
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Sequential Monte Carlo methods: applications to disease surveillance and fMRI data

Permalink
https://escholarship.org/uc/item/6fm3v5cp

Author
Sheinson, Daniel Michael

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6fm3v5cp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Santa Barbara

Sequential Monte Carlo methods: applications to
disease surveillance and fMRI data

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Statistics and Applied Probability

by

Daniel M. Sheinson

Committee in Charge:

Professor Jarad Niemi, Co-chair

Professor Wendy Meiring, Co-chair

Professor John Hsu

Professor Greg Ashby

September 2014

The Dissertation of
Daniel M. Sheinson is approved:

Professor John Hsu

Professor Greg Ashby

Professor Jarad Niemi, Committee Co-chairperson

Professor Wendy Meiring, Committee Co-chairperson

September 2014

Sequential Monte Carlo methods: applications to disease surveillance and fMRI

data

Copyright c© 2014

by

Daniel M. Sheinson

iii

Acknowledgements

First and foremost, I would like to express my immense gratitude toward my

co-advisors, Professor Jarad Niemi and Professor Wendy Meiring. Jarad saw

potential in me as a second-year graduate student and has provided me with in-

valuable professional and academic advice, even after he moved to Iowa to begin

his new faculty position. Wendy, while playing an instrumental role in the depart-

ment as graduate advisor, has always supported me with unwavering dedication.

I am deeply grateful for the amount of time that they both have devoted to me,

and I owe tremendous thanks to them for their continuous support over the past

four years.

I would also like to thank the remaining members serving on my thesis commit-

tee, Professor John Hsu and Professor Greg Ashby. John’s warmth and kindness

played a large part in my decision to come the UC-Santa Barbara, and Greg has

been a tremendous help, sharing with me his expertise in the field of functional

magnetic resonance imaging. In addition, I would like to thank Professor S. Rao

Jammalamadaka, Professor Andrew Carter, Professor Yuedong Wang, and the

entire faculty of the Department of Statistics and Applied Probability for their

instruction and guidance throughout the development of my academic career.

Finally, I would like to thank my loving family, friends, and fellow graduate

students for all of their support and encouragement.

iv

Curriculum Vitæ
Daniel M. Sheinson

Education

2014 University of California, Santa Barbara, CA
Doctor of Philosophy in Statistics and Applied Probability
Ph.D. emphasis in Quantitative Methods in the Social Sciences

2010 University of California, Santa Barbara, CA
Master of Arts in Mathematical Statistics

2009 University of Illinois at Urbana-Champaign, Champaign, IL
Bachelor of Science in Statistics
Secondary Major in History
Minor in Computer Science

Experience

2013-2014 Summer Instructor, Department of Statistics and Applied Prob-
ability, University of California, Santa Barbara

2009-2014 Teaching Assistant, Department of Statistics and Applied Prob-
ability, University of California, Santa Barbara

2012 Statistics Consultant, Intellectual Ventures Laboratories, Epi-
demiological Modeling Group, Seattle

Selected Publications

2014 “Comparison of the performance of particle filter algorithms ap-
plied to tracking of a disease epidemic”, with Jarad Niemi and
Wendy Meiring. Mathematical Biosciences 255: 21-32.

2014 “Large Loss Claims: The Market Shift Factor: Justification for
a Statistical Solution”, with William Novotny in Journal of Ad-
vanced Appraisal Studies: 283-302.

Conference Presentations

2014 “Comparison of the performance of particle filter algorithms ap-
plied to tracking of a disease epidemic”, Joint Statistical Meetings

2013 “Tracking and prediction of a disease epidemic using particle fil-
tering”, WNAR Annual Meeting

Awards and Honors

2010 Abraham Wald Memorial Award, UCSB Department of Statistics
and Applied Probability

v

Abstract

Sequential Monte Carlo methods: applications to disease

surveillance and fMRI data

Daniel M. Sheinson

We present contributions to epidemic tracking and analysis of fMRI data using

sequential Monte Carlo methods within a state-space modeling framework. Using

a model for tracking and prediction of a disease outbreak via a syndromic surveil-

lance system, we compare the performance of several particle filtering algorithms

in terms of their abilities to efficiently estimate disease states and unknown fixed

parameters governing disease transmission. In this context, we demonstrate that

basic particle filters may fail due to degeneracy when estimating fixed parameters,

and we suggest the use of an algorithm developed by Liu and West (2001), which

incorporates a kernel density approximation to the filtered distribution of the fixed

parameters to allow for their regeneration. In addition, we show that seemingly

uninformative uniform priors on fixed parameters can affect posterior inferences,

and we suggest the use of priors bounded only by the support of the parameter.

We demonstrate the negative impact of using multinomial resampling and suggest

the use of either stratified or residual resampling within the particle filter. We

also run a particle MCMC algorithm and show that the performance of the Liu

and West (2001) particle filter is competitive with particle MCMC in this par-

ticular syndromic surveillance model setting. Finally, the improved performance

vi

of the Liu and West (2001) particle filter enables us to relax prior assumptions

on model parameters, yet still provide reasonable estimates for model parameters

and disease states.

We also analyze real and simulated fMRI data using a state-space formulation

of a regression model with autocorrelated error structure. We demonstrate via

simulation that analyzing autocorrelated fMRI data using a model with indepen-

dent error structure can inflate the false positive rate of concluding significant

neural activity, and we compare methods of accounting for autocorrelation in

fMRI data by examining ROC curves. In addition, we show that comparing mod-

els with different autocorrelated error structures on the basis of the independence

of fitted model residuals can produce misleading results. Using data collected

from an fMRI experiment featuring an episodic word recognition task, we esti-

mate parameters in dynamic regression models using maximum likelihood and

identify clusters of low and high activation in specific brain regions. We compare

alternative models for fMRI time series from these brain regions by approximating

the marginal likelihood of the data using particle learning. Our results suggest

that a regression model with a dynamic intercept is the preferred model for most

fMRI time series in the episodic word recognition experiment within the brain

regions we considered, while a model with a dynamic slope is preferred for a small

percentage of voxels in these brain regions.

vii

Contents

Acknowledgements iv

Curriculum Vitæ v

Abstract vi

List of Figures xi

List of Tables xiii

List of Notation and Terminology xiv

1 Introduction 1

2 Models 7
2.1 State-space models . 8
2.2 Model for tracking an epidemic 10

2.2.1 SIR model . 10
2.2.2 Syndromic surveillance data 13

2.3 Dynamic linear models (DLMs) 14
2.3.1 First-order DLM with common variance factor 16
2.3.2 Regression with ARMA errors 16
2.3.3 Dynamic regression . 19

2.4 Sequential estimation . 24

3 Methods 27
3.1 Markov chain Monte Carlo (MCMC) algorithms 29

3.1.1 MCMC applied to epidemic model 30
3.1.2 MCMC applied to dynamic regression 36

3.2 Particle filtering . 39
3.2.1 Bootstrap filter (BF) . 40

viii

3.2.2 Auxiliary particle filter (APF) 41
3.2.3 Kernel density particle filter (KDPF) 43
3.2.4 Resample-move algorithm (RM) 45
3.2.5 Particle learning (PL) . 48

3.3 Resampling . 53
3.4 Model comparison . 55
3.5 Particle MCMC . 57

4 Simulation study: tracking a disease epidemic 61
4.1 Simulated epidemic data . 62
4.2 Particle filter runs . 64
4.3 Comparison of particle filter algorithms under uniform priors . . . 66
4.4 Illustration of the negative impact of priors with truncated support 70
4.5 Comparison of resampling schemes 72
4.6 Discount factor . 75
4.7 Comparison with MCMC . 77
4.8 Additional Unknown Parameters 81
4.9 Discussion . 85

5 Simulation study: SMC model comparison of local level DLMs 90
5.1 Simulated data and analytical forms for estimation 91
5.2 Estimation using particle filters 93
5.3 Comparing models with varying signal-to-noise ratios 95

6 Statistical analysis of fMRI data 102
6.1 Overview of fMRI . 103

6.1.1 The haemodynamic response 104
6.1.2 The scanning session . 105
6.1.3 The correlation-based GLM approach 107
6.1.4 Word recognition task . 111

6.2 Temporal autocorrelation . 114
6.2.1 Exploration of ARMA models 117
6.2.2 False positive and true positive rates 121
6.2.3 Testing independence of residuals 128

6.3 Fitting dynamic regression models 135
6.3.1 Identifiability of dynamic regression models 135
6.3.2 Fitting word recognition data 149

6.4 Comparing dynamic regression models using particle learning . . 155
6.4.1 Analyzing simulated fMRI data using particle learning . . 157
6.4.2 Distinguishing dynamic regression models using particle learn-
ing . 160
6.4.3 Sensitivity of the marginal likelihood to priors 164

ix

6.4.4 Comparing posterior model probabilities using simulated
fMRI data . 168
6.4.5 Comparing models for word recognition data using particle
learning . 172

6.5 Discussion . 183

7 Future work 187

Bibliography 190

x

List of Figures

2.1 Dependence structure of state-space models 9

4.1 Simulated epidemic data . 63
4.2 Comparing credible intervals for the BF, APF, and KDPF 69
4.3 Comparing priors in the KDPF 73
4.4 Comparing resampling schemes in the KDPF 76
4.5 Traceplots comparing the MCMC versus PMCMC 80
4.6 Comparing the KDPF versus PMCMC 81
4.7 Analyzing epidemic model with additional unknown parameters . 86

5.1 Simulated data and analytical estimates for local level DLM . . . 92
5.2 Comparing sequential credible intervals for KDPF, RM, and PL . 98
5.3 Log marginal likelihood versus λ 99
5.4 Comparing estimated log marginal likelihoods for KDPF, RM, and
PL . 100
5.5 Comparing posterior model probabilities for KDPF, RM, and PL 101

6.1 Single voxel time series from fMRI experiment 115
6.2 Simulated rapid-event related design of fMRI experiment 123
6.3 False positive rates for simulated fMRI data 130
6.4 ROC curves for simulated fMRI data 131
6.5 Identifying dynamic slope model by increasing signal-to-noise ratio 142
6.6 Identifying dynamic slope model by increasing autocorrelation . . 143
6.7 Identifying dynamic intercept model by increasing signal-to-noise
ratio . 145
6.8 Identifying dynamic intercept model by increasing autocorrelation 146
6.9 Identifying model with both dynamic slope and intercept with
small slope variance . 147
6.10 Identifying model with both dynamic slope and intercept with large
slope variance . 148
6.11 Kernel density estimates of MLEs of regression coefficients 152

xi

6.12 Simulated fMRI data from dynamic slope model 159
6.13 Credible intervals from PL compared with MCMC for simulated
fMRI data . 161
6.14 Credible intervals from PL compared with MCMC for simulated
fMRI data . 162
6.15 Distinguishing the dynamic slope model from the dynamic inter-
cept and simple linear regression models 165
6.16 Distinguishing the dynamic intercept model from the dynamic slope
and simple linear regression models . 166
6.17 Distinguishing the true dynamic slope model M011 from the dy-
namic intercept and simple linear regression models with increasing prior
variance . 169
6.18 Distinguishing the true dynamic intercept model M101 from the
dynamic slope and simple linear regression models with increasing prior
variance . 170
6.19 Ternary diagrams of posterior model probabilities for simulated
fMRI data from dynamic slope model 173
6.20 Ternary diagrams of posterior model probabilities for simulated
fMRI data from dynamic intercept model 174
6.21 Posterior probabilities of dynamic regression models for real fMRI
data . 177
6.22 Filtered dynamic slopes and posterior model probabilities for data
from IPS-right . 180
6.23 Filtered dynamic slopes and posterior model probabilities for data
from SV-left . 181

xii

List of Tables

4.1 Values of known constants in epidemic model 63
4.2 Comparing credible intervals for the BF, APF, and KDPF 70

6.1 Mean AR and MA orders for experimental fMRI data 121
6.2 False positive rates for simulated fMRI data 129
6.3 Proportion of times null hypothesis of independent errors was not
rejected for simulated fMRI data . 134
6.4 Average MLEs in single cluster brain regions 153
6.5 Average MLEs in bi-cluster brain regions 154
6.6 Proportion of voxels with high activation 154
6.7 Proportion of voxels favoring different regression models 176

xiii

List of Notation and Terminology

capital symbols, e.g. F , G, Φ, Σ matrices
lowercase symbols, e.g. a, b, β, γ vectors or scalars

N(µ,Σ) the normal distribution with mean µ
and covariance matrix Σ

NΩ(µ,Σ) the normal distribution truncated onto
the set Ω with untruncated mean µ
and covariance Σ

T (µ,Σ, v) the multivariate, nonstandard Student-t
distribution with mean µ, scale matrix Σ,
and v degrees of freedom

LN(µ,Σ) the log-normal distribution with mean µ
and covariance matrix Σ on the log scale,
i.e. X ∼ LN(µ,Σ)⇔ logX ∼ N(µ,Σ)

IG(a, b) the inverse gamma distribution with
shape a and rate b, i.e. with pdf given by
p(x|a, b) = ba

Γ(a)
x−a−1 exp(−b/x), x > 0

G(a, b) the gamma distribution with shape a
and rate b, i.e. with pdf given by
p(x|a, b) = ba

Γ(a)
xa−1 exp(−bx), x > 0

Unif(a, b) the continuous uniform distribution on [a, b]
δx0(x) the Dirac delta function that places

point mass for random vector x at x0

. ∼ f ‘.’ distributed according to f

.
iid∼ f ‘.’ independent and identically distributed

according to f
x ⊥ y x independent of y
⊗ Kronecker product
A′ the transpose of the matrix A

Continued on next page

xiv

Continued from previous page
a′ the transpose of the vector a

A(i,j) the i, jth element of the matrix A
vec(A) column-wise vectorization of the matrix A
|A| determinant of the matrix A
In the n× n identity matrix
yt vector of observed data at time t
xt unobserved state vector at time t
θ vector of unknown fixed parameters
ys:t collection of variables (ys, ys+1, . . . , yt−1, yt)

p(yt|xt, θ) observation equation, i.e. conditional
likelihood at time t

p(xt|xt−1, θ) state equation, i.e. state transition
density from time t− 1 to t

p(xt, θ|y1:t) filtered distribution of current state
and fixed parameters at time t

p(x0:t, θ|y1:t) filtered distribution at time t of
state history and fixed parameters

p(xs, θ|y1:t), s < t smoothed distribution of state at time s
and fixed parameters, conditional on data
observed through time t

p(xt|y1:t, θ) filtered distribution of current state at
time t conditional on fixed parameters

p(xt|y1:t) marginal filtered distribution of current
state at time t

p(x0:t|y1:t, θ) filtered distribution at time t of
state history conditional on fixed parameters

p(x0:t|y1:t) marginal filtered distribution of state
history at time t

p(θ|y1:t, x0:t) filtered distribution of fixed parameters
conditional on state history throught time t

p(θ|y1:t) marginal filtered distribution of fixed
of fixed parameters at time t

p(y1:t) marginal likelihood of the data observed
through time t

p(yt|y1:t−1) one-step ahead predictive density of data
at time t given data through time t− 1

p(x0, θ) prior distribution of the initial
state and fixed parameters

Continued on next page

xv

Continued from previous page
p(yt+1|xt, θ) conditional predictive distribution of data at

time t+ 1 given current state at time t
and fixed parameters

p(xt+1|yt+1, xt, θ) filtered distribution of state at time t+ 1
conditional on current state at time t
and fixed parameters

p(x| . . .) full conditional distribution for any vector x

xvi

Chapter 1

Introduction

Time series data, or data consisting of measurements collected sequentially

over time, are common in many fields including the social, physical, technological,

and biological sciences. Finding innovative ways to analyze and interpret this

kind of data has been crucial for advancing these fields, including weather tracking

(Dixon and Wiener; 1993), communication signal processing (Gardner; 1994), and

social media networks (Smith et al.; 2009). Analysis of sequential data pose several

challenges to the researcher. Firstly, the data often exhibit nonlinear behavior.

Secondly, the data are typically autocorrelated, meaning that there tends to be a

relationship among data points based on their proximity in time. These issues are

problematic for analysis using traditional statistical methods that require linear

structure and independent observations.

1

State-space models provide a general framework that is convenient for model-

ing nonlinear and autocorrelated data by describing a process in terms of a latent,

dynamic state. In these models, observations are regarded as conditionally in-

dependent given the underlying state of the system, and the state evolves over

time according to a linear or nonlinear process. Typically, the general form of

these models may be known, but each model will contain unknown fixed parame-

ters that are specific to the application area. In this thesis, we employ state-space

models with unknown fixed parameters to study time series data from two specific

areas: disease surveillance and functional magnetic resonance imaging (fMRI).

State-space models are frequently used for disease outbreaks to simultaneously

model the underlying disease dynamics and the observation process (Mart́ınez-

Beneito et al.; 2008; Merl et al.; 2009b; Ludkovski and Niemi; 2010; Skvortsov and

Ristic; 2012; Unkel et al.; 2012; Sheinson et al.; 2014). Together with syndromic

surveillance systems (Henning; 2004; Wagner et al.; 2006; Wilson et al.; 2006;

Hakenewerth et al.; 2009; Ginsberg et al.; 2009), these models are used to identify

emerging disease outbreaks (Neill et al.; 2006), estimate their severity (Merl et

al.; 2009b), and predict their duration Ludkovski and Niemi (2010). Data from

fMRI experiments are used for the purpose of mapping neural activation in the

brain (Ashby; 2011; Kiebel and Holmes; 2007; Poldrack et al.; 2011). These data

are typically analyzed using a linear regression model that correlates the observed

data with the expected brain response to the experimental stimulus (Friston et

2

al.; 1991, 1995b). We reformulate this regression model within the state-space

framework to model autocorrelation in the data in terms of a dynamic state.

In statistical applications where prior knowledge or beliefs about unknown

quantities are available, the Bayesian framework is often convenient for performing

statistical analysis. Bayesian inference is conducted through the posterior distri-

bution of any unknown quantities, obtained by updating prior information using

observed data. However, the calculation of the posterior distribution in state-

space models frequently involves complicated integrals without explicit analytical

forms. The most common approach to approximate these posterior distributions

is Markov chain Monte Carlo (MCMC) (Gelfand and Smith; 1990). In a sequen-

tial context, e.g. syndromic surveillance, MCMC is inefficient due to the increase

in computational cost incurred by the need to rerun the entire MCMC as each

new observation arrives. Sequential Monte Carlo (SMC) - or particle filtering -

methods enable on-line inference by updating the estimate of the posterior dis-

tribution as new data become available sequentially in time. Furthermore, SMC

methods can be flexible, general, easy to implement, and amenable to parallel

computing. For a general introduction, please see Doucet et al. (2001) and Cappé

et al. (2007).

In this thesis, after reviewing the SMC, MCMC, and PMCMC algorithms and

application areas, we analyze data from disease surveillance and fMRI using both

MCMC and SMC algorithms. We compare several particle filtering algorithms in

3

terms of how efficiently they estimate latent, unobserved states and fixed param-

eters in a state-space model for tracking a disease epidemic similar to one used

by Skvortsov and Ristic (2012). We find that an algorithm developed by Liu and

West (2001), which regenerates fixed parameter values through the use of a kernel

density approximation, outperforms algorithms that incorporate fixed parameters

into the state process with degenerate evolutions. We also find, under this partic-

ular model, that the Liu and West (2001) algorithm is competitive with particle

MCMC (Andrieu et al.; 2010).

Then, we discuss how SMC methods can be used to compare alternative models

through approximation of the marginal likelihood of the data. We compare the

performance of more recently developed particle filters in terms of how efficiently

they identify a true model out of a set of candidate models using data simulated

from the true model. We find that a particle learning algorithm (Carvalho et

al.; 2010) outperforms both the resample-move particle filter (Gilks and Berzuini;

2001) and the Liu and West (2001) algorithm when applied to data simulated

from a local level dynamic linear model (Section 4.3.1 Petris et al.; 2009).

Next, we provide an overview of data generated from fMRI experiments and

describe the most common strategies for data analysis used in this field. We un-

derscore the negative impact of analyzing fMRI data without properly accounting

for autocorrelation present in the data, and we explore possible models for this

autocorrelation. Initially, we estimate unknown parameters in these models using

4

maximum likelihood, and we compare several candidate models against one an-

other through examination of statistical criteria, namely AIC, AIC corrected for

bias, and BIC. We also use simulated fMRI time series to compare candidate mod-

els in terms of their false positive and true positive rates of concluding significant

brain activation.

Lastly, we implement a particle learning algorithm for estimating latent states

and fixed parameters in state-space models for fMRI data. We also estimate the

marginal likelihood of the data and compare relative posterior probabilities among

several models. Specifically, we consider the likelihood of a regression model with

a dynamic slope being suitable for fMRI data from an episodic word recognition

experiment, with the notion that a changing slope component could model changes

in focus or learning on the part of the subject in the fMRI scanner. Using simulated

data, we explore parameter settings under which we can correctly identify the true

data-generating model amongst several candidate models for fMRI time series. We

compare these models using real fMRI data from a word recognition experiment.

Our results suggest that a dynamic slope model may be suitable only for a small

percentage of fMRI time series from this specific experiment, but that larger

models that incorporate a dynamic slope as well as other components to account

for autocorrelation in fMRI data may be appropriate.

This thesis is organized as follows. Chapter 2 contains descriptions of state-

space models in general as well as the specific models we use to analyze syndromic

5

surveillance and fMRI data. Chapter 3 describes MCMC and SMC methods for

making inference on latent unobserved states and unknown fixed parameters in

these models. Chapter 4 describes an analysis comparing several particle filter-

ing strategies using simulated syndromic data from an influenza-like epidemic

outbreak. In Chapter 5, we describe a model comparison strategy using SMC

methods and compare several particle filters in terms of their ability to accurately

compare first-order dynamic linear models with varying signal-to-noise ratios. In

Chapter 6, we investigate current methods for effectively modeling autocorrelated

fMRI time series and use an SMC model comparison strategy for assessing the

suitability of dynamic regression models for fMRI data. Chapter 7 discusses future

directions. The material in Chapter 4 and some of the methodology discussed in

3 are taken from Sheinson et al. (2014).

6

Chapter 2

Models

In this chapter, we describe the specific models that we use for analyzing fMRI

data and tracking a disease epidemic. We also describe models that we simulate

data from in order to compare the performance of different particle filtering algo-

rithms. All of these models fall into a general class of models called state-space

models. In Section 2.1, we describe state-space models in general. In Section 2.2,

we describe the model we consider for tracking a disease epidemic. In Section 2.3,

we describe a subclass of state-space models called dynamic linear models that

we use to model fMRI data. In Section 2.4, we describe sequential estimation of

states and unknown fixed parameters in state-space models in general and give

analytic solutions for special cases.

7

2.1 State-space models

State-space models are a general class of statistical models used for analy-

sis of dynamic data. They are constructed using an observation equation, yt ∼

py,t(yt|xt, θ), and a state evolution equation, xt ∼ px,t(xt|xt−1, θ), where yt is the

observed response, xt is a latent, dynamic state, the subscript t is a time index,

and θ is an unknown fixed parameter, all of which could be vectors. The yt’s

are assumed independent given xt and θ, and xt is assumed independent of all

states prior to time t − 1 and all data prior to time t given xt−1 and θ. That

is, (yt ⊥ y1:t−1, yt+1:T)|xt, θ and (xt ⊥ x0:t−2, y1:t−1)|xt−1, θ (see Figure 2.1). The

distributions py,t and px,t are assumed known conditional on the values of θ and

xt in the observation equation and conditional on θ and xt−1 in the evolution

equation, respectively. Depending on whether the observations and the states are

continuous or discrete, the distributions themselves may be continuous or discrete.

The distributions are typically assumed to only vary with xt and θ, and therefore

the t subscript is dropped. For simplicity, we also drop the x and y subscripts

and instead let the arguments make clear which distribution we are referring to.

Thus, the general state-space model is

yt ∼ p(yt|xt, θ) (2.1)

xt ∼ p(xt|xt−1, θ). (2.2)

A fully specified Bayesian model is obtained by also specifying the prior p(x0, θ).

8

Figure 2.1: Dependence structure of state-space models

xt−1 xt xt+1

yt−1 yt yt+1

Equations (2.1) and (2.2) describe a very general class of models, including

non-Markovian structures and models where the dimension of xt does not remain

constant with respect to t. For instance, we could describe a process where xt

depends on the entire history of states up to t by letting xt−1 = (x∗1, x
∗
2, . . . , x

∗
t−1)′

and defining xt = (xt−1, x
∗
t)
′, where x∗t is the new state generated at time t. In

addition, the form of equations (2.1) and (2.2) could be linear or nonlinear with

respect to xt or θ. For example, in Section 2.2, we describe a state-space model of

a disease outbreak that is nonlinear in the observation equation with respect to xt

and nonlinear in the state equation with respect to θ. In Chapter 4, we compare

the performance of several particle filtering algorithms using data simulated from

this model.

Special cases of state-space models include finite state-space hidden Markov

models (Cappé et al.; 2005), where xt has discrete support, and dynamic linear

models (DLMs) (West and Harrison; 1997; Petris et al.; 2009), where each distri-

bution in (2.1) and (2.2) is Gaussian with mean a linear function of the states and

variance that does not depend on the mean. A simple form of a DLM, known as

a first-order DLM or local-level model, is described in Section 2.3.1 and used in

9

Chapter 5 to compare several particle filtering algorithms in terms of their ability

to estimate p(y1:t), the marginal likelihood of the data. In Chapter 6, DLM rep-

resentations of regression models with autocorrelated errors are used to analyze

fMRI data. We describe DLMs in more detail in Section 2.3.

2.2 Model for tracking an epidemic

In this section, we describe a state-space model of an epidemic in which we

track the proportion of the population that is susceptible (st), infectious (it), and

recovered (rt), i.e. no longer able to be infected, at time t. Mathematically, st,

it, and rt are all nonnegative and st + it + rt = 1 for all t. When monitoring

an epidemic, the true st, it and rt are unknown and regarded as hidden states

of the model, and the observed data are gathered via syndromic surveillance. In

our state-space model of an epidemic, the observation equation specifies how the

observed data depend on the state of the epidemic and the state equation describes

how the epidemic evolves over time.

2.2.1 SIR model

First, we describe the state equation. Let xt = (st, it)
′ denote the state of the

epidemic at time t (by definition rt = 1− st− it and hence rt is not needed in the

state vector). Initially, we consider a compartmental model - or SIR model - of

disease transmission that is governed by three parameters:

10

• β, the contact rate for the spread of illness,

• γ, the recovery time from infection (i.e. the reciprocal of the average infec-

tious period), and

• ν, the mixing intensity of the population.

β, γ, and ν are each restricted to be nonnegative. Define θ = (β, γ, ν)′ to be the

vector of unknown parameters in our model and let P be the size of the population.

Then, we describe the evolution of the epidemic from time t to t+ 1 by

xt+1 |xt, θ ∼ NΩ (f(xt, θ), Q(θ)) , (2.3)

where

f(xt, θ) =

 st − βitsνt

it + βits
ν
t − γit

 Q(θ) =
β

P 2

 1 −1

−1 1 + γ/β


and Ω = {(st, it) : st ≥ 0, it ≥ 0, st + it ≤ 1}.

In equation (2.3), Q(θ) is determined by calculating the variances and covari-

ance of st+1 and it+1 in the discrete time approximation of a modified SIR model

with stochastic fluctuations (van Herwaarden and Grasman; 1995; Dangerfield et

al.; 2009; Anderson et al.; 2004), given by

st+1 = st − βitsνt + εβ (2.4)

it+1 = it + βits
ν
t − γit − εβ + εγ, (2.5)

11

where εβ and εγ are random components with εβ ∼ N(0,
√
β/P) and εγ ∼ N(0,

√
γ/P).

The variances of these terms come from a scaling law for stochastic fluctua-

tions in a dynamical system generated by random contacts among the population

(Ovaskainen and Meerson; 2010; van Herwaarden and Grasman; 1995; Dangerfield

et al.; 2009; Skvortsov and Ristic; 2012).

The basic reproductive number, R0 = β/γ, is the average number of people

infected by one sick person in a population where everyone is susceptible (Heffer-

nan et al.; 2005). If R0 > 1, then an epidemic can occur. In many cases, prior

information about R0 for a specific type of infection is more readily available than

prior knowledge about β or γ individually.

The mixing parameter ν describes the heterogeneity of social interactions

within the population, where ν = 1 corresponds to a population with homogenous

mixing, i.e. an infectious person is equally likely to infect any susceptible, and

ν = 0 corresponds to a population with no social interaction. Values of ν > 1

represent populations with heterogenous mixing, i.e. an individual is more likely

to interact with some people more than others, leading to less severe epidemics

than those that would occur in homogenous populations for a fixed R0 (Stroud et

al.; 2006; Novozhilov; 2008).

12

2.2.2 Syndromic surveillance data

The observed data from syndromic surveillance are positive real numbers re-

lated to counts of emergency room visits, prescription sales, or calls to a hotline,

for example, and we can observe data from these different streams/sources asyn-

chronously in time. That is, at any time t, we can observe data from any subset

of the streams (or possibly none of them). Let yl,t > 0 represent data coming from

stream l at time t, where l = 1, 2, . . . , L and t = 1, 2, . . . , T . We model the log of

the observations by

log yl,t ∼ N
(
bli

ςl
t + ηl, σ

2
l

)
, (2.6)

where bl, ςl, and σl are nonnegative constants (Skvortsov and Ristic; 2012) and

ηl is a real number that determines the baseline level of incoming syndromic data

from stream l.

The form of the mean of log yl,t in equation (2.6) is derived from a simplifica-

tion of the power-law relationship, described in Skvortsov and Ristic (2012) and

Ginsberg et al. (2009), between syndromic observations and the proportion of the

population that is infectious, where bl is a multiplicative constant that depends

on the syndromic data source, ςl is the power-law exponent, and σl is the stan-

dard deviation term that determines the magnitude of random fluctuations in the

syndromic observations from stream l. In Chapter 4, we first consider the case

where bl, ςl, σl, and ηl are assumed known, as in (Skvortsov and Ristic; 2012), but

then relax that assumption in an extended analysis.

13

Having formulated the data-generating model, we define yt = (y1,t, . . . , yL,t)
′

and specify p(yt|xt, θ), i.e. the likelihood of an observation yt given xt and θ,

according to LN(µt,Σt), where µt is an L-length vector with element l equal to

bli
ςl
t + ηl and Σt is an L × L diagonal matrix with the lth diagonal equal to σ2

l .

Elements of yt may be missing, in which case the dimensions of yt, µt, and Σt

shrink by the number of missing elements. If all elements of yt are empty (i.e. if

no syndromic data are observed at time t), then p(xt, θ|y1:t) = p(xt−1, θ|y1:t−1).

Lastly, we specify the full Bayesian model through p(x0, θ), the joint prior

distribution of the initial state of the epidemic and the fixed parameters. We use

a prior of the form p(x0, θ) = p(θ)p(s0, i0), where p(s0, i0) is specified according to

i0 ∼ N[0,1](0.002, 0.00052) s0 = 1− i0. (2.7)

In Chapter 4 we explore the sensitivity of estimation using particle filtering to

different choices for p(θ).

2.3 Dynamic linear models (DLMs)

In this section, we describe DLMs in general and detail specific DLMs analyzed

in Chapters 5 and 6. The general form of a DLM is represented as a state space

model with observation and state equations given by

yt = Ftxt + vt (2.8)

xt = Gtxt−1 + wt. (2.9)

14

Here, yt is a q× 1 observation vector, xt is a p× 1 state vector, and vt and wt are

independent and identically distributed (iid) Gaussian random vectors with mean

equal to the zero vector (of length q for vt and length p for wt) and covariance

matrices Vt (q × q) and Wt (p × p), respectively. We also assume vt and wt′

independent for all t and t′. Ft is a q×p matrix that defines the linear dependence

between yt and xt in the observation equation. Similarly, Gt is a p × p matrix

that defines the linear dependence of xt on xt−1 in the state equation. Lastly,

we specify the full Bayesian DLM by defining the distribution of the prior state

according to x0 ∼ N(m0, C0), where m0 is a p× 1 vector and C0 is a p× p matrix.

The matrices Vt, Wt, Ft, and Gt are allowed to vary with time, and any or all of

Vt, Wt, Ft, Gt, and C0 could possibly contain unknown parameters.

All DLMs discussed in chapters 5 and 6 assume univariate observations, i.e.

vector yt has length q = 1. In addition, we assume Gt, Vt, and Wt are time

invariant, and so the subscript t is omitted. Some DLMs we consider have time-

invariant Ft, e.g. the local level DLM featured in Chapter 5 and the dynamic

intercept model discussed in Chapter 6, while others such as the dynamic slope

model featured in Chapter 6 incorporate time-varying Ft. Lastly, all DLMs we

consider assume Ft is known, while G, V , and W may contain unknown param-

eters. We provide an overview of these special cases of DLMs in sections 2.3.1

through 2.3.3.

15

2.3.1 First-order DLM with common variance factor

The first-order DLM – or local level model – for univariate yt and xt is specified

by setting Ft = G = 1 for all t. Note that, in this case, q = p = 1 and both V

and W are 1× 1 matrices. In addition, here we assume that the observation and

state variance share an unknown common variance factor, θ, and that the signal-

to-noise ratio, defined as λ = W/V , is known. Specifically, we have the following

model:

yt ∼ N(xt, θ) (2.10)

xt ∼ N(xt−1, θλ) (2.11)

with prior distribution p(x0, θ) specified by

x0|θ ∼ N(0, θ) θ ∼ IG(a0, b0), (2.12)

where the hyperparameters a0 and b0 are known.

2.3.2 Regression with ARMA errors

A DLM is convenient for representing a linear regression model with autocor-

related errors. To do so, we introduce known covariates and unknown regression

coefficients into the model, i.e.

yt = Utβ + Ftxt + vt (2.13)

xt = Gxt−1 + wt, (2.14)

16

where Ut is a known q×d matrix and β is an unknown d×1 vector. Alternatively,

a regression model could be specified without introducing Ut and β by instead

incorporating Ut inside of Ft and including β as part of xt. However, we write the

model as in equations (2.13) and (2.14) to make the separation of fixed regression

coefficients and the dynamic state explicit.

In Chapter 6, we consider regression models for univariate yt with autoregressive-

moving average (ARMA) error structure, i.e. models of the form given in equations

(2.13) and (2.14) with q = 1 and xt following a zero-mean ARMA(P,Q) stochastic

process (Shumway and Stoffer; 2006), where P and Q are the orders of the autore-

gressive (AR) and moving average (MA) components, respectively. In these mod-

els, xt = (xt,1, xt,2, . . . , xt,m)′ is an m-dimensional vector with m = max(P,Q+ 1),

Ft is a time-invariant 1 ×m vector with first element equal to 1 and the rest 0,

vt ∼ δ0(vt) where δa(x) is the Dirac delta function that places point mass for

random vector x at a (i.e vt = 0 for all t), G is an m ×m matrix that takes the

form

G =



φ1
...

φ2
...

φ3
... Im−1

...
...

· · · · · · · · · · · · · · ·

φm
... 0 · · · 0



,

17

and W = σ2ee′ with e = (1, γ1, . . . , γm−1)′. We let θ = (β′, φ′, γ′, σ2)′ rep-

resent the unknown parameters of the model, where φ = (φ1, φ2, . . . , φP)′ and

γ = (γ1, γ2, . . . , γQ)′ are the coefficients of the AR and MA components, respec-

tively, and σ2 is the unknown variance of the white noise shocks in the ARMA

process. We adopt the convention that φs = 0 for s > P and γr = 0 for r > Q.

Multiplying out the state equation and successively back-substituting the compo-

nents of xt (Section 3.2.5, Petris et al.; 2009) yields the more familiar form of a

regression model with ARMA errors, given by

yt = Utβ+φ1xt−1,1 +φ2xt−2,1 + · · ·+φPxt−P,1 + εt + γ1εt−1 + γ2εt−2 + · · ·+ γQεt−Q

(2.15)

for t ≥ m. Here, εj
iid∼ N(0, σ2) for j ≥ 0. Note that only the first element of the

state vector at each of times {t− 1, . . . , t− P} plays a role in equation (2.15) for

t ≥ m.

It is often desired that constraints be imposed on φ and γ such that the

ARMA process is stationary and invertible. Stationarity ensures that the long

term behavior of xt is predictable and invertibility ensures that current and future

states do not depend on the distant past (Shumway and Stoffer; 2006). We require

that roots of the AR polynomial

φ(z) = 1− φ1z − φ2z
2 − · · · − φP zP (2.16)

18

lie outside of the unit circle in the complex plane to ensure stationarity. To ensure

invertibility, we impose the same constraint on the MA polynomial, given by

γ(z) = 1 + γ1z + γ2z
2 + · · ·+ γQz

Q. (2.17)

In Chapter 6, we impose these constraints when fitting regression models with

ARMA errors to fMRI data using maximum likelihood estimation.

In a Bayesian context, these models are completed by specifying the prior

distribution p(x0, θ), where the initial state, x0, consists of the presample errors.

It is often desired that x0 come from the stationary distribution of the ARMA

process, given by

x0|θ ∼ N(0, σ2Ω), (2.18)

where vec(Ω) = (Im2 − G⊗ G)−1vec(ee′) and φ is restricted to the region of sta-

tionarity. For a Bayesian treatment of unknown parameters in regression models

with stationary and invertible ARMA errors, including results (2.18), we refer the

reader to Chib and Greenberg (1994).

2.3.3 Dynamic regression

The regression model with ARMA errors described in Section 2.3.2 is repre-

sented as a DLM by setting the observation error vt in equation (2.13) equal to 0

for all t and completely specifying the error structure through the state equation.

By instead letting vt be random, we can add an additional layer of variance to the

19

model that represents observation or measurement noise. Furthermore, we can

introduce additional structure into the errors through Ft.

Example 1: Dynamic intercept model

For example, consider a simple linear regression model with an intercept and a

slope given by β0 and β1, respectively, and errors that follow an AR(1) plus white

noise (AR(1)+WN) process, i.e.

yt = β0 + β1ut + xt + vt (2.19)

xt = φxt−1 + wt, (2.20)

where ut is a known explanatory variable, vt
iid∼ N(0, σ2

m) ⊥ wt
iid∼ N(0, σ2

s), and

θ = (β0, β1, φ, σ
2
s , σ

2
m)′ represents the unknown parameters in the model. Here,

φ is the lag-1 coefficient of the AR(1) process (note the subscript ‘1’ is removed

since there is only one AR coefficient), σ2
m is the observation variance, and σ2

s

is the DLM state variance, or more precisely the variance of the innovations of

the AR(1) process for the univariate state. We will refer to this parameter as

the white noise variance for the state, since the actual variance of the state is

σ2
s/(1 − φ2) (provided −1 < φ < 1 to ensure stationarity of the state process),

where σ2
s represents the variance of wt, the “white noise” component of the AR(1)

process.

Reexpressing equation (2.19) as

yt = (β0 + xt) + β1ut + vt (2.21)

20

shows that we can interpret this model as a dynamic intercept model, i.e. a simple

linear regression model with an intercept that changes over time according to an

AR(1) process. We can represent a dynamic intercept model as a DLM defined

by equations (2.13) and (2.14) where Ut = (1, ut), β = (β0, β1)′, Ft = 1 for all t,

V = σ2
m, G = φ, and W = σ2

s .

Example 2: Dynamic slope model

Letting instead Ft = ut in (2.13) with Ut = (1, ut), β = (β0, β1)′, V = σ2
m,

G = φ, and W = σ2
s yields a dynamic slope model, or a simple linear regression

model with a slope that changes over time. This can be seen by multiplying out

equation (2.13):

yt = β0 + β1ut + xtut + vt = β0 + (β1 + xt)ut + vt. (2.22)

Example 3: Dynamic intercept and slope model

Finally, we consider a model with both a dynamic slope and a dynamic inter-

cept by letting xt = (xt,1, xt,2)′ be two-dimensional and adjusting Ft, G, and W

such that

Ft = (1, ut), G =

 φ 0

0 ρ

 , and W =

 σ2
s 0

0 σ2
b

 .

21

Multiplying out both equations (2.13) and (2.14), we have

yt = (β0 + xt,1) + (β1 + xt,2)ut + vt. (2.23)

xt,1 = φxt−1,1 + wt,1 (2.24)

xt,2 = ρxt−1,2 + wt,2, (2.25)

where wt,1
iid∼ N(0, σ2

s), wt,2
iid∼ N(0, σ2

b), vt
iid∼ N(0, σ2

m), β = (β0, β1)′ and θ =

(β, φ, ρ, σ2
s , σ

2
b , σ

2
m)′ are the unknown parameters. In this model, φ now represents

the lag-1 autocorrelation for the change in the intercept, ρ is the lag-1 autocorre-

lation for the change in the slope, σ2
s is the white noise variance for the dynamic

intercept, and σ2
b is the white noise variance for the dynamic slope.

In Chapter 6, we compare the dynamic slope, dynamic intercept, and standard

simple linear regression models for fitting fMRI data. For ease of reference, we

adopt notation to refer to models within a general class of dynamic regression

models. Let Mijk represent a (possibly) dynamic regression model where i is

the order of the AR process for the dynamic intercept, j is the order of the AR

process for the dynamic slope, and k is either 1 or 0 indicating whether or not the

model contains random error in the observation equation (i.e., k = 0 implies vt is

restricted to be 0 and k = 1 implies vt
iid∼ N(0, σ2

m) with σ2
m > 0). Letting either i

or j be 0 removes the stochasticity in the corresponding component. Thus, M101

corresponds to the dynamic intercept model described by equations 2.21 and 2.20,

M011 is the dynamic slope model described by equations 2.22 and 2.20, M111 is the

22

model with both a dynamic intercept and dynamic slope described by equations

2.23, 2.24, and 2.25, and M001 describes a simple linear regression model with

fixed coefficients and independent errors, i.e. equations (2.19) and (2.20) with

φ = σ2
s = 0.

In all of these dynamic regression models, we allow for nonstationarity of the

state process. This is intended to enable modeling of a wider range of behavior

in fMRI data, as well as estimation using the particle learning algorithm, which

we describe in Chapter 3. In this setting, xt may not have a stationary mean,

in which case the model may not be properly identified by unique values of the

fixed parameters (Pagan; 1979). To alleviate this concern, we constrain x0 = 0

(or x0 = (0, 0)′ for M111) so that xt is interpreted as the change in the dynamic

slope or intercept (or both) from time t = 0. This is equivalent to setting the

marginal prior distribution of the initial state as p(x0) = δ0(x0). In Chapter 6,

Bayesian models for M101 and M011 are analyzed using priors of the form p(x0, θ) =

p(β|σ2
m)p(σ2

m)p(φ|σ2
s)p(σ

2
s)δ0(x0), where

β|σ2
m ∼ N(ϑ0, σ

2
mB0) σ2

m ∼ IG(am0 , bm0) (2.26)

φ|σ2
s ∼ N(ϕ0, σ

2
sΦ0) σ2

s ∼ IG(as0 , bs0) (2.27)

and the hyperparameters ϑ0, B0, ϕ0, Φ0, am0 , bm0 , as0 , and bs0 are assumed known.

23

2.4 Sequential estimation

When data are collected sequentially, it is often of interest to determine the

filtered distribution p(xt, θ|y1:t), i.e. the distribution of the current state and pa-

rameters conditional on the data observed up to that time. This distribution

describes all of the available information up to time t about the current state of

the system and any fixed parameters. We may also be interested in the filtered

distribution of the entire state history and any fixed parameters, p(x0:t, θ|y1:t).

Both can be updated recursively using Bayes’ rule:

p(xt, θ|y1:t) ∝
∫
p(yt|xt, θ)p(xt|xt−1, θ)p(xt−1, θ|y1:t−1)dxt−1 (2.28)

p(x0:t, θ|y1:t) ∝ p(yt|xt, θ)p(xt|xt−1, θ)p(x0:t−1, θ|y1:t−1), (2.29)

where y1:t = (y1, . . . , yt). The smoothed distribution, p(xs, θ|y1:t) for any s < t, is

then calculated by integrating p(x0:t, θ|y1:t) over all states {xj : j ∈ {0, . . . , t}/{s}}.

Only in special cases can these filtered or smoothed distributions be evaluated

analytically. The DLM described by equations (2.13) and (2.13) is one such case,

provided all fixed parameters (i.e. θ) are known. In this case, an explicit form

for p(xt|y1:t) can be found according to xt|y1:t ∼ N(mt, Ct), where mt and Ct

are calculated recursively using the Kalman filter (Kalman; 1960). Starting with

known m0 and C0, the filtering recursions are given by the following equations

24

(Section 2.7.2 Petris et al.; 2009):

zt = Gmt−1 Rt = GCt−1G
′ +W (2.30)

ft = Utβ + Ftzt Qt = FtRtF
′
t + V

mt = zt +RtF
′
tQ
−1
t (yt − ft) Ct = Rt −RtF

′
tQ
−1
t FtRt.

When unknown fixed parameters are present in DLMs, analytical tractibility

exists in only a few cases, such as the local level DLM described in Section 2.3.1

with common observation and state variance factor (Section 4.3 Petris et al.;

2009). In this case, p(xt, θ|y1:t) is given by

xt|θ, y1:t ∼ N(mt, θct) θ|y1:t ∼ IG(at, bt), (2.31)

where mt, ct, at, and bt are calculated recursively according to

ft = mt−1 qt = ct−1 + λ+ 1 (2.32)

mt = (1− ct)ft + ctyt ct = 1− 1

qt

at = at−1 +
1

2
bt = bt−1 +

(yt − ft)2

2qt
,

starting with m0 = 0, c0 = 1, and known a0 and b0. These equations can also

be used to calculate the marginal filtered distribution of the state, p(xt|y1:t), and

one-step ahead predictive density, p(yt|y1:t−1), given by

xt|y1:t ∼ T

(
mt, ct

bt
at
, 2at

)
, t = 1, 2, . . . (2.33)

yt|y1:t−1 ∼ T

(
ft, qt

bt−1

at−1

, 2at−1

)
, t = 2, 3, . . . (2.34)

25

with initial y1 ∼ T
(
f1, q1

b0
a0
, 2a0

)
. In Chapter 5, we evaluate the abilities of

several particle filters to approximate the marginal likelihood of data generated

from this model through comparison with the true marginal likelihood that can

be calculated analytically according to

p(y1:t) =

(
t∏

k=2

p(yk|y1:k−1)

)
p(y1). (2.35)

The remaining DLMs described in sections 2.3.2 and 2.3.3 do not emit analyt-

ically tractable forms of the posterior. When analytical tractability is not present,

we turn to numerical methods including deterministic versions, e.g. the extended

Kalman filter (Section 1.6 Haykin; 2001) and the Gaussian sum filter (Alspach

and Sorenson; 1972), or Monte Carlo versions such as particle filters. In Chap-

ter 3, we describe a variety of Markov chain Monte Carlo and sequential Monte

Carlo algorithms that we use to estimate states and unknown fixed parameters in

state-space models for which filtered distributions are intractable.

26

Chapter 3

Methods

In Chapters 4 and 6, we consider estimation of states and unknown fixed pa-

rameters in Bayesian state-space models for which filtered distributions cannot be

calculated analytically. In this case, the most common approach to approximat-

ing these distributions is through Markov-chain Monte Carlo (MCMC) methods

(Gelfand and Smith; 1990). MCMC is an effective tool for analyzing data in

complex modeling situations (Robert and Casella; 2004). However, in sequential

analysis using state-space models, where new observations are arriving as time

progresses, MCMC is inefficient due to the increase in computational cost in-

curred by the need for the entire MCMC to be rerun as each new observation

arrives.

Sequential Monte Carlo (SMC) - or particle filtering - techniques, on the other

hand, enable on-line inference through updating the approximation to the pos-

27

terior distribution as new data become available (Doucet et al.; 2001; Cappé et

al.; 2007). In addition, SMC methods can be flexible, general, easy to implement,

amenable to parallel computing, and provide direct estimates of the marginal

likelihood. As with MCMC methods, however, the performance of SMC meth-

ods suffers as the dimension of the parameter space increases. Furthermore, while

MCMC methods directly provide smoothed estimates of states in state-space mod-

els, SMC algorithms are inefficient for smoothing and have been mostly used only

for filtering (Section 5 Doucet and Johansen; 2009). Each of MCMC and SMC

approaches have strengths and limitations in different scenarios.

In Chapters 4 and 5, we compare the performance of several particle filtering

algorithms in different model settings. In Chapter 6, we use SMC methods as a

tool for model comparison, where we compare the relative posterior probabilities of

several models that represent different types/sources of autocorrelation that might

be present in fMRI time series data. We discuss possible reasons for the presence

of autocorrelation in fMRI time series data and possible modeling approaches in

Section 6.2. In each of Chapters 4, 5, and 6, we compare SMC results with MCMC,

which has been the standard over the past two decades for Bayesian analysis of

analytically intractable models. Thus, in this chapter, we review several strategies

for both MCMC and particle filtering.

Specifically, in Section 3.1, we describe the MCMC algorithms we use for the

epidemic model described in Section 2.2 (considered further in Chapter 4) and

28

the dynamic regression models described in Sections 2.3.3 and 2.3.3 (considered

further in Chapter 6). In Section 3.2, we describe several particle filtering strate-

gies and how to apply them to the models outlined in Chapter 2. In Section 3.3,

we discuss the resampling methods within several particle filtering algorithms. In

Section 3.4, we show how SMC techniques can be used for model comparison.

Lastly, in Section 3.5, we describe a particle MCMC algorithm that we also use to

analyze simulated data from the epidemic model, and which we found to perform

more efficiently than standard MCMC.

3.1 Markov chain Monte Carlo (MCMC) algo-

rithms

MCMC methods provide sample-based approximations to the posterior dis-

tribution through the generation of dependent samples from distributions whose

densities can be evaluated. In this section, we outline the MCMC algorithms

that we use to analyze simulated data from the state-space model of a disease

epidemic described in Section 2.2, and from the dynamic regression models de-

scribed in Sections 2.3.3 and 2.3.3. We also describe a particle MCMC (PMCMC)

approach that we found to be more efficient when analyzing simulations from the

epidemic model. For more comprehensive descriptions of MCMC and PMCMC

29

methods, we refer the reader to Robert and Casella (2004) and Andrieu et al.

(2010) respectively.

3.1.1 MCMC applied to epidemic model

Consider the specific state-space model of an epidemic described in Section

2.2, where xt = (st, it)
′ is the latent disease state, θ = (β, γ, ν) are the unknown

fixed parameters, the state equation (2.3) describes the evolution of xt given xt−1

and θ, and the observation equation (2.6) describes the likelihood of new data, yt,

given xt and θ. We assume the prior distribution, p(x0, θ), of the form

p(x0, θ) = p(x0)p(θ) = p(s0, i0)p(β, γ)p(ν), (3.1)

where p(s0, i0) is given by equation (2.7).

Suppose we observe syndromic surveillance data, yt, for t = 1, 2, . . . , T . Using

the fact that, for state-space models, we can express the joint density of the data,

states, and fixed parameters by

p(y1:T , x0:T , θ) =
T∏
t=1

{p(yt|xt, θ)p(xt|xt−1, θ)} p(x0, θ), (3.2)

we derive the full conditional distribution, i.e. distribution of a random vector

conditional on all of the remaining variables in the model, for each of x0, x1, . . . , xT ,

30

β, γ, and ν as

p(x0| . . .) ∝ p(x1|x0, θ)p(x0) (3.3)

p(xt| . . .) ∝ p(yt|xt)p(xt+1|xt, θ)p(xt|xt−1, θ), for t = 1, . . . , T − 1

p(xT | . . .) ∝ p(yT |xT)p(xT |xT−1, θ)

p(β| . . .) ∝
T∏
t=1

{p(xt|xt−1, θ)} p(β, γ)

p(γ| . . .) ∝
T∏
t=1

{p(xt|xt−1, θ)} p(β, γ)

p(ν| . . .) ∝
T∏
t=1

{p(xt|xt−1, θ)} p(ν),

where p(w| . . .) represents the full conditional distribution of w, for any w. Note

that since each of the unknown fixed parameters β, γ, and ν is present only in

the state equation (2.3) of the model, their full conditional distributions do not

depend on yt. By the same argument, p(yt|xt, θ) reduces to p(yt|xt).

We use these full conditional distributions to generate samples from p(x0:T , θ|y1:T)

by implementing a Gibbs sampler with adaptive rejection Metropolis-Hastings

(MH) steps (Metropolis et al.; 1953; Hastings; 1970; Geman and Geman; 1984;

Gilks et al.; 1995). In general, the algorithm works by iteratively sampling each

state and fixed parameter, conditional on the current sample, from some proposal

distribution, g, and accepting the proposed sample with probability R. R, termed

the Metropolis ratio, is given by

R =
f(w∗)g(w|w∗)
f(w)g(w∗|w)

, (3.4)

31

where w is the current sample, w∗ is the proposed sample from g, and f(·) is the full

conditional distribution of the state or fixed parameter evaluated at ‘·’ (Chapter

7 Givens and Hoeting; 2005). In our algorithm, we use Gaussian random-walk

proposals for each state and fixed parameter, i.e. each proposed sample is drawn

from a normal distribution centered at the current sampled value with standard

deviation given by a tuning parameter that is adjusted according to the MH

acceptance rate. Because these proposal distributions are symmetric, g(w|w∗)

and g(w∗|w) cancel out, reducing the Metropolis ratio to

R =
f(w∗)

f(w)
. (3.5)

Let x
(j)
0:T =

(
x

(j)
0 , x

(j)
1 , . . . , x

(j)
T

)′
and θ(j) =

(
β(j), γ(j), ν(j)

)′
represent the sam-

pled values of the states and fixed parameters, respectively, at iteration j of the

Gibbs sampler. The full Gibbs sampler applied to the epidemic model proceeds

as follows:

1. Start with initial draws x
(0)
0:T =

(
x

(0)
0 , x

(0)
1 , . . . , x

(0)
T

)′
and θ(0) =

(
β(0), γ(0), ν(0)

)′
.

Set j = 1.

2. Sample the states, x
(j)
t for t = 0, 1, . . . , T , from their full conditional distri-

butions. For each t = 1, 2, . . . , T ,

(a) Draw x∗t ∼ N
(
x

(j−1)
t , τ 2

xtI2

)
.

32

(b) Calculate the Metropolis ratio, R, by

R =



p
(
x
(j−1)
1 |x∗0,θ(j−1)

)
p(x∗0)

p
(
x
(j−1)
1

∣∣∣x(j−1)
0 ,θ(j−1)

)
p
(
x
(j−1)
0

) , if t = 0

p(yt|x∗t) p
(
x
(j−1)
t+1

∣∣∣x∗t ,θ(j−1)
)
p
(
x∗t

∣∣∣x(j)t−1,θ
(j−1)

)
p
(
yt

∣∣∣x(j−1)
t

)
p
(
x
(j−1)
t+1

∣∣∣x(j−1)
t ,θ(j−1)

)
p
(
x
(j−1)
t

∣∣∣x(j)t−1,θ
(j−1)

) , if 1 ≤ t ≤ T − 1

p(yT |x∗T) p
(
x∗T

∣∣∣x(j)T−1,θ
(j−1)

)
p
(
yT

∣∣∣x(j−1)
T

)
p
(
x
(j−1)
T

∣∣∣x(j)T−1,θ
(j−1)

) , if t = T

(c) Draw u ∼ Unif[0, 1]. If u < min{1, R}, set x
(j)
t = x∗t . Otherwise, set

x
(j)
t = x

(j−1)
t .

3. Sample β(j) from its full conditional conditional distribution.

(a) Draw β∗ ∼ N
(
β(j−1), τ 2

β

)
.

(b) Calculate Metropolis ratio, R, by

R =
p
(
β∗|x(j)

0:T , γ
(j−1), ν(j−1)

)
p
(
β(j−1)|x(j)

0:T , γ
(j−1), ν(j−1)

)
=

{∏T
t=1 p

(
x

(j)
t

∣∣∣x(j)
t−1, β

∗, γ(j−1), ν(j−1)
)}

p(β∗, γ(j−1)){∏T
t=1 p

(
x

(j)
t

∣∣∣x(j)
t−1, θ

(j−1)
)}

p (β(j−1), γ(j−1))
.

(c) Draw u ∼ Unif[0, 1]. If u < min{1, R}, set β(j) = β∗. Otherwise, set

β(j) = β(j−1).

4. Sample γ(j) from its full conditional conditional distribution.

(a) Draw γ∗ ∼ N
(
γ(j−1), τ 2

γ

)
.

33

(b) Calculate Metropolis ratio, R, by

R =
p
(
γ∗|x(j)

0:T , β
(j), ν(j−1)

)
p
(
γ(j−1)|x(j)

0:T , β
(j), ν(j−1)

)
=

{∏T
t=1 p

(
x

(j)
t

∣∣∣x(j)
t−1, β

(j), γ∗, ν(j−1)
)}

p(β(j), γ∗){∏T
t=1 p

(
x

(j)
t

∣∣∣x(j)
t−1, β

(j), γ(j−1), ν(j−1)
)}

p (β(j), γ(j−1))
.

(c) Draw u ∼ Unif[0, 1]. If u < min{1, R}, set γ(j) = γ∗. Otherwise, set

γ(j) = γ(j−1).

5. Sample ν(j) from its full conditional conditional distribution.

(a) Draw ν∗ ∼ N
(
ν(j−1), τ 2

ν

)
.

(b) Calculate Metropolis ratio, R, by

R =
p
(
ν∗|x(j)

0:T , β
(j), γ(j)

)
p
(
ν(j−1)|x(j)

0:T , β
(j), γ(j)

)
=

{∏T
t=1 p

(
x

(j)
t

∣∣∣x(j)
t−1, β

(j), γ(j), ν∗
)}

p(ν∗){∏T
t=1 p

(
x

(j)
t

∣∣∣x(j)
t−1, β

(j), γ(j), ν(j−1)
)}

p (ν(j−1))
.

(c) Draw u ∼ Unif[0, 1]. If u < min{1, R}, set ν(j) = ν∗. Otherwise, set

ν(j) = ν(j−1).

6. Set j = j + 1 and go back to step 2

The output of this algorithm is a dependent chain of samples which, pro-

vided j is large enough, can be assumed to represent draws from the station-

ary distribution p(x0:T , θ|y1:T) (Chapter 7 Robert and Casella; 2004). Initial

values θ(0) and x
(0)
0:T could be chosen arbitrarily or by sampling from the prior

34

∏T
t=1 {p(xt|xt−1, θ)} p(x0, θ). In either case, the effective sample size of the chain

could be sensitive to the initial values. Generating multiple chains from differ-

ent starting points could help determine reasonable starting values or the burn-in

period required before the samples can be assumed to come from the stationary

distribution (Givens and Hoeting; 2005). In Section 4.7, we state the initial values

used in our implementation of this algorithm applied to data simulated from the

epidemic model described in Section 2.2.

The standard deviations of the random-walk proposal distributions, i.e. τxt

for t = 0, 1, . . . , T , τβ, τγ, and τν , are tuning parameters that are adjusted during

the burn-in period of the MCMC. During burn-in, if the proposed value of a state

or parameter at any given iteration of the Gibbs sampler is accepted, we adjust

the corresponding tuning parameter by multiplying by 1.1. If the proposed value

is rejected, we adjust the tuning parameter by dividing by 1.1. The idea here

is that a high acceptance rate indicates that proposed samples are in areas of

high posterior probability while a low acceptance rate indicates that they are in

areas of low posterior probability. We seek proposal distributions that strike a

balance in the acceptance rate such that the entire sample space of the posterior

is explored. Acceptance rates for optimal mixing of MCMC chains will vary by

model and have been explored by Roberts et al. (1997) and Bedard (2008).

35

3.1.2 MCMC applied to dynamic regression

We now derive an MCMC algorithm to sample from the joint posterior distri-

bution of states and unknown parameters from the dynamic intercept (M101) and

dynamic slope (M011) models discussed in Section 2.3.3. Recall that these models

are DLMs of the form given by equations (2.13) and (2.14) with

Ut = (1, ut) β = (β0, β1)′

V = σ2
m Ft =


1, for M101

ut, for M011

G = φ W = σ2
s ,

where xt is the univariate state representing the change in the intercept or slope

at time t, and θ = (β′, φ, σ2
s , σ

2
m)′ are the unknown fixed parameters. We place a

prior of the form

p(x0, θ) = p(x0)p(β|σ2
m)p(σ2

m)p(φ|σ2
s)p(σ

2
s) (3.6)

on the initial state and fixed parameters, where p(x0) = δ0(x0) and, as stated in

equations (2.26) and (2.27),

β|σ2
m ∼ N(ϑ0, σ

2
mB0) σ2

m ∼ IG(am0 , bm0)

φ|σ2
s ∼ N(ϕ0, σ

2
sΦ0) σ2

s ∼ IG(as0 , bs0)

with known ϑ0, B0, ϕ0, Φ0, am0 , bm0 , as0 , and bs0 . The conjugate form of these

priors, conditional on xt, allows for direct sampling from the full conditional dis-

tributions of the fixed parameters. Combining this with the forward-filtering

36

backward sampling (FFBS) algorithm for jointly sampling the states (Carter and

Kohn; 1994) allows for a relatively straightforward Gibbs sampler.

Suppose we observe yt for t = 1, 2, . . . , T and let x
(j)
0:T =

(
x

(j)
0 , x

(j)
1 , . . . , x

(j)
T

)′
and θ(j) =

(
β(j)′, φ(j), σ2

s
(j)
, σ2

m
(j)
)′

represent the sampled values of the states and

fixed parameters, respectively, at iteration j of the Gibbs sampler. We generate

samples from p(x0:T , θ|y1:T) using the following Gibbs sampling algorithm:

1. Start with initial draws θ(0) =
(
β(0)′, φ(0), σ2

s
(0)
, σ2

m
(0)
)′

and

x
(0)
0:T =

(
x

(0)
0 , x

(0)
1 , . . . , x

(0)
T

)
. Set j = 1.

2. Jointly sample σ2
m

(j) ∼ IG(amT
, bmT

) and β(j)|σ2
m

(j) ∼ N(ϑT , σ
2
m

(j)
BT), where

amT
= T/2 + am0 (3.7)

bmT
=

1

2
(SSy + ϑ′0B

−1
0 ϑ0 − ϑ′TB−1

T ϑT) + bm0 (3.8)

SSy =
T∑
t=1

(yt − Ftxt)′(yt − Ftxt) (3.9)

ϑT = BT

(
T∑
t=1

U ′t(yt − Ftxt) +B−1
0 ϑ0

)
(3.10)

BT =

(
T∑
t=1

U ′tUt +B−1
0

)−1

. (3.11)

37

3. Jointly sample σ2
s

(j) ∼ IG(asT , bsT) and φ(j)|σ2
s

(j) ∼ N(ϕT , σ
2
s

(j)
ΦT), where

asT = T/2 + as0 (3.12)

bsT =
1

2
(SSx + ϕ′0Φ−1

0 ϕ0 − ϕ′TΦ−1
T ϕT) + bs0 (3.13)

SSx =
T∑
t=1

x2
t (3.14)

ϕT = ΦT

(
T∑
t=1

xtxt−1 + Φ−1
0 ϕ0

)
(3.15)

ΦT =

(
T∑
t=1

x2
t−1 + Φ−1

0

)−1

. (3.16)

4. Sample x
(j)
0:T using the following FFBS (forward filtering, backward sampling)

algorithm (Section 4.4 Petris et al.; 2009), setting θ = θ(j) from Steps 2 and

3:

(a) Start with initial values m0 = C0 = 0.

(b) Calculate zt, Rt, mt and Ct for t = 1, 2, . . . , T using the Kalman filter

given by equation (2.30).

(c) Draw x
(j)
T ∼ N(mT , CT). Then, for t = T − 1, . . . , 0, draw x

(j)
t ∼

N(ht, Ht), where

ht = mt + CtG
′R−1

t+1(x
(j)
t+1 − zt+1)

Ht = Ct − CtG′R−1
t+1GCt.

5. Set j = j + 1 and go back to Step 2.

38

We discuss initial values that we use in Step 1 when we apply this algorithm

to simulated fMRI data in Section 6.4.1. Note that both this algorithm and the

MCMC for the epidemic model described in Section 3.1.1 provide joint samples

from p(x0:T , θ|y1:T). Samples from the smoothed distributions, p(xs, θ|y1:T) for

s < T , can be directly obtained from these joint samples through Monte Carlo

integration (Chapter 3 Robert and Casella; 2004).

3.2 Particle filtering

Particle filtering is an SMC inferential technique based on repeated use of

importance sampling. It aims to approximate the filtered distribution at time t

through a weighted Monte Carlo realization from this distribution in terms of J

particles, i.e.

p(xt, θ|y1:t) ≈
J∑
j=1

w
(j)
t δ(

x
(j)
t ,θ(j)

)(xt, θ), (3.17)

where
(
x

(j)
t , θ(j)

)
is the location of the jth particle at time t and w

(j)
t is the

weight of that particle with
∑J

j=1w
(j)
t = 1. A variety of SMC techniques have

been developed to provide more efficient approximations to p(xt, θ|y1:t) in the sense

that with the same computation time a better approximation is achieved. In this

section, we describe five particle filtering techniques: the bootstrap filter (BF),

the auxiliary particle filter (APF), the kernel density particle filter (KDPF), the

resample-move particle filter (RM), and particle learning (PL).

39

Each of these five strategies has its own advantages and disadvantages. The

BF and APF are the simplest and most straightforward to implement, but are

unequipped to efficiently deal with state-space models that contain unknown fixed

parameters. PL performs the most efficiently, but can only be applied to special

cases of state-space models such as DLMs. The RM, while capable of handling

state-space models of any form, requires an MCMC step in addition to the SMC,

and thus is not a truly sequential algorithm. The KDPF, while being the only

truly sequential particle filtering algorithm that can be applied to any state-space

model, is outperformed by the RM and PL in many model settings.

In Chapter 4, we compare the efficiency of the BF, APF, and KDPF in the

syndromic surveillance context. In Chapter 5, we compare the KDPF, RM, and PL

in terms of their efficiency for estimating the marginal likelihood of data generated

from the local level DLM described in Section 2.3.1. Finally, in Chapter 6, we

employ PL for estimating states and unknown fixed parameters in DLMs using

real and simulated fMRI data.

3.2.1 Bootstrap filter (BF)

The BF is first successful version of the particle filter (Gordon et al.; 1993; Kita-

gawa; 1996). Since this method and the APF were developed for when θ is known,

we will (for the moment) drop θ from the notation. Given an approximation to

40

p(xt|y1:t) as in equation (3.17) (with θ omitted), we obtain an approximation to

p(xt+1|y1:t+1) by performing the following steps for each particle j = 1, . . . , J :

1. Resample: sample an index k ∈ {1, . . . , j, . . . , J} with associated probabili-

ties
{
w

(1)
t , . . . , w

(j)
t , . . . , w

(J)
t

}
,

2. Propagate: sample x
(j)
t+1 ∼ p

(
xt+1

∣∣∣x(k)
t

)
, and

3. Calculate weights and renormalize:

w̃
(j)
t+1 = p

(
yt+1

∣∣∣x(j)
t+1

)
w

(j)
t+1 = w̃

(j)
t+1

/
J∑
l=1

w̃
(l)
t+1 .

This procedure can be applied recursively beginning with an initial set of weights

w
(j)
0 and locations x

(j)
0 for all j. For all particle filters that we implement, we

initialize the algorithm by sampling from the prior with uniform weights.

3.2.2 Auxiliary particle filter (APF)

One problem that arises in implementing the BF is that w
(j)
t will be small for

particles for which p
(
yt

∣∣∣x(j)
t

)
is small, and these particles will contribute little

to the approximation to p(xt|y1:t). The APF aims to mitigate this by anticipat-

ing which particles will have small weight using a look ahead strategy (Pitt and

Shephard; 1999). Given an approximation to p(xt|y1:t), the APF approximates

p(xt+1|y1:t+1) by the following:

1. For each particle j, calculate a point estimate of x
(j)
t+1 called µ

(j)
t+1, e.g.

µ
(j)
t+1 = E

(
xt+1

∣∣∣x(j)
t

)
.

41

2. Calculate auxiliary weights and renormalize:

g̃
(j)
t+1 = w

(j)
t p

(
yt+1

∣∣∣µ(j)
t+1

)
g

(j)
t+1 = g̃

(j)
t+1

/
J∑
l=1

g̃
(l)
t+1.

3. For each particle j = 1, . . . , J ,

(a) Resample: sample an index k ∈ {1, . . . , j, . . . , J} with associated prob-

abilities
{
g

(1)
t+1, . . . , g

(j)
t+1, . . . , g

(J)
t+1

}
,

(b) Propagate: sample x
(j)
t+1 ∼ p

(
xt+1

∣∣∣x(k)
t

)
, and

(c) Calculate weights and renormalize:

w̃
(j)
t+1 =

p
(
yt+1

∣∣∣x(j)
t+1

)
p
(
yt+1

∣∣∣µ(k)
t+1

) w
(j)
t+1 = w̃

(j)
t+1

/
J∑
l=1

w̃
(l)
t+1.

The point estimate used in Step 1 can be any point estimate, although the expec-

tation is commonly used. Step 3 is exactly the same as the BF with appropriate

modifications to the weight calculation to adjust for the ‘look ahead’ in steps 1

and 2. APF weights tend to be closer to uniform than BF weights, in which case

a better approximation to p(xt|y1:t) is achieved.

The BF and the APF were constructed with the idea that all fixed parameters

are known. In order to simultaneously estimate the time-evolving states and fixed

parameters using either the BF or APF, it is necessary to incorporate the fixed

parameters into the state with degenerate evolutions. That is, one regards the

fixed parameters as elements of xt and specifies the state evolution equation such

that these elements do not change over time. Due to the possible duplication

42

of some particles and elimination of others through resampling, the number of

unique values of the fixed parameters in the particle set will decrease over time,

resulting in degeneracy in the fixed parameters (Liu and West; 2001).

3.2.3 Kernel density particle filter (KDPF)

The particle filter introduced by Liu and West (2001), which we refer to as the

KDPF, builds on the APF and provides a general way of fighting degeneracy in

fixed parameters. This is done by approximating the set of fixed parameter values

by a kernel density estimate and then regenerating values from this approximation.

This filter approximates p(xt, θ|y1:t) via equation (3.17). To make the notation

transparent, we introduce subscripts for our fixed parameters, e.g. θ
(j)
t represents

the value for θ at time t for particle j. This does not imply that the true θ is

dynamic, but rather that particle j can have different values for θ throughout

time.

Let θ̄t and Vt be the weighted sample mean and weighted sample covariance

matrix of θ
(1)
t , . . . , θ

(J)
t . The KDPF uses a tuning parameter ∆, the discount factor

that takes values in (0, 1), and two derived quantities h2 = 1 − ((3∆ − 1)/2∆)2

and a2 = 1− h2 that determine how smooth the kernel density approximation is.

Lower values of ∆ result in a smoother approximation. However, the goal here

is simply to jitter particles around to refresh values of the fixed parameters and

43

reduce the chance of degeneracy, and so ∆ is typically taken to be between 0.95

and 0.99 (Liu and West; 2001).

Given an approximation to the filtered distribution at time t as in equation

(3.17), the KDPF provides an approximation to p(xt+1, θ|y1:t+1) by the following

steps:

1. For each particle j, set m
(j)
t = aθ

(j)
t +(1−a)θ̄t and calculate a point estimate

of x
(j)
t+1 called µ

(j)
t+1, e.g. µ

(j)
t+1 = E

(
xt+1

∣∣∣x(j)
t , θ

(j)
t

)
.

2. Calculate auxiliary weights and renormalize:

g̃
(j)
t+1 = w

(j)
t p

(
yt+1

∣∣∣µ(j)
t+1,m

(j)
t

)
g

(j)
t+1 = g̃

(j)
t+1

/
J∑
l=1

g̃
(l)
t+1.

3. For each particle j = 1, . . . , J ,

(a) Resample: sample an index k ∈ {1, . . . , j, . . . , J} with associated prob-

abilities
{
g

(1)
t+1, . . . , g

(j)
t+1, . . . , g

(J)
t+1

}
,

(b) Regenerate the fixed parameters: sample θ
(j)
t+1 ∼ N

(
m

(k)
t , h2Vt

)
,

(c) Propagate: sample x
(j)
t+1 ∼ p

(
xt+1

∣∣∣x(k)
t , θ

(j)
t+1

)
, and

(d) Calculate weights and renormalize:

w̃
(j)
t+1 =

p
(
yt+1

∣∣∣x(j)
t+1, θ

(j)
t+1

)
p
(
yt+1

∣∣∣µ(k)
t+1,m

(k)
t

) w
(j)
t+1 = w̃

(j)
t+1

/
J∑
l=1

w̃
(l)
t+1.

The KDPF adds the kernel density regeneration to the auxiliary particle filter.

Here, we use a mixture distribution that places normal kernels around each par-

ticle, where the mean of each kernel is a weighted average between the particle

44

value and the overall mean of all particles. This ensures that the variance of re-

generated fixed parameter values within a specific iteration of the particle filter is

the same as the variance of the fixed parameter value prior to regeneration (Liu

and West; 2001).

To use the KDPF with normal kernels, it is necessary to parameterize the

fixed parameters so that their support is on the real line. This is not a constraint,

but rather a practical implementation detail. We typically use logarithms for

parameters that have positive support and the logit function for parameters in

the interval (0,1). A parameter ψ bounded on the interval (a,b) can first be

rebounded to (0,1) through (ψ−a)/(b−a), and then the logit transformation can

be applied. We investigate the sensitivity of the performance of the particle filters

to the choice of transformation in Chapter 4.

3.2.4 Resample-move algorithm (RM)

In Chapter 4, we show that the KDPF can be an effective tool for estimating

unknown fixed parameters in state-space models. However, the choice of a mixture

normal distribution for regenerating fixed parameter values is somewhat arbitrary,

and efficiency of the algorithm can be increased by using a kernel that matches

p(θ|y1:t) more closely. The RM, introduced by Gilks and Berzuini (2001), aims to

do this by regenerating fixed parameter values from an MCMC transition kernel

with stationary distribution equal to p(θ|y1:t). The algorithm works by running

45

one or a few iterations of an MCMC algorithm within each step of the particle

filter for the purpose of jittering fixed parameter values. Since the weighted sample

of fixed parameter values already represents an approximation to p(θ|y1:t), the

resulting sample after running an MCMC for each particle yields a sample that

can only improve the approximation (Section 4.4 Doucet and Johansen; 2009).

Since distributions that need to evaluated in MCMC algorithms often depend

on all of the observed data and unobserved states, we must track the entire history

of states within each particle. Thus, we now represent particle j by
(
x

(j)
0:t , θ

(j)
t

)
with weight w

(j)
t , where x

(j)
0:t =

(
x

(j)
0 , x

(j)
1 , . . . , x

(j)
t

)
represents the sample path of

the state from time 0 to time t for particle j. The entire collection of J particles

now represents an approximation to p(x0:t, θ|y1:t).

The general RM algorithm proceeds in the following way. Given a particle ap-

proximation to p(x0:t, θ|y1:t), we move to a particle approximation to p(x0:t+1, θ|y1:t+1)

by the following steps for each particle j = 1, . . . , J :

1. Propagate: draw x̃
(j)
t+1 from p

(
xt+1|x(j)

t , θ
(j)
t

)
. Incorporate x̃

(j)
t+1 into particle

j and denote the new augmented particle by
(
x̃

(j)
0:t+1, θ

(j)
t

)
, where x̃

(j)
0:t+1 =(

x̃
(j)
0 , x̃

(j)
1 , . . . , x̃

(j)
t , x̃

(j)
t+1

)
,

2. Calculate weights and renormalize:

w̃
(j)
t = p

(
yt+1|x̃(j)

t+1, θ
(j)
t

)
w

(j)
t+1 = w̃

(j)
t+1

/
J∑
l=1

w̃
(l)
t+1,

46

3. Resample: sample an index k from {1, . . . , j, . . . , J} with associated proba-

bilities {w(1)
t+1, . . . , w

(j)
t+1, . . . , w

(J)
t+1}, and

4. Move particles: draw a new particle
(
x

(j)
0:t+1, θ

(j)
t+1

)
from some transition ker-

nel q
(
x0:t+1, θ|x̃(k)

0:t+1, θ
(k)
t

)
with invariant distribution p(x0:t+1, θ|y1:t+1).

RM for the local level DLM with common observation and state vari-

ance factor

In Chapter 5, we run this algorithm on data simulated from the local level

DLM with unknown common variance factor, θ, described in Section 2.3.1. To do

this, we need to define an MCMC kernel, q, for the “Move particles” step in the

above algorithm. In this case, we sample from q as follows: For a given particle j

and sampled index k,

1. Sample θ
(j)
t+1 ∼ IG(at+1, bt+1), where

at = a0 + 1/2 + t+ 1

bt = b0 +
1

2

(
t+1∑
i=1

(
yi − x̃(k)

i

)2

+
1

λ

t∑
i=1

(
x̃

(k)
i − x̃

(k)
i−1

)2

+
(
x̃

(k)
0

)2
)
, and

2. Sample x
(j)
0:t+1 using the FFBS algorithm detailed in Steps 4b and 4c of the

Gibbs sampler from Section 3.1.2 with T = t+ 1 and

m0 = 0 C0 = V = θ
(j)
t+1 W = θ

(j)
t+1λ Ft = G = 1.

47

Note that the RM is not a truly sequential particle filter because of the increase

in computation required with increasing t, due to the increasing dimension of the

state component.

3.2.5 Particle learning (PL)

We consider a particle filtering algorithm called particle learning (Carvalho et

al.; 2010) that can be applied to a particular class of state-space models which

includes DLMs. For models within this class, particle learning prescribes a truly

sequential algorithm that samples new values for θ from p(θ|y1:t) using conditional

sufficient statistics. Let st denote the sufficient statistics for θ conditional on the

states x0:t (unrelated to st in the epidemic model from Section 2.2). Then, we

incorporate the sampled values of the sufficient statistics, s
(j)
t , into the particles,

i.e. particle j at time t is now represented by
(
x

(j)
t , s

(j)
t , θ

(j)
t

)
. We move from an

approximation to p(xt, θ|y1:t) to that of p(xt+1, θ|y1:t+1) by the following procedure

for each particle j = 1, 2, . . . , J :

1. Calculate weights and renormalize:

w̃
(j)
t+1 = p

(
yt+1

∣∣∣x(j)
t , θ

(j)
t

)
w

(j)
t+1 = w̃

(j)
t+1

/
J∑
l=1

w̃
(l)
t+1 ,

2. Resample: sample an index k ∈ {1, . . . , j, . . . , J} with associated probabili-

ties
{
w

(1)
t+1, . . . , w

(j)
t+1, . . . , w

(J)
t+1

}
,

3. Propagate: sample x
(j)
t+1 ∼ p

(
xt+1

∣∣∣yt+1, x
(k)
t , θ

(k)
t

)
,

48

4. Update sufficient statistics: calculate s
(j)
t+1 = S

(
yt+1, x

(j)
t+1, s

(k)
t

)
, and

5. Regenerate: sample θ
(j)
t+1 ∼ p

(
θ
∣∣∣s(j)
t+1

)
.

Note that this algorithm requires the ability to evaluate the conditional predictive

distribution p(yt+1|xt, θ) and sample from the conditional filtered distributions

p(xt+1|yt+1, xt, θ) and p(θ|st). Thus, particle learning is only applicable to models

for which the form of these distributions is analytically tractable. In addition, we

must define the recursive map S to update the sufficient statistics based on the

new observation yt+1 and the newly sampled state x
(j)
t+1. In Chapter 5, we run

PL on simulated data from the local level DLM described in Section 2.3.1, and

in Chapter 6, we apply PL to the dynamic regression models described in Section

2.3.3 using real and simulated fMRI data. We now show how to implement PL

for these specific models.

PL for the local level DLM with common observation and state vari-

ance factor

To implement a particle learning algorithm for the local level DLM given by

equations (2.10) and (2.11), we derive the conditional predictive distribution of

yt+1 given xt and θ, and the filtered distribution of xt+1 given xt and θ, for each

49

t. These distributions are given by

yt+1|xt, θ ∼ N (xt, θ(1 + λ)) (3.18)

xt+1|yt+1, xt, θ ∼ N(µt, τ
2), (3.19)

with

µt =
λ

1 + λ
(yt+1 + xt/λ) τ 2 = θ

λ

1 + λ
. (3.20)

We also derive the filtered distribution of θ conditional on the states, p(θ|y1:t, x0:t),

expressed by

θ|y1:t, x0:t ∼ IG(at, bt), (3.21)

where

at = t+ 1/2 + a0

bt = b0 +
1

2

(
t∑

k=1

(yk − xk)2 +
1

λ

t∑
k=1

(xk − xk−1)2 + x2
0

)
.

Thus, st = (at, bt) are the conditional sufficient statistics for θ at time t, which

can be updated according to the recursive map S defined by

at+1 = at + 1, t ≥ 1 (3.22)

bt+1 =
1

2

(
(yt+1 − xt+1)2 +

1

λ
(xt+1 − xt)2

)
+ bt, t ≥ 1 (3.23)

with initial conditions

a1 = 3/2 + a0

b1 =
1

2

(
(y1 − x1)2 +

1

λ
(x1 − x0)2 + x2

0

)
+ b0.

50

PL for dynamic regression models

Consider the dynamic regression models M101 and M011 described in Section

2.3.3 and given by equations (2.13) and (2.14) with

Ut = (1, ut) β = (β0, β1)′

V = σ2
m Ft =


1, for M101

ut, for M011

G = φ W = σ2
s .

We specify the prior distributions p(β, σ2
m) and p(φ, σ2

s) according to equations

(2.26) and (2.27), restated below as

β|σ2
m ∼ N(ϑ0, σ

2
mB0) σ2

m ∼ IG(am0 , bm0) (3.24)

φ|σ2
s ∼ N(ϕ0, σ

2
sΦ0) σ2

s ∼ IG(as0 , bs0) (3.25)

with x0 = 0 (i.e. p(x0) = δ0(x0)) and the hyperparameters ϑ0, B0, ϕ0, Φ0, am0 ,

bm0 , as0 , and bs0 assumed known. s0 that shows up in the subscripts of as0 and

bs0 is unrelated to the sufficient statistic s0 as well as s0 from the epidemic model

from Section (2.2).

To implement a particle learning algorithm for this model, we derive the con-

ditional predictive and conditional filtered distributions

yt+1|xt, θ ∼ N(Ut+1β + Ftφxt, F
2
t σ

2
s + σ2

m) (3.26)

xt+1|yt+1, xt, θ ∼ N(µt, τ
2
t), (3.27)

51

where

µt = τ 2
t

(
(yt+1 − Ut+1β)Ft+1

σ2
m

+
φxt
σ2
s

)
τ 2
t =

(
F 2
t+1

σ2
m

+
1

σ2
s

)−1

.

In addition, we derive p(θ|y1:t, x0:t) using the fact that

p(θ|y1:t, x0:t) ∝

(
t∏

k=1

p(yk|xk, β, σ2
m)p(xk|xk−1, φ, σ

2
s)

)
p(β, σ2

m)p(φ, σ2
s). (3.28)

The filtered distribution for θ conditional on the states is then given by

β|σ2
m, y1:t, x0:t ∼ N(ϑt, σ

2
mBt) σ2

m|y1:t, x0:t ∼ IG(amt , bmt) (3.29)

φ|σ2
s , y1:t, x0:t ∼ N(ϕt, σ

2
sΦt) σ2

s |y1:t, x0:t ∼ IG(ast , bst), (3.30)

where ϑt, Bt, ϕt, Φt, amt , bmt , ast , and bst are calculated according to the equations

in Steps 2 and 3 of the Gibbs sampler outlined in Section 3.1.2 (with T = t). We

let st = (ϑt, Bt, amt , ξmt , ϕt,Φt, ast , ξst) denote the sufficient statistics for θ and

update them through the recursive map given by

B−1
t ϑt = B−1

t−1ϑt−1 + U ′t(yt − Ftxt) B−1
t = B−1

t−1 + U ′tUt (3.31)

amt = amt−1 + 1/2 ξmt = ξmt−1 + (yt − Ftxt)2

Φ−1
t ϕt = Φ−1

t−1ϕt−1 + xtxt−1 Φ−1
t = Φ−1

t−1 + x2
t−1

ast = ast−1 + 1/2 ξst = ξst−1 + x2
t ,

where ξm0 = ξs0 = 0. We update ξmt and ξst in the recursive map and calculate

the inverse-gamma rate parameters bmt and bst according to

bmt =
1

2

(
ξmt + ϑ′0B

−1
0 ϑ0 − ϑ′tB−1

t ϑt
)

+ bm0 (3.32)

bst =
1

2

(
ξst + ϕ′0Φ−1

0 ϕ0 − ϕ′tΦ−1
t ϕt

)
+ bs0 .

52

3.3 Resampling

Successful implementation of any particle filtering algorithm depends on which

resampling scheme to use and when to resample. Resampling is sampling (with

replacement) random indices between 1 and J , where index j has probability

w(j) of being selected. Throughout our discussion, we have explicitly used multi-

nomial resampling, but alternative resampling schemes exist including residual,

stratified, and systematic resampling (Randal et al.; 2005). Residual resampling

deterministically samples bw(j)Jc copies of particle j, for each j, and distributes

the remaining J −
∑J

j=1bw(j)Jc particles according to a multinomial distribution

with associated probabilities (w(j)J − bw(j)Jc)/(J −
∑J

j=1bw(j)Jc), where b.c is

the largest integer less than or equal “.”. Stratified resampling samples uniformly

over the interval [(j− 1)/J, j/J], for j = 1, 2, . . . , J , and calculates the number of

copies of particle j according to the empirical cumulative distribution function of

the particle indices (i.e. the “inversion method”). Finally, systematic resampling

is similar to stratified resampling, except that only one uniform draw is initially

sampled from [0, 1/J] and the remaining J − 1 are calculated by adding (j− 1)/J

to the sampled value prior to applying the inversion method.

Resampling is meant to rebalance the weights of the particles in order to

avoid degeneracy, but this introduces additional Monte Carlo variability to the

particle sample. Despite systematic resampling only requiring a single uniform

draw, Randal et al. (2005) show via example that it can introduce more Monte

53

Carlo variability than the other three resampling schemes. In Chapter 4, we

discuss some advantages and disadvantages of the different resampling methods

when applied to our specific model of a disease outbreak and suggest the use of

stratified or residual resampling.

The frequency of resampling should be reduced to balance the loss of infor-

mation due to degeneracy with the loss of information due to the additional

Monte Carlo variability introduced during resampling. Typically, a measure of

the nonuniformity of particle weights is used to determine if resampling should

be performed at a given iteration of a particle filter. The common measures are

effective sample size, coefficient of variation, and entropy. We use effective sample

size (Liu et al.; 1998), a value ranging between 1 and J that can be interpreted

as the number of independent particle samples. An effective sample size of J

corresponds to all particle weights being equal, and a value of 1 corresponds to

one particle weight being 1 with the rest 0. Using this measure of nonuniformity,

we set a threshold of 0.8J , meaning that if the number of independent samples is

less than 80% of the total number of particles at time t, resampling is performed

at that time.

The algorithms described in Sections 3.2.1 through 3.2.5 were constructed

under the assumption that resampling is performed at every iteration of the filter.

However, in practice, we omit the resampling step in each algorithm at each time

point where the effective sample size exceeds 0.8J . If resampling is not performed,

54

we modify the algorithm at that timepoint by 1) omitting the ‘Resample’ step,

2) replacing all instances of the sampled index k with the particle index j, and

3) adjusting the calculation of w̃
(j)
t+1 by multiplying by w

(j)
t (in the BF, RM, and,

PL) or g̃
(j)
t+1 (in the APF and KDPF), i.e. the particle weights get carried over.

For the KDPF, RM, and PL, regeneration is not performed when resampling is

not performed since, in this case, there is no reduction in the number of unique

fixed parameter values. In this case, we let θ
(j)
t+1 = θ

(j)
t for all j.

3.4 Model comparison

Each of the particle filters described in previous sections, in addition to gener-

ating a weighted sample approximation to p(xt, θ|y1:t), provide an approximation

to the marginal likelihood, p(y1:t). We first note that, given p(y1:t−1), p(y1:t) can

be updated recursively by

p(y1:t) = p(yt|y1:t−1)p(y1:t−1), for t ≥ 2. (3.33)

Thus, p(y1:t) can be calculated through p(y1) and the one-step ahead predictive

densities p(yk|y1:k−1) for k = 2, . . . , t, according to

p(y1:t) =

(
t∏

k=2

p(yk|y1:k−1)

)
p(y1). (3.34)

55

At any step of the particle filter (i.e. for any time t ≥ 1), an approximation to

p(yt|y1:t−1) (or p(y1) if t = 1) can be obtained by the following equations:

If t = 1,

p(y1) ≈


∑J

j=1w
(j)
0 w̃

(j)
1 , for the BF, RM, and PL(

1
J

∑J
j=1 w̃

(j)
0

)(∑J
j=1 g̃

(j)
1

)
for the APF and KDPF

, and

(3.35)

if t ≥ 2,

p(yt|y1:t−1) ≈


∑J

j=1w
(j)
t−1w̃

(j)
t , for the BF, RM, and PL(

1
J

∑J
j=1 w̃

(j)
t−1

)(∑J
j=1 g̃

(j)
t

)
for the APF and KDPF

.

(3.36)

(Section 4.2 Doucet and Johansen; 2009). Given approximations to p(y1) and

p(yk|y1:k−1) for k = 2, . . . , t, the marginal likelihood can be approximated via

equation (3.34).

Having prescribed a method for approximating p(y1:t) sequentially using parti-

cle filtering, we can compare a set of N possible models M1,M2, . . . ,MN according

to their posterior model probabiities, given by

p(Mi|y1:t) =
p(y1:t|Mi)p(Mi)∑N
i=1 p(y1:t|Mi)p(Mi)

. (3.37)

56

In Chapter 5, we compare estimated marginal likelihoods using the KDPF, RM

and PL with the true marginal likelihood that can be calculated analytically under

the local level DLM described in Section 2.3.1. In Chapter 6 we compare relative

posterior probabilities among the models M101, M011, and M001 using PL.

3.5 Particle MCMC

At the beginning of this chapter, some of the advantages and disadvantages

of both MCMC and SMC were mentioned. A significant amount of research has

focused on combining aspects of both types of methods to create more efficient

algorithms for sampling from high dimensional posterior distributions. One such

algorithm is the RM described in Section 3.2.4 is one such example, which incorpo-

rates an MCMC algorithm within the particle filter as a way to avoid degeneracy

in fixed parameter values. Particle MCMC (PMCMC) (Andrieu et al.; 2010) is an-

other example. This method incorporates a particle filter within an iteration of an

MCMC algorithm in order to increase efficiency when ideal proposal distributions

are intractable.

The MCMC algorithm proposed in Section 3.1.1 for analyzing data from the

the epidemic model described in 2.2 could be made more efficient by using PM-

CMC instead. Instead of using Gaussian random walk proposals for sampling

each of x1, . . . , xT from their full conditional distributions, as is done in Step 2 of

the Gibbs sampler in Section 3.1.1, we could instead propose a sample path x∗0:T

57

from p(x0:T |θ, y1:T) using a particle filter. The pmcmc function within R package

pomp (King et al.; 2014) implements this kind of algorithm to generate samples for

the fixed parameters that are asymptotically (as J → ∞) distributed according

to p(θ|y1:T) (Andrieu and Roberts; 2009).

Let θ(j) =
(
β(i), γ(i), ν(i)

)′
represent the sampled values of the fixed parameters

in the epidemic model at iteration i of the MCMC chain. The general algorithm

implemented by pmcmc, called the particle marginal Metropolis-Hastings sampler

(PMMH) (Section 2.4.2 Andrieu et al.; 2010), proceeds as follows:

1. Initialization:

(a) Set initial values of the fixed parameters θ(0),

(b) Treating the fixed parameters as known θ(0), run an SMC algorithm to

generate an approximation to p(x0:T |y1:T , θ
(0)) via

p̂
(
x0:T |y1:T , θ

(0)
)

=
J∑
j=1

w
(j)
T δ(

x
(j)
0:T

)(x0:T),

(c) Sample x∗0:T ∼ p̂
(
x0:T |y1:T , θ

(0)
)

and calculate an estimate of the marginal

likelihood (conditional on θ(0)), denoted p̂
(
y1:T |θ(0)

)
, via equations

(3.36) and (3.34), and

(d) Set i = 1.

2. For i ≥ 1,

(a) Sample θ∗ from some proposal distribution q(θ|θ(i−1)),

58

(b) Treating the fixed parameters as known θ∗, run an SMC algorithm to

generate an approximation to p(x0:T |y1:T , θ
∗) via

p̂(x0:T |y1:T , θ
∗) =

J∑
j=1

w
(j)
T δ(

x
(j)
0:T

)(x0:T),

(c) Sample x∗0:T ∼ p̂(x0:T |y1:T , θ
∗) and calculate an estimate of the marginal

likelihood (conditional on θ∗), denoted p̂(y1:T |θ∗), via equations (3.36)

and (3.34),

(d) With probability

R = min

(
1,

p̂(y1:T |θ∗)p(θ∗)
p̂ (y1:T |θ(i−1)) p (θ(i−1))

q
(
θ(i−1)|θ∗

)
q (θ∗|θ(i−1))

)
,

set

θ(i) = θ∗ p̂
(
y1:T |θ(i)

)
= p̂(y1:T |θ∗).

Otherwise, set

θ(i) = θ(i−1) p̂
(
y1:T |θ(i)

)
= p̂

(
y1:T |θ(i−1)

)
.

Extensions to this algorithm to provide samples for the unobserved states

approximately distributed according to p(x0:T |y1:T) or joint samples for states and

fixed parameters approximately distributed according to p(x0:T , θ|y1:T) have yet

to be implemented in pomp (Section 2.4.3 Andrieu et al.; 2010). We implement

this algorithm on data simulated from the epidemic model described in Section

3.1.1 using pmcmc, which samples fixed parameter values using Gaussian random

walk proposals with prespecified standard deviations, and the algorithm uses a

59

plain bootstrap filter to sample states and estimate the marginal likelihood. In

Chapter 4, we compare the performance of the PMCMC algorithm with that of

the KDPF and standard MCMC described in Section 3.1.1.

60

Chapter 4

Simulation study: tracking a

disease epidemic

In this chapter, we compare the performance of the BF, APF and KDPF

using simulated data from the epidemic model described in Section 2.2. This

data is analogous to that analyzed by Skvortsov and Ristic (2012) using the BF.

In addition, using the KDPF, we compare the performance of bounded versus

unbounded priors on the fixed parameters as well as different resampling schemes.

Lastly, we discuss the role of the discount factor ∆ when implementing the KDPF,

and we compare results from running the KDPF with results from running the

MCMC and PMCMC algorithms described in Sections 3.1.1 and 3.5.

In Section 4.1, we describe how data from the epidemic model described in Sec-

tion 2.2 were simulated. In Section 4.2, we describe how the BF, APF, and KDPF

61

were implemented using both uniform and log-normal priors on the fixed param-

eters. In Section 4.3, we compare the performance of the BF, APF, and KDPF

using uniform priors and systematic resampling. In Section 4.4, we compare the

sensitivity to analysis using the KDPF to placing uniform versus log-normal priors

on the fixed parameters. In Section 4.5, we compare the multinomial, residual,

stratified, and systematic resampling schemes within the KDPF with log-normal

priors on the fixed parameters.

4.1 Simulated epidemic data

Forty epidemics were simulated according to equation (2.3) for a population

of size P = 5000 and T = 125 days. True values of β, γ, and ν were different

for each simulated outbreak, determined by sampling from the log-normal prior

distribution, p(θ), that we define in equation (4.2) in Section 4.2. For all sim-

ulations, infection was introduced in 10 people in the population at day 0 (i.e.

true i0 = 10/5000 and s0 = 4990/5000). Among the 40 simulations, the average

time at which the epidemics peak is 57 days and the average proportion of the

population that has been infected by t = 125 is 74%. The left panel of Figure 4.1

shows the evolution of st, it, and rt for a single simulation. The evolution of it for

the remaining 39 simulations are superimposed (light gray).

Data from randomly selected streams at each day were generated from equation

(2.6). The right panel of Figure 4.1 displays the observed data from the simulated

62

Figure 4.1: Simulated epidemic data

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True Epidemic Curves

Time (days)

%
 P

op
ul

at
io

n
Susceptible
Infected
Recovered

●

●

●

●
●●

●
●

●
●

●
●
●
●
●
●

●
●●

●
●●

●
●
●

●
●

●●

●●

●●

●●
●

●
●
●●●

●

●● ●

●
●

●
●● ●●●

●● ●●
●
●

●●
● ●

●
●●●

●
●

●
●

0 20 40 60 80 100 120

1.
00

1.
02

1.
04

1.
06

1.
08

Syndromic Data

Time (Days)

O
bs

er
ve

d
da

ta
 (

y t
)

●
●●●● ●●●

●
● ●

●●
●●

●●

●

●
●

●
●

●●
●●

●
●●

●●
●●

●
●
●●

●
●

●●
●

●●●●●●●●●
●●

●●●
●●

●
●●

●●
●●●●

●
●●

●
●

●● ●●
●

●●

●
●
●

●

●

●●

●
●

●●● ●
●

●
●

●●●●●
●

●
●

●
●●

●
●
●●

● ●●●●

●●●
● ●

●●●●
●

● ●●
●

●
●●●

●
●●

●●
●●

●
●●

● ●

●
●

●●●

●

●●●

●
●
●

●

● ●
●

●●

●
●

●

●

●

●

●●
●

●●
●●

●
●
●
●●●

●
●
●

●

●●●●●●●●●● ●

●
●●●

●

●

●

●

Stream

1
2
3
4

Simulated epidemic curves (left) and syndromic observations (right) for a single sim-
ulated epidemic (colored lines) with β = 0.254, γ = 0.111, and ν = 1.246 along with
infectious curves, it, for the remaining simulations (light gray).

Table 4.1: Values of known constants in epidemic model

l bl ςl σl
1 0.25 1.07 0.0012
2 0.27 1.05 0.0008
3 0.23 1.01 0.0010
4 0.29 0.98 0.0011

epidemic shown on the left. Values of known constants for L = 4 streams were

kept the same for each simulation and are given in Table 4.1 (ηl was set to 0 for

all l). Values for bl, ςl, and σl were chosen to be the same as those used in the

numerical study carried out by Skvortsov and Ristic (2012). The values chosen for

ςl were motivated by evidence based on real syndromic data that suggests values

close to 1 (Chew and Eysenbach; 2010).

63

4.2 Particle filter runs

For each simulated data set, the BF, APF, and KDPF were run using J =

100, 1000, 10000, and 20000 particles to obtain weighted sample approximations

to p(xt, θ|y1:t) for t = 1, . . . , T . For each J , separate runs using multinomial,

residual, stratified, and systematic resampling were implemented (Niemi; 2012),

and an effective sample size threshold was set at 80% of the total number of

particles to determine when to resample (Liu et al.; 1998). For the KDPF,

sensitivity to changes in the discount factor, ∆, is explored by running with

∆ = 0.9, 0.95, 0.96, 0.97, 0.98, 0.99.

To start each particle filter run, values for the initial state and fixed parameters

for J particles were sampled from the prior density p(x0, θ) = p(θ)p(i0, s0), where

p(i0, s0) is the joint pdf of the random variables s0 and i0 and p(θ) is the joint

prior density of β, γ, and ν. We let i0 ∼ N[0,1](0.002, 0.00052) and set s0 = 1− i0,

as in equation (3.1). This is motivated by the fact that a very small percentage of

the population is infected during the initial stage of an epidemic, and no infected

individuals have yet recovered from illness.

To investigate the impact of different prior distributions for θ on the perfor-

mance of the particle filters, the runs described above were performed once using

uniform priors on θ and then again using log-normal priors. We first ran the

particle filters using uniform priors on θ that were chosen to be the same as those

64

used in Skvortsov and Ristic (2012), i.e. p(θ) = p(β)p(γ)p(ν) with

β ∼ Unif(0.14, 0.50) (4.1)

γ ∼ Unif(0.09, 0.143)

ν ∼ Unif(0.95, 1.3).

These priors allow for values of R0 in a range of approximately 1 to 5.5 and an

average infectious period in a range of roughly 7 to 11 days. R0 values for strains

of influenza have been estimated to be around 2-3 (Mills et al.; 2004; Heffernan

et al.; 2005; Zhang; 2011). Thus, while these priors impose restrictive bounds on

the parameters, they are not particularly informative for tracking a flu epidemic.

We then ran the particle filters using our own log-normal priors on θ that we

define by p(θ) = p(β, γ)p(ν) (i.e. β and γ are not independent). When imple-

menting the particle filtering algorithms, the prior draws for β were determined

by multiplying sampled values of γ by the basic reproductive rate R0 = β/γ. All

parameters were sampled independently with priors

R0 ∼ LN(0.7520, 0.17682) (4.2)

γ ∼ LN(−2.1764, 0.11832)

ν ∼ LN(0.1055, 0.08002).

Here, we incorporate prior information on R0 instead of β directly, since prior

knowledge of the basic reproductive number may be easier to obtain than for the

contact rate itself. These log-normal priors constrain β, γ and ν to be positive.

65

The mean and variance of the prior distributions on log γ and log ν were chosen

such that random draws of γ and ν would fall within the bounds of their respective

uniform priors (in equation (4.1)) with 95% probability. The mean and variance of

logR0 were chosen such that R0 would fall between 1.5 and 3 with 95% probability.

It is important to note that particle filters do not perform well when diffuse

priors are placed on unknown states or fixed parameters. This is because priors

that are too vague yield a small number of prior draws sampled in areas of high

likelihood, resulting in degeneracy of the particle filter after only a few time points.

We discuss this challenge in more detail in Section 4.9.

Logit and log transformations were applied to the components of θ in the

manner described at the end of Section 3.2.3 so that the normal mixture kernel

could be used in the KDPF while constraining β, γ, and ν to be within their

respective prior domains (i.e. logit was used with uniform priors and log with

log-normal priors).

4.3 Comparison of particle filter algorithms un-

der uniform priors

First, we compare the performance of the particle filters using uniform priors

on the elements of θ and systematic resampling, since these priors and resampling

scheme were used in Skvortsov and Ristic (2012). For ease of comparison, the

66

same prior draws were used in each particle filter for fixed J . Figure 4.2 shows

95% credible bounds of p(β|y1:t), p(γ|y1:t), and p(ν|y1:t) for t = 1, 2, . . . , T and J =

100, 1000, 10000, 20000 using the simulated data displayed in Figure 4.1. Initially,

the credible bounds for the BF and APF match those of the KDPF, but quickly

degenerate toward a single value due to elimination of unique particles during

resampling. Although the time of degeneracy increases as J gets larger, the BF

and APF bounds become misleading during the second half of the epidemic, even

for J = 20000. The bounds for the KDPF, on the other hand, have dramatically

reduced degeneracy since new values of θ are regenerated from the kernel density

approximation.

The KDPF also has an advantage over the BF and APF in terms of com-

putational efficiency. Notice that the bounds for the KDPF become wider as J

increases, but they do not change much between J = 10000 and J = 20000. This

suggests that by 10000 particles, the weighted sample approximation of p(xt, θ|y1:t)

has converged to the true posterior over the entire epidemic period, unlike with

the BF and APF. Even though the bounds for β for the BF and APF seem to

roughly match those of the KDPF for J = 20000 over the first half of the epi-

demic, the KDPF provides the same measure of uncertainty for J = 10000 and

does not degenerate during the second half of the epidemic.

Estimation of ν is more challenging than for β or γ because of the nonlinear

nature of the state equation with respect to this parameter. We notice from the

67

plots for ν with J ≥ 10000 that very little information is gained over the course of

the epidemic about this parameter relative to its uniform prior. Furthermore, the

95% credible intervals for ν expand between t = 70 and t = 80, while we typically

expect to see the width of credible intervals for an unknown fixed parameter

decrease monotonically as data is accumulated. A plausible explanation here

is that p(ν|y1:t) has been squeezed against the lower bound of the prior for ν.

Rerunning the analysis (results not shown) using our log-normal priors relaxes

the prior bounds on ν and shows a shift in the distribution toward higher values

around t = 70 as opposed to the widening of the interval that we see in Figure

4.2.

Table 4.2 shows that the behavior of the BF, APF, and KDPF illustrated in

Figure 4.2 is consistent across the 40 simulations. For instance, for J = 20000,

the 95% credible intervals at t = 125 for each of β, γ and ν cover the truth for

39 out of 40 (97.5%) simulations using the KDPF. The BF and APF runs using

the same number of particles, on the other hand, yield 95% credible intervals at

t = 125 that cover the truth for no more than 13 out of 40 (32.5%) simulations

when considering β, γ, and ν marginally.

68

Figure 4.2: Comparing credible intervals for the BF, APF, and KDPF

0 20 40 60 80 100 1200.
18

0.
22

0.
26

0.
30

β
J

=
 1

00
Truth
BF
APF
KD

0 20 40 60 80 100 1200.
09

0.
10

0.
11

0.
12

0.
13

0.
14

γ

0 20 40 60 80 100 1200.
95

1.
05

1.
15

1.
25

ν

0 20 40 60 80 100 1200.
18

0.
22

0.
26

0.
30

J
=

 1
00

0

0 20 40 60 80 100 1200.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0 20 40 60 80 100 1200.
95

1.
05

1.
15

1.
25

0 20 40 60 80 100 1200.
18

0.
22

0.
26

0.
30

J
=

 1
00

00

0 20 40 60 80 100 1200.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0 20 40 60 80 100 1200.
95

1.
05

1.
15

1.
25

0 20 40 60 80 100 1200.
18

0.
22

0.
26

0.
30

Time (days)

J
=

 2
00

00

0 20 40 60 80 100 1200.
09

0.
10

0.
11

0.
12

0.
13

0.
14

Time (days)
0 20 40 60 80 100 1200.

95
1.

05
1.

15
1.

25

Time (days)

Sequential 95% credible intervals for β (left column), γ (middle column), and ν (right
column) for increasing number of particles (rows) for the BF (red), APF (blue), and
KDPF (green), compared with the truth (black lines), when using systematic resampling
and uniform priors. Data were generated from the simulated epidemic shown in Figure
4.1. For the KDPF, ∆ was set to 0.99.

69

Table 4.2: Comparing credible intervals for the BF, APF, and KDPF

β γ ν
J BF APF KDPF BF APF KDPF BF APF KDPF

100 0.000 0.000 0.175 0.000 0.000 0.175 0.000 0.000 0.100
1000 0.000 0.000 0.800 0.000 0.000 0.900 0.000 0.000 0.800
10000 0.150 0.150 0.975 0.150 0.200 0.950 0.175 0.250 0.925
20000 0.325 0.275 0.975 0.325 0.175 0.975 0.300 0.175 0.975

Proportion of simulated data sets (out of 40 total) for which 95% credible intervals
obtained from the marginal filtered distributions of the fixed parameters (columns) at
the end of the epidemic (i.e. t = 125) cover the true value used for simulation for
increasing number of particles (rows) using the BF, APF, and KDPF.

4.4 Illustration of the negative impact of priors

with truncated support

As mentioned in Section 3.2.3, implementing the KDPF using a normal kernel

density approximation to p(θ|y1:t) to regenerate the fixed parameters requires

applying some transformation to the components of θ so that their support is

on the real line. The logit function is a convenient choice for mapping fixed

parameters with bounded support to the real line; the log function is convenient

for fixed parameters with positive support. Thus, we investigate the sensitivity of

the results with J = 10000 to these two types of transformations using the KDPF.

Figure 4.3 compares scatterplots of β versus γ sampled jointly from the filtered

distribution p(β, γ|y1:t) at t = 0, 20, 40, 60. In the top row, the same truncated

support prior as in Skvortsov and Ristic (2012) is used, i.e. β ∼ Unif(0.14, 0.50)

and γ ∼ Unif(0.09, 0.143) independently. In order to ensure regeneration in the

70

KDPF does not extend past these bounds, a logit transformation was applied in

the manner described at the end of Section 3.2.3 with a = 0.14 and b = 0.50

for β and a = 0.09 and b = 0.143 for γ. The kernel density is then created on

this transformed space. In the top row of Figure 4.3, the samples concentrate

on the boundaries of the uniform prior on γ, particularly for t = 20 and t = 40.

This suggests that the truncated support prior bounds on γ are too restrictive to

account for the uncertainty in this recovery time.

To test this hypothesis, we reran the KDPF using exactly the same prior draws

as those used in the first row of Figure 4.3, but we apply a log transformation

to θ (to ensure β, γ and ν are positive) instead of the logit transformation. The

results are shown in the second row of Figure 4.3. Despite the particles starting

within the uniform bounds at t = 0, the samples stray outside the uniform bounds

for γ, suggesting that the data are informing us that reasonable parameter values

can be found outside the bounds that would have been imposed by the truncated

support prior.

The bottom row of Figure 4.3 displays results from running the KDPF using

prior samples taken from the log-normal priors on the elements of θ described

be equation (4.2). As in the second row, a log transformations were applied to

the fixed parameters so that the normal kernel density could be used for jittering

particles. The log-normal priors on the fixed parameters are more informative than

the uniform priors in the sense that a greater number of particles are concentrated

71

near the true values of β and γ at t = 0. Yet, the distribution of particles at t = 20

and t = 40 appear more spread out in the bottom row than in the top row because

the log-normal priors are less restrictive on the sample space of β and γ than are

the truncated support uniform priors.

In the bottom row of Figure 4.3, sampled particle values at t = 60 have

moved inside the bounds that would have been imposed by the uniform prior and

form an ellipse-shaped distribution similar to what is shown in the second row

of Figure 4.3 at t = 60. This suggests that the tail of points concentrated along

the upper uniform bound at t = 60 in the top row of Figure 4.3 is an artifact

of the over-restrictive uniform prior and not influenced by the data. We suggest

using log-normal priors on positive elements of θ as opposed to uniform priors

which bound the range of possible parameter values. This allows us to use prior

knowledge of the epidemic to encourage points to lie in a reasonable range while

retaining flexibility in the event of model mis-specification either in the likelihood

or the prior.

4.5 Comparison of resampling schemes

As mentioned in Section 3.3, resampling is meant to rebalance the weights of

the particles in order to avoid degeneracy, but this comes at the cost of increasing

the Monte Carlo variability of the particle sample. Up to this point, we have used

only systematic resampling, as in Skvortsov and Ristic (2012). Alternatively, we

72

Figure 4.3: Comparing priors in the KDPF

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0.15 0.250.
08

0.
12

0.
16

t = 0

β

γ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

t = 20

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

● ●

● ●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●●
●●

●●● ●●●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●

●●
●●●●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●

●

●●

●●
●
●

●

●
●●●●

●

●

●●●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●
●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●
●●

t = 40

●

●

●

●

●●

●
●

●

●
●●

●●
●

●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●●● ●●●●●●●●●● ●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●
●●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●●

●●●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●
●

●

●
●

●

●●●●●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●●●●●
●●●●

●

●
●

●

●

●

●

●

●●●
●●
●
●
●●

●
●

●●
●

●
●

●

●●● ●

●

●

●

●●
●

●
●

●

●
●●

●

●

●

●
●●●

●
●●

●

●●

●●●●
●

●●
●●●

●

●

●●●

●

●

●

●●●●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●●●●
●

●

●

●
●

●●

●

●
●●●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●

●●

●

●●
●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●
●●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●
●

●
●

●

●●●
●●

●●

●
●
●●

●
●

●

●

●●

●●

●

●
●

●

●

●
●
●

●

●

●●●

●

●
●

●
●●
●●

●

●

●●

●

●
●●●●
●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●●

●

●

●

●
●

● ●

●

●

●
● ●

●

●
●

●●
●

●

●

●

●●

●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●●●●

●●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●●

●

● ●

●●

●
●

●

●

●●
●●

●

●●
●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●●
●

●
●●

●●

●

●

●●

●● ●

●●● ●

●

●

● ●●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

● ●●●●
●

●
●

●●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●●
●

●
●

●

●

●●

●
●

●

●
●

●
●●●●●●

●
●

●●

●
●

●

●●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●
●

●
●

●

t = 60

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●●●●
●

●

●

●

●
●

●
●

●

●
●
●

●

●
●●
●

●
●

●●●●

●
●
●●●

●
●●

●●
●

●

●
●

●●
●

●
●

●
●●

●●●

●
●

●●

●●
●

●●●
●

●

●●●
●●

●

●

●

●

●●●●
●●●
●

●
●

●
●
●●

●
●

●

●●
●

●
●●●

●

●●
●●

●●

●

●
●●●●

●
●●
●

●●

●

●●
●●

●
●

●

●
●

●
●●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●
●●
●●●

●

●●

●

●
●

● ●

●

●

●

●●

●●
●●

●

●
●

●
●

●

●
●

●●

●
●

●

●
●●●
●

●

●●●
●

●●
●

●
●●

●

●●

●

●

●

●

●●●
●

●●●

●●

●
●

●●

●●●

●●●●

●

●

● ●●●
●

●

●
●

●●●

●
●●

●
●
●

●●●
●
●●
●

●
●

●

●
●

●●
●
●

●

●

●

●

●●●●

●

●

●

●

●●●●● ●

●
●

●●●

●●
●

●
●

●

●●●

●

●
●

●

●
●

●●
●

●

●

●●

●
●●

●

●●●
●●●

●

●

●

●

●

●
●

●
●
●●●
●●●
●●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●
●

●

●

●

●●●

●●

● ●

●
●

●

●

●
●

●

●
●

●●

●
●

●
●●

●

●●●

●●
●

●
●
●

●

●●

●

●

●

●
●
●
●

●
●

●●●●●
●●

●
●
●●

●
●

●
●●
●●●
●●●●●● ●●

●●●
●●●●●

●●

●

●
●
●
●

●

●
●●●

●●
●●

●
●
●●●

●●

●

uniform draws, logit transformation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●
● ●

●
●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●●●

●

●

●

● ● ●

●
●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●
●●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●
●
●●

●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●●

●

●●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●●
●

●

●●●●

●

●

●●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●●

●
●

●

●

●

●
●
●

●

●
●

●
●●●●

●●●

●

●

●
●

●

●●
●

●

●
●●

●●
●

●

●
●

●

●

●
●

●●

●
●

●

●
●●
●●
●

●

●●

●●●
●

●

●

●
●●

●

●

●●●

●

●

●●
●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●
●

●●●

●
●

●

●

●

●
●

●

●●●
●

●●

●

●

●

●●

●

●
●

●

●

●●●

●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●
●
●

●
●●

●
●
●

●

●

●
●

● ●
●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●
●
●●
●

●
●

●

●●
●

●●

●
●

●

●
●●

●

●
●

●●
●

●

●●

●
●●

●

●

●
●

●●
●

●

●
●

●
●●

●
●●

●
●
●

●

●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●●●●

●●

●
●

●
●

●
●

●●

●●

●

●●

●●
●
●

●

●

●
●●

●
●

●
●

●

●

●●
●●

●

●

●
●

●

●

●
●

●●

●●

●

●●●●

●

●
●

●
●

●
●●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●●
●

●●
●

●
●

● ●

●

●

●

●●●

●

●
●
●

●

●●

●●

●●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●●●
●

●

●●
●●

●

●

●●

●
●

●
●●

●

●
●

●
●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●
●
●●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●●
●●

●

●
●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●●●

●

●
●
●

●

●

●
●

●
●

●
●●

●●●

●

●

●

●

●●

●●

●

●

●●

●

●
●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●
●

●
●●

●●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●
●
●●●
●

●

●

●
●

●

●

●

●
●

●●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●●●
●

●

●

● ●

●●
●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●
●

●

●

●●

●
●

●

●
●
●

●●

●●●

●
●
●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●●●

●
●

●●●
●

●
●
●

●

●●

●
●

●

●
●●
●

●

●

●
●●

●
●
●

●
●
●

●
●

●●●
●

●

●

●

●
●

●●●
●

●
●●

●
●

●

●

●

●
●

●●●
●●●

●

●
●

●●
●●●

●

●
●●●
●

●

●

●●
●●

●●
●

●
●
●
●●

●

●

●●
●●
●

●

●

●
●

●
●

●

●

●●
●●
●
●

●

●
●

●●
●●
●●●

●●

●

●

●
●

●●●

●
●

●

●

●
●

●●

●

●●

●

●

●

●
●

●●
●

●
●

●●

●
●●
●

●
●
●
●

●
●●●

●

●
●●
●●

●

●
●
●

●●

●●
●

●

●

●
●●●●
●●

●●

●
●
●
●

●●●●
●

●
●●
●●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●
●
●●●●●●
●
●●
●
●

●●

●●
●
●●

●●●
●

●

●

●

●●

●●

●

●

●●

●

●●

●●●
●●

●

●
●

●●
●

●

●
●

●

●
●
●

●

●
●●

●●

●●
●●

●●●
●●
●

●

●●

●
●

●

●

●
●

●●
●

●●●

●

●
●

●

●

●

●

●●
●
●●

●
●

●
●

●

●

●

●
●
●
●●●

●
●●

●●
●●●
●

●

●

●●
●

●
●

●●
●●

●●
●●

●

●●
●
●
●

●

●

●
●

●

●●
●

●
●
●
●

●

●
●●

●
●

●
●
●

●
●

●

●

●

●●●●

●

●●●
●

●

●
●●
●●●

●
●

●

●●

●

●
●

●

●●●

●
●

●
●
●
●●●●
●

●

●
●

●●
●

●

●

●
●
●

●●
●

●

●●
●●

●
●●
●
●

●

●●

●●

●

●●
●

●●
●●●

●●
●●

●

●

●
●

●

●

●●
●
●●
●●

●

●
●
●

●
●

●

uniform draws, log transformation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
● ●

●
● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●
● ●

● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●
●

●●

●

●

● ●

● ●
●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●●●

●
● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●●
●

●

●

●
●

●●●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●●

●

●●●

●

●

●
●

●

●●●
●

●
●

●

●

●●
●●

●

●

●

●
●
●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●
●●

●

●

●●●

●

●
●●●

●
●

●
●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●●●
●

●

●

●
●
●●

●

●

●
●●
●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●

●●

●

●
●

●●
●

●
●●

●

●

●

●

●●

●●●
●

●●

●

●
●●

●
●

●

●●
●

●

●

●●●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●●●

●

●●
●
●

●

●
●

●

●
●●

●

●

●
●
●

●
●

●●
●

●

●

●
●
●

●
●

●

●
●

●

●

●

●●

●●
●

●
●

●
●●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●
●●

●

●●

●

●
●

●

●

●
●●

●
●

●

●●●

●

●

●●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●●
●

●

●●●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●●●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●

●
●

●

●
●

●●

●

●

●

●
●

●●
●●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●
●●●●

●
●●

●

●●

●

●
●

●●
●

●
●

●
●

●

●
●
●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●
●

●●●●●
●

●
●
●●

●

●

●

●

●●

●

●

●
●

●

●
●

●●●

●
●

●

●●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●
●
●

●

●●

●

●

●●●
●●
●

●

●

●
●

●●

●

●●
●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●●

●
●

●
●

●●

●
●●

●

●

●

●

●
●

●
●

●
●●

●

●
●●

●

●

●

●●●●

●

●

●
●

●●
●
●
●
●●

●
●
●

●
●

●

●
●

●
●
●●

●●

●●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●●

●●
●●

●

●
●

●

●

●

●

●

●
●

●

●●
●●

●
●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●
●●●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●●

●
●

●●●

●

●
●
●●

●

●

●

●●

●
●●

●

●●

●

●
●

●●●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●●●●

●

●

●●●

●

●●●
●
●●

●

●
●●

●●

●
●●
●●

●
●

●

●●

●●
●●

●●
●●

●
●

●
●●

●
●●

●
●●

●
●●●●
●●
●

●●
●

●
●

●
●

●

●
●

●

●

●
●●
●

●●
●●
●●●●
●●●
●

●●

●
●●●●●

●●●●●

●●
●

●
●●
●

●

●
●●

●
●

●
●

●
●

●
●

●
●
●

●

●

●●●
●●

●●
●
●●●●●●●●●●

●●
●

●
●

●

●●

●
●

●
●

●

●●
●●●

●●
●

●●

●
●

●●
●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●●

●

●●
●

●●●
●

●
●●

●
●

●●●
●●●

●
●
●
●
●●
●

●●
●

●
●
●

●
●

●

●
●●●

●

●
●●

●
●

●

●●

●
●●
●●●
●●●

●
●

●
●

●●

●
●●
●●

●
●●●
●

●

●
●●●●

●

●

●●

●●
●
●●
●●

●●●
●●

●

●
●

●●●●
●●
●●

●

●●
●
●

●

●●
●

●
●
●●

●
●

●●

●
●
●

●

●●

●
●●

●
●
●
●
●

●

●●
●●
●●

●

●●

●

●

●

●

●

●●
●

●●●●●●

●
●
●

●
●

●

●
●

●●

●●
●

●

●

●

●

●
●●●

●

●
●
●

●●
●

●

●
●

●
●●

●
●
●●●●

●

●

●●

●
●
●

●

●●●●
●●

●

●●

●

●
●

●
●●

●
●●
●●
●●

●

●

●
●

●

●

●

●●●
●●

●

●
●
●●

●●●●●

●

●
●●●●

●

●

●●
●●●

●

●●

●
●
●
●●●

●
●

●

●

●

●●
●

●●
●●

●

●

●

●●

●
●
●
●●●●

●●

●
●

●

●

●
●●

●

log−normal draws, log transformation
Scatterplots of β (horizontal) versus γ (vertical) with true values (red crosses) at t =
0, 20, 40, 60 days using the KDPF with J = 10000 particles, systematic resampling, and
∆ = 0.99. The logit transformation (top row) on θ shifted and scaled to (0, 1) and log
transformation (second row and bottom row) were used before regenerating the fixed
parameters. To aid comparison, the same uniform draws of θ were sampled at t = 0 in
each of the first two rows. Log-normal prior draws were sampled in the bottom row.
For demonstration, each panel shows 500 particles sampled from the weighted sample
approximation to p(xt, θ|y1:t). Axes are the same in each panel. Dashed horizontal and
vertical lines indicate the bounds of the uniform priors on γ and β, respectively. The
upper bound on the uniform prior on β is not shown because it lies outside the range
of the horizontal axis.

73

could have chosen multinomial, residual, or stratified resampling. Randal et al.

(2005) explains each of these methods in detail and shows that 1) multinomial

resampling introduces more Monte Carlo variability than do residual or stratified

resampling, 2) residual and stratified resampling introduce the same amount of

Monte Carlo variability, on average, and 3) systematic resampling can introduce

more Monte Carlo variability than does multinomial resampling.

With this in mind, we turn to a comparison of different techniques for the

resampling step using the KDPF with log-normal priors on the fixed parameters

and ∆ = 0.99. To aid in comparison of the different resampling techniques, the

same prior draws were used in all particle filter runs for fixed J . We would like

to choose the resampling scheme for which the filtered distribution, p(xt, θ|y1:t),

approaches the true posterior the fastest as a function of the number of particles.

If the filtered distributions have converged to the true posterior, then 95% credible

intervals should cover the true parameter value about 95% of the time.

Using J = 100 particles (not shown), sequential 95% credible intervals over the

second half of the epidemic for each of β, γ, and ν cover the true parameter value

for less than half of the 40 simulated data sets, indicating that more particles

are needed to approximate the true posterior. Figure 4.4 shows that coverage

probabilities approach the nominal level for all four resampling techniques as J

increases. Multinomial resampling, however, appears to be outperformed by the

other three resampling techniques, as coverage for all three model parameters

74

using J = 1000 particles dips lower during the second half of the epidemic for

multinomial resampling than it does for any of the other three methods. This is

also true for β with J = 10000 particles. By increasing the number of particles to

J = 20000 (not shown), all four resampling methods yield coverage probabilities

for each parameter that remain within the 95% confidence bounds around the

nominal coverage level throughout the epidemic.

Although residual, stratified, and systematic resampling perform about the

same with this specific model, we prefer to use either residual or stratified re-

sampling because of an example shown in Randal et al. (2005) where systematic

resampling adds more Monte Carlo variability than any of the other three resam-

pling schemes.

4.6 Discount factor

We recommend, based on the results from Sections 4.3, 4.4, and 4.5, that

the KDPF with residual or stratified resampling and prior distributions bounded

only by the support of the parameters be used in preference to other choices

mentioned. With this implementation of the particle filter, the practitioner is still

left to choose a value for the discount factor, ∆. As mentioned in Section 3.2.3,

∆ is a tuning parameter that determines the smoothness of the kernel density

approximation to p(θ|y1:t) when implementing the KDPF. Choosing ∆ close to

0 results in a smoother approximation and more substantial jittering of particles

75

Figure 4.4: Comparing resampling schemes in the KDPF

●

●

●

●

●

●●●

●

●

●

●●●

●●●

●

●●●

●●●

●

●

●

●

●●

●●●

●

●●

●

●

●●

●

●●

●

●●

●●●

●

●●

●

●●

●

●●

●●

●

●●

●

●●

●

●

●●●●●

●

●

●●

●●

●●

●

●

●

●

●●●

●●●

●●●●●●●●●●●●●●●

●●●●

●

●

●●●

●

●●●●●●●●●●

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

β

J
=

 1
00

0

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●

●●●

●

●●

●●●

●●

●●●●

●●

●

●

●

●

●●●

●●●●

●

●●

●

●

●●

●●●

●

●

●●

●●●●

●

●

●

●

●●●●●●●

●

●●●●●●●●

●●●●●●●●●●●

●●●●

●●

●●●●●●

●●●●●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●●

●

●

●●●

●●●●

●●

●●●

●

●●

●

●●

●●●●●

●●●●●●●●●●●●●

●

●

●

●

●●●●●

●●●

●

●●

●●●●

●

●

●●

●●●●●●●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●

●●

●

●

●●

●

●●

●●●●●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●●●

●

●●●

●

●●●

●●

●●

●●

●

●●

●

●

●

●●

●

●●●

●●●●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●

Nominal level
multinomial
residual
stratified
systematic

●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●

●

●●

●●●●

●●

●●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●●●●

●●●●●

●●

●

●

●

●●●

●

●

●●●●●●

●●●●

●●●●●

●●

●

●●●

●●

●●●●

●●●●●●●●●

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

γ
●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●

●●●

●

●●●

●

●●●●

●●●●

●

●●●●

●

●

●

●●●●

●●●

●

●

●●●

●●●●

●●●

●●●●●●●●

●

●●●●●

●

●

●

●●

●●

●●

●●●●●●●●●●●●

●●

●●●

●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●●●●●●●

●●

●

●●●●

●

●

●

●

●●

●

●●

●

●●

●●●

●●●

●

●

●

●●

●●

●●

●

●

●●

●

●●●●

●

●●

●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●●●●●

●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●●

●

●●

●●

●●●●●●

●●●●●●●●●●●●●●●●

●●

●●

●

●

●●●●

●●

●●●●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●●●●●●●●●●●●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

ν

●●

●●

●

●●●●

●

●●●●●

●●●●●●●●●●

●

●

●

●●

●

●

●●●●●

●

●●●

●●

●●

●●

●●

●●●

●

●

●●●

●

●●●

●●

●●●

●●

●●●●●

●

●

●●

●●

●●●

●●●●

●

●●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●

●●●●●●

●●

●●●

●●●●

●●●

●

●●

●

●●●

●

●

●●

●

●●●

●●

●

●

●●●●

●●●●

●

●

●

●●●●●●

●●●●

●●

●●●

●●●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●●●

●●●●

●●●

●

●

●●●●●●●●●●●●●●●●

●

●●

●●

●

●

●●●●

●●●●●

●●●●●●●●●●●●●

●

●●

●

●

●●●●

●●●●●●

●●●●

●

●●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●●

●

●

●

●●●●

●

●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●

●

●●●

●●●

●●●

●

●●●

●

●●●

●●

●

●●●●

●

●●

●

●

●●●●

●

●

●

●

●●

●●●

●●●

●●●

●●

●●

●

●●

●●●●●

●

●

●

●

●

●

●●●●

●

●●

●●●●●

●●

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

J
=

 1
00

00

●

●

●●

●●

●

●

●●

●

●●●

●●●

●●

●●

●●●

●

●●●●●●●●

●

●●●●

●●●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●

●●●

●●

●●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●●

●●●●●

●●●

●●●●

●

●

●●

●●

●●●●●●●●●

●●●

●

●●

●●

●●

●●●

●●●●

●

●●

●●

●

●

●

●●

●●●

●●●

●●

●

●●●●

●

●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●●●

●●

●●●●

●

●●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●●●

●●

●●●●●

●

●●

●

●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●●

●

●

●●

●●

●

●

●

●●

●●●

●●●

●

●●

●●●●

●

●●●●●●●●

●●●●●

●●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●●

●●●●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●●●●

●

●●●

●

●

●●

●

●

●●

●

●●

●●

●●●

●●●

●

●

●

●●●

●

●●●

●

●●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●

●

●●

●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●

●●

●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●

●●●

●●

●

●●

●

●

●●●

●●●

●

●●●

●

●●●

●

●

●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●

●●

●●●●

●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●●●●●●●●●

●

●●●●●

●●●

●

●●

●●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●●●

●

●●

●●●

●●

●

●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●

●●●●●●●●

●

●●●●

●●

●●

●

●

●●

●●

●●●

●

●

●

●

●

●●●●

●●●●●

●●

●

●●

●

●

●●

●●

●●●

●

●

●●●●●●●

●●

●

●

●●

●●

●

●●

●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●●

●●●

●

●

●

●

●●●●●

●●

●

●

●●●●●●

●

●

●

●

●●●●●●●●

●●●●

●●

●●

●

●

●●

●●

●●●●●●●●

●●●●●●

●

●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●●●

●

●

●

●●

●●

●●

●

●●●

●

●

●●●

●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●●●●●●●●●●

●

●●

●

●●

●

●

●

●

●●●●●●●●●

●●●

●●

●

●●●●●

●

●

●

●●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●

●●●●●●

●●

●●●●●●

●●●●●●

●

●●

●

●

●

●

●●

●

●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●●

●●●

Proportion of the 40 simulated data sets for which 95% credible intervals for β (left), γ
(middle), and ν (right) cover the true value used for simulation for different t (x-axis)
and J (rows) using the KDPF with log-normal priors on θ and ∆ = 0.99. Solid gray
horizontal line denotes nominal coverage (95%) and dashed lines give 95% confidence
bounds around the true coverage.

76

while ∆ close to 1 leads to a choppier approximation and more subtle jittering of

particles.

To test the sensitivity of the KDPF to different values of ∆, we ran the KDPF

with log-normal priors and stratified resampling on each of the 40 simulated data

sets using different values of ∆ (0.9, 0.95, 0.96, 0.97, 0.98, and 0.99) and J (100,

1000, 10000, and 20000). We then calculated 95% credible intervals for each of

the unknown parameters. The results (not shown) indicate that lower values of ∆

lead to a higher proportion of 95% credible intervals covering the truth, but that

coverage probabilities for all values of ∆ are close to the nominal level for all t if

J ≥ 10000. We use ∆ = 0.99 because we seek an implementation of the KDPF

that works well when enough particles are used to provide a good approximation

to the true posterior. Liu and West (2001) recommends choosing a value between

0.95 and 0.99.

4.7 Comparison with MCMC

For a comparison with our KDPF results, MCMC analyses were run using

both the Gibbs sampling algorithm described in Section 3.1.1 and the PMCMC

approach of Andrieu et al. (2010) described in Section 3.5. The Gibbs sampler

for the standard MCMC was implemented by running three chains for 10,100,000

iterations each, and each with a burn-in period of 100000 iterations. The final

sample was thinned by taking every 1000th iteration. Chains were initialized by

77

drawing values for the fixed parameters from the prior p(θ). Initial values of the

states, x
(0)
0:T , were sampled by 1) drawing x

(0)
0 from p(x0), 2) drawing θ∗t from p(θ)

for t = 1, . . . , T , and 3) drawing x
(0)
t from p(xt|x(0)

t−1, θ
∗
t) for t = 1, . . . , T .

Initial values of the tuning parameters τβ, τγ, τν (i.e. the standard deviations of

the Gaussian random-walk proposal distributions for each fixed parameter) were

set to 0.01, 0.001, and 0.01, respectively. Initial values of τxt for t = 1, . . . , T

(the tuning parameters for the joint draws of the epidemic states st and it), were

set to 0.001 for all t. These tuning parameters were adjusted during the burn-in

period, as described in Section 3.1.1, by multiplying by 1.1 if a proposed sample

was accepted and dividing by 1.1 if a proposed sample was rejected. As detailed

in the Gibbs sampler described in Section 3.1.1, proposed values for xt = (st, it)
′

were jointly accepted or rejected depending on the value of the Metropolis ratio,

while proposed values for each of β, γ, and ν were accepted or rejected marginally

depending on the values of their respective Metropolis ratios.

A PMCMC algorithm was implemented, as described in Section 3.5, using the

pmcmc function within the R package pomp (King et al.; 2014). Samples from the

posterior distribution of the fixed parameters were generated conditional on the

first T observations from the simulated data set pictured in Figure 4.1 for T =

5, 10, 15, . . . , 125. For each T , three chains consisting of 30000 PMCMC iterations

were generated and 95% credible intervals were calculated based on each chain.

PMCMC chains were initialized at the true values of the fixed parameters used

78

for simulating the data. Tuning parameters representing the standard deviations

of the random-walk proposal distributions of β, γ, and ν were set to 0.005, 0.001,

and 0.01, respectively. These values were chosen because they allowed the chains

to mix well within reasonable computing time, but it is possible that different

values could provide better mixing and hence improved estimates of the fixed

parameters within the same computing time. For more information on PMCMC

and using functions within the pomp package, we refer the reader to Andrieu et

al. (2010) and King et al. (2014).

Figure 4.5 compares the efficiency of the standard MCMC and PMCMC algo-

rithms run on the entire data set (T = 125) using traceplots and effective sample

size calculations for the fixed parameters. Traceplots of multiple chains for each

parameter show how well the chains mixed and can indicate whether the entire

sample space of the posterior was adequately explored. Effective sample size

(ESS), which we calculate using R package coda, gives an estimate of the number

of independent MCMC samples by adjusting for the autocorrelation present in

the total sample (Plummer; 2005). Despite being run for over 10 million itera-

tions (which took about two weeks), the extremely low values of ESS and poor

mixing of the chains, particularly for γ and ν, for the standard MCMC on the left

of Figure 4.5, relative to PMCMC on the right, suggest that PMCMC is much

better suited for analyzing data from this particular epidemic model.

79

Figure 4.5: Traceplots comparing the MCMC versus PMCMC

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
23

2
0.

23
8

β

ESS: 162.17
MCMC

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
12

2
0.

12
6

0.
13

0

γ

ESS: 19.12

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

1.
05

1.
15

Iteration

ν

ESS: 7.74

0 5000 10000 15000 20000 25000 30000

0.
23

2
0.

23
6

0.
24

0

β

ESS: 2729.82
PMCMC

0 5000 10000 15000 20000 25000 30000

0.
12

0
0.

12
6

0.
13

2

γ

ESS: 129.8

0 5000 10000 15000 20000 25000 30000

1.
00

1.
10

1.
20

Iteration

ν

ESS: 87.38

Traceplots and effective sample sizes of three different MCMC chains of 10,000,000
iterations each for the standard MCMC (left) and 30000 iterations each for the PMCMC
(right). Both MCMC algorithms analyze data for the entire epidemic period (T = 125).
Only every 1000th iteration is plotted for the MCMC on the left.

Figure 4.6 compares the performance of the KDPF with PMCMC in terms of

marginal 95% credible intervals for the fixed parameters. The intervals obtained

from PMCMC samples for each chain at each T are compared with those pro-

duced by 20 separate runs of the KDPF on the same data set. The KDPF was

run using 20000 particles, log-normal priors on the components of θ, stratified

resampling, and ∆ = 0.99. Multiple runs of the KDPF and PMCMC on the

same data allow us to assess the uncertainty in the 95% credible intervals for the

filtered distributions at each T . For instance, the high variance of the interval

estimates for ν in the rightmost panel of the figure demonstrates the challenge

in estimating this parameter. The performance of the KDPF compares well with

PMCMC in this study, as the bounds of the 95% credible intervals obtained from

80

Figure 4.6: Comparing the KDPF versus PMCMC

0 20 40 60 80 100 120

0.
15

0.
20

0.
25

0.
30

0.
35

β

Time

P
ar

am
et

er
 V

al
ue

● ●

● ●
● ●

● ● ●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

KDPF
PMCMC

●

●

●

● ● ●
● ● ●

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

KDPF
PMCMC●

●

●
● ● ● ● ● ●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●
●

● ●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

KDPF
PMCMC

0 20 40 60 80 100 1200.
08

0.
10

0.
12

0.
14

γ

●

●
● ●

●
●

● ●
●

●
●

●
●

● ●
●

●
● ●

●

●

● ● ● ●

●

●

●

●

●
●

● ●

●

●

●

●
● ● ●

●
● ● ● ● ● ● ● ●

●

● ●

●

●

● ●

● ●
●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●
● ●

●
●

● ● ● ● ● ●

● ●
●

●

●

● ●

●

●

●

●

● ●

●

● ●

● ● ●
● ● ●

● ● ●

●

●
●

●

●
●

●

●
●

●

● ●

●

● ●

● ● ● ● ●
● ●

● ● ●

0 20 40 60 80 100 120

0.
9

1.
0

1.
1

1.
2

1.
3

ν

● ●
●

●
●

●

●

●
● ●

●

●
● ● ●

●

●
●

● ●
● ●

●
●

●

● ●

● ● ● ●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

● ● ●

●

●
●

● ● ●

●

● ● ●

●
● ●

●

●

● ●
●

●

●

●
● ● ● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
● ● ●

● ●
● ● ●

● ●
● ● ●

● ●

●

●

● ●
●

●

●
●

● ●

● ●
●

●
●

● ●
●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
● ●

Sequential 95% credible intervals for β (left), γ (middle), and ν (right) obtained from 20
different runs of the KDPF (green lines) using J = 20000 particles, log-normal priors,
stratified resampling, and ∆ = 0.99 compared with 95% credible intervals obtained from
3 different PMCMC chains (black circles) run for 30000 iterations on data collected up
until day T for T = 5, 10, . . . , 125. All KDPF and PMCMC runs used observations
taken from the same simulated data set pictured in Figure 4.1.

the PMCMC chains over the course of the epidemic are more variable than the

bounds obtained from the separate KDPF runs, particularly for γ prior to day

T = 30. Furthermore, a single PMCMC chain run on the full data set (i.e. for

T = 125) took 8-9 hours to complete while the KDPF with J = 20000 particles

provided results for all time points in about 15 minutes in our study. Section

4.9 provides further discussion of different scenarios where either PMCMC or the

KDPF might be preferred.

4.8 Additional Unknown Parameters

Within SMC approaches, an advantage of using a more computationally effi-

cient algorithm is to allow reduced model assumptions. We therefore turn our fo-

81

cus to extending the analysis using the KDPF to include {bl, ςl, σl, ηl : l ∈ 1, . . . , L}

as unknown parameters, thereby increasing the number of unknown parame-

ters beyond those considered by Skvortsov and Ristic (2012) using the BF. For

this section, we consider data coming from only one stream (L = 1) and let

θ = (β, γ, ν, b, ς, σ, η)′, dropping the subscript l. Keeping the same simulated evo-

lution of the true epidemic as shown in the left panel of Figure 4.1, a single stream

of syndromic observations, yt for t = 1, . . . , T , was simulated from equation (2.6)

with true values of b, ς, σ, and η set to 0.258, 1.028, 0.000737 and 2.346, respec-

tively. Days at which data were observed from the single stream were randomly

selected.

The KDPF with tuning parameter ∆ set to 0.99 was run with J = 60000

particles and stratified resampling was used with an effective sample size threshold

of 0.8J . As before, fixed parameter values were regenerated only when resampling

was performed. Initial particles for states and parameters were sampled from their

prior with p(x0)p(θ) = p(i0, s0)p(β, γ)p(ν)p(b)p(ς)p(σ)p(η). The prior for the state

and log-normal priors for R0, γ, and ν are the same as those defined in Section

82

4.2. The priors for b, ς, σ, and η are

b ∼ LN(−1.6090, 0.35362) (4.3)

ς ∼ LN(−0.0114, 0.07712)

σ ∼ LN(−7.0516, 0.28032)

η ∼ N(2.5, 1)

independently. The choice of prior mean and standard deviation on the log scale

were made such that random draws of b, ς, and σ on the original scale would be

within (0.1, 0.4), (0.85, 1.15), and (0.0005, 0.0015), respectively, with 95% proba-

bility. To assess the loss in precision of our estimates due to incorporating ad-

ditional unknown parameters into our analysis, we compared with results from

running the KDPF using 60000 particles with b, ς, σ, and η assumed known at

their true values used for simulating the data (we refer to the run with b, ς, σ,

and η assumed known as the initial analysis).

Figure 4.7 shows sequential 95% credible intervals for both the extended (blue

lines) and the initial (red lines) analyses. Most noticeable from Figure 4.7 is that

the intervals for β, γ, ν, st, and it are wider for the extended analysis than they

are for the initial. This is due to the added uncertainty in b, ς, σ, and η in the

extended analysis. Nonetheless, we are still able to obtain credible intervals for

the unknown parameters that cover the true values for this simulated data set, as

well as intervals for the states that cover the true epidemic curves, using a higher

83

number of particles (J = 60000) than was used in the initial KDPF analysis in

prior sections.

In Figure 4.7, the lines appear choppy or block-like. This results from data

coming from only one stream, leading to more time points where no data are

available and making the analysis more sensitive to abnormal data. Gaps in the

data lead to a lack of resampling of particles and cause more drastic shifts in the

filtered distribution once data arrive. For instance, we notice a spike in the st

curve right after t = 40 because of a gap in the data and a shift in the trajectory

of data points near the epidemic peak.

Lastly, we comment on a widening of the credible intervals for ν. This phe-

nomenon suggests that the log-normal priors used on ν are too restrictive, and

that our model provides even less insight about this parameter than our prior

belief. Scarce knowledge about ν is gained over the course of the epidemic in the

initial analysis due to the nonlinear nature of the evolution equation with respect

to ν, and we in fact lose information about ν in the extended analysis relative to

our specified prior. While the extended analysis could be rerun with a different

prior, we present this specific analysis to illustrate the sensitivity of the filtered

distribution of ν to assumptions about other parameters. The improved efficiency

of the KDPF provides insight into this sensitivity (within reasonable computing

time) in the absence of assumptions that were made about fixed parameters in

84

the observation equation in both our initial analysis and in the prior BF analysis

by Skvortsov and Ristic (2012).

4.9 Discussion

Presented in this chapter is a strategy for simultaneous estimation of the cur-

rent outbreak state and fixed parameters related to disease transmission using

syndromic data. We describe a stochastic epidemiological compartment model of

a disease outbreak for data from syndromic surveillance that could possibly be

multivariate and have any pattern of missingness. We suggest the use of the kernel

density particle filter (Liu and West; 2001) using priors on fixed parameters that

are bounded only by their support. We suggest the use of stratified or residual

resampling when effective sample size has dropped markedly and that regenera-

tion of fixed parameter values should only occur when resampling is performed.

We showed how this approach is capable of estimating a model with additional

unknown fixed parameters.

Advanced techniques exist that are better than the KDPF at fighting particle

degeneracy, but require more practitioner input. For example, particle degeneracy

could be combated within an SMC algorithm by incorporating a MCMC step

to refresh fixed parameter values (Gilks and Berzuini; 2001; Storvik; 2002), e.g.

the resample-move algorithm described in Section 3.2.4. However, this would

require the practitioner to define an MCMC algorithm in addition to the SMC

85

Figure 4.7: Analyzing epidemic model with additional unknown parameters

0 20 40 60 80 100 1200.
15

0.
20

0.
25

0.
30

0.
35

β

J
=

 6
00

00

Truth
Initial
Extended

0 20 40 60 80 100 120

0.
09

0.
11

0.
13

γ

0 20 40 60 80 100 1200.
9

1.
0

1.
1

1.
2

1.
3

ν

0 20 40 60 80 100 120

0.
1

0.
2

0.
3

0.
4

b

0 20 40 60 80 100 1200.
80

0.
90

1.
00

1.
10

ς

0 20 40 60 80 100 1200.
00

04
0.

00
08

0.
00

12

σ

0 20 40 60 80 100 120

2.
34

3
2.

34
5

2.
34

7

η

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

Time (days)

||| | | | || | | |||| || |||| ||| || ||||||||||||||| |||||||| |||| | | | | | | |
| | || | | | || | | | | | | | || || | | | | | | |

| || | | || ||| | | |||| || | || || | | | ||||||||||| |||| ||||| | | ||| | || ||| | ||||||| | | |||| ||

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i

Sequential 95% credible intervals for the states and fixed parameters from the original
(red) and extended (blue) analyses where the KDPF with J = 60000 particles was run
with stratified resampling and ∆ = 0.99. Tick marks are shown along the bottom of
the plot for st at time points when data were observed (dark gray) and when particles
were resampled (blue and red for the extended and original analyses, respectively).

86

algorithm. In addition to this requirement, the algorithm would no longer be truly

sequential as the computational effort would increase with time. Alternatively, if

the practitioner is willing to modify their model, they can take advantage of a

sufficient statistic structure (Fearnhead; 2002), Rao-Blackwellization (Doucet et

al.; 2000), or both (Carvalho et al.; 2010), as in in the particle learning algorithm

described in Section 3.2.5. Possible modifications to the model in Section 2.2.1 to

allow alternative strategies include setting ν = 1, removing fixed parameters from

Q, and eliminating the truncation in equation (2.2).

The KDPF provides a sequential inferential strategy that is easy to imple-

ment, applies to a very broad class of models, and reduces particle degeneracy

when applied to models with unknown fixed parameters. However, along with

its methodological strengths, the algorithm has weaknesses that are reflective of

all SMC methods in general. For instance, SMC methods do not perform well in

high-dimensional parameter space. In addition, while particle filters perform well

when run over fixed-length time intervals, they eventually degenerate if run over

long periods of time due to the accumulation of approximation errors. Lastly, as

mentioned in Section 4.2, all SMC methods suffer from degeneracy if vague priors

are used. A common solution to this problem is to first run an MCMC based on

the first few data points to find a reasonable particle cloud from which to draw

prior samples (Chap 5, Petris et al.; 2009).

87

In high-dimensional settings, PMCMC methods provide better estimates of

unknown states and fixed parameters by using SMC methods to construct effi-

cient proposal distributions for a joint sample of all dynamic states (Andrieu et

al.; 2010). Since it is likely that more complicated models than what we presented

in this thesis may be required for monitoring disease outbreaks in real-life situ-

ations (Shaman and Karspeck; 2012; Bhadra et al.; 2011), PMCMC may offer a

better solution in certain situations such as when xt and θ are high-dimensional.

However, PMCMC is a non-sequential method and only valuable for on-line anal-

ysis provided the computation time required is not too burdensome. A sequential

analysis could be more valuable for processing data collected at shorter time in-

tervals when an immediate decision regarding an intervention policy is needed

(Merl et al.; 2009a; Ludkovski and Niemi; 2010; Dukic et al.; 2012). In addition,

efficient comparison of competing models for an epidemic outbreak (Bhadra et

al.; 2011) could be made more feasible by running an SMC algorithm that could

assess the fit of the data to multiple models more quickly. SMC methods can also

provide an approximation to the marginal likelihood of the data if formal model

comparison or model averaging is desired (Doucet and Johansen; 2009; Zhou et

al.; 2013). We believe both the KDPF and PMCMC are valuable tools available

to the practitioner.

In this chapter, we outline a strategy for real time tracking of a disease epi-

demic using data from syndromic surveillance, but this strategy can be applied

88

to many other fields requiring on-line data analysis. We present improved parti-

cle filtering methods in general within the framework of sequential estimation of

states and unknown fixed parameters in state-space models to inspire future work

in epidemiological modeling and other scientific areas as well.

89

Chapter 5

Simulation study: SMC model

comparison of local level DLMs

In Chapter 4, we illustrated the improved performance of the KDPF over the

BF and APF within the context of tracking an epidemic using a model that con-

tains unknown fixed parameters. In this chapter, we compare the KDPF with

more advanced strategies, specifically the RM and PL. In particular, we focus on

how efficiently these algorithms perform in terms of estimating the marginal like-

lihood and comparing possible data-generating models. To evaluate the relative

performance of the particle filters, we simulate data from the local level DLM

with common observation and state variance factor described in Section 2.3.1,

since this model leads to an analytically tractable form of the marginal likelihood

of the data.

90

This short chapter consists of three sections. Section 5.1 describes the simu-

lated data set, as well as estimation of states and the unknown common precision

factor (i.e. the inverse of the unknown common variance factor) using analytical

forms of their respective marginal filtered distributions. Section 5.2 describes es-

timation of states and the unknown common precision factor using the KDPF,

RM, and PL. Finally, in Section 5.3, we compare the efficiency of the KPDF, RM,

and PL when estimating the marginal likelihood of the data as well as relative

posterior probabilities among these local level DLMs with varying signal-to-noise

ratios in equations (2.10) and (2.11).

5.1 Simulated data and analytical forms for es-

timation

Consider the local level DLM with unknown common state and observation

variance factor, θ, and known signal-to-noise ratio, λ, given by equations (2.10)

and (2.11), namely

yt ∼ N(xt, θ)

xt ∼ N(xt−1, θλ).

A time series of length T = 100 was simulated from this model with true θ = λ = 1.

The data, yt, and true unobserved states xt, for t = 1, . . . , T , are shown by black

dots and lines, respectively, in the left panel of Figure 5.1.

91

Figure 5.1: Simulated data and analytical estimates for local level DLM

0 20 40 60 80 100

−
5

0
5

95% C.I. for filtered states

t

x t

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●
●●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

xt

yt

95% CI
95% PI

0 20 40 60 80 100

0
1

2
3

95% C.I. for filtered precision

t

1
θ

95% CI
Truth

True observed data (black dots) and unobserved states (black lines) for data simulated
from the local level DLM from equations (2.10) and (2.11) with θ = λ = 1, along with
marginal 95% credible intervals (red lines) for the states (left) and precision (right), as
well as 95% one-step ahead prediction intervals (blue lines) for the data (left).

We assume the prior distribution p(x0, θ) from equation (2.12) with a0 = b0 =

1. The red and blue lines in the left panel of Figure 5.1 show 95% credible

intervals, at each time t, for the marginal filtered distribution of xt, p(xt|y1:t),

and the one-step ahead predictive distribution for yt, p(yt|y1:t−1), respectively.

We can obtain these intervals without need for running a particle filter because

these distributions can be calculated analytically according to equations (2.33)

and (2.34). Similarly, we can calculate sequential 95% credible intervals for the

unknown common state and observation precision factor, 1/θ, using the analytical

form of the marginal filtered distribution p(1/θ|y1:t), which is known to be a

gamma with shape at and rate bt (CI’s displayed in right panel of Figure 5.1).

92

These shapes and rates are calculated recursively according to equation (2.32).

We estimate the common precision factor instead of the common variance factor

because quantiles of the gamma distribution are easier to obtain than quantiles

of the inverse-gamma distribution.

In practice, particle filters are not needed to analyze data from this model since

analytical forms for the filtered distributions of states and unknown parameter are

available. However, this model is carefully chosen since it is this availability of

analytical distributions (which we refer to as the “true posterior” or “true filtered

distribution”) that provides an exact benchmark for assessing the performance of

the KDPF, RM, and PL in the remainder of this chapter. Specifically, we search

for the algorithm which yields the best approximation to the true posterior for a

fixed number of particles.

5.2 Estimation using particle filters

The KDPF, RM, and PL were each run twenty times on the simulated data

set using J = 100, 500, 1000, and 5000 particles. For each particle filter run,

the data were assumed to be generated from the local level DLM described by

equations (2.10) and (2.11) with λ = 1 (i.e. the true model from which the data

were simulated). Resampling was performed in each algorithm at time points

where the effective sample size dropped below 0.8J (this is the same resampling

threshold used in Chapter 4). For the KDPF, the discount factor ∆ was set to

93

0.99, and the RM and PL were implemented as described in Sections 3.2.4 and

3.2.5. Each algorithm was run assuming a prior of the form given in (2.12) with

a0 = b0 = 1.

Sequential 95% credible intervals for the marginal filtered distributions of xt

and 1/θ for each J are displayed in Figure 5.2. Compared with the 95% cred-

ible intervals of the true filtered distribution of the states, all algorithms seem

to perform well, yielding credible intervals in line with the truth for J > 100.

The KDPF, however, is outperformed by the other two algorithms, with credible

intervals for the filtered precision that are inaccurate for J < 1000 and exhibit

wide variability around the true upper bounds of the intervals for J >= 1000.

The RM and PL both perform well, yielding sequential 95% credible intervals

for both xt and 1/θ near those for their respective true filtered distributions for

J = 100. By J = 5000 the true and estimated bounds for both xt and 1/θ become

almost indistinguishable from one another using either algorithm. Looking at the

filtered precision for J = 100, however, credible intervals generated by the RM

within a single particle filter run appear to exhibit more variability than those

generated within a single run of the PL algorithm.

94

5.3 Comparing models with varying signal-to-

noise ratios

We now discuss estimation of the marginal likelihood of the simulated data

and calculating posterior model probabilities. Recall that, given the density of the

one-step ahead predictions, the marginal likelihood can be calculated by equation

(2.35). Since the distribution of the one-step ahead predictions, p(yt|y1:t−1) for all

t, is known for a local level DLM with common observation and state variance

factor, the marginal likelihood p(y1:T) can be calculated analytically. For com-

putational stability, we calculate the log marginal likelihood, log p(y1:T), when

comparing different models.

The true signal-to-noise ratio λ for our simulated data is 1. However, we

can consider the marginal likelihood of the data under models with a different

λ. Figure 5.3 displays the true log marginal likelihood of the data when different

values of λ are assumed. Notice that, starting at λ = 0, there is a sharp increase

in log p(y1:T) to maximum value as we approach the true λ of 1, with a gradual

decrease in log p(y1:T) for λ > 1.

We ran each particle filter twenty more times for each of J = 100, 500, 1000,

and 5000 under the local level DLM described by equations (2.10) and (2.11)

with λ assumed to be 0.5. We then repeated these runs for λ = 2. We consider

these two values of λ because, as seen from Figure 5.3, these two values of λ

95

yield log marginal likelihoods that are lower than the true value but fairly close

to one another. Figure 5.4 shows kernel density approximations to the empirical

distributions of the twenty log marginal likelihood estimates, log p(y1:T), generated

using each particle filter for each J and λ. For λ = 1 and 2, the PL appears to

provide a better estimate of log p(y1:T) the fastest as a function J , as indicated by

more concentrated densities around the truth relative to the RM and KDPF. For

J > 100 and λ = 0.5, the RM is competitive with PL, while the KDPF appears

to be outperformed in all scenarios.

Lastly, we can consider posterior model probabilities among the set of models

that assume λ = 0.5, 1, and 2. We assume the prior probability of each model

is 1/3, and calculate posterior model probabilities according to equation (3.37)

with N = 3 and M1, M2, and M3 representing models with λ = 0.5, 1, and 2,

respectively. Given a single estimate of the log marginal likelihood of the data

under each of M1, M2, and M3, a set of posterior probabilities among the three

models can be calculated according to equation (3.37). Thus, for each of the

KDPF, RM, and PL, we generate twenty such sets. We also calculate the set

of true posterior probabilities among the three models by plugging in the true

marginal likelihood of the data under each model into equation (3.37).

Figure 5.5 summarizes these calculations using compositional plots, where each

corner of the ternary diagrams represents one of the three possible models. Each

point in a diagram represents a set of three posterior probabilities, one for each

96

model, estimated by a specific particle filtering algorithm using J particles. The

PL appears to perform the best, as the clustering of red points hones in around

the point representing the true posterior probabilities the fastest with increasing

J . The KDPF, again, is outperformed, needing at least 5000 particles to even

start to cluster around the true posterior.

In this chapter, we’ve compared the relative performance of the KDPF, RM,

and PL for comparing local level DLMs with common state and observation vari-

ance factor and different signal-to-noise ratios. The superior performance of PL

relative to the RM is convenient from the practitioner’s perspective, since this

algorithm is easier to implement than the RM, which requires the specification

of an MCMC algorithm in addition to the SMC. However, PL can only be used

for specific models where the the distributions p(yt+1|xt, θ), p(xt+1|yt, xt, θ), and

p(θ|y1:t, x0:t) are analytically tractable. The dynamic regression models described

in Sections 2.3.3 and 2.3.3 emit analytical tractable forms of these distributions,

and so we use PL for comparing these models in Chapter 6.

97

Figure 5.2: Comparing sequential credible intervals for KDPF, RM, and PL

0 20 40 60 80 100

−
8

−
6

−
4

−
2

0
2

4
6

95% CI for Filtered States

t

J
=

 1
00

x t

t
0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

95% CI for Filtered Precision

1
θ

pl
kd
rm
True Post
True Sim

J
=

 5
00

J
=

 1
00

0
J

=
 5

00
0

Sequential 95% credible intervals for the marginal filtered distribution of the states (left)
and precision (right) for increasing number of particles J (rows) for the KDPF (green
lines), RM (blue lines), and PL (red lines) compared with true simulated values (gray
lines) and sequential 95% credible intervals obtained from the true filtered distributions
(black lines). All axes within columns are on the same scale.

98

Figure 5.3: Log marginal likelihood versus λ

0 2 4 6 8 10

−
20

2
−

20
0

−
19

8
−

19
6

−
19

4
log(p(y1:T)) vs λ

λ

lo
g(

p(
y 1

:T
))

0.5 1 2

Solid black curve shows true log marginal likelihood (y-axis) of data simulated from the
local level DLM described by equations (2.10) and (2.11) with θ = λ = 1, calculated
for increasing assumed values of the signal-to-noise ratio λ (x-axis). Height of the
solid curve when intersecting with the solid vertical line denotes the true log marginal
likelihood under the model with λ = 1, and the height of the solid curve at intersection
with each of the dashed vertical lines represent the true log marginal likelihood under
each of λ = 0.5 and λ = 2.

99

Figure 5.4: Comparing estimated log marginal likelihoods for KDPF, RM, and PL

−200 −198 −196 −194 −192 −190

0
1

2
3

4
5

λ = 0.5

log(p(y1:T))

J
=

 1
00

D
en

si
ty

−194.18
pl
kd
rm
Truth
Truth (others)

λ = 1
−193.43

λ = 2
−194.43

J
=

 5
00

−194.18 −193.43 −194.43

J
=

 1
00

0

−194.18 −193.43 −194.43

J
=

 5
00

0

−194.18 −193.43 −194.43

Kernel density estimates of the distribution of twenty estimates of the log marginal
likelihood of data simulated from the local level DLM described by equations (2.10)
and (2.11) with θ = λ = 1, obtained by running each of the KDPF (green lines),
RM (blue lines), and PL (red lines) under different values of the signal-to-noise ratio
λ (columns) for increasing number of particles J (rows), compared with the true log
marginal likelihood (solid black lines with values at top). Dashed black vertical lines
correspond to the true log marginal likelihood under models with λ equal to values from
the other columns. Axes for all plot panels are on the same scale.

100

Figure 5.5: Comparing posterior model probabilities for KDPF, RM, and PL

λ = 0.5 λ = 1

λ = 2

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

● ●●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●●

●

●
●

●

●

●

●

●

100 particles
●

●

●

●

pl
kd
rm
True Posterior

λ = 0.5 λ = 1

λ = 2

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

500 particles

λ = 0.5 λ = 1

λ = 2

●●
●

●
●

●●

●

●

●

●●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

1000 particles

λ = 0.5 λ = 1

λ = 2

●●● ●● ●● ●●
●

●

●

●

●

● ●

●
● ●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●●
●
●●

●
●●

●
● ●

●
●●

●

●
●

5000 particles

Estimated posterior model probabilities among local level DLMs with common state
and observation variance factor and three different signal-to-noise ratios λ (corners of
triangles) for twenty runs of each of the KDPF (green dots), RM (blue dots), and PL
(red dots) using increasing number of particles J (plot panels) on data simulated from
the local level DLM described by equations (2.10) and (2.11) with θ = λ = 1. Each point
represents a set of posterior model probabilities (one for each λ), and the proximity of
each point to a particular corner of the triangle represents the posterior probability of
the model in that corner relative to the other models. The set of true posterior model
probabilities is represented by the gray dot (the same for all panels).

101

Chapter 6

Statistical analysis of fMRI data

In this chapter, we use models and tools described in Chapters 2 and 3 to

analyze time series data collected from an fMRI experiment. We describe the most

common method of statistical analysis used in the field, i.e. the correlation-based

general linear model (GLM) approach (Friston et al.; 1991, 1995b), and discuss

challenges associated with analyzing fMRI data using this method. Autocorrelated

time series invalidate results obtained using the standard GLM, which assumes

independence of the error terms in the model. We explore variations of the GLM to

account for this autocorrelation and show via simulation the negative consequences

of using the standard GLM to analyze autocorrelated data.

We then use the dynamic regression models described in Section 2.3.3, with

maximum likelihood estimation, to describe variation in fMRI data collected from

a word recognition experiment. We propose a strategy to compare different dy-

102

namic regression models using PL. Using simulated data, we evaluate our ability

to identify true model parameters via maximum likelihood estimation. Then, we

use PL to examine conditions under which we can correctly identify a true data-

generating model amongst several candidate models. Finally, we analyze real

fMRI data using PL and discuss the appropriateness of the dynamic slope model

for this data and as a tool for future fMRI studies.

In Section 6.1, we provide an overview of fMRI, standard estimation of fMRI

time series, and the experimental data set. This material is mainly taken from

Ashby (2011). In Section 6.2, we compare several techniques for estimating param-

eters in fMRI time series models and explore their impact on fitted model residuals

as well as false positive/true positive rates of concluding significant brain activa-

tion. In Section 6.3, we investigate our ability to identify true values of model

parameters in the dynamic regression models described in Section 2.3.3, and we

fit real fMRI data using these models by maximum likelihood. Finally, in Section

6.4, we use simulated data to examine the ability to compare these dynamic re-

gression models against each other using PL, and we discuss results from applying

PL under these models to real fMRI data.

6.1 Overview of fMRI

Functional MRI provides an indirect measure of neural activation in the brain

in near real time. Most fMRI experiments measure the blood oxygen level-dependent

103

(BOLD) signal, or ratio of oxygenated to deoxygenated hemoglobin in the blood.

Evidence suggests that a type of neural activity called the local field potential is

closely related to the BOLD signal recorded in an fMRI experiment (Logothetis;

2003; Logothetis et al.; 2001). By providing a noninvasive way to study functional

changes in the brain over time, fMRI has allowed researchers to study topics that

had previously seemed impossible to give a detailed scientific investigation, such

as the nature of consciousness (Lloyd; 2002), meditation (Cahn and Polich; 2006),

and moral judgement (Greene et al.; 2001).

6.1.1 The haemodynamic response

The BOLD response to a neural impulse is characterized by an increase in

the BOLD signal from a baseline level to its peak at around 6 seconds post-

stimulus, followed by a gradual decay back to baseline over the next 20-25 seconds.

This typical BOLD response to an impulse as a function of time is referred to as

the haemodynamic response function (hrf), and knowledge about this function is

crucial for effectively analyzing data from fMRI experiments. Although studies

have shown that the hrf varies from person to person based on factors such as age

(Richter and Richter; 2003), most analyses assume a known form of the hrf for

all subjects. A commonly used hrf that is thought to represent an average BOLD

response for a typical subject is defined by the SPM software package for analysis

of fMRI data (http://www.fil.ion.ucl.ac.uk/spm/doc/). This hrf is known as the

104

canonical hrf (see bottom panel of Figure 6.1). Another commonly used hrf is the

gamma function proposed by Boynton et al. (1996), given by

h(s) =
(s/τ)n−1e−s/τ

τ(n− 1)!
, (6.1)

where s is time in seconds and τ and n are free parameters that determine the

shape of the hrf. We use the canonical hrf for analyzing data from a word recog-

nition experiment in Sections 6.2.1, 6.3.2, and 6.4.5, and we use the gamma hrf

for simulating fMRI data in Sections 6.2.2, 6.2.3, 6.3.1, 6.4.1, 6.4.2, and 6.4.3.

6.1.2 The scanning session

An fMRI scanning session consists of one or more runs in which a human

subject is presented with a simple task designed to stimulate the brain while

scans are taken every few seconds. Runs can typically last anywhere between

10 and 30 minutes, and the repetition time (TR), or length between individual

scans, can be anywhere between 1 and 3 seconds. Each scan within a TR involves

creating cross-sectional images, or slices, across the whole brain. Although TRs

less than one second are possible on some machines, decreasing the TR length

often comes at the cost of sacrificing spatial resolution of the images resulting

from each scan.

Each whole brain image consists of a three-dimensional array of volumetric

pixels, or voxels, and each voxel contains a value of the BOLD response for a

small area of the brain. Voxel size and TR must be determined prior to run-

105

ning an experiment based on desired spatial and temporal resolution of the data.

An average experiment might involve three 10-minute scanning runs with a TR

of 2 seconds. An average scan might consist of 36 slices, where each slice con-

sists of a 64 by 64 array of 3 mm3 voxels. In this average scenario, each image

would be made up of 147,456 voxels, and data from the entire scanning session

would contain 132,710,400 BOLD values. Combining this with the fact that many

studies involve multi-subject experiments, the sheer sizes of fMRI data sets pose

significant challenges for data analysis.

In addition to choosing scanning parameters such as voxel size and TR, de-

signing an fMRI experiment also involves deciding how the experimental stimulus

is presented to the subject in the scanner. Three experimental designs frequently

used in fMRI are block designs, slow event-related designs, and rapid event-related

designs. Block designs divide functional runs into blocks of continuous activity

and continuous rest, usually lasting anywhere from 30 seconds to a couple of min-

utes. During the activation blocks, subjects are instructed to perform the same

task continuously over the entire block. In event-related designs, the stimulus

onsets (i.e., TRs at which an experimental stimulus is presented to the subject)

are chosen randomly, with the time between onsets, or delay, usually somewhere

between 2 and 16 seconds. Slow event-related designs include rest periods that

last around 30 seconds, while rapid event-related designs use shorter rest periods.

106

The long rest periods included in block and slow event-related designs are

meant to allow the BOLD response to decay back to baseline before the next

stimulus presentation. This helps increase the power of statistical tests designed

to identify neural activation or distinguish between event types. However, these

designs result in longer experiments which are more expensive and incur a greater

risk of having the subject’s mind wander during rest periods and generate non-

task related BOLD signal. Rapid event-related designs have become more popular

with the development of statistical methods such as the GLM approach that make

analysis of data collected from these experiments possible.

This section is intended to provide a quick overview of fMRI for the purpose

of giving context to the analyses discussed in the rest of this chapter. For more

information on fMRI and designing fMRI experiments, we refer the reader to

Ashby (2011); Poldrack et al. (2011).

6.1.3 The correlation-based GLM approach

The standard correlation-based GLM analysis of fMRI data models the ob-

served fMRI data in a single voxel of the brain as a linear function of the expected

BOLD response from a voxel responding to the experimental stimulus, i.e.

yt = β0 + β1convt + εt, (6.2)

where yt is the observed fMRI signal at TR t, convt is the expected BOLD response

at TR t in an active voxel, β = (β0, β1)′ are unknown fixed regression coefficients,

107

and εt
iid∼ N(0, σ2) are independent random errors. The expected BOLD response,

convt, is calculated by convolving the hrf with an “on-off” boxcar function that is

equal to 1 when the experimental stimulus is on, and 0 when it is off. Specifically,

convt =

∫ t′

0

N(s)h(t− s)ds, (6.3)

where N(s) represents the value of the neural activation boxcar at time s in

seconds. Although N(s) and h(s) are defined with respect to time in seconds,

we observe fMRI data at discrete time points determined by the TR. Thus, we

define the time index t in units of TRs and let t′ = s/TR. Expected responses

to different event types can be included in this model as additional covariates by

convolving the hrf with the boxcar function associated with each event. In this

chapter, we restrict ourselves to experiments with a single event type.

Under the model given by equation (6.2), the hypothesis test

H0 : β1 = 0 HA : β1 > 0 (6.4)

is usually of interest, where rejection of H0 in favor of HA is interpreted as evidence

of neural activation in the voxel from which the fMRI time series came from.

To test this hypothesis, ordinary least squares estimates of the unknown fixed

parameters β and σ2 are computed, i.e.

β̂ = (β̂0, β̂1)′ = (X ′X)−1X ′y σ̂2 =
1

T − 2
‖y −Xβ̂‖2, (6.5)

where T is the total number of TRs in the functional run, X is the T by 2

design matrix with first column all 1’s and second column equal to convt, y =

108

(y1, . . . , yT)′, and ‖·‖ is the Euclidean norm. The test statistic, T ∗, and p-value,

p∗, are then calculated by

T ∗ =
β̂1√

σ̂2(X ′X)−1
(2,2)

p∗ = P(T ∗ > t∗obs|H0), (6.6)

where (X ′X)−1
(2,2) is the element in the second row and second column of (X ′X)−1,

t∗obs is the realization of the random variable T ∗, and P (A|H0) is the probability

of event A assuming H0 is true. Thus, p∗ is calculated under the assumption that

t∗ ∼ T(0, 1, T −2), and H0 is rejected if p∗ is less than some significance threshold

α.

The majority of fMRI studies perform this hypothesis test independently for

every voxel, resulting in a statistical parametric map of brain activation. With this

approach, an adjustment to the significance threshold α must be made to account

for multiple hypothesis tests being performed simultaneously. For example, if a

false positive rate of α = 0.05 is desired, a corrected threshold α∗ must be used

for each independent test so that the probability of at least one false positive

among all tests is 0.05. Because of the spatial relationship among voxels, these

hypothesis tests are not actually independent of each other, and this complicates

the problem of finding the necessary correction. Typically, an approach relying

on the theory of Gaussian random fields is used (Worsley; 1995; Worsley et al.;

1996, 1992; Friston et al.; 1991). We refer the reader to Ashby (Chapter 6, 2011)

for more information on the multiple comparisons problem.

109

The standard GLM approach to analyzing fMRI data, which models univari-

ate time series separately for each voxel, is convenient because regression theory

allows for simple forms of estimators and fast computation. However, aside from

using a multiple comparisons correction, the spatial nature of fMRI data and the

connection between voxel-wise time series is ignored using this approach. Hence, a

second-stage connectivity analysis is required to gain any insight into neural net-

works (Chapters 8 and 9 Ashby; 2011). The development of multivariate methods

that analyze activation and connectivity simultaneously has gained popularity

over the last decade. These include independent components analysis (Beckmann

and Smith; 2004), multi-voxel pattern recognition Norman et al. (2006), represen-

tation similarity analysis (Nili et al.; 2014), and Bayesian spatio-temporal model-

ing approaches such as those developed by Woolrich et al. (2004), Bowman et al.

(2008), Alicia et al. (2010), and Zhang et al. (2014), to name a few.

While the development of efficient numerical approximation algorithms have

decreased the computational burden of analyzing fMRI data using Bayesian spatio-

temporal models, they are still slower and more difficult to implement than the

standard GLM approach. Thus, voxel-wise hypothesis tests are still the norm

in fMRI data analysis, and we operate within the framework of univariate voxel-

specific time series models for the remainder of this chapter. For more information

on fMRI and standard statistical techniques used in the field, see Ashby (2011);

Penny et al. (2011).

110

6.1.4 Word recognition task

The data set that we analyze in Sections 6.3 and 6.4 comes from an episodic

word recognition experiment for one human subject. The task the subject worked

on, described in Bennett and Miller (2013), consisted of an encoding session that

took place outside the scanner and a recognition session that took place inside

the scanner. During encoding, the subject was presented with a list of words one

at a time and told to memorize the words so that if they saw one of them again,

they would recognize it. During the recognition session, the subject was presented

with another list of words, some of which they saw during encoding and some of

which were new. The subject was asked to respond as to whether they thought

each word was old or new based on their memory.

While in the scanner, the words were presented according to a rapid-event

related design with random delays between onsets lasting somewhere between 2

and 10 seconds. The expected BOLD response (convt) for this design was then

constructed by convolving the canonical hrf with a boxcar function that is equal

to 1 during TRs when a word was presented to the subject and 0 otherwise. The

middle panel of Figure 6.1 shows convt for this experiment. Scans of the subject’s

brain were taken every 1.5 seconds for about 6 minutes (T = 245 total TRs) with a

voxel size of 3 mm3. Although whole brain data were recorded, we look specifically

at time series from 5 by 5 by 5 voxel cubes (125 voxels per cube) extracted from six

different brain regions, namely the left frontal pole (FP), left intraparietal sulcus

111

(IPS-left), right intraparietal sulcus (IPS-right), primary visual cortex (PV), left

secondary visual cortex (SV-left), and right secondary visual cortex (SV-right).

An important step that is performed prior to analyzing fMRI data is prepro-

cessing of the raw data that comes directly out of the scanner. For example,

images need to be spatially realigned to reduce the effect of the subject’s head

movements while inside the scanner. In addition, a high-resolution structural im-

age taken prior to the functional run can be used to discern the exact location

of voxels that are difficult to locate in lower resolution functional images. This

process is called coregistration of the functional and structural data. The coreg-

istered data then needs to be normalized to a standard brain atlas so that active

voxels can be assigned to a neuroanatomic brain structure.

For this data set, preprocessing proceeded as outlined in Bennett and Miller

(2013):

“The functional time series were spatially realigned to the first image

using a least squares approach with a 6-parameter rigid body affine

transformation (Friston et al.; 1995c). Realigned images were then

“unwarped” to reduce the influence of residual movement-related vari-

ance on BOLD signal intensity (Andersson et al.; 2001). The func-

tional data were coregistered to a high-resolution T1 anatomical im-

age using mutual information maximization with a 6-parameter rigid

body affine transform (Ashburner et al.; 1997). Then, the images

112

were normalized to the standard 3D brain atlas defined by the In-

ternational Consortium for Brain Mapping using a combination of a

12-parameter linear affine transformation and 3 by 2 by 3 nonlinear

three-dimensional discrete cosine transform. A 7th degree B-spline

was used as the interpolation method for creating normalized images

(Ashburner and J.; 1999; Mazziotta et al.; 1995).”

Other common preprocessing steps include spatial smoothing and slice-timing

correction. Spatial smoothing is intended to get rid of some of the noise in the

data and allow for the use of Gaussian random field theory when applying a

correction for multiple hypothesis tests. Slice-timing correction adjusts for the

fact that brain slices taken during a particular TR don’t occur at the same time.

For the word recognition experiment, the data were spatially smoothed with an 8

mm full-width at half maximum isotropic Gaussian kernel. Slice-timing correction

was not applied to the data and is not typically used when the TR is less than 2

seconds (Penny et al.; 2011).

Preprocessing of fMRI data is intended to improve statistical analysis by re-

moving artifacts, or abnormalities in the data due to non-task related events.

However, it is possible that preprocessing can also add artifacts to the data. For

instance, the compound effect of applying both slice-timing correction and spatial

realignment can affect the signal in the data. While researchers hope to find sig-

nals in the data that provide insight into task-related neural activity, it is possible

113

that the way data are preprocessed can affect results. For more information on

preprocessing of fMRI data, see Ashby (Chapter 4, 2011).

The top panel of Figure 6.1 shows the preprocessed fMRI time series for a

voxel in IPS-left. Notice that the pattern of the observed time series somewhat

mirrors the active response displayed in the middle panel for TRs greater than 75,

but not for TRs less than 75. This type of behavior motivates our thinking that

a regression model with a changing slope, such as M011, might be appropriate for

modeling fMRI data.

6.2 Temporal autocorrelation

The standard GLM approach for identifying task-related activity in a single

voxel of the brain relies on an assumption of independence of the error terms, εt,

in equation (6.2). This assumption is not reasonable for fMRI data since random

departures between the observed and predicted BOLD responses are likely to

be similar among voxels near to each other in time and space. One reason for

this is that the BOLD response to neural activation is not uniform across space

(Aguirre et al.; 1998), so any assumed hrf is guaranteed to be at least slightly

inaccurate. Thus, if the BOLD response in a voxel at one particular TR is greater

than average, it is likely to also be greater than average in nearby voxels and

at subsequent TRs (Chapter 1 Ashby; 2011). Other factors that contribute to

spatially and temporally autocorrelated errors include unaccounted for signals in

114

Figure 6.1: Single voxel time series from fMRI experiment

0 50 100 150 200 250

98
0

99
0

10
00

y t

Voxel 27 in IPS−left

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

co
nv

t

5 10 15 20

0.
00

0.
10

0.
20

0.
30

TR

hr
f

Time series data (top), expected BOLD response (middle), and haemodynamic response
function (bottom) versus TR for voxel 27 in the left intraparietal sulcus.

115

the data, such as non-task related cognitive activity on the part of the subject,

and small movements caused by heartbeat and respiration (Locasio et al.; 1997).

An approach to handling temporally autocorrelated fMRI time series that

was developed early on is to “color” the data using a low-pass temporal filter to

reduce high-frequency noise and amplify the signal in the data (Friston et al.;

1995a; Worsley and Friston; 1995). An alternate approach used by Bullmore et

al. (1996) involves a two-stage procedure where the data are prewhitened by first

estimating the autocorrelation in the errors using the residuals from a GLM fit and

then transforming the data to remove the autocorrelation. The standard GLM

analysis is then applied to the prewhitened data. The prewhitening approach is an

improvement over coloring the data because it yields minimum variance unbiased

estimates of the regression coefficients, provided the autocorrelation is accurately

estimated from the residuals (Friston et al.; 2002). Woolrich et al. (2001) use

resting state data to demonstrate that prewhitening performs more efficiently

than coloring in their data, and that bias in estimating the autocorrelation during

prewhitening can be lowered by carrying out spatial and temporal smoothing

during preprocessing.

The prewhitening approach to handling autocorrelated errors is the standard

technique used in the FSL software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

Other approaches attempt to account for temporal autocorrelations explicitly

through modeling. For example, Lund et al. (2006) measured effects thought

116

to contribute to autocorrelated noise such as heartbeat, respiration, and magnetic

field strength, and included them as additional covariates in the GLM. SPM uses

an approach developed by Kiebel and Holmes (2007) that models the correlation

in the errors by

ε ∼ N(0, σ2IT + λQ) Qi,j =


0, if i = j

e−|i−j|, if i 6= j,

(6.7)

where T is the total number of TRs in the experiment, ε = (ε1, . . . , εT)′, and

λ is another unknown fixed parameter. Restricted maximum likelihood estima-

tion (REML) is carried out to estimate the unknown fixed parameters, and the

hypothesis test in equation (6.4) is performed using the test statistic

T ∗ =
β̂1√(

(X ′X)−1X ′(σ̂2IT + λ̂Q)X(X ′X)−1
)

(2,2)

, (6.8)

where β̂1, σ̂2, and λ̂ are the REML estimates. We discuss REML further in Section

6.2.2. Under the null hypothesis, t∗ ∼ T(0, 1, df), where the degrees of freedom df

is computed by the Satterthwaite approximation (Worsley and Friston; 1995). In

Section 6.2.2, we compare ordinary least squares (OLS) estimation, prewhitening,

and REML in terms of false positive and true positive rates of significant brain

activation using simulated data.

6.2.1 Exploration of ARMA models

Numerous studies have attempted to account for temporal autocorrelation

in fMRI data by replacing the error term in equation (6.2) by first and second

117

order autoregressive processes (Bullmore et al.; 1996; Locasio et al.; 1997). We

now explore the class of regression models with ARMA(P,Q) errors discussed in

Section 2.3.2 using maximum likelihood estimation to investigate whether other

ARMA error structures might be appropriate for the word recognition data set.

Recall from Section 2.3.2 that the DLM formulation of a regression model

with ARMA(P,Q) errors is given by equations (2.13) and (2.14) with xt =

(xt,1, xt,2, . . . , xt,m)′ an m-dimensional vector, m = max(P,Q + 1), Ft a time-

invariant 1×m vector with first element equal to 1 and the rest 0, vt = 0 for all

t, G a m×m matrix that takes the form

G =



φ1
...

φ2
...

φ3
... Im−1

...
...

· · · · · · · · · · · · · · ·

φm
... 0 · · · 0



,

and W = σ2ee′ with e = (1, γ1, . . . , γm−1)′. The unknown fixed parameters are

given by θ = (β′, φ′, γ′, σ2)′, where β = (β0, β1)′, φ = (φ1, φ2, . . . , φP)′ and γ =

(γ1, γ2, . . . , γQ)′. We let Ut = (1, convt), where convt is the convolution, evaluated

at TR t via equation (6.3), of the canonical hrf with the on-off boxcar function

representing the stimulus pattern for the word recognition experiment. We adopt

the convention that φs = 0 for s > P and γr = 0 for r > Q.

118

Maximization of the likelihood is performed using the R function arima (R

Core Team; 2013), which calls on optim to minimize the negative log likelihood,

given by

− log p(y1:T |θ) =
1

2

T∑
t=1

log |Qt|+
1

2

T∑
t=1

ζ ′tQ
−1
t ζt (6.9)

(Shumway and Stoffer; 2006, Chapter 6). Here, ζt = yt − ft are the innovations

of the ARMA process, with ft and Qt being the mean and variance of the one-

step ahead forecasts for yt. For fixed θ, ft and Qt are computed via the Kalman

filter in equation (2.30), provided the initial values m0 and C0. These initial

values are chosen automatically by arima such that the stationarity constraint

given in equation (2.18) is satisfied (Gardner et al.; 1980). Given an initial set

of fixed parameter values, optimization is performed using an iterative algorithm

that alternates between running the Kalman filter conditional on θ and minimiz-

ing equation (6.9) conditional on f1:T and Q1:T (Durbin and Koopman; 2012).

Fixed parameter values are constrained to their regions of stationarity, given by

equations (2.16) and (2.17), using the transformation method of Jones (1980).

Time series regression models with ARMA errors for all combinations of P

and Q up to order 10 were fit to data from five randomly chosen voxels from each

of the six brain regions using the arima function. We then evaluated each model

fit using three criteria: Akaike’s information criterion (AIC) (Sakamoto et al.;

1986), AIC corrected for bias (AICC) (Sugiura; 1978; Hurvich and Tsai; 1989),

and Bayes’ information criterion (BIC) (Schwarz; 1980). For our model with a

119

single regression covariate, the formulas for these criteria are given by

AIC = −2 log p(y1:T |θ̂) + 2(P +Q+ 3) (6.10)

AICC = −2 log p(y1:T |θ̂) + 2T
P +Q+ 2

T − P −Q− 3
(6.11)

BIC = −2 log p(y1:T |θ̂) + (log T)(P +Q+ 3), (6.12)

where θ̂ is the MLE of the unknown fixed parameters and log p(y1:T |θ̂) is the

value of the log-likelihood at convergence of the maximum likelihood optimization

procedure.

When performing model selection using one of the above criteria, the goal is

to select a model that minimizes the specific chosen criterion. The first term is

the same for all criteria and should be smaller for better model fits. The second

term is a penalty for the number of parameters in the model (a measure of model

complexity). BIC imposes the strongest penalty for having more parameters and is

the most likely out of the three to prefer simpler models. In our study, we recorded

the values of P and Q that minimized each of these criteria for each randomly

selected voxel, and the average P and Q for each brain region are shown in Table

6.1. From these averages, it appears that AIC and AICC prefer P and Q near 3

while BIC prefers P = 1 and an Q = 0 or 1. We prefer to use the simpler models

chosen by BIC and will primarily focus on models that incorporate first-order

autoregressive errors in the remainder of this chapter.

120

Table 6.1: Mean AR and MA orders for experimental fMRI data

Region Criterion
AIC AICC BIC

P Q P Q P Q
Left frontal pole 2.80 3.20 2.80 2.90 1.70 0.90
Left intraparietal sulcus 3.75 3.50 3.50 3.25 1.81 0.06
Right intraparietal sulcus 3.20 2.80 3.20 2.80 0.80 0.80
Primary visual 3.10 3.00 3.10 2.70 0.90 1.70
Secondary visual left 3.20 2.90 2.10 2.40 1.40 0.00
Secondary visual right 3.20 3.00 3.10 2.50 0.70 0.70
Mean across regions 3.21 3.07 2.97 2.76 1.22 0.69

Mean AR and MA orders (P and Q, respectively) chosen according to AIC, AICC, and
BIC for maximum likelihood fits of regression models with ARMA errors to voxel-wise
time series from 5 by 5 by 5 voxel cubes taken from 6 different brain regions.

6.2.2 False positive and true positive rates

In this section, we consider the impact of different approaches to testing for

brain activation in autocorrelated voxel-wise time series. Specifically, we examine

false positive and true positive rates. The false positive rate is the rate of con-

cluding significant neural activation in a voxel when there is no activity present.

The true positive rate (or power) is the rate of concluding significant neural ac-

tivation when there is in fact activity present. We prefer methods that yield a

high true positive rate while keeping the false positive rate low. In this section,

we examine the effect on the false positive rate of using standard OLS estimation

of the regression slope in equation (6.2), and we compare different methods for

accounting for temporal autocorrelation in terms of their effect on false postive

and true positive rates.

121

To analyze false positive and true positive rates, we simulated fMRI data

from the regression model described in Section 6.2.1 with AR(1) error structure

(i.e. P = 1 and Q = 0). An experiment with a rapid event-related design

and a single event type was created by simulating random times between onsets

according to a truncated geometric distribution with a maximum time-to-event

of 10 TRs. We used a TR of 2 seconds and let the experiment run for 250

total TRs. Onset of the stimuli were assumed to last the length of the TR, and

an on-off boxcar function of 1’s and 0’s was constructed to match the stimulus

pattern. The explanatory variable in the regression, convt, was constructed by

convolving the boxcar function with the gamma hrf from equation (6.1) with τ = 2

and n = 4. Figure 6.2 displays the simulated experimental design and expected

BOLD response (convt) for active voxels.

Time series of length T = 250 were then simulated according to M100, i.e. a

regression model with AR(1) errors as in equations (2.13) and (2.14) with m =

P = 1, Q = 0, Ft = 1 for all t, vt ∼ δ0(vt) for all t (i.e., vt = 0 for all t),

G = φ, W = σ2, β = (β0, β1)′, and Ut = (1, convt). For these simulations,

we let β0 = 750 and σ2 = 15, and one thousand time series were generated for

every (β1, φ) ∈ {0, 1, 2, 3} × {0.25, 0.50, 0.75, 0.95}. Different values of β1 were

used so that we could analyze false positive rates (for β1 = 0) and power (for

β1 > 0). Similarly, different values of φ were used for simulation so that we

122

Figure 6.2: Simulated rapid-event related design of fMRI experiment

0 100 200 300 400 500

0.
0

0.
4

0.
8

N
(s

)

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

h(
s)

0 100 200 300 400 500

0.
0

1.
0

2.
0

sec (s)

co
nv

s

Simulated boxcar function (top), hrf (middle), and convolution of the boxcar with the
hrf (bottom) for a rapid-event related design of an fMRI experiment.

123

could analyze false positive rates and true positive rates for increasing amounts

of autocorrelation in the data.

For each simulated time series, we tested the hypothesis in equation (6.4)

using the OLS method, i.e. where the test statistic and p-value are calculated

according to equations (6.5) and (6.6). We also performed hypothesis tests using

prewhitening (PW) and two variations of a REML approach. Our PW and REML

approaches each assume that the data are generated from M100, as described in

the preceding paragraph, where the AR(1) process for xt is stationary. This model

can be reformulated as

y = Xβ + ε, where (6.13)

ε ∼ N(0, σ2Λ),

Λi,j =
φ|i−j|

1− φ2
,

β = (β0, β1)′ are the fixed regression coefficients, y and X are data vector and

design matrix, respectively, as defined immediately after equation (6.5), and ε =

(ε1, . . . , εT)′ is the vector of error terms.

The PW approach uses the fact that if Λ is known, the data can be transformed

via

y∗ = S−1y X∗ = S−1X, (6.14)

124

where S is the Cholesky decomposition of Λ (i.e. SS ′ = Λ), to yield the indepen-

dent error GLM given by

y∗ = X∗β + ε ε ∼ N(0, σ2IT). (6.15)

We carry out the PW method on a time series from a single voxel by first esti-

mating β0 and β1 using OLS. Then, a zero mean AR(1) process is fitted to the

residuals from the resulting fit, using maximum likelihood via the arima function

in R. The maximum likelihood estimate of the autocorrelation in the residuals,

denoted by φ̂, is used to approximate φ in equation (6.13), and an estimate of the

covariance matrix Λ is computed according to

Λ̂(i,j) =
φ̂|i−j|

1− φ̂2
. (6.16)

The data are then transformed according to

ŷ∗ = Ŝ−1y X̂∗ = Ŝ−1X, (6.17)

where Ŝ is the Cholesky decomposition of Λ̂. Lastly, the hypothesis test is per-

formed using the OLS method with ŷ∗ and X̂∗ used in place of y and X in

equations (6.5) and (6.6).

Estimation using the restricted likelihood is intended to remove bias in es-

timating variance components that is due to fixed regression coefficients being

included in the model. This is achieved by integrating β out of the full likelihood.

For hypothesis tests using REML, we first obtain an estimate of φ by maximizing

125

the profiled log-restricted likelihood, derived by Harville (1977) and given by

log p(y|φ) ∝− (T − 2) log
∣∣∣∣∣∣y∗ −X∗ [(X∗)′X∗]

−1
(X∗)′y∗

∣∣∣∣∣∣ (6.18)

− 1

2
log |(X∗)′X∗| − 1

2
log |Λ|

(Pinheiro and Bates; 2000, Page 205). Here, y∗, X∗, and Λ are implicitly functions

of φ, with y∗ and X∗ described by equation (6.14) and Λ described by the third line

of equation (6.13). Once φ̂ that maximizes log p(y|φ) in equation (6.18) is found,

Λ̂ is calculated according to equation (6.16), X̂∗ and ŷ∗ are calculated according

to equation (6.17), and REML estimates of β and σ2 are computed according to

β̂ =
[
(X̂∗)′X̂∗

]−1

(X̂∗)′ŷ∗ σ̂2 =
1

T − 2

∣∣∣∣∣∣ŷ∗ − X̂∗β̂∣∣∣∣∣∣2 . (6.19)

We used the gls function in R package nlme to find φ̂ that maximizes the

profiled log-restricted likelihood in equation (6.18) (Pinheiro and Bates; 2000),

and then used equations (6.19) to calculate β̂ and σ̂2. We then performed the

t-test in equation (6.6) using these estimates of β̂1 and σ̂2, with X̂∗ used in place

of X. However, because φ is estimated in addition to σ2, the null distribution

of the test statistic T ∗ no longer follows a t-distribution. Nonetheless, we can

perform the t-test conditional on the REML estimate of φ by using T(0, 1, T − 2)

as an approximation to the null distribution of T ∗.

A better approximation to the null distribution of T ∗ can be achieved by using

a t-distribution with an adjusted degrees of freedom. For example, Kiebel and

Holmes (2007) adjusts the degrees of freedom of the t-test for the model described

126

by equation (6.7) using the Satterthwaite approximation described in Worsley and

Friston (1995). We consider a strategy prescribed by Dawdy and Matalas (1964),

where the problem of autocorrelated time series within the context of statistical

tests that depend on an assumption of independent random samples is circum-

vented by calculating the so-called “effective sample size”. Specifically, we use an

effective sample size adjustment for time series with first-order autocorrelation,

given by

T ′ = T
1− φ̂
1 + φ̂

, (6.20)

and we adjust the degrees of freedom of the t-test by using T ′ − 2. We will refer

to the method that approximates the null distribution of T ∗ using T(0, 1, T − 2)

as the REML approach, and we will refer to the method that approximates this

distribution using T(0, 1, T ′ − 2) as the REMLc approach (for corrected REML).

Table 6.2 displays false positive rates of rejecting H0 using significance thresh-

olds α = 0.001, 0.01, and 0.05 for the 1000 simulations using β1 = 0 and for each

of four values of φ. Methods of estimation that accurately assess the uncertainty

in β̂1 should yield false positive rates equal to α. The results from Table 6.2 il-

lustrate that using OLS inflates the false positive rate, and furthermore that the

ratio of the false positive rate to α increases as α decreases.

Figure 6.3 displays false positive rates with increasing α for each method and

each true value of φ, as well as 95% confidence intervals for the false positive rates

calculated using a normal approximation to the distribution of the proportion of

127

false positives out of the 1000 simulations. The 95% confidence intervals around

the false positive rate for PW and REML contain the nominal threshold α for

all values of φ. REMLc appears to give slightly lower false positive rates than

REML and PW for φ ≤ 0.75 and decidedly lower false positive rates for φ = 0.95

(for which the approximate confidence intervals for REMLc do not contain the

nominal value of α). While at first glance this may seem to be an advantage of

REMLc, a decrease in the false positive rate can come at the cost of a decrease

in the true positive rate as well. Figure 6.4 illustrates this point using ROC

curves. The ROC curves in this figure display the true positive rate versus the

false positive rate for the hypothesis tests performed according to each method.

The methods with the largest area under the ROC curve performed the best in

terms of distinguishing between the null and alternative hypotheses. The curve

corresponding to φ = 0.95 shows that REMLc is outperformed by PW and REML

in our simulation, suggesting that although REMLc offers a decrease in the false

positive rate for highly autocorrelated data relative to the other methods, it does

not correctly identify as many truly active voxels.

6.2.3 Testing independence of residuals

In the previous section, we used false positive rates to compare several methods

that attempt to capture the autocorrelation in fMRI time series. To do this, we

simulated non-active voxels by letting the true β1 = 0 in M001. In practice, how-

128

Table 6.2: False positive rates for simulated fMRI data

α OLS PW REML REMLc
φ = 0.25

0.001 0.006 0.001 0.001 0.001
0.010 0.028 0.011 0.010 0.010
0.050 0.106 0.050 0.049 0.048

φ = 0.50
0.001 0.022 0.002 0.002 0.002
0.010 0.070 0.010 0.009 0.007
0.050 0.161 0.054 0.052 0.052

φ = 0.75
0.001 0.061 0.001 0.001 0.000
0.010 0.130 0.017 0.016 0.015
0.050 0.213 0.064 0.062 0.055

φ = 0.95
0.001 0.072 0.000 0.000 0.000
0.010 0.144 0.011 0.011 0.000
0.050 0.230 0.046 0.049 0.023

False positive rates at significance levels α = 0.001, 0.01, and 0.05 (rows) for testing
H0 : β1 = 0 vs HA : β1 > 0 using OLS, PW, REML, and REMLc (columns) on 1000
simulated data sets of length T = 250 from M100 with β = (750, 3), σ2 = 15, and for
each φ ∈ {0.25, 0.50, 0.75, 0.95}.

129

Figure 6.3: False positive rates for simulated fMRI data

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

φ=0.25

α

F
P

R

OLS
PW
REML
REMLc
95% CI
α

φ=0.5

φ=0.75 φ=0.95

False positive rates (FPR, solid lines) and 95% confidence intervals (dashed lines) for
testing H0 : β1 = 0 vs HA : β1 > 0 plotted against the nominal threshold level α (gray
line) using OLS (black lines), PW (red lines), REML (green lines), and REMLc (blue
lines) on simulated data from M100 with T = 250, β = (750, 0), σ2 = 15, and increasing
φ (plot panels). Each panel is based on the same set of 1000 simulations (using the
specified φ) for all values of α, and plot axes are the same across all panels.

130

Figure 6.4: ROC curves for simulated fMRI data

ROC curves for testing H0 : β1 = 0 vs HA : β1 > 0 using OLS (black lines), PW (red
lines), REML (green lines), and REMLc (blue lines) on simulated data from M100 with
T = 250, β = (750, 3), σ2 = 15, and increasing φ (plot panels). In each panel, the
vertical axis is the true positive rate (TPR) and the horizontal axis is the false positive
rate (FPR). The axes are the same in all panels. Diagonal dashed line would occur if
TPR and FPR equalled each other.

131

ever, we don’t know beforehand which voxels are inactive, making false positive

rates difficult to obtain. Many studies have attempted to analyze false positive

rates using resting state data, or fMRI data generated from a subject at rest (Pur-

don and Weisskoff; 1998; Burock and Dale; 2000; Woolrich et al.; 2001). These

studies have effectively provided insight into the impact of certain autocorrelation

estimation algorithms, sampling rates, and experimental designs on false positive

rates. However, it is difficult to assess whether voxels from a subject who is rest-

ing are really inactive. For example, the subject’s mind could wander during the

experiment and generate a BOLD signal. Furthermore, research suggests that

some brain areas exhibit some intrinsic activation during resting state, such as

those associated with the default mode network (Greicius et al.; 2003, 2009).

An alternate strategy that has been used for evaluating different models of

autocorrelation in fMRI data is to examine the residuals from a fitted model and

test whether or not they are uncorrelated (Luo and Nichols; 2003; Leonski et al.;

2008). In particular Leonski et al. (2008) compares several autocorrelation esti-

mation algorithms used in different software packages such as SPM and FSL, and

then suggests that an AR(2) process be used for modeling the errors in fMRI time

series. The latter recommendation is based in part on the fact that residuals from

AR(2) fits to fMRI data used in their study were determined to be uncorrelated

more often than for residuals from other models according statistical tests such

as the Durbin-Watson and cumulative periodogram tests.

132

While an AR(2) error structure may be appropriate for modeling some data

sets, we contend that an analysis of residuals should not be the basis for this

decision. This is because of the potential for overfitting. To illustrate, we fit

regression models with each of independent, AR(1), and AR(2) error structures to

the 1000 simulated data sets of length T = 250 described in Section 6.2.2 with β =

(750, 3)′, σ2 = 15, and for each φ ∈ {0.25, 0.50, 0.75, 0.95}. The regression models

with independent errors were fit using OLS, and those with AR(1) and AR(2)

errors were fit using the arima function in R. For each fitted model, we tested the

independence of the residuals using the Ljung-Box test for lag-1 autocorrelations

(Ljung and Box; 1978). Specifically, we test the null hypothesis (H0) that the

residuals are independently distributed against the alternative hypothesis (HA)

that they are not independently distributed by assuming that the test statistic

Q =
T (T + 2)

ω̂2(T − 1)
(6.21)

can be approximated by a chi-squared distribution with 1 degree of freedom under

H0, where ω̂ is the lag-1 sample autocorrelation in the residuals.

The results in Table 6.3 show that even though the true data-generating model

has AR(1) errors, H0 was not rejected when using residuals from the AR(2) fit

just as often if not more often than when using residuals from the AR(1) fit. For

this reason, we do not recommend evaluating models with autocorrelated errors

based on an assessment of independence of residuals. Instead, in Section 6.4, we

explore a model comparison strategy based on PL.

133

Table 6.3: Proportion of times null hypothesis of independent errors was not rejected
for simulated fMRI data

α OLS AR(1) AR(2)
φ = 0.25

0.001 0.332 1.000 1.000
0.010 0.134 1.000 1.000
0.050 0.028 1.000 1.000

φ = 0.50
0.001 0.000 1.000 1.000
0.010 0.000 1.000 1.000
0.050 0.000 0.999 1.000

φ = 0.75
0.001 0.000 1.000 1.000
0.010 0.000 1.000 1.000
0.050 0.000 0.994 1.000

φ = 0.95
0.001 0.000 1.000 1.000
0.010 0.000 0.991 1.000
0.050 0.000 0.958 1.000

Proportion of times H0 of independent residuals is not rejected in favor of HA of non-
independent residuals based on 1000 simulations of length T = 250 from M100 with
β = 3, σ2 = 15, and increasing φ (embedded tables), as determined by Ljung-Box test
at varying significance levels α (rows) from fitting regression models with independent
(OLS), AR(1), and AR(2) error structures.

134

6.3 Fitting dynamic regression models

We now turn our attention to the dynamic regression models described in Sec-

tion 2.3.3. Specifically, we examine the dynamic intercept model (M101), dynamic

slope model (M011), and a model with both a dynamic intercept and a dynamic

slope (M111). M101 can be thought of as a regression model with AR(1)+WN

errors, which has been used to analyze fMRI time series (Purdon and Weisskoff;

1998; Burock and Dale; 2000) and is similar to the model used in SPM (Kiebel

and Holmes; 2007). Of particular interest to us is the possibility of modeling fMRI

time series using M011 or M111 . While models with a constant slope and autocor-

relation included only in the error term of the regression model, as in M101, have

been the norm for analyzing fMRI data, we explore the possibility that a model

with a changing slope, such as M011, can improve on existing methods through

the ability to adapt to behaviors, such as learning or changes in focus, on the part

of the subject.

6.3.1 Identifiability of dynamic regression models

Before applying the dynamic regression models to actual fMRI data, we ex-

amine whether we can identify these models using simulated data. That is, if we

simulated multiple time series from M011, for example, with the same true val-

ues of the model parameters, could we expect to recover these true values from

the data? Since maximum likelihood estimators of unknown fixed parameters in

135

these models are asymptotically normal and consistent (Section 10.1 Casella and

Berger; 2002), we’d expect that MLEs obtained from fitting repeated simulations

from M011 to the same model would crowd around the true parameter values if

the generated time series were long enough. We must investigate if the voxel-wise

time series generated from the word recognition experiment are long enough to

identify model parameters in this way.

To investigate this, we simulated 1000 time series of length T = 250 (in the

actual word recognition experiment analyzed in Sections 6.2.1, 6.3.2, and 6.4.5,

T = 245) from each of M101, M011, and M111 with ut = convt, the expected BOLD

response from the simulated experiment pictured in the middle panel of Figure 6.2.

We let the true β = (750, 15)′ and σ2
m = 10 in each of these simulation models,

and repeated the simulations for various values of φ, σ2
s , ρ, and σ2

b (these last

two parameters are only relevant for M111). Specifically, for M101 and M011, we

simulate for all combinations of φ ∈ {0.1, 0.5, 0.9} and σ2
s ∈ {1, 5, 10, 15, 20}. For

M111, we simulate for all combinations of φ ∈ {0.3, 0.6, 0.9}, σ2
s ∈ {1, 5, 10, 15, 20},

σ2
b ∈ {1, 5, 10, 15, 20}, and ρ ∈ {0.3, 0.6, 0.9}. The choice of these particular values

for β and range of values for the variance terms was motivated by the MLEs from

fitting real fMRI data in Section 6.3.2.

For each simulated time series, we calculate MLEs for the unknown fixed

parameters using the dlmMLE function in R package dlm (Petris et al.; 2009).

We use this function instead of arima because it allows us to incorporate the

136

observation error, vt, into the model. However, dlmMLE operates on models of the

form given by equations (2.8) and (2.9), where the additional regression term Utβ

is not included. Thus, to use this function to find MLEs of fixed parameters in

the dynamic regression models, β must be incorporated into xt and Ut into Ft. To

allow for estimation via dlmMLE, we therefore reformulate M011 and M101 as

yt = F̃tx̃t + vt (6.22)

x̃t = G̃x̃t−1 + wt, (6.23)

where x̃t = (β0, β1, xt)
′, F̃t = (1, convt, Ft),

G̃ =


1 0 0

0 1 0

0 0 φ

 ,

and

vt
iid∼ N(0, σ2

m) ⊥ wt
iid∼ N




0

0

0

 ,


0 0 0

0 0 0

0 0 σ2
s



 .

For M011, we let Ft = convt, and for M101, we let Ft = 1 for all t. In these models,

xt represents either the change in regression slope or the change in the regression

intercept, respectively, as in Section (2.3.3).

To allow maximum likelihood estimation of model parameters in M111 using R

function dlmMLE, we reformulate the model from equations (2.23) through (2.25)

into the form of equations (6.22) and (6.23) with x̃t = (β0, β1, x1,t, x2,t)
′, F̃t =

137

(1, convt, 1, convt),

G̃ =



1 0 0 0

0 1 0 0

0 0 φ 0

0 0 0 ρ


,

and

vt
iid∼ N(0, σ2

m) ⊥ wt
iid∼ N





0

0

0

0


,



0 0 0 0

0 0 0 0

0 0 σ2
s 0

0 0 0 σ2
b




.

Here, x1,t and x2,t represent the change in the regression intercept and slope,

respectively.

Similar to arima, dlmMLE uses a call to optim to minimize the negative log

likelihood, expressed as

− log p(y1:T |θ) ∝
1

2

T∑
t=1

log |Qt|+
1

2

T∑
t=1

(yt − F̃tzt)′Q−1
t (yt − F̃tzt) (6.24)

(Petris et al.; 2009, Chapter 4). Here, zt and Qt depend implicitly on θ and are

calculated according to the Kalman filter given by equation (2.30) with F̃t and

G̃ used in place of Ft and G, respectively, and initial values m0 = C0 = 0 (to

constrain x0 = 0).

Maximum likelihood estimates of φ, σ2
s , and σ2

m (and ρ and σ2
b for M111) –

denoted φ̂, σ̂2
s , and σ̂2

m (and ρ̂ and σ̂2
b) – are obtained directly from dlmMLE, while

MLEs for β are obtained from the first and second elements of mT after running

138

the Kalman filter in equation (2.30) conditional on φ̂, σ̂2
s , and σ̂2

m (and ρ̂ and σ̂2
b)

with m0 = C0 = 0, Ft = F̃t, V = σ̂2
m, G = G̃, and W = W̃ . Since Ut and β are

already included in Ft and xt, respectively, the Kalman filter is implemented with

the middle line in equation (2.30) reading ft = F̃tzt (instead of ft = Utβ + F̃tzt).

Unlike in Section 6.2.1, we do not restrict φ (or ρ) to the region of stationarity.

This is intended to enable modeling of a wider range of behavior in fMRI data,

as well as placing priors on the unknown fixed parameters that are conjugate

conditional on the states, so that estimation using the particle learning algorithm

(described in Section 3.2.5) can be performed. In some cases, we obtain estimates

of φ that lay outside the region of stationarity when analyzing fMRI time series

from the word recognition data set using maximum likelihood in Section 6.3.2 and

particle learning in Section 6.4.5.

Figure 6.5 displays either univariate histograms or two-dimensional kernel den-

sity estimates (Wand and Ripley; 2006) of the MLEs for fits of M011 to data

simulated from the same model with φ = 0.1 and increasing signal-to-noise ra-

tio σ2
s/σ

2
m. We characterize the model as being “well identified” if the maximum

likelihood estimates appear to be approximately normally distributed and concen-

trated around the true parameter values, since asymptotic distribution theory for

MLEs guarantees the MLEs for the fixed parameters are asymptotically normal

and consistent (Casella and Berger; 2002, Section 10.1). In this figure, β appears

to be well identified for all values of the signal-to-noise ratio, as evidenced by

139

the two-dimensional kernel density estimates in the first column of Figure 6.5

that show an ellipse with a clear mode near the true value. However, for true

σ2
s/σ

2
m = 0.1, φ, σ2

s , and σ2
m, don’t appear to be well identified. By increasing

σ2
s/σ

2
m > 0.1, identification of these parameters seems to improve.

Figure 6.6 shows similar plots with σ2
s/σ

2
m fixed at 0.1 and increasing true

values of φ. While identification of φ, σ2
s , and σ2

m appears to be poor for φ = 0.1,

a drastic improvement is shown by increasing φ to 0.5 and 0.9. β, again, is

identified well for all combinations of fixed parameter values shown in the figure.

In addition, the rate at which the optim function in R successfully converged at

the minimum of the negative log likelihood for a given set of 1000 simulations

using fixed true values of the unknown parameters (displayed along the top of the

plots in the first column of Figures 6.5 and 6.6) is 1 for all true values of σ2
s/σ

2
m,

indicating that a clear maximum value of the likelihood always exists for these

simulated time series from M011.

Lastly, we comment on the skewness of the distribution of the MLEs for φ

when the true value is 0.9, as illustrated by the histogram in the last row of Figure

6.6. Asymptotic distribution theory for MLEs guarantees that this distribution

should appear more bell-shaped as T approaches infinity (Casella and Berger;

2002, Section 10.1). However, for finite T , this distribution is skewed toward

lower values of φ. This is because values of φ larger than 1 lead to a model with

a nonstationary dynamic slope, behavior that is fundamentally different from

140

that exhibited by the simulated data with a stationary dynamic slope. Similar

results using larger T (not shown) show less skewness and smaller variance in the

distribution for φ, with a more bell-shaped histogram concentrated around the

true value of φ = 0.9.

Figures 6.5 and 6.6 provide evidence that M011 is well-identified provided the

true signal-to-noise ratio and true autocorrelation coefficient are not too low.

Similar plots shown in Figures 6.7 and 6.8 reveal that identifiability of true model

parameters in M101 is more challenging. When the true φ is fixed at 0.1, identifi-

cation of φ, σ2
s , and σ2

m in M101 is poor for all σ2
s ∈ {1, 5, 10, 15, 20}, indicated by

the bimodal two-dimensional kernel density estimates of the MLEs for (σ2
s , σ

2
m)

and non-Gaussian distributions of MLEs for φ shown in Figure 6.5. However,

when the true σ2
s/σ

2
m is fixed at 0.1, increasing the true φ to 0.9 results in much

better identification of these model parameters, as illustrated by the histograms

and two-dimensional kernel density estimates of the MLEs for φ and (σ2
s , σ

2
m),

respectively, that concentrate near their corresponding true values in the last row

of Figure 6.8. In each of these cases, the distributions of the MLEs for β appear to

be normally distributed around the true values. The challenge in identifying true

parameter values in M101, relative to M011, is further highlighted by the existence

of a small percentage of simulations for which the optim function in R does not

successfully converge at the minimum of the negative log likelihood (see conver-

141

Figure 6.5: Identifying dynamic slope model by increasing signal-to-noise ratio

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

746 748 750 752 754
12

13
14

15
16

17

β0

σ s2
σ m2

=
0.

1

xβ 1

M011
β= (750,15)

Conv. rate: 1

φ
−1.0 −0.5 0.0 0.5 1.0

0
50

15
0

25
0

φ = 0.1

0.0 1.0 2.0 3.0

4
6

8
10

12
14

16

σs
2

σ m2 x

(σs
2, σm

2) = (1, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
0.

5

x

Conv. rate: 1

2 4 6 8 10

0
5

10
15

20
25

x

(σs
2, σm

2) = (5, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
1

x

Conv. rate: 1

5 10 15
0

5
10

15
20

25

x

(σs
2, σm

2) = (10, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
1.

5

x

Conv. rate: 1

10 15 20

0
5

10
15

20
25

30

x

(σs
2, σm

2) = (15, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
2

x

Conv. rate: 1

10 15 20 25 30

0
10

20
30

x

(σs
2, σm

2) = (20, 10)

Histograms in 1D (for φ, second column) and 2D kernel density estimates (for β in first
column and (σ2

s , σ
2
m) in the third column) of MLEs of fits of M011 to data simulated

from M011 with true β = (750, 15)′, φ = 0.1, σ2
m = 10, and increasing σ2

s (rows). Blue
crosses indicate the true values of β and (σ2

s , σ
2
s) in each of the corresponding image

panels, and blue vertical lines indicate the true value of φ. Plot axes are the same within
the first and second columns, but differ within the third column due to differing true
signal to noise ratios σ2

s/σ
2
m.

142

Figure 6.6: Identifying dynamic slope model by increasing autocorrelation

●●●

747 749 751 753

10
12

14
16

18

β0

φ=
0.

1

xβ 1

M011
β= (750,15)

Conv. rate: 1

φ
−1.0 −0.5 0.0 0.5 1.0

0
50

15
0

25
0

φ = 0.1

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0 1 2 3

4
6

8
10

14

σs
2

σ m2 x

(σs
2, σm

2) = (1, 10)

●●●

φ=
0.

5

x

Conv. rate: 1

−0.2 0.2 0.6 1.0

0
50

10
0

15
0

φ = 0.5

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

x

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

φ=
0.

9

x

Conv. rate: 1

0.6 0.7 0.8 0.9 1.0

0
10

0
20

0
30

0
40

0

φ = 0.9

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

x

Histograms in 1D (for φ, second column) and 2D kernel density estimates (for β in first
column and (σ2

s , σ
2
m) in third column) of MLEs of fits of M011 to data simulated from

M011 with true β = (750, 15)′, σ2
s = 1, σ2

m = 10, and increasing φ (rows). Blue crosses
indicate the true values of β and (σ2

s , σ
2
s) in each of the corresponding image panels,

and blue vertical lines indicate the true values of φ. Plot axes are the same within the
first and third columns, but differ within the second column due to differing true lag-1
autocorrelations φ.

143

gence rates displayed along the top of the plots in the first column of Figures 6.5

and 6.6).

Lastly, identification of model parameters in M111 appears to be the most

challenging. Figure 6.9 shows that for fixed φ = 0.9, ρ = 0.6, σ2
b = 1, and

σ2
m = 10, increasing the true white noise variance of the dynamic intercept, σ2

s , to

15 improves identification of σ2
m while the distributions of MLEs for φ and σ2

b are

skewed and not centered at the true values. On the other hand, if σ2
b is increased

to 20 as in Figure 6.10, identification of φ and σ2
b improves with increasing σ2

s ,

but the distribution of MLEs for σ2
m is now skewed and off-center. As with M011

and M101, β appears to be better identified than other model parameters.

Unimodal and elliptical distributions of MLEs for β under all three models

provides some confidence that we can expect estimates of the regression coefficients

to be unbiased. However, when the true autocorrelation and signal-to-noise ratio

are low, bimodal or non-normal distributions of MLEs appear for other model

parameters, suggesting that inference on β, and specifically the conclusion of the

hypothesis test in equation (6.4), could be incorrect. Figures 6.5 through 6.10

suggest that out of the three models, M011 is the most likely to be well identified

for a given set of values for true model parameters, while M111 is least likely to

be well-identified.

Poor identification of M111 is further illustrated by the decrease in the pro-

portion of simulations for which the optim function successively converges to the

144

Figure 6.7: Identifying dynamic intercept model by increasing signal-to-noise ratio

●●●

746 748 750 752 754
13

14
15

16
17

β0

σ s2
σ m2

=
0.

1

xβ 1

M101
β= (750,15)
Conv. rate: 0.972

φ
−1.0 −0.5 0.0 0.5 1.0

0
10

0
20

0
30

0
40

0

φ = 0.1

0 5 10 15

0
5

10

σs
2

σ m2

x

(σs
2, σm

2) = (1, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
0.

5

x

Conv. rate: 0.948

0 5 10 15 20

0
5

10
15

x

(σs
2, σm

2) = (5, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
1

x

Conv. rate: 0.923

0 5 10 15 20 25
0

5
10

15
20

25

x

(σs
2, σm

2) = (10, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
1.

5

x

Conv. rate: 0.921

0 10 20 30

0
5

10
20

30

x

(σs
2, σm

2) = (15, 10)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ m2

=
2

x

Conv. rate: 0.934

0 10 20 30 40

0
10

20
30

x

(σs
2, σm

2) = (20, 10)

Histograms in 1D (for φ, second column) and 2D kernel density estimates (for β in first
column and (σ2

s , σ
2
m) in third column) of MLEs of fits of M101 to data simulated from

M101 with true β = (750, 15)′, φ = 0.1, σ2
m = 10, and increasing σ2

s (rows). Blue crosses
indicate true values of β and (σ2

s , σ
2
s) in each of the corresponding image panels, and

blue vertical lines indicate the true value of φ. Plot axes are the same within the first
and second columns, but differ within the third column due to differing true signal to
noise ratios σ2

s/σ
2
m.

145

Figure 6.8: Identifying dynamic intercept model by increasing autocorrelation

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

746 748 750 752 754 756

13
14

15
16

17

β0

φ=
0.

1

xβ 1

M101
β= (750,15)
Conv. rate: 0.972

φ
−1.0 −0.5 0.0 0.5 1.0

0
10

0
20

0
30

0
40

0

φ = 0.1

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0 5 10 15

0
5

10
15

σs
2

σ m2

x

(σs
2, σm

2) = (1, 10)

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

φ=
0.

5

x

Conv. rate: 0.982

−1.0 −0.5 0.0 0.5 1.0

0
10

0
20

0
30

0
40

0

φ = 0.5

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

x

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

φ=
0.

9

x

Conv. rate: 1

0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

φ = 0.9

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

x

Histograms in 1D (for φ, second column) and 2D kernel density estimates (for β in first
column and (σ2

s , σ
2
m) in third column) of MLEs of fits of M101 to data simulated from

M101 with true β = (750, 15)′, σ2
s = 1, σ2

m = 10, and increasing φ (rows). Blue crosses
indicate the true values of β and (σ2

s , σ
2
s) in each of the corresponding image panels,

and blue vertical lines indicate the true values of φ. Plot axes are the same within the
first and third columns, but differ within the second column due to differing true lag-1
autocorrelations φ.

146

Figure 6.9: Identifying model with both dynamic slope and intercept with small slope
variance

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

735 740 745 750 755 760

10
12

14
16

18
20

β0

σ s2
σ b2 =

1

xβ 1
M111

β= (750,15)
Conv. rate: 0.501

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

−0.5 0.0 0.5 1.0

−
1.

0
0.

0
0.

5
1.

0

φ
ρ

x

(φ, ρ) = (0.9, 0.6)

0 5 10 15

0.
0

1.
0

2.
0

3.
0

σs
2

σ b2

x

(σs
2, σb

2) = (1, 1)

σm
2

0 5 10 15 20

0
50

10
0

15
0

20
0

σm
2 = 10

●●●

σ s2
σ b2 =

5

x

Conv. rate: 0.442

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

x

0 5 10 15 20

0
1

2
3

4

x

(σs
2, σb

2) = (5, 1)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ b2 =

10

x

Conv. rate: 0.482

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

x

0 5 10 15 20 25

0
1

2
3

4
5

6

x

(σs
2, σb

2) = (10, 1)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ b2 =

15

x

Conv. rate: 0.532

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

x

0 5 10 15 20 25 30

0
1

2
3

4
5

x

(σs
2, σb

2) = (15, 1)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ b2 =

20

x

Conv. rate: 0.544

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

x

5 10 15 20 25 30 35 40

0
1

2
3

4
5

6

x

(σs
2, σb

2) = (20, 1)

Histograms in 1D (for σ2
m, last column) and 2D kernel density estimates (for β in first

column, (φ, ρ) in second column, and (σ2
s , σ

2
b) in third column) of MLEs of fits of M111 to

data simulated from M111 with true β = (750, 15)′, φ = 0.9, ρ = 0.6, σ2
b = 1, σ2

m = 10,
and increasing σ2

s (rows). Blue crosses indicate true values of β, (φ, ρ), and (σ2
s , σ

2
b) in

each of the corresponding image panels, and blue vertical lines indicate the true value
of σ2

m. Plot axes are the same within the first, second, and fourth columns, but differ
within the third column due to differing true signal to noise ratios σ2

s/σ
2
b .

147

Figure 6.10: Identifying model with both dynamic slope and intercept with large slope
variance

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

735 745 755

10
12

14
16

18
20

β0

σ s2
σ b2 =

0.
05

xβ 1
M111

β= (750,15)
Conv. rate: 0.521

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

φ
ρ

x

(φ, ρ) = (0.9, 0.6)

0 10 20 30 40 50 60 70

0
5

10
20

30

σs
2

σ b2

x

(σs
2, σb

2) = (1, 20)

σm
2

0 5 10 15 20 25 30 35

0
50

15
0

25
0

σm
2 = 10

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

σ s2
σ b2 =

0.
25

x

Conv. rate: 0.479

●●●

x

0 10 20 30 40

5
10

15
20

25
30

x

(σs
2, σb

2) = (5, 20)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ b2 =

0.
5

x

Conv. rate: 0.458

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

x

0 20 40 60 80

0
10

20
30

x

(σs
2, σb

2) = (10, 20)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ b2 =

0.
75

x

Conv. rate: 0.393

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

x

0 20 40 60 80 100

0
5

10
20

30

x

(σs
2, σb

2) = (15, 20)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

σ s2
σ b2 =

1

x

Conv. rate: 0.398

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

x

0 20 40 60 80 100

0
5

10
20

30

x

(σs
2, σb

2) = (20, 20)

Histograms in 1D (for σ2
m, last column) and 2D kernel density estimates (for β in first

column, (φ, ρ) in second column, and (σ2
s , σ

2
b) in third column) of MLEs of fits of M111 to

data simulated from M111 with true β = (750, 15)′, φ = 0.9, ρ = 0.6, σ2
b = 20, σ2

m = 10,
and increasing σ2

s (rows). Blue crosses indicate the true values of β, (φ, ρ), and (σ2
s , σ

2
b)

in each of the corresponding image panels, and blue vertical lines indicate the true value
of σ2

m. Plot axes are the same within the first, second, and fourth columns, but differ
within the third column due to differing true signal to noise ratios σ2

s/σ
2
b .

148

MLEs (see the convergence rates displayed under the plots for β in Figures 6.9

and 6.10). Models with identifiability issues are sometimes characterized by flat

likelihoods that can make it difficult to find local maxima using iterative routines.

Identifiability of true model parameters in all three models improves by in-

creasing the length of the simulated time series, T , or by simulating with the ex-

planatory variable ut
iid∼ N(0, 1), instead of simulating with correlated explanatory

variable convt (results not shown). Improvement in identifiability when simulat-

ing using uncorrelated explanatory variable, compared to simulations with convt,

may be associated with confounding caused by autocorrelation present in both the

regression covariate and the error term when convt is used (Hodges and Reich;

2010). However, these are factors that we don’t have much control over in fMRI

experiments, since increasing the length of fMRI scanning sessions is expensive,

and the expected BOLD response from an fMRI experiment typically exhibits

autocorrelation due to nature of the hrf. Due to these identifiability concerns, we

discard M111 at this point and examine only M011 and M101 in the remainder of

this chapter.

6.3.2 Fitting word recognition data

We now provide results from fitting M101 and M011 to the word recognition

data set, using maximum likelihood estimation. As in Section 6.3.1, the dlmMLE

function was used to obtain MLEs for all the fixed parameters in M101 and M011.

149

In addition, we offer a comparison with standard GLM fits of M001 using OLS.

That is, we use OLS to fit the model of the form shown in equation (2.13)

with Ut = (1, convt), β = (β0, β1)′, Ft = 0 for all t (making the state equa-

tion (2.14) irrelevant), and vt
iid∼ N(0, σ2

m). OLS estimates are obtained according

to equation (6.5), and in this case we let σ̂2
m = σ̂2 from equation (6.5). We let

θ̂ = (β̂′, φ̂, σ̂2
s , σ̂

2
m)′ denote the MLEs of the fixed parameters in M011 and M101, and

θ̂ = (β̂′, σ̂2
m)′ be the MLEs of the fixed parameters in M001. All three model were

fit with convt as the expected BOLD response for the word recognition experiment

shown in the middle panel of Figure 6.1.

Figure 6.11 displays two-dimensional kernel density estimates of β̂ over the

125 voxels from each of the 6 brain regions in Table 6.1 according to each model.

These density estimates suggest that significant brain activation is present in all

regions except for FP. Also, estimates are relatively consistent across models for

all brain regions with the exception of FP, where histograms for M011 include a

cloud of more active voxels while the other two models don’t.

Also apparent from this figure is the bimodal nature of brain activation in

SV-left and SV-right. For each model, voxels in these two regions were divided

into high and low clusters, denoted by “Cluster H” and “Cluster L”, respectively,

using the k-means clustering method (Hartigan and Wong; 1978) applied to θ̂.

Table 6.6 shows that about 65% of voxels from these two regions fall into a cluster

of higher activation and higher baseline BOLD response, evidenced by the higher

150

regional average values of β̂1 and β̂0 in Table 6.5. The clustering of voxels in these

brain regions could provide support for the M011 model, since an apparent change

in the regression slope over such close space might suggest that a change in the

regression slope over time might also be reasonable.

Unlike MLEs for β, MLEs for φ, σ2
s , and σ2

m are not consistent between M011

and M101. Tables 6.4 and 6.5 show that in IPS-left, IPS-right, and PV, estimates

for φ are, on average, higher under M011 than they are under M101. In addition,

the average signal-to-noise ratio, σ2
s/σ

2
m, is estimated to be much higher in these

three regions for M101. In contrast, average estimates of φ in SV-left and SV-right

are lower under M011 than they are under M101, and the opposite relationship is

true for the average estimates of σ2
s/σ

2
m. The opposing nature of autocorrelation

and signal-to-noise estimates between M101 and M011 suggests that these models

account for variation and autocorrelation in the data differently. What M101

models as increased signal-to-noise, M011 interprets as increased autocorrelation

in the dynamic slope. Conversely, what M011 models as increased signal-to-noise,

M101 interprets as increased autocorrelation in the errors.

151

Figure 6.11: Kernel density estimates of MLEs of regression coefficients

700 750 800 850 900

−
5

0
5

10

M101

β0
^

F
P β 1^

x

700 750 800 850 900

−
5

0
5

10
15

M011

x

700 750 800 850 900

−
5

0
5

10

M001

x

850 900 950 1000 1050

0
10

20
30

40

IP
S

−
le

ft

x

850 900 950 1000 1050

0
10

20
30

40

x

850 900 950 1000 1050

0
10

20
30

40

x

200 400 600 800 1000

0
10

20
30

40
50

IP
S

−
rig

ht

x

200 400 600 800 1000

0
10

20
30

40
50

x

200 400 600 800 1000

0
10

20
30

40
50

x

780 820 860

−
10

0
10

20
30

P
V

x

780 820 860

−
10

0
10

20
30

x

780 820 860

−
10

0
10

20
30

x

200 400 600 800

0
10

20
30

S
V

−
le

ft x
x

200 400 600 800−
10

0
10

20
30

x
x

200 400 600 800

0
10

20
30

x
x

200 400 600 800

0
10

20
30

S
V

−
rig

ht x

x

200 400 600 800

0
10

20
30

x
x

200 400 600 800

0
10

20
30

x

x

Two-dimensional kernel density estimates of MLEs for β using fMRI data from a word
recognition experiment extracted from six brain regions (rows) fit to models M011, M101,
and M001 (columns). Blue crosses denote the marginal averages of the MLEs from each
brain region, and for each of two clusters in SV-left and SV-right.

152

Table 6.4: Average MLEs in single cluster brain regions

Parameter FP IPS-left IPS-right PV
M011

β0 759.155 951.101 831.359 808.257
β1 1.395 15.009 24.894 16.492
φ 0.736 0.853 0.871 0.832
σ2
s 8.746 27.268 53.171 70.646
σ2
m 10.031 22.522 41.340 21.826

M101

β0 759.875 950.038 830.901 807.434
β1 -1.032 18.879 26.838 21.247
φ 0.746 0.637 0.654 0.596
σ2
s 3.323 16.970 29.565 23.498
σ2
m 6.105 0.534 1.382 1.727

M001

β0 759.204 950.773 831.191 807.846
β1 -1.448 16.087 24.688 19.039
σ2
m 12.480 29.579 54.511 37.629

Average MLEs calculated marginally for each fixed parameter (rows) using fMRI
data from a word recognition experiment extracted from four different brain regions
(columns) based on fitting models M011, M101, and M001 (embedded tables).

153

Table 6.5: Average MLEs in bi-cluster brain regions

Parameter SV-left SV-right
Cluster H Cluster L Cluster H Cluster L

M011

β0 874.999 363.601 697.816 308.080
β1 23.133 12.203 21.767 9.415
φ 0.566 0.520 0.489 0.630
σ2
s 11.475 4.378 13.162 4.889
σ2
m 0.502 0.393 2.423 3.906

M101

β0 875.319 362.054 698.025 307.655
β1 20.009 11.708 13.883 9.361
φ 0.821 0.761 0.979 0.864
σ2
s 11.941 7.986 1.727 7.427
σ2
m 14.116 4.953 16.345 8.719

M001

β0 875.084 361.957 697.769 307.538
β1 22.414 12.135 21.723 10.168
σ2
m 17.409 6.332 19.450 11.108

Average MLEs calculated marginally for each fixed parameter (rows) using fMRI data
from a word recognition experiment extracted from each cluster of secondary visual
left and secondary visual right (columns) fit to dynamic regression models (embedded
tables).

Table 6.6: Proportion of voxels with high activation

Model SV-left SV-right
M011 0.672 0.648
M101 0.677 0.648
M001 0.672 0.648

Proportion of voxels in each of secondary visual left and right (columns) classified into
high activation cluster after applying the k-means clustering algorithm to MLEs of θ
under each model (rows).

154

6.4 Comparing dynamic regression models using

particle learning

In the previous section, we explored fits of M011, M101, and M001 to the word

recognition data using maximum likelihood estimation. In this section, we investi-

gate the relative appropriateness of these models for the data using an SMC model

comparison strategy. Results in Chapter 5 showed that the performance of PL is

superior to the RM and KDPF in terms of efficiently and accurately estimating

the marginal likelihood and posterior model probabilities within the context of

the local level DLM with common state and observation variance factor. Since

the dynamic regression models we consider for fMRI data admit tractable forms of

the distributions needed to implement the PL, we use this algorithm to compare

models in this section.

In Section 3.2.5, we described a PL scheme to estimate the filtered distributions

of states and unknown fixed parameters in M011 (letting Ft = convt) and M101

(letting Ft = 1). Using this algorithm, we also have a way of estimating the

marginal likelihood of the data through equation (3.36). For M001, an exact form

of the marginal likelihood is available (O’Hagan; 1994), given by

p(y1:T) =
1

(2π)T/2

√
|B−1

0 |
|B−1

T |

(
(bm0)

am0

(bmT
)amT

)(
Γ(amT

)

Γ(am0)

)
, (6.25)

155

where

BT = (X ′X +B−1
0)−1 ϑT = BT (X ′y +B−1

0 ϑ0) (6.26)

amT
= am0 + T/2 bmT

= bm0 +
1

2
(y′y + ϑ′0B

−1
0 ϑ0 − ϑ′TB−1

T ϑT),

and ϑ0, B0, am0 , and bm0 are prior hyperparameters that are assumed known (see

equation 2.26). In equation (6.26), y and X are the data vector and design matrix,

respectively, as defined in equation (6.5). Given the exact marginal likelihood of

the data under M001, and approximations to the marginal likelihood under M101

and M011, relative posterior model probabilities among the three models can be

computed according to equation (3.37).

In order to implement PL on fMRI time series data from a single voxel,

we need to specify the prior distribution, p(x0, θ), and the number of parti-

cles to use in the particle filter. For all three models under consideration, we

use a prior of the form given by equations (2.26) and (2.27), i.e. p(x0, θ) =

p(β|σ2
m)p(σ2

m)p(φ|σ2
s)p(σ

2
s)δ0(x0) with

β|σ2
m ∼ N(ϑ0, σ

2
mB0) σ2

m ∼ IG(am0 , bm0) (6.27)

φ|σ2
s ∼ N(ϕ0, σ

2
sΦ0) σ2

s ∼ IG(as0 , bs0). (6.28)

For M001, only equation (6.27) is needed (since φ = σ2
s = 0). The hyperparameters

ϑ0, B0, ϕ0, Φ0, am0 , bm0 , as0 , and bs0 are assumed known, and we let B0 and Φ0

156

take the form

B0 = κ2

 1000 0

0 225

 Φ0 = κ2 × 0.25. (6.29)

We let κ = 1 in Sections 6.4.1 and 6.4.5, but let κ > 0 in Section 6.4.2 to examine

the sensitivity of the marginal likelihood of the data to more diffuse priors.

6.4.1 Analyzing simulated fMRI data using particle learn-

ing

In this section, we simulate data from each of M011 and M101, and we test

the PL algorithm by running it under the true model for increasing number of

particles. Based on the resulting particle samples, we obtain estimates of the

filtered distributions of the dynamic regression coefficients and fixed parameters.

Specifically, we compare sequential 95% credible intervals for unknown states and

fixed parameters obtained from PL with those from running the MCMC algorithm

described in Section 3.1.2.

Time series of length T = 250 were simulated from both models with true

fixed parameter values set to β = (750, 15)′, φ = 0.95, σ2
s = 10, and σ2

m = 10. The

same convt generated from the simulated rapid event-design illustrated in Figure

6.2 was used as the regression covariate. The simulated time series, yt, and the

simulated change in the regression slope, xt, from M011 are pictured in Figure

6.12. Notice from this figure that yt mirrors the convolution function better at

157

TRs where xt is high, since higher values of the dynamic slope amplify the signal

in the data relative to the noise.

For both PL and MCMC, the prior distribution on the initial state and fixed

parameters were specified according to equations (6.27) and (6.28) with κ = 1.

We let the hyperparameters b0 and ϕ0 be equal to the true values of β and φ used

for simulation, respectively. The inverse-gamma hyperparameters am0 , bm0 , as0 ,

and bs0 were set such that the prior means for each of σ2
s and σ2

m were equal to

their respective true values used for simulation, and such that each prior variance

was equal to κ2 × 500.

We ran the PL algorithm under the true model on time series simulated from

both models using 500, 1000, 5000, 10000, and 20000 particles. In addition, we

ran three MCMC chains for each simulation under the true model using the same

priors. For each chain, initial values of β0, β1, φ were set to 0 and initial values

for σ2
s and σ2

m were set to 1. Initial values of the states, xt for t = 0, 1, . . . , T , were

drawn from a standard normal distribution. Twenty-five thousand iterations were

run for each chain including a burn-in period of 5000 iterations, and every 20th

iteration was saved.

The results for M011 shown in Figure 6.13 indicate that the filtered distribu-

tions of the fixed parameters and dynamic slope estimated by PL seem to have

converged if at least 10000 particles are used. In addition, the filtered distributions

at time t = T = 250 appear to agree with the MCMC estimates for the dynamic

158

Figure 6.12: Simulated fMRI data from dynamic slope model

011

Simulated fMRI time series yt (top) from M011 with β = (750, 15)′, φ = 0.95, σ2
s = 10,

and σ2
m = 10. Convolution of the hrf and neural activation pattern convt and simulated

change in dynamic slope (xt) are displayed in the middle and bottom panels, respectively.

159

slope and each fixed parameter. MCMC estimates can only be compared with

PL at t = T since MCMC provides smoothed estimates of the dynamic slope and

fixed parameters for t < T , while PL provides only filtered estimates. Analagous

plots for the data simulated from M101 (Figure 6.14) show similar results for the

dynamic intercept and fixed parameters in M101.

6.4.2 Distinguishing dynamic regression models using par-

ticle learning

The results from the previous section indicate that stable estimates of dynamic

regression coefficients and fixed parameters can be obtained by PL if enough

particles are used. We now examine estimation of the marginal likelihood using

PL. In particular, we are interested in gaining understanding about the parameter

settings under which the true model can be distinguished amongst M011, M101,

and M001 by looking at the marginal likelihood.

To study this, we simulated time series of length T = 250 from both M011

and M101 with the same convolution function used in the previous section, β =

(750, 15)′, and various values of φ, σ2
s , and σ2

m. Specifically, we simulated time

series for all combinations of φ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99},

σ2
s ∈ {1, 2, 3, 4, 5, 10, 15, 20}, and σ2

m = 10. We then ran the PL algorithm, under

both M011 and M101, three times on each simulated time series using 500 particles.

The prior hyperparameters B0 and Φ0 were specified by letting κ = 1 in equation

160

Figure 6.13: Credible intervals from PL compared with MCMC for simulated fMRI data

0 50 100 150 200 250

−
10

0
10

20
30

40

t

β 1
 +

 x
t

B01,1=1000,B02,2=225,Φ0=0.25

x
x

0 50 100 150 200 250

74
6

74
8

75
0

75
2

β 0

Sim: M011, Fit: M011
β = (750,15), φ = 0.95, σs

2 = 10, σm
2 = 10

x

x

0 50 100 150 200 250

0.
4

0.
6

0.
8

1.
0

φ

am0=2.2,bm0=12,as0=2.2,bs0=12

x
x

x

500 particles
1000 particles
5000 particles
10000 particles
20000 particles
MCMC
Truth

0 50 100 150 200 250

5
10

15
20

25
30

σ s2

x

x

0 50 100 150 200 250

5
10

15
20

25

σ m2

x

x

Sequential 95% credible intervals for the dynamic slope (top left) and fixed parameters
(other panels) in M011 using PL with increasing number of particles (colors) compared
with MCMC (black crosses, only displayed for T = 250 since MCMC was run using entire
data set) run on simulated data of length T = 250 from M011 with true β = (750, 15)′,
φ = 0.95, σ2

s = 10, and σ2
m = 10 (displayed above top middle panel). The true values

of fixed parameters used for simulation and the true simulated dynamic slopes are
represented by gray lines/curves, respectively. Credible interval estimates from MCMC
are displayed only for β1 +xT and for each of the fixed parameters conditional on all the
data (T = 250). The same prior distributions on the initial state and fixed parameters
were used for running both PL and MCMC, with p(x0) = δ0(x0), b0 and φ0 set to the
true β and φ, respectively, and the remaining hyperparameters displayed above the top
left and right panels.

161

Figure 6.14: Credible intervals from PL compared with MCMC for simulated fMRI data

0 50 100 150 200 250

73
0

75
0

77
0

t

β 0
 +

 x
t

B01,1=1000,B02,2=225,Φ0=0.25

x

x

0 50 100 150 200 250

5
10

15
20

β 1

Sim: M101, Fit: M101
β = (750,15), φ = 0.95, σs

2 = 10, σm
2 = 10

x

x

0 50 100 150 200 250

−
0.

5
0.

0
0.

5
1.

0

φ

am0=2.2,bm0=12,as0=2.2,bs0=12

xx

x

500 particles
1000 particles
5000 particles
10000 particles
20000 particles
MCMC
Truth

0 50 100 150 200 250

10
20

30

σ s2

x

x

0 50 100 150 200 250

5
10

15
20

25
30

σ m2

x

x

Sequential 95% credible intervals for the dynamic intercept (top left) and fixed pa-
rameters (other panels) in M101 using PL with increasing number of particles (colors)
compared with MCMC (black crosses, only displayed for T = 250 since MCMC was run
using entire data set) run on simulated data from M101 with β = (750, 15)′, φ = 0.95,
σ2
s = 10, and σ2

m = 10 (displayed above top middle panel). The true values of fixed
parameters used for simulation and the true simulated dynamic slopes are represented
by gray lines/curves, respectively. Credible interval estimates from MCMC are dis-
played only for β0 + xT and for each of the fixed parameters conditional on all the data
(T = 250). The same prior distributions on the initial state and fixed parameters were
used for running both PL and MCMC, with p(x0) = δ0(x0), b0 and φ0 set to the true
β and φ, respectively, and the remaining hyperparameters displayed above the top left
and right panels.

162

(6.29). For each simulation, we calculated the MLEs of the unknown fixed pa-

rameters using dlmMLE, as in Section 6.3, prior to running the PL, and we let the

hyperparameters b0 and ϕ0 be equal to the MLEs of β and φ, respectively. The

inverse-gamma hyperparameters am0 , bm0 , as0 , and bs0 were set such that the prior

means for each of σ2
s and σ2

m were equal to their respective MLEs, and such that

each prior variance was equal to κ2 × 500. The marginal likelihood is sensitive

to specification of the prior distribution, as we discuss further in Section 6.4.3.

While setting priors in this way can be construed as data snooping, we do this in

an attempt to limit the influence of the prior on comparison of the three models

via the marginal likelihood.

Some PL runs suffered from numerical instability caused by values of the

conditional likelihood, p(yt|xt, θ), being too low to be evaluated for some particles.

For each PL run that did not encounter this issue, we computed estimates of

the log marginal likelihood. In addition, we computed the exact log marginal

likelihood under M001 for each simulated time series using equation (6.25).

Figures 6.15 and 6.16 show the results for the data simulated from M011 and

M101, respectively. Both figures indicate that the log marginal likelihood under

the true data-generating model is larger than the log marginal likelihood under

the other models provided the true φ and signal-to-noise ratio, σ2
s/σ

2
m, are large

enough. However, it appears more difficult to identify M101 as the true model

than it does for M011. For example, when the true model is M011 and the true

163

signal-to-noise ratio is 1.5, 2, or 2.5 (bottom row of Figure 6.15), the log marginal

likelihood obtained from each PL run under M011 is larger than those obtained

from all PL runs under the other models for any φ ≥ 0.1. In contrast, when the

true signal-to-noise ratio under M101 is 1.5, 2, or 2.5 (bottom row of Figure 6.16),

φ ≥ 0.6 is required for all log marginal likelihoods obtained from PL runs under

M101 to be larger than those obtained for all PL runs with 500 particles under the

other models.

6.4.3 Sensitivity of the marginal likelihood to priors

It is important to understand that comparing models in terms of the log

marginal likelihood, as in Figures 6.15 and 6.16, is sensitive to the specified prior

distribution on the initial state and fixed parameters. This is because the marginal

likelihood is computed by integrating out the states and fixed parameters from

the joint likelihood, i.e.

p(y1:T) =

∫
θ

∫
x0

∫
x1

· · ·
∫
xT

T∏
t=1

(p(yt|xt, θ)p(xt|xt−1, θ)) p(x0, θ)dx0:Tdθ. (6.30)

Thus, if p(x0, θ) is diffuse relative to the joint posterior, p(x0:T , θ|y1:T), p(y1:T) will

be much smaller than it would be for p(x0, θ) that is more concentrated around

p(x0:T , θ|y1:T).

To examine the sensitivity of comparing M011, M101, and M001 to specified

priors of the form given by equations (6.27) and (6.28), we simulated two more

time series under both M011 and M101 for each set of fixed parameter values. Then,

164

Figure 6.15: Distinguishing the dynamic slope model from the dynamic intercept and
simple linear regression models

●
●

●

●

● ●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
80

0
−

76
0

−
72

0
−

68
0

Simulated from M011

φ

Lo
g

m
ar

gi
na

l l
ik

el
ih

oo
d σs

2 = 1, σm
2 = 10

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

M011
M101
M001

● ● ●

● ●
●

●
●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
10

50
−

95
0

−
85

0
−

75
0

σs
2 = 2, σm

2 = 10
● ●

●

● ●
●

●
●

●

●

●

● ● ●

● ●
●

●
●

●

●

●

● ● ●

● ●
●

●
●

●
●

●

● ● ●

● ●
●

●
●

●
●

●

● ● ●

● ●
●

●
●

● ●

●

● ● ●
● ●

●
●

●

●

●

●

● ● ●
● ●

●
●

●

●

●

●

● ● ●
● ●

●
●

●

●

●

●

● ●
●

●

●

●
●

●
●

●
●

0.2 0.4 0.6 0.8 1.0

−
10

00
−

90
0

−
80

0

σs
2 = 3, σm

2 = 10

●
●

●
●

●

● ●
●

●
●

●

● ●
●

●

●

● ●
●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
95

0
−

90
0

−
85

0
−

80
0

−
75

0

σs
2 = 4, σm

2 = 10
● ●

● ●
●

●
●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

0.2 0.4 0.6 0.8 1.0

−
11

00
−

10
00

−
90

0
−

80
0

σs
2 = 5, σm

2 = 10

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

● ●
●

●

●

●
●

●

●
●

●

● ●
●

●

●

●
●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

0.2 0.4 0.6 0.8 1.0

−
12

00
−

10
00

−
90

0
−

80
0

σs
2 = 10, σm

2 = 10
●

● ●

●
●

●

●
●

●
●

●

●

● ●

●
●

●

●
●

●
●

●

●

● ● ●

●

● ●

●
●

●

●

● ● ●

●

●
●

●
●

●

●

● ● ●

●

● ●

●
●

●

●

●
●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●
●

● ●

●

● ● ●
●

●

●

●
● ● ● ●

0.2 0.4 0.6 0.8 1.0

−
11

50
−

10
50

−
95

0
−

85
0

σs
2 = 15, σm

2 = 10
●

●
●

●
●

●

●
● ● ● ●

●
● ●

●
●

●

● ● ● ●
●

●
●

●
● ●

●

● ●
●

●

●●
●

●
●

●

●

● ● ●

●

●
●

●
● ● ●

●

● ● ●

●

●
●

● ●
●

●

● ●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

● ● ●
●

0.2 0.4 0.6 0.8 1.0−
11

50
−

10
50

−
95

0
−

85
0

σs
2 = 20, σm

2 = 10

● ●

●
●

●
●

●

●
● ●

●● ●
●

●

●
●

●

● ● ●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

● ●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●
●

●

● ● ●
● ●

● ●

●
●

● ●

0.2 0.4 0.6 0.8 1.0

−
13

00
−

11
00

−
90

0

σs
2 = 25, σm

2 = 10

● ● ●
● ●

● ●

● ●
● ●

● ● ●
● ●

● ●

● ●
● ●

●

●
● ● ●

●
●

●
●

●
●

●

●
● ● ●

●
●

● ●

●
●

●

●
● ● ●

●
●

●
●

●
●

● ● ●
●

●

●

● ●

●

●

●

● ● ●
●

●

●

● ●

●

●

●

● ● ●
●

●

●

● ●

●

●

●

Log marginal likelihoods of data simulated from M011 with β = (750, 15), σ2
m = 10,

increasing φ (x-axis) and increasing σ2
s (plot panels) under M011 (black lines), M101 (red

lines), and M001 (blue lines). Log marginal likelihoods from three independent PL runs
with 500 particles under each model for each simulation are displayed by colored points.
When running the PL, prior hyperparameters B0 and Φ0 were specified by equation
(6.29) with κ = 1, and b0 and ϕ0 were set to the MLEs of β and φ, respectively. The
inverse-gamma hyperparameters am0 , bm0 , as0 , and bs0 were set such that the prior
means for each of σ2

s and σ2
m were equal to their respective MLEs, and such that each

prior variance was equal to 500. Points are not displayed for PL runs that did not
complete due to numerical instability.

165

Figure 6.16: Distinguishing the dynamic intercept model from the dynamic slope and
simple linear regression models

● ● ●

●

●

●

●

●
●

●

●

0.2 0.4 0.6 0.8 1.0

−
80

0
−

75
0

−
70

0
−

65
0

Simulated from M101

φ

Lo
g

m
ar

gi
na

l l
ik

el
ih

oo
d σs

2 = 1, σm
2 = 10

● ● ●

●
●

●
●

●
●

●

●

● ● ●

●

●

●
●

●
●

●

●

● ● ●

●
●

●
●

●
●

● ●

●
● ●

●
●

●
●

●
●

● ●

● ● ●

●

●

●
●

●
●

● ●

● ● ●

●
●

●
●

● ●

●

●

● ● ●

●
●

●
●

● ●

●

●

● ● ●

●
●

●
●

● ●

●

●

●

●

●

M011
M101
M001

●

●
●

●
●

●

●

●
●

●
●

0.2 0.4 0.6 0.8 1.0

−
85

0
−

80
0

−
75

0
−

70
0

−
65

0 σs
2 = 2, σm

2 = 10

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
85

0
−

80
0

−
75

0
−

70
0

σs
2 = 3, σm

2 = 10

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
85

0
−

80
0

−
75

0
−

70
0

σs
2 = 4, σm

2 = 10

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●
●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
95

0
−

85
0

−
75

0

σs
2 = 5, σm

2 = 10
●

●
●

●
●

● ● ●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

● ●

● ●

● ●
●

●

●

●

●

●
●

● ●

● ● ● ●

●

●

●

●
●

● ●

● ● ● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

0.2 0.4 0.6 0.8 1.0−
10

50
−

95
0

−
85

0
−

75
0

σs
2 = 10, σm

2 = 10

●
● ●

● ●

●

●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

● ●

●

●
● ●

●
●

●
●

●

●
●

●

●
● ●

● ●

●
●

●

●
●

●

●
● ● ● ●

●
● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
●

●
● ●

● ●

●

●
●

●

0.2 0.4 0.6 0.8 1.0

−
10

00
−

90
0

−
80

0

σs
2 = 15, σm

2 = 10

●
●

●
● ●

● ●

●

●
●

●

●
●

●
● ●

● ●

●

●
●

●

●
●

●

● ●

●
● ●

●

● ●

●
●

●

● ●

●
● ●

●

●
●

●
● ●

● ●

●
● ●

●
●

●

● ●

●

● ●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

0.2 0.4 0.6 0.8 1.0−
11

00
−

10
00

−
90

0
−

80
0

σs
2 = 20, σm

2 = 10

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
● ●

●

●
●

●
●

● ● ●

●
● ●

●

●
●

●
●

● ● ●

●
● ●

●

●
●

● ●

● ● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

−
12

00
−

11
00

−
10

00
−

90
0

−
80

0

σs
2 = 25, σm

2 = 10

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

● ● ● ● ●
●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

Log marginal likelihoods of data simulated from M101 with β = (750, 15), σ2
m = 10,

increasing φ (x-axis) and increasing σ2
s (plot panels) under M011 (black lines), M101 (red

lines), and M001 (blue lines). Log marginal likelihoods from three independent PL runs
with 500 particles under each model for each simulation are displayed by colored points.
When running the PL, prior hyperparameters B0 and Φ0 were specified by equation
(6.29) with κ = 1, and b0 and ϕ0 were set to the MLEs of β and φ, respectively. The
inverse-gamma hyperparameters am0 , bm0 , as0 , and bs0 were set such that the prior
means for each of σ2

s and σ2
m were equal to their respective MLEs, and such that each

prior variance was equal to 500. Points are not displayed for PL runs that did not
complete due to numerical instability.

166

we ran the PL algorithm three times under the true data-generating model using

κ = 5 and 500 particles for each of the now three total simulations generated using

each set of true fixed parameter values (remaining prior hyperparameters were set

based on the MLEs as in Section 6.4.2). This process was then repeated for κ = 10

and κ = 15. The goal here is that we want to examine the effect of increasing

κ on which true values of φ and σ2
s/σ

2
m would be required for the log marginal

likelihoods obtained from all three PL runs under the true data-generating model

to be higher than the log marginal likelihoods obtained from all three PL runs

under the non-true dynamic regression model (either M011 or M101) and analytical

estimate of the log marginal likelihood under M011 with κ = 1. For example, for

running the PL under M011 with κ = 1 on data simulated from the same model

with true σ2
s/σ

2
m = 1, a true value of φ ≥ 0.7 is required for the log marginal

likelihoods obtained from all three PL runs to be higher than those obtained from

all PL runs under the other models (see plot in the second row and third column

of Figure 6.15).

Theoretically, we should be able to increase κ to the point that the marginal

likelihood of the true model is lower than that of the other models regardless of

the true values of φ and σ2
s/σ

2
m. Figures 6.17 and 6.18 illustrate this point. In

Figure 6.17, it is clear that as κ is increased, larger true values of φ and σ2
s/σ

2
m

are required to identify M011 as the true model. This phenomenon is even more

pronounced when considering M101 as the true model, as in Figure 6.18. For

167

example, when κ = 15, the true lag-1 autocorrelation in the data must be at least

0.8 to identify M101 as the true model, regardless of how large the signal-to-noise

ratio is.

We use a prior of the form given by equations (6.27) and (6.28) with κ = 1

for the remainder of this chapter, since this prior seems reasonable given the

distributions of the MLEs of fixed parameters examined in Section 6.3.2 and,

given the results in Figures 6.17 and 6.18, provides the best chance of identifying

a true model amongst M011, M101, and M001. Briefly, setting κ = 1 assumes a prior

standard deviation of 100 for the regression intercept and 15 for the regression

slope. MLEs for β from fitting these dynamic regression models to time series from

voxels taken from the word recognition data set, displayed via two-dimensional

kernel density estimates in Figure 6.11, appear to be within 2 prior standard

deviations (with κ = 1) of the average MLE of their respective regions or clusters

displayed in Tables 6.4 and 6.5. Similarly, most MLEs for φ, σ2
s , and σ2

m (not

shown) fall within two standard deviations of their respective region or cluster

averages.

6.4.4 Comparing posterior model probabilities using sim-

ulated fMRI data

Our final analysis using simulated data is aimed at determining how many

particles are needed when running the PL algorithm to accurately estimate relative

168

Figure 6.17: Distinguishing the true dynamic slope model M011 from the dynamic in-
tercept and simple linear regression models with increasing prior variance

●

●

●

●

●

●

● ● ●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=1

σs
2 σm

2

φ

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ●

●

●

●

● ●

●

●

●

●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=5

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=10
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=15

● ●

●

●

● ●

●

●

● ● ●

● ●

●

● ●

Minimum values of φ ∈ {0.1, 0.2, . . . , 0.9, 0.95, 0.99} (y-axis) for which the log marginal
likelihood estimates under M011 (obtained from three independent PL runs with 500
particles on data simulated from M011) with β = (750, 15)′, σ2

m = 10, and fixed
σ2
s ∈ {0.1, 0.2, . . . , 0.5, 1.0, 1.5, 2.0, 2.5} (x-axis) each exceed all the log marginal likeli-

hood estimates from the three PL runs on the same data under M101, and also exceed the
analytical estimates of the log marginal likelihood under M001. Each panel corresponds
to one of four increasing κ values (where κ partially determines the prior hyperparam-
eters under M011 - as described further in Section 6.4.2 and equation (6.29)). Results
are shown for three separate sets of simulations from M011, where each set consists
of simulated time series under all combinations of the aforementioned fixed parameter
values. Prior hyperparameters under M101 and M001 were set as described in Section
6.4.2 with κ = 1. If there exists no value of φ for which M011 is distinguished from M101

and M001 for fixed σ2
s/σ

2
m within a given set of simulations, no point is plotted for that

value of σ2
s/σ

2
m.

169

Figure 6.18: Distinguishing the true dynamic intercept model M101 from the dynamic
slope and simple linear regression models with increasing prior variance

●

● ● ●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=1

σs
2 σm

2

φ

●

● ●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ● ●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=5
●

● ●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=10
●

●

●

●

● ●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

0.5 1.0 1.5 2.0 2.5

0.
2

0.
4

0.
6

0.
8

1.
0

κ=15
●

●

●

●

●

● ●

●● ● ●

●

● ●

●

●

●

Minimum values of φ ∈ {0.1, 0.2, . . . , 0.9, 0.95, 0.99} (y-axis) for which the log marginal
likelihood estimates under M101 (obtained from three independent PL runs with 500
particles on data simulated from M101) with β = (750, 15)′, σ2

m = 10, and fixed
σ2
s ∈ {0.1, 0.2, . . . , 0.5, 1.0, 1.5, 2.0, 2.5} (x-axis) each exceed all the log marginal likeli-

hood estimates from the three PL runs on the same data under M011, and also exceed the
analytical estimates of the log marginal likelihood under M001. Each panel corresponds
to one of four increasing κ values (where κ partially determines the prior hyperparam-
eters under M101 - as described further in Section 6.4.2 and equation (6.29)). Results
are shown for three separate sets of simulations from M101, where each set consists
of simulated time series under all combinations of the aforementioned fixed parameter
values. Prior hyperparameters under M011 and M001 were set as described in Section
6.4.2 with κ = 1. If there exists no value of φ for which M101 is distinguished from M011

and M001 for fixed σ2
s/σ

2
m within a given set of simulations, no point is plotted for that

value of σ2
s/σ

2
m.

170

posterior model probabilities among M011, M101, and M001. This should depend on

how different the marginal likelihoods are among the three models. For instance,

if the marginal likelihood of the data under one of the models is large relative

to the marginal likelihoods under the others, the posterior probability is likely to

be 1 for that model and 0 for the others, even if the estimate of the marginal

likelihood is highly variable. For this reason, we consider a “worst” case scenario,

i.e. time series simulated from each of M011 and M101 with true fixed parameter

values set such that it is difficult to distinguish the true model from among M011,

M101, and M001. Using Figures 6.15 and 6.16 as a guide, we simulate time series

from each of M011 and M101 using the following true fixed parameter values:

M011 : β = (750, 15)′ φ = 0.3 σ2
s = 1 σ2

m = 10 (6.31)

M101 : β = (750, 15)′ φ = 0.5 σ2
s = 1 σ2

m = 10 (6.32)

The PL algorithm was run twenty times under both M011 and M101 on each

simulated time series using 500, 1000, 5000, and 10000 particles. Again, we spec-

ify prior hyperparameters based on the MLEs as described in Sections 6.4.2 and

6.4.3 with κ = 1. By grouping together a single log marginal likelihood approx-

imation (based on a single PL run) under M101, a single log marginal likelihood

approximation under M011, and an exact marginal likelihood under M001 calcu-

lated according to equation (6.25), a set of approximate posterior probabilities

among the three models can be calculated according to equation (3.37) with prior

model probabilities equal to 1/3 for each model. For each of the given number

171

of particles, twenty such sets of approximate posterior model probabilities were

calculated using the log marginal likelihood approximations based on the twenty

PL runs under each model.

The results are displayed in Figure 6.19 using compositional plots. Notice

that the estimates of the posterior model probabilities become less variable with

increasing number of particles used in the PL, evidenced by the points in the

compositional plots in Figure 6.19 clustering together in panels with higher num-

ber of particles. In addition, the points cluster near the middle of the ternary

diagrams, suggesting that the three models considered are equally likely given the

data. This is to be expected, since we purposely chose true values of the fixed

parameters (particularly φ) for simulation such that correctly identifying M011 as

the true model would be difficult. Based on these figures, we suggest that at least

5000 particles be used when running the PL under these models in order to obtain

stable estimates of posterior model probabilities.

6.4.5 Comparing models for word recognition data using

particle learning

In this section, we examine results from running the PL algorithm on actual

fMRI data generated from the word recognition experiment described in Section

6.1.4. We ran the PL algorithm using 5000 particles under each of M011 and M101

on time series from every voxel in our study (750 total). As in Sections 6.4.2,

172

Figure 6.19: Ternary diagrams of posterior model probabilities for simulated fMRI data
from dynamic slope model

M011 M101

M001

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

500 particles
M011: β = (750,15), φ = 0.3, σs

2 = 1, σm
2 = 10

M011 M101

M001

●
●

●●
●

●

●

●

●●

●
●
●

●

●

●

●

●
●●

1000 particles

M011 M101

M001

●

●
●

●

●
●

●
●

● ●
● ●● ●

●

●

●

●●●

5000 particles

M011 M101

M001

●
●●

●●

●
●●● ●●
●
●
●
● ●●●●

●

10000 particles

Posterior model probabilities among M011, M101, and M001 (corners of triangles) es-
timated for each of twenty runs of the PL under each model for increasing number of
particles (plot panels) on data simulated from M011 with β = (750, 15)′, φ = 0.3, σ2

s = 1,
and σ2

m = 10. Each point represents a set of posterior probabilities (one for each model),
and the proximity of the point to a particular corner of the triangle represents the pos-
terior probability of the model in that corner relative to the other models. The prior
distribution p(x0, θ) used in the PL runs is given by equations (6.27), (6.28), and (6.29)
with κ = 1 and b0, ϕ0, am0 , bm0 , as0 , and bs0 set based on the MLEs as described in
Section 6.4.2.

173

Figure 6.20: Ternary diagrams of posterior model probabilities for simulated fMRI data
from dynamic intercept model

M011 M101

M001

● ●

●

● ●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●

500 particles
M101: β = (750,15), φ = 0.5, σs

2 = 1, σm
2 = 10

M011 M101

M001

●
● ●

●

●
●

●
●

●

●
●

●

●
●

●
●

●● ●
●

1000 particles

M011 M101

M001

●
● ●● ●●●●

●

●●●●●
●
●

●
● ●●

5000 particles

M011 M101

M001

● ●●
●●●●●
●●

●
●● ●●
●●
●
●
●

10000 particles

Posterior model probabilities among M011, M101, and M001 (corners of triangles) esti-
mated for each of twenty runs of the PL under each of the models for increasing number
of particles (plot panels) on data simulated from M101 with β = (750, 15)′, φ = 0.5,
σ2
s = 1, and σ2

m = 10. Each point represents a set of posterior probabilities (one for
each model), and the proximity of the point to a particular corner of the triangle repre-
sents the posterior probability of the model in that corner relative to the other models.
The prior distribution p(x0, θ) used in the PL runs is given by equations (6.27), (6.28),
and (6.29) with κ = 1 and b0, ϕ0, am0 , bm0 , as0 , and bs0 set based on the MLEs as
described in Section 6.4.2.

174

6.4.3, and 6.4.4, the prior distribution p(x0, θ) was specified by equations (6.27),

(6.28), and (6.29) with κ = 1. However, prior means b0 and ϕ0 were set to the

average MLEs (under the corresponding model for which the PL is to be run) of

β and φ, respectively, among voxels in the brain region (or cluster for SV-left and

SV-right) from which the voxel being analyzed came from (MLEs were calculated

as described in Section 6.3.2, summarized in Tables 6.4 and 6.5). The inverse-

gamma hyperparameters am0 , bm0 , as0 , and bs0 were set such that the prior means

for each of σ2
s and σ2

m were equal to their respective regional or cluster average

MLEs, and such that each prior variance was equal to 500.

For each voxel-specific time series, we estimated the marginal likelihood of the

data under each of M011 and M101 from the output of the PL algorithm run under

each model. We also computed the exact marginal likelihood under M001 for time

series from each voxel using equations (6.25) and (6.26) (with prior hyperparam-

eters specified as in the previous paragraph). We then used the estimated and

exact marginal likelihoods to compute approximate relative posterior probabilities

among the three models for each voxel, according to equation (3.37), with prior

model probabilities equal to 1/3 for each model. The model with the highest pos-

terior probability for a given voxel was determined to be the “preferred” model

for that voxel. The proportion of voxels that prefer each of the models across the

six different brain regions are displayed in Table 6.7.

175

Table 6.7: Proportion of voxels favoring different regression models

Region M101 M011 M001

FP 0.976 0.000 0.024
IPS-left 0.992 0.008 0.000

IPS-right 0.880 0.096 0.024
PV 1.000 0.000 0.000

SV-left 0.800 0.144 0.056
SV-right 0.952 0.032 0.016

Proportion of voxels in each brain region (rows) with highest posterior model probability
for each of M101, M011, and M001 (columns). For M101 and M011, posterior model
probabilities were approximated using the PL with 5000 particles. For M001, the true
posterior probability was calculated analytically according to equation (6.25). The
prior distribution, p(x0, θ), assumed for each of the three models is as described at the
beginning of Section 6.4.5.

From Table 6.7, it is clear that a vast majority of the voxels prefer M101.

The compositional plots in Figure 6.21 affirm this as well, with a majority of

points from each brain region concentrated near the corner of the ternary diagram

represented by M101. Models that account for temporal autocorrelation in fMRI

time series using a constant slope and an autocorrelated error structure, such

as M101, have been standard in fMRI studies, and these results provide further

support for that standard.

However, there are a few brain regions for which a small percentage of voxels

prefer M011 or M001. Most notably, about 10% of voxels in IPS-right and close to

15% of voxels in SV-left prefer M011. To examine this further, we have plotted 95%

credible intervals for the filtered distributions of the dynamic slope, p(β1 +xt|y1:t)

at each time t, based on samples generated from the PL runs under M011. We also

display 95% credible intervals for φ and σ2
s/σ

2
m for each voxel based on samples

176

Figure 6.21: Posterior probabilities of dynamic regression models for real fMRI data

M101 M011

M001

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●

●
●●●

●

●
●

● ●

●

●

●

●●●●●●●●●●●●
●●●●●

●
●

●

●●

●
●

●

●●●●●●●●●●●●●●●●●

●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

FP

M101 M011

M001

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

IPS−left

M101 M011

M001

●●● ●

●

●●● ●

●

●●●●

●

●●●●

●

●●●●

●

●●● ●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●●● ●●●●●

●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

IPS−right

M101 M011

M001

●●●●●●●●●●●●●●●●●●●● ●●●

PV

M101 M011

M001

●●● ● ●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●● ●●●●●

●
●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●● ●

●

●

● ●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●● ●●●●●●●●●●●●

SV−left

M101 M011

M001

●

●
● ●

●

●

●●● ●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●

●

●●●● ●●●●●●●●●●●●●●● ● ●●●●

●

●●●● ●●●●●●●●●●●●●●●● ●●●●

SV−right

Posterior model probabilities among dynamic regression models (corners of triangles)
calculated according to equation (3.37) and represented via compositional plots for 125
voxels (black dots) in each of 6 brain regions (plot panels). Marginal likelihoods for
calculating posterior model probabilities were calculated analytically using equation
(6.25) for M001, and approximated using the PL with 5000 particles for each of M011

and M101. The prior distribution p(x0, θ) assumed for each model is as described at the
beginning of Section 6.4.5. Each point represents a set of posterior probabilities (one
for each model), and the proximity of the point to a particular corner of the triangle
represents the posterior probability of the model in that corner relative to the other
models.

177

from these PL runs generated at time t = T = 245 (i.e. conditional on all the

data). Figures 6.22 and 6.23 display these intervals for 5 by 5 slices of voxels in

IPS-right and SV-left, respectively. In addition, in Figure 6.23 for SV-left, we

have color coded the lines representing the sequential credible intervals according

to whether the corresponding voxel falls into the low or high activation cluster

(there is only one cluster in IPS-right, hence only one line color throughout Figure

6.22). Colored bars have been inserted along the top of the plots to provide a

visualization of the relative posterior model probabilities for each voxel. A legend

lists the models and corresponding colors.

These figures for both slices of voxels reveal spatial patterns in the voxel-

specific model preferences. For example, a cluster of voxels in the top two rows of

Figure 6.22 (corresponding to neighboring voxels from the slice from IPS-right)

prefer M011 or M001, while the rest prefer M101. In SV-left 6.23, a cluster of voxels

in the top left portion of the slice prefer M011 or M001, with the rest preferring

M101. In both brain regions, it appears that the voxels which prefer M011 or

M001 tend to have lower values of the dynamic slope throughout time than do

the voxels which prefer M101. This is more pronounced in SV-left, where the k-

means clustering method separated voxels into low and high activation clusters.

In addition, voxels in SV-left which prefer M101 tend to have 95% credible intervals

for φ which contain larger values than do 95% credible intervals for voxels which

prefer M011, and in some cases the upper bounds of these intervals extend near or

178

beyond the stationary region (i.e. close to or greater than 1). The behavior of the

dynamic slopes for these voxels appears to be nonstationary, with a rising trend

over the course of the experiment.

The results shown in Figures 6.22 and 6.23 seem to run counter to our hy-

pothesis that the dynamic slope model would be better suited than the dynamic

intercept model to model changes in brain activation over the course of the ex-

periment. Specifically, voxels in IPS-right and SV-left with dynamic slopes that

change the most over time tend to prefer the dynamic intercept model. One ex-

planation for this could be that an increase in neural activity over the course of

the experiment is also accompanied by an increase in sources of autocorrelation,

such as heartbeat or respiration, that are better accounted for by the dynamic

intercept model, but nonetheless manifest themselves in terms of an increasing

dynamic slope when fit by M011.

An alternate explanation for these results could be that the increase in the

dynamic slope over time is not due to increased neural activity, but rather to mis-

specification of the hrf. The errors between the observed and expected BOLD

responses in voxels for which the canonical hrf used in this analysis is inaccurate

will be temporally autocorrelated, and they could be modeled according to a

first-order autoregressive process as in M101. The dynamic slope model could

be accounting for inaccuracies in the hrf through an increasing slope, while the

dynamic intercept model more suitably captures these inaccuracies through a

179

Figure 6.22: Filtered dynamic slopes and posterior model probabilities for data from
IPS-right

●

φ: (0.73, 0.961)
σs

2 σm
2 : (0.571, 2.59)

φ: (0.765, 0.972)
σs

2 σm
2 : (0.603, 2.696)

φ: (0.8, 0.978)
σs

2 σm
2 : (0.56, 2.519)

φ: (0.772, 0.961)
σs

2 σm
2 : (0.86, 2.797)

0 50 100 150 200 250

−
10

0
0

50

t

β 1
 +

 x
t

φ: (0.454, 0.876)
σs

2 σm
2 : (1.196, 3.288)

φ: (0.771, 0.969)
σs

2 σm
2 : (0.43, 2.381)

φ: (0.747, 0.98)
σs

2 σm
2 : (0.46, 2.712)

φ: (0.8, 0.989)
σs

2 σm
2 : (0.487, 1.773)

φ: (0.739, 0.954)
σs

2 σm
2 : (0.629, 3.75)

φ: (0.539, 0.916)
σs

2 σm
2 : (1.201, 2.982)

φ: (0.711, 0.967)
σs

2 σm
2 : (0.555, 2.8)

φ: (0.67, 0.947)
σs

2 σm
2 : (0.532, 1.82)

φ: (0.746, 0.944)
σs

2 σm
2 : (0.715, 2.768)

φ: (0.746, 0.959)
σs

2 σm
2 : (0.786, 2.543)

φ: (0.447, 0.934)
σs

2 σm
2 : (1.114, 2.941)

φ: (0.728, 0.945)
σs

2 σm
2 : (0.617, 2.467)

φ: (0.641, 0.95)
σs

2 σm
2 : (0.449, 2.37)

φ: (0.492, 0.909)
σs

2 σm
2 : (0.593, 1.834)

φ: (0.431, 0.89)
σs

2 σm
2 : (0.726, 2.217)

φ: (−0.113, 0.873)
σs

2 σm
2 : (1.084, 2.847)

φ: (0.663, 0.941)
σs

2 σm
2 : (0.694, 2.477)

φ: (0.665, 0.937)
σs

2 σm
2 : (0.568, 2.072)

φ: (0.487, 0.907)
σs

2 σm
2 : (0.628, 2.486)

φ: (−0.085, 0.795)
σs

2 σm
2 : (0.822, 2.355)

φ: (0.106, 0.886)
σs

2 σm
2 : (1.122, 2.992)

●

●

●

●

●

●

●

●

●

●

●

●

M011
M101
M001

Sequential 95% credible intervals for dynamic slopes (lines) and 95% credible intervals

for φ|y1:T and σ2
s

σ2
m
|y1:T (the latter two fixed parameter credible intervals are written in

text above each plot panel). Each interval was obtained by running PL under M011 with
5000 particles on time series from each voxel in a 5 by 5 slice in the y-z plane of the
left intraparietal sulcus. Pink lines represent results based on all 125 IPS-right voxels,
since clustering was not applied in this brain region. The proportion of the solid bar
along the top of a particular plot panel colored for a specific model (as indicated in the
model legend) represents the posterior probability of that model, relative to the other
models, given data from the corresponding voxel for that plot panel (also represented
by Figure 6.21). The prior distribution p(x0, θ) assumed for each model is as described
at the beginning of Section 6.4.5.

180

Figure 6.23: Filtered dynamic slopes and posterior model probabilities for data from
SV-left

●

φ: (−0.15, 0.908)
σs

2 σm
2 : (0.155, 1.448)

φ: (0.189, 0.895)
σs

2 σm
2 : (0.318, 2.443)

φ: (0.397, 0.891)
σs

2 σm
2 : (0.399, 2.999)

φ: (0.357, 0.887)
σs

2 σm
2 : (0.515, 3.073)

0 50 100 150 200 250

−
20

0
20

40

t

β 1
 +

 x
t

φ: (0.114, 0.804)
σs

2 σm
2 : (0.596, 2.663)

φ: (−0.184, 0.897)
σs

2 σm
2 : (0.127, 1.217)

φ: (−0.05, 0.91)
σs

2 σm
2 : (0.168, 1.464)

φ: (0.224, 0.921)
σs

2 σm
2 : (0.206, 1.76)

φ: (0.122, 0.899)
σs

2 σm
2 : (0.165, 2.244)

φ: (−0.098, 0.899)
σs

2 σm
2 : (0.167, 1.179)

φ: (−0.259, 0.898)
σs

2 σm
2 : (0.101, 1.339)

φ: (−0.183, 0.897)
σs

2 σm
2 : (0.122, 1.582)

φ: (0.299, 0.938)
σs

2 σm
2 : (0.151, 1.529)

φ: (0.026, 0.945)
σs

2 σm
2 : (0.142, 1.341)

φ: (−0.355, 0.881)
σs

2 σm
2 : (0.143, 1.168)

φ: (−0.068, 0.909)
σs

2 σm
2 : (0.153, 1.096)

φ: (0.383, 0.932)
σs

2 σm
2 : (0.17, 1.626)

φ: (0.616, 0.967)
σs

2 σm
2 : (0.208, 1.595)

φ: (0.619, 0.98)
σs

2 σm
2 : (0.155, 1.352)

φ: (0.641, 0.989)
σs

2 σm
2 : (0.157, 1.081)

φ: (0.669, 0.949)
σs

2 σm
2 : (0.442, 2.015)

φ: (0.8, 0.999)
σs

2 σm
2 : (0.235, 2.496)

φ: (0.889, 1.004)
σs

2 σm
2 : (0.203, 1.256)

φ: (0.819, 0.994)
σs

2 σm
2 : (0.173, 1.686)

φ: (0.874, 1.002)
σs

2 σm
2 : (0.139, 0.979)

●

●

●

●

●

●

Clust. H
Clust. L
95% CI

●

●

●

●

●

●

M011
M101
M001

Sequential 95% credible intervals for dynamic slopes (lines) and 95% credible intervals

for φ|y1:T and σ2
s

σ2
m
|y1:T (the latter two fixed parameter credible intervals are written in

text above each plot panel). Each interval was obtained by running PL under M011

with 5000 particles on time series from each voxel in a 5 by 5 slice in the y-z plane
of secondary visual left. Line colors correspond to whether a voxel was classified into
the low (black lines) or high (pink lines) activation cluster according to the k-means
clustering algorithm applied to the MLEs for θ obtained in Section 6.3.2. The proportion
of the solid bar along the top of a particular plot panel colored for a specific model (as
indicated in the model legend) represents the posterior probability of that model, relative
to the other models, given data from the corresponding voxel for that plot panel (also
represented by Figure 6.21). The prior distribution p(x0, θ) assumed for each model is
as described at the beginning of Section 6.4.5.

181

dynamic intercept. Voxels which prefer M011 or M001 could have BOLD responses

that are more accurately characterized by the canonical hrf, and the gradual

increase in the dynamic slope for these voxels could reflect small changes in neural

activation or other sources of autocorrelation that mirror the stimulus pattern.

Model identification results from Sections 6.3.1 and 6.4.2 suggest that our

fMRI model comparison results using PL should be interpreted with caution.

Specifically, the true φ and σ2
s/σ

2
m need to be sufficiently large in order to be

able to identify the true model among M011, M101, M001 using an approximation

of the marginal likelihood. In addition, the marginal likelihood can be sensitive

to specific prior distributions on the unknown states and fixed parameters. For

example, if the prior distribution of states and fixed parameters used in this Sec-

tion is closer to the posterior under M101 than it is to the posterior under M011,

model comparison results based on the marginal likelihood of the data could be

biased toward M101. The average maximum likelihood estimates of φ and σ2
s for

IPS-right and SV-left shown in Tables 6.4 and 6.5, respectively, appear to be high

enough to believe that the results shown in Figures 6.22 and 6.23 are not a fluke to

misidentification. However, the 95% credible interval estimates for φ and σ2
s/σ

2
m

obtained from running the PL, displayed above the plots in Figures 6.22 and 6.23,

indicate that there is a large degree of uncertainty in these parameter estimates.

182

6.5 Discussion

In this chapter, we present an analysis of fMRI data collected from an episodic

word recognition task, focusing specifically on voxels from six different brain re-

gions. In Section 6.2.1, we fit regression models with ARMA errors via maximum

likelihood to data from randomly selected voxels within 5 by 5 by 5 voxel cubes

from each brain region, and we found that AIC and AICC prefer models with

an ARMA(3,3) error structure while BIC tends to prefer AR(1) or ARMA(1,1)

errors. We showed via simulation that testing for significant brain activation in

fMRI time series using a standard OLS regression technique leads to an inflation

of the false positive rate of concluding significant brain activation. In addition,

in the presence of highly autocorrelated time series, we showed that a method

for adjusting the degrees of freedom in the t-test for significant brain activation

can lower the false positive rate while decreasing the power of the test. We also

illustrated using a simulated example that comparing autocorrelation estimation

algorithms by examining the independence of model residuals can give misleading

results.

We proposed models for accounting for autocorrelation in fMRI data that

contain a dynamic intercept, dynamic slope, or both. Using simulated fMRI data

from each model, we explored parameter settings under which the distribution

of maximum likelihood estimates appear normally distributed and centered at

the true values. We concluded that it is easiest to find parameter settings under

183

which true parameter values in the dynamic slope model can be identified through

examining the distribution of these maximum likelihood estimates, while identifi-

cation of the model with both a dynamic slope and dynamic intercept is the most

difficult. We fit the dynamic slope, dynamic intercept, and ordinary regression

models to the word recognition data set using maximum likelihood, and identified

clusters of high and low activation in the secondary visual cortex.

Lastly, we introduced a model comparison strategy based on estimating the

marginal likelihood of data under different models using PL. We showed using sim-

ulated data that sufficiently high lag-1 autocorrelation and signal-to-noise ratios

need to be present in the data in order to correctly select the true model amongst

the dynamic slope or dynamic intercept models. Using the fMRI data from the

word recognition experiment, we estimated relative posterior probabilities among

the dynamic slope, dynamic intercept, and ordinary regression models and found

that a vast majority of voxels prefer the dynamic intercept model, while the region

with the highest percentage of voxels that prefer the dynamic slope model is the

left secondary visual cortex (≈ 15%).

It is conceivable that the most appropriate model for these data might be one

with both a dynamic intercept and a dynamic slope. For instance, it could be

the case that, for most voxels, variation in the data due to sources that may be

better captured by the dynamic intercept model, such as physiological processes

or misspecification of the hrf, overwhelm variation in the data that could be

184

captured by a dynamic slope, such as learning. The small clusters of voxels that

prefer the dynamic slope model could be one of the few areas where the dynamic

slope component accounts for more of the variation in the data. The fact that

a significant portion of the relative posterior model probability in these voxels

belongs to M001 (i.e. visible blue bars in Figures 6.22 and 6.23) further supports

the notion that the dynamic slope accounts for very little of the autocorrelation

in the data relative to the dynamic intercept.

Our results in Section 6.3.1 suggest that fMRI experiments similar to the

episodic word recognition task described in Section 6.1.4 do not generate time se-

ries long enough to adequately estimate fixed parameters in the model with both a

dynamic slope and dynamic intercept. Spatio-temporal modeling approaches that

borrow information from neighboring voxels could possibly alleviate this problem

and open up the possibility of correctly analyzing models with multiple autoregres-

sive components. Several more recent studies have used spatio-temporal models

that incorporate time-varying regression slopes to study dynamic brain connec-

tivity (Ho et al.; 2005; Bhattacharya and Maitra; 2011).

The results from this section support the use of a dynamic intercept model,

i.e. a model with a constant slope and autocorrelated error structure, which has

been the norm in voxel-wise analysis of fMRI time series using the GLM. The

dynamic slope model, despite being less suitable for the word recognition data, is

perhaps a more interpretable model and, as shown in Section 6.4.2, can be more

185

easily identified when it is the true model. The use of the PL algorithm for model

comparison provides insight into the relative appropriateness of these models for

describing the behavior of neural activation in specific brain regions of interest

and provides motivation for parameterizing future models for fMRI data in terms

of a dynamic slope.

186

Chapter 7

Future work

In Chapters 4, 5, and 6, we implemented a variety of SMC methods to es-

timate unobserved states and unknown fixed parameters in state-space models.

Alternative methods exist that can perform more efficiently under certain model

settings. For instance, Rao-Blackwellization (Doucet et al.; 2000) could have been

implemented within the PL algorithm in order to marginalize states and track only

state sufficient statistics. This would lead to more efficient estimates of the filtered

distributions of unknown states. Future work on tracking epidemic outbreaks us-

ing SMC methods could incorporate Rao-Blackwellization to estimate unobserved

disease states in a population more efficiently.

In Chapter 5, we found that the PL algorithm proved to be more efficient than

the RM or KDPF for analyzing data from the local level DLM described in Section

2.3.1. However, PL can only be applied to models for which the distributions

187

p(xt+1|yt+1, xt, θ), p(yt+1|xt, θ), and p(θ|y1:t, x0:t) are analytically tractable. In

many cases, only some of these distributions may be available, and it is also

possible that only some elements of θ admit distributions that can be tracked

using sufficient statistics. In this case, a strategy such as one described in Dukic

et al. (2012) that combines the approaches described in Section 3.2 could be

implemented to optimize efficiency by sampling states and fixed parameters from

known distributions when possible and from approximations, as in Liu and West

(2001), when not. This strategy could be used for the dynamic regression models

described in Section 2.3.3 when stationarity of the state process is desired.

While SMC methods have an apparent advantage over MCMC by being able

to sequentially update the estimate of the filtered distribution of the current state

of a system, there remain many situations when an MCMC analysis, or a combi-

nation of approaches, might be preferred. For instance, the performance of SMC

algorithms degrades if run over a long period of time, and SMC methods cannot

operate on models where prior distributions on states or fixed parameters are too

diffuse. To address these problems, MCMC and SMC methods could be used in

conjunction with one another. For instance, MCMC could be run prior to running

a particle filter in order to find a reasonable range of values over which prior dis-

tributions can be defined (Chapter 5 Petris et al.; 2009). In addition, a possible

strategy for continuously monitoring incoming streams of syndromic surveillance

188

data may consist of restarting SMC runs daily using posterior samples from an

MCMC run overnight.

SMC methods also have the ability to provide direct approximations of the

marginal likelihood under each model, and thus compare alternative models. In

Chapter 6, we used particle learning in this way to compare alternative models

for fMRI data. However, our approach required separate particle filter runs under

each model in order to obtain competing estimates of the marginal likelihood. In

addition, a single PL run using 5000 particles on time series consisting of 245 TRs

took about 45 minutes to complete. Thus, this model comparison strategy is only

feasible for analyzing small brain regions of interest. There exist methods that can

compare models within a single particle filter run by allowing particles to jump

between models (Berzuini and Gilks; 2001; Zhou et al.; 2013). These approaches

open up the possibility of comparing models of fMRI data from a larger portion

of the brain within reasonable computing time.

It is likely that more complicated models for tracking an epidemic (Shaman

and Karspeck; 2012; Bhadra et al.; 2011) and analyzing fMRI data (Buxton et al.;

1998) than what we presented in this thesis are needed to more accurately describe

the data-generating mechanisms. For example, results from Chapter 6 indicate

that a regression model with both a dynamic intercept and a dynamic slope may

be appropriate for fMRI time series. The increase in the dimension of the param-

eter space associated with larger models makes estimation more challenging, as

189

demonstrated with the epidemic model analyzed in Section 4.8 and the dynamic

regression models for fMRI times series in 6.3.1. While an MCMC approach such

as PMCMC may perform better than SMC methods in some high-dimensional

settings, both approaches are limited by the amount of data available. For this

reason, spatio-temporal modeling approaches that borrow information from neigh-

boring infected areas or brain regions are a promising direction for these fields.

190

Bibliography

Aguirre, G. K., Zarahn, E. and D’esposito, M. (1998). The variability of human,
BOLD hemodynamic responses, NeuroImage 8(4): 360–369.

Alicia, Q., Diez, R. M. and Gamerman, D. (2010). Bayesian spatiotemporal model
of fMRI data, NeuroImage 49(1): 442–456.

Alspach, D. L. and Sorenson, H. W. (1972). Nonlinear Bayesian estimation using
Gaussian sum approximations, IEEE Transactions on Automatic Control AC-
17(4): 439–448.

Anderson, R. M., Fraser, C. and Ghani, A. C. (2004). Epidemiology transmission
dynamics and control of SARS: the 2002-2003 epidemic, Philosophical Trans-
actions of the Royal Society B Biological Sciences 359: 1091–1104.

Andersson, J. L., Hutton, C., Ashburner, J., Turner, R. and Friston, K. (2001).
Modeling geometric deformations in EPI time series, NeuroImage 13: 903–919.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient
Monte Carlo computations, The Annals of Statistics 37(2): 697–725.

Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte
Carlo methods, Journal of the Royal Statistical Society, Series B: Methodolog-
ical 72(3): 269–342.

Ashburner, J. and J., F. K. (1999). Nonlinear spatial normalization using basis
functions, Human Brain Mapping 7: 254–266.

Ashburner, J., Neelin, P., Collins, D. L., Evans, A. and Friston, K. (1997). Incor-
porating prior knowledge into image registration, NeuroImage 6: 344–352.

Ashby, F. G. (2011). Statistical Analysis of fMRI Data, The MIT Press, Cam-
bridge, Massachusetts and London, England.

Beckmann, C. F. and Smith, S. M. (2004). Probabilisitc independent component
analysis for functional magnetic resonance imaging, Medical Imaging, IEEE
Transactions on 23(2): 137–152.

191

Bedard, M. (2008). Optimal acceptance rates for Metropolis algorithms: moving
beyond 0.234, Stochastic Processes and their Applications 118(12): 2198–2222.

Bennett, C. M. and Miller, M. B. (2013). fmri reliability: influences of task
and experimental design, Cognitive, Affective, and Behavioral Neuroscience
13(4): 690–702.

Berzuini, C. and Gilks, W. (2001). Resample-move filtering with cross-model
jumps, Sequential Monte Carlo Methods in Practice, Springer, pp. 117–138.

Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma, M. and Dhiman,
R. C. (2011). Malaria in northwest india: Data analysis via partially observed
stochastic differential equation models driven by Levy noise, Journal of the
American Statistical Association 106(494): 440–451.

Bhattacharya, S. and Maitra, R. (2011). A nonstationary nonparametric bayesian
approach to dynamically modeling effective connectivity in functional magnetic
resonance imaging experiments, The Annals of Applied Statistics 5(2B): 1183–
1206.

Bowman, F. D., Caffo, B., Basset, S. S. and Kilts, C. (2008). A Bayesian hierar-
chical framework for spatial modeling of fMRI data, NeuroImage 39: 146–156.

Boynton, G. M., Engel, S. A., Glover, G. H. and Heeger, D. J. (1996). Linear sys-
tems analysis of functional magnetic resonance imaging in human V1, Journal
of Neuroscience 16: 4207–4221.

Bullmore, E., Brammer, M., Williams, S., Rabe-Hesketh, S., Janot, N., David, A.,
Mellers, J., Howard, R. and Sham, P. (1996). Statistical methods of estimation
and inference for functional MR image analysis, Magn. reson. Med.

Burock, M. A. and Dale, A. M. (2000). Estimation and detection of event-related
fMRI signals with temporally correlated noise: A statistically efficient and un-
biased approach, Human Brain Mapping 11: 249–260.

Buxton, R. B., Wong, E. C. and Frank, L. R. (1998). Dynamics of blood flow
and oxygenation changes during brain activation: the balloon model, Magnetic
Resonance in Medicine 39(6): 855–864.

Cahn, B. R. and Polich, J. (2006). Meditation states and traits: EEG, ERP, and
neuroimaging studies, Psychological Bulletin 132: 180–211.

Cappé, O., Godsill, S. J. and Moulines, E. (2007). An overview of existing meth-
ods and recent advances in sequential Monte Carlo, Proceedings of the IEEE
95(5): 899–924.

192

Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in hidden Markov
models, Springer Science+ Business Media.

Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space mdoels,
Biometrika 81: 541–553.

Carvalho, C., Johannes, M., Lopes, H. and Polson, N. (2010). Particle learning
and smoothing, Statistical Science 25(1): 88–106.

Casella, G. and Berger, R. L. (2002). Statistical Inference, 2 edn, Duxbury:
Thomas Learning.

Chew, C. and Eysenbach, G. (2010). Pandemics in the age of Twitter: Content
analysis of tweets during the 2009 H1N1 outbreak, PLoS One 5(11): e14118.

Chib, S. and Greenberg, E. (1994). Bayes inference in regression models with
arma(p,q) errors, Journal of Econometrics 64: 183–206.

Dangerfield, C. E., Ross, J. V. and Keeling, M. J. (2009). Integrating stochasticity
and network structure into an epidemic model, Journal of the Royal Society
Interface 6(38): 761–774.

Dawdy, D. R. and Matalas, N. C. (1964). Statistical and probability analysis
of hydrologic data, part III: Analysis of variance, covariance and time series,
McGraw-Hill.

Dixon, M. and Wiener, G. (1993). TITAN: Thunderstorm identification, tracking,
analysis and nowcasting-a radar-based methodology, Journal of Atmospheric
and Oceanic Technology 10(6): 785–797.

Doucet, A. and Johansen, A. M. (2009). A tutorial on particle filtering and
smoothing: Fifteen years later, Handbook of Nonlinear Filtering 12: 656–704.

Doucet, A., De Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo Meth-
ods in Practice, Springer-Verlag, New York.

Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sam-
pling methods for Bayesian filtering, Statistics and Computing 10(3): 197–208.

Dukic, V., Lopes, H. F. and Polson, N. G. (2012). Tracking epidemics with google
flu trends data and a state-space seir model, Journal of the American Statistical
Association 107(500): 1410–1426.

Durbin, J. and Koopman, S. J. (2012). Time series analysis of state space methods,
number 38, Oxford University Press.

193

Fearnhead, P. (2002). Markov chain Monte Carlo, sufficient statistics, and particle
filters, Journal of Computational and Graphical Statistics 11(4): 848–862.

Friston, K., Frith, C., Liddle, P. and Frackowiak, R. (1991). Comparing functional
(PET) images: The assessment of significant change, Journal of Cerebral Blood
Flow and Metabolism 11: 690–699.

Friston, K., Holmes, A., Poline, J.-B., Grasby, P., Williams, S., Frackowiak, R.
and Turner, R. (1995a). Analysis of fMRI time series revisited, NeuroImage
2: 45–53.

Friston, K., Holmes, A., Worsley, K., Poline, J., Frith, C. and Frackowiak, R.
(1995b). Statistical parameteric maps in functional magnetic resonance imaging:
A general linear approach, Human Brain Mapping 2: 189–210.

Friston, K. J., Ashburner, J., Frith, C. D., B., P. J., Heather, J. D. and Frackowiak,
R. S. (1995c). Spatial registration and normalization of images, Human Brain
Mapping 2: 165–189.

Friston, K. J., Penny, W., Phillips, C., Kiebel, S., Hinton, G. and Ashburner, J.
(2002). Classical and bayesian inference in neuroimaging: Theory, NeuroImage
16: 465–483.

Gardner, G., Harvey, A. C. and Phillips, G. D. A. (1980). An algorithm for
exact maximum likelihood estimation of autoregressive-moving average models
by means of Kalman filtering, Applied Statistics pp. 311–322.

Gardner, W. A. (1994). Cyclostationarity in communications and signal process-
ing, Statistical Signal Processing Inc.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to cal-
culating marginal densities, Journal of the American Statistical Association
85: 398–409.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and
Machine Intelligence 6: 721–741.

Gilks, W., Best, N. and Tan, K. (1995). Adaptive rejection metropolis sampling
within Gibbs sampling, Applied Statistics pp. 455–472.

Gilks, W. R. and Berzuini, C. (2001). Following a moving target: Monte Carlo
inference for dynamic Bayesian models, Journal of the Royal Statistical Society,
B 63: 127–146.

194

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S. and
Brilliant, L. (2009). Detecting influenza epidemics using search engine query
data, Nature 457: 1012–1014.

Givens, G. H. and Hoeting, J. A. (2005). Computational Statistics, John Wiley
and Sons.

Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach
to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings Part F:
Communications, Radar and Signal Processing 140(2): 107–113.

Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. and Cohen, J. D.
(2001). An fMRI investigation of emotional engagement in moral judgement,
Science 293: 2105–2108.

Greicius, M. D., Krasnow, B., Reiss, A. L. and V, M. (2003). Functional connec-
tivity in the resting brain: a network analysis of the default mode hypothesis,
Proceedings of the National Academy of Sciences 100(1): 253–258.

Greicius, M. D., Supekar, K., Menon, V. and Dougherty, R. F. (2009). Resting-
state functional connectivity reflects structural connectivity in the default mode
network, Cerebral cortex 19(1): 72–78.

Hakenewerth, A. M., Waller, A. E., Ising, A. I. and Tintinalli, J. E. (2009).
North Carolina Disease Event Tracking and Epidemiologic Collection Tool
(NC DETECT) and the National Hospital Ambulatory Medical Care Survey
(NHAMCS): comparison of emergency department data, Academic Emergency
Medicine 16(3): 261–269.

Hartigan, J. A. and Wong, M. A. (1978). A K-means clustering algorithm, Applied
Statistics 28: 100–108.

Harville, D. A. (1977). Maximum likelihood approaches to variance component
estimation and to related problems, Journal of the American Statistical Asso-
ciation 72(358): 320–338.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications, Biometrika 57: 97–109.

Haykin, S. S. (2001). Kalman filtering and neural networks.

Heffernan, J. M., Smith, R. J. and Wahl, L. M. (2005). Perspectives on the basic
reproductive ratio, Journal of the Royal Society Interface 2(4): 281–293.

Henning, K. J. (2004). Overview of syndromic surveillance. What is syndromic
surveillance, MMWR Morb Mortal Wkly Rep 53 (Suppl)(Suppl): 5–11.

195

Ho, M.-H. R., Ombao, H. and Shumway, R. (2005). A state-space approach to
modelling brain dynamics, Statistica Sinica 15: 407–425.

Hodges, J. S. and Reich, B. J. (2010). Adding spatially-correlated errors can mess
up the fixed effect you love, The American Statistician 64(4): 325–334.

Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection
in small samples, Biometrika 76: 297–307.

Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series
with missing observations, Technometrics 22(3): 389–395.

Kalman, R. (1960). A new approach to linear filtering and prediction problems,
Transactions of the ASME, Ser. D, Journal of Basic Engineering 82: 35–45.

Kiebel, S. J. and Holmes, A. P. (2007). The general linear model, in K. J. Friston,
J. T. Ashburner, S. J. Kiebel, T. E. Nichols and W. D. Penny (eds), Statistical
parametric mapping: The analysis of functional brain images, Academic Press,
London.

King, A. A., Ionides, E. L., Breto, C., Ellner, S. P., Ferrari, M. J., Kendall, B. E.,
Lavine, M., Nguyen, D., Reuman, D. C., Wearing, H. and Wood, S. N. (2014).
Statistical inference for partially observed Markov processes. R package version
0.49-2.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear
state space models, Journal of Computational and Graphical Statistics 5(1): 1–
25.

Leonski, B., Baxter, L. C., J., K. L., Maisog, J. and Debbins, J. (2008). On the
performance of autocorrelation estiamtion algorithms for fMRI analysis, IEEE
Journal of Selected Topics in Signal Processing 2(6): 828–838.

Liu, J. and West, M. (2001). Combined parameter and state estimation in
simulation-based filtering, in A. Doucet, J. F. G. De Freitas and N. J. Gor-
don (eds), Sequential Monte Carlo Methods in Practice, Springer-Verlag, New
York, pp. 197–217.

Liu, J. S., Chen, R. and Wong, W. H. (1998). Rejection control and se-
quential importance sampling, Journal of the American Statistical Association
93(443): 1022–1031.

Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time series
models, Biometrika 65: 297–303.

Lloyd, D. (2002). Functional MRI and the study of human consciousness, Journal
of Cognitive Neuroscience 14: 818–831.

196

Locasio, J. J., Jennings, P. J., Moore, C. I. and Corkin, S. (1997). Time series
analysis in the time domain and resampling methods for studies of functional
magnetic resonance brain imaging, Human Brain Mapping 5: 168–193.

Logothetis, N. K. (2003). The underpinnings of the bold functional magnetic
resonance imaging signal, Journal of Neuroscience 23: 3963–3971.

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. and Oeltermann, A. (2001).
Neurophysiological investigatiomn of the basis of the fMRI signal, Nature
412: 150–157.

Ludkovski, M. and Niemi, J. (2010). Optimal dynamic policies for influenza man-
agement, Statistical Communications in Infectious Diseases.

Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W.-L. and Nichols, T. E. (2006).
Non-white noise in fMRI: Does modelling have an impact?, Neuroimage 29: 54–
66.

Luo, W.-L. and Nichols, T. E. (2003). Diagnosis and exploration of massively
univariate neuroimaging models, NeuroImage 19: 1014–1032.

Mart́ınez-Beneito, Conesa, D., López-Qúılez, A. and López-Maside, A. (2008).
Bayesian Markov switching models for the early detection of influenza epi-
demics, Statistics in Medicine 27(22): 4455–4468.

Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P. and Lancaster, J. (1995). A
probabilistic atlas of the human brain: theory and rationale for its development.
The International Consortium for Brain Mapping (ICBM), NeuroImage 2: 89–
101.

Merl, D., Johnson, L., Gramacy, R. and Mangel, M. (2009a). A statistical frame-
work for the adaptive management of epidemiological interventions, PLoS One
4(6): e5807.

Merl, D., Johnson, L. R., Gramacy, R. B. and Mangel, M. (2009b). A statistical
framework for the adaptive management of epidemiological interventions, PloS
One 4(6): e5807.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.
(1953). Equation of state calculations by fast computing machines, The Journal
of Chemical Physics 21(6): 1087–1092.

Mills, C. E., Robins, J. M. and Lipsitch, M. (2004). Transmissibility of 1918
pandemic influenza, Nature 432: 904–906.

197

Neill, D., Moore, A. and Cooper, G. (2006). A Bayesian spatial scan statistic,
in Y. Weiss, B. Schölkopf and J. Platt (eds), Advances in Neural Information
Processing Systems 18, MIT Press, Cambridge, MA, pp. 1003–1010.

Niemi, A. J. (2012). smcUtils: Utility functions for sequential Monte Carlo. R
package version 0.2.2.

Nili, H., Wingfield, C., Walther, A., Su, L. and Marslen-Wilson, W. (2014). A
toolbox for representational similarity analysis, PLoS Computational Biology.

Norman, K. A., Polyn, S. M., Detre, G. J. and Haxby, J. V. (2006). Beyond mind
reading: multi-voxel pattern analysis of fMRI data, Trends in cognitive sciences
10(9): 424–430.

Novozhilov, A. S. (2008). On the spread of epidemics in a closed heterogeneous
population, Mathematical Biosciences 215(2): 177–185.

O’Hagan, A. (1994). Bayesian inference, Kendall’s Advanced Theory of Statistics
2B, 2 edn, Halsted.

Ovaskainen, O. and Meerson, B. (2010). Stochastic models of population extinc-
tion, Trends in Ecology and Evolution 25(11): 643–652.

Pagan, A. (1979). Some identification and estimation results for regression models
with stochastically varying coefficients, Journal of Econometrics 13: 341–363.

Penny, W. D., Ashburner, J. T., Kiebel, S. J. and Nichols, T. E. (2011). Statisti-
cal Parametric Mapping: The Analysis of Functional Brain Images, Academic
Press.

Petris, G., Petrone, S. and Campagnoli, P. (2009). Dynamic linear models,
Springer.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-Plus,
Springer-Verlag New York, LLC.

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: auxiliary particle
filters, Journal of the American Statistical Association 94: 590–599.

Plummer, M. (2005). Output analysis and diagnostics for MCMC. R package
version 0.10-3.

Poldrack, R. A., Mumford, J. A. and Nichols, T. E. (2011). Handbook of Functional
MRI Data Analysis, Cambridge University Press.

Purdon, P. L. and Weisskoff, R. M. (1998). Effect of temporal autocorrelation due
to physiological noise and stimulus paradigm on voxel-level false-positive rates
in fMRI, Human Brain Mapping 6: 239–249.

198

R Core Team (2013). R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Randal, D., Cappé, O. and Moulines, E. (2005). Comparison of resampling
schemes for particle filtering, Proceedings of the 4th International Symposium
on Image and Signal Processing and Analysis, pp. 64–69.

Richter, W. and Richter, M. (2003). The shape of the fMRI BOLD response
in children and adults changes systematically with age, NeuroImage 20: 1122–
1131.

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, 2 edn,
Springer Inc.

Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and
optimal scaling of random walk Metropolis algorithms, The Annals of Applied
Probability 7(1): 110–120.

Sakamoto, Y., Ishiguro, M. and Kitagawa, G. (1986). Akaike information criterion
statistics, Dordrecht, The Netherlands: D. Reidel.

Schwarz, G. (1980). Estimating the dimension of a model, Annals of Statistics
6: 461–464.

Shaman, J. and Karspeck, A. (2012). Forecasting seasonal outbreaks of influenza,
Proceedings of the National Academy of Sciences 109(50): 20425–20430.

Sheinson, D. M., Niemi, J. and Meiring, W. (2014). Comparison of the perfor-
mance of particle filter algorithms applied to tracking of a disease epidemic,
Mathematical Biosciences 255: 21–32.

Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis and Its Applica-
tions: With R Examples, Springer Science+ Business Media.

Skvortsov, A. and Ristic, B. (2012). Monitoring and prediction of an epidemic
outbreak using syndromic observations, Mathematical Biosciences 240(1): 12–
19.

Smith, M. A., Shneiderman, B., Milic-Frayling, N., Mendes Rodrigues, E., Barash,
V., Dunne, C., Capone, T., Perer, A. and Gleave, E. (2009). Analyzing (so-
cial media) networks with NodeXL, In Proceedings of the Fourth International
Conference on Communities and Technologies pp. 255–264.

Storvik, G. (2002). Particle filters in state space models with the presence of un-
known static parameters, IEEE Transactions on Signal Processing 50(2): 281–
289.

199

Stroud, P. D., Sydroiak, S. J., Riese, J. M., Smith, J. P., Mniszewski, S. M.
and Romero, P. R. (2006). Semi-empirical power-law scaling of new infection
rate to model epidemic dynamics with inhomogeneous mixing, Mathematical
Biosciences 203: 301–318.

Sugiura, N. (1978). Further analysis of the data by Akaike’s information criterion
and the finite corrections, Commun. Statist, A, Theory Methods 7: 13–26.

Unkel, S., Farrington, C., Garthwaite, P. H., Robertson, C. and Andrews, N.
(2012). Statistical methods for the prospective detection of infectious disease
outbreaks: a review, Journal of the Royal Statistical Society: Series A (Statis-
tics in Society) 175(1): 49–82.

van Herwaarden, O. A. and Grasman, J. (1995). Stochastic epidemics: Major
outbreaks and the duration of the endemic period, Journal of Mathematical
Biology 33(4): 581–601.

Wagner, M., Moore, A. and Aryel, R. (2006). Handbook of Biosurveillance, Else-
vier.

Wand, M. and Ripley, B. (2006). Kernsmooth: Functions for kernel smoothing
for wand & jones (1995), R package version pp. 2–22.

West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models,
2nd edn, Springer-Verlag Inc, New York.

Wilson, A. G., Wilson, G. D. and Olwell, D. H. (2006). Statistical Methods in
Counterterrorism: Game Theory Modeling Syndromic Surveillance and Biomet-
ric Authentication, Springer.

Woolrich, M. M., Ripley, B. D., Brady, M. and Smith, S. M. (2001). Tempo-
ral autocorrelation in univariate linear modeling of fMRI data, Neuroimage
14: 1370–1386.

Woolrich, M. W., Jenkinson, M., Brady, J. M. and Smith, S. M. (2004). Fully
bayesian spatio-temporal modeling of fmri data, IEEE Transactions on Medical
Imaging.

Worsley, K. J. (1995). Estimating the number of peaks in a random field using the
Hadwiger characteristic of excursion sets with applications to medical images,
Annals of Statistics 23: 640–669.

Worsley, K. J. and Friston, K. J. (1995). Analysis of fMRI time-series revisited -
again, Neuroimage 2: 173–181.

200

Worsley, K. J., Evans, A. C., Marrett, S. and Neelin, P. (1992). A three-
dimensional statistical analysis for rCBF activation studies in human brain,
Journal of Cerebral Blood Flow and Metabolism 12: 900–918.

Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J. and Evans,
A. C. (1996). A unified statistical approach for determining significant signals
in images of cerebral activation, Human Brain Mapping 4: 58–73.

Zhang, L., Guindani, M., Versace, F. and Vannucci, M. (2014). A spatio-temporal
nonparametric Bayesian variable selection model of fmri data for clustering
correlated time courses, NeuroImage 95: 162–175.

Zhang, S. (2011). Estimating transmissibility of seasonal influenza virus by surveil-
lance data, Journal of Data Science 9: 44–64.

Zhou, Y., Johansen, A. M. and Aston, J. A. (2013). Towards automatic model
comparison an adaptive sequential Monte Carlo approach, arXiv preprint.

201

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	List of Notation and Terminology
	Introduction
	Models
	State-space models
	Model for tracking an epidemic
	SIR model
	Syndromic surveillance data

	Dynamic linear models (DLMs)
	First-order DLM with common variance factor
	Regression with ARMA errors
	Dynamic regression

	Sequential estimation

	Methods
	Markov chain Monte Carlo (MCMC) algorithms
	MCMC applied to epidemic model
	MCMC applied to dynamic regression

	Particle filtering
	Bootstrap filter (BF)
	Auxiliary particle filter (APF)
	Kernel density particle filter (KDPF)
	Resample-move algorithm (RM)
	Particle learning (PL)

	Resampling
	Model comparison
	Particle MCMC

	Simulation study: tracking a disease epidemic
	Simulated epidemic data
	Particle filter runs
	Comparison of particle filter algorithms under uniform priors
	Illustration of the negative impact of priors with truncated support
	Comparison of resampling schemes
	Discount factor
	Comparison with MCMC
	Additional Unknown Parameters
	Discussion

	Simulation study: SMC model comparison of local level DLMs
	Simulated data and analytical forms for estimation
	Estimation using particle filters
	Comparing models with varying signal-to-noise ratios

	Statistical analysis of fMRI data
	Overview of fMRI
	The haemodynamic response
	The scanning session
	The correlation-based GLM approach
	Word recognition task

	Temporal autocorrelation
	Exploration of ARMA models
	False positive and true positive rates
	Testing independence of residuals

	Fitting dynamic regression models
	Identifiability of dynamic regression models
	Fitting word recognition data

	Comparing dynamic regression models using particle learning
	Analyzing simulated fMRI data using particle learning
	Distinguishing dynamic regression models using particle learning
	Sensitivity of the marginal likelihood to priors
	Comparing posterior model probabilities using simulated fMRI data
	Comparing models for word recognition data using particle learning

	Discussion

	Future work
	Bibliography

