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Varied Line-Space Gratings and Applications* 

Wayne R. McKinney 

Accelerator and Fusion Research Division 
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This paper presents a straightforward analytical and numerical method for the design of a 
specific type ,of varied line-space grating system. The mathematical development will 
assume plane or nearly-plane spherical gratings which are illuminated by convergent 
light. which covers many interesting cases for synchrotron radiation. The gratings 
discussed will have straight grooves whose spacing varies across the principal plane of the 
grating. Focal relationships and formulae for the optimal grating-pole-to-exit-slit distance 
and grating radius previously presented by other authors will be derived with a symbolic 
algebra system. It is intended to provide the optical designer with the tools necessary to 
design such a system properly. Finally. some possible advantages and disadvantages for 
application to synchrotron radiation beamlines will be discussed. 

*This work was supported by the Director, Office of Energy Research, Office of Basic 
Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under 
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Introduction 

Varied line-space (VLS) gratings are of interest to builders of synchrotron 

radiation instrumentation because these gratings offer an extra degree of 

freedom to the monochromator designer. This paper will explain enough basic 

analytical results so that the designer can begin to consider VLS gratings for 

beam line systems. Although other authors have investigated VLS gratings,1234S 

the contribution of Hettrick and Underwood6,7 will be emphasized, and the main 

results in their patent are derived here. Their work, theoretical and 

experimental, demonstrates the advantages of using VLS gratings with 

convergent light. However, to our knowledge, their theoretical results have not 

been previously derived independently or confirmed in the literature. 
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I. Conyentions 

Figure 1 shows our coordinate system and the location of the straight and 

parallel grating grooves. If the blank is curved, the grooves are assumed to be 

formed by the intersection of the blank and a set of parallel planes. This is just 

like a Rowland grating, except the distances between the planes may vary. We 

use the grating equation based on signed angles measured from the normal, 

which requires the plus sign on the right hand side: 

m A. = sin(a) + sin(~) (1) 

In addition, we assume that all gratings will be used In the standard fixed 

deviation mounting' where the grating is rotated about its center (or pole). 

(Theta is defined as the incidence angle at zero order, and. 29 = a-~) 

II. Formal Analysis 

Hettrick and Underwood pointed out the significant advantage of separating the 

focusing and dispersing functions for VLS systems. Allowing the focusing 

element(s) to stay fixed and not rotate provides a system which is much easier 

to keep in focus as the grating rotates. Figure 2 shows the geometry of the 

incident wave as it converges onto the grating. We will assume that other optics 

have created converging wavefronts that have no aberration in the dispersion 

direction. This would not generally ~e true in a real application of VLS gratings, 

but is the natural starting point for the analysis. More detailed analyses that are 

in preparation show that the focal relationships and VLS spacings that we 

confirm here give excellent performance.8 Point A from Figure 1 is now behind 

the grating, and the virtual object distance OA is negative in the formalism. We 

write the typical generalized optical path function difference, where +NmA. is 

added to the geometric path difference to allow for the fact that the diffracted 

wave is made up of pieces from different incoming wavefronts: 

F = <APB> - <AOB> + NmA. (2) 
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N is the groove number, positive along the +y direction; and, per our convention 

above, m is positive for the inner order of the fixed deviation mountings that we 

discuss here. We expand the path function in the aperture variables y and z 

about the pole of the grating. We have no field variables since we have assumed 

a perfect convergIng wave: 

00 

F = 2', y- + z- F ~[ a] [d]]" 
"=0 n! ay 0,0 az 0,0 

(3) 

The partial derivatives are applied to the path difference function F in (2). 

Letting i and j denote the powers of y and z in the coefficients of the series, Fij 

can be split apart: 

F ij = Mij + mAN ij (4) 

The Mij are the familiar coefficients of Noda, Namioka, and Seya9 and many 

other authors. The VLS nature of the grating lies in the Nij: 

NIJ = y--~[ al+JN] ] 
n! .. aylazJ 0,0 

Intuitively, d(y), the local groove spacing, equals: 

d(y) = ay 
aN 

(5) 

(6) 

We explicitly are taking d not to b€? a function of z because of the straight and 

parallel groove planes. Nij becomes Ni. We now expand d in a manner that will 

give us VLS coefficients that have a one-to-one correspondence with the familiar 

aberrations: 

d(y) = dO(1 + vIY + v2y 2 + v3y3 ••••••• ) (7) 

Substituting (6) and (7) into (5) gives: 

(8) 
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U sing the computer algebraic capabilities of Mathematica T M [Version 1.2 on a 

Macintosh IIx with 5 MB RAM and a remote kernel operating on a SUN 4 

workstation,] the following results were obtained, where the Ni have been 

substituted into (4): 

F20 (defocus) = M2000 V1 rnA 
. . 2 do (9) 

F40 (spherical aberration) = M40"...L{ 6'4 • 12v1V2 + 6V3) ml.d 
24 0 (11) 

Since we will be using (9) extensively, we expand it completely, using the 

expanded sag of the grating surface: 
00 

x = L 81J yl zJ 
n=O (12) 

The aij are tabulated in Howells.1o a20 = 0 for a plane grating, and a20 = l/(2R) 

for a spherical grating, where R is the radius of curvature. 

F20 =1 r cos
2
(a.) + cos

2
(P) .. 2a2JCOS(a.) +cOS(p»)loo V1 rnA 21 rh rhp ~ 2 do (13) 

This is the paraxial tangential focal condition for a VLS grating. 

III. Focal Conditions 

We will derive three different focal conditions which give the ratio of the 

optimal real distance to the focal plane as a function of the assumed virtual focal 

distance behind the grating and the angles of incidence and diffraction at the 

chosen wavelengths of optimization. Each succeeding focal condition will be 

better than the previous in focusing correction, but it should be emphasized that 
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the VLS focusing correction for convergent incident light is so powerful, that the 

simpler ones can form the basis of excellent monochromator designs. 

'\ In exact analogy to the design of other constant deviation monochromators11 

with fixed entrance and exit distances onto the grating (rh and rhp), we set the 

defocus aberration equal to zero at two wavelengths in the region of interest: 

[F 2 oh. = A,1 = [F 2 0] A, = A, 2 = 0 ( 14 ) 

Considering rh and fbp the independent' variables, some manipulation that does 

not need the computer gives the equivalent to Equation #3 of Hettrick and 

Underwood's patent.1 2 They use a different form of the grating equation, and 

define rh as positive. The incidence and diffraction angles (a s and ~ s) are 

determined by the fixed deviation geometry: 

-rhp _ A1COS2~2 - A2COS2~1 

"""ih - A1cos2a2 - A2cos 2a1 (15) 

Even though v 1 has disappeared, it can be found using either of the equations in 

(14) . We now choose a parameter set that will allow us to· compare this focal 

condition with later ones. It is shown in table 1, and is the same set used in 

McKinney and Palmer. 13 We obtain rhp/rh = -1.0044775, and VI = 
1.986225/meter. If we assume a large plane (a20 = 0) grating of 20 cm width, 

the variation in groove spacing is only +/- 20%, which is reasonable to fabricate 

on a ruling engine. Of particular significance is the fact that rhp/rh is very close 

to 1. Since the straight and parallel grooves give no sagittal power, it is very 

important that the natural rh p of bes~ tangential focus is very near the sagittal 

focus of the converging wave, because it gives an approximately stigmatic image. 

Thus, this type of grating system gives good imaging behavior as a natural 

consequence of the design. As a confirmation of the value Hettrick and 

Underwood's contribution, we check the focusing for non-converging (parallel) 
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incoming light onto a plane VLS grating. (rhp-> -infinity) Only the second and 

fifth terms of equation (13) remain, and we have only rhp as a parameter: 

We can only focus the grating at one wavelength, and vI is just a scaling factor 

like the power of a lens or zone plate. Varying it moves a focal curve of fixed 

shape either toward or away from the grating, and does not change the shape of 

the curve as it does when converging light is used. l 3 

To achieve Hettrick and Underwood's second focal condition , we set: 

where phi indicates differentiation with respect to the scan angle of the grating, 

and Al =30 Angstroms. To do this we change variables: 

q,=(<x+~)/2 9=(<x-~)/2 . (18) 

The scan angle is signed the same as alpha and beta, and the half deviation angle 

(87 degrees for our test case) is positive definite. After taking the derivative, 

we eliminate vI from equations (17) and solve them for rhp/rh: 

rhp _ - COS~1 (COS<X1 COS~1 + COS2~1 + 2sin<X1 sin~1 +2sin2~1) 

1'h -COS<X1 (COS<X1 COS~1 + COS2<X1 + 2sina1 sin~1 +2sin2a1l (19) 

With the same. reminders about sign conventions, we recognize equation #4 from 

the Hettrick and Underwood's patent. Using our test case we see that fbp/rh = -

1.00546, and vI = 1.98475/meter. . Note that the both the linear VLS coefficient 

and the optimal focal distance have not changed significantly, and our previous 

conclusions are still valid. 
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For our third and most complicated focal condition, we set: 

[F20] A, = A,1 = [F20] A, = A,2 = [dF
20] = 0 

dCP A,=A,1 (20) 

This is a combination of both of the first two cases, (A 1 =20 Angstroms. and 

A2 =40 Angstroms) and requires another degree of freedom. Following Hettrick 

and Underwood, we choose to modify the plane grating with a long radius of 

curvature, and hope that we can do it without spoiling the basic premise of 

separation of focusing and dispersion. We change a20 to 1 1(2R) , which results in 

a focal curve equation with 5 terms (13). Eliminating vI and R from the three 

equations (20), and then solving for rhp/rh gives: 

rhp/rh=numerator/denominator (21) 

numerator= 

-«cosal*cosa2*cos~lA2+cosa2*cos~lA3+cosal*cos~IA2*cos~2 

+cos~IA3*cos~2-cosaIA2*cos~2A2-2*cosal*cos~l*cos~2A2-

cos~l A2*cos~2A2-cos~2A2*sinal A2+cos~1 A2*sinal *sina2+ 
2*cosa2*cos~1 *sinal *sin~I+2*cos~1 *cos~2*sinal *sin~l-
2*cos~2A2*sinal *sin~l-

2*cosal *cos~l *sina2*sin~1-cos~1 A2*sina2*sin~1 + 
2*cosa2*cos~1 *sin~l A 2+ 
2*cos~1 *cos~2*sin~1 A2-cos~2 A2*sin~1 A2+cos~1 A2*sinal *sinb2-
2*cosal *cos~l *sinbl *sin~2 - cosbl A2*sin~1 *sin~2) 

denominator= 

(cosaIA3*cosa2-cosaIA2*cosa2A2+cosaIA2*cosa2*cos~l-

2*cosal*cosa2A2*cos~l

cosa2A2*cos~IA2+cosaIA3*cos~2+cosalA2*cos~1*cos~2+ 

2*cosal *cosa2*sinal A 2-
cosa2 A2*sinal A2 + 2*cosal *cos~2*sinal A 2-cosal A2*sinal *sina2-
2*cosal *cos~l *sinal *sina2+2*cosal *cosa2*sinal *sin~l-
2*cosa2A2*sinal *sin~l + 
2*cosal *cos~2*sinal *sin~l+cosal A2*sina2*sin~l- cosa2A2*sin~1 A2 -
cosal A2*sinal *sin~2 -
2*cosal *cos~l*sinal *sin~2 + cosal A2*sin~1 *sin~2» 
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Any of the equations (20) may be solved for the radius of the grating and we 

can now recognize that this result is not the same as to equation #5 of Hettrick 

and Underwood's patent. Our test case provides rhp/rh = -0.99041, and VI = 
2.00957/meter, and R = +4364.05 meters (+ is concave), confirming our belief 

that the curvature of the almost plane grating would be only a small 

perturbation, and that the focal condition and variation in the line spacing would 

be similar in magnitude to those of the earlier conditions. Hettrick and 

Underwood's equation #5, which is apparently incorrect, gives values which do 

not conform to these assumptions. 

III. Summary of Analytical Results 

Figure 3 shows F20 as a function of wavelength for the three focal conditions 

derived above. We see that our focal curves satisfy the conditions of derivation. 

Curve 1 goes through zero twice at 20 and 40 Angstroms, satisfying the first of 

our focal equations. Curve 2 goes through zero only once, at 30 Angstroms, and 

has zero derivative there, consistent with the assumptions the derivation of our 

second focal curve. The higher order curve 3 satisfies all three of the conditions 

(20) which are permitted by allowing the grating to have a small degree of 

curvature. To our knowledge this type of VLS monochromator has not yet been 

constructed. 

IY. Hieber Order YLS Corrections 

Hettrick and Underwood's equation #6 is their analog of our expression for the 

groove spacing (7). Their £1, £2 and £3 are numerically not the same as our v}, 

v2 and v3, since they expand the groove function differently. Our analogs of 
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their equations #7 are simply found by using one of the three above conditions 

for obtaining vI. fb takes an assumed value. Then the one of our equations 

(15) (19) or (21) gives fhp. To obtain v2, the parabolic VLS coefficient related 

1\ to coma, we pick any wavelength in the range, (Hettrick and Underwood choose 

(AI +A2)/2) and solve (10) for v2 using the previous rh, fbp and vI. For v3, the 

.' cubic VLS coefficient related to spherical aberration, we solve (11) for v3 using 

the previous rh, fbp and vI and v2. 

y. Summary and Conclusions 

We now have outlined an analytical, scale independent method for designing a 

plane or slightly spherical VLS constant deviation monochromator with light 

converging behind the grating. Even though we find equation #5 of Hettrick and 

Underwood's patent to be in error, the bulk of their analysis is correct, and their 

emphasis. of separating the focusing and dispersing functions for VLS systems is 

shown to be a very useful contribution to monochromator design. 

The VLS design, as' described here, has several advantages. 

1. The corrected focal curve eliminates the need for moving slits, which are 

required to keep a Rowland Circle monochromator in focus. 

2. The separation of focusing and dispersion allows a plane grating to be used, 

which is less expensive to manufacture. Even though our third and best focused 

condition requires a slight curvature to the grating, the plane grating conditions 

give excellent focal correction, and therefore excellent performance.14 

3. Although we have not demonstrated it explicitly, since we only consider 

elementary second order focusing, the extra degree of freedom to move the 

groove placement should provide higher angular acceptance at a given resolving 

power than any other design. 
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4. The VLS coefficients provide the opportunity to reduce some of the 

aberrations of the converging optics. (This is discussed in the patent of Hettrick 

and Underwood.1 2 

The VLS system also has some disadvantages: 

1. Since holographically generated VLS gratings are not commercially available 

ruled gratings must be used which would likely have more stray light. It has 

been shown that holographic gratings can be made equivalent to VLS gratings,15 

and in the future this may be exploited allowing wider use of VLS systems. 

2. The separation of dispersion and focusing requires at least two optics 

between the slits which increases cost and the possibility that surface 

imperfections may affect imaging. 

3. The ruling engine may not have the capability to adjust the shape of the 

groove as the grating is ruled, resulting in less that optimal efficiency all across 

the grating. 

4. Finally the VLS monochromator shares several undesirable features of the 

standard type spherical grating monochromator .16 17 18 The fixed deviation 

design that is common to both requires multiple gratings for an extended 

wavelength range on account of the horizon wavelength condition. In addition, 

the VLS grating is not used in the on blaze condition at all wavelengths. Worse 

still, the fixed deviation geometry of both leads to serious higher order problems 

at longer wavelengths. 

The VLS monochromator does not solve all of the problems of designers of 

grating-based monochromators for VUV beamlines. VLS gratings do provide 

advantages that should be considered when choosing a monochromator 

configuration. We believe that VLS gratings will have an increasing role at 
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synchrotron radiation sources in the future. We have compared the analytical 

methods presented here with numerical optimizations, and find that the 

analytical formulae give desi'gns which for practical purposes are sufficiently 

close to the numerically optimized ones. 
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Fig. 1. Coordinate System and location of the grooves and the 
image and object points . 
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Fig. 2. Geometry of wavefronts onto VLS grating. 
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Fig. 3. The defocus aberration as a function of wavelength 
for the three different focal conditions. 
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Table 1. Monochromator Parameters for Comparison Case 

half deviation angle = 87 degrees 

order of diffraction = +1 (inner order: I~I < a) 

wavelength range = 20 Angstroms to 40 
Angstroms 

incident light converging 1 meter 
behind the grating 

grooves per mm = 1200 at the center of the 
grating 
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