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 Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) using 

ultrasonic waves have become compelling techniques for identifying various defects in structural 

components. Ultrasonic guided-wave testing has the potential to identify the elastic properties of 

the fiber-reinforced composite laminates. A nondestructive tool for characterization of the 

composite properties is particularly advantageous when components involve manufacturing 

variances and service quality degradation. The first part of this dissertation examines the potential 

for composite property characterization by a single wave propagation direction to enable the 

accurate identification of several elastic properties away from the wave propagation direction 



  

 

xxiii 

 

because of the anisotropy of the composite providing the “coupling” effect. A property inversion 

scheme was proposed based on matching phase velocity dispersion curves of relevant guided 

modes by means of a Simulated Annealing optimization algorithm and a Semi-Analytical Finite 

Element method to solve the forward problem. 

 The second part of the dissertation is focused on defect detection and localization in a 

stiffened skin-to-stringer composite panel. A data-driven Deep Learning approach based on 

Convolutional Neural Network is exploited to detect the damages even generalized to non-training 

scenarios. Moreover, a matched-field-data-driven method and the structural transfer function 

method (the deconvolution of the “dual-output” scheme) are also discussed to explore a wide field 

for the damage detection of the skin-to-stringer assembly. 

 The third part of this dissertation targets the defect imaging on homogeneous solids using 

ultrasonic bulk waves to reconstruct 2D and 3D images of defects. Sensor arrays and a frequency-

domain-based beamforming algorithm are employed to improve the defect characterization 

process. The experimental applications are performed on both a simulated defect on an aluminum 

block in the lab and natural transverse defects on the railroad tracks at the Transportation 

Technology Center Inc (TTCI) in Pueblo, CO. Moreover, a preliminary study of the fatigue history 

prediction of the railway track is also discussed for future investigation. 
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Chapter 1.  Introduction 

Non-destructive evaluation (NDE) and structure health monitoring (SHM) are dependent 

on the benefit of reliable and robust indicators that provide the detection, localization, 

quantification, and even prediction of damages in mechanical structures. Composite materials have 

become popular candidates for fabrication due to their outstanding advantages, such as high 

strength, high stiffness to mass ratio, and high capacity to resist fatigue and corrosion [1,2]. 

However, the failure mechanisms of composite structures also come into service, for instance, 

delamination, fiber rupture, and matrix damage. Those damages can easily spread throughout the 

laminate structure leading to catastrophic failure [3]. Therefore, composite structural monitoring 

and evaluation technologies aim to provide security and cost efficiency regarding maintenance. 

In recent decades, the methods of detecting damage at an early stage gain special attention 

to avoid sudden structural-component failure. Specifically, structural vibration measurements 

predicting structural integrity have been the focus of many researchers, acceptance function 

together with a proper theoretical model to illustrate the location and magnitude of the defect [4]. 

At the same time, the realization of damages causing stiffness reduction leads to shifts in the 

natural frequencies of the structure in question. The impact of delamination on the natural 

frequencies of laminated composite beams has been studied by [5]. Furthermore, the transversal 

cracks in composite structures are investigated by [6] to reveal their appearance resulting in the 

changes of stiffness as well as natural frequencies. 

 Optimization techniques help monitor and evaluate structural integrity to find the best 

estimation among vast possible scenarios. Genetic algorithm (GA) provides a robust solution to 

complex problems due to the efficacy of exploiting the region of interest and avoiding local 
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minimum traps [7]. Artificial intelligence (AI) is a significant improvement in exaggerating the 

functionality of the optimization techniques, which is even able to predict the unknown results of 

future inputs by learning a set of given data samples [8, 9]. An ideal assessment methodology 

should be capable of recognizing individual damage patterns from historically structural responses 

to determine the extent of current damage, which is fulfilled by the AI techniques. The motivation 

to apply AI (especially Neural Networks) in damage detection procedures is the possibility of 

various kinds of damages occurring in several locations making damage detection an extremely 

complex process [10]. The neural network models of delamination size prediction in composite 

beams have been investigated [11], which showed promising results of correct identification and 

localization. 

 Besides, physics-based methods keep the attention of the researchers in the NDE and SHM 

fields. The impulse response function (Green’s function) is one of the compelling ways to represent 

structural conditions by reconstructing the direct signal between two air-coupled transducers to 

eliminate ambient noise fields [12, 13].  Lanza et al. [14] estimated the impulse response function 

of a piece of rail track in the moving train when the ambient noise had a significant portion of the 

final acquired signal. The different occasions, such as joints and bolts, were classified by passive-

only reconstruction of the structural coherence. 

  The first part of this dissertation included chapters 2 and 3, showing the large-field damage 

detection using elastic material properties as indicators. A new framework of identifying 

composite material elastic properties was proposed by matching the phase velocity dispersion 

curves with the Semi-Analytical Finite Element (SAFE) model [15] as a forward solver and 

Simulated Annealing [16] as optimization. The framework inversely achieved the five independent 

lamina constants and seven global engineering constants of three composite plates in simulation, 
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proving itself the efficacy of identifying the properties even if they were off-wave-propagation 

direction. Three guided wave modes, SH0 (Shear-horizontal mode), S0(Axial mode), A0, were 

investigated. Later, in chapter 3, the experimental implementations were applied on three plates to 

inversely obtain engineering constants with a discussion of single-mode identification and multi-

mode identification.  

 The second part of this dissertation showed the various techniques of defect classification 

and localization of the complex composite skin-stringer panela covering chapters 4 and 5. In 

particular, a Convolutional Neural Network (CNN) [17] was applied to identify the defect in 

typical positions of the complex composite panel (skin, stringer_flange, stringer_cap_top, and 

stringer_cap_side), with a sparse sensor array. The well-trained model predicted the positions of 

the non-trained simulated points even the real cut damage besides the trained points with about 

three millisecond time consumption. The generalization capability and fast prediction speed shine 

the light on real-time health monitoring based on given in-service data or even simulated data. The 

drawback of the CNN application was that the contact piezoelectrical sensors were employed to 

collect the data, which reduced the mobility and flexibility of the experimental setup. As a 

complement, chapter 5 discussed the methodology of using air-coupled transducers to identify the 

defect in the composite panel by structural transfer function extraction. The structural transfer 

function of two target points did not change unless the anomaly showed between two target points, 

which led to itself an excellent indicator for defect detection. 

 The third part moved to the homogeneous material, such as aluminum block and railhead, 

to construct damage images by ultrasonic imaging techniques [18]. Two algorithms, frequency-

domain beamforming (FDB) and time-domain beamforming (TDB), were compared. The results 

were obtained from an aluminum block with two simulated damages (drilling holes) and real 
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natural transverse defects on the railhead. Finally, in chapter 7, the preliminary study of rail track 

fatigue estimation was performed based on synthetic data with considerable noise. The deep neural 

network was implemented to predict the failure state with the discussion in terms of accuracy and 

computation efficiency. 
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Chapter 2.  On the identification of the elastic 

properties of composites by guided waves and 

optimization algorithm 

 

2.1. Abstract 

This paper examines the potential of ultrasonic guided waves to identify the elastic 

properties of fiber-reinforced composite laminates widely used in light-weight structures.  Due to 

variability in manufacturing processes, complexities involved in the constituent materials, or 

degradation in service, a non-destructive tool for the characterization of the composite’s properties 

can be extremely useful.  A common assumption is the necessity for multiple wave propagation 

directions to fully characterize the properties. This paper examines the potential for property 

characterization by a single wave propagation direction.  It proposes a property inversion scheme 

based on matching phase velocity dispersion curves of relevant guided modes by means of a 

Simulated Annealing optimization algorithm and a Semi-Analytical Finite Element method to 

solve the forward problem.  Proof-of-principle numerical studies are presented to demonstrate the 

potential of each selected wave mode to provide identification of several properties, including the 

lamina elastic constants and the laminate effective constants.  It is shown that the complex stress 

and strain profiles generated by the waves, aided by the anisotropy of the composite, create 

interesting “coupling” effects that ultimately enable accurate identification of several elastic 

properties away from the wave propagation direction.  
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2.2.  Introduction 

The characterization of the elastic properties of composite parts is of great interest in many 

structural and industrial applications of these materials.  This is especially the case because of the 

inherent heterogeneity of the components, coupled with the large variabilities expected in the 

manufacturing process, which make it extremely difficult to accurately predict the properties of 

the final part from those of the individual constituents (e.g. fibers and matrix).  Property 

identification is also relevant to the condition monitoring of composite structures in service to 

detect any possible degradation caused by aging or damage.  Desirable requisites of an ideal 

identification technique are its non-destructive nature and the possibility to implement in-situ on 

actual structures in service.  

Consequently, several studies have been conducted by using vibrational techniques (mostly 

based on modal analysis) to non-destructively identify the elastic constants of composite plates, as 

recently reviewed by Tam et al [1]. Vibrational techniques, by their very nature, are sensitive to 

the “effective” or “engineering” constants of the part.  The majority of vibrational techniques have 

been applied to thin anisotropic plates, where the independent unknowns are the four in-plane 

elastic properties (longitudinal and transverse in-plane Young’s moduli, in-plane shear modulus 

and in-plane Poisson’s ratio) [2-7]. Additional investigations have expanded the identification to 

five independent constants including the out-of-plane shear modulus (or out-of-plane Poisson’s 

ratio), by studying thick plates in order to sufficiently activate the out-of-plane effects [8-13]. Most 

of these studies are based on matching the “true” modal behavior of the plate (e.g. from 

experimental tests) with the “predicted” vibrational behavior corresponding to a given set of elastic 

constants.  The identification algorithm involves some kind of minimization operation that can be 

either a simple least-square method or more sophisticated optimization schemes [13-14]. Although 
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nondestructive, the vibrational techniques of property identification are naturally “global” 

identification approaches using low frequency modal behavior that is quite sensitive to the 

boundary conditions of the part.  Hence many tests involve freely suspended plates where modal 

predictions are more robust.  It is much more difficult to utilize vibrational techniques in-situ on 

an existing composite structure because of the difficulty to properly model boundary conditions.  

An identification method that is alternative to the vibrational testing technique, although 

somewhat related to it because it also involves dynamics, is the use of propagating elastic waves 

in the kHz or MHz range (ultrasonic range).  These waves are typically not sensitive to boundary 

conditions of the test plate, lending themselves to non-destructive property identification in 

independent plate coupons as well as in-situ on actual structures [15-16]. The ultrasonic range of 

wave dynamics is very sensitive to the elastic constants and can provide high sensitivity to the 

lamina-by-lamina properties, in addition to the laminate effective (engineering) properties. Several 

studies of composite property identification with optimization algorithms have involved the use of 

bulk waves (e.g. quasi longitudinal and quasi shear) and wave velocity predictions such as the 

Christoffel equation for orthotropic plates [17-18]. Bulk wave testing, however, can only identify 

properties in a very localized region of the composite.   

By exploiting the waveguide geometry typical of most composite parts (e.g. plate-like 

geometry), ultrasonic guided waves in the 100’s of kHz range are increasingly considered as an 

excellent means for probing composite parts in the Non-Destructive Evaluation (NDE) and 

Structural Health Monitoring fields [19-21]. Guided waves offer the unique combined capability 

of large monitoring ranges (~ a few centimeters to ~ a few meters) and high sensitivity to the test 

part owing to relatively large frequencies/small wavelengths employed.  Complexities of guided 

waves include their multimode character (several modes propagating simultaneously) and their 
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dispersive character (propagation velocity dependent on frequency), particularly challenging in 

laminated composites. Because of these complexities, the majority of guided wave testing on 

composite plates has been focused on defect detection, with much fewer studies dealing with the 

task of property identification.  Balasubramanian [22] first identified the properties of composite 

plates based on the phase velocity dispersion curves of the fundamental axial and flexural wave 

modes and Genetic Algorithm optimization.  He used the transfer matrix method as the forward 

wave propagation model. Vishnuvardhan et al. [23] also used optimization routines associated to 

guided wave velocities in various propagation directions (one transmitter and multiple receivers) 

to identify all nine elastic constants of orthotropic plates and using the Christoffel equation at a 

single frequency value as the forward model.  Vepakomma et al. [24] estimated elastic constants 

in composites using a similar approach.  Glushkov et al. [25] identified the engineering constants 

of unidirectional and cross-ply laminates using group velocity dispersion curve matching and 

optimization algorithms.  In this study the forward model was computed using general elasto-

dynamic theory involving integral Green’s functions for layered media.  Other investigations have 

explored the use of non-contact wave transduction for the identification of composite properties 

by guided waves [26]. 

The wave prediction models utilized in these studies involve transcendental equations or 

close-form solutions that become quite complicated in the case of multilayered laminates and 

whose solutions often involve a root searching routine that can slow down an identification 

problem based on multiple iterations.  

In alternative to purely theoretical modes, the Semi-Analytical Finite Element (SAFE) 

method has gained increasing interest for modeling the multimode and dispersive behavior of 

ultrasonic guided waves in waveguides that are complex in either geometry (e.g. arbitrary cross-
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sections) or material properties (e.g. multilayered composites) [27-29]. The SAFE technique 

efficiently discretizes by finite elements solely the cross-section of the waveguide and, instead, 

utilizes theoretical harmonic solutions in the wave propagation direction of the waveguide. SAFE 

offers a direct means to predict complicated wave dispersion behavior in a multilayered laminate 

as a function of the elastic constants of the individual laminae.  These advantages were recently 

exploited by Marzani and De Marchi [16] to identify lamina constants in a unidirectional laminate 

and a cross-ply laminate.  That study matched the group velocity dispersion curves between the 

pseudo-experimental case (a SAFE forced solution obtained for a set a “true” constants) and trial 

cases obtained by SAFE with varying constants.  The SAFE solution directly outputs phase 

velocity curves.  A mode tracking algorithm [30] becomes necessary to move from the phase 

velocity solutions to the group velocity solutions.  The work by Marzani and Demarchi [16] 

utilized axial and flexural modes, with multiple propagation directions (two directions for the 

unidirectional laminate and four directions for the cross-ply laminate) to provide sensitivity to the 

lamina’s full stiffness matrix. 

The present paper utilizes the phase velocity dispersion curves of ultrasonic guided waves 

propagating in a single direction to identify both the elastic constants of the individual laminae and 

the effective (engineering) constants of the laminate.  The forward wave propagation solution is 

here obtained by the SAFE method, that is coupled with a Simulated Annealing (SA) optimization 

algorithm to match pseudo-experimental phase velocity curves to trial velocity curves obtained 

with varying constants.  A similar SA optimization scheme was previously shown to be effective 

for property inversion in Rayleigh wave data applied to pavement characterization by Ryden and 

Park [31]. The common difficulties of the SA inversion processes with multiple local minima of 

the objective function and fixed iteration intervals [32] are here relieved by using the Metropolis 
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Rule [33] and Cauchy distributions for the iterated variables [31]. Particular care in the present 

study is devoted to the individual role of the fundamental axial wave mode (S0), flexural mode (A0) 

and shear-horizontal mode (SH0), that are considered in a broad frequency range (20 kHz – 200 

kHz). Three different laminate layups are studied, namely: a unidirectional laminate, a quasi-

isotropic laminate, and a fully anisotropic laminate. The study shows that the majority of the 

properties in these laminates can be properly identified by these three wave modes, despite 

propagating in only a single direction. This performance is the result of the interesting coupling of 

stress/strain components that occurs among different planes in the high-frequency guided-wave 

range, as well as the natural anisotropy of the laminate. 

 

2.3.  Methodology for the inversion process 

2.3.1. Semi-Analytical Finite Element (SAFE) method for predicting 

ultrasonic guided wave propagation in laminated composites 

The SAFE method is an efficient tool to calculate ultrasonic guided wave propagation 

solutions in prismatic waveguides [27-29]. As schematized in Fig. 1(a), SAFE uses analytical wave 

propagation solutions in the wave propagation direction, x, and limits the FE discretization to the 

waveguide’s cross-sectional plane, (y, z). This technique lends itself to study multilayered 

waveguides such as laminated composites in a broad frequency range where analytical solutions 

are either non-existent or generally difficult to obtain. In addition, the 2D FE discretization greatly 

relaxes the computational requirements and improves the solution accuracy at the high frequencies 

compared to a full 3D FE discretization.  
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Figure 2.1. (a) SAFE model. (b) Local (lamina) and global (laminate) coordinate systems. (c) 

Laminate load convention. 

 

Without considering external forces and traction, the governing equation of the problem is 

represented by the virtual work’s principle in the volume V of the waveguide: 

( ) 0
T T

V V

dV dV  + = u u ε σ         (2.1) 

where u is the displacement vector,  is the strain vector,  is the stress vector, T means 

the transpose operation, and ∎̈  represents the second derivative with respect to time. The 

displacement field is approximated in SAFE by the following discretization in the (y, z) cross-

sectional plane and analytical harmonic behavior in the wave propagation direction x: 

( )( , , , ) ( , )e e i x tx y z t y z e  −=u N q         (2.2) 

where t is time, N(y,z) is the 3 × 6 matrix of FE shape functions, qe is the vector of nodal 
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displacements for the 𝑒 -th finite element, 𝑖  is the imaginary unit, and   is the wavenumber 

associated with frequency .  

For the subject applications to composite laminates, a transversely isotropic thin layer is 

considered as the individual unidirectional lamina. Considering 1 the fiber direction, 2 the in-plane 

direction perpendicular to the fibers, and 3 the out-of-plane direction perpendicular to the fibers, 

Figure 2.1 (b), the following 3D constitutive relation in the lamina principal directions of material 

symmetry (local coordinates) applies: 
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where E33=E22, 13=12, G13 = G12, G23 = E22/(2(1+23)). The 6 × 6 matrix in the above 

equation is the inverse of the lamina’s stiffness matrix in the local coordinate, i.e. Q-1. In the case 

of a multilayered composite laminate, the local stiffness matrix of each lamina Q is rotated into 

the global (x, y, z) reference system of the laminate using the following transformation relation 

[28]: 

1
1 2Q R Q R

−=           (2.4) 
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The stiffness matrixes Q  in the global laminate coordinates are then assembled in the 

cross-sectional FE discretization to describe the entire laminate. Substituting Eqs. (2.2) and (2.3) 

into Eq. (2.1) leads to the following eigenvalue problem: 

2[ ] M− =H L U 0           (2.5) 

where the subscript M is the number of degrees of freedom of the FE mesh, 
T[ ]=U q q  

is a nodal displacement vector of double size, and the real symmetric matrices H and L contain 

stiffness terms, mass terms and the frequency  [27]. The eigensystem is solved by finding the 2M 

wavenumbers  ’s for each frequency , and the corresponding eigenvectors U. The solutions 

represent the M forward-propagating guided wave modes and the M backward-propagating guided 

wave modes. The phase velocity for these modes is calculated at each frequency by /ph realc  =

(phase velocity dispersion curves), and the eigenvectors represent the cross-sectional displacement 

mode shapes for each ( ,) combination, i.e. at each point of the dispersion curves.  For each 

composite laminate, these solutions are therefore calculated directly as a function of the five elastic 

constants in the principal directions of material symmetry of each (transversely isotropic) lamina, 

i.e.  E11, E22, 12, G12 and 23.  

 

2.3.2. Effective engineering properties 

In many practical engineering uses of composites, it is of interest to know the “engineering” 

or “effective” elastic properties of the laminate as a whole. In this paper both in-plane properties 

(extensional and shear) and out-of-plane properties (flexural and torsional) are being sought. The 

laminate’s engineering properties can be calculated from the lamina’s elastic constants using 
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Classical Lamination Theory (CLT). Assuming a symmetrical laminate lay-up, that is often 

utilized to eliminate the coupling between extensional-shear behavior and flexural-torsional 

behavior (B matrix of CLT equal to 0), the laminate’s constitutive relation in the global coordinate 

system (x, y, z) can be written as: 
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where 00 00
ε

T

x y xy  =
 

 is the vector containing in-plane normal strains and shear 

strain, κ
T

x y xy   =   is the vector containing out-of-plane curvatures and twist, 

N
T

x y xyN N N =   is the vector containing in-plane axial loads and shear load, 

M
T

x y xyM M M =   is the vector containing flexural moments and torque, and the matrices 

A and D are calculated from the individual lamina’s stiffness coefficients in the global coordinate 

system ijQ  as:  
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        (2.7) 

The laminate’s engineering properties can therefore be calculated from the lamina’s 

stiffness coefficients ijQ  from the following relations: 
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The above expressions further simplify in the case of special lay-up symmetries. For 

example, for balanced laminates (pairs of laminae at ± ), the extensional-shear coupling vanishes 

and A16 = A26 = 0. Similarly, for unidirectional (0 deg) or cross-ply (0 and 90 deg) laminates, as 

well as for antisymmetric laminates (for a +  lamina there is a -  lamina at a symmetric position), 

the flexural-torsional coupling vanishes and D16 = D26 = 0.  
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2.3.3. Property identification algorithm by dispersion curve 

matching and Simulated Annealing optimization 

The overall flowchart of the composite property identification is presented in Figure 2.2. 

The identification is based on matching the “ideal” phase velocity dispersion curves for guided 

waves propagating in one direction for the given laminate to “tentative” versions of the phase 

velocity dispersion curves calculated by SAFE models for varying elastic constants. The set of 

elastic constants that best matches the dispersion curves therefore identifies the given composite. 

In this study, the lay-up of the composite is assumed to be known (although this could also become 

an optimization variable if needed). The guided modes that are used in the analysis are the three 

fundamental modes of S0 (axial), A0 (flexural) and SH0 (shear horizontal) [20] considered in a 

broad frequency range (20 kHz – 200kHz).  Up to five independent optimization variables are 

considered, i.e. the five elastic constants of the individual laminae [E11, E22, G12, 12, 23]. From 

the lamina’s constants, the laminate engineering properties [Ex, Ey, xy, Gxy  Kx, Ky, Kxy] are then 

calculated from Eqs. (2.8)-(2.14). 

The dispersion curve matching process is performed through an optimization that utilizes 

the Simulated Annealing (SA) algorithm that originates from a physical process involving the 

cooling of crystals from high-energy state to low-energy state, eventually reaching an energy-

stable state [34]. The objective function that needs to be minimized is defined as the following 

discrepancy metric: 

( )
2

ph,pred ph,true

1 ph,true

( ) ( )1

( )

N i i

i i

c c
d

N c

 

=

−
=    for S0, A0 or SH0      (2.15) 
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where cph,true is the phase velocity for the given mode (S0, A0 or SH0) at the frequency i 

calculated from the SAFE model of the composite with the correct elastic constants, cph,pred is the 

corresponding phase velocity calculated from the SAFE model for the trial elastic constants, and 

N is the number of frequency values. For the results shown in this study, a frequency range of 20 

kHz – 200 kHz was considered because this is typically used to probe structural composites in 

ultrasonic guided-wave testing. By considering each guided mode separately, the analysis 

determines the mode-specific suitability and sensitivity to certain properties (e.g. the axial and 

flexural modes are expected to be more sensitive to in-plane longitudinal stiffnesses and Poisson’s 

ratios, whereas the shear horizontal mode is expected to be more sensitive to the in-plane shear 

modulus). Clearly, the general framework can be applied to combinations of multiple guided 

modes if so desired in future applications. 

Referring again to Figure 2.2, in the initial iteration variables (𝐌𝟎) and iteration interval 

(𝚫𝐌𝟎) are selected and set as the first accepted transition to pass through the SAFE model for the 

calculation of the phase velocity curves. The first trial is completed with the second iteration of  

𝐌𝟎 + 𝚫𝑴𝟎. After comparing the two discrepancy values through the Metropolis Rule (MR) [33], 

the decision is made of either accepting the current iteration as a new transition perturbing the 

interval size, or returning to the previous step for another test with the same interval. The MR 

increases the chance to find the global minimum of the objective function by only searching the 

most probable variables. It also provides the second opportunity for the current test to be accepted 

if its mismatch value is larger than the previously-accepted transition. The comparison is 

performed between 𝑟, a uniformly-distributed random number in [0,1], and
( )d Te −

, where d  

is the difference of mismatch values between two models and 𝑇 is the present value. To further 

increase the speed of reaching the global minimum, a Cauchy-distribution perturbation is 
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performed to associate the annealing value with the variable-interval adjustments [35]. The SA 

algorithm is used to minimize the objective function by utilizing the “temperature” (T) and the 

“cooling schedule coefficient” () as two control factors to perform perturbations of the variables. 

The variable-perturbation equation utilized in this study is based on the work of Ref. [31]: 

2
0 1

0

1
0

tan
2

j i i

i

i

T

T

T T




 +

 = + 

     

 =      
   


=

M M M

M M          (2.16) 

where Mj is the vector of the new iterations for the variables, Mi are the last accepted 

transitions, Mi are the corresponding perturbation intervals, M0 is the initial increment of the 

variables, T0 and T are the “initial” and the “current” temperatures, and  𝜂1 and 𝜂2 are random 

numbers uniformly distributed in [-1,1]. All variables can be perturbed simultaneously if they are 

all assumed unknown. In the results that follow, T0 was set to 30° and  was set to 0.99. These two 

values were considered a suitable pair for good accuracy and computational efficiency [31]. In this 

study the SA algorithm is run three times [36]. For each SA run, 1000 iterations are set as the stop 

condition because after that the substantial exploration is greatly reduced based on the 

characteristics of the Cauchy distribution [32]. 
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Figure 2.2. Overall workflow of composite property identification by using guided-wave phase 

velocity matching and Simulated Annealing optimization.  
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2.4.  Property identification case studies 

2.4.1. Unidirectional laminate 

The first case study consisted of an 8-ply unidirectional laminate with a thickness of 1.3 

mm with “true” individual lamina properties listed in Table 1 and density of 1550 kg/m3. The 

properties were typical values for a T800/3900-2-graphite-epoxy lamina from [37]. This case is 

shown in Figure 2.3. In this case, the local lamina coordinate system (1, 2, 3) is aligned with the 

global laminate coordinate system (x, y, z). Wave propagation was considered along direction x 

(1). The objective of this analysis was to identify the elastic constants of the individual laminae 

(𝐸11, 𝐸22,𝜈12,𝐺12,𝜈23) from the optimization algorithm, as well as the engineering constants of the 

entire laminate (Ex, Ey, vxy, Gxy, Kx, Ky, Kxy).  

 

Table 2.1. Single lamina elastic constants (from Ref. [37]) 

Constant 𝐸11 𝐸22 𝐸33 𝜈12 𝜈13 𝜈23 𝐺12 𝐺13 𝐺23 

Value (GPa) 160.08 8.97 8.97 0.28 0.28 0.36 6.21 6.21 3.30 

 

Figure 2.3 shows the SAFE calculated phase velocity dispersion curves for this laminate, 

using the “true” elastic constants, showing the three fundamental modes of S0, A0 and SH0. As 

expected, S0 and SH0 show little dispersion throughout this frequency range, whereas A0 is highly 

dispersive at the low frequencies. These characteristics are very similar in nature to those of 

Rayleigh-Lamb guided modes propagating in isotropic plates (key differences in composites being 

the obvious dependence on the propagation direction due to anisotropy and the general mode 

coupling in wave propagation directions away from principal directions of material symmetry).  
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The displacement cross-sectional mode shapes (profiles) for these modes at a frequency of 

160 kHz are also shown in Figure 2.3, along with the corresponding cross-sectional strain and 

stress profiles.  The displacement profiles are the eigenvector of the SAFE eigenproblem in Eq. 

(2.5). The strain profiles were obtained from spatial differentiation of the displacement profiles 

[38]s. The stress profiles were then calculated from the strains using the constitutive equations 

with the layer-specific elastic constants.  The displacement profiles clearly indicate the axial nature 

of the S0 mode (symmetric horizontal displacement ux), the flexural nature of the A0 mode 

(antisymmetric horizontal displacement ux), and the shear nature of the SH0 mode (pure transverse 

displacement uy). The strain and stress profiles shed light on the sensitivity that may be expected 

by a certain wave mode to specific elastic properties to be identified. For example, the S0 mode 

shows predominant xx and xx behavior, suggesting particular sensitivity to axial-type constants 

such as Young’s moduli and Poisson’s ratios. The A0 mode, in addition, shows significant shear 

xz and xz in the transverse plane (associated to cross-sectional “warping” at the high frequency, 

well beyond the Bernoulli-Euler low-frequency approximation) which suggests an added 

sensitivity to shear moduli in the transverse (x, z) plane. The SH0 mode, as expected, shows 

predominant horizontal shear xy and xy, suggesting sensitivity to shear modulus in the horizontal 

(x, y) plane.  
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Figure 2.3. Unidirectional laminate: SAFE results of phase velocity dispersion curves along with 

displacement, strain and stress cross-sectional profiles at 160 kHz. 

 

The first identification analysis was conducted in 1D, whereby only one of the five elastic 

constants of the lamina was considered at a time as the optimization variable, and the other four 

constants were fixed to their known “true” values. The results of the 1D identification are shown 

in Figure 2.4, where the individual sensitivity of each of the guided modes to the various elastic 

constants can be examined independently of the others. The figure plots the discrepancy metric d 

from Eq. (2.15), representing the mismatch between the “trial” and the “true” phase velocity 

dispersion curves, versus the % error between the “trial” variable values and the “true” (known) 

values. The slope (or sharpness) of the curves represents the rate of convergence (sensitivity) of 

the mode to the specific constant. In the subject analysis, the unknown variable trials were 

uniformly distributed between ±50% of the true values.  Figure 2.4(a) for E11 shows that the highest 
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sensitivity is achieved by the S0 mode (largest slope), as expected by the predominant xx and xx 

behavior discussed above in Figure 2.3. A good second candidate for E11 identification is also 

shown to be A0, since this mode also features significant xx and xx components from Figure 2.3.  

As far as the transverse moduli E22=E33, Figure 2.4(b) also shows an appreciable sensitivity by 

mode S0 followed by mode A0, although the slopes are much smaller than those for the E11 

identification. This lower sensitivity to constants in the transverse plane is quite expected because 

of the chosen wave propagation direction in the longitudinal direction [16]. However, the results 

interestingly show that such “transverse sensitivity” is not zero as too often assumed, because of 

the appreciable (although small) vertical components zz and zz that are present in both S0 and A0. 

A similar observation can be drawn for the identification of the Poisson’s ratios 12= 13 (Figure 

2.4(c)). These results thus suggest that it is theoretically possible to lunch the wave in one direction 

and identify the constants in orthogonal directions, provided that the frequency range considered 

is broad enough to activate the cross terms in the mode’s cross-sectional profiles.  Regarding the 

in-plane shear moduli G12= G13 (Figure 2.4(d)), as expected the shear horizontal mode SH0 offers 

the highest sensitivity (through the predominant in-plane shear components xy and xy seen in 

Figure 2.3). Interestingly and less expectedly, Figure 2.4(d) also reveals that the A0 mode can be 

quite successful in identifying G12 = G13 through the significant transverse shear components xz 

and xz (cross-sectional “warping”) as discussed above. The most difficult constant to identify by 

the single wave propagation direction is the Poisson’s ratio in the transverse plane, 23 (Figure 

2.4(e)), where the curve slopes are at least two orders of magnitude smaller than for the other 

constants. A similar conclusion on this specific constant was made by Marzani and de Marchi 

(2012) [16].  
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Figure 2.4. 1D identification of lamina elastic constants in unidirectional laminate. 

 

The next analysis was the multidimensional identification where all of the five lamina 

constants were simultaneously iterated as unknown optimization variables. Since this is a case of 

unidirectional laminate, the local reference system (1, 2, 3) for each lamina is aligned with the 

global reference system (x, y, z). Hence the seven engineering properties of Eqs. (2.8)-(2.14) for 

this laminate reduce to five independent terms corresponding to the five lamina’s constants through 

the following relations: Ex = Kx/Iy = E11; Ey = Ky/Ix = E22; xy = 12; Gxy = Kxy/Ixy = G12; and yz = 

23. In these relations, Ix and Iy are moments of inertia of the laminate’s cross-section with respect 

to x and y, respectively, and Ixy is the polar moment of inertia of the cross-section.  The 5D property 

identification results are shown in Figure 2.5, again in terms of velocity curve discrepancy d versus 

variable % error. The final optimization result (smallest d value) is marked with a Star symbol (⁕) 

(a) (b) (c)

(d) (e)
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and an arrow in each of the plots. The closer the Star symbol is to the 0 value on the x-axis, the 

more accurate the answer (perfect accuracy would be % Error=0). Similarly, the closer the Star 

symbol is to the 0 value on the y-axis, the more correlation exists between the dispersion curve of 

a particular guided wave mode and a particular property. Also, these plots show ranges for d that 

are below 0.2 (i.e. a zoom-in around the minimum of the objective function) so as to better evaluate 

the relative identification performance of the various guided modes. 

The general results of the multidimensional identification of Figure 2.5 essentially confirm 

those of the 1D identification of Figure 2.4, with expectedly less perfect performance due to the 

multiple simultaneous unknowns. Hence Figure 2.5 confirms that the identification of the axial 

stiffness Ex (and flexural rigidity Kx) (first column) is best achieved by the S0, with the Star symbol 

(final optimization result) at a near perfect position and all final iterations along the 0% Error line. 

This behavior is expected due to the predominance of xx and xx  components in S0. The A0 mode 

(that also features large xx and xx components) also proves effective for Ex (Kx) with slightly 

larger discrepancy values as a result of the low frequency dispersion. The SH0 mode instead is 

quite ineffective for Ex (Kx) showing very scattered iteration points with a final Star value close to 

50% error. The multidimensional identification of the transverse stiffness Ey (and the flexural 

rigidity Ky) – second column in Figure 2.5 - becomes more challenging, with increased scattering 

of the results for all the modes. Nevertheless, a final accuracy of ~ 10% can be achieved with the 

A0 mode and an even better accuracy is seen with the SH0 mode, although the scatter of the 

transitions indicates a poor stability of the solution. This is the result of the single guided wave 

propagation direction (x) that is only indirectly related to the stiffness in the transverse direction. 

In regards to the in-plane Poisson’s ratio xy (third column of Figure 2.5), mode S0 remains the 

best candidate with close to a (numerical) 0% error, although this identification is less stable than 
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for the Ex stiffness given, again, the indirect sensitivity to transverse properties As also expected, 

the best identification of the in-plane shear stiffness Gxy (and torsional rigidity Kxy)  -fourth column 

in Figure 2.5- is achieved by the SH0 mode with an ideal (0,0) Star value and stability of the 

iterations due to the predominant xy and xy  components for this mode.  As also noted in the 1D 

optimization study, the A0 mode shows satisfactory identification performance for Gxy (=Gxz in 

this case) due to the cross-sectional “warping” shear components xz and xz .Finally, as found in 

the 1D optimization, the Poisson’s ratio in the transverse plane yz  (fifth column in Figure 2.5) is 

the only parameter whose identification becomes very unstable for any of the modes propagating 

along x. 

 

Figure 2.5. 5D identification of lamina elastic constants and laminate engineering properties in 

unidirectional laminate. 
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2.4.2. Quasi-isotropic laminate 

The second case study is a quasi-isotropic 16-layer laminate with a lay-up of [+45/-

45/0/+45/90/-45/0/90]S with the lamina properties of Table 2.1.  The guided waves are still 

considered propagating along the x global direction.  

 

Figure 2.6. Quasi-isotropic laminate: SAFE results of phase velocity dispersion curves along with 

displacement, strain and stress cross-sectional profiles at 160 kHz. 

 

Figure 2.6 shows the SAFE solutions for this laminate in terms of phase velocity dispersion 

curves in the 20kHz – 200 kHz range for S0, A0 and SH0, along with displacement, strain and stress 

cross-sectional profiles at 160 kHz. The first observation from these profiles, compared to the 

profiles of the unidirectional laminate of Figure 2.3 in the previous section, is the “jumpy” behavior 

of the stress components in the global reference system, due to the different orientations of the 

various laminae. Also, in addition to the expected dominant components for the various modes 
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(normal stress xx for S0 and A0, and in-plane shear stress xy for SH0), clear coupling between 

normal stress and shear stress components is seen, such as significant xy for S0 and A0, and 

significant xx for SH0.  

             Figure 2.7 shows the results of the 1D identification of the local lamina elastic constants 

(one constant at a time being inverted with the other constants assumed known).  As expected, 

mode S0 offers the largest sensitivity to the longitudinal axial modulus E11 (Figure 2.7(a)) through 

the predominant xx component operating on the 0-deg laminae. Most interestingly, the shear 

horizontal mode SH0 also offers large sensitivity to E11 as a result of the ±45 lamina orientations. 

This was not seen in the unidirectional laminate for E11 in Figure 2.4(a). For the same reasons, 

modes S0 and SH0 are both found very sensitive to the Poisson’s ratios 12=  13 in Figure 2.7(c). 

As for the transverse moduli E22 = E33 (Figure 2.7(b)), mode A0 is the most sensitive due to the 

non-negligible vertical stresses zz, followed by mode S0. The sensitivity of these modes to E22 = 

E33 in the quasi-isotropic laminate is much larger (by about one order of magnitude) than that for 

the same constants in the unidirectional laminate (Figure 2.4(b)) as a result of the ±45 and 90 

lamina orientations. Hence the off-axis fiber orientations provide guided modes propagating in one 

direction with added sensitivity to constants in other directions. Regarding the shear moduli G12 = 

G13 in Figure 2.7(d), mode SH0 offers the expected large sensitivity to G12 through the in-plane 

shear component xy, and mode A0 does the same for G13 through the vertical shear component xz 

(cross-sectional warping). Lastly, regarding the Poisson’s ratio in the transverse plane, 23 (Figure 

2.7(e)), mode A0 shows the best sensitivity that is, again, much larger than that shown for the same 

constant in the unidirectional composite case (Figure 2.4(e)). This is another result of the off-axis 
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lamina orientations that improve the sensitivity of the guided modes propagating in one direction 

to constants in various other directions. 

 

Figure 2.7. 1D identification of lamina elastic constants in quasi-isotropic laminate. 

 

The results of the 5D inversion of the lamina constants are shown in Figure 2.8 in terms of 

phase velocity curve discrepancy d versus variable % error in the identified constant. In this case 

all five constants are optimization variables in the SA algorithm. The final optimization result 

(smallest d value) is marked with a Star symbol (⁕) and an arrow in each of the plots. The 5D 

results confirm several of the conclusions from the 1D results of Figure 2.7, with differences due 

the multiple unknowns. Hence mode S0 proves the best candidate for identifying E11, followed by 

mode SH0 (first column in Figure 2.8). Modes S0 and A0 are good candidates to identify E22= E33, 

with accuracies on the order of 5% and much better performance compared to the same case for 

(a) (b) (c)

(d) (e)
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the unidirectional laminate case (second column in Figure 2.5). This is one more confirmation that 

the off-axis lamina orientations are beneficial to the comprehensive property identification by a 

single wave propagation direction. The identification of the Poisson’s ratios 12= 13 (third column 

in Figure 2.8) is best performed by modes S0 and A0, with an accuracy of ~ 5% and much better 

stability compared to the same constant for the unidirectional laminate case (third column in Figure 

2.5). The shear moduli G12 = G13 are best identified by modes SH0 and A0 as seen in the 1D 

optimization. The Poisson’s ratio in the transverse plane, 23 (fifth column in Figure 2.8) remains 

very difficult to identify accurately with any of the modes in the multidimensional optimization,  

with large errors of the final solution. The same difficulty was found for this constant in the 

unidirectional laminate case in Figure 2.5. 

 

Figure 2.8. 5D identification of lamina elastic constants in quasi-isotropic laminate. 

 

The next results are the laminate in-plane engineering properties in Figure 2.9. These 
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properties were calculated from the lamina constants following the 5D optimization procedure. 

This figure shows very good identification of all properties with many of the modes, and with an 

overall better stability compared to the same properties for the unidirectional laminate case of 

Figure 2.5. In fact, the figure shows that each of the modes considered is a good candidate for 

identifying any of the properties due to the cross-coupling provided by the off-axis lamina 

orientations. The most accurate result for the axial stiffness Ex (and Ey since it is equal to Ex for 

the quasi-isotropic layup) is obtained by S0 and SH0 (first two columns Figure 2.9); the most 

accurate result for the Poisson’s ratio xy is obtained by A0 (third column of Figure 2.9); and the 

most accurate result for the shear stiffness Gxy is obtained by SH0 (fourth column of Figure 2.9). 

 

Figure 2.9. 5D identification of axial and shear laminate engineering properties in quasi-isotropic 

laminate. 

 

The final set of results is the identification of the flexural and torsional engineering 
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properties of the laminate, shown in Figure 2.10. Again, all of the modes seem to be able to identify 

all of these properties with sufficient accuracy and stability of the solution. The most accurate 

result for the flexural rigidity Kx is obtained by SH0 (first column in Figure 2.10), The sensitivity 

of SH0 to the flexural rigidity is the results of the longitudinal-shear coupling that is, for example, 

seen in the stress profile of this mode in Fig.6 where significant xx stress components are present. 

Both S0 and SH0 give the most accurate identification of the torsional rigidity Kxy (third column in 

Figure 2.10). This is likely the result of the large xy stresses naturally present in SH0 and also seen 

in S0 through the same type of longitudinal-shear coupling in Figure 2.6.  

 

Figure 2.10. 5D identification of flexural and torsional laminate engineering properties in quasi-

isotropic laminate. 
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2.4.3. Anisotropic laminate 

The final case study was conducted on a 16-layer laminate with a lay-up of [+45/-

45/0/+45/0/-45/0/0]S, where the four 90 laminae of the previous quasi-isotropic laminate 

were replaced by 0 laminae to create full anisotropy in the global reference system. The same 

lamina properties of Table 2.1 were used. The dispersion curves and cross-sectional mode shapes 

for this anisotropic laminate are shown in Figure 2.11. The profiles are generally similar to those 

for the quasi-isotropic laminate in Figure 2.6, with some differences particularly at the location of 

the four rotated laminae. Therefore, significant coupling between in-plane longitudinal and in-

plane shear behavior (e.g. co-existence of xx and xy components in each of the modes S0, A0 and 

SH0) is again seen due to the ±45 off-axis laminae.  

The results of the 1D identification of the lamina elastic constants for this laminate are 

shown in Figure 2.12. The general conclusions are similar to those discussed for Figure 2.7 for the 

quasi-isotropic laminate, and particularly so in the specific modes that are most sensitive to specific 

constants. The most noticeable difference is the ~ twofold decrease in sensitivity for the 

identification of the transverse moduli E22= E33 (Figure 2.12(b)) due to the absence of 90 laminae. 

Hence it is harder to identify the transverse modulus in a highly anisotropic laminate using waves 

propagating in the longitudinal direction. At the same time, the increased anisotropy improves the 

sensitivity to the longitudinal modulus E11 by mode S0 (Figure 2.12(a)) as well as the sensitivity 

to the shear moduli G12= G13 by mode A0 (Figure 2.12(d)) when compared to the quasi-isotropic 

case (Figure 2.7(a) and (d)). The identification of the Poisson’s ratios 12= 13 (Figure 2.12(c)) is 

basically equivalent to the quasi-isotropic case (Figure 2.7(c)). The sensitivity to the Poisson’s 

ratio in the transverse plane 23 (Figure 2.7(e)) remains the lowest, although it remains much 

improved compared to the unidirectional laminate (Figure 2.4(e)).   
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Figure 2.11. Anisotropic laminate: SAFE results of phase velocity dispersion curves along with 

displacement, strain and stress cross-sectional profiles at 160 kHz. 

 

Figure 2.12. 1D identification of lamina elastic constants in anisotropic laminate. 
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Figure 2.13. 5D identification of lamina elastic constants in anisotropic laminate. 

 

The identification of the lamina constants in the 5D optimization analysis are shown in 

Figure 2.13. As seen in the quasi-isotropic laminate in Figure 2.8, modes S0 and SH0 confirm the 

most suitable for the identification of E11 (first column of Figure 2.13), with additional stability of 

the solution for S0 compared to the quasi-isotropic case due to the increased anisotropy. The 

identification of the transverse modulus E22 (second column in Figure 2.13), instead, worsens 

compared to the quasi-isotropic case with S0 providing accuracies of only ~ 40% and A0 providing 

a very accurate optimization minimum (to within less than 5%) but with less stability of the 

solution (more scatter).  This confirms the challenge in identifying the transverse modulus with 

longitudinal wave propagation in a highly anisotropic laminate with only few off-axis lamina 

orientations. The identification of the Poisson’s ratios 12= 13 (third column in Figure 2.13) also 

degrades compared to the quasi-isotropic case, with mode S0 providing the best performance and 
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mode A0 leading instead to a very inaccurate solution.  Interestingly, a better overall performance 

compared to the quasi-isotropic case is seen for the identification of the shear moduli G12 = G13 

(fourth column in Figure 2.13), the SH0 and the A0 modes are confirmed quite effective (with an 

even improved accuracy for the A0 solution compared to the quasi-isotropic case), and the addition 

of mode S0 as another suitable candidate for these constants. Finally, the identification of the 13 

Poisson’s ratio remains unfeasible with any of the guided modes considered, as also seen in the 

other two laminates.  

The identification of the engineering properties for the anisotropic laminate from the 5D 

optimization is shown in Figure 2.14 and Figure 2.15.  As found in the quasi-isotropic laminate, it 

is shown that the coupling provided by the off-axis laminae allow many of the modes to properly 

identify the engineering constants with an excellent level of accuracy. The main difference in the 

anisotropic laminate case is that now Ex ≠ Ey.  As in the quasi-isotropic case, identification of the 

axial stiffness Ex (first column in Figure 2.14) is best done with S0 or SH0 (accuracy less than ~ 

1%) although A0 still provides an accuracy to within ~ 5%.  The transverse stiffness Ey (second 

column in Figure 2.14) can also be identified by S0 or SH0 due to the ±45 laminae, although the 

accuracy is slightly worse compared to the quasi-isotropic case because of the fewer off-axis 

laminae. The identification of the in-plane Poisson’s ratio xy (third column in Figure 2.14) 

improves compared to the quasi-isotropic case, with very small accuracy (~1%) obtained by S0 

and SH0 and good accuracy (<5%) obtained by A0.  As for the in-plane shear stiffness Gxy (fourth 

column in Figure 2.14), mode SH0 confirms a nearly “perfect” result, with S0 and A0 also providing 

very good solutions, and even slightly more accurate than those seen in the quasi-isotropic laminate 

for these two modes.  Improvements over the quasi-isotropic case are also seen in the identification 

of the flexural rigidities Kx and Ky.  In the case of Kx, first column in Figure 2.15, SH0 is confirmed 
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as a quite suitable candidate with great accuracy (less than ~ 1%) and stability of the solution.  In 

addition, modes S0 and A0 also yields excellent results that are more accurate than what found for 

these modes in the quasi-isotropic case of Figure 2.10.  Accuracy improvements (less than 1%) 

are also seen for the identification of Ky, second column in Figure 2.15, by either mode S0 or A0 

when compared to the quasi-isotropic case.  As for the torsional rigidity Kxy, third column in Figure 

2.15, modes S0 and SH0 confirm their suitability as found for the quasi-isotropic case. In addition, 

the accuracy performance of A0 for this property improves compared to the quasi-isotropic case. 

 

Figure 2.14. 5D identification of axial and shear laminate engineering properties in anisotropic 

laminate. 
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Figure 2.15. 5D identification of flexural and torsional laminate engineering properties in 

anisotropic laminate. 

 

2.5. Discussion and Conclusions 

This paper has explored the potential for ultrasonic guided waves in the ~ 100s of kHz 

range to identify elastic properties of composite laminates commonly used in light-weight 

structures.  Guided waves exploit the plate-like geometry of most composite structural components 

to provide unique advantages in terms of large ranges (~ centimeters to ~ meters) and high 

sensitivity to both lamina-by-lamina properties and laminate engineering properties owing to the 

complex stress and strain cross-sectional distributions.  Since guided waves are largely unaffected 

by boundary conditions of the test part (as possible boundary reflections, for example, are easily 

eliminated by appropriate time gating), they lend themselves to property identification in situ on 

an actual structure. The inverse identification procedure is based on matching “true” phase velocity 
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dispersion curves to “trial” phase velocity dispersion curves obtained for a given set of elastic 

constants.  The match is here done by using a Simulated Annealing optimization algorithm.   

This study pushes the limit of composite property identification by considering waves 

propagating in a single direction of the laminate.  The three fundamental guided modes of axial 

(S0), flexural (A0) and shear-horizontal (SH0) are considered, as these are typically used in various 

NDE and SHM applications.  Each of these modes offers particular features that are attractive to 

an NDE/SHM practitioner. For example, the SH0 mode is notoriously attractive because 

nondispersive, although its transduction can be more challenging. On the other hand, the 

transduction of S0 and A0 is typically easier although the analysis is more complicated by 

dispersion. Three different laminates are considered (unidirectional, quasi-isotropic, and fully 

anisotropic).  

Contrary to what commonly assumed, guided waves propagating in one direction offer 

appreciable sensitivity to constants in the orthogonal directions. This interesting “coupling” effect 

is due to the co-existence of normal and shear stresses/strains in multiple planes, as indicated by 

the cross-sectional profiles of the guided modes, caused by the nature of the modes and the 

anisotropy of the laminate.  Not surprisingly, this coupling increases with increasing numbers of 

off-axis laminae (e.g. ±45 and 90 laminae for a 0 wave propagation direction).  The most 

obvious result is that the identification of the longitudinal lamina modulus E11 and of the laminate 

axial stiffness Ex are best achieved by modes S0 and A0 propagating along x (due to the 

predominant xx and xx components) for all of the laminates examined.  However, for the quasi-

isotropic and the anisotropic laminates, E11 and Ex can be also identified effectively by mode SH0 

propagating along x, due to the shear-normal coupling xy  - xx for this mode resulting from the 

off-axis laminae  (±45 and 90).  Similar conclusions can be drawn for the in-plane Poisson’s 
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ratios for the lamina 12=13 and for the laminate xy., since these properties depend on the same 

axial stress as the E11 and Ex moduli. Most interestingly, modes S0 and A0 propagating along x also 

show sufficient sensitivity to identify the lamina transverse modulus E22 = E33 and the laminate 

transverse axial stiffness Ey, due partly to the longitudinal-transverse coupling xx-zz  for these 

modes. This “transverse” sensitivity improves in the quasi-isotropic and anisotropic laminates due 

to the off-axis laminae.  In these two laminates, Ey can be also well identified by the SH0 mode 

due to shear-normal coupling.   

It is not surprising that the in-plane shear modulus of the lamina G12 = G13 and the in-plane 

shear stiffness of the laminate Gxy are identified well by mode SH0, due to its predominant xy 

components.  It is less obvious that, for all laminates considered, these in-plane shear moduli can 

be also identified effectively by the flexural mode A0 propagating along x due to the transverse 

shear components xz and xz (cross-sectional warping) at these high frequencies that are well 

beyond the Bernoulli-Euler beam approximation.  The lamina’s transverse Poisson’s ratio 23 

remains challenging to identify with any of the modes propagating in the x direction.  Finally, in 

analogy with the longitudinal and transverse stiffnesses Ex and Ey, the laminate axial and transverse 

flexural rigidities Kx and Ky can be effectively identified by modes S0 and A0 propagating along x 

in all laminate cases, in addition to mode SH0 in the quasi-isotropic and anisotropic laminates due 

to the normal-shear coupling resulting from the off-axis laminae.  Finally, the laminate torsional 

rigidity Kxy can be identified by either S0, A0 or SH0 for these laminates. 

This study has assumed that the same elastic constants apply to each lamina comprising 

the laminate, resulting in a 5D optimization problem.  Since SAFE considers each lamina 

independently, the laminae could be easily decoupled to extend the investigation to an 

inhomogeneous case (e.g. damage or other structural degradation affecting only some of the 
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laminae of the part). This generalization would of course also increase the dimension of the 

optimization problem.  

This study has been limited to elastic properties of the composite. It is theoretically possibly 

to extend the results to the visco-elastic property identification by considering the appropriate 

complex stiffness coefficients in the SAFE formulation [28].  

Finally, similarly to the work by Marzani and De Marchi [16], the present study has 

considered “pseudo-experimental” data as the “true” dispersion curves to which the trial curves 

were matched.  Hence the results represent quite ideal testing conditions.  In practice, the “true” 

dispersion curves would be extracted experimentally on a given part, with unavoidable 

experimental noise and errors that were not considered here. Additional work is needed for an 

experimental validation of the numerical results. 

 

2.6. Acknowledgments 

This work was funded in part by the Federal Aviation Administration Joint Center of 

Excellence for Advanced Materials (FAA Cooperative Agreement 12-C-AM-UCSD) and by the 

Federal Railroad Administration (contract # 693JJ618C000002).  

Chapter 2 is, in full, a reprint of material published in Cui, Ranting, and Francesco Lanza 

di Scalea. "On the identification of the elastic properties of composites by ultrasonic guided waves 

and optimization algorithm." Composite Structures 223 (2019): 110969. The dissertation author 

was the primary investigator and author of this paper. 

 



  

 

43 

 

2.7.  References 

[1] Tam JH, Ong ZC, Ismail Z, Ang BC, Khoo SY. Identification of material properties of 

composite materials using nondestructive vibrational evaluation approaches: A review. 

Mech Adv Mater Struct 2016;24:971–86. 

[2] Gibson RF. Modal vibration response measurements for characterization of composite 

materials and structures. Compos Sci Technol 2000;60:2769–80. 

[3] Deobald LR, Gibson RF. Determination of elastic constants of orthotropic plates by a modal 

analysis/Rayleigh-Ritz technique. J Sound Vib 1988;124:269–83. 

[4] Ayorinde EO, Gibson RF. Elastic constants of orthotropic composite materials using plate 

resonance frequencies, classical lamination theory and an optimized three-mode Rayleigh 

formulation. Compos Eng 1993;3:395–407. 

[5] McIntyre ME, Woodhouse J. On measuring the elastic and damping constants of orthotropic 

sheet materials. Acta Metall 1988;36:1397–416. 

[6] De Visscher J, Sol H, De Wilde WP, Vantomme J. Identification of the damping properties 

of orthotropic composite materials using a mixed numerical experimental method. Appl 

Compos Mater 1997;4:13–33. 

[7] Lauwagie T, Lambrinou K, Patsias S, Heylen W, Vleugels J. Resonant-based identification 

of the elastic properties of layered materials: application to air-plasma sprayed thermal 

barrier coatings. Ndt e Int 2008;41:88–97. 

[8] Frederiksen PS. Single-layer plate theories applied to the flexural vibration of completely 

free thick laminates. J Sound Vib 1995;186:743–59. 

[9] Frederiksen PS. Experimental Procedure and Results for the Identification of Elastic 

Constants of Thick Orthotropic Plates. J Compos Mater 1997;31:360–82. 

[10] Ayorinde EO. Elastic Constants of Thick Orthotropic Composite Plates. J Compos Mater 

1995;29:1025–39. 

[11] Daghia F, de Miranda S, Ubertini F, Viola E. Estimation of elastic constants of thick 

laminated plates within a Bayesian framework. Compos Struct 2007;80:461–73. 

[12] Cugnoni J, Gmu T, Schorderet A. Inverse method based on modal analysis for 

characterizing the constitutive properties of thick composite plates. Comput Struct 

2007;85:1310–20. 

[13] Hwang S, Wu J, He R. Identification of effective elastic constants of composite plates based 

on a hybrid genetic algorithm. Compos Struct 2009;90:217–24. 

[14] Cunha J, Cogan S, Berthod C. Application of genetic algorithms for the identification of 



  

 

44 

 

elastic constants of composite materials from dynamic tests. Int J Numer Methods Eng 

1999;45:891–900. 

[15] Vary A. Ultrasonic characterization of material properties. In: Moore P, Workma G, Kishoni 

D, editors. Nondestruct. Test. Handb. Ultrason. Test., The American Society for 

Nondestructive Testing; 2007, p. 305–56. 

[16] Marzani A, De Marchi L. Characterization of the elastic moduli in composite plates via 

dispersive guided waves data and genetic algorithms. J Intell Mater Syst Struct 

2012;24:2135–47. 

[17] Balasubramaniam K, Rao NS. Inversion of composite material elastic constants from 

ultrasonic bulk wave phase velocity data using genetic algorithms. Compos Part B Eng 

1998;29:171–80. 

[18] Vishnuvardhan J, Krishnamurthy C V, Balasubramaniam K. Genetic algorithm 

reconstruction of orthotropic composite plate elastic constants from a single non-symmetric 

plane ultrasonic velocity data. Compos Part B Eng 2007;38:216–27. 

[19] Staszewski W, Boller C, Tomlinson GR. Health monitoring of aerospace structures: smart 

sensor technologies and signal processing. John Wiley & Sons; 2004. 

[20] Rose JL. Ultrasonic guided waves in solid media. Cambridge university press; 2014. 

[21] Giurgiutiu V. Structural health monitoring (SHM) of aerospace composites. Polym. 

Compos. Aerosp. Ind., Elsevier; 2015, p. 449–507. 

[22] Balasubramaniam K. Inversion of the ply lay-up sequence for multi-layered fiber 

reinforcedcomposite plates using genetic algorithm. Nondestruct Test Eval 1998;15:311–

31. 

[23] Vishnuvardhan J, Krishnamurthy C V, Balasubramaniam K. Genetic algorithm based 

reconstruction of the elastic moduli of orthotropic plates using an ultrasonic guided wave 

single-transmitter-multiple-receiver SHM array. Smart Mater Struct 2007;16:1639–50. 

[24] Vepakomma R, Janapati V, Balasubramaniam K. Global material characterization of 

composite structures using Lamb wave STMR array technique. AIP Conf. Proc., 2010, p. 

1812–9. 

[25] Glushkov E, Glushkova N, Eremin A. Elastic guided wave based assessment of laminate 

composite material constants. 11th Eur Conf Non-Destructive Test (ECNDT 2014) Prague, 

Crech Repub 2014. 

[26] Hosten B, Castaings M, Tretout H, Voillaume H. Identification of composite materials 

elastic moduli from Lamb wave velocities measured with single sided, contactless ultrasonic 

method. AIP Conf Proc 2001;557:1023–30. 

[27] Hayashi T, Song WJ, Rose JL. Guided wave dispersion curves for a bar with an arbitrary 



  

 

45 

 

cross-section, a rod and rail example. Ultrasonics 2003;41:175–83. 

[28] Bartoli I, Marzani A, Lanza di Scalea F, Viola E. Modeling wave propagation in damped 

waveguides of arbitrary cross-section. J Sound Vib 2006;295:685–707. 

[29] Marzani A. Time-transient response for ultrasonic guided waves propagating in damped 

cylinders. Int J Solids Struct 2008;45:6347–68. 

[30] Loveday PW. Simulation of piezoelectric excitation of guided waves using waveguide finite 

elements. IEEE Trans Ultrason Ferroelectr Freq Control 2008;55:2038–45. 

[31] Ryden N, Park CB. Fast simulated annealing inverion pavement using phase-velocity 

spectra. Geophysics 2006;71:R49–58. 

[32] Szu H, Hartley R. Fast simulated annealing. Phys Lett A 1987;122:157–62. 

[33] Mosegaard K, Sambridge M. Monte Carlo analysis of inverse problems. Inverse Probl 

2002;18:R29–54. 

[34] Laarhoven P, Aarts E. Simulated Annealing: Theory and Applications. Springer 

Science+Business Media; 1989. 

[35] Tsallis C, Stariolo DA. Generalized simulated annealing. Phys A Stat Mech Its Appl 

1996;233:395–406. 

[36] Ingber L. Very Fast Simulated Re-annealing. Math Comput Model 1989;12:967–73. 

[37] Tong L, Soutis C. Recent Advances in Structural Joints and Repairs for Composite 

Materials. Springer Science & Business Media; 2013. 

[38] Matt H, Bartoli I, Lanza di Scalea F. Ultrasonic guided wave monitoring of composite wing 

skin-to-spar bonded joints in aerospace structures. J Acoust Soc Am 2005;118:2240–52. 

  



  

 

46 

 

Chapter 3.  Identification of elastic properties 

of composites by inversion of ultrasonic 

guided wave data 

 

3.1. Abstract 

Background: Given the inherent manufacturing variabilities and potential for in-service 

damage of composite parts, the identification of the elastic properties of composites is important 

to ensuring the safety and the proper performance of the part.  Objective: The primary objective 

of this manuscript is to determine, nondestructively, the elastic properties of composite parts, 

whether as in-situ components that are part of a larger system, or as laboratory coupons. Methods: 

The proposed technique is based on multimode and dispersive ultrasonic guided waves 

propagating along a single direction, and the inversion of their phase velocity dispersion curves. 

The inversion procedure utilizes an efficient Semi-Analytical Finite Element method to solve the 

forward problem, and a Simulated Annealing algorithm as the optimization tool. The method is 

particularly well-suited for the characterization of composite laminates. In particular, the 

manuscript presents experimental evidence of the effectiveness of this technique, that was 

suggested earlier in a solely numerical work previously conducted by the authors. Results: The 

test results show that reasonable accuracy can be obtained in the identification of four in-plane and 

three out-of-plane engineering constants of a quasi-isotropic laminate and a highly anisotropic 

laminate utilizing the single wave propagation direction. Non-obvious sensitivities of certain wave 

modes to particular constants are explained on the basis of stress coupling phenomena that are 
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revealed by the SAFE wave propagation models. Conclusions: The study gives experimental 

evidence of the suitability of ultrasonic guided wave inversion schemes to identify the engineering 

constants of laminated composites, with the potential to properly characterize parts in-situ, because 

of the insensitivity of guided waves to boundary conditions located outside of the transmitter-

receiver path.  

 

3.2. Introduction 

Fiber-reinforced composite materials are widely used in high performance and light weight 

structures, such as modern aircraft. However, manufacturing variabilities and changing in-service 

conditions make it challenging to reliably know the elastic properties of a composite part in service. 

Hence many techniques have been historically devoted to the identification of the elastic properties 

of composites. This kind of material characterization can also be useful to detect the presence of 

potential structural damage in these components. Of particular interest to this paper are non-

destructive techniques that can be applied in-situ on an actual structure in-service, i.e. without 

requiring disassembly or sectioning for off-line material characterization tests. 

The most common strategies for property identification, as reviewed by Tam et al. [1], 

consist of matching experimental data with theoretical or numerical predictions, usually by means 

of optimization techniques. One method that is often used for this purpose is the vibration test that 

is quite sensitive to the “effective” or “engineering” elastic constants of composite laminates. 

Vibration tests have been employed to identify four in-plane elastic constants (Ex, Ey, Gxy, and xy) 

on thin laminates [2-8]. Further investigations including the through-thickness shear behavior have 

been conducted to extend the identification to the out-of-plane shear moduli [9-13]. Since they 
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typically operate on the “global” dynamic behavior of the part (i.e. in a relatively low frequency 

range, e.g. < 10 kHz), the vibration behavior is highly dependent on the boundary conditions of 

the test part, with the free-hanging condition usually utilized in the laboratory [14]. Hence the 

vibration techniques may be challenging to apply to components that are part of a larger structures, 

i.e. in-situ, where the boundary conditions may be difficult to accurately replicate in the 

accompanying theoretical or numerical models.  

A related, but significantly different property identification approach utilizes elastic waves 

propagating in the ultrasonic range (> 20 kHz). These waves are only sensitive to the material 

properties of the part between the wave transmitter and the wave receiver, and hence insensitive 

to the boundary conditions outside of the wave propagation path (i.e. suitable for in-situ property 

characterization). Ultrasonic guided waves (that are multimode and dispersive) are particularly 

suited to probing plate-like composite parts where the geometry can effectively “guide” the wave 

through long distances, that range typically from a few centimeters to a few meters [15-17]. 

Previous studies have explored ultrasonic guided waves for composite property identification in 

both laboratory coupons and in-situ structures [18,19]. The ability of ultrasonic guided waves to 

propagate long distances at high frequencies ensures a potentially high sensitivity to both “global” 

(effective or engineering) elastic constants of the laminated plate, and “local” elastic constants of 

the individual laminae (lamina-by-lamina properties), as recently shown by the authors of the 

present paper in an exclusively numerical work [20]. 

A review article on the use of guided waves for composite materials characterization 

appears as early as in 1997 [21]. This review covers several aspects pertaining to guided wave 

generation and detection, dispersion curve calculation and experimental demonstrations. 

Balasubramaniam [22] first inverted the properties of a cross-ply composite plate by minimizing 
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the difference between experimentally extracted wave dispersion curves and numerical predictions 

from a Thomson-Haskell model. He used a Genetic Algorithm to speed up the inversion process. 

Later,  Castaings et al. [23,24] applied the wave dispersion curve optimization to a unidirectional 

composite plate, further identifying multiple properties. Vishnuvardhan et al. [25] proposed an 

array of transducers, with one transmitter encircled by multiple receivers, to identify nine elastic 

constants of an orthotropic plats using the Christoffel equation as the forward model. Vepakomma 

et al. [26] estimated elastic constants in composites using a similar approach.  Glushkov et al. [27] 

used elasto-dynamic theories for layered media (Green’s functions) as the forward model of group 

velocity dispersion curves to identify the engineering constants of unidirectional and cross-ply 

laminates. Sale et al. [28] also identified the elastic constants of isotropic plates utilizing group 

velocity dispersion curves of guided waves as well as applying an upgraded Simplex optimization 

method. Gsell and Dual [29] estimated the elastic constants of anisotropic cylindrical shells by 

matching experimental phase velocities of non-axis-symmetric guided waves to theoretical 

velocities computed using Hamilton’s principle. The forward theoretical models employed by the 

studies above contain either transcendental functions or closed-form solutions whose calculation 

is time-consuming, especially when the problems involve complicated geometries, such as 

multilayer composite materials. Since the inverse property identification procedure requires 

multiple iterations of these models, computational efficiency (and accuracy) are quite relevant. 

The Semi-Analytical Finite Element (SAFE) method is a particularly efficient tool to 

calculate phase or group velocity dispersion curves of multilayered composite laminates [30-32]. 

The SAFE method only requires the FE discretization of the cross-section of the waveguide and 

exploits theoretical harmonic functions along the waveguide’s lengthwise direction. Compared 

with the traditional 3D FE technique, SAFE requires only a 2D or 1D discretization, leading to 



  

 

50 

 

less stringent computational requirements for accurate solutions at high frequencies or small 

wavelengths. Moreover, SAFE establishes a direct relation between the lamina-to-lamina elastic 

constants and the complex guided wave dispersive behavior at the level of the global laminate. 

Marzani and De Marchi [19] exploited these features to identify the elastic constants of an isotropic 

plate, a unidirectional laminate, and a cross-ply laminate using SAFE as the forward model. They 

utilized trial group velocity curves from SAFE to match “pseudo-experimental” results (solutions 

from SAFE with the “true” elastic constants) by using a Genetic Algorithm to accelerate 

convergence. Their study utilized axial and flexural guided waves propagating in multiple 

directions to extract the different terms of the stiffness matrix. In a recent study [20], the authors 

of the present paper utilized SAFE, coupled with a Simulated Annealing (SA) optimization 

algorithm, to identify elastic constants of various composite laminates by matching phase velocity 

dispersion curves extracted in a single wave propagation direction. That work was purely 

numerical (i.e. experimental curves were simulated numerically by using “true” constants in the 

model). That study highlighted interesting coupling mechanisms in the stress/strain distributions 

associated to the fundamental axial (S0), flexural (A0) and shear-horizontal (SH0) guided modes, 

that can actually enable the identification of most of the elastic constants (both at the lamina level 

and the laminate level) using the single wave propagation direction.  

The present study extends the numerical work by Cui and Lanza di Scalea [20] to actual 

parts tested experimentally. In particular, guided wave dispersion data were measured using the 

known 2D Fast-Fourier Transform (2D FFT) method [33] for an isotropic (aluminum) plate, a 

quasi-isotropic composite laminate, and an anisotropic composite laminate. The property inversion 

process was conducted by iterating SAFE dispersion solutions corroborated by a SA optimization 

algorithm of the type previously used to identify properties of pavements from inversion of 
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Rayleigh wave data [34]. The first test case utilized the flexural mode (A0) and the axial mode (S0), 

respectively, to identify the Young’s modulus and Poisson’s ratio of the aluminum plate. The 

second test case verified the sensitivity found in the previous paper [20] of the shear-horizontal 

mode (SH0) in a quasi-isotropic laminate. In particular, the tests confirmed that the engineering 

(effective) laminate constants can be identified by only launching guided waves along a single 

direction. The third test case looked at a fully anisotropic laminate probed by both the A0 mode 

and the S0 mode, and identified best practices of using the multiple modes propagating along the 

single direction for accurate property identification.  

 

3.3. Experimental procedure for measuring phase 

velocity dispersion curves 

The procedure to extract the phase velocity dispersion curves of guided waves in the test 

plates involved a contact piezoelectric transducer as the wave transmitter and a non-contact air-

coupled transducer as the wave receiver (Figure 3.1). The non-contact receiver allowed easy 

scanning along a linear direction, as well as consistency of receiver response, as required by the 

2D FFT method. The transmitter was an Olympus longitudinal narrowband crystal, 0.5 in diameter, 

centered at 1 MHz and with a 1MHz -6 dB bandwidth. It was coupled to the specimens using 

conventional ultrasonic couplant. The signal excitation was provided by a square-wave ultrasonic 

pulser (Panametrics) generating a -200 V negative pulse. The air-coupled receiver was a broadband 

micro-machined capacitive device (Micro-Acoustics Corporation) with a 10 mm element size, and 

a rather flat frequency response between DC and 2 MHz. The receiver was placed at a lift-off 

distance of about 5 mm from the test plates. 
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Figure 3.1. Experimental setup for extraction of phase velocity dispersion curves from the test 

plates. 

 

The receiver was scanned by a micrometer-controlled platform across 50 different 

positions with a 0.5 mm spacing, starting from a distance from the transmitter of 100 mm.  An 

ultrasonic preamplifier and a 50 kHz high-pass filter were used prior to collecting the signals in an 

oscilloscope. The signals at each receiver position were averaged 200 times to eliminate incoherent 

noise. Figure 3.1(b) shows the transducers on the aluminum plate; Figure 3.1c shows them on one 

of the composite laminate plates. The effective frequency content that was measured in the 

experiments depended on various parameters, including the wave damping of each of the test 

materials. The specific bandwidths successfully measured can be seen in the dispersion curve plots 
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shown later for each of the specimens. The receiver angle was fixed to ~ 6 deg in all cases. It was 

found that this fixed angle allowed for wave detection with sufficient Signal-to-Noise ratios in a 

rather broad frequency range.  

 

3.4. Property identification algorithm 

3.4.1. SAFE wave propagation model  

As shown in Figure 3.2(a) and discussed in the Introduction section, SAFE requires that 

the plate is only discretized by finite elements in the cross-section (the y-z plane), and harmonic 

functions are employed in the wave propagation direction, x. For the case considered, the 

discretization is actually only required on a line (1D). Based on the principle of virtual work, the 

governing equation is represented in the volume V of the waveguide as [30]: 

( ) 0
T T

V V

dV dV  + = u u ε σ          (3.1) 

=σ Qε            (3.2) 

where u is the displacement vector,  is the strain vector,  is the stress vector, T is the 

transpose operation, ∎̈ serves as the second derivative w.r.t. time, and Q is the stiffness matrix. A 

multilayered composite laminate of arbitrary lay-up can be easily studied in its global reference 

system by utilizing the rotation matrices R1 and R2 for the “local” stiffness matrix of each 

constituent lamina [31] (Figure 3.2(b)): 

1
1 2Q R Q R

−=           (3.3) 
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where Q  is the stiffness matrix of the entire laminate in the global reference system. 

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1) yields to the following eigenvalue problem: 

2[ ] M− =H L U 0           (3.4) 

where H and L are the complex matrices containing stiffness terms, mass terms, and 

frequency   is the total degrees of freedom of the FE mesh;   is the eigenvalue (the 

wavenumber); and U is the corresponding eigenvector [30]. By looping over each frequency  the 

eigensolver offers 2M wavenumbers ’s  and eigenvectors U. The phase velocity is calculated by 

cph = /real, for each combination (  ), where real is the real part of the wavenumber.   

 

Figure 3.2. (a) SAFE representation of guided wave propagation. (b) Local (lamina) and global 

(laminate) coordinate system arrangements. (c) Classical Lamination Theory (CLT) load 

convention. 
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3.4.2. Identification of global “engineering” laminate properties 

The SAFE model requires, as inputs, the elastic constants of each lamina comprising the 

laminate (along with each lamina direction). Hence the property identification algorithm directly 

estimates the lamina constants. Classical Lamination Theory (CLT) [35] can be used to calculate 

the laminate’s engineering properties, including four in-plane properties (axial stiffness along x, 

Ex; axial stiffness along y, Ey; in-plane Poisson’s ratio, vxy; and in-plane shear stiffness, Gxy) and 

three out-of-plane properties (flexural rigidity around x, Kx; flexural rigidity around y, Ky; and 

torsional rigidity, Kxy): 

10

1

0

0

NAε

Mκ D

−

−

    
=     

       

         (3.5) 

In the above relation, 0 is the strain vector, including in-plane strain and shear strain,  

contains out-of-plane curvature and twist, N and M are vectors containing the external loads, and 

A and D are matrices calculated from lamina stiffness terms in the global reference system. Proper 

inversion of the above equation allows to calculate each engineering laminate constant from the 

lamina stiffness terms (see, e.g. Ref. [20]). 

 

3.4.3. Simulated Annealing optimization  

The general workflow of the property identification is schematized in Figure 3.3. The 

identification is achieved by matching the experimental phase velocity dispersion curves for the 

unknown material (cph,exp) to simulated curves predicted by the SAFE forward model by iterating 

the lamina elastic constants (cph,pred). The objective function to minimize is a discrepancy metric 

defined as: 
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where N is the number of points used to discretize the dispersion curves.  

The SA algorithm is employed to accelerate the determination of the optimum state as 

given by: 
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where T is the current temperature, and η1 and η2 are two uniformly random numbers in [-

1, 1].  

Revisiting Figure 3.3, the initiated variables (Z0) and corresponding intervals (Z0) are 

chosen as the first accepted transition passing through SAFE for the calculation of the dispersion 

curves. The second iteration is Z0+Z0. Thus, the first two discrepancies (d’s) are calculated to 

make the decision of either accepting the current iteration or returning to the previous transition 

for another attempt with the same intervals. The Metropolis Rule (MR) [36] is used to extend the 

searching range to all the most probable variables, even if the mismatch value is higher than the 

latest accepted transition. In turn, this enhances the ability to locate the global minimum of the 

objective function. In addition, a Cauchy distribution is used in the perturbation scheme to help 

circumvent risks of local minima. The two control parameters of the SA algorithm, the 

“temperature” (T0) and the “cooling coefficient” (), are set at 30℃ and 0.99, respectively. These 

two values were chosen as a good compromise between accuracy and computational efficiency 
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[34]. The SA algorithm is run three times with 1000 iterations per run, which is expected to cover 

the meaningful and necessary possibilities based on the characteristics of the Cauchy distribution 

[37].  

 

 

Figure 3.3. The property identification workflow using SAFE as the forward model and Simulated 

Annealing optimization. 
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3.5. Experimental property identification: case studies 

3.5.1. Aluminum plate 

The first test case consisted of an aluminum plate with a thickness of 1.5 mm, 

manufacturer’s Young’s modulus E = 68.9 GPa, Poisson’s ratio  = 0.33 and density  = 2700 

kg/m3. The objective was to identify the two independent isotropic elastic constants (E and ) from 

the guided wave dispersion inversion strategy described above. As shown in Figure 3.4, the guided 

waves are propagating along direction x, and (y, z) is the plate’s cross-sectional plane.  

The waves were excited by the contact PZT transmitter and received by the non-contact 

air-coupled receiver that was scanned along the various positions according to the procedure in 

Section 2. Since both axial (S0) and flexural (A0) Lamb modes generally contain out-of-plane 

displacement components at the plate’s surface [16], both modes are excited by the transmitter. 

The air-coupled receiver was oriented at an angle of about 4° from the normal to the plate, which 

gave sensitivity to both S0 and A0 modes according to phase-matching Snell’s law [16]. A typical 

recorded waveform is shown in Figure 3.4, clearly indicating successful recording of the faster S0 

mode and the slower A0 mode. Figure 3.4. also shows the SAFE calculated displacement, strain, 

and stress cross-sectional profiles at a frequency of 500 kHz, for the two fundamental Lamb modes 

A0 and S0 in that plate. The displacement profiles are the first M elements of eigenvector (U) in 

Eq. (3.4). The strain profiles were obtained through spatial differentiation of the displacements. 

The stresses were obtained from the material constitutive law. The profiles follow known behavior 

of these Rayleigh-Lamb waves, with symmetric horizontal displacement ux, strain xx, and stress 

xx for S0 (indicating its axial nature), and antisymmetric ux, xx, and xx for A0 (indicating its 

flexural nature). 
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Figure 3.4. Aluminum plate: a typical experimental waveform, along with SAFE results of 

displacement, strain, and stress cross-sectional profiles for S0 and A0 guided modes at 500 kHz. 

 

The property identification analysis was conducted using the A0 and S0 modes separately. 

Phase velocity dispersion curves were extracted experimentally using the 2D-FFT technique. Time 

gating was used to separate the two modes. The predicted dispersion curves were calculated by 

SAFE using the set of “trial” properties according to Section 3. Young’s modulus (E) and 

Poisson’s Ratio () were considered as two unknown independent variables optimized 

simultaneously (2D inversion).  

The 2D property identification results are shown in the first two columns of Figure 3.5, in 

terms of the phase velocity discrepancy metric d of Eq. (6) versus the variable % error (identified 

constants relative to true constants). The final outcome of the SA optimization (smallest d value) 

is marked by a Star symbol (*) and an arrow in each plot. The closer the Star symbol is to the 0 

value on the x-axis, the more accurate the answer is (perfect accuracy would be % error = 0). 

Similarly, the closer the Star symbol is to the 0 value on the y-axis, the more correlation exists 
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between the dispersion curves of a particular guided mode and a specific property. Also, these 

plots show ranges for d that are between 1 and 5 (corresponding to a zoom-in around the minimum 

of the objective function) to better evaluate the relative identification performance of the various 

modes. In the first column of Figure 3.5, the S0 mode demonstrates a good identification of 

Young’s modulus with an accuracy error less than 5%. This is expected owing to the dominant xx 

and xx components of the S0 mode shown in the cross-sectional profiles of Figure 3.4. The A0 

mode (that also features significant xx and xx components in Fig. 4) is also effective in identifying 

E, although it exhibits a smaller sensitivity to this property (slope of the optimization curves) 

compared to S0. The identification of the Poisson’s ratio - second column in Figure 3.5 - becomes 

more challenging, with an increasing scatter of the optimization results for both modes. It therefore 

appears that the sensitivity of the dispersion curves to the material Poisson’s ratio is less than that 

to the material Young’s modulus. Nevertheless, S0 mode achieves the final answer for  with a ~ 

15% error, although the sensitivity is smaller than that for E. The final column of Figure 3.5 

compares the experimental phase velocity dispersion curves to the SAFE predicted curves for the 

final optimization step. It is seen that both modes can achieve a satisfactory match in a quite broad 

frequency range, confirming the sufficiency of the inversion process. The better match exhibited 

by the S0 mode curves compared to the A0 mode curves is consistent with the improved 

identification performance for both E and .   
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Figure 3.5. 2D identification of Young’s modulus and Poisson’s ratio of the isotropic plate, along 

with a comparison of phase velocity dispersion curves between experiment and optimum SAFE 

prediction. 

 

3.5.2. Quasi-Isotropic laminate 

The second test case considered a quasi-isotropic, 16-layer T800/3900-2 graphite-epoxy 

laminate with a lay-up of [+45⸰/-45⸰/0⸰/+45⸰/90⸰/-45⸰/0⸰/90⸰]S . The “true” individual lamina 

properties were taken from Tong and Soutis [38] for this material, and are shown in Table 1.  There 

are only five independent lamina constants given the transversely isotropic behavior.  Material 

density was 1550 kg/m3 and the total laminate thickness was 2.6 mm.  From CLT using the explicit 

expressions in Ref. [20], the “true” laminate engineering constants were calculated as: axial 

stiffness along x, Ex=  62.11 GPa;  axial stiffness along y, Ey =62.11 GPa; in-plane Poisson’s ratio, 
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vxy =0.30; in-plane shear stiffness, Gxy= 23.9 GPa ; flexural rigidity around x, Kx = 78.82 N∙m2; 

flexural rigidity around y, Ky = 57.85 N∙m2; and torsional rigidity, Kxy= 47.00 N∙m2. 

 

Table 3.1 Single lamina elastic constants (T800/3900-2) for the quasi-isotropic laminate (from Ref. 

[38]). 

Constant E11 E22 E33 12 13 23 G12 G13 G23 

Value (GPa) 160.08 8.97 8.97 0.28 0.28 0.36 6.21 6.21 3.30 

 

This case is shown in Figure 3.6(a), indicating the local lamina coordinate system (1, 2, 3) 

and the global laminate coordinate system (x, y, z). The guided waves are propagating along the x 

global direction.  The objective was to identify the laminate engineering constants from the 

optimization algorithm.  The experimental setup and procedure were the same as adopted for the 

previous aluminum plate case.  A typical waveform recorded from the quasi-isotropic composite 

plate is shown in Figure 3.6(b).  Comparing this waveform to the recording from the aluminum 

plate (Figure 3.4), it can be seen that only a single wave mode, rather than two separate modes, is 

detected in the composite.  Time of flight extraction reveals this mode to be the shear-horizontal 

SH0, that for composites is a hybrid mode with concurrent normal and shear stresses [16]. Figure 

3.6(c) shows the SAFE-predicted cross-sectional mode shapes for this mode in terms of 

displacement, strain, and stress profiles at 400 kHz.  Comparing again with the profiles of the 

isotropic plate, the composite laminate exhibits significant “jumps”, more evident in the strain and 

stress profiles, as a result of the different lamina orientations. In addition, besides the expected 

dominant transverse shear stress xy for the SH0 mode, a strong shear-normal coupling exists with 

the appearance of significant normal stresses xx and zz.  This coupling is absent in isotropic plates 
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where the SH0 mode contains solely shear stresses (pure shear case).  The presence of the out-of-

plane components zz and zz at the laminate’s surface explains why this mode is efficiently 

transmitted and received by the experimental setup adopted [24]. It is also possible that the 

relatively large thickness of the laminate (2.6 mm) is partly responsible for the activation of the 

SH0 mode. The previous Ref. [24] also found this mode activated by air-couped transducers in a 

laminate of comparable thickness (3.2 mm).   

 

Figure 3.6. Quasi-isotropic laminate: (a) the lay-up arrangement; (b) a typical experimental 

waveform; (c) SAFE results of displacement, strain and stress cross-sectional profiles for the SH0 

guided mode at 400kHz. 

 

As discussed above, the optimization algorithm first identifies the five independent lamina 

constants given as inputs to the SAFE model, i.e. E11, E22 = E33, 12 = 13, G12 = G13, and G23= 

E33/(2*(1+23)).  The optimization was conducted for all five constants simultaneously (5D 

inversion). For each set of five lamina constants, CLT was then used to calculate the seven laminate 



  

 

64 

 

engineering constants (in plane properties Ex, Ey, vxy and Gxy;  and out-of-plane properties Kx, Ky 

and Kxy) as discussed in Section 3.2. 

The results of the 5D inversion are shown in Figure 3.7 in terms of the phase velocity 

discrepancy d versus the variable % error in the identified constants.  The search range was set to 

+/- 50% w.r.t the true values.  The final optimization result (smallest d value) is also marked with 

a Star symbol (*) and the arrow in the plots. It should be remembered that these results used a 

single guided wave mode (SH0) propagating along a single direction (x).  The plots show that all 

of the seven constants can be identified with a reasonable degree of accuracy.  A very good result 

is obtained, as expected, for properties directly along the wave propagation direction (i.e. Ex and 

Kx in Figure 3.7(a)(e)), where the final identification brings only a 5% error. The sensitivity of SH0 

to these properties is due to the coupling with the normal stress components (xx and xx) as 

discussed in Figure 3.6(c).  As for the constant in the other direction, Ky in Figure 3.7(f) (Ey is 

numerically equal to Ex for this quasi-isotropic layup), the final optimum is slightly worse but still 

within a reasonable ~10% error. This is quite remarkable considering that this property is in a 

direction orthogonal to the wave propagation direction.  This sensitivity is due to the strain stress 

couplings previously predicted in the numerical work of Ref. [20].  The identification of the shear 

stiffness Gxy (Figure 3.7(d)) presents a nearly perfect result with only ~1% error, owing to the 

naturally dominant transverse shear component xy of SH0 as shown in Figure 3.6(c). The final 

comparison between the experimental dispersion curve and that of SAFE with the optimized 

constants is shown in Figure 3.7(h). The good match confirms the suitability of this mode for the 

inversion process. 
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Figure 3.7. 5D identification of engineering constants of the quasi-isotropic laminate by the SH0 

mode. 

3.5.3. Anisotropic laminate 

The final test case considered an 8-layer, T300/5208 graphite-epoxy laminate with a lay-

up of [0°/-45°/+45°/0°]S, which is of course fully anisotropic. This laminate had a 1 mm thickness 

and a density of 1530 kg/m3.  The same laminate was the subject of an earlier work by the present 

research group [39]. The “true” lamina constants taken from that work are shown in Table 2.   

Table 3.2. Single lamina elastic constants (T300/5208) for the anisotropic laminate (from Ref. 

[39]). 

Constant E11 E22 E33 12 13 23 G12 G13 G23 

Value (GPa) 132.14 9.06 9.06 0.25 0.25 0.59 4.55 4.55 2.86 
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Figure 3.8. Anisotropic laminate: the lay-up arrangement; typical signal in the experiment; SAFE 

results of displacement, strain and stress cross-sectional profiles of the S0 mode at 400 kHz and 

the A0 mode at 200 kHz. 

 

A typical waveform measured from this plate is shown in Figure 3.8.  Interestingly, the 

signal shows an excellent detection of the two modes, the faster axial (S0) and the slower flexural 

(A0), similarly to the measurements on the isotropic aluminum plate (Figure 3.4). The SAFE 

displacement, strain, and stress cross-sectional profiles of these two modes at certain frequencies 

are also shown in Figure 3.8. These profiles suggest the more complex coupling phenomena 

between normal and shear variables compared to the isotropic plate in Figure 3.4. In particular, 

significant coupling between in-plane longitudinal and in-plane shear behavior is observed (i.e. 

co-existence of xx and xy for both A0 and S0 modes). This is a result of the ±45⸰ off-axis laminae 

as observed for a similar laminate in the earlier numerical work by the authors [20]. As for the 

previous quasi-isotropic laminate, the inversion algorithm identifies first the five independent 
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lamina properties in a 5D inversion scheme.  The laminate engineering properties are then 

calculated from CLT. In this case (anisotropic laminate), however, Ex  ≠ Ey.  

 

Figure 3.9. 5D identification of engineering properties of the anisotropic laminate by the A0 mode. 

 

Figure 3.9 shows the 5D identification result utilizing solely the A0 mode propagating 

along direction x.  Similarly to what found in the quasi-isotropic laminate, the coupling provided 

by the off-axis laminae (± 45⸰) helps the single wave propagation direction to identify all of the 

engineering constants with a reasonable level of accuracy.  However, the identification results for 

the anisotropic laminate with A0 is slightly worse than that for the quasi-isotropic laminate with 

SH0. Nevertheless, the constants Ex and Kx are reasonably identified with a ~10% error of the 

optimum solution.  Ky is also identified with the same level of error. The torsional rigidity (Kxy) is 
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actually better identified than in the quasi-isotropic laminate, with only a 2% error. The Poisson’s 

ratio xy presents some challenges in identification, consistently with some of the earlier results. 

The sensitivities of the other constants (slopes of the curves) is quite similar.  

 

Figure 3.10. 5D identification of engineering properties of the anisotropic laminate by the S0 mode. 

 

The next analysis was conducted to study the sensitivity of the S0 mode to the laminate 

constants. The results are shown in Figure 3.10.  Compared to the performance by the A0 mode, 

one of the most noticeable differences for S0 is the excellent identification of Ex and Kx (< 5% 

error), as a result of the dominant normal stress xx in the axial mode.  Interestingly, the transverse 

constants Ey and Ky show a worse result compared to A0. The identification of the Poisson’s ratio 

xy remains the most challenging, with an error as high as ~25%. 
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Figure 3.11. 5D identification of engineering properties of the anisotropic laminate by both A0 and 

S0 modes. 

 

The final analysis combined the dispersion results of A0 and S0 modes to investigate 

whether the simultaneous match of the two modes can be beneficial to the laminate property 

identification.  The results of this combination are shown in Figure 3.11. In this case, Ex and Kx 

are identified perfectly with a ~ 0% error (Figure 3.11(a) and (e)), since both A0 and S0 have a 

significant component of xx.  The in-plane shear stiffness Gxy (Figure 3.11(d)) is also identified 

more accurately than with any one of the modes considered separately, owing to the xx - xy  

coupling existing in both A0 and S0 modes.  The Poisson’s ratio vxy (Figure 3.11(c)) is also 

identified more accurately by the two-mode combination, with a ~10% error. The transverse 

constants, Ey (Figure 3.11(b)) and Ky (Figure 3.11(f)), achieve better identification than the 



  

 

70 

 

individual S0 mode.  The concluding comparison between the experimental and the numerical 

dispersion curves of Figure 3.11(h), where both modes show a good match, further confirms the 

opportunity to combine the modes for a comprehensive laminate property identification. 

 

3.6. Discussion and Conclusions 

This paper presents an experimental validation of using guided wave dispersion curves to 

identify the elastic properties of composite laminates. The property identification method involves 

measuring phase velocity dispersion curves via a 2D-FFT method and matching these curves to 

SAFE-predicted curves through a Simulated Annealing optimization algorithm. Of interest here is 

to determine, experimentally, the effectiveness of a single guided wave propagation direction to 

identify global “engineering” constants of the laminate, both in the wave propagation direction 

and in the transverse direction.   

Results were obtained for an isotropic plate, a quasi-isotropic composite laminate, and an 

anisotropic composite laminate.  It was shown that typical guided modes used to inspect these 

components, i.e. the S0, A0 and the SH0 modes, are indeed quite sensitive to the elastic constants. 

In particular, interesting normal-shear coupling phenomena occurring in the composites due to the 

off-axis laminae impart sensitivity of the single wave propagation to various properties, including 

shear moduli and stiffnesses along orthogonal directions.  In particular, the SH0 mode is shown to 

effectively identify all of the seven engineering constants of the quasi-isotropic laminate (in plane 

properties Ex, Ey, vxy and Gxy; and out-of-plane properties Kx, Ky and Kxy) with reasonable 

accuracies below ~10% errors. The S0 and A0 modes were also effective in identifying the 

constants of the anisotropic laminate, although vxy and Ky present the least accuracy.  A better 
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overall identification for the anisotropic laminate was obtained when combining the dispersion 

curves of S0 and A0 in a “joint” optimization scheme.  

Overall, the experimental results from this paper corroborate the conclusions from the 

earlier numerical work of Cui and Lanza di Scalea [20], indicating that guided waves in a single 

wave propagation direction can indeed be a reasonable tool for property identification of 

multilayered composite laminates. This method can be applied to structural components in-situ, 

with little or no regard for the boundary conditions (as long as these boundary conditions do not 

affect the wave propagation path between the transmitting and the receiving transducers). 

The SAFE analysis utilized as the forward problem assumed that all the laminae 

comprising the laminate had the same properties.  This assumption can be reasonably adopted in 

the case of undamaged laminates.  On the other hand, the SAFE discretization could of course 

allow to treat each individual lamina separately (i.e. with different elastic constants).  While this 

approach would clearly increase the computational burden of the inversion algorithm (by 

increasing the number of optimization variables), it would allow, for example, to identify damage 

or material degradation that affects only a certain thickness of the laminate.   

By their very nature, guided wave measurements “average” the material behavior along the 

wave propagation path. Therefore, localized changes in properties, if their spatial extent is 

substantially smaller than the transmitter-receiver distance, might be difficult to resolve. 

Other suitable wave receivers could have been selected for this application. This includes 

the use of a laser vibrometer, whose broadband characteristics and pointwise probing would make 

it an attractive option. An interesting aspect that could be addressed in a future paper is the role of 

measurement uncertainties, for example measurement repeatability. This analysis could be carried 
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out by repeating the measurements at different points of the same panel or on different panels with 

similar properties.  
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Chapter 4.  Damage imaging in skin-stringer 

composite aircraft panel by ultrasonic guided 

waves using deep learning with convolutional 

neural network 

 

4.1. Abstract 

The detection and localization of structural damage in a stiffened skin-to-stringer 

composite panel typical of modern aircraft construction can be addressed by ultrasonic guided 

wave transducer arrays. However, the geometrical and material complexities of this part make it 

quite difficult to utilize physics-based concepts of wave scattering. A data-driven Deep Learning 

(DL) approach based on Convolutional Neural Network (CNN) is used instead for this application. 

The DL technique automatically selects the most sensitive wave features based on the learned 

training data. In addition, the generalization abilities of the network allow to detect damage that 

can be different from the training scenarios. The paper describes a specific 1D-CNN algorithm 

that has been designed for this application, and it demonstrates its ability to image damage in key 

regions of the stiffened composite test panel, particularly the skin region, the stringer’s flange 

region and the stringer’s cap region. Covering the stringer’s regions from guided wave transducers 

located solely on the skin is a particularly attractive feature of the proposed SHM approach for this 

kind of complex structures.  
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4.2. Introduction 

Detection and localization of damage in structural components is one of the main objectives 

of Structural Health Monitoring (SHM) systems. In the case of modern aircraft construction, 

largely employing fiber-reinforced composite materials, SHM damage detection techniques based 

on Ultrasonic Guided Waves (UGWs) with attached wafer-like PZT transducers are very popular 

[1-7]. Of particular interest are damage detection techniques that can be deployed with sparse 

UGW transducer arrays, operated either in an active mode or in a passive mode, both requiring 

careful decisions on signal feature extraction [8-13] and/or damage imaging algorithms [14-18]. 

Traditional UGW SHM damage imaging techniques rely on knowledge of the material 

properties of the test part and/or extraction of physics-based predetermined signal features 

considered sensitive to damage (e.g. wave amplitude, time of flight, etc..). In fiber-reinforced 

composite parts, and particularly built-up components such as stiffened composite panels, such 

physics-based knowledge is difficult to obtain. For these complex wave propagation patterns, data-

driven approaches may be more effective.  

Deep Learning (DL) is increasingly used in various data-driven measurements, including 

computer vision, speech recognition and natural language processing [19]. Since DL focuses on 

high-level data abstractions to define high-level meanings, it can efficiently and automatically 

compress large number of signal features [20]. The central branches of DL include deduction, 

reasoning, and learning [21]. One attractive capability of DL is to extract hierarchical expressions 

of inputs automatically, as the later stacked layers learn more complex features from the former 

layers. In addition, DL automatically learns sensitive features from every input data, in contrast to 

a priori feature extraction. For these reasons DL strategies have been recently examined in 

vibration-based structural condition monitoring ranging from machine fault detection [22] to wind 
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turbine fault detection [23]. In SHM systems using UGWs, recent DL applications have included 

acoustic emission source location [24], damage location in metal plates [25-27], sub-wavelength 

damage detection in metal plates [28], and characterization of cortical bones via inversion of 

guided wave data [29]. 

A DL technique that has gained much attention for high-dimensional data compression is 

the Convolutional Neural Network (CNN). CNN combines feature extraction and weights 

determination via the training process, which automatically emphasizes compelling features while 

mitigating redundant features [30]. Specific advantages of CNN compared to fully-connected 

Neural Networks (NN) include Parameters Sharing and Connection Sparsity [19]. Parameter 

Sharing simplifies the training from a large amount of parameters to a much smaller one by 

allowing feature detectors to go through all regions of each training example and shared by regions 

with similar features. Connection Sparsity further reduces the number of trained parameters hence 

keeping a low number of necessary inputs. CNN are also known to capture translation invariances, 

meaning that the target’s main features are still captured under limited shifts [31]. Although the 

CNN training phase can be lengthy, the testing time is usually fast, especially on GPUs, leading to 

the possibility of real-time detection [32]. 1-D CNN was recently applied to raw vibration data to 

detect loosen joints on a steel frame [33] and for bearing fault diagnosis [34]. The aforementioned 

works [42-45] used some form of CNN in their DL architecture applied to damage detection in 

SHM UGW systems.  

The present study applies a specially designed 1D-CNN algorithm to detect and locate 

structural damage in a stiffened composite panel (skin-to-stringer assembly) representative of 

modern commercial aircraft construction (e.g., B787 and A380). Section 2 describes the 

experimental setup and the localization workflow. Section 3 presents the details of core functions 
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of the CNN architecture. Section 4 includes the imaging results, including simulated damage 

positions co-located with the training positions, offset from the training positions, and a case of a 

saw-cut damage in the stringer cap. This section also includes a comparison with a “traditional” 

imaging method, the RAPID algorithm. Finally, Section 5 shows the damage classification 

performance evaluation. The discussion and conclusions are provided in Section 6. 

 

4.3. Experimental setup and procedure  

The test part considered in this study was a composite stiffened panel with a co-cured 

stringer made of T800/3900-2 Carbon-Fiber Reinforced Polymer (CFRP), with overall dimensions 

of 1000×265 mm– Figure 4.1(a). Thickness and layup of the panel skin, stringer flange and stringer 

cap are given in Table 1.  

Table 4.1. Test panel material, thickness and lay-up. 

Component Material 

Number of 

layers 

Thickness 

(mm) 

Lay-up 

Skin 

T800/3900-2 

Graphite/Epoxy 

16 2.62 [45/-45/0/45/90/-45/0/90]s 

Stringer 

Flange 

32 5.41 [45/-45/0/45/90/-45/0/90]2s 

Stringer Cap 16 2.62 [45/-45/0/45/90/-45/0/90]s 
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Figure 4.1. (a) Test panel with CNN training section and CNN testing sections; (b) The putty clay 

next to a quarter, and schematic of PZT transducers, training locations and simulated damage 

locations; (c) schematic for real saw-cut damage section. 

 

Of interest was to detect and locate damage at the following locations: in the skin, in the 

stringer’s flange, and in the stringer’s cap (cap-side and cap-top). Because of the necessity to train 

and test the results at various locations, these damage scenarios were simulated by hand placing a 

spot of putty clay smaller than the size of a quarter at the various points (Figure 4.1(b)). The putty 

clay created a weak scattering of the waves and is often used to simulate damage in UGW tests. In 

addition to these simulated damage scenarios, the tests included a real damage case of a saw-cut 

of 80 mm in length at the top of the stringer’s cap (Figure 4.1(a) and (c)). 

The test panel was divided into two regions. Region 1 (left half in Figure 4.1(a)) was used 

for the CNN training as well as for the testing with the simulated putty clay defects. Region 2 (right 

half in Figure 4.1(a)) was used to test the real saw-cut damage in the stringer’s cap. In each of the 
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two regions, a set of twelve PZT transducers (Ceramtec - Sonox P502, 10 mm diameter) were 

bonded to the inner side of the panel using ambient-cure epoxy adhesive (Loctite from Henkel 

Corporation, Rocky Hill, CT). The transducers were placed in a sparse array configuration 

encircling the skin-to stringer region of interest.  The transducer configurations in Region 1 and 

Region 2 were meant to mirror one another, so that the training data from Region 1 could be used 

in the CNN algorithm with the testing data of Region 2 for the saw-cut damage. The transducer 

numbering and origin of the geometrical reference system were chosen for each of the two regions 

to guarantee this equivalency (Figure 4.1(b) and (c)). The transducer array was operated in a full-

matrix capture mode that considered all pitch-catch pairs and excluded the pulse-echo signals, 

hence resulting in a 12 × 11 matrix of UGW signals captured for each matrix sweep.  

 

Figure 4.2. The test panel with (a) the wireless device unit for routing the transducers’ signals and 

(b) the host computer laptop. 

 

Shown in Figure 4.2, the signal excitation and acquisition were carried out using a data 

acquisition system (DAQ) based on an FPGA interface capable of handling 12 independent 

channels with a sampling rate of 12.5 MHz at 12 bit resolution [50]. This device was connected 
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wirelessly to a host computer laptop with a LabVIEW interface for further data processing in 

Matlab®. 

 

Figure 4.3. Example of the toneburst excitation signal to the PZT transmitters. 

 

The PZT excitation signals were Hanning-windowed sinusoidal tonebursts (Figure 3). In 

order to provide the CNN analysis with a sufficiently comprehensive dataset, the training signal 

generations involved sweeping among excitation amplitude, central frequency, and number of 

toneburst cycles. In particular, the excitation parameters were varied as follows: frequency 

sweeping in the range of 240 - 280 kHz with 10 kHz intervals (covering the useful frequency range 

of the PZT transducers), voltage amplitudes of 10 V and 20 V, and number of toneburst cycles 

ranging from 6.5 to 15.5 (for a total of 100 excitations), and from 6.5 to 30.5 (for a total of 250 

excitations) with 1 cycle intervals. In addition to these variables, each pitch-catch waveform was 

down-sampled by a factor of three, for a three-fold increase in the total available number of data 

samples.  

The CNN was trained by acquiring the 12 × 11 full-matrix pitch-catch waveforms from the 

twelve PZT transducers in Region 1 of the panel (left half in Figure 1(a)) by hand placing the 
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simulated damage (putty clay) on a grid of several points. As shown in Fig. 1b, a training grid of 

7×5=35 locations was used on the inner side of the panel to test for stringer-type damage, and a 

training grid of 7×4=28 locations was used on the outer side of the panel to test for skin-type 

damage. In both cases, the CNN validation was performed by extracting around one third of the 

total training data (i.e. 30% validation data sets and 70% training data sets).  

Another data group was used to create three kinds of testing sets: (1) testing damage 

positions that were co-located with the training positions; (2) testing damage positions that were 

offset from the training positions, and (3) testing the real saw-cut damage.  Accordingly, the co-

located testing positions for damage in the stringer were some of the training positions in the inner 

side of Region 1 (Figure 4.1(b)); and the co-located testing positions for the damage in the skin 

were some of the training positions in the outer side of Region 1 (Figure 4.1(b)). The testing data 

for the real saw-cut damage were acquired from Region 2 (Figure 4.1(c)) using the training data 

from Region 1 with the equivalent geometry.  

The key steps of the CNN decision model are summarized in Figure 4.4. All three CNN 

models are data-driven. The data collection step for each of damage positions involves capturing 

the full-matrix waveforms from the twelve PZT transducers, with sweeping of excitation toneburst 

amplitude, frequency, and # of cycles. This step is followed by a first pre-processing step where 

pulse-echo signals are eliminated and only the 12 × 11 pitch-catch combinations are retained. The 

waveforms are then concatenated into a single vector to be used as the CNN data input, the 

dimension is (1, 11088,1), where the signal dimension is # of points × 12 ×11 = 110088, and the 

other two dimensions are set to one. This input vector is fed to a cap decision model to determine 

whether the data should be associated to damage in the stringer’s cap region, or to any of the other 

cases (pristine, damage in the skin, or damage in the stringer’s flange). If the data set is determined 
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to be associated to damage in the stringer’s cap, the signals are further simplified by eliminating 

the pitch-catch wave paths that do not cross the stringer, the dimension becoming (1, 70056, 1), 

where the signal dimension is # of points × cross-channels = 70056, the other two dimensions are 

one. After that, the stringer’s cap data is fed through the “Stringer_Cap” model that determines 

more precisely the damage location (in the cap-side or in the cap-top). On the other hand, data sets 

not associated to the stringer’s cap are fed to another model that determines the predictions of 

pristine case, skin damage or stringer’s flange damage (“Pristine-Skin-Stringer_Flange” model).   

 

 

Figure 4.4. Main steps of the CNN decision model. 
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4.4. Details of the Convolutional Neural Network (CNN) 

Algorithm 

 

One issue that was considered is the use of a 2D-CNN algorithm versus a 1D-CNN 

algorithm. In general, concatenating time-history signals in a 1D architecture may cause edge 

effects. However, in the problem at hand it was more important to track amplitude or phase changes 

between healthy wave paths and damaged paths. With the 12 PZT transducers used, there were up 

to 12x11 = 132 paths (in full-matrix capture). It was expected that each of the paths could provide 

spatial characteristics to the monitored area, so all paths were concatenated into one vector. An 

additional concern with 2D-CNNs was that the putty clay used to simulate damage was small, and 

the resulting signal changes might be comparable to noise levels. Some preliminary analyses were 

conducted with a 2D-CNN architecture, and obtained imaging results significantly worse than 

those shown later in the paper with the 1D-CNN. Hence it was ultimately decided to employ a 1D 

architecture for the results presented in this study.  

The structure of the specific CNN algorithm employed in the present study is schematized 

in Figure 4.5.  The fully connected layer has the same size as the softmax-layer and the final 

categories: 1) the “Cap” decision model yields two categories, 2) the Pristine-Skin-

Stringer_Flange model covers 42 damage positions plus one pristine position, 3) the Stringer_Cap 

model covers 21 damage positions on the Cap region. All three CNN models are trained by the 

architecture shown in Figure 5. It involves multiple steps aimed at increasing the computational 

efficiency and accuracy of the damage location predictions. The training fulfillment was done by 

the Deep Learning Toolbox in Matlab®. 
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Figure 4.5 Structure of the CNN architecture utilized in the present study. 

 

The specific steps programmed in the algorithm are: (1) Batch Normalization, (2) 

Nonlinear Activation Function, (3) Minibatches, (4) L2-Norm Regularization, and (5) Adaptive 

Moment Estimation (ADAM).  

Batch Normalization forces the weights in the deeper layers of the CNN to be more robust 

to changes in the earlier layers. When the input data change, even if the ground truth or the true 

solutions of the objective function stay the same, the network will change accordingly (covariate 

shift). Batch normalization will reduce the effects of the covariate shift. It also weakens the 

coupling between the functionalities of earlier layers and those of the deeper layers, allowing each 

layer of the network to relatively learn by itself, effectively speeding up learning through the whole 
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network. In this study, batch normalization was applied before the activation functions [36] to help 

learning by the central hidden layers.  

The Nonlinear Activation Function assists the training algorithm to learn sophisticated 

nonlinear features from the input beyond the linear region. This study used a Rectified Linear Unit 

(ReLU) activation function which helps gradients to be either 1 (if input is positive) or 0 (if input 

is negative or zero), further speeding up the learning algorithm [37]. In addition, the softmax 

activation function was utilized to perform the multi-class classification needed for the different 

damage scenarios. The length of the softmax layer was equal to the number of classes to be 

identified. Accordingly, the outputs of the softmax layer showed each class’s probability based on 

the given training set.  
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           (4.1) 

where ai
[l] is the probability of the i-th class for the given training set, N is the total number 

of classes, and Zi
[l] is the prediction from the l-th layer and the i-th unit. 

The use of Minibatches is commonly implemented in DL algorithms. Since traditional 

batch learning must consider all training examples for every cost (forward) and gradient (backward) 

calculation, resulting in high computational cost, the application of minibatches (i.e. small sections 

of the whole training data) allows to monitor the progress of the trained model in considerably less 

time. This study utilized the Minibatch Gradient-Descent (MGD) algorithm that outperforms the 

Stochastic Gradient Descent (SGD), that is known to produce large oscillation when the process 

is approaching the optima. The oscillation effects of the MGD were minimized using an 

optimization algorithm discussed next. The study used 16 and 32 minibatch sizes to keep the power 

of 2 benefits within the computation limits of the GPU memory utilized (8 GB) [38]. 
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L2-Norm Regularization was another step employed to reduce the variance issue, the so-

called overfitting problem. This step prevents data overfitting by adding additional terms to 

penalize the weight matrices from being too large. However, if the regularization factor is too large, 

it will force the weight matrices close to zero, basically penalizing the hidden units and potentially 

leading to a high bias issue (underfitting). This study used an L2 regularization factor of 0.001. 

The last step adopted is the Adaptive Moment Estimation (ADAM) optimization. This 

method minimizes the oscillations resulting in short training time [39]. It combines the advantages 

of the adaptive SGD algorithm [54] and the RMSProp algorithm [41,42] to push the boundary of 

the Gradient Descent method with less memory requirement and faster speed when approaching 

the optima. The fundamental update rules of the ADAM algorithm used here were: 

, 1 ,( 1) 1(1 )d t d t tV V d   − + −          (4.2) 

2

, 2 ,( 1) 2(1 )d t d t tS S d   − + −         (4.3) 

In the above relations: V is the first-moment vector (initialized at 0); S is the second-

moment vector (also initialized at 0); 1  is the hyperparameter that smooths out the gradient 

descent path toward the optima (0.9 chosen in the present study [39] ); 2  is the hyperparameter 

that applies the weighted averages to smooth out the second moments (0.99 chosen in the present 

study corresponding to ~100 averages applied per update[43,44]); t is the iteration step; θ is the 

optimizing parameter; and dθt is the gradient of parameter θ for iteration step t. Averaging from 

the first and the second moments avoids large oscillations during the training process. However, 

averages also cause an issue of initial bias in the model. To avoid the initial bias issue, the 

following corrected update versions were utilized [39]: 

1 2

   ,     
1 1

corrected correctedd d
d dt t

V S
V S 

 
 

 
− −

       (4.4) 
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Finally, the following numerical stabilization was employed in the final ADAM version: 

,

1

,
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d t

t t
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d t

V

S





  


− −
+

         (4.5) 

where ε = 10-8 and  is the learning rate. 

 

4.5. Results 

4.5.1. Simulated damage positions co-located with training positions  

4.5.1.1. Using the CNN decision model 

As shown in the schematic of Figure 4.6, four different cases of simulated damage co-

located with the training positions were tested, namely: damage in the skin – test point (a); damage 

in the stringer’s flange – test point (b); damage in the stringer’s cap top – test point (c); and damage 

in the stringer’s cap side – test point (d). As many as 100 different tests were performed for each 

location, resulting in 300 different testing samples after the 1:3 downsampling.  

Plots (a)-(d) in Figure 4.6 show the damage location results predicted by the CNN 

classification using the toneburst excitation of 10 V in amplitude, 250 kHz in central frequency, 

and 6.5 cycles in duration. The red squares correspond to the “ground truth” - true location of the 

damage (simulated by the putty). The gray scale values correspond to the likelihood of the damage 

as predicted by the algorithm, with the white value corresponding to 0% confidence and the black 

value corresponding to 100% confidence. The damage in the skin (test point (a) in Figure 4.6(a)) 

is predicted with a 91.7% confidence at the true damage location. The damage in the stringer’s 

flange (test point (b) in Figure 4.6(b)) is predicted with a 69.7% confidence at the true damage 

location. It can be seen in Figure 4.6(b) that an adjacent point is also predicted with a confidence 

of 21.1%, and a couple of other locations on the other side of the stringer are also slightly appearing. 
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Although these spurious points are predicted with substantially lower confidence than the correct 

location, they reflect the challenges associated with locating damage in the stringer with 

transducers located solely on the skin.  

 

 

Figure 4.6. CNN prediction of damage locations co-located with training locations for excitation 

toneburst with 10 V amplitude, 250 kHz central frequency, and 6.5 cycles. 
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Remarkably, the damage in the stringer’s cap (test point (c) in Figure 4.6(c)) is correctly 

predicted at the true damage location with a 99.9% confidence, with no spurious predictions being 

generated in this case. The excellent detection of this stringer defect in a location quite remote 

from the skin is one of the most encouraging results of the data-driven CNN algorithm. As for the 

damage in the stringer’s cap side (test point (d) in Figure 4.6(d)), the prediction yields a correct 

location (along with some less remarkable spurious locations), but only with 21.8% confidence 

due to the challenging position of this defect. 

Plots (a)-(d) in Figure 4.7 show the damage location results predicted using a toneburst 

excitation that is nearly twice in energy as the previous one, specifically 10 V in amplitude, 250 

kHz in central frequency, and 15.5 cycles in duration. It can be seen that the increased excitation 

energy generally improves the accuracy of the damage prediction locations, as a larger amount of 

wave energy penetrates into the stringer. In particular, this case confirms the excellent location 

accuracy for the skin damage (test point (a) in Figure 4.7(a)) and the stringer’s cap damage (test 

point (c) in Figure 4.7(c)). The high energy excitation also improves the location accuracy for the 

stringer’s flange damage (test point (b) in Figure 4.7(b), located correctly with a 99.8% confidence 

vs. the previous 69.7% confidence), and the stringer’s cap side damage (test point (d) in Figure 

6(d), located correctly with an 84.6% confidence vs. the previous 21.8% confidence). The spurious 

location predictions that were present with the lower energy excitation are also greatly reduced 

with the higher energy excitation.  
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Figure 4.7. CNN prediction of damage locations co-located with training locations for excitation 

toneburst with 10 V amplitude, 250 kHz central frequency, and 15.5 cycles. 

 

The last results shown in Figure 4.8 were obtained by combining all of the excitation cases 

that were used in the training phase. This combination was made by incoherently summing the 

prediction confidence plots obtained from each excitation. Figure 4.8 indicates that an excellent 

location prediction is obtained with the combined excitations for all of the damage cases. For the 

first three cases (Figure 4.8(a) through (c)), the damage is almost exclusively identified at the true 

location. For the stringer’s cap side damage (Figure 4.8(d)), some less likely locations appear next 

to the true damage location that is nevertheless correctly identified with the highest prediction 

confidence. Moreover, the surrounding less likely locations indicate that the closer the distance, 

the deeper the connection. 



  

 

93 

 

 

Figure 4.8. CNN prediction of damage locations co-located with training locations when summing 

all excitation toneburst cases. 

 

4.5.1.2. Comparison with traditional imaging algorithm (RAPID) 

In this section we present comparative results using the Reconstruction Algorithm for 

Probabilistic Inspection of Damage (RAPID) [14] method. The advantages of the RAPID method 

over time-of-flight based imaging is the elimination of the need for wave speed values, which 

should be a considerable advantage when probing the complex test piece at hand. RAPID is a 

tomography algorithm based on the following factors: 

1. A sparse distribution of the transducers, resulting in a pitch-catch configuration which 

allows recording the propagated wave through the structure and its variation when it interferes 

with a defect present in the propagation path, or its influence zone. 

2. A damage index (𝐷𝐼𝑖𝑗) obtained from the feature-extraction analysis of the signals coming 

from two different damage states of the plate. 
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3. An elliptical distribution (𝐸𝑖𝑗), whose size is controlled by a 𝛽 parameter, that weights the 

damage index from the signals depending on the distance from the calculated pixel of the image 

(𝑥𝑝, 𝑦𝑝) to the direct path of propagation. 

In this case, the DI will be calculated using the signals from pristine state (𝒔𝑏𝑎 𝑒𝑙𝑖𝑛𝑒) and the signals 

from damage state (𝒔𝑑𝑎𝑚𝑎𝑔𝑒𝑑), through the SSM indicator (6): 

𝐷𝐼𝑖𝑗  
1

𝑛𝑇
∫ (𝒔𝑑𝑎𝑚𝑎𝑔𝑒𝑑(𝑡)  𝒔𝑏𝑎 𝑒𝑙𝑖𝑛𝑒(𝑡))𝑖𝑗

2 𝑑𝑡
𝑛𝑇

0
      (4.6) 

The effectiveness of this indicator relies on variations both in amplitude and in phase, causing area 

shifting when the integration is performed. Once the DI is calculated for every transmitter-receiver 

pair of transducers, a final summation 𝑃(𝑥𝑝, 𝑦𝑝) is performed through (7)(8)(9)(10), where 𝑅𝐷𝑖𝑗 

and 𝑅𝑖𝑗 are the geometrical factors which regulate the size of the ellipse and, consequently, the 

influence of each transmitter-receiver path: 

𝑅𝐷𝑖𝑗(𝑥𝑝, 𝑦𝑝)   
√( 𝑝− 𝑖)

2+( 𝑝− 𝑖)
2+√( 𝑝− 𝑗)

2+( 𝑝− 𝑗)
2 

√( 𝑗− 𝑖)
2+( 𝑗− 𝑖)

2
     (4.7) 

𝑅𝑖𝑗(𝑥𝑝, 𝑦𝑝)  {
 𝑅𝐷𝑖𝑗(𝑥𝑝, 𝑦𝑝)   𝑖𝑓 𝑅𝐷𝑖𝑗(𝑥𝑝, 𝑦𝑝) <  𝛽

   𝛽                      𝑖𝑓 𝑅𝐷𝑖𝑗  (𝑥𝑝, 𝑦𝑝) ≥ 𝛽
      (4.8) 

𝐸𝑖𝑗(𝑥𝑝, 𝑦𝑝)  [
𝛽−𝑅𝑖𝑗( 𝑝, 𝑝)

𝛽−1
]         (4.9) 

𝑃(𝑥𝑝, 𝑦𝑝)   ∑ ∑ 𝐷𝐼𝑖𝑗𝐸𝑖𝑗(𝑥𝑝, 𝑦𝑝)
𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1        (4.10) 

Figure 4.9 shows the results for the same co-located points (a)(b)(c) and (d). Compared to the 

results from the CNN architecture in Figures 4.6-4.8, the RAPID images clearly offer a worse 

performance. The true damage locations are not properly identified, and several false positives 

also appear. This comparison reaffirms the superior performance of the proposed deep learning 

architecture to handle the material and geometrical complexities of the test piece at hand. 
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Figure 4.9 RAPID prediction of damage locations co-located with training locations. 

 

4.5.2. Results: simulated damage positions offset from training 

positions  

By exploiting generalization abilities of the CNN algorithm, tests were carried out to 

predict damage locations that were slightly offset from the training locations (not co-located). The 

expected outcome was an increased location prediction confidence for test positions that were 

closer to the training positions, and a lower location confidence for test positions that were further 

away from the training positions.  

As shown in the schematic of Figure 4.10, the offset damage was placed in the same general 

locations discussed in Sections 4.3 and 4.5, and specifically: damage in the skin – test point (e); 

damage in the stringer’s flange – test point (f); damage in the stringer’s cap top – test point (g); 

and damage in the stringer’s cap side – test point (h).  
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Figure 4.10. CNN prediction of damage locations offset from training locations for excitation 

toneburst with 10 V amplitude, 250 kHz central frequency, and 6.5 cycles. 

 

Plots (a)-(d) in Figure 4.10 show the CNN location predictions for the four offset damage 

cases when using the excitation toneburst of 10V in amplitude, 250 kHz in central frequency, and 

6.5 cycles in duration. In some cases, the offset damage gives similar or even improved results 

compared to the corresponding co-located damage from Figure 4.6. For example, the location 
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prediction confidence for the offset stinger’s flange damage (test point (f) in Figure 4.10(b)) is 

86.93% compared to 69.7% for the co-located stringer’s flange damage (Figure 4.6(b)). Similarly, 

the prediction confidence for the offset stringer’s cap side (test point (h) in Figure 4.10(d)) is 44% 

compared to 21% of the co-located damage (Figure 4.6(d)). In the other two cases, the offset 

performance degrades: the prediction confidence for the offset skin damage (test point (e) in Figure 

4.10(a)) is 58.42% compared to 91.7% of the co-located skin damage (Figure 4.6(a)); and the offset 

stringer’s cap damage (test point (g) in Figure 4.10(c)) is predicted at an erroneous location 

(although still identified in the general stringer’s cap area). It will be shown in the next figure that 

these results can be further improved by using a higher energy excitation signal.  

 

Figure 4.11. CNN prediction of damage locations offset from training locations for excitation 

toneburst with 10 V amplitude, 250 kHz central frequency, and 15.5 cycles. 

This improvement is clearly seen in Figure 4.11 obtained using the high energy excitation 

toneburst with 10 V in amplitude, 250 kHz in central frequency, and 15.5 cycles in duration. 

Correct locations are predicted with high confidence in all of the offset damage cases considered, 

with few or no spurious predictions. This confirms the generalization ability of the CNN algorithm 
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that does not necessarily require testing cases exactly matching the training cases. The results in 

Figure 4.11 actually resemble the corresponding predictions made for the damage co-located with 

the training grid in Figure 4.7. For example, the offset skin damage (test point (e) in Figure 4.11(a)) 

is correctly located with 70% confidence. The offset damage in the stringer’s flange (test point (f) 

in Figure 4.11(b)) is also correctly located with a 94.7% confidence. And the offset damage in the 

stringer’s cap top (test point (g) in Figure 4.11(c)), that was located incorrectly with the lower 

energy excitation, is now located correctly. The higher energy excitation helps the wave 

penetration into the stringer, and hence the improved performance in this region.  

The prediction results for the offset damage obtained by combining the multiple excitations 

are shown in Figure 4.12. As found in the case of the co-located damage (Figure 4.8), the combined 

results generally improve the confidence in the correct damage location predictions, and decrease 

the likelihood of spurious locations away from the true damage locations.  

 

Figure 4.12. CNN prediction of damage locations offset from training locations when summing all 

excitation toneburst cases. 
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4.5.3. Results: saw-cut damage in stringer cap  

Damage predictions for the case of the real saw-cut in the stringer cap are shown in Figure 

4.13. In this case, as shown previously in Figure 4.1(a) and Figure 4.1(c), the testing signals were 

acquired from Region 2 of the test panel and the training signals were acquired from Region 1 of 

the panel.  

 

Figure 4.13. CNN prediction of location of real saw-cut damage in stringer’s cap when summing 

all excitation toneburst cases. 

The prediction results in Figure 4.13, obtained by using the full set of excitation signals, 

show that the ends of the saw-cut are correctly located with very high confidence (94.72% for the 

left end and 100% for the right end). The correct location of the cut ends underscores the 

importance of wave scattering phenomena, that are the basic defect detection mechanisms 

exploited by the sparse UGW transducer array. The less scattering inner portion of the saw-cut is 

less visible in the predictions. Accurately locating the saw-cut ends provides a reliable estimate of 

the size of the cut. These encouraging results suggest the potential for the proposed DL CNN 

architecture to accurately locate structural damage that is of a very different nature as that utilized 

to train the system (putty clay). Hence the suggestion is that the given training data can be 

generalized to a larger variety of damage in this kind of structures. Finally, it is quite encouraging 
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to confirm the ability to detect and locate damage deep into the stringer by using PZT transducers 

located solely on the skin.   

 

4.6. Results: classification performance evaluation  

This section provides a quantitative evaluation of the fitness of the proposed CNN 

algorithm for damage localization. This analysis was performed for the eight cases of putty-clay 

simulated damage discussed in the previous Section 4.5.1 (damage co-located with the training 

positions) and Section 4.5.2 (damage offset from training positions).  

 

Figure 4.14. Training accuracy and validation accuracy versus training iterations for (a) the 

Pristine-Skin-Stringer_Flange model and (b) the Stringer_Cap model. 

 

Figure 4.14 plots the training accuracy and the validation accuracy of the Pristine-Skin-

Stringer_Flange model (Figure 4.14(a)) and that of the Stringer_Cap model (Figure 4.14(b)) as a 
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function of training iterations. As a reminder, the ratio between the number of validation data and 

that of training data was approximately 1:2. The ratios of training data for pristine, skin and stringer 

flange were 1:1:1. The ratio of training data between the cap top region and the cap side region 

was 10:1. It can be seen that in both plots of Figure 4.14 the training accuracy follows well the 

validation accuracy, which confirms the goodness of the proposed models with little or no 

overfitting issues. The final accuracy results are also quite encouraging, with 100% final training 

accuracy for both models, and 99.86% and 99.97% final validation accuracies for the Pristine-

Skin-Stringer_Flange model and the Stringer_Cap model, respectively.  

The next metrics considered were the percentages of Precision, Recall and F1-score. These 

are defined in the following relations according to known ML considerations. Essentially, the 

Precision tracks the false positives, the Recall tracks the false negatives, and the F1-score combines 

the prior two metrics. A perfect prediction would have Precision, Recall and F1-score all equal to 

100%.  

(true positives)
Precision (%) 100

(true positives) + (false positives)

(true positives)
Recall (%) = 100

(true positives) + (false negatives)

1
F1-score (%) = 

1 100 100
 + 

2 Precision(%) Recall(%)

= 



 
 

 


 


 















    (4.11) 

These metrics were computed for each of the eight simulated damage cases discussed in 

Sections 4.5.1 and 4.5.2, and considering the entire set of toneburst excitations. For each case, the 

panel location with the largest confidence from the CNN model was considered the final prediction. 

These results were then compared to the true damage locations to calculate true positives, false 

positives and false negatives.  
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Table.4.2 shows Precision, Recall, and F1-score for the eight damage cases. It can be seen 

that the Precision score is quite high for all of the damage locations, whether the damage is co-

located with or offset from the training locations, with all cases resulting in a Precision score higher 

than 90% and many yielding a score of 100%. The Recall score is also higher than 80% in most 

of the damage cases, and close to 100% for some. The lowest Recall score of 43% is found for the 

stringer’s cap top damage in the offset location. This is not unexpected due to the aforementioned 

challenge for the skin-generated waves to penetrate deep into the stringer. The comprehensive F1-

score metric in the last column of Table 4.2 summarizes the system’s performance. The overall 

result is quite encouraging. The marginal performance for the offset damage in the stringer’s cap 

top (F1 of 59.3%) is substantially improved for the co-located damage in the same location (F1 of 

99.7%).  The second lowest performance is for the co-located stringer’s cap side damage (F1 of 

72%). All of the other damage cases have an F1-score above 84%, with many above 95%.   

Table 4.2. CNN classification performance for the eight simulated damage cases using all 

excitation tonebursts. 

 Damage location Precision (%) Recall (%) F1-score (%) 

Damage co-located 

with training 

positions 

Test point (a) (skin) 100.00 98.00 98.99 

Test point (b) (flange) 91.84 99.00 95.28 

Test point (c) (cap top) 100.00 99.47 99.73 

Test point (d) (cap side) 100.00 83.72 72.00 

Damage offset from 

training positions 

Test point (e) (skin) 100.00 82.00 90.11 

Test point (f) (flange) 100.00 73.00 84.39 

Test point (g) (cap top) 93.54 43.46 59.35 

Test point (h) (cap side) 99.85 98.70 99.27 

 



  

 

103 

 

4.7. Discussion and Conclusions 

This paper has addressed the detection and localization of damage in a realistic skin-to-

stringer composite panel typical of modern aircraft construction. For this kind of complex part, 

physics-based methods of damage imaging via ultrasonic guided waves can be very challenging. 

This work utilizes a data-driven technique based on the latest developments in Deep Learning (DL) 

and Convolutional Neural Networks (CNNs). A specific CNN has been designed for this 

application. The classification algorithm includes Batch Normalization, Minibatches, L2-Norm 

Regularization and ADAM optimization to enhance the performance of both training phases and 

testing phases. 

The algorithm is tested on various damage scenarios that are relevant to this structure, 

including some damage locations that are co-located with the training locations and some damage 

locations that are offset from the training locations. The generalization abilities of the CNN 

algorithm are exploited to detect the damage scenarios that are different from the training scenarios, 

including a real saw-cut in the stringer’s cap. Damage regions of interest were the panel’s skin 

region, the stringer’s flange region and the stringer’s cap region. To increase accuracy, the 

algorithm utilizes two different classification models to separate the skin and stringer’s flange 

damage from the stringer’s cap damage. Several results are presented showing a promising damage 

prediction performance. The stringer’s region, that is notoriously very hard to access by ultrasonic 

wave transducers located solely on the skin, can also be probed with reasonable accuracy. The 

saw-cut in the stringer’s cap, for example, is imaged very accurately. Good results are also shown 

for damage that is offset from the training locations, further highlighting the generalization abilities 

of the classification algorithm.  
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The results indicate that the damage imaging performance depends on the type of signal 

excitation utilized for the PZT transmitters. As expected, higher-energy excitations generally 

improve the damage imaging performance, especially for the stringer’s region that benefits from 

the stronger wave penetration from the skin. Damage classification performance metrics are given 

for a selected combination of excitation signals. These metrics will likely change for a different 

part or different damage scenarios. Currently, the study only considers ”fixed” laboratory 

conditions without involving temperature changes, structural changes and sensor network changes. 

Future research should consider the effects of these factors and possibly examine an appropriate 

transfer learning scheme able to compensate for these changes. 
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Chapter 5.  Non-destructive inspection of 

skin-stringer composite flat panel by data 

driven method and ultrasonic guided-wave 

transfer function method 

 

5.1. Introduction 

Modern aircraft manufacture (e.g., Boeing 787 and Airbus A380) commonly uses 

multilayer-reinforced composite materials that introduce both complexities of material and 

geometry, leading to significant challenges of inspection. Ultrasonic guided waves, by their nature, 

sensitive to divergence happened in the structure, are widely used in numerous applications [1-4].  

Ultrasonic guided waves can be launched in two ways using contact transducers [5] or non-

contact transducers (e.g., air-coupled transducers) [6]. Contact transducers are suitable for 

generating high energy waves penetrating deeper than shallow surface waves, which helps 

investigate compounded like skin-stringer composites. However, contact transducers, like PZTs, 

are permanently mounted on the structure, less flexible to move around. The inconvenience will 

be more noticeable when a considerable quantity is needed for large-scale monitoring [7,8]. As a 

rescue, non-contact transducers (air-coupled transducers) gain great attention in detecting 

anomalous behavior of the structure [9,10]. The energy processed by non-contact transducers is 

usually less than that of contact transducers due to air medium, which leads to a less inquiring 

depth of the structures. However, the flexibility in motion and the single-sided accessibility drive 
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non-contact transducers to various applications of the large-field inspection and challenging 

conditions (only single side available).  

In this chapter, both contact and non-contact transducers were investigated to inspect the 

skin-stringer composite panel. The data-driven method was utilized to simulated damage location 

by analyzing the data acquired from the PTZs encircled the cross-section with challenging 

geometry. The transfer function method was also employed to deal with dual-output scenarios by 

performing two air-coupled transducers. Moreover, the shear-tie region was also investigated and 

discussed using air-coupled transducers.  

 

5.2. The cross-sectional damage characterization of the 

composite panel with skin-stringer geometry 

5.2.1. Data-driven matched field processing (DDMFP) 

Matched field processing is a well-known framework that exploits the model 

characteristics to locate targets with high resolution and accuracy [11]. However, this method also 

suffers due to a lack of understanding of the environment, when the wave propagating field is 

complex, such as intricate geometry, layered material distribution. Instead of investigating the 

details of the environment to construct a dedicated model, we constructed a model directly from 

data itself, then integrate this model with matched field processing to locate the target efficiently. 

Under this idea, we build the matched field like the following way [13]: 

𝑃  𝑊𝑝𝑟𝑖 𝑡𝑖𝑛𝑒
+ ∗ (𝑑𝑑𝑎𝑚𝑎𝑔𝑒  𝑑𝑝𝑟𝑖 𝑡𝑖𝑛𝑒)       (5.1) 

Where Wpristine is the replica vector, the model, built by the pristine data, using interested 

transmit-receive pair at certain frequency. ddamage is the data acquired from the damaged panel at a 
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certain frequency. dpristine is the data from pristine panel at a certain frequency. P is the final result 

of this matched field process, indicating the energy distribution of the defect. The physical 

meaning of this whole equation is to backpropagate the difference between the damage data and 

the pristine data. The result of the sensor location is most substantial when the sensor is located 

closest to the defect. The experimental set up is shown in Figure 5.1, including top view, bottom 

view, and sensor placement. The material properties and lay-up of this composite panel are the 

same as the last section. The system has full-matrix data acquisition capability with 12 channels; 

all of them can be either transmitter or receiver. The transmitting signal with central frequency 

300kHz modulated with a hanning window, sampled by 12.5 MHz. The narrowband contacted 

sensors have been used in this experiment [14]. 

 

5.2.2. Results: defect localization on the skin-stringer cross-section 

Two defect locations are examined in this section, and one is on the stringer, the other is 

positioned on the skin. The defect is simulated by a small piece of clay, which is easy to change 

the defect position. Figure 5.2 (b) shows the defect on the skin between the sensor 2 and sensor 3 

with arrow indicator. Figure 5.2 (a) shows the results from DDMFP, y-axis is the power in dB 

scale, x-axis is the sensor index corresponding to the real positions of sensors. The two largest 

peaks are in the positions 2 and 3, which means defect is around sensor 2 and sensor 3, that is same 

as the experimental setup.  
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Figure 5.1. Experimental setup, (a). Top view of the composite panel; (b). bottom view of the 

composite panel; (c). sensor placement. 

 

 

Figure 5.2. Damage on the skin. (a) the damage location identified by algorithm; (b) real damage 

location. 
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The other defect is placed on stringer between sensor 7 and sensor 8 shown in Figure 5.3(b) 

and (c) indicated with an arrow from the bottom view and a red dot from the cross-section view. 

The results are shown in Figure 5.3 (a), only sensor 8 is successfully resolved due to the complexity 

of the geometry in this region as well as intricate wave propagation paths. 

 

 

Figure 5.3. Damage on the stringer. (a) the damage location identified by the algorithm. (b) bottom 

view of real damage. (c) front view of real damage. 
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5.3. The Excitation localization by Convolutional 

Neural Network (CNN) 

5.3.1. Simulated data preparation from ABAQUS 

The excitation localization of the plate was investigated in this subsection. The data were 

simulated using Abaqus CAE. The aluminum plate was modeled with dimension 1m×1m, 

thickness 1mm, Young’s modulus 67Gpa, Poisson’s ratio of 0.33, and density 2700kg/m3. 12-

receiver locations were assigned around the studying area with a rectangular shape shown in Figure 

5.4. The first boundary condition (BC1) was z-directional displacement and rotation equal to zero. 

The second boundary condition (BC2) was x-directional displacement and rotation equal to zero, 

y-directional displacement and rotation equal to zero. This study would not use any of the material 

properties of this plate. The analysis was pure data-driven, which intended to use on the composite 

structures [15]. Aluminum plate easy to simulate would always be the best candidate to choose. 

 

Figure 5.4. Sensor locations in Abaqus simulation. 
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A single pulse was used as the excitation shown in Figure 5.4, with 1kHz central frequency 

with an amplitude equal to 1. The various data were collected by looping over different amplitude 

values from 1 to 128 within all 81 actuated positions. 

 

Figure 5.5. The pulse excitation applied in the simulation. 

 

5.3.2. Training scheme by using MATALB Deep Learning Toolbox 

The training schematic of excitation localization was shown in Figure 5.7. 1D-CNN [16] 

was applied by training the assembled set of the data shown in Figure 5.6. One curve in Figure 5.6 

meant data from 12 receivers aligned to a single row or column vector under one type of excitation. 

The size of a single data vector corresponds to the input layer’s size in the training scheme. 
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Figure 5.6. The assembled receiving signal with 20 excitations. 

 

MATLAB deep learning toolbox was employed in this study to gain the benefit of the well-

established deep learning techniques [17]. The training scheme in detail was shown in Figure 5.7. 

The 2D convolutional layer was used to approach 1-D CNN training with one dimension equal to 

one. Since the raw data themselves were varied with different triggering amplitudes, the batch-

normalization layer was used to diminish the covariate shift issue. The covariate shift issue was 

initially found when researchers solved the classical question, “Dog & Cat” characterization. The 

model found itself challenging to distinguish between monochrome dogs and cats when trained 

under colored photos. False alarms happened even if the ground truth maintained the same.  Batch 

normalization [18] allowed the network to learn the knowledge within a specific layer not or less 

affected by the former layers, which reduces the covariate shift issue. ‘Relu’ activation layer was 

used to introduce nonlinearity during the training so that the model would not only learn some 
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linear properties [19]. Max pooling layer helped reduce the less effective features to make the 

whole process faster. 

 

Figure 5.7. CNN training schedule. 
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The ‘adam’ was used as an optimization means to accelerate the training, which combined 

the advantages of the SGD with momentum and RMS prop [20]. The mini-batch gradient descent 

was used to accelerate the training process further. 

5.3.3. Results of impact location prediction 

The locations of all excitations were shown in Figure 5.8(b), with a total of 81. All the red 

dots were the locations with all 128 kinds of excitation and learned by the model. The final trained 

model was examined by a test point off-set the training positions shown in Figure 5.8(a). As 

expected, even if the test points were not in the training set, the closest training would hold the 

high possibility to indicate the test point location, the closer to the test points: the lighter color, the 

higher values. 

 

Figure 5.8. The result compared with simulated ground truth: (a) The predicated location of the 

excitation; (b) The simulated location of the excitation. 
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5.4. Ultrasonic guided-wave transfer function 

extraction on inspecting composite aerospace 

structures 

The transfer function is one of the stable and sensitive signatures of the structure, which 

will not change unless an unexpected anomaly (defects) occurred. Therefore, the comparison of 

the transfer functions of different states becomes appealing for researchers to identify the defects. 

“single-input single-output” (SISO) is the typical candidate to extract the transfer function yet 

requiring a deconvolution of the excitation from the reception, which demands to know the precise 

excitation spectrum. However, the coupling of the excitation signal, the transmitter frequency 

response, and the transducer-to-medium response make it challenging to determine the effective 

excitation spectrum [21]. A more robust transfer function extraction than SISO is a “dual-output” 

approach where two receiving sensors yield the transfer functions [22-24]. “Dual-output” allows 

to passively inspect the structure without knowing the knowledge of the real excitation spectrum 

[25-30]. 

The dual-output passive inspection scheme is shown in Figure 5.9. The goal is to achieve 

and track the structural transfer function HAB to identify the damage between A and B. The source 

in this section keeps unknown. The formulation of the first measured signal from receiver 1 is like 

the following: 

𝑅 1(𝑓)  𝑆(𝑓) ∙ 𝐻𝑆𝐴(𝑓) ∙ 𝑆𝑇1(𝑓) ∙ 𝑅𝑅1(𝑓)       (5.2) 

Where, S(f) is the input signal, HSA(f) is the structure transfer function between unknown 

source on plate S and point A. ST1(f) is the structure-to-air-to-transducer 1 coupling response, and 

RR1(f) is the receiver 1 frequency response. 
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Figure 5.9.  The structural transfer function extraction by a dual-output scheme. 

   

Similarly, the second measured signal from receiver 2 is as follows: 

𝑅 2(𝑓)  𝑆(𝑓) ∙ 𝐻𝑆𝐴(𝑓) ∙ 𝐻𝐴𝐵(𝑓) ∙ 𝑆𝑇2(𝑓) ∙ 𝑅𝑅2(𝑓)     (5.3) 

Where, HAB(f) is the structure transfer function between point A and point B. ST2(f) is the 

structure-to-air-to-transducer 2 coupling response, and RR2(f) is the receiver 2 frequency response. 

The assumption was made as follows: (1) the air is uniform in the room; (2) two same 

receivers with no manufactural difference. Therefore: ST1(f) = ST2(f) and RR1(f) = RR2(f). The 

deconvolution was yielded like: 

𝐷𝑒𝑐𝑜𝑛𝑣  
𝑅𝑀2(𝑓)

𝑅𝑀1(𝑓)
 𝐻𝐴𝐵(𝑓) ∙

𝑆𝑅2(𝑓)

𝑆𝑅1(𝑓)
∙
𝑅𝑅2(𝑓)

𝑅𝑅1(𝑓)
 𝐻𝐴𝐵(𝑓)     (5.4) 

The time-domain transfer function can be calculated by inverse Fourier transformation: 
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𝐻𝐴𝐵(𝑡)   ∫ 𝐻𝐴𝐵(𝑓)
∞

−∞
∙ 𝑒𝑖2𝜋𝑓𝑡𝑑𝑓        (5.5) 

 Hence, the structural transfer function between two receivers had been isolated and 

translated in the time domain to prepare for the feature extraction to feed in damage index (DI) 

estimation. 

𝐷𝐼   √(    ) ×  −1 × (    )𝑇        (5.6) 

 Where,  y is the feature vector, x is the average baseline vector, S is the baseline covariance 

matrix. The value of DI represents the deviation from the normal statistics of the baseline signals. 

The defect gave the large value of DI. 

 

5.4.1. Experimental setup 

The experiments performed on one curved panel shown in Figure 5.10. The panel was 

extraordinarily complicated, including the skin, the stringer, five shear-ties, and one C-frame. The 

first simplification was to divide the panel into two zones: the simple zone (13cm to 23cm and 

30cm to 41cm) and the complex zone (23.5cm to 29.5cm). 

 

Figure 5.10. The zone definition of curved composite panel 4_1. 
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The mini-impactor as a means to generate input signal with the pivoting length 5.08cm 

made by the composite was shown in Figure 5.11(a). The mini-impactor easy to change operating 

position provided strong signal strength yet hard to calibrate the excitation waveform. Two mini-

bat air-coupled transducers (Figure 5.11(b)) were as two receivers whose signals were first 

amplified by a preamplifier (Figure 5.11(c)). All signals captured by receivers were recorded by 

PicoScope (Figure 5.11(d)) and processed in the computer. 

 

Figure 5.11. The devices used in the experiment. 

 

5.4.2. Damage detection of the simple zone of curved composite 

(skin-stringer structure)  

In the test on stringer 2, two receivers were 18.415 cm away from each other over the 

stringer; the mini-impactor is 3.81cm away from the first sensor with foam in the middle to avoid 

the direct transmission from the mini-impactor to the first receiver through the air. Both receivers 

have a 3.81cm lift-up with 13⸰ with respect to the vertical direction. In the simple region, data 



  

 

123 

 

points frequency is every 1 cm. The data point started from 13 cm till 41 cm without 23.5 cm to 

29.5 cm (lying in the complex zone). 

 

Figure 5.12. Stringer 2: Signal and frequency spectra of receiver 1 and receiver 2. 

 

The signals of stringer 2 were captured by receiver 1 and receiver 2 shown in Figure 5.12. 

The signal strength of receiver 1 was 10-times higher than that of receiver 2 due to the large 

damping ratio of the composite panel. The mini-impactor played a vital role in generating high 

strength signals and maintain movability. However, the signals from two receivers stayed in the 

same frequency band, between 20kHz ~80kHz, low enough (below 100kHz) to keep traveling with 

small attenuation, as well as high enough (20kHz) to avoid ambient noise.  
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Figure 5.13. Damage localization on stringer 2: (a) Mahalanobis distance; (b) transfer function 

comparison on clean stringer and stringer with hot glue. 

 

The hot glue was on the top of the cap top of stringer 2, shown in Figure 5.13. The 

extraction of the structural transfer function from these measurements, shown in Figure 5.13(b), 

has an improved signal-to-noise ratio with distinctive waveform features regarding magnitudes 

and time arrivals. By its nature, the transfer function is less dependent on the transduction 

responses and highlights the coherence between two receivers, which was the property of the 



  

 

125 

 

transduced medium. The transfer function was achieved between 1kHz to 115kHz. The clean panel 

without hot glue showed amplitude changes compared to the one with the hot glue. Two features 

were computed from the transfer function, root-mean-square (RMS) and skewness. The RMS was 

good at monitoring the changes of the signal strength [31]. And the skewness, on the other hand, 

was tracking the shape changes of the signal. Two features were fed in the Mahalanobis distance 

to estimate the distance between the clean panel and “damage” panel shown in Figure 5.13(a). The 

hot glue was located at 34 cm, aligned with the ground truth in the picture. (Notice that the rule 

shows between 4cm and 5cm, which needs to be added 30cm because the total rule length was 

30cm.). 

 

Figure 5.14. Stringer 3: Signal and frequency spectra of receiver 1 and receiver 2. 
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The second test was conducted on stringer 3 with hot glue on the stringer flange. The 

typical waveforms measured by two receivers of an air-coupled system were shown in Figure 5.14. 

The large attenuation also affected the signal at receiver 2 due to the significant wave leakage and 

scattering while it was traveling across the skin-to-stringer assembly. 

 

 

Figure 5.15. Damage localization on stringer 3: (a) Mahalanobis distance; (b) transfer function 

comparison on clean stringer and stringer with hot glue. 
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Figure 5.16. Stringer 4: Signal and frequency spectra of receiver 1 and receiver 2. 

 

The damage location and ground truth photo were illustrated in Figure 5.15. The transfer 

function between two receivers was extracted with an enhanced signal-to-noise ratio with 

outstanding waveform features. The transfer function was obtained after filtering out higher 

frequency band, staying in 1kHz to 115kHz. The magnitudes of the transfer function with hot glue 

were larger than the one without at both tests in Figure 5.14 and Figure 5.15. This observation can 

be explained by the fact that the leakage in the skin-to-stringer region was reduced due to the 

damage or hot glue that happened on the stringer flange and stringer cap region. This reduction of 

leakage resulted in increasing transmission energy.  Two features, RMS and skewness, were fed 

in the Mahalanobis distance estimator to measure the deviation between the clean one and the one 

with hot glue. The final decision was made, shown in Figure 5.15(a) identifying the real location 

(18cm) consistent with the ground truth picture. 
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The third test was on stringer 4 with the hot glue in the heel region. The signal waveforms 

recorded by air-coupled transducers were shown in Figure 5.16. The signals both in the time-

domain and frequency-domain were similar as measured before in stringer 2 and stringer 3. The 

operating frequency band stayed at 0~ 100kHz, with the second signal’s strength suffering 

significant attenuation from the medium.  

 

Figure 5.17. Damage localization on stringer 4: (a) Mahalanobis distance; (b) transfer function 

comparison on clean stringer and stringer with the hot glue. 
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The transfer function extraction of stringer 4, the ground truth photo, and Mahalanobis 

distance decision was shown in Figure 5.17. The transfer functions in both clean and hot-glued 

cases were stable in phase but considerable variation in amplitude, shown in Figure 5.17(b). The 

shape of the transfer function has slight changes, proving the efficacy of transfer function features, 

RMS and skewness. The Mahalanobis distance estimated the hot-glued appeared in position 36cm, 

which was consistent with the ground truth shown in both the illustration and the photo. 

5.4.3. Damage detection of curved composite skin-stringer-shear_tie 

structure 

The complex zone defined in this chapter, shown in Figure 5.10, consisted of the skin, the 

stringer, the shear-tie, and C-frame. However, the C-frame, a deep-inner part, was away from the 

skin, which was an inaccessible area using ultrasonic guided waves due to significant attenuation. 

Therefore, the boundary-touch approach was trying to investigate the second deep-inner part, the 

shear-tie. The shear-tie was an essential connection of stingers perpendicular to the stringers to 

make the whole panel stiff and resist effectively twisting and bending moment. The efficient way 

to trace the wave propagating through the shear-tie region was to set the contact pico-sensors along 

the possible wave propagating path, shown in Figure 5.18. The mini-impactor was the means of 

the excitation to maintain both high energy and movability. The first pico-sensor was placed on 

the shear-tie around 3 cm down from the skin serving channel B (on the left-hand side of the 

stringer). The second pico-sensor was placed in the middle bottom area of the shear-tie serving 

channel C. The third pico-sensor was placed on the shear-tie around 3 cm down from the skin 

serving channel D (on the right-hand side of the stringer). The fourth pico-sensor was placed on 

the skin outside the panel, the same as the position of the second mini-bat receiver discussed in the 

last subsection.  
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Figure 5.18. Investigation of the ultrasonic waves propagating through the shear-tie. 

 

The signals from all four pico-sensors were shown in Figure 5.19. From the time arrival 

point of view, sensor B was the first to achieve the signal because it was the closest one to the 

source, even if it was on the shear-tie region. The sensor C was the second to acquire the signal 

because the time arrival was mostly contributed by the wave propagating through the skin region. 

Surprisingly, sensor D got the signal earlier than Sensor E. It was possible that the wave reached 

the sensor C, and some of them leaked to the shear-tie received by the sensor D. The sensor E 

located on the middle bottom of the shear tie was capturing the signal only traveling through the 

shear-tie.  
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Figure 5.19. Signal for tracing waves in shear-tie triggered by impactor. 

 

 

Figure 5.20. Frequency spectra for pico-sensors on the shear-tie region triggered by the impactor. 
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All signals in Figure 5.19 were analyzed in frequency-domain shown in Figure 5.20. The 

sensor B was the first testing point on the shear-tie achieving a 20kHz to 50kHz frequency band, 

which indicated the wave traveling through the shear-tie staying in the low-frequency range. The 

sensor E located on the middle bottom of the shear-tie region was the second testing point on the 

shear-tie. The signal from sensor E mostly lay on 20kHz to 50kHz, similar to the frequency band 

shown by sensor B, which also demonstrated that the signal between 20kHz to 50kHz maintains 

the endurance in the shear-tie region. The sensor D was the third testing point on the shear-tie, 

whose signal was also staying between 20kHz to 50kHz. The sensor C on the outside skin region 

included the wave from the skin, the stringer, and the shear-tie, which also had a significant portion 

of the signal between 20kHz to 50kHz. After tracing the signal from the impactor through the 

shear-tie eventually captured by sensor C, it was reasonable to draw a conclusion that the waves 

between 20kHz to 50kHz were the most promising part to penetrate to shear tie and reached the 

receiver on the outside skin region. 

The first test for monitoring the shear tie region was conducted using a mechanic actuator 

as the transmitter and three pico-sensors as receivers shown in Figure 5.21. Figure 5.21(a) showed 

all sensor locations: the mechanic actuator was on the outer skin same position as the mini-

impactor placed before. The first pico-sensor was located on the outside skin same position as the 

air-coupled transducer’s, named Receiver 1. The second pico-sensor was situated in the same place 

as the second air-coupled transducer named Receiver 2. The third pico-sensor was located on the 

middle bottom of the shear tie inside the panel, named the Middle bottom receiver. 
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Figure 5.21.The shear-tie region investigation with contact transmitter and three pico-sensors: (a) 

the illustration of the experiment; (b) the transmitter; (c) real experiment on the surface of the 

panel. 

 

 

Figure 5.22. Investigation of transfer function between receiver 1 and receiver 2 on the surface. 
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Figure 5.23. Investigation of transfer function between middle bottom pico-receiver and pico-

receiver 2 through shear-tie. 

 

The actuator excited 300 times mechanically, and three receivers collected a total of 300 

signals. The tests were done in three locations: Loc3_1 stringer 4_ST3_4 served as the healthy 

case; Loc3_1 stringer 3_ST2_3 with a through fracture served as the damage case; 

Loc4_1_stringer4_ST3_4 served as the baseline case. The statistical was employed to analyze the 

randomness in the signal, mostly from ambient noise. The reconstructed signal was achieved by 

randomly selecting 20 out of 300-time series and averaging them. The amount of the reconstruction 

signal was 100-time series. The signal in the red box was analyzed, shown in Figure 5.22. The rule 

of selection was to avoid the first wave package (skin propagation) and focus on the possible shear-

tie signals. The transfer function was extracted between 0kHz to 50kHz, which was discussed as 

the primary frequency band containing the signal traveling through the shear-tie. The features from 
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the transfer function were RMS and skewness to feed in the Mahalanobis distance calculator. The 

MSD versus the samples provided a clear boundary between healthy cases and damaged cases. 

To further verify the difference in Figure 5.22 with the contribution of the shear-tie region, 

the transfer functions of the middle bottom receiver to the second receiver were also extracted, 

shown in Figure 5.23. The same way was used to reconstruct the sample vectors and feature vectors. 

The boundary between healthy cases and damaged cases was still held, which indicated the 

differentiation shown in Figure 5.22 with the contribution of the shear-tie region. 

 

Figure 5.24. Shear tie region inspection using the impactor and air-couple receivers. 

 

The second test for investigating the health condition of the shear-tie region was to use air-

coupled transducers and the mini-impactor. The reason for choosing air-coupled transducers over 

pico-sensors was the flexibility and repeatability of the in-situ maintenance. Because all contact 

transducers required the couplant between medium and themselves to keep wave efficiently 

penetrate to the solid and to capture the reflection back to the receivers. It would be too 

inconvenient to search a large field of an object. Besides, the contact actuator required a huge 

amplifier to provide enough energy for the transmitting waves, the mini-impactor, however, 
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transmitted waves in a contact manner without the couplant requirement. Therefore, mini-impactor 

and air-coupled transducers were the best candidate couple for in-situ maintenance in practice. 

The positions of the mini-impactor and two air-coupled receivers were shown in Figure 

5.24. The mini-impactor was in the same location as the actuator above. And two air-coupled 

receivers (mini-BAT) were also at the same locations as those of two pico-sensors. Same as before, 

two amplifiers amplified the signals acquired by the air-coupled transducers. 

 

Figure 5.25. Investigation of transfer function between AC-receiver 1 and AC-receiver 2 with 500 

test samples on the surface. 

 

Three shear-tie areas were scanned: Loc 3_1 stringer4_ST3_4 served as the healthy case; 

Loc 3_1 stringer3_ST2_3 served as the damage case; Loc 4_1 stringer_ST3_4 served as the 

baseline case. These three locations were chosen due to their similar geometry. Only shear-tie 2 in 

the Loc3_1 panel was totally fractured. 50 impacts were made for each case. The signal from the 
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impactor was much more random than the mechanical actuator because of the manual operation. 

Therefore, it was necessary to apply statistical analysis to the acquired signals. The reconstructed 

signal was yielded by averaging 10 impacts randomly picked up from a total of 50 impacts. 500 

reconstructed sample study was shown in Figure 5.25. The signals in the red box were studied. It 

should be noted that red boxes were selected same both receiver 1 and receiver 2. 

 

Figure 5.26. Investigation of transfer function between AC-receiver 1 and AC-receiver 2 with 1000 

test samples on the surface. 

 

RMS and skewness were extracted from the transfer function of receiver 1 to receiver 2. 

The samples versus MSD were shown in the bottom figure of Figure 5.25. The boundary was 

blurred than that of Figure 5.22 and Figure 5.23 because the signal from the impactor was less 

stable than that from the mechanical actuator. Moreover, the air-coupled transducer had the less 

signal strength than the contact pico-sensors. 
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Figure 5.26 showed the results by reconstructing 1000 samples, which took around 1 hour 

to get the results. The boundary became a little clearer than the one with 500 samples. Receiver 

operating characteristic (ROC) curves [32] were generated to compare two cases shown in Figure 

5.27. The threshold was selected from 0 to 100 with 10000 intervals. The accumulative 

probabilities of both detection and false alarm were shown in the first row of Figure 5.27. The 

ROC curves of cases with both 1000 samples and 500 samples were shown in the bottom plot of 

Figure 5.27. 1000-sample-reconstruction curve trended to the left upper corner a little more than 

that of the one with 500 samples. 

 

 

Figure 5.27. Receiver operating characteristic of detectability of air-couple receivers in shear-tie 

region. 
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5.5. Conclusions 

This chapter has investigated the skin-stringer complex composite panel by various 

methods: the data-driven matched field processing for cross-sectional defect identification; the 

convolutional neural network for locating impact source; the transfer function approach for 

damage detection  both skin-stringer structure and skin-stringer-shear_tie structure. The composite 

skin_stringer_shear-tie panel, including both complexities of geometry and material properties, 

challenges researchers to explore new methods inclining to data-driven yet on the basis of the 

physics understanding. In the data-driven matched field processing, the replica (or model) was 

built from the pristine data instead of estimating wave structure on this complex panel, which 

increased the reliability. The idea of backpropagation originated from wave physics, time reverse 

and backpropagation to the source. Therefore, the excellent combination of physics and the data-

driven method can overcome the difficulty in such a complex object. Later, the pure data-driven 

process was discussed by exploiting the simulation data achieved from ABAQUS, which showed 

a promising source identification without even knowing any physics knowledge of the object. This 

pure data-driven method will push the boundary for understanding the new material.  

Moreover, the transfer function approach for damage detection was also investigated by 

scanning the large-scale panel. The method was modified from the traditional “Single-in and 

Single-out” (SISO) to “Dual-output,”  releasing the condition that the accurate excitation signal 

can be ignored. Also, “dual-output” modification minimized the impacts of the transducers’ 

response and the transducers-to-structure coupling effects compared to SISO. The structural 

coherence (the structural transfer function) between two receivers was brought out using a 

deconvolution operation and reducing the incoherent disturbance. Both simple zone and complex 

zone were discussed under the transfer function approach. The simulated damage on the stringer 
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flange, stringer heel, and stringer cap were identified by tracing the transfer function variations. 

The complex zone, including shear-tie, was also investigated by involving statistical analysis for 

damage detection confidences. 
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Chapter 6.  Ultrasonic beamforming imaging 

for damage characterization in solids 

 

6.1. Introduction 

In Nondestructive inspections (NDIs), ultrasonic imaging meets the need to detect the 

defects enclosed in the solids and not easily accessible from the surface. In a specific situation, the 

defect reflection of the ultrasonic waves may not be in a favorable direction of the sensing array 

(the broadside of the array). The particular location, orientation, geometry of the defect, or 

sometimes the defect coupled with the multilayered structure, make it difficult to access the real 

flaw from the transducer placed on the surface. As an interposed medium, the wedge connected to 

the transducer array allows directing the actuating energy to maximize the defect reflections [1]. 

One of a typical application of wedge-ultrasonic imaging for NDI is the detection of “transverse 

defects” (TDs) which usually grows with an angle close to the vertical direction [2]. 

Optimum array processing has been used for decades in NDI [3-8]. The total-focus-method 

(TFM) is one of the common imaging techniques using the delay-and-sum (DAS) algorithm by 

intersecting elliptical focus lines from various transmitter-receiver pairs [9]. An enhancement of 

DAS is the delay-multiply-and-sum (DMAS) algorithm [11], which increases the resolution by 

intersecting the multiplication before summation, in other words, adding more potential wave 

propagation paths. 

In this section, the time domain beamformer and frequency-domain beamformer were 

investigated to reconstruct defect images in solids (the aluminum block and railheads). The real-
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time imaging prototype regarding hardware and software was discussed to achieve both higher 

accuracy and speed. Finally, the comparisons between traditional A-scan and time-domain 

beamformer were performed. 

 

6.2. Time delay estimation with the wedge 

The estimation of the wave traveling time is a crucial factor to properly backpropagate the 

received signals to expected locations further identify the potential defect.  The classical Delay-

and-Sum (DAS) requires the knowledge of the locations of all array element transmitter-receiver 

pair and that of the focus point P(x,y) in the solid. The wave starts from transmitter i, to virtual 

transmitter interface point i, reflected by focus point P(x,y), back to virtual receiver interface point 

j, eventually back to receiver j. All paths are shown in Figure 6.1(a) according to Ref.[11]. The 

refraction happens at the wedge-solid interface in both transmitted and reflected waves. In this 

section, only longitudinal (L-) waves are considered in the wedge material, although in fact both 

shear (S-) and longitudinal (L-) waves exist. This simplification was used due to the fact that the 

conventional ultrasonic transducer arrays are always employed with the gel coupling layer, which 

are preferably detecting mostly L-waves. Generally, the time estimation of transmitter-receiver i,j 

pair can be demonstrated as 

𝜏𝑖𝑗,   
𝑑𝑖.𝑥𝑦
1

𝐶𝐿𝑊
+
𝑑𝑖,𝑥𝑦
2

𝐶𝐿,𝑆
+
𝑑𝑗,𝑥𝑦
3

𝐶𝐿,𝑆
+
𝑑𝑗,𝑥𝑦
4

𝐶𝐿𝑊
        (6.1) 

 

Where, cLW is the L-wave speed in the wedge material, cL,S  is the L-wave speed or S-wave 

speed in the solids. 𝑑𝑖,  
(1)

 is the distance from transmitter i to virtual point i on the interface 

calculated by Eq. (6.2). 𝑑𝑖,  
(2)

 is the distance from virtual point i on the interface to focus point P 
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(x,y) calculated by Eq. (6.3). 𝑑𝑗,  
(3)

 is the distance from the focus point P(x,y) reflected back virtual 

point j on the interface calculated by Eq. (6.4). Finally, 𝑑𝑗,  
(4)

 is the distance from virtual point j, 

on the interface to receiver j, on the array calculated by Eq. (6.5). 

 

 

Figure 6.1. Time delay calculation with wedge [11]. 
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Moreover, the wave propagating in the special interface area is shown in Figure 6.1(b) governed by Snell’s 

law, shown in Eq. (6.6). 

 

6.3.  Experimental setup 

The experimental test was implemented to test two kinds of algorithms shown in detail in 

next section. Figure 6.2 shows the experimental setup as an example on the rail. The transducer 

wedge connected to the probe was a Rexolite wedge (Olympus NDT SA12-N55S), shown in 

Figure 6.2 (a), 73mm in length, 15mm in height, and 54⸰ wedge angle. 

 

Figure 6.2. Experimental Setup: (a) Wedge; (b) Probe; (c) Encoder. 
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The probe, shown in Figure 6.2(b), was a 64-element linear array (Olympus NDT Array, 

5L64-38.4X10-A12-P-2.5-OM), with central frequency at 5 MHz, 38.4mm ×10mm total active 

area, and 0.6mm element pitch. 

The encoder, shown in Figure 6.2(c), was a spring-loaded encoder with 2.5m encoder cable, 

a universal clamp system. It is designed to provide encoded linear position of probes in manual 

scanning operations. The encoder resolution is 16.00counts/mm. 

 

Figure 6.3.A full-matrix capture (FMC) controller. 

 

The array probe, encoder and computer were all connected to a full-matrix capture (FMC) 

controller (Advanced OEM Solutions, Cincinnati, OH, USA) shown in Figure 6.3. The FMC 

controller can generate adjustable pulse excitations and allow to access raw radio frequency (RF) 

waveforms in reception. Two screws helped connect the probe and the transducer wedge to ensure 
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the decent connection. The gaps of the wedge/solid interface and the probe/wedge interface were 

filled with conventional ultrasonic gel couplant to guarantee proper transmission/reception of the 

ultrasonic waves. Each transducer in the array firing sequentially, and all transducers receiving at 

each firing. 

 

6.4.  Frequency domain beamforming (FDB) algorithm 

and results  

6.4.1. FDB Algorithm 

In this subsection, experiments were conducted using a 64 ×64 FMC scheme, with total 

4096 waveforms. Figure 6.4 shows Frequency domain beamforming algorithm in detail. The raw 

signal matrix was formed with the dimension 1501×4096, where each signal contained 1501 points 

due to the memory limitation of the FMC controller. 

 

 

Figure 6.4. Frequency domain beamforming algorithm workflow [12]. 
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FDB algorithm applied the backpropagation of ultrasonic waves in the frequency domain. 

First, the Fast Fourier Transformation (FFT) was applied to each column (each time series, the 

hamming window function was used to avoid leakages [13]). Later, due to the knowledge of 

negative time in time was equivalent to the complex conjugate phase in frequency domain, the 

backpropagation was performed by multiplying exponential term (𝑒−1𝑗∗2  𝜋∗𝜏  ) with the snapshot of 

the signal, including all signal in one frequency bin. Eventually, the final image was achieved by 

coherently summing beamformers of enough frequency bins on account of the image resolution 

requirement. The more beamformers were summed, the higher resolution the image approached. 

FDB algorithm was quite popular in the underwater acoustic application because of quick and 

precise location identification of the source without knowing the geometry of the source [14]. Only 

a few frequency bins were needed to investigate the source location, which was fast and accurate. 

However, in the ultrasonic imaging scenarios the geometry of the defect (reflector or source) 

became much more crucial, which led to the more summation of the beamformers of different 

frequency bins to achieve desired resolution resulting in expansive computation. Whereas the best 

resolution was still held by FDB algorithm, which drives researcher to take a more in-depth study.  
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6.4.2. Results: the aluminum block with two drilling hole defects 

 

Figure 6.5. Two holes imaging in aluminum block: (a) the real experiment; (b) the result with 

uniform window; (c) the result with hamming window; (d) the result with Chebyshev window. 

 

The test piece used was an aluminum block with two 2.5 mm-diameter holes drilled at 

about 13mm from the top surface. The distance between the two holes was 6mm, shown in Figure 

6.5. The wavelength of the ultrasonic waves in aluminum were 1.3mm for the L-wave. All 

experimental results with depth and length in mm, and amplitude scale in dB. Figure 6.5(a) was 

the experimental setup for this test. Figure 6.5 (b) showed no spatial window functions were 

applied to sensor array. Second, the Hamming window function was examined to improve the 

resolution of the final image, shown in Figure 6.5 (c). Then, the Chebyshev window was also 

examined to achieve a good improvement, shown in Figure 6.5 (d). The reason for studying 
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Chebyshev window function was due to its equal side lobe nature [12]. In contrast of other window 

function suppressing the side lobe and maintaining the main lobe, Chebyshev window treated the 

side lobe equally to avoid the situation that the actual signal coming from the direction besides 

broadside, which is commonly used in radar systems.  

 

6.4.3. Results: the railhead with one drilling hole defect  

 

Figure 6.6. Drilling hole imaging in railhead: (a) real experiments; (b) results with uniform window; 

(c) results with hamming window; (d) results with Chebyshev window. 

 

The second test piece used was a 136RE rail track with 20mm-diameter hole drilled at 

about 18mm from the top surface. The experimental setup with the hole on the rail head was shown 

in Figure 6.6(a). The wavelength of ultrasonic wave in steel was 1.13mm for the L-wave. All 
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experimental results with depth and length in mm, and amplitude scale in dB. Figure 6.6(b) showed 

no spatial window function applied on the sensor array. Figure 6.6(c) showed the results after 

applying the hamming window function and Figure 6.6(d) also investigated the Chebyshev 

window function in this case. It showed the hamming window as a static window gave the best 

resolution in term of less side lobes and the sharp main lobe in both cases according to Figure 6.5 

and Figure 6.6. 

 

6.5. Time domain beamforming (TDB) algorithm and 

results 

6.5.1. TDB Algorithm 

 

Figure 6.7. Time domain beamforming algorithm workflow [12]. 
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The TDB algorithm, in contrast with the FDB algorithm, applied the backpropagation of 

the ultrasonic waves in time. The huge advantage of this approach is computation efficiency, with 

no need for FFT and the beamformer summation of multiple frequency bins. It also needs a high 

sampling rate to acquire enough data points to precisely applied the wave backpropagation in the 

time domain. The sampling frequency should be around five times Nyquist law by convention, 

12.5 MHz satisfying this requirement. The small amount of data (the small searching area in 

contrast with underwater acoustic application) allows this algorithm more suitable in real-time 

without compromising geometry resolution. The algorithm runs by first calculating the time delay 

sample indices. Then Hilbert transform is applied to each time series to allow the wave package 

smoother instead of jumping up and down. The compounding amplitudes of sample indices were 

formed to the image of the searching area. On the decibel scale, the higher the dB is, the worse the 

defect is. 

 

6.5.2. Averaging and the prob-wedge coupling impact 

 

Figure 6.8. Auto configuration file adjustment. 
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This subsection tried to find the best way to increase the resolution in terms of the defect 

geometry. One improvement of the experimental setup was the configuration file adjustment 

shown in the Figure 6.8. “daqvalues” was a structure type of variable in MALLAB, including 

“start” (the time in microsecond start to save the time series), “samples” (total samples need to 

acquire), “TimeSlot” (buffer size for storing data), “widthpulser” (the frequency of the pulse 

generated from the controller). With all these adjustable options inbuilt in MATLAB scripts, the 

experiments would be performed more effectively and efficiently. 

 

Figure 6.9. The comparison of the imaging on averaging and no-averaging. 
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As a continuation of improving resolution, averaging several tests to achieve a higher 

resolution of the defect was a possible way. Figure 6.9 showed the comparison of the averaging 

and no averaging of two-hole imaging of the aluminum block. It turned out the different averaging 

tests on the same location were doing the opposite way to improve the resolution due to the high 

precision of this application. Because if and only if the tests were applied on the exact same 

location, the averaging will achieve resolution improvement. Otherwise, the tiny shakes of the 

device will cause image resolution degradation. Moreover, those tiny shakes were not avoidable 

for a human-controlled experiment because of the gel couplant benefiting the wave traveling 

through, in the meantime providing the difficulty to hold the device in the exact same location for 

different tests. 

 

Figure 6.10. The coupling impact between probe and wedge: (a) comparisons among three 

different scenarios; (b) 32 array with SA11-N55S wedge; (c) 64 array with SA12 - N55S wedge. 
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Moreover, the matching degree between probe and wedge was another factor in improving 

or degrading the defect imaging quality. Under the current experimental circumstance, three 

different tests were performed to look for the best combination of the probe, wedge, and the 

frequency of transmitting pulse. The Rexolite wedges, either SA11-N55S or SA12-N55S, were 

like filters, only allowing the waves under 2.5MHz to pass through. The two probes had the central 

frequencies, 2.25MHz and 5MHz respectively. The first combination used a 64-element probe 

with the 5MHz-central-frequency pulse and SA12-N55S wedge; the second combination was 

using 64-element probe with the 2.5MHz-central frequency pulse and SA12-N55S wedge; the third 

combination was using a 32-element probe with the 2.25MHz-central frequency pulse and SA11-

N55S wedge. The first and second combinations used the setup shown in Figure 6.10(c), and the 

third combination used the setup shown in Figure 6.10(b). Figure 6.10(a) showed the results of 

each case in terms of 2D defect image reconstruction and linear spread function on the aluminum 

block mentioned above. The first two combinations showed similar and better results among the 

three with thinner main lobe and lower side lobe. In contrast the third combination gave fat main 

lobe, which increases the ambiguity of the defect location. The first combination was chosen due 

to the probe working better with the designed 5MHz central frequency. 

 

6.5.3. 3D defect reconstruction in real-time with encoder 

To make a more straightforward application in the field, the real-time 3D defect 

reconstruction with encoder control was required. Figure 6.11 showed an interface screenshot of 

the real-time experiment on the 136RE railhead with a drilled hole. From left to right, the first 

figure showed the real-time 2D image reconstruction; the second figure showed the real-time 3D 

image reconstruction stitching the 2D images together in real-time; the third figure monitored the 
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experiment real-time; the fourth figure showed the test piece applied in this subsection. The 

MATLAB command window traced the encoder control by counting the loop number, which 

represented the encoder working status. 

 

Figure 6.11. The real-time 3D image reconstruction with encoder control. 

 

6.5.4. Results: Experimentation in Transportation Technology 

Center, Inc (TTCI) defect library. 

The experiments presented in this section were done in the TTCI rail defect library, 

Colorado, USA. There were four pieces of railhead tested in this section with various types of 

natural transverse defects (TD) as follows: Section #1(B6) 115RE Head center 21%TD; Section 

#2(B8) 136RE Head center 5.9% TD; Section #3(N3) 136RE Head corner 14% TD and Section 

#4(“TDinWeld”) 136RE TD in the weld with 7.3% area. The prototype was scanning along the 

transverse direction shown in Figure 6.12(1). The system would yield a 2D defect image under the 

current location, shown in Figure 6.12(2) and (3). The primary defect would be stored and stitched 
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on the 3D defect reconstruction plot, shown in Figure 6.12(4). Then the loop would continue to 

the next location, eventually constructing an entire 3D defect image. 

 

Figure 6.12. The scheme of 3D defect reconstruction of railhead. 

 

The first test was applied on the sample #1 (B6) 115RE railhead center with 21% TD. The 

two algorithm TDB and FDB were compared in this section. The left subfigure in Figure 6.13 was 

the on-site experiment of sample #1. The first row of Figure 6.13 was results from TDB algorithm 

in 2D defect image and 3D defect image. The second row of Figure 6.13 was results from FDB 

algorithm in both 2D defect image and 3D defect image. The results from two rows provided 

similar resolution yet FDB was more time consuming due to multiple-frequency-bin summation 

was required to achieve higher resolution. The running time of FDB algorithm was 40 times longer 

than TDB algorithm. Therefore, the following discussion was based on TDB algorithm. 
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Figure 6.13. The comparison between TDB and FDB on the sample B6 115RE. 

 

 

Figure 6.14. Comparison of 3D imaging reconstructions. 

 

Another 3D image generation issue was properly choosing the stitching method to 

reconstruct the image, shown in Figure 6.14. The first column showed the raw point slice from the 

individual test. The first method was implemented by interpolating within each slice as well as 

between slices to make the smoother connection then using the ‘surf’ function in MATLAB to 
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reconstruct the 3D image. The other one was directly applied ‘isosurface’ function in MATLAB 

to do reconstruction. ‘isosurface’ in MATLAB involved in-built interpolation would cause 

reduction of the raw data, which led to an underestimation of the defect size.  

 

Figure 6.15. The geometry calibration and reconstruction on the sample N3 136RE. 

 

The second test was applied on the sample#2 (N3) 136RE railhead. The geometry 

calibration was considered in this sample since the scanning was most on the railhead conner area 

where the railhead curvature was significant. The on-site experiment was shown in Figure 6.15(a). 

Figure 6.15(b) showed the original point cloud from the stitched from 2D imaging. The anchor 

points on the railhead section were defined according to the experiment. All slices were then 

rotated based on the anchor points on the railhead corner surface, shown in Figure 6.15(c). Finally, 

the calibrated 3D image was reconstructed and presented in Figure 6.15(d). The geometry 
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calibration aided the curvature impact from the railhead corner to make the final image closer to 

the actual defect. 

The third test was applied on the sample #3 (B8) 136RE railhead. Most scanning on this 

sample happened on the railhead top area flatter than the corner area. So the geometry calibration 

would not be applied in this sample. The on-site experiment was shown in Figure 6.16 (a) top, and 

the bottom is the real-time 2D image of that position. Figure 6.16 (b) showed the 3D defect 

reconstruction using the “interpolation + surf” method discussed above. The first column was the 

raw slices, and the second column was the reconstructed image. The first row was in the viewing 

angle azimuth 130⸰ and elevation 20⸰, which provided the potential to investigate the orientation 

of the defect in 3D. The second row was in the viewing angle azimuth 180⸰ and elevation 0⸰, which 

was the best angle to size the defect. 

 

Figure 6.16. The defect reconstruction of sample B8 (136RE): (a). Real experimental setup and 

2D real-time defect imaging; (b) 3D-point clouds and surface reconstruction. 
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The final test was applied on the sample #4 (TD-in-the-weld) 136 RE railhead. The most 

scanning position was on the flat area on the top of the railhead, same as sample #3, so the geometry 

calibration was not applied in this sample. The on-site experiment was shown in Figure 6.17(a) 

top and the bottom is the real-time 2D image of one position. Figure 6.17 (b) showed the 3D defect 

reconstruction using the “interpolation + surf” method, same as sample#3. The first column was 

raw slices and the second column was the reconstructed image. The first row was in the viewing 

angle azimuth 130⸰ and elevation 20⸰, which provided the potential to investigate the orientation 

of the defect in 3D. The second row was in the viewing angle azimuth 180⸰ and elevation 0⸰, which 

was the best angle to measure the defect size. 

 

Figure 6.17. The defect reconstruction of sample TD-in-the-weld (136RE): (a). Real experimental 

setup and 2D real-time defect imaging; (b) 3D-point clouds and surface reconstruction. 
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6.6. Conclusions 

Ultrasonic imaging potentially proves its ability to accurately estimate the damage, leading 

to reduced maintenance costs by informed decision-making. This study demonstrates the 

improvements in algorithms (TDB and FDB) and real application calibration to the traditional 3D 

image reconstruction to make this detection realistic to transverse defects on the railhead. The 

results of four testing samples were compared with those of the traditional A-scan shown in Table 

6.1. The comparison has been done in terms of the primary defect of the individual railhead sample. 

Tests on Samples #1 and # 2 were underestimated the size of the TD, whereas those on sample #3 

and sample #4 were overestimated the size of the TD compared to A-scan. However, the overall 

results were relatively consistent with A-scan results with little deviation, which could be caused 

by operation area or analysis interpolation error. 

Table 6.1 Comparison between A-scan and Ultrasonic imaging. 
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This study shows that the portable ultrasonic imaging system will be a potential replacement of 

current hand verification techniques for rail flaws by an inspection vehicle. The 3-D defect 

reconstruction images significantly improve the representation of the internal flaws in terms of 

size and orientation to provide practical suggestions for maintenances. 

6.7. Fatigue history prediction of the railway track 

(future work /preliminary study) 

Prognostics have been widely used for predicting the failure time of the component, which 

provides maintenance suggestions of replacement or running under strict monitoring. One of the 

leading prognostics applications is remaining useful life (RUL) estimation [15, 16]. Data-driven-

based methods and physics-based methods are two major groups in prognostic. Data-driven-based 

methods allow us to learn the former history of the problem in order to predict based on the known 

knowledge, which proves accuracy and efficiency in the real application [17, 18]. 

The incredible attention has recently focused on impressive results achieved from deep 

learning (DL)[19,20] in fault diagnosis and the RUL estimation. A long short-term memory 

(LSTM) [21] model was proposed for RUL estimation to exploit the information of sequential 

sensors. However, LSTM requires a large amount of training data and significantly memory 

consuming during the training. 

In this preliminary study, we propose a three-layer DL network for RUL prediction. The 

large amplitude noise added on the approximated theoretical crack growth curves yields realistic 

scenarios for the indication of the real experiment. By adjusting the learning rate, the model was 

trained efficiently with little compromising the accuracy. 
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6.7.1. Data preparation and training schedule 

The data in this section generated based on the approximated theoretical curve of linear 

elastic fracture mechanics (LEFM)[22], the crack growth state was demonstrated by Paris law 

shown in Eq.6.7. 

𝑑𝑎

𝑑𝑁
 𝐴Δ𝐾𝑚           (6.7) 

Where, Δ𝐾  𝐾𝑚𝑎   𝐾𝑚𝑖𝑛 , 
𝑑𝑎

𝑑𝑁
 was the fatigue crack growth rate per cycle. 𝑑𝑎 is the 

increment of the crack, 𝑑  is the increment cycle of the test. The exponent m was often near 3 for 

steel , which might be rationalized as the damage accumulation related to the plastic zone volume. 

A was close to 10−11 for steel alloy [23].  

The approximated theoretical curve was generated, shown in Figure 6.18(a), the initial 

states with Δ𝐾 between [5, 20], using the function: 𝑐𝑟𝑎𝑐𝑘 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒  log (
4

Δ𝐾1
 ). The Paris’ 

law state followed Eq.6.7. The noise with standard Gaussian distribution and 0.3 amplitude was 

added to the approximately theoretical curve yielding the final studied curve. The approximately 

theoretical curve involved the nonlinear property, which helped the following study general 

enough to project the real experiment scenario. The final time series was realistic by adding noise. 

Because the real measurement of the crack growth would be jumping up and down, which resulted 

in difficulty in tracking the primary trend. The extreme case was studied here by adding exaggerate 

the level of noise to touch the worse-case scenario, on the contrary, leading this method more 

robust to the real experiments. 
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Figure 6.18. Data preparation: (a) The theoretical curve; (b) The theoretical curve with gaussian 

noise. 

 

Figure 6.19. Data preparation: (a) The theoretical curve with gaussian noise; (b) Zoom-in window. 

The DNN was performed on the training set to predict the curves on the validation set. The 

specific procedure of data preparation was shown in Figure 6.19. Figure 6.19(b) was the zoom-in 

of the red box in Figure 6.19(a). In the green box in Figure 6.19(b), the final value in the green box 

was used as a label and the rest of the data values were inputs of this area. 

The whole process needed two parts of data: the training set and the validation set, shown 

in Figure 6.20. The goal of this study aimed to predict the remaining useful life corresponding to 

the second part of the whole series. Therefore, the whole series was divided into two with the first 

part as the training set and the second half as the validation set. The prediction was made based on 
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the training set data verified and compared with the validation set to prove the effectiveness of the 

prediction.  

 

Figure 6.20. Data preparation: (a) whole signal; (b) validation set; (c) training set. 

The training was implemented using open-source software: Tensor Flow, Keras. The loss 

was estimated by mean square error (mse). The “ Colab ”, one of the online servers, was used to 

training the model. There were three neuron layers: The first layer with ten neurons followed by 

“Relu”(rectified linear unit) activation function; the second layer also with ten neurons followed 

by “Relu” activation function; the third layer was a one-neuron layer yielding the prediction. 

Stochastic gradient descent (SGD) with momentum [24] was chosen as the optimization method. 

SGD was a powerful tool to accelerate the training speed. On the contrary to the traditional batch 

gradient descent traveling through the whole training per iteration, SGD learned one example per 

each epoch and yielded the learning process, reporting to researchers if the training was on the 
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right track. However, the side effect was also quite severe due to the significant oscillation, which 

might lead to the overshoot when the model was close to the optimum. The cure of this problem 

was adding momentum to keep the training progress traveling in the same direction and prevent 

oscillations. The momentum was set to 0.9 which indicated averaging 10 iterations during the 

training.  

6.7.2. Results 

The prediction was compared with the validation set shown in Figure 6.21. This prediction 

was made by using 3e-7 for learning rate, also called step size. The results showed the high degree 

match between two sets, which indicated the learning rate may be too small to over train the model 

resulting in less computational efficiency. However, on the other hand, the oscillation was small 

regarding epochs shown in Figure 6.22. The loss gradually going down also indicated the 

convergence of this training process.  

 

Figure 6.21. The comparison of the validation set and the prediction set. 
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Figure 6.22. The training convergence analysis. 

 

Figure 6.23. The training efficiency analysis of the loss and the learning rate. 

The analysis of loss and learning rate was necessary to find the best learning rate fast and 

effective, shown in Figure 6.23. Learning rate between 5e-4 to 3e-7, the loss was almost plateau, 

which demonstrated the fact that learning rate in this region yielded similar accuracy yet cost 

distinct consuming time. The larger the learning rate was, the less the time consumption would be.  

The best learning rate chosen to test was 3e-4, the corresponding results were shown in 

Figure 6.24. The learning rate was larger than last result, the Figure 6.24(b) showed the larger 

oscillation accordingly yet the final convergence was still held under this size of the learning rate. 



  

 

170 

 

Figure 6.24(c) showed the result comparison between the prediction and validation, which was 

less matching than that shown in Figure 6.21. However, the running speed was significantly 

improved in terms of larger step size.  

 

Figure 6.24. The efficient learning rate discussion with the largest learning step 
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The preliminary study of remaining useful life estimation was implemented using the 

approximately theoretical curves with considerable amplitude noise. The DNN was used for 

making the prediction given the initial state of the crack growth with nonlinear properties. The 

efficiency of the training schedule was discussed by comparing the loss and learning rate to yield 

a suitable learning rate with acceptable as well as high speed. The prediction of the second pairs’ 

law state was quite matched with the validation set of the given signal, which theoretically proved 

that this methodology was capable of predicting the real data from the experiment. 
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Chapter 7.  Conclusions 

  Solving inverse problems, recognizing damage patterns, and exploiting the computational 

intelligence to identify the possible defect locations are primary means of the NDE and SHM 

community to understand damages on the laminated composite components. Chapter 2 explored 

the potential for ultrasonic guided waves in high frequency (~100s of kHz) region to identify 

elastic properties of composite laminates by its nature of advantages regarding large ranges and 

high sensitivity to both lamina-by-lamina properties and laminate engineering properties due to 

the coupling of longitudinal and traversal, normal and shear stresses/strains cross-sectional 

distributions. Moreover, ultrasonic guided waves relaxed the restriction of boundary conditions of 

the test part, such as boundary reflections, making themselves capable of installing on the structure 

in service. Three fundamental guided modes of axial (S0), flexural (A0), and shear-horizontal (SH0) 

were considered, which were typically used in general. 

 Chapter 3, as a continuation, provided experimental validation of the proposed framework 

examined in simulation in chapter 2 by using guided wave dispersion curves to identify the elastic 

properties of composite laminates. The measuring phase velocity dispersion curves of the plate 

were achieved by the 2D-FFT method, then matching these curves to SAFE-predicted curves 

through a Simulated Annealing optimization algorithm. It is meaningful to examine 

experimentally the effectiveness of a single guided wave propagation direction to identify global 

“engineering” constants of the laminate, both in the wave launching direction and traversal 

direction. It was proved that the coupling of normal and shear stresses/strains improved the elastic 

property identification with the increasing numbers of the off-axis laminae (e.g., ±45⸰ and 90⸰ 

laminae for a 0⸰ wave propagation direction). However, this study had been limited to the elastic 
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properties of the composite. It is theoretically possible to extend the framework to the visco-elastic 

property identification by including the appropriate complex stiffness coefficients in the SAFE 

formulation. 

 Chapter 4 extended the studied object from a composite plate to a complex skin-to-stinger 

composite panel for defect detection and localization. A Convolutional Neural Network (CNN) 

was designed for this application, including the enhancements of Batch Normalization, Minibatch-

ADAM optimization, and L2-Norm Regularization. This study was tested on various damages 

scenarios based on the well-trained model of simulated damages, such as simulated damages that 

co-located with the trained locations, simulated damages that were offset from the trained locations, 

eventually, the real damage (a slit cut on the stringer cap). To ensure the accuracy, at the meantime, 

be limited by the computational power, the algorithm utilizes three different classification models. 

One was for distinguishing the general locations, on stringer cap or not. The second was 

specifically for the damage classified not on the stringer cap to predict the accurate location. The 

third was targeted for the damage classified on the stringer cap to predict the precise location. The 

results indicated that the damage imaging performance depended on the type of signal excitations, 

the higher-energy excitations improving the damage imaging performance, therefore, the 

summation version producing the comprehensive prediction.  

 Chapter 5 introduced three techniques for damage detection and localization regarding 

composite materials. The first method showed a data-driven matched field processing to identify 

the simulated damages (clay added mass) on the stringer-to-skin cross-section. The second method, 

another designed CNN for the excitation localization, was investigated using data from ABAQUS, 

preliminarily proving the benefit to operate the model with the real experimental data. The third 

method aimed to improve mobility and flexibility by using air-coupled transducers through 
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structural transfer function extraction, reducing the influence of the random excitation source. 

Using features gathered from the transfer functions, a statistical anomaly analysis produced 

damage indices to trace the peaks, therefore, identifying the damage location along the scanning 

direction. Later, a discussion concerning the skin-to-stringer-to-shear_tie structure was conducted 

by air-coupled transducers and mini-impactor through the transfer function extraction. A Receiver 

Operating Characteristic (ROC) curve was employed to find a stable status for the damage 

detection. 

 Chapter 6 investigated the 2D and 3D defect reconstructions on an aluminum block with 

simulated damages (two drilling holes) and railhead with transverse defects (TDs) by ultrasonic-

bulk-wave beamforming algorithm. Two algorithms (frequency-domain-beamforming and time-

domain-beamforming) were discussed and compared. A real-time 2D and 3D defect imaging script 

with encoder control was operated on the railhead with natural transverse defects. This study 

helped rail maintenance engineers to knowledgeable decisions based on given defect sizes. 

Moreover, a preliminary study of the remaining-useful-life of the rail track follows given the size 

of the defect on the railhead by imaging. A deep-neuron network was designed to predict the 

remaining life based on the current status with a considerable noise level. The trade-off between 

accuracy and computational efficiency in terms of learning rate was discussed to find the best 

strategy to perform the training. This study provided some insights into dealing with future 

experimental data, especially with a low signal-to-noise ratio.  




