinations already investigated. 

 

3.4 Materials and Methods 

All materials were obtained from Sigma and all reactions were conducted in ultrapure 

DNAse and RNAse free DI water (Invitrogen) unless otherwise stated. Emission and absorbance 
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spectra measurements were taken at room temperature on a Biotek Cytation 5 plate reader. The 

LAMP reaction was performed as described previously in chapter 2. For the LAMP assay 

measurements, readings were taking at time 0 and after 60 minutes incubation at 65 °C for reactions 

without DNA, without DNA and polymerase, and with 5.7E3 copies/μL λ DNA. Absorbance and 

emission readings were taken for samples with and without the presence of λ DNA for various 

concentrations of EvaGreen, HNB, EvaGreen with HNB, acridine orange, acridine orange with 

HNB, SYBR Green (Thermo), SYBR Green with HNB, caffeine, and EvaGreen with caffeine. 
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Chapter 4: Digital Loop-mediated Isothermal DNA Amplification (LAMP) 

Digital nucleic acid amplification assays are often plagued with very low signal to noise, 

and signal differentiation from background is often only achieved by the introduction of another 

dye, such as ROX, in order to determine a baseline intensity and account for any shifts in 

fluorescence. Digital nucleic acid amplification assays are ideal because of their unique ability to 

probe very small quantities of target nucleic acid in a robust and repeatable manner. Utilizing the 

dye combination described previously in chapter 2, digital loop-mediated isothermal DNA 

amplification is performed on microfluidic devices to develop a more efficient assay with a larger 

signal to noise than currently reported dyes. We also were able to achieve repeatable results on 

independent runs on separate days, demonstrating how robust the assay is. By developing the 

digital counterpart to the LAMP assay, we were able to further decrease the limit of detection of 

the assay when testing for λ DNA as the proof-of-concept target molecule. 

 

4.1 Introduction 

Nucleic acid amplification is an extremely useful tool for anything ranging from 

diagnostics and sequencing to genetic fingerprinting and analysis. Digital nucleic acid 

amplification assays are able to quantitate a small amount of target nucleic acid accurately and 

repeatedly without the need to generate a standard curve each time. Because digital assays operate 

under the principle that every compartment can be treated as a binary response to the question of 

whether or not the volume contains the target nucleic acid, counting of “on” versus “off” wells 

correlates to the amount of target nucleic acid present in the original volume. Commercialized 

platforms such as Fluidigm’s Biomark, Raindance, or Biorad’s Q200x have been used to reliably 

detect and quantify small amount of nucleic acid, but these systems are large and bulky, limiting 
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their usage to laboratory based settings. Additionally, they require separate components and/or 

equipment for each step of the digital PCR process: sample fractionation, thermocycling, and 

imaging. Several other digital platforms have been successfully developed8,24 to detect and 

quantify nucleic acid. Isothermal amplification techniques are well suited for digital assays 

because a single temperature requirement decreases the assay complexity, simplifying the process. 

Even still, with isothermal amplification techniques, assay efficiency is still limited. While there 

are some inefficiencies inherent in the use of polymerase or perhaps due to non-specific binding 

interactions, some inefficiencies are present as a result of decreased amplification when 

intercalating dyes are present in the reaction solution. Alternatively, the fluorescent signal 

generated may not be large enough to be distinguished from the background. Typically, digital 

nucleic acid amplification assays have a very low signal to noise, often ranging from 2 to 6.524, 

even after the baseline drift is established and removed. 

 

4.2 Results and Discussion 

As has been demonstrated previously, the addition of hydroxynapthol blue (HNB) to a 

LAMP reaction containing the intercalating dye, EvaGreen, acts to reduce the initial background 

fluorescence as well as mitigate the interference that intercalating dyes have on nucleic acid 

amplification as seen in figure 4.1, the addition of HNB to the reaction also improves the digital 

format of this assay. For the same concentration of initial λ DNA, devices containing HNB in the 

reaction have more “on” wells (above the set threshold), and display a larger difference in signal 

between “on” and “off” wells. According to poisson statistics, at this DNA concentration and well 

size, approximately 93% of wells should contain a minimum of one copy of λ DNA. The actual 

percentage of “on” wells after one hour is less than the theoretical value, suggesting that there are 

assay inefficiencies, possibly stemming from pipetting errors, DNA degradation, surface fouling 
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effects, among others. Inefficiencies in digital LAMP are not new72 and further optimizations in 

the primer design, including the number of primers, choice of polymerase, assay operating 

conditions, dNTP concentration, etc. can be done to improve assay efficiency. However, a number 

of digital assays are unable to generate a high enough signal to distinguish above the background, 

and this is where the novelty of the unique dye combination of EvaGreen and HNB is evident. 

 

Figure 4.1 Averaged fluorescence intensities of wells within a compression device for a negative and 

positive sample with λ DNA for digital LAMP with a. 2.5 μM EvaGreen and b. 2.5 μM EvaGreen and 120 

μM HNB. Threshold is defined as average fluorescence intensity of 0 DNA plus ten standard deviations 

 

With the fluorescent signal improvements made using this unique dye combination, limit 

of detection (LoD) studies were then examined. As seen in figure 4.2a, the LoD was found to be 

5.7 copies/μL. Characteristic well images are shown in figure 4.2b, and even at the concentration 

where “on” wells may not be visible to the naked eye, the intensities found from the processed 

images showed that wells significantly higher than background could be found in concentrations 

as low as 5.7 copies/μL. 
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Figure 4.2 a. Averaged fluorescence intensities of wells within a compression device for a negative sample 

and serial dilutions λ DNA for digital LAMP with 2.5 μM EvaGreen and 120 μM HNB. Threshold is defined 

as average fluorescence intensity of 0 DNA plus ten standard deviations b. Characteristic fluorescent well 

images of a section of the microfluidic compression device 

 

Lastly, assay repeatability studies were done on different days, operating under the same 

conditions. As shown in figure 4.3, the digital assay provides repeatable results across each device, 

spanning several days. 



 53 

 

Figure 4.3 Averaged fluorescence intensities of wells within a compression device for a negative sample 

and 5.7E3 copies/μL λ DNA for digital LAMP with 2.5 μM EvaGreen and 120 μM HNB. 

 

4.3 Conclusions 

We were able to effectively demonstrate a digital assay in a two-layer PDMS compression 

device using LAMP for isothermal DNA amplification with a lower limit of detection than the 

analog version of the assay. The compression device made using standard photolithography 

techniques can be used to fractionate a sample into monodisperse compartments without the need 

for a syringe pump or an external power source. While we utilized the digitization platform to 

evaluate a LAMP assay, this platform can be used to easily generate monodisperse volumes, 

making this technology broadly applicable to more than just nucleic acid amplification techniques. 

 

4.4 Materials and Methods 

4.4.1 Compression Device Fabrication 

Silicon wafer molds were fabricated using standard photolithography methods for a two-

layer device (figure 3.3a and b). The bottom layer with a height of 5 μm was made using KMPR 

1005 (MicroChem), and the top layer containing the wells with height of 60 μm was made using 

KMPR 1050 (MicroChem). Operating at a 10:1 ratio of base to crosslinker polydimethylsiloxane 

(PDMS), devices were fabricated on the silicon wafer mold, and then cut, punched, and bonded 
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with air plasma onto glass slides. Prior to use, the devices were placed under vacuum for one hour 

to facilitate device filling. The two layers allowed for the final devices to be easily filled, and due 

to the viscoelastic nature of PDMS, the 5 μm high first layer collapses under pressure to effectively 

seal off individual wells from each other. 

 

4.4.2 Digital LAMP 

The LAMP reaction was performed using the same composition as described earlier in 

chapter 2, with a few key changes. The polymerase concentration was doubled, and the EvaGreen 

concentration used was 2.5 μM. In the experiment comparing dyes, HNB was omitted from the 

reaction mixture with EvaGreen alone. LoD studies were performed by adding serially diluted λ 

DNA. The complete reaction solution was then added to the devices described previously and then 

the device is placed in a compression holder and the compression piece is lowered to mechanically 

compress and confine the reaction solution to individual wells. Each reaction is replicated in three 

devices, and once all devices in a single run have been filled and compressed, the devices and their 

holders are placed in a 67°C oven on top of a large aluminum sheet (McMaster-Carr) in order to 

maintain temperature stability for one hour. Afterwards, the devices are removed from the oven, 

and allowed to cool to room temperature before imaging. All of the devices were imaged on a 

Nikon Ti fluorescence microscope using large scan stitched imaging with an ASI automated stage 

attachment. Micrographs are then automatically analyzed in Python, as detailed below. 

 

4.4.3 Image Processing and Normalization 

Images are processed in Python so that the average normalized intensity of each individual 

well is calculated, and then each well is plotted as an individual data point. An intensity threshold 

is applied to the contrast adjusted image to determine the well locations, which are then used to 
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map the locations of the well centers onto the original image. The number of detected wells is 

validated against the predicted number of wells, calculated from the image dimensions, to ensure 

accuracy. If not, the threshold for the image is adjusted accordingly. Once the well centers have 

been located, a 100x100 pixel square around the center of each well is taken, and the resulting 

10,000 pixels are used to determine the average well intensity. Next, normalization for each well 

is performed by calculating the average background intensity surrounding each well. The 

intensities outside the well are obtained from a 198x198 pixel square centered around the well, 

while the intensities inside the well are excluded through a 95-pixel radius circular mask. 

Averaging the resulting intensities gives the average background intensity for each well. 
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Chapter 5: Conclusions 

 Digital assays have shown great promise in the field of diagnostics, improving assay 

repeatability, lowering the assay limit of detection, and moving closer to absolute quantification 

by counting wells or droplets. While able to improve upon these aspects of nucleic acid 

amplification assays, digitization typically requires complex equipment and lengthy protocols, 

making the assays limited to laboratory based settings. In this work, various aspects of a digital 

point-of-care assay were developed, including: an improved signal generation technique, a device 

for digitization, and integration with mobile phone based readouts. While each of these tools and 

techniques developed can be used to improve various aspects of a single point-of-care assay, they 

are also broadly applicable to a number of other assays and techniques. For example, the unique 

dye combination could be useful for a number of nucleic acid amplification techniques, including 

qPCR, rt-PCR, and alternative isothermal amplification methods. The addition of the dye prior to 

the start of the assay allows for the simplification of the assay, enabling the use of this nucleic acid 

amplification technique with assays where multi-step additions or wash steps are not possible and 

may be limited by a low fluorescent signal to noise. 

 This nucleic acid amplification method can be used in a digital droplet format, employing 

various droplet generation techniques4,73. The use of droplets versus wells can be advantageous 

because of the lack of surface effects on the amplification reaction. The integration of the unique 

dye combination can be used to combat low signal generation issues that typically occur in digital 

systems. The improved signal can allow for low-cost, mobile detection systems to be used for 

optical detection of nucleic acid assays where a benchtop system may typically have been required. 

 This assay can also be integrated into immunoassays, where the signal generated from a 

sandwich assay is provided by the amplification of a piece of conjugated nucleotide. In preliminary 
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studies we have shown that LAMP products (dumbbells or longer strands) amplify more readily 

than linear DNA, making them ideal targets for the conjugated DNA strand. We have also 

proposed that by conjugating the other antibody of the sandwich pair with a polymerase, one can 

make a fully homogeneous digital immunoassay. In a digital assay construct, when both 

conjugated antibodies are present in low concentrations, the presence of the target analyte forms a 

sandwich complex that brings together both conjugated antibodies in a well or droplet. Once the 

sample is heated, isothermal amplification takes place for compartments containing both the DNA 

and polymerase, creating a positive signal for wells containing the target analyte. 

 Like other nucleic acid amplification techniques, this assay can be modified to test for 

specific target DNA or RNA. For example, one can perform single-cell genomic studies for cells 

encapsulated in droplets containing reaction mix. Additionally, further studies should be done to 

ensure the assay efficacy with various sample matrices. Preliminary studies showed that the LAMP 

assay worked with the addition of 10% cell lysate and blood plasma, but that the addition of this 

amount of whole blood may hinder the amplification process. 

 Lastly, further optimizations to improve nucleic acid amplification can be studied. Some 

changes to the protocol that can be made, but are not limited to, include, varying the amount of 

magnesium, dNTPs, polymerase, and primers in the reaction mix. It has also been shown that the 

optimal primers for analog nucleic acid amplification reactions may not be directly translatable as 

the optimal primers for a digital assay72. This may also be true for the concentrations of reactants 

as well, so further studies should be conducted to ensure the digital assay is operating at optimal 

conditions as well. 
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Appendix A  

Supporting information for Chapter 2 

 

Figure 1. Real-time fluorescence measurements of λ DNA amplification with loop-mediated DNA 

amplification (LAMP) with a. 0.625 µM EvaGreen b. 0.25 µM EvaGreen c. 0.125 µM EvaGreen, 

as well as d. 0.625 µM EvaGreen and 120 μM HNB e. 0.25 µM EvaGreen and 120 µM HNB, and 

f. 0.125 µM EvaGreen and 120 μM HNB. Each replicate of the 0 DNA condition is shown 

separately as this condition is prone to contamination. 
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Figure 2. Real-time fluorescence measurements of λ DNA amplification with loop-mediated DNA 

amplification (LAMP) using 120 µM HNB and a. 6.25 µM EvaGreen b. 5 µM EvaGreen c. 2.5 

µM EvaGreen and d. 1.25 µM EvaGreen 

 

 

Figure 3. Real-time absorbance measurements at 650 nm of λ DNA amplification with loop-

mediated DNA amplification (LAMP) using 120 µM HNB 
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Figure 4. Chemical structures of a. SYBR Green and b. Acridine Orange; Real-time 

fluorescence measurements of λ DNA amplification with loop-mediated DNA amplification 

(LAMP) with c. 1X SYBR Green. d. 1X SYBR Green and 120 μM HNB e. 13.3 µM Acridine 

Orange, and f. 13.3 µM Acridine Orange and 120 µM HNB. Each replicate of the 0 DNA condition 

is shown separately as this condition is prone to contamination. 
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Figure 5. Scheme of image processing and device calibration. (a) Flow chart of the mobile phone 

image processing steps. (b) Calibration functions for all 25 wells with Well #1 highlighted in bold 

black curve together with its original data points in red circles. (c) A comparison of fluorescence 

readings between the conventional benchtop plate reader and the mobile phone reader device for 

fluorescein solutions.  
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Figure 6. Limit of detection of the mobile phone fluorescence reader device. (a) Cellphone 

intensity versus fluorescein concentration titration curve from well #1 position. (b) Zoomed-in 

region from (a), showing a good linear regression and threshold (solid red line) based on 3 times 

of standard deviation of the blank to determine the LODs.  
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Table 1. A list of LODs of all 25 wells of the mobile reader device for detection of fluorescein. 

 

  

Table 1. Limit of Detection 
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