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Abstract of the Dissertation

Inference Processing and Error Recovery

in Sentence Understanding

by

Kurt Paul Eiselt

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1989

Professor Richard H. Granger, Jr., Chair

Solving the mysteries of human language understanding inevitably requires an

answer to the question of how the language understander resolves ambiguity, for

human language is certainly ambiguous. But ambiguity leads to choices between

possible explanations, and choice opens the door for mistakes. Unless we are willing

to believe that the human language understander always makes the correct choice,

any explanation of ambiguity resolution must be considered incomplete if it does not

also account for recovery from an incorrect decision.

This dissertation describes a new approach to lexical ambiguity resolution dur

ing sentence understanding which is implemented in a program called ATLAST. Many

computational models of natural language understanding have dealt with lexical am

biguity resolution, but ATLAST is one of the few models to address the associated

problem of error recovery. ATLAST's ability to recover from an incorrect lexical in

ference decision stems from its ability to retain unchosen word meanings for a period

of time after it selects the apparently context-appropriate meaning of an ambigu

ous word. The short-term retention of possible lexical inferences permits ATLAST

XIV
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to recover from incorrect decisions without backtracking and reprocessing text, and

without keeping a record of possible choices indefinitely.

The principle of retention provides a solution to the problem of error recovery

which is compatible with current psycholinguistic theories of lexical disambiguation.

Furthermore, the existence of some form of retention in lexical disambiguation is sup

ported by the results of experiments with human subjects. This dissertation includes

a discussion of these results and speculation on how the principle of retention might

be extended to account for recovery from erroneous higher-level inference decisions.



Chapter 1

Scope of the Dissertation

1.1 The paradox of ambiguity

Ambiguity is essential to efficient communication with natural languages. Were

we to communicate with our fellow natural language users so precisely that no ambi

guity existed, we would find that communication was actually impaired by the myriad

of tediousdetails which would necessarily be explicitly expressed in our text or speech.

We economize by eliminating much of what could be said or written and rely on the

listener or reader to supply the missing knowledge that is necessary to extract the

intended meaning. We can never be sure, however, that the understander will supply

the appropriate knowledge and arrive at the intended interpretation. Therein lies

the paradox of ambiguity in language: we rely on ambiguity to make communication

more efficient by decreasing the quantity of information being transmitted, but by

doing so we also increase the potential for misunderstanding.

Fortunately, the human language understanding mechanism is very good at

dealing with ambiguity. In fact, it is so good that we are seldom conscious that there

is any ambiguity at all, although our daily communication is laden with multiple

interpretations. This dissertation presents a theory of some of the processes involved
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in coping with ambiguity in language and a computational model called ATLAST

which embodies that theory.

Ambiguity in language takes many forms, but the theory presented herein deals

with only a subset of them. For example, the theory does not address problems of

pronominal or syntactic ambiguity. The theory deals only with two types of ambi

guity: lexical ambiguity, which arises from a word having more than one meaning,

and pragmatic ambiguity, which occurs when a text implies more than one plausible

sequence of events or state of affairs.

One example of lexical ambiguity comes from Swinney (1979):

Text 1: Rumor had it that, for years, the government building had been plagued
with problems. The man was not surprised when he found several bugs
in the corner of his room.

In this case, the language understander must decide whether the word "bugs" refers to

insects or hidden microphones; usually the understander chooses the latter meaning

because it seems more appropriate in the context established by the words "govern

ment building."

Pragmatic ambiguity, on the other hand, forces the language understander to

make what ostensibly is a different kind of decision, as in this text from Schank and

Riesbeck (1981):

Text 2: John went to a restaurant. He ordered chicken. He left a large tip.

Did John eat the chicken he ordered? Our knowledge of dining in restaurants tells us

that he probably did so, though we can conceive of circumstances, such as a sudden

illness or loss of appetite, which are not contradicted by the above story and which

suggest the possibility that John did not eat the chicken.



3

ATLAST is able to make both kinds of decisions using a single mechanism for

resolving ambiguity. In doing so, ATLAST accounts for the findings of psychologi

cal experiments investigating the nature of lexical access and disambiguation while

accommodating recent theories about pragmatic inferences.

Many of the computational models of language understanding which have been

proposed over the years are reviewed in the next chapter. These offerings represent

only a small fraction of the natural language understanding systems which have been

constructed in recent years, which suggests that a considerable amount of effort has

been invested in solving the problem of ambiguity resolution. Many of these systems

attack the problemof lexical ambiguity but ignore pragmatic ambiguity, while others

deal with pragmatic ambiguity and ignore lexical ambiguity. ATLAST is one of the

few systems which is capable of dealing with both kinds of ambiguity.

Another feature which sets ATLAST apart from other models is that it rec

ognizes that a language understander makes mistakes. With very few exceptions,

models of language understanding have assumed that although the input may be

ambiguous, the understander always makes the correct decision the first time. This

is of course false, as is demonstrated by the following text (inspired by Text 1):

Text 3: Officials at the U.S. Embassy in Moscow have called for a specialist to
rid the new building of bugs. Secretaries there have reported seeing
cockroaches in the employees' cafeteria.

Considering recent news reports about problems with the new U.S. Embassy building

in Moscow (and the fact that the discussion of Text 1 above has biased the reader

even if he or she is unaware of the problems), it is difficult to interpret the word

"bugs" in Text 3 as meaning anything but hidden microphones on the first reading.

By the time the reader sees the word "cockroaches" in the second sentence, however.
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the reader must revise the interpretation by supplanting the original choice with the

insect meaning of "bugs."

ATLAST explains this ability to recover from an incorrect choice of word mean

ing with a process called conditional retention in which all meanings ofan ambiguous

word are retrieved, the meaning most appropriate to the preceding context is chosen,

and the other meanings are temporarily retained. If later text contradicts the ini

tially chosen meaning, the retained meanings are reconsidered in light of the updated

context and a new meaning is selected. The conditional retention theory, which is

supported byexperimental evidence, is further extended in this dissertation to explain

recovery from erroneous choices in resolving pragmatic ambiguity and to account for

some individual differences in pragmatic ambiguity resolution.

1.2 Goals of the dissertation

As noted above, a great deal of effort has been devoted to solving the prob

lem of ambiguity resolution in language understanding. One very simple and purely

practical reason for this is that ambiguity is rampant in language, so understanding

language requires the ability to resolve ambiguity. Another reason for addressing the

problemof ambiguity resolution, one which motivates this dissertation, is that under

standing ambiguity resolution may help us understand human cognitive processes.

Because the language understanding process lies "beneath our conscious aware

ness" (Carroll, 1986, p. 4), it does not readily lend itself to introspection. Thus, other

investigative methods must be employed to gain insight intolanguage understanding.

Building a computational model of language understanding offers the opportunity to

refine psychological theories by translating the theories into executable procedures.
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Psychologists generally look to data from experiments with human subjects to de

termine the correctness of a theory, but a working computational model can serve

to establish in advance the plausibility of that theory if the behavior of the model

compares favorably to human behavior. The model-building process may also lead

to predictions that are more specific and more easily tested through experiments

with human subjects than those which may arise in the absence of a computational

model. Furthermore, once built, a computational model provides a readily accessible

framework for exploring changes to the theory before running new experiments with

human subjects.

Although the techniques used in ATLAST may be useful in practical applica

tions of language understanding systems, the goals that motivate the construction

of this model arise from a desire to shed light on the human understanding process.

These goals are:

• The model should demonstrate the plausibility of conditional retention and the
associated mechanism for recovery from incorrect choice of word meaning as a
theory of lexical ambiguity resolution in humans.

• The model should demonstrate the plausibility of a uniform theory of inference
processing which arises from extending the theory of lexical ambiguity resolu
tion to inference decision processes at the pragmatic level of understanding.

• The model should serve as the source of ideas, predictions, and constraints for
experimental work with human subjects.

In deciding whether ATLAST satisfies these goals, one must consider the simplifying

assumptions that have been made in constructing the model. These assumptions are

described in the following section.



1.3 ATLAST: Assumptions and overview

A model of any process carries with it a set of assumptions which make life

easier for the model builder. One frequent assumption is that the process being

modeled can be isolated from its environment in such a way that the model still

provides useful information. Without this assumption, the complexity of the process

and its interaction with its environment may be so great as to prevent the building of

a model. This is certainly the case with models of language understanding: modelers

often assume that language understanding can be separated from other cognitive

processes. Furthermore, they often assume that individual components of language

understanding can be isolated from other components with little or no detrimental

effect on the model. Several assumptions of this nature have been made in building

ATLAST:

• ATLAST is a language understander that exists in isolation from other cogni
tive processes. For example, there is no phonological or morphological analy
sis; strings from the input stream map directly onto corresponding strings in
ATLAST's lexicon.

• ATLAST is a model of automatic or unconscious processes. It is not intended
as an explanation of what happens when the text is so confusing or the con
tradictions so severe that disambiguation or error recovery requires attentional
problem solving.

• ATLAST contains processes for both syntactic and semantic analysis, but the
emphasis is on the latter. ATLAST does not address issues of syntactic am
biguity resolution, recovery from an incorrect syntactic decision, or the degree
of interaction between syntactic and semantic processing. On the other hand,
ATLAST is designed so that these issues may be explored in the future without
drastic architectural revisions.

The assumptions listed above help to describe what ATLAST is not, but there

are other assumptions that influence what ATLAST is. For instance, ATLAST as

sumes that semantic knowledge is organized in a relational network like that described
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by Quillian (1968) and later elaborated by by Collins and Loftus (1975). This mem

ory consists of nodes and links; the nodes represent objects, events, or states, and

the links represent relationships between the nodes. The details of the relationships

stored in this memory are generally unimportant to ATLAST except that relation

ships of causality, intentionality, and abstraction are identifiable.

The assumption about memory in turn influences what constitutes an interpre

tation of a text. ATLAST's interpretation of a text consists of two parts: a set of

connections or paths in memory that ties together all open class words^ from the in

put text, and a set of pointers to nodes in memory that imposes a temporal ordering

on the events and states of the text and indicates which nodes fill the thematic roles

for those events and states. For example, when given this input:

John went to the pawnshop.
John sold a lamp.

ATLAST will determine that these paths in memory best explain the relationships

between the meanings of the words in the text:

Path from LAMP to SELL

LAMP is an instance of OBJECT

OBJECT is a role-filler of POSSESS-OBJECT

POSSESS-OBJECT is a precondition of SELL
Path from PAWNSHOP to GO

PAWNSHOP is an instance of BUSINESS

BUSINESS can be viewed as BUYER

BUYER is a role-filler of BE-AT-BUYER

BE-AT-BUYER is an instance of BE-AT-PLACE

^Nouns, verbs, adjectives, and adverbs are examples of open classes of words. The name derives
from the fact that the number of members of these classes is unbounded. New names for objects,
actions, and properties can be invented by generating new words or by adding endings to existing
words. Closed classes, on the other hand, contain a fixed number of members; additions to the class
occur rarely if at all. Prepositions and conjunctions are examples of closed classes. (Winograd,
1983)



BE-AT-PLACE has the precondition GO
Path from SELL to JOHNO

SELL is a plan of A-MONEY
A-MGNEY is a result of POOR-STATE

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Path from SELL to GO

SELL has the precondition BE-AT-BUYER
BE-AT-BUYER is an instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO

It will also determine that the thematic roles of the events explicitly stated in the

input should be filled as follows:

Event: eventO

Actor: (JOHNO)

Action: (GO)

Object: nil

Direction: (PAWNSHOP)

Event: event1

Actor: (JOHNO)
Action: (SELL)

Object: (LAMP)
Direction: nil

These two components of ATLAST's interpretation are also shown in Figure 1.1.

Finding the most explanatory set of paths is the responsibility of the semantic

analysis component, while assignment of the pointers is done by the syntactic analysis

component. Although the emphasis in this work is on semantic processing, neither

component takes a back seat to the other when ATLAST is interpreting a text;

both components contribute to a complete understanding of the input. The two

components of the interpretation are generated through the combined efforts of three

processes running concurrently: the capsulizer, the proposer, and the filter. The

relationships between these components are shown in Figure 1.2.
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eventO

actor: JohnO

action: go
direction: pawnshop

eventl

actor: JohnO
action: sell

object: lamp

possess-

object

object

lamp

sell

be-at-

buyer

buyer

JohnO

generic-

human

human-

icon-stati

poor-state

A-money

possess

be-at-

place

money

business

pawnshop

steal

be-at-

victim

victim

possess-

weapon

weapon

gun

Figure 1.1: The two components of ATLAST's interpretation: event chain and active
paths.
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chain

Figure 1.2: Relationships between ATLAST's processes.

The input is read oneword at a time by thecapsulizer. Upon reading a word, the

capsulizer finds the word in ATLAST's lexicon and activates the meanings associated

with the word. These activated word senses are the starting points for the marker-

passing search carried out by another process, the proposer, which is introduced

below. In addition to initializing the search for connecting paths in memory, the

capsulizer accumulates the syntactic category information it retrieves from the lexicon

and makes decisions about syntactic relationships within the constituent phrases of

the input text. These intra-phrasal syntactic decisions are combined with pointers

to the word senses activated by the words in the phrase and passed as capsules of

information to a third process, the filter, which is also introduced below. If a word

activates more than one word-sense, the pointers to the multiple word-senses are all

passed on to the filter, which will eventually select the most plausible word-sense.
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The proposer is a breadth-first search mechanism that uses marker-passing to

traverse the links between the nodes in memory and find connections between word-

senses which have been activated by the capsulizer. The proposer maintains pointers

to the most recently activated nodes in memory, and to the word-senses which are

the origins of the spreading activation search. Each time the proposer is invoked,

it traverses the links leading away from the recently activated nodes, activates the

adjacent nodes at the end of those links, and updates its list of pointers. If the spread

of activation from one point of origin intersects the spread of activation from another

point of origin, then the proposer has found some plausible relationship, by way of

links and nodes, between two (and possibly more) of the word-senses activated by

the input text. The proposer then passes information about this newly-discovered

pathway to the filter.

The proposer is implemented in ATLAST as a separate process, but from a the

oretical perspective it might be more appropriately viewed as an emergent property

of human memory organization. Because computer memory works differently from

human memory, it was necessary to provide a separate process to make the spreading

activation possible.

The filter performs three functions, the first of which is inter-phrasal syntax. As

capsules are passed from the capsulizer to the filter, the filter makes decisions about

the relationships between the phrases represented by the capsules. Inter-phrasal syn

tax rules enable the filter to assign fillers to the various thematic roles such as actor,

action, and object. The filter's second function is the evaluation of explanatory paths

found by the proposer. When two competing paths are proposed (e.g., different paths

connecting the word-senses of two words from the input text), the filter attempts to

select the path more appropriate to the existing context through the application
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of inference evaluation metrics. Finally, the filter is also responsible for correcting

ATLAST's interpretation if it discovers that a previously chosen path is contradicted

by later text.

1.4 Overview of the dissertation

Marr (1982) has proposed three levels at which a machine performing an infor

mation processing task must be understood:

• Computational theory; The goal of the computation, the reason for the
computation, and the logic of the strategy by which it can be performed.

• Representation and algorithm: The implementation of the computational
theory—therepresentationof the input and output, and the algorithm for trans
forming one into the other.

• Hardware implementation: The physical realization of the representation
and algorithm.

This dissertation describes a theory of ambiguity resolution and error recovery

at the level of Marr's computational theory, and a computer model called ATLAST

which corresponds to Marr's representation and algorithm level. There is no attempt

here to speculate on how the representation and algorithm might be implemented in

the hardware of the human brain.

ATLAST is only one of a number of representations and algorithms that could

serve as functional realizations of the theory described herein, so some separation

between the two levels has been maintained throughout this dissertation in order

to avoid any confusion that might be caused when the program diverges from the

theory. Maintaining this separation has led to an organization in which chapters that

concentrate on theory alternate with chapters emphasizing the program.



I
13

Chapter 2 introduces four constraints which a model oflanguage understanding

should take into account. These constraints have been derived primarily from the

results of psychological experiments on human subjects. Many previous models have

accounted for a subset of these constraints, and a number of these models are reviewed

in this chapter. ATLAST, however, is the only model which accounts for all four

constraints. Chapter 3 contains a detailed description of ATLAST's architecture,

which is directly influenced by these four constraints.

Chapter 4 explains the theory of conditional retention. Conditional retention

extends widely-accepted theories of multiple access of word meanings to account for

a human understander's ability to recover from an incorrect choice of word mean

ing without reprocessing the input. Chapter 5 illustrates how conditional retention

enables error recovery through a detailed example in which ATLAST processes a

misleading text.

Chapter 6 discusses how the theory oflexical disambiguation and error recovery

described in Chapters 4 and 5 can be extended to account for pragmatic inference

decisions. This chapter also shows how conditional retention offers an explanation of

some individual differences in pragmatic inference behavior. Examples of ATLAST

in operation using this extended theory are presented in Appendix A.

Up to this point the dissertation emphasizes how well ATLAST accounts for

experimental data on human language understanding. Chapter 7 looks at ATLAST

from another viewpoint, that ofcomputational efficiency. There have been challenges

to models using spreading activation or marker-passing suggesting that these search

mechanisms are computationally inefficient. The analysis in Chapter 7 demonstrates

that the use of computational resources can be held to an acceptable level through

the application of appropriate constraints.
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The dissertation concludes with Chapter 8. This chapter summarizes the key

points of the model, discusses someopen questions, and suggests directions for further

research within the ATLAST framework.
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Chapter 2

Constraints on Understanding

2.1 Perspectives

The artificial intelligence (AI) literaturecontains numerous examples ofdifferent

research paradigms. One informative effort to find order in this confusing assortment

of differing methodological approaches is offered by Hall and Kibler (1985). They di

vide AI research into two broad classes based on the intent of the researcher. Within

one class, called the artificial perspective, researchers are concerned with studies of

intelligent function regardless of the underlying mechanism. The other class of re

search, the natural perspective, is characterized by the investigation of human (or an

imal) cognitive phenomena. This dissertation follows the natural perspective, which

is further subdivided along methodological lines into the empirical and speculative

perspectives.^ In the empirical perspective, researchers offer explicit evidence of the

correspondence between the behavior of their models and the natural subjects being

modeled. Researchers who follow the speculative approach make less rigorous efforts

to provide empirical evidence supporting their models. Hall and Kibler are careful to

note, however, that the empirical and speculative perspectives do not correspond to

^The artificial perspective is also further subdivided, but the results are less relevant to the
current discussion.

15
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"careful" and "reckless" approaches. Instead, these two perspectives represent differ

ences in problem choice (narrowly-constrained, well-defined problems as opposed to

representative examplesof loosely-defined behavior), method of solution (experimen

tation and incremental modification of the model versus introspection and informal

observation), and criteria for evaluation (experimentally obtained evidence of corre

spondence between the model and the human subject versus working programs that

mimic human behavior on the examples).

Hall and Kibler also note that the different perspectives they describe are

not mutually exclusive: ideas may be shared across perspectives, and individual

researchers may freely shift between perspectives. The empirical and speculative ap

proaches can be viewed as extremes on opposite poles of a continuum of perspectives.

Thus, while ATLAST leans toward the speculative perspective, it borrows from the

empirical perspective in that constraints on the model come not only from informal

observations of human language behavior on both normal and aberrant texts but also

from the results of psycholinguistic experiments.

The observations which have been made, both formal and informal, on the be

havior of the human language understanding system are innumerable, the conclusions

drawn from many of these observations conflict with other conclusions, and no com

putational model of language understanding can be expected to account for them

all. It is not difficult, however, to construct a small subset of compatible, reasonably

well-founded observations that provide constraints on the design of natural language

understanding (NLU) models—phenomena that any computational model should be

able to explain. This chapter presents one such set of constraints, describes a number

of different language processing systems, and discusses how they fare in meeting these

constraints. These constraints are:
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• Functional independence of syntactic and semantic processing.

• Interaction between lexical and pragmatic processing.

• Multiple access of word meanings.

• Recovery from erroneous inferences.

Most of the systems presented have been offered at one time or another as models of

the human language processor, but some have not. These latter systems are included

because they occasionally provide a more accurate account of the psychological data

than their cognitively-motivated counterparts.

2.2 Independence of syntax and semantics

Chomsky (1957) has noted that people are able to judge the syntactic correct

ness of sentences that are semantically anomalous, such as:

Colorless green ideas sleep furiously.

Conversely, both Charniak and Winograd have noted that people can assign

meaning to agrammatical strings of semantically related words, such eis:

Skid crash hospital. (Winograd, 1973)

Fire match arson hotel. (Charniak, 1983)

Given thesesimple observations, it would be difficult to argue against the propo

sition that syntactic and semantic processing can function independently of each

other. This is not to say that these processes must function independently or that
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they never interact. Both processes contribute to an accurate interpretation of the

input, but ifone process is unable to perform, the other proceeds on its own. Despite

theongoing debate over the degree ofinteraction between syntax and semantics (e.g.,

Garfield, 1987), an issue which will be avoided here as much as possible, the previous

examples strongly suggest that neither process need be dependent on the other.

Additional support for this proposition comes from the behavior of people with

language deficits called aphasias. Broca's aphasics, who have sustained damage to an

area in the frontal lobe ofthe left hemisphere ofthe brain (Broca's Area), demonstrate

an inability to produce a syntactically correct string of words. Wernicke's aphasics,

who suffer from damage in the temporal lobe of the left hemisphere, are able to put

together long sequences of words in many syntactic constructions, but the sequences

have no informational content (i.e., no semantic value). Because deficits in overt

speech behavior are most immediately obvious, studies of language use in aphasics

have focused on production, but a survey of the literature on language comprehen

sion in aphasics by Caramazza and Berndt (1978) finds that Broca's and Wernicke's

aphasics exhibit corresponding deficits in comprehension as well. Caramazza and

Berndt conclude that the studies they reviewed support the "functional and neuro

logical independence ofsyntacticand semantic processing in sentence comprehension"

(p. 916). Caramazza and Berndt also say the studies show that "although these pro

cesses interact with other cognitive operations (e.g., memory), they can be selectively

affected by brain damage" (p. 916). In other words, while there may be interaction

between processes, they can be forced to function independently.

Despite this evidence, many computational models of language understanding

seem to ignore the simple but important constraint offunctional independence ofsyn

tax and semantics. Many NLU systems, such as LUNAR (Woods, 1970), SHRDLU
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(Winograd, 1973), and PARSIFAL (Marcus, 1980), can be described as syntax-first

models: the system first performs a syntactic parse, followed by a semantic analysis.

While these systems separated syntactic and semantic processing, semantic analysis

wcLS dependent upon a correct syntactic parse.^

Another group of models are the conceptually-based language understanders

such as SAM (Cullingford, 1978), PAM (Wilensky, 1978), Ms. Malaprop (Charniak,

1978), and ARTHUR (Granger, 1980a). These systems also employed a two-stage

approach to text processing. The first stage was a conceptual analyzer that con

verted the input text into an intermediate representation based on low-level semantic

(i.e., lexical) and syntactic knowledge stored as word definitions. The intermedi

ate representation was then processed by a second stage using pragmatic knowledge

structures to fill out the final representation of the input. The theory behind these

conceptually-based front ends such as ELI (Riesbeck, 1975) and CA (Birnbaum k

Selfridge, 1981) is that "a separate syntactic analysis phase is unnecessary in lan

guage understanding" (Birnbaum k Selfridge, 1981, p. 325). Syntactic knowledge is

used in these systems, but it is subservient to semantic knowledge. While systems

like SAM and PAM demonstrate that some texts can be effectively processed under

this assumption, these systems are unable to determine syntactic correctness without

a viable semantic evaluation of the input. Humans, on the other hand, demonstrate

no such lack of ability.^

The assumption of no separate syntactic analysis is carried on in the integrated

understanding models such as IPP (Lebowitz, 1980) and BORIS (Dyer, 1983). In

^SHRDLU actually interleaved syntactic and semantic processing, but the dependence ofone
process on another was there nevertheless.

^Small and Rieger's (1982) Word Expert Parser and Wilks's (1975b) Preference Semantics also
make similar assumptions about combining syntactic and low-level semantic knowledge in word
definitions, although they do not address therole ofpragmatic knowledge inlanguage understanding.
Lytinen (1984) and Marcus (1984) present additional arguments against such assumptions.
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these systems, the two stages are fused into one process, and lexical and pragmatic

analysis is performed incrementally as the individualwords of the input text are read.

Still, syntax plays a subservient role in these models.

A different realization of the "no separate syntax" assumption is seen in an in

tegrated model of human language understanding called DMAP (Riesbeck & Martin,

1986). DMAP (Direct Memory Access Parsing) uses marker-passing to search an as

sociative network for semantic relations between the words of an input text. Unlike

ATLAST, however, DMAP's syntactic knowledge is embedded in its semantic net

work. Thus, marker-passing in DMAP finds syntactic as well as semantic relation

ships, and the distinction between syntactic correctness and semantic validity is lost.

Riesbeck and Martin acknowledge that DMAP "cannot do something [they] think

is very important for it to do, namely, recognize conceptual structures given a few

scattered key clues" (p. 223), but they offer no solution to the problem.

Another NLU system which uses marker-passing in a semantic network but de

parts from theintegrated understanding paradigm is Hirst's ABSITY (1988a, 1988b).

ABSITY (A Better Semantic Interpreter Than Yours) is a semantic interpreter which

employs an individual process or demon attached to each word of a sentence to find

that word's correct meaning and case. Ambiguity resolution is aided by selectional

restrictions, syntactic cues, or the discovery of aissociations with other words in the

sentence via marker-passing. ABSITY runs concurrently with a PARSIFAL-like syn

tactic parser (Marcus, 1980) and Hirst's design enforces modularity of the respective

knowledge sources. ABSITY diverges from our set of constraints, however, in that

it is dependent upon its parser for input and cannot make an independent semantic

evaluation of an input string.
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An attempt to merge conceptually-based understanding with modularity of syn

tactic and semantic knowledge sources is offered by MOPTRANS (Lytinen, 1984;

1986). MOPTRANS uses an autonomous set of rules that specify how sequences of

syntactic constituents can be attached to each other. However, while the knowledge

sources are independent, once again the processing is not. Syntactic rules are applied

only "if the syntactic attachments that they make are judged by the parser's seman

tic analyzer to be semantically appropriate." (Lytinen, 1986, p. 576). MOPTRANS

finds possible semantic connections between concepts, chooses the best one, then

looks at the syntactic knowledge bcise for a rule that supports this choice. If no

syntactic rule supports the choice, that choice is removed from the list of possi

ble connections, and the process repeats. This sequence continues until no possible

semantic connections remain. At this point, a syntactic rule for making syntactic at

tachments is selected by making an informed guess. Consequently, despite the mod

ularity of knowledge sources, there is a processing dependency established: semantic

connections cannot be inferred if no syntactic rule exists to support them. What hap

pens when MOPTRANS is presented with the agrammatical but conceptually-related

string of words? It cannot make sense of it syntactically, which is desirable, nor can it

make sense of it semantically, which is undesirable since humans do appear to make

those inferences despite the lack of syntactic correctness.'* To be fair, Lytinen makes

no claims about MOPTRANS's relevance as a cognitive model of human language

understanding. Yet from a cognitive perspective, MOPTRANS is interesting because

it addresses some of the problems of the conceptually-based understanders.

''Lytinen (1984) briefly describes a solution to this problem, inspired by Charniak's PARAGRAM
parser (Charniak, 1981), in which the satisfaction constraints on syntactic rule selection are relaxed.
The choice of a syntactic rule then is no longer based on the result of a yes/no test, but the degree
to which one rule supports the proposed semantic connection better than the other rules.
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2.3 Lexical and pragmatic processes interact

A second constraint suggested by experimental evidence is that lexical inference

decisions immediately influence pragmatic inference decisions, and that pragmatic de

cisions in turn immediately influence lexical ones. Researchers would appear to be

in general agreement that there is a dependent relationship between the two lev

els of processing: most if not all models of language understanding that deal with

pragmatic inference decisions base those decisions either directly or indirectly on de

cisions at the lexical level. Infact, it is difficult to imagine a useful model of language

understanding which did not make that assumption. However, many models of lan

guage understanding have ignored theeffect that thechoice of higher-level knowledge

structures has on word sense disambiguation.

Another aspect of the interaction between lexical and pragmatic inference pro

cessing is that the effects of decisions at one level are immediately felt at the other

level. Amore general description of this phenomenon is offered by Just and Carpenter

(1980). They call it the immediacy assumption:

... a reader tries to interpret each content word of a text as it is encoun
tered, even at the expense of making guesses that sometimes turn out
to be wrong. Interpretation refers to processing at several levels such as
encoding the word, choosing one meaning of it, assigning it to its ref
erent, and determining its status in the sentence and in the discourse.
The immediacy assumption posits that the interpretations at all levels of
processing are not deferred; they occur as soon as possible (p. 330)

The immediacy assumption is supported by investigations of eye movements

of human readers, as is the assumption of pragmatic influence on lexical decisions.

These studies show that a reader's eyes will fixate longer on ambiguous words than on

unambiguous words (Carpenter & Daneman, 1981), that a reader's eyes will regress
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or backtrack immediately when the reader encounters text that contradicts a previ

ous lexical decision instead of continuing through the text (Carpenter & Daneman,

1981), and that gaze duration will increase on a word that can be integrated into

the context established by a previously read sentence (Just & Carpenter, 1978). The

increased gaze duration on an ambiguous word suggests that the language processor

has stopped to resolve the ambiguity before processing further text. Similarly, the

regression caused by the contradiction and the increased fixation on a word that can

be integrated into the existing context both support the contention that the human

language processor tries to complete current processing tasks before moving on to

new ones.

The strength of this supporting evidence is questionable, however, as it rests

on another assumption, the eye-mind assumption. According to Just and Carpenter

(1980), the eye-mind assumption is that the gaze duration on a newly fixated word

is directly proportional to the amount of time required to process that word. Some

researchers argue that the connection between eye movements and language processes

is less direct than Just and Carpenter suggest: the relationship between eye move

ments and language processes may be mediated by the filling and emptying of an

input buffer (Shebilske & Fisher, 1983).

Further independent support for both the immediacy assumption and the eye-

mind assumption comes from a number ofstudies oflexical access and disambiguation

which indicate that reading an ambiguous word triggers the retrieval ofall meanings

of that word, regardless of the context, after which the meaning most appropriate to

the context is selected very quickly, possibly within 200 milliseconds of reading the

ambiguous word (Lucas, 1983; Seidenberg, Tanenhaus, Leiman, k Bienkowski, 1982;

Simpson, 1981; Tanenhaus, Leiman, k Seidenberg, 1979).
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The immediacy assumption implies that human language understanding is per

formed in one pass of the input. On the other hand, the two-stage models, whether

syntax-first or conceptually-based, require the equivalent of two passes of the text.

With the syntax-first models, the first pass is a syntactic parse and the second pass

is a semantic analysis. In the two-stage conceptually-based models, the two passes

correspond to lexical inference processing in the first stage and pragmatic inference

processing in the second stage, as discussed above. Builders of integrated understand

ing models such as IPP and BORIS have successfully incorporated the immediacy

assumption but, as noted above and will be discussed further below, the integrated

models suffer from other problems.

2.4 Multiple access of word meanings

In his comprehensive survey of research regarding the processing of ambiguous

words, Simpson (1984) states that the main issue in this research has been the nature

of interaction between the component processes of word recognition: does context

directly influence lexical access or does it influence a postaccess decision process?

Accordingly, approaches to lexical access and disambiguation can be divided into two

classes: selective-access models and exhaustive-access models.

2.4.1 Selective-access models

Selective-access models follow the premise that the existing context predeter

mines to some extent which meanings of an ambiguous word will be retrieved when

that word is processed. Some psychological models use a terminating ordered search

in which a list of the meanings of a word is examined serially in an order determined
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by their frequencies of use (Forster, 1976; Hogaboam & Perfetti, 1975). That is, the

most frequently used meaning is recalled first and evaluated against the context. If

this meaning is appropriate, the search terminates; otherwise the next most frequently

used meaning is recalled and evaluated, and so on until an appropriate meaning is

found. Simpson calls these ordered-access models. Another type of selective-access

model is exemplified by Morton's logogen model (Morton, 1969; 1979). In this model,

each meaning of an ambiguous word is represented by a collection of attributes called

a logogen. Each logogen is sensitive to contextual influence in that it may be primed

indirectly by the processing of previous words. When the ambiguous word is pro

cessed, only those meanings whose logogens exhibit a greater degree of priming will

be recalled. Simpson refers to this type of model as a context-dependent model.

Many AI models have adopted the selective-access approach. For example,

each meaning of an ambiguous word in Riesbeck's ELI is represented by one or more

selectional restrictions called requests (Riesbeck, 1975; see also Birnbaum k Selfridge,

1981). These requests check the local context for the existence of specific words or

phrases and are executed in sequential order. If the requests for one meaning are

sufficiently satisfied, all requests representing competing meanings are de-activated,

including those not yet executed. Small and Rieger's Word Expert Parser uses a

similar technique (Small k Rieger, 1982). Wilks uses a relaxed form of selectional

restrictions in his Preference Semantics model (Wilks, 1975a). In this model, a word

meaning is represented by a set of semantic preferences. Semantic preferences are like

selectional restrictions in that they test for specific attributes in the local context,

but they need not be completely satisfied. When aji ambiguous word is processed,

the meaning with the greatest number of satisfied preferences is chosen.
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Other AI models rely on a more global context, employing contextual or scriptal

lexica in which special-purpose dictionaries are associated with pragmatic knowledge

structures (e.g., Charniak, 1981; Cullingford, 1978). Each lexicon contains only the

contextually appropriate meaning for ambiguous words that might be encountered

while processing language with that script or other pragmatic knowledge structure.

When a word is encountered by an understander, the lexica associated with the active

scripts are examined for the word and its appropriate meaning. If an appropriate

meaning is not found in the scriptal lexica, the search proceeds to a default lexicon

which contains only standard definitions.

2.4.2 Exhaustive-access models

The variations of the selective-access model suffer from the limitation that in

some situations the most appropriate meaning of an ambiguous word is never con

sidered. The ordered-access model incorrectlyassumes that the most frequently used

context-appropriate meaning will always be the correct meaning. Birnbaum (1985)

points out that the assumptions of the context-dependent model are similarly mis

guided. An ambiguous word used within a script will not always refer to the pre

determined script-specific sense of the word, and restrictions attached to individual

words select the appropriate meaning in some cases but they inevitably lead to the

selection of inappropriate meanings in other ca^es. This limitation is overcome if all

meanings of an ambiguous word are considered, as in the exhaustive-access model.

With the exhaustive-access model, all meanings of an ambiguous word are acti

vated regardless of context, after which the meaning most consistent with the context

is selected. This model is strongly supported by the results of recent experiments

(Onifer & Swinney, 1981; Seidenberg et al., 1982; Swinney, 1979; Tanenhaus et al..
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1979). There is evidence that this exhaustive-access process is sensitive to the relative

frequency of the word meanings (Lucas, 1983; Simpson & Burgess, 1985) and in some

cases is influenced by local context (Seidenberg et al., 1982), so the ordered-access

H and context-dependent models are not unfounded. Still, the exhaustive-access model
appears to be the best explanation of human lexical processing offered to date and

has been incorporated in a few computational models of language understanding.

m Charniak (1983) proposed amodel of language understanding that adheres to
the constraint of multiple access of word meanings. This model consists in part of a

marker-passer that searches for explanatory connections in a relational memory, and

a syntactic analyzer that runs in parallel with the marker-passer. These two modules

feed a semantic analyzer that constructs a representation of the input with the help

of a "path-checker" that evaluates the connections found by the marker-passer.

I

I

I

I

I

I

I

I

I
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Information about objects and actions is stored in memory as predicates. Any

given predicate can pass markers to other predicates that represent objects and ac

tions directly related to the first predicate. The marker-passing scheme provides

for multiple access of word meanings in that markers are passed to the predicates

I associated with all senses of agiven word. These word sense suggestions are sent
to the semantic analyzer at the same time that the syntactic analyzer is sending it

structural information. The semantic analyzer, assisted by the path-checker, uses

this information to make final decisions about word meanings.

In sepaxating syntactic analysis from marker-passing, Charniak imposes a re

lationship of functional independence between syntactic and semantic processing,

thereby meeting another of the constraints presented earlier in this chapter. The

architecture clearly allows for the successful processing of an agrammatical string of
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semantically related words such as "fire match arson hotel." Charniak does not di

rectly address the issue of semantically anomalous sentences such as "Colorless green

ideas sleep furiously," but there is nothing in Charniak's proposed architecture to

suggest that such strings could not be processed. In addition, Charniak's proposal

meets the constraint of interaction of lexical and pragmatic processing in that lexical

and pragmatic information are represented in a single relational memory and all rel

evant inference decisions are made by the combined action of the semantic analyzer

and path-checker.

As Charniak's theory evolved into a working program (Charniak, 1986), his

proposed architecture had changed somewhat, and the system is now called Wimp

(Wholly integrated marker passer). He describes the path checker as a resolution-

based theorem prover. A path, which consists of terms for nodes and first order

predicate calculus formulas for links, is now considered to be the basis of a proof

that the terms or words at either end of the path actually exist in the story being

processed. The only resolvents used by the theorem prover are those contained in

paths found by the marker-passer. This constrains the search for resolvents and

avoids the combinatorial explosion which is typically associated with resolution-based

theorem provers. All semantic processing is done by the marker-passer and the path

checker, and the separate component which built a semantic representation of the

text in the earlier version of the theory is now eliminated. The syntactic component

is still functionally independent of the semantic processes, so Wimp still conforms to

that constraint as well as those of lexical/pragmatic interaction and multiple access

of word meanings.

In describing Wimp, Charniak professed some doubt about how well a lan

guage understanding system based on marker-passing would perform with a much
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larger knowledge base (Charniak, 1986). Accordingly, Wimp's successor, Wimp2,

has no marker-passing component; all semantic processing is driven by a formal logic

(Charniak & Goldman, 1988). Another evolutionary change is that the semantic

processor is now dependent upon parse trees provided by the syntactic processor.

Consequently, Wimp2 looks very much like the traditional syntax-first language un

derstanding systems whose faults inspired the original Wimp theory (Charniak, 1983).

While improving performance and simplifying the representation, Charniak appears

to have sacrificed cognitive modeling accuracy.

Pollack and Waltz's connectionist model of language understanding (Pollack,

1987; Pollack k Waltz, 1982; Waltz &: Pollack, 1984; 1985) also employs spreading

activation but does not use the marker-passing style found in ATLAST, ABSITY,

DMAP, or Wimp. Instead, Pollackand Waltz's modelemploys a quantitative spread

ing activation network which works through the iterative adjustment of the strength

of activation at the individual nodes. The network is similar to those described

in detail by Feldman (1981) and McClelland and Rumelhart (1981; Rumelhart &

McClelland, 1982). In Pollack and Waltz's model, a given set of nodes in memory

and the connections between them can represent all or part of an interpretation of

some input text; the same holds true for the marker-passing models discussed earlier.

What distinguishes Pollack and Waltz's approach from more traditional symbolic-

processing models is that their model chooses correct interpretations strictly through

the iterative adjustment of activation strengths, without the use of a separate rule-

based decision-making process.

Pollack and Waltz's model operates by first constructing a network of weighted

nodes and links from an input sentence. This network is divided into four inter

connected levels, with each level representing a modular linguistic knowledge source.
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The first level is the input level, which is nothing more than the words of the input

text. The input level is connected via activation links to the lexical level which con

sists of clusters of meanings and syntactic categories for each of the words. Within

a meaning cluster, there are mutual inhibition links between all the meanings, and

some combination of activation and inhibition links between the meanings and the

lexical categories.

The lexical level is connected by activation links to two other levels. One of

these levels, the syntactic level, is a subnetwork of the possible syntactic parses of the

input text. This network, which is constructed by a chart parser which preprocesses

the input text, has activation links between phrase markers and their constituents,

and inhibition links between pairs of phrases that have common constituents. The

other level is the contextual level, which is made up ofcase frames whose purpose is

to direct word sense selection. The syntactic and contextual levels are not directly

connected to each other; they are only connected indirectly through the lexical level.

Once the network has been constructed, the iterative weight adjustment process

is applied. Words at the input level are activated in the order that they appear in

the input stream, and activation begins to spread throughout the network. Over

several iterations, a subnetwork of well-connected nodes across different levels will

emerge. Those nodes which are negatively connected to this subnetwork will be

suppressed. Putting inhibitory links between nodes which represent, for example,

well-formed phrases with mutually-exclusive shared constituents ensures that only

one of the possibilities will survive. This same principle is used to disambiguate

between competing lexical categories for the same word, competing word senses, and

conflicting thematic role assignments.
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From a broader perspective, Pollack and Waltz's model is a system "in which

the knowledge sources are modular, but the processing is fully integrated" (Pollack

and Waltz, 1982, p. 50).® This scheme elfectively gives equal importance to all sources

of language knowledge.

Another connectionist model of language processing is offered by Cottrell and

Small (1983; Cottrell, 1985). Their model attempts .to form some correspondence

between the elements of a theory of language processing based on psychological data

and the mechanisms involved in carrying out those processes. Cottrell and Small's

model is strongly influenced by the experimental evidence for multiple access of word

meanings. In addition, their model is further influenced by the data on language pro

cessing deficits in aphasics supporting modularity, and they suggest that an accurate

model ofhuman language comprehension should be "lesionable"; in other words, the

model should exhibit similar aphasic behavior if the appropriate linguistic module is

artificially damaged in some way.

Cottrell and Small's model is an active semantic network scheme based on the

work of McClelland and Rumelhart, as is the Pollack and Waltz model. Their network

is also divided into four components. The lexical level is comprised of a unit for every

word in the language. The lexical level is connected to the word sense level which

consists ofmeaning nodes for the words in the lexical level. Different noun meanings

for the same word inhibit each other, as do different verb meanings for thesame word,

but there are no inhibitory connections between competing noun and verb meanings.

Nominal concepts and verbal concepts are stored in separate subnetworks at the

word sense level, based in part on differences between nouns and verbs reported by

®Some readers may dispute the claim of full integration of processing because of Pollack and
Waltz's use of a chart parser in a stage prior to the iterative weight adjustment stage. Note that
once the network is constructed, however, the various syntactic alternatives are evaluated at the
same time as the competing semantic interpretations.
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Centner (1981). In addition, function or closed class words are maintained in a third

subnetwork at this level because, say Cottrell and Small, Broca's aphasics usually

show an inability to use functor information (though this may not account entirely

for their comprehension deficits, they say). This behavior indicates that function

words are in a class distinct from nouns and verbs.

The case level consists of nodes representing the possible relationships between

the predicates and objects. This representation uses several hundred roles that are

more specific than agent and object, for example, but fall into those classes. (This

representation was inspired by Fahlman (1979).) These nodes are then connected

to fewer word senses than agent and object would be, and carry much more infor

mation directly. The numerous thematic relations at this level help to build specific

expectations for role assignments. These specific expectations help to resolve lexical

ambiguities.

The syntax level is connected to both the word sense and case levels in order

to constrain which bindings may be made based on sentence structure. Cottrell and

Small state that they have given the syntax level less attention than the other levels.

As lexical items are activated in sequence, so axe their word senses. The word

senses in turn activate the nodes at the case level. The relation which best fits

the input will be a stable group of connected nodes in which the overall excitation

exceeds the overall inhibition. Cottrell and Small acknowledge that higher levels in

the network are needed for making general inferences and for long term memory but

leave the work on these levels for the future. In the meantime, these contextual

knowledge sources are simulated by pre-biasing the network.
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Of all the language understanding models reviewed so far, only the three dis

cussed immediately above satisfy the constraints of functional independence of syntax

and semantics, interaction between lexical and pragmatic processing, and multiple

access of word meanings. On the other hand, none of these models addresses the

problem of error recovery. The following section describes the few models of lan

guage understanding that have been concerned with error recovery.

2.5 Recovery from erroneous inferences

Researchers in natural language understanding have often assumed that al

though text may be ambiguous, it is not misleading. This assumption is usually

made for the sake of convenience, not because of belief. Nevertheless, the question of

how a text understander can correct its mistakes in interpretation is seldom asked.

Of course, text is often misleading, either intentionally or accidentally, and humans

frequently appear to be able to recover from mistakes in interpretation quite grace

fully. One well-known exampleof misleading text is due to Lashley (1951), who used

the following spoken sentence to illustrate the shortcomings of the behaviorist school

of psychology:

Rapid righting with his uninjured hand saved from loss the contents of
the capsized canoe.

People will often hear the second word as "writing" and realize their mistake

only when they hear "the capsized canoe." Lashley argued that the behaviorist

explanation of simple associative chains between a stimulus and a response failed to

account for this serially ordered behavior (Gardner, 1985).
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Sadly, cognitive science has devoted little effort to finding an explanation of

how the understander detects the error or what the understander does once it is de

tected. Artificial intelligence researchers occasionally mention the need for an ability

to recover from errors in their models but then postpone the issue as a topic for

further research (e.g., Birnbaum & Selfridge, 1981; Lebowitz, 1980; Lytinen, 1984).

Psycholinguistics is similarly marked by a scarcity of investigation into error recovery

processes during text understanding. There are, fortunately, some exceptions in each

field.

One exception is McDermott's TOPLE (1974). TOPLE is a computer program

which understands simple declarative sentences describing the action of a monkey

in a room with objects such as a ball, a table, or a bunch of bananas. TOPLE

does not see the actual English sentences; instead, its input is a set of semantic

propositions in a modified predicate calculus formalism which represent the output

of a natural language front-end. As TOPLE processes the propositions, it makes

plausible inferences and adds them, in the form of assertions, to its limited model

of the world. When TOPLE encounters an ambiguity, it builds multiple models of

the world to be considered simultaneously. A decision is made when TOPLE finds

confirming evidence for one of its competing world models. At that time the alternate

models are discarded and are no longer accessible to the system.

For example, assume TOPLE knows that there is a monkey and a table in a

room, and that a ball and a banana are under the table. If TOPLE is told that the

monkey went to the table, TOPLE will build two models of the future: one in which

the monkey plays with the ball, and another in which the monkey eats the banana.

(TOPLE assumes that the monkey has goals such as wanting to play and wanting

I

I
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to eat.) If TOPLE is then told that the monkey picked up the banana, TOPLE will

discard the model in which the monkey plays with the ball.

TOPLE's predictions about future events are limited by what it assumes to be

true about its limited world. If TOPLE knows only that the room contains only

a monkey and a bunch of bananas suspended from the ceiling out of the monkey's

reach, TOPLE will make the predictive inference that the monkey will jump up, grab

the bananas, fall back to the floor and eat thern. This seems perfectly reasonable.

What seems unrea.sonable is what happens when TOPLE is then told that there is

also a box in the room. TOPLE now predicts that the monkey will go to the box,

move the box to the spot beneath the bananas, climb the box, grab the bananas

and eat them. Based on the example with the monkey, ball, and banana, one might

well expect that TOPLE will now have two competing models of the future. What

TOPLE actually does, however, is adopt only the model in which the monkey uses

the box; TOPLE discards the model in which the monkey jumps for the bananas.

TOPLE does this because it assumes that objects added to its model of the world

are to be used by the monkey, so it no longer believes the prediction that does not

include the box. McDermott does not say what will happen if TOPLE is now told

that the monkey jumps for the bananas, but presumably TOPLE will regenerate the

world model that it has just discarded and discard the model in which the monkey

uses the box. If TOPLE had retained both models and waited to see which was

confirmed, it could have saved itself some work.

TOPLE's inferential and error recovery abilities are limited to predictions about

future states and events. It cannot undo incorrect inferences generated from propo

sitions that it processed well before the one it has just read. One model which can

correct old erroneous inferences is Granger's ARTHUR (1980a, 1980b). ARTHUR
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follows from SAM (Cullingford, 1978) and PAM (Wilensky, 1978), but is designed to

understand the misleading stories which SAM and PAM could not. ARTHUR gener

ates tentative initial inferences using pragmatic knowledge structures (i.e., scriptsand

plans) and then re-evaluates those inferences in light of subsequent story information

by applying evaluation metrics. The re-evaluation is made possible because ARTHUR

maintains an inference-fate graph which contains all the plausible inferences gener

ated during story processing, whether or not they appear in the final representation,

along with information about the current status of each inference. ARTHUR is able

to revise both tentative inferences about future events and accepted inferences about

previously processed events without reprocessing the story or recomputing discarded

inferences because it retains all possible interpretations of the text.

This approach to error recovery has a drawback, however; when ARTHUR pro

cesses increasingly longer stories, the number ofplausible inferences to be maintained,

the memory required to maintain them, and the bookkeeping required to keep track of

them becomes prohibitive. A possible solution to this problem is to limit the number

of plausible but unused inferences to be retained, as in an early version of Norvig's

FAUSTUS (1983). FAUSTUS uses a marker-passing system to locate relevant prag

matic memory structures, called frames, to explain an input text. A frame can be

either inactive, active and currently used as an explanation for the text, or previously

active and not currently used as an explanation. These previously-active frames are

temporarily stored in a separate data base in case a currently-active frame proves

to be a poor explanation. In this event, a competing, previously-active frame can

be reactivated to supplant the incorrect initial choice. If a previously-active frame is

not reactivated, it quickly reverts to an inactive state. The method of error recov

ery used in this initial version of FAUSTUS is very much like that implemented in

ATLAST. As FAUSTUS has evolved, however, its error recovery capability has not.
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and FAUSTUS no longer has the ability to recover from erroneous inferences (Norvig,

1987).

Another method for correcting old erroneous inferences is to use dependency-

directed backtracking in a non-monotonic reasoning system, as O'Rorke (1983) pro

posed for a model called RESUND. This method was later implemented in a sys

tem called WATSON (Orejel-Opisso, 1984). The idea behind dependency-directed

backtracking is that when a new belief or assertion is inferred from old ones, the

understander records that the new assertion is made only because the old assertions

are assumed to be true. If one or more of the old assertions are later proven to be

false, any newer assertions that depend on the presumed truth of the old assertions

must be retracted, as must be the old, false assertions. In this way, the understander

is able to undo old erroneous inferences.

Thereare some appealing features ofa language understanding system based on

dependency-directed backtracking. One such feature is that the system can explain

its reasoning; the dependency relations enable the system to justify any assertion

in its knowledge base by describing the chain of inferences that led to the assertion

in question. Another attractive feature is that the dependency relations can be

maintained indefinitely, offering the potential for error recovery regardless of the

length of input processed or the amount of time passed since the erroneous inference

was made. These features, though, are not without their costs.

The disadvantage of dependency-directed backtracking in a model of human

language understanding is that it makes the understander perform too well. Imagine

a reader who makes an erroneous inference while reading the first paragraph of a
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short mystery story but finds nothing to contradict the inference until many para

graphs later. A computer program such as RESUND or WATSON using dependency-

directed backtracking should have no problem in correcting its mistake and revising

its interpretation of the story. A human reader, on the other hand, probably will be

confused and possibly will hunt through previously-read text to find the source of

the conflict. The human reader might in fact be using dependency relations of some

sort in constructing an interpretation of the story. Yet it is unlikely that the human

reader is able to maintain a very large number of such relations for an indefinite time

without substantial degradation in his or her ability to retrieve and revise those re

lations. Systems using dependency-directed backtracking might be made to perform

more like human understanders through the application of constraints on the num

ber or duration of maintained relations; constraints along these lines are employed

by both FAUSTUS and ATLAST.

TOPLE, ARTHUR, FAUSTUS, and RESUND represent four different methods

for recovering from erroneous pragmatic inferences, all utilizing a two-stage archi

tecture. Because of the two-stage architecture, however, these systems violate the

immediacy assumption: each requires complete propositions before any pragmatic

processing begins, yet the immediacy assumption asserts that inferencing in humans

is done with incomplete information, as in the case of Lashley's example above.

One model which does adhere to the immediacy assumption and also appears to

address the problem of error recovery is proposed by Thibadeau, Just, and Carpenter

(1982). This model, called READER, is based on the eye-movement studies cited

previously as experimental evidence supporting the immediacy assumption (Just Sz,

Carpenter, 1980). READER is a model of human text understanding whose process

ing cycles bear some correspondence to human gaze durations on the individual words
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of the text. READER tries to interpret each successive word as soon as possible by

applying separate but communicating processes at several levels of analysis without

relying entirely on any single level. READER'S memory is a semantic network in

which relationships between concepts from the text are found by directed activation

as opposed to spreading activation. With directed activation, both the depth and

breadth of propagation is controlled by READER'S procedural knowledge about lan

guage. In other words, directed activation means that the analytical processes tell

READERwhich nodes it should activate at any given time, while spreading activation

propagates outward in all directions until some limit is reached.

It was stated above that READER appears to address the error recovery prob

lem. Thibadeau et al. say that the principle of immediacy causes READER to choose

meanings which are occasionally contradicted by later text, but that their model

"has other heuristics that make error recovery relatively straightforward" (Thibadeau

et al., 1982, p. 180). Unfortunately, they do not provide any details about READER'S

error recovery heuristics, but they do state that their approach to lexical disambigua

tion is influenced by theeye fixation studies of Carpenter and Daneman (1981) which,

as noted earlier, show that a reader's eyes will backtrack when he or she reads text

contradicting a previous lexical decision.® Assuming that READER uses backtrack

ing and reprocessing in these situations, it can be said that the model meets three

of the four constraints: functional independence of syntax and semantics, interaction

of lexical and pragmatic processing, and error recovery. READER fails to meet the

constraint of multiple access of word meanings, however: READER'S lexical access

process is similar to Morton's (1969) logogen model in which the meaning of an am

biguous word is chosen through the accumulation of contextual (both syntactic and

semantic) information. When the logogen ha^ accumulated a specified amount of

®The implications ofCarpenter and Daneman's findings for ATLAST are discussed inChapter 4.
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inforinstion. r6d.cli€(l 3- threshold), the cLSsocicited word rn.ecLn.ing is mcide ctvctil-

able to other linguistic processes. The logogen model therefore represents a form of

selective access in which context predetermines the meanings that will be considered.

Although there is little experimental data on recovery from incorrect decisions

during text understanding in human subjects, what data there is suggests that error

recovery is an integral part of language understanding, not something to be added on

to existing models as an afterthought. Providing an adequate explanation of human

error recovery behavior places a constraint on the architecture of a computational

model of language understanding that few existing models would be able to meet

without drastic revision.

2.6 Conclusion

Different constraints can be applied in the development and evaluation of any

model. The constraints presented herein are important because they cut across

the traditional partitionings of lexical, syntactic, and pragmatic inference processes.

Those models meeting more of these constraints offer more plausible explanations of

human language processing than those which meet fewer constraints. This chapter

has discussed how some of these models fare in meeting the important constraints.

(Thisdiscussion is summarized in Table 2.1.) As will be demonstrated in the chapters

to follow, ATLAST is the first model to meet all these constraints.
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System

functional

independence
of syntactic

and semantic

processing

interaction

between

lexical and

pragmatic
knowledge

exhaustive

access

of word

meanings

recovery

from

erroneous

inferences

Quillian, 1969 (TLC) no yes yes no

Woods, 1970 (LUNAR) no no no no

Winograd, 1973 (SHRDLU) no no no no

McDermott, 1974 (TOPLE) no no no yes

Riesbeck, 1975 (ELI) no no no no

Wilks, 1975
(Preference Semantics) no no no no

Charniak, 1978 (Ms. Malaprop) no no no no

CuUingford, 1978 (SAM) no no no no

Wilensky, 1978 (PAM) no no no no

Granger, 1980 (ARTHUR) no no no yes

Lebowitz, 1980 (IPP) no yes no no

Marcus, 1980 (PARSIFAL) no no no no

Birnbaum & Selfridge, 1981
(CA) no no no no

Pollack & Waltz, 1982 yes yes yes no

Small & Rieger, 1982
(Word Expert Parser) no no no no

Thibadeau, Just, &
Carpenter, 1982 (READER) yes yes no yes

Charniak, 1983 yes yes yes no

Cottrell & Small, 1983 yes . yes yes no

Dyer, 1983 (BORIS) no yes no no

Norvig, 1983 (early FAUSTUS) no no no yes

G'Rorke, 1983 (RESUND) no no no yes

Hirst, 1984 (ABSITY) no no yes no

Lytinen, 1984 (MOPTRANS) no yes no no

Orejel-Opisso, 1984 (WATSON) no no no yes

Riesbeck & Martin, 1985
(DMAP) no yes yes no

Charniak, 1986 (Wimp) yes yes yes no

Norvig, 1987 (late FAUSTUS) no no no no

Charniak & Goldman, 1988
(Wimp2) no yes yes no

Table 2.1: Representative NLU systems and how they fare in meeting the four con
straints on understanding.



Chapter 3

How ATLAST Works

3.1 Constraints revisited

The previous chapter introduced four important constraints on computationaJ

models of natural language understanding drawn from the psycholinguistic literature:

• Functional independence of syntactic and semantic processing.

• Interaction between lexical and pragmatic processing.

• Multiple access of word meanings.

• Recovery from erroneous inferences.

The importanceof thesefour constraints rests in how they guidethe development of a

theory of language understanding in humans and the construction of the correspond

ing model. As a theory is pushed to explain a greater diversity of phenomena, the

number of ways in which that theory may take shape is narrowed. This is illustrated

in the previous chapter: just the simple observation that people seem to make some

sense of syntactically anomalous strings of words casts doubt on the psychological

validityof many integrated understanders and thereby eliminatesone set of potential

answers to the question, "How does the human language processor work?"

42
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The constraints also provide a context within which to evaluate this work.

While ther.e is no universal agreement on any of these constraints, more is gained by

making strong specific assumptions for one's model and testing them than by making

weaker all-encompassing assumptions, inevitably resulting in a nebulous model which

is difficult to evaluate and therefore uninformative. This chapter describes in detail

the architecture of the ATLAST model, whose design was guided by the constraints

listed above.

3.2 Architecture

ATLAST consists of three independent processing components, the capsulizer,

the proposer, and the filter, that operate concurrently on a relational memory net

work. The common goal of these components is to find the parts of memory that

best represent the intended meaning of some input text. ATLAST pursues this goal

by using marker-passing to search the network for paths that connect senses of open

class words from the text. A single path is a chain of nodes and the links which join

them. The nodes represent objects, events, or states, and the links correspond to

the relationships which may exist between the nodes. Any nodes or links in a path

which are not explicitly mentioned in the text are inferred; therefore, these paths

are called inference paths. A set of inference paths which joins all of the words in

the text into a connected graph represents one possible interpretation of the text.

In this respect ATLAST resembles a number of other models of text understanding

that utilize marker-passing or spreading activation, many of which were discussed in

Chapter 2.
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The paths that form the current interpretation are called active paths. For any

given text, however, there may be a great number of possible interpretations, many

of which are nonsensical. The problem then is determining which of the possible

interpretations provides the best explanation of the text. ATLAST deals with this

problem by applying heuristics called inference evaluation metrics. These metrics are

used to compare two competing inference paths and select the more appropriate one.

Two inference paths compete when they connect the same two nodes in the relational

network via different combinations of links and nodes. The path that fits better with

the current interpretation is activated (i.e., it becomes part of the interpretation).

The other path is de-activated but not discarded. Instead, information about that

path is retained in order to facilitate error recovery; these paths are called retained

paths. The choice of one inference path over another is made as soon as ATLAST

discovers that the two paths compete.^ As the marker-passing search mechanism finds

more paths, ATLAST constructs an interpretation consisting of those paths which

survive the evaluation process. When the marker-passing and evaluation processes

end, the surviving active paths make up the final interpretation of the text.^

3.2.1 Memory

At the core of ATLAST is a simple memory structure organized as a relational

network. The network consists of nodes and links. The nodes represent events,

objects, and states; the links represent relationships between the nodes. Many of

^An exception to this principle is introduced in Chapter 6.
^In theory, the search for inference paths and their evaluation take place simultaneously. In

practice, however, ATLAST simulates this concurrency by alternating between marker-passing and
path evaluation. During each of these cycles, a new word is read from the input, its meanings are
recalled and marked, and all markers in the network are passed a fixed distance. Any path discovered
in this way is then examined to see if it competes with an active path in the interpretation as it
stands at that time. If so, the evaluation metrics are applied and a choice between the twocompeting
paths is made.
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these nodes correspond to meanings of words in ATLAST's vocabulary, and it is

from these nodes that the search for inference paths begins.

Unlike other systems which place restrictions on the direction in which links can

be traversed (e.g., Riesbeck & Martin, 1986), ATLAST employs two uni-directional

links between related nodes, giving the equivalent of a bi-directional link. This al

lows the search for inference paths to spread from one node to all directly related

nodes. Each uni-directional link represents one-half of the relationship between two

nodes and is is labeled accordingly. Thus, if there is a link representing the has-part

relationship connecting one node to another, there is a corresponding part-of link in

the opposite direction.

The relationships described by the links themselves can be divided roughly into

four categories: composition, causality, intentionality, and abstraction. ATLAST's

composition relations include has-part, has-instance, has-attribute, and has-role-filler.

The causality relation is has-result, and the intentionality relations are has-goal, has-

plan, has-planstep, and has-precondition. The one abstraction relation is viewed-as (its

corresponding relation in the opposite direction is also viewed-as). ATLAST's viewed-

as relation is inspired by the view relation in Wilensky's (1984) KODIAK knowledge

representation language, although viewed-as relates only two concepts while view is

a three-part relation. For example, in KODIAK, a view relation can be used to de

clare that the concept SELL is a COMMERCIAL-TRANSACTION viewed as an ACTION.

If we wanted to describe the same relationship in ATLAST, we might say that a

COMMERCIAL-TRANSACTION can be viewed-as an ACTION, and that SELL is an instance-

of a COMMERCIAL-TRANSACTION. In comparison, ATLAST's minimal representation

language is perhaps less elegant and less precise than KODIAK, but the two rep

resentations exist to solve different problems: KODIAK is a robust framework for
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defining a wide range of semantic relations while ATLAST's representation language

is a vehicle to facilitate the demonstration of ATLAST's processes. There is no rea

son to believe, however, that ATLAST's processes could not be adapted to a more

sophisticated representation scheme like KODIAK.

3.2.2 Capsulizer

The capsulizer is essentially a syntactic parser based on a simple augmented

transition network (ATN) grammar and is the only process that sees the actual in

put text. As the capsulizer reads the input text one word at a time, it retrieves the

syntactic category information (e.g., noun or verb) associated with that word and ac

tivates any word senses associated with that word by placing markers at those word

senses. The activated word senses serve as a starting point for the search for inference

paths, which is discussed below. The word senses are not used in any decisions made

by the capsulizer, although pointers to the word senses are retained. As ATLAST

accumulates syntactic category information, it uses the ATN grammar to make de

cisions about syntactic relationships within the phrases of the input text. These

intra-phrasal decisions, along with the pointers to the word senses which comprise

the phrases, are packaged and passed along to the filter as capsules of information.

In addition, for any input word that has more than one word sense (i.e., a word sense

ambiguity), a capsule containing the pointers to the different word senses is sent to

the filter, which will eventually select the correct word sense.
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3.2.3 Proposer

The proposer suggests possible inference paths that might explain ,the input

text. Essentially, the proposer employs a simple marker-passing process to perform

a breadth-first intersection search of the relational network for connections between

word senses that have been activated by the capsulizer. The proposer extends the

frontiers of the search space by traversing the links leading away from the origins of

the search (i.e., the word senses directly marked by the capsulizer) and placing new

markers at the nodes it encounters as it goes. This searchprocess is roughly analogous

to wavefronts of activation spreading outward from different sources. Each marker

carries with it enough information to describe the path that extends from the node

where the marker resides to the node that represents the source of the activation.

Thus, two markers from different origins arriving at one node represent a potential

inference path to be considered for inclusion in ATLAST's interpretation of the text.

How markers are passed

The extent of the search as it radiates outward from a given origin is represented

by a set markers. Each marker is uniquely identified and contains information that

aids in controlling the search and reporting paths which connect two origins. The

information associated with each marker includes:

• Origin node: A pointer to the node from which this marker began its search.

• Parent: A pointer to the marker which spawned this marker (i.e., the marker
that is one link closer to the origin).

• Host node: The name of the node marked by this marker.

• Distance: This value is roughly equivalent to the number of links that were
traversed from the origin in order to place this marker at its host node. The



48

reason that these values are not exactly equal is that some of the links may be
preferred links which, as described below, do not incur any cost when traversed.

ATLAST keeps track of the markers that make up the frontier of the search from

each origin (i.e., the most recently placed markers). When the proposer is invoked,

each of these markers spawns children which are placed at the nodes immediately

adjacent to their parent's host node. (A marker does not pass a child marker to its

parent's host node as this would only create a cycle to be ignored later.) These child

markers are copies of their parent. The child carries the same origin information

as its parent, the child's parent and host node information is updated accordingly,

and its distance value is its parent's distance value increased by one (unless the link

separating the child and parent is a preferred link).

Without some means of limiting the spread of markers throughout memory,

ATLAST would be overwhelmed by the number of inference paths proposed for eval

uation. To avoid this problem, the depthofthe proposer's search iscontrolled through

a parameter that imposes a global upper limit on the markers' distance value. If a

given marker's distance value has reached the limit, that marker cannot spawn child

markers. This method of accounting for the decay of activation is certainly more

simplistic than other marker-passing schemes, such as Hendler's SCRAPS (1986) or

Anderson's ACT* (1983), in that the markers are not assigned continuously variable

activation energies which are depleted by both link traversal and fan-out, and there

are no complicated formulas for calculating the decay rate or the cost of link traver

sal. Instead, ATLAST's distance values can be viewed as integer-valued activation

energies that are depleted only by the cost of traversing links. When copies of a

marker at a given node are passed to adjacent nodes, each new marker is given an

activation energy equal to that of its parent marker less the cost of traversing the

link to the adjacent node; the parent's activation energy is not divided among the
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new markers according to the number of links leading away from the node as it is

with other systems.

The limit on the depth of search places an upper bound on the length of the

paths that the proposer will find, although some paths may in fact exceed that limit.

These exceptions can occur when the path in question contains one or more preferred

links. While the traversal of most links in ATLAST's memory is assumed to incur

some cost, traversal of those links that are designated as preferred links does not

incur any cost and is not included in determining the extent of the search. The use

of preferred links will be discussed in Chapter 6.

How paths are proposed

When a marker is placed at a node, the proposer checks to see if there are other

markers at the same node. If so, the pairing of the newly-arrived marker with each of

the other markers represents a potential inference path betweenthe twoorigins ofeach

pair of markers. These potential inference paths must meet minimum acceptability

requirements before they are considered by the filter's evaluation process. A path

that connects an origin to itself will not be passed to the filter for evaluation, nor

will any path that contains a cycle, regardless of its origins. A path connecting two

different sentences (which ATLAST naively assumes to represent different states or

events) must meet more stringent requirements: the path must contain at least one

link denoting a causal or intentional relationship between the sentences (cf. Schank &

Abelson, 1977), and the path's endpoints must be nodes representing actions or states.

These constraints, along with the limit on the spread of marker-passing described

above, serve to limit combinatorial growth of the number of paths that could be
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discovered and evaluated. The combinatorial growth problem is discussed in greater

detail in Chapter 7.

3.2.4 Filter

The filter performs two functions; the first is that of inter-phrasal syntax. As

capsules are passed from the capsulizer to the filter, the filter makes decisions about

the relationships between the phrases represented by the capsules. Inter-phrasal

syntax rules enable the filter to make thematic role assignments. The filter's second

function is the evaluation of inference paths. When two competing inference paths

are proposed, the filter attempts to select the more appropriate path through the

application of inference evaluation metrics.

Inter-phrasal syntax

In performing inter-phrasal syntactic analysis, the filter's goal is to construct

a framework of causally-connected event descriptions that correspond to the events

described by the input text. The framework that is built is very much like the

framework that results from parsers using Schank's Conceptual Dependency (CD)

representation scheme (Schank, 1975; Schank &: Riesbeck, 1981). Like the CD frame

work, every event in ATLAST's representation consists of an actor, an action, an

object, a direction, and a causal or intentional relationship between this event and

others. The difference between the two approaches is in how these slots are filled.

Parsers based on CD, such as MARGIE (Riesbeck, 1975), took advantage of an

integrated procedural representation ofbothsemantic andsyntactic knowledge. Rules

attachedto word meanings enabled these parsers to construct the correct relationships
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between the components of an event and between the different events themselves.

ATLAST's semantic knowledge is primarily declarative and distributed throughout

its memory network, and its syntactic knowledge is a separate set of rules. ATLAST's

semantic relationships within and between events are explicitly defined in memory

before processing begins. The proposer suggests possible relationships and the filter

decides which relationships best represent the input. The syntactic relationships are

determined by the syntactic processes of the capsulizer and the filter. Rules in the

capsulizer guide the decomposition of the input text into syntactic components. The

capsulizer then sends this information to the filter which in turn uses other rules to

assign the components to various thematic roles. The filter also looks for cues that

alter the normal temporal flow of the text so as to maintain a correct ordering of the

events. The result is a framework of pointers leading to nodes that belong to active

paths in ATLAST's memory as shown previously in Figure 1.1.

This dissertation concentrates on how ATLAST finds the correct active paths,

but the importance of the syntactic component of ATLAST's interpretation, the

framework of pointers, should not be underestimated. While the nodes and links

of the active paths represent objects, events, states, and some of the functional re

lationships between them, it is the syntactic component that imposes order on the

otherwise nebulous set of active paths. Without this component it would be difficult

to know which of the events depicted by the active paths occurred first, or even who

did what to whom. This deficit would become more apparent as texts became more

structurally complex.
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Inference evaluation

As the proposer parses information to the filter about inference paths it hcis

discovered, the filter evaluates each path to determine if that path should be incor

porated into ATLAST's changing interpretation of the input text. Because marker-

passing is begun at different nodes at different times, as determined by the order

of the words in the text, the same path may be discovered many times. It might

be argued that this redundancy is computationally inefficient but it is essential to

ATLAST's error recovery capability as described in Chapters 4 and 5. Thus, the

filter's first task is to see if the proposed path is already part of the current inter

pretation. If so, no evaluation need be done and the filter can move on to the next

proposed path.

On the other hand, if the proposed path is not a component of the interpreta

tion, one of two things may occur. The filter will check to see if the proposed path

competes with any path in the current interpretation (i.e., they share the same two

origin nodes). If there is no competing path, then the proposed path is the only

path found so far that connects the nodes at either end of the path. In this case, the

filter adds the proposed path to the interpretation, making this path an active path.

Should the filter find a path in the current interpretation that does compete with

the proposed path, the filter will apply the inference evaluation metrics to determine

which of the two paths fits better with the existing context (i.e., the set of all active

paths other than the path competing with the proposed path).

ATLAST employs five different metrics or rules for selecting the more appropri

ate inference path.^ All but one of these metrics represent attempts to embody the

principle of parsimony. This principle can be defined as explaining the most input

^There is also a sixth metric, but its introduction is postponed until Chapter 6.
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with the most efficient or economical representation. The concept of representing

the most with the least hcis been incorporated into many models and theories of

language understanding through the years, although the word "parsimony" may not

have been used to describe it. (See for example the work of Grain and Steedman

(1985), Granger (1980b), Kay (1983), McDermott (1974), Quillian (1969), Wilensky

(1983), or Wilks (1978).)

The first of the evaluation metrics, the activation metric, relies on the assump

tion that the endpoints of the competing paths are always origins of marker-passing.

These nodes are activated or marked directly by the capsulizer as it processes the

words from the input text. Any of these nodes may be activated by the capsulizer

more than once; in the example of Chapter 5, a node labeled "insect" will be marked

twice by the capsulizer if the text contains both the words "bugs" and "roaches." The

activation metric favors the path whose endpoints have been activated the greater

number of times by the capsulizer, thus giving preference to the path that explains

the greater number of different words from the input text.

The length metric favors the path that contains fewer links connecting the two

origin nodes, thus embodying the concept of using the more concise representation

to explain the relationship between two words from the text. The principle of giv

ing preference to the shorter path is cissumed by most, if not all, models based on

spreading activation.

Inference paths in ATLAST's memory often share nodes with other inference

paths. The reinforcement metric attempts to make a judgment as to how well each of

two competing paths fits with the existing context by counting the number of nodes

that each path shares with the other active paths (excluding the two paths being
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evaluated). The metric prefers the path that has greater reinforcement from, or has

more shared nodes with,,the other active paths.

Another aspect of the principle of parsimony is to make the most specific inter

pretation possible ofa text. (Wilensky (1983) calls this the Principle of Concretion).

ATLAST's memory uses viewed-as links to denote relationships of abstraction be

tween two nodes. ATLAST's viewed-as link is adapted from the view link used

in the KODIAK knowledge representation language (Wilensky, 1984). For exam

ple, a viewed-as link between a node labeled GOVERNMENT-AGENCY and a node la

beled GENERIC-EMPLOYER says that GENERIC-EMPLOYER is another way of looking at

GOVERNMENT-AGENCY or vice versa. Because a path containing a viewed-as link de

scribes a more abstract relationship between two nodes than a path not containing

such a link, the specificity metric favors the path containing fewer viewed-as links.

The viewed-as link also has a special property in that is has no length as far

as the length metric is concerned. The viewed-as link does not represent a hierarchi

cal relationship; instead it represents a relation of abstraction and, to some extent,

equality, as in "here is a different but perfectly reasonable way to look at this node."

Because the two nodes on either end of a viewed-as link are in some sense equal,

and because the presence of the viewed-as node is already measured by the specificity

metric, the length metric ignores the viewed-as link when computing the length of a

path containing that link.

To evaluate competing paths, the filter applies the metrics in the order given

above. That is, the filter first uses the activation metric to compare the two paths.

If the activation metric favors one path over the other, the evaluation is complete.

Otherwise, the filter employs the length metric, followed by the reinforcement metric

and the specificity metric. This ordering of the metrics is obviously not the only



55

ordering possible, but it has been determined through trial and error to be the only

ordering which enables ATLAST to arrive at correct interpretations for the sample

texts on which it has been tested. This should not be construed to mean that the

set of metrics is necessarily correct or complete. It is likely that testing ATLAST on

additional texts would reveal the need for additional metrics as well as revisions to

both the order and the content of the existing metrics, as has been the case so far.

The four metrics listed above do not guarantee the selection of one of the two

competing paths; it is possible that the two paths will fare equally well in all four

comparisons. In this case a fifth metric, the no-decision metric, is invoked. As the

name indicates, this rule makes no decision about the competing paths. Instead,

it retains both paths, expecting that the processing of more text will change the

existing context sufficiently that a decision can be made and that the subsequent

evaluation of other paths will remind ATLAST of the tied paths and instigate their

re-evaluation. To prevent a situation in which ATLAST is reminded to re-evaluate

one tied path and not the other, thus giving the former path a chance to be activated

and influence later changes to the active interpretation without considering the latter

path, ATLAST records the fact that the two paths are tied. When one of the two

tied and retained paths is re-evaluated, the other will be recalled immediately for

re-evaluation.

When a decision has been made as to which of the two competing paths pro

vides a better explanation of the input, ATLAST's ongoing interpretation may be

altered. If the evaluation metrics selected the path that was already a part of the

interpretation, no change is necessary. However, if the previously-active path is not

selected by the metrics, it is de-activated and removed from the interpretation, while

the selected path is added to the interpretation and becomes an active path. In either
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case, th.e less appropriate path is not discarded; instead it becomes a retained path.

That is, it is remembered as having been a candidate for inclusion in the interpreta

tion. This is done in order to facilitate recovery from incorrect inference decisions,

which is also discussed in great detail in the next two chapters.

3.3 Why marker-passing?

The marker-passing search mechanism described above is a very simple com

putational metaphor for the concept of spreading activation. Waltz and Pollack

(1985) divide spreading activation schemes into two categories: digital spreading

activation and analog spreading activation."^ Digital spreading activation includes

marker-passing algorithms which perform a breadth-first search for shortest paths

in a relational network, while analog spreading activation takes place on a weighted

network of associations, where "activation energy" is distributed over the network

based on some mathematical function of the strength of connections.

This categorization is further supported by Fahlman (cited in Fahlman, Hinton,

&: Sejnowski, 1983), who divides massively parallel architectures into three classes,

two of which correspond to Waltz and Pollack's categories of spreading activation.®

Fahlman classifies systems by the type of signal that is passed between theprocessing

elements which make up the system: messages, markers, and values. Message-passing

systems pass arbitrarily complex messages between elements and perform complex

operations on those messages. An example of message-passing applied to language

''An earlier paper by the same authors (Pollack k Waltz, 1982) makes the same distinction but
gives different names to the categories.

®A massively parallel architecture is defined by Fahlman, Hinton, and Sejnowski (1983) as a
machine with a very large number of(possibly very simple) processing elements working on a single
task.
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understanding is given by Phillips and Hendler (1981). Because message-passing sys

tems are not necessarily spreading activation systems, they will not be discussed fur

ther. Marker-passing systems, which pass simple discrete markers between processing

elements along dedicated links, correspond to Waltz and Pollack's digital spreading

activation systems. Fahlman places his own NETL system (Fahlman, 1979) into this

class.® Besides their role as marker-passing mechanisms, these nodes or elements

also represent concepts in memory. Finally, value-passing systems pass continuously-

variable quantities among the elements, which in turn perform arithmetic operations

on these values. Value-passing systems are equivalent to what Waltz and Pollack call

analog spreading activation systems.

The role of spreading activation in AI has been inconsistent at best. Spreading

activation was introduced into the AI literature through Quillian's work with semantic

memory (see Quillian (1968), for example) but, as Charniak (1983) has observed,

this work appears to have been largely ignored by AI researchers through the next

decade. Despite this lukewarm reception, the 1970's did produce two noteworthy

systems based on spreading activation: ACT, Anderson's general purpose model of

human cognition (Anderson, 1976) which has since evolved into ACT* (Anderson,

1983), and NETL, Fahlman's deductive knowledge-base system (Fahlman, 1979).

During the past few years, though, there has been a marked increase in the

popularity of spreading activation among AI researchers, especially those building

cognitive models of language understanding. There are several reasons why spread

ing activation schemes are growing in popularity among these researchers; some of

®While Fahlman says that markers are passed between processing elements, Waltz and Pollack's
definition mentions markers being passed between nodes in a relational network. For the purposes
of this dissertation, this distinction will be ignored and the nodes described by Waltz and Pollack's
definition are assumed to be the simplest of marker-passing processing elements.
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the reasons apply because of the advantages inherent in any kind of parallel process

ing, while others are relevant because of specific attributes of spreading activation

algorithms.

Neuropsychological evidence

The decision to base ATLAST's architecture on a spreading activation mech

anism was motivated primarily by recent psycholinguistic studies of the lexical dis

ambiguation process, discussed previously in Chapter 2. These studies led to the

conclusion that when an ambiguous word is read or heard in context, all meanings

(or senses) of the word are initially primed or recalled, with context then being con

sulted to select the correct meaning. Spreading activation proves to be an excellent

computational mechanism for modeling the lexical access process just described; fur-

ther, it readily serves as the foundation for a higher-level, modular, parallel-process

model of language understanding.

In addition, lower-level neural network models of cognition that rely on analog

spreading activation have recently grown in popularity among artificial intelligence

and cognitive science researchers because it is generally accepted that, whatever it is

that the brain does at its lowest levels, the brain does it in parallel. As Feldman and

Ballard (1982) point out, the computational speed of neurons is a few milliseconds,

but the action of these neurons must account for complex behaviors that are carried

out in a few hundred milliseconds, indicating that these slow, simple neurons must be

acting in parallel. A review of the neuropsychological evidence favoring parallelisni

in the brain is given by Anderson and Hinton (1981).
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Shifting the focus to processing

Another advantage of the spreading activation paradigm is that it encourages

the researcher to shift the emphasis from knowledge representation to processing

mechanisms. Many NLU models concentrate on issues of representation while ignor

ing issues of processing. Moyne and Kaniklidis (1981, p. 268) offer this assessment of

the state of the art in 1981:

We cannot fail to observe that a rather alarming number of models of
comprehension have virtually nothing specific to say about processing
mechanisms. Furthermore, what they do have to say, as for example in
some vague theorizing about knowledge being stored in the form of labeled
graphs, often amounts to little more than the claim that the relevant
knowledge is organized (surely an innocuous enough claim) without any
precise specification of how it is organized beyond the indication that the
units of knowledge are interconnected somehow and that certain broad
relations obtain among them.

Adding to the criticism of these same models, Norvig (1983, p. 284) says: "This

preoccupation with knowledge structures can sometimes lead to programs with im

poverished, redundant, or inconsistent processing mechanisms."

A spreading activation model essentially prevents the researcher from entirely

ignoring processing issues, though it is still possible to pay them less attention than

they deserve. Thus, spreading activation models may help bring about a change in

methodology which is long overdue in artificial intelligence and cognitive science.

Speed of processing

One of the benefits which derives from any form of parallel processing is an

increase in the number of computations which can be performed in a given amount
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of time. Spreading activation provides the ability to explore a number of alterna

tives (e.g., word senses, syntactic structures, semantic interpretations) at the same

time, instead of exploring one at a time, thereby increasing the processing speed of

the system. The speed advantage of spreading activation systems over their serial

counterparts should be great, so long as there are massively-parallel computer archi

tectures around to support the algorithms. Unfortunately, with few exceptions (e.g.,

Hillis, 1985) such machines are not yet widely available.

Opening new doors

The tools which a researcher brings to bear on a problem directly influence his

or her thinking about the problem. Spreading activation, viewed as one ofthese tools,

enables NLU researchers to propose new, and potentially better, models of language

processing. This conclusion is a subjective one, but it is shared by other AI and

cognitive science researchers.

One perspective comes from Rieger, Trigg, and Bane (1981, p. 955), who argue

the need for parallel computing architectures in AI research. Though the focus of

the argument is on actual hardware, the relevance of the argument becomes obvious

if one merely substitutes the word "tools" for "computing hardware":

Beliefs about the nature of [the] computing hardware [which is] available
influence a researcher's ability to conceptualize data and process mod
els of intelligence. While a researcher can certainly imagine methods of
modeling which require unusual hardware, he may never discover the in
teresting issues because of his inability to see beyond the first round of
ideas. Like it or not, AI is an experimental science which relies heavily
on feedback from the implementation level to the conceptual model level.
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Closer to the issue at hand are the observations of Pylyshyn (1980, p. 124):

Now, what is typically overlooked when we [use a computational system as
a cognitive model] is the extent to which the class of algorithms that can
even be considered is conditioned by the assumptions we make regarding
what basic operations are possible, how these may interact, how opera
tions are sequenced, what data structures are possible, and so on. Such
assumptions are an intrinsic part of our choice of descriptive formalism.

Finally, Feldmaii and Ballard (1982, pp. 206-207) offer similar justification for

research specifically into analog spreading activation models, but which may be just

as relevant to digital spreading activation models:

The most important reason for a serious concern in cognitive science for
[connectionist models] is that they might lead to better science. It is
obvious that the choice of technical language that is used for expressing
hypotheses has a profound influence on the form in which theories are
formulated and experiments undertaken. Artificial intelligence and artic
ulating cognitive sciences have made great progress by employing models
based on conventional digital computers as theories of intelligent behavior.
But a number of crucial phenomena such as associative memory, priming,
perceptual rivalry, and the remarkable recovery ability of animals have
not yet yielded to this treatment.

Paraphrasing these researchers, it seems that without new tools and the new

ways of thinking that go with them, interesting issues go unexplored, and important

answers go undiscovered. If for no other reason than this, the different spreading

activation techniques are tools which deserve careful consideration.

3.4 Conclusion

The purpose of this chapter has been to introduce the fundamental principles of

ATLAST's various components: the relational memory, the syntactic parsing element
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in the capsulizer, the spreading activation search carried out by the proposer, and

the thematic role filling and inference evaluation capabilities of the filter. In other

words, this chapter focused on the "how" of ATLAST; Chapter 4 takes an in-depth

look at the "why."



Chapter 4

Lexical Inference Processing;

Theory

4.1 An unanswered question

The inference processing mechanism implemented in ATLAST is based on a the

ory of lexical disambiguation called conditional retention. The theory of conditional

retention was developed in response to questions that are not answered by prevailing

psycholinguistic theories of lexical disambiguation. This chapter describes the theory

of conditional retention in detail and discusses the arguments for and against this

theory.

The active suppression theory of lexical access and disambiguation, introduced

in Chapter 2, proposes that when an ambiguous word is read, all meanings are ac

cessed at once and shortly thereafter the meaning which best fits with the existing

context is chosen and the alternate meanings are forgotten or suppressed (Seidenberg

et ah, 1982; Tanenhaus et ah, 1979). Although the active suppression theory has

been well received by some psycholinguists and has influenced several AI models of

language understanding (e.g., Charniak, 1983; Cottrell Sz Small, 1983; Gigley, 1983;

Hirst, 1984; Waltz & Pollack, 1985), the theory is not without its shortcomings.

63
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The active suppression theory suggests that no information about previously

recalled meanings is preserved once those word meanings have been suppressed. This

raises at least one important and unanswered question: if inappropriate meanings are

actively suppressed, how is a reader able to find a correct meaning when later text

shows that the initial choice of word meaning is incorrect?^ Without some means to

remember these candidate meanings, the active suppression theory seems to imply

that recovery from an incorrect choice of word meaning must involve reprocessing of

the text and reactivation of all meanings of the ambiguous word.

4.2 Conditional retention offers an answer

One theory which specifically addresses the problem offinding the correct word

sense after previously selecting an incorrect word sense is called conditional retention

(Granger, Holbrook, &Eiselt, 1984). The conditional retention theory proposes that

lexical disambiguation is an automatic process inwhich all meanings of an ambiguous

word are retrieved, the meaning most appropriate to the preceding context is chosen,

and the other, less appropriate meanings are temporarily deactivated but retained.

In the case where the ambiguous word appears within a short text, the meanings are

retained until the end of the text. Should later text contradict the initially chosen

meaning, the retained meanings for that word are reconsidered in light ofthe updated

context, and a new meaning is selected without repeating the lexical retrieval process.

When there is no further text, a meaning is chosen based on previous context and

the other meanings are actively suppressed. The theory of conditional retention does

not contradict active suppression; instead, conditional retention merely supplements

^This referred to by some as garden path recovery. That designation is not used here because
of its associations with syntactic problems; this dissertation is concerned primarilywith lexical and
pragmatic problems.
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active suppression by proposing that those word meanings which are not selected

may be deactivated but are not immediately forgotten.

The combined deactivation and retention of the meanings not chosen accom

plishes two goals for the language understander. First, it permits the processing at

the lexical level to continue to make immediate decisions about the meanings of sub

sequent words in the context ofa single, plausible interpretation of the preceding text

instead of multiple interpretations of varying plausibility. If the unchosen meanings

were not completely deactivated, there could be resulting confusion in making deci

sions about new word meanings. Second, it allows the retained meanings to be used

by other processes in correcting wrong decisions made by the original process with

out reprocessing the original input text, at least for a short time. Tracking retained

meanings allows the error recovery to be done without maintaining separate copies

of all possible interpretations of the text processed so far, thus reducing both storage

and processing overhead.

The inadequacy of the active suppression theory by itself is illustrated by the

following text:

Text 4: The instructor made the medical students examine the tiny cell so that
they would be aware of the consequences of Medicaid fraud.

The reader may find this text to be awkwardly contrived; this is done to highlight

phenomena which occur frequently but go unnoticed because of their subtlety. In

this example, the ambiguous word "cell" is embedded in a text in which the previous

context biases for a "biology" meaning and the later context biases for a "prison"

meaning. The active suppression account of this text would have all but the "biol

ogy" reading of "cell" suppressed well before the end of the text. However, at the

end of the text, the "prison" reading is more appropriate. If the "prison" meaning is
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no longer active, there is no way to make this interpretation, yet it is obvious that

the interpretation is possible. Conditional retention permits this interpretation: after

"cell" is encountered, the "biology" meaning is active, but the other meaning is re

tained until the end of the text. In this case, the final word requires a reinterpretation

of the early text and the word meaning as well, so the retained meaning ("prison")

supplants the initially selected meaning ("biology") and the reinterpretation is com

pleted. Because no text follows the disambiguating word, the other meanings are

then actively suppressed.

The key assumption of conditional retention is that there is a simple binary

mechanism for temporarily remembering that a meaning was activated, even if activa

tion has since ceaised, and that this memory canbe erased when necessary. Combining

this two-state memory for a given meaning with two levels of activation for that mean

ing (i.e., "active" and "inactive") theoretically gives four possible states in which any

meaning can exist: (1) the meaning is inactive and there is no memory of its having

been recently active; (2) the meaning is inactive but there is memory of its having

been recently active; (3) the meaning is active and there is memory of its having

been active; and (4) the meaning is active but there is no memory ofits having been

active.

While it is conceivable that a meaning could be active with no record of recent

activation, this notion serves no useful purpose in the conditional retention theory.

Thus, there are three states in which word meanings exist:

• Active: The meaning is active and there is some memory of its having been
active. The meaning shows facilitation (i.e., shorter response times and lower
error rates on experimental tasks).

• Inactive: The meaning is not active and there is no memory of its having
been active. This could be the initial state of the meaning, or could result
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from either active suppression or gradual loss of activation. In this state, the
meaning shows no facilitation.

Retained: The meaning is not active but there is some memory of its having
been active, thereby distinguishing it from an inactive meaning and making it
readily available for reconsideration if necessary. The meaning does not show
facilitation, thus preventing it from being confused with an active meaning.

A theory of different states of activity in memory is by no means unprecedented.

For example, Wagner's (1981) model of learning and automatic memory in animals

distinguishes between a state of inactivity (I), a primary state of activity (Al), and a

secondary state of activity (A2). Nodes in memory make the transition from I to Al

upon being directly activated by some stimulus, then decay to A2, and finally back

to I. If an inactive node is indirectly activated through the spread of activation the

node can make the transition from I to A2, but spreading activation cannot push a

node from I to Al or from A2 to Al (Figure 4.1). Wagner also notes that several

other theorists discriminate between two different states of activity in memory, dating

at least as far back as the previous century (Morgan, 1894/1977).

The various processes involved in lexical disambiguation can be defined easily

in terms of transitions between the three states (Figure 4.2). These processes are:

• Spreading Activation: The process ofchanging inactive or retainedmeanings
to active meanings.

• Active Suppression: The process of changing active or retained meanings to
inactive meanings.

• Conditional Retention: The process of changing active meanings to retained
meanings. Note that inactive meanings cannot be directly changed to retained
meanings.

Thus, in conditional retention theory, terms such as "retained" or "retention" have

very specific meanings with respect to word meanings, lexical disambiguation, and

related higher-level memory structures and processes.
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Figure 4.1: Transition network for multiple states of activity in Wagner's (1981)
model of learning and automatic memory in animals.
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Inactive Active
suppression

activation

Figure 4.2: Transition network for multiple states of inactivity in the conditional
retention theory.
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The conditional retention theory extends the active suppression theory by of

fering an explanation of how early, misleading text can be reinterpreted without

conscious reprocessing. Neither active suppression nor any other theory of lexical

disambiguation accounts for this phenomenon.

4.3 The controversy

The theory of conditional retention is by no means widely accepted, and the

criticisms of conditional retention should be considered when evaluating ATLAST's

utility as a cognitive model. One argument against conditional retention is the exis

tence of a large body ofexperimental evidence which shows that, almost immediately

after a meaningof an ambiguous word has been selected, the alternate meanings seem

as if they had never been recalled (Onifer & Swinney, 1981; Seidenberg et ah, 1982;

Swinney, 1979; Tanenhaus et ah, 1979). This has been interpreted by some crit

ics as proof that retention does not occur (e.g., G. Hirst, personal communication,

March 26, 1986). What seems to be overlooked by the critics, however, is that these

experiments simply do not ask the right questions.

4.3.1 Lexical access data: fact and fiction

Critics have argued that the theory of conditional retention runs counter to

the data obtained through numerous experiments. The evidence, they say, supports

an extreme interpretation of active suppression: that the unchosen meanings of an

ambiguous word are immediately deactivated and discarded when one meaning is

selected. There is, however, a problem with this interpretation. While they do in
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fact demonstrate that unselected word meanings are very quickly deactivated, these

experiments do not test whether the meanings have been completely forgotten.

The experimental technique used in making on-line measurements of the rel

ative activation levels of word meanings during language comprehension is called

cross-modal lexical priming (CMLP). In CMLP, the subject is presented aurally with

a text containing an ambiguous word. At some controlled interval after hearing the

ambiguous word (called the stimulus onset asynchrony or SOA), the subject is pre

sented with a visual task which indirectly measures the degree of activation of the

ambiguous word's different meanings. In some experiments the visual task may be a

lexical decision task in which the subject must determine whether the visual stimulus

is a word or a non-word. Meyer and Schvaneveldt (1971) found that it is easier to

decide if a visually-presented target string of letters is a word if a semantically re

lated word is presented prior to the target; this is called priming. Other experiments

use a naming task in which the subject must read the target string aloud. In either

case, the fundamental assumption is that the extent to which the decision or naming

is facilitated corresponds to the degree of activation of the target string's internal

representation. The facilitation is measured as the amount of time required for the

subject to correctly complete the task (also called the latency). Thus a target word

which is semantically related to the ambiguous priming word will be recognized more

quickly than a target word which is unrelated to the prime. In turn, an unrelated

target word will be easier to recognize than a non-word.

Tanenhaus et al. (1979) used CMLP with a lexical naming task in an investi

gation of the processing of noun-verb lexical ambiguities in syntactic contexts which

biased for either the noun reading or the verb reading (e.g., "1 bought the watch" or

"I will watch."). They found that naming latencies were facilitated for both readings
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immediately after presentation ofthe ambiguous word (0 msec) regardless of the bias

ing context, but that only the reading appropriate to the context was facilitated 200

msec later. They concluded that the inappropriate reading was actively suppressed.

Seidenberg et al. (1982) used semantically-biasing contexts as well as syntactically-

biasing ones and studied noun-noun ambiguities in addition to noun-verb ambiguities.

Again the ambiguous word was the final word of the auditory stimulus. With the

exception that they found some evidence of selective access in the case of noun-noun

ambiguities with strong lexical priming for one interpretation, their results supported

the conclusion of Tanenhaus et al. The active suppression hypothesis is further sup

ported by the experiments of Swinney (1979) and Onifer and Swinney (1981), who

also employed CMLP but with a lexical decision task. The ambiguous word was

embedded within a semantically-biasing text and visual targets were presented three

syllables after the ambiguous word (750-1000 msec; Swinney, 1979) and at 1500 msec

(Onifer Swinney, 1981). In both cases only the context-appropriate reading was

facilitated at the presentation of the target.

Obviously there is substantial cause to conclude that the inappropriate mean

ings of an ambiguous word in context are deactivated soon after they are initially

accessed. This conclusion in no way disagrees with the conditional retention theory.

Conditional retention conflicts with active suppression only when the experimental

data described above areinterpreted asevidence that thereisabsolutely nomemory of

the newly-inactive meanings everhaving been active. This assumption is unfounded,

and the theory of conditional retention specifically states that retained word mean

ings will exhibit no facilitation. None of the experiments above address the question

of how recently deactivated word meanings might differ from those which have been

inactive for a much longer duration. This difference might appear as different degrees

of sensitivity to re-activation while processing additional input, or some other quality
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As a simple example of how one might easily be led to the wrong conclusion

J by asking relevant questions but never asking the right question, consider the simple
incandescent light bulb. Ostensibly, the bulb is either "on" (emitting light) or "off"

(no light). A bulb which has just been turned offdoes not appear to be different from

one which has been off for days. In both cases, measuring radiation in the visible light

spectrum (i.e., looking at the bulb) shows that neither bulb is giving off radiation,

m Similarly, measuring electrical current in the power cord shows no flow of electrons.
Two entirely different tests reveal no difference between the bulbs. However, if we

run a third test on the bulbs, say by using a thermometer to measure the respective

temperatures of the two light bulbs, we find a substantial difference: one is warm but

the other is cool.

Of course, word meanings are not light bulbs, nor is conditional retention nec

essarily related to the dissipation of heat from a light bulb. The point of the light

bulb example is that the data from an experiment depends on the measurements

made and the tools used to make those measurements. Those choices in turn may

depend on the questions being asked. Previous experiments in lexical access were

not designed to address questions about conditional retention, so it is premature to

dismiss the theory on the basis of those experiments.

4.3.2 The challenge of reprocessing

An apparent challenge to the theory of conditional retention comes from the

study of human readers' eye fixations during the reading of misleading texts. While

I

I

I

I
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that does not correspond to the relative activation level and is therefore immeasurable

by the lexical access experiments performed to date.
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the data do not refute the existence of conditional retention itself, they appear to

cast some doubt on one of the fundamental assumptions of the conditional retention

theory: the assumption that error recovery is done without reprocessing the input.

The following passage was used in an experiment by Carpenter and Daneman

(1981, p. 137):

The young man turned his back on the
rock concert stage and looked across the
resort lake. Tomorrow was the annual one-day
fishing contest and fishermen would invade
the place. Some of the best bass
guitarists in the country would come to this
spot. The usual routine of the fishing resort
would be disrupted by the festivities.

Subjects in this experiment were asked to read passages such as the one above while

the duration and location of their eye fixations were automatically recorded. In the

example above, most readers initially interpreted the word "bass" as a kind of fish

because the preceding text is biased toward this interpretation. The interpretation is

contradicted, however, by the next word, "guitarists," which forces a reinterpretation

of "bass" as a low-frequency musical note.^

According to the conditional retention theory, this detection of an incorrect

lexical inference and subsequent correction should be performed without reprocessing

the passage. Yet Carpenter and Daneman found that most readers' eyes fixated on

"bass," then moved forwaxd to and fixated on "guitarists," then regressed back to

^The experimenters intentionally placed the ambiguous word at the end of a lineof text, as with
the word "bass" in the passage above. It may be the case that this positioning of the ambiguous
word plays a role in eliciting the backtracking effect observed by Carpenter and Dum man, although
this is not clear.
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"bass," moved forward to "guitarists" again and continued reading the remainder of

the pcLSsage.

At first, Carpenter and Daneman's conclusion that readers reprocess the text

when they encounter contradictions seems to indicate that the assumption of error

recovery without reprocessing is incorrect and, consequently, that the conditional

retention theory is superfluous. The reprocessing heuristic is just one of several error

recovery heuristics proposed by Carpenter and Daneman, however. Another heuristic

involves making a larger-than-normal inference encompassing both the inconsistent

concept with the preceding text. This is done, they say, if the contradiction is only

"mildly semantically inconsistent" and does not involve a syntactic inconsistency

(Carpenter & Daneman, 1981, p. 141).^ This description appears to fit the conflict

generated by either Text 3 or Text 4, which are repeated below:

Text 3: Officials at the U.S. Embassy in Moscow have called for a specialist to
rid the new building of bugs. Secretaries there have reported seeing
cockroaches in the employees' cafeteria.

Text 4: The instructor made the medical students examine the tiny cell so that
they would be aware of the consequences of Medicaid fraud.

Intuitively, both texts seem much less likely to cause the degree of confusion ob

served by Carpenter and Daneman (as reflected by the duration of regressive fixa

tions). These texts are therefore more suited to error recovery by making a more

encompassing inference. Error recovery in the conditional retention framework may

also be viewed as the making ofmore encompassing inferences to integrate conflicting

concepts; the difference is that Carpenter and Daneman theorize that the more re

cent text is reinterpreted in such a way as to permit the original misinterpretation to

^Still another error recovery heuristic is to continue reading the text with the expectation that
later information will resolve the inconsistency. This is similar to the recency inference strategy
discussed in Chapter 6.
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be maintained, while the conditional retention theory allows for previously retained

inference possibilities to be re-evaluated without reprocessing the actual text so that

the obvious interpretation of the recent text is upheld.

In addition to permitting error recovery without reprocessing, Carpenter and

Daneman's theory also demonstrates the need for retention of some sort. Their

proposed heuristic of checking the previous text for words that caused processing

difficulties, such as ambiguous words, does not specifically address how the reader

knows which word or words to reread, but Carpenter and Daneman theorize that

difficulties encountered during processing may leave a memory trace which makes

finding the ambiguous word much easier. The Carpenter and Daneman model follows

the premise that the activation levels of those concepts not selected for use in the

interpretation either decay or are actively dampened to a base level, which would

preclude the possibility that the memory trace is represented as activation, so this

model strongly suggests a retention mechanism which is related to but distinct from

the activation mechanism.

4.4 Evidence for conditional retention

4.4.1 Holbrook and Eiselt

A study was designed to test explicitly for conditional retention. This exper

iment, by Holbrook and Eiselt (in preparation), uses a variable-delay forced-choice

task to study the selection and retention of meanings of ambiguous words embedded

in texts with variable biasing information before and after the ambiguous word.

I

I
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Most recent studies, of meaning selection have used either lexical decision tasks

or lexical naming tasks within a cross-modal lexical priming paradigm, as described

earlier in this chapter. The forced-choice paradigm used by Holbrook and Eiselt is

an unusual design for a psycholinguistic experiment, although it is frequently used in

perception experiments. Lexical decision tasks and lexical naming tasks are good for

acquiring data about subjects' response times, which in turn correlate to the degreeof

facilitation of the individual word meanings. One aspect of the conditional retention

theory, however, is that retained meanings may not exhibit any measurable amount

of facilitation. This suggests the need for an experimental methodology other than

the lexical decision or lexical naming task. The forced-choice task offers the ability

to detect indirectly the existence of conditional retention by studying the subjects'

decisions instead of their response times.

In this experiment, subjects were asked to read short texts of one to three

sentences in length. Experimental texts were two sentences in length, and the others

were filler texts. There were two types of experimental texts that are important to

the current discussion:''

• Consistent bias surrounds ambiguous word: The context which precedes
the ambiguous word biases toward one of its meanings, but does not preclude
the possibility of its other meaning. The second sentence contains information
which disambiguates the ambiguous word with information that is consistent
with the context of the first sentence, agrees with the originalmeaning selection,
and precludes the other meaning.

Example: Mary realized that she had examined the wrong bat. She took it
back and got one that was aluminum.

• Conflicting bias surrounds ambiguous word: The context which precedes
the ambiguous word biases toward one of its meanings, but does not preclude
the possibility of its other meaning. The second sentence contains information
which disambiguates the ambiguous word with information that is consistent

''This experiment is discussed in much greater detail by Holbrook and Eiselt (in preparation)
and Holbrook (in preparation).
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with the context of the first sentence but disagrees with the original meaning
selection and requires that the unselected meaning be integrated into the text,
precluding the original meaning selection.

Example: Mary realized that she had examined the wrong bat. She took it
back and got one that was male.

The texts were presented on a computer monitor a few words at a time, with

each group of words replacing the group before it. An information probe was displayed

on the monitor at one of two points in the text: either between the ambiguous word

and the disambiguating text or after the disambiguating text. The probe consisted of

a pair of words, and the subject's task was to decide which of the two words was more

related to the text. The choice was indicated by pressing one of two buttons, each

corresponding to one of the two probe words. An example of materials presentation

is shown below:

Mary realized
that she had examined

the wrong bat. She took
it back and got

CAVE PITCH

one that was

male.

The first line would appear, centered on the monitor, for 640 msec. The second line

would then replace the first line for 640 msec, and so on. When the two capitalized

probe words appeared on the screen, the subject would press a designated key on

the left side of the computer keyboard if he or she thought the word on the left was

more appropriate to the text than the word on the right, or would press a designated

key on the right side of the keyboard if the word on the right was thought to be

more appropriate. Presentation of additional text did not continue until the subject

pressed one of the two keys.
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An early probe point and a late probe point were used for each text in a between-

subjects design. The early probe point occurred some time after the ambiguous

word but before the disambiguating information in the second sentence. The late

probe point occurred at the end of the second sentence, after the disambiguating

information had been presented. The probe word pairs were rotated between three

types of words; a word related to the meaning of the ambiguous word that Wcis correct

at the end of the text, a word related to the incorrect meaning at the end of the text,

and a word unrelated to either meaning or to the text as a whole. In the example

above, the three words used were "PITCH," "CAVE," and "FRUIT." "PITCH" is

related to the baseball meaning of "bat," and is more appropriate at the early probe

point.® "CAVE" is related to the animal meaning of "bat," and is more appropriate

to the text at the late probe point. "FRUIT" is unrelated to either meaning of the

ambiguous word or the text.

Case I: Consistent bias at the early probe point

In this experiment, the theories of conditional retention and active suppression

are set up as opposing theories, so it is useful to compare the two theories' predictions

of the outcomes for the different conditions of this experiment. The predictions of the

subjects' responses at the early probe point, and the data gathered at this point are

summarized in Table 4.1. This table refers to three types of word stimuli. Correct

word stimuli are words related to the meaning of the ambiguous word that could

be integrated with context at the conclusion of the text. Incorrect word stimuli are

®An independent group of informants read the first sentence ofeach experimental text, which was
followed by the two target words that were semantically related to the ambiguous word at the end of
the sentence. The informants were asked to choose the word that was more related to the meaning
of the sentence, or to indicate that both words were equally related. A sentence was considered to
bias toward one of the target words if that word was chosen by the informants more than 80% of
the time.



consistent

bias

surrounds

(n=18)

Cell 1 Cell 2 Cell 3

correct incorrect correct unrelated incorrect unrelated
CR 75 25 100 0 100 0

AS 100 0 100 0 50 50

data 61 39 89 11 94 6

conflicting
bias

surrounds

(n=27)

Cell 4 Cell 5 Cell 6

correct incorrect correct unrelated incorrect unrelated

CR 25 75 100 0 100 0

AS 0 100 50 50 100 0

data 33 67 70 30 85 15
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Table 4.1: Predictions and results at early probe point during forced choice task.

words related to the meaning of the ambiguous word that could not be integrated

with context at the conclusion of the text. Unrelated word stimuli are words that

were unrelated to either meaning of the ambiguous word at any point in the text.

The tables give predicted choices cis percentages of the total number of responses.

The first type of text reported in Table 4.1, called "consistent bias surrounds,"

was designed so that the context which occurs before the ambiguous word is encoun

tered biases towards one meaning of the ambiguous word. Thus, the reader will have

enough information from the text on which to base a decision, and will choose the

meaning which is more related to the previous context. The context which follows the

ambiguous words for these texts agrees with the context that precedes the ambiguous

words, so the meaning choice that was made remains correct throughout the text.

Conditional retention (CR) predicts that the unselected meaning of the ambigu

ous word will be retained throughout the text. Retention of the unselected meaning

will cause interference in the forced-choice task between the correct and incorrect
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probe words (Cell 1): the retained meaning will give the incorrect probe word some

non-zero probability of being selected, although the probability is less than that of the

correct probe word being selected. The simplest prediction about this interference

is that it will be reflected in 25% of the responses (the intermediate point between

a prediction of no interference, which would be reflected in 0% of the choices, and

complete interference, which would be reflected in 50% of the choices). However,

when the correct word is paired with the unrelated word (Cell 2), there is no reason

to select the unrelated word over the correct word; the unrelated word was never

considered and is not being retained. Therefore, the correct word should always be

chosen in this condition. When the incorrect word is paired with an unrelated word

(Cell 3), the incorrect word will always be chosen by virtue of its relationship to the

retained meaning of the ambiguous word.

Active suppression (AS) makes a different set of predictions. When a meaning

for the ambiguous word is selected, the unselected meaning will be actively sup

pressed. At the point of the forced-choice task, the suppressed meaning should have

no effect on the word chosen in the task. Thus, when the choice is between correct

and incorrect probe words (Cell 1), active suppression predicts that the correct word

will be chosen 100% of the time. There is no tendency to choose the incorrect word

because it is associated with the unselected meaning of the ambiguous word, which

was previously suppressed and causes no interference. When the choice is between

the correct probe word and the unrelated word (Cell 2), the subject again will always

choose the correct word. When the incorrect word is paired with the unrelated word

(Cell 3), there is no reason to suppose that the incorrect word is chosen with more

probability than the unrelated word.
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Sign tests were performed on individual cells to determine the significance of

the differences between the two stimuli presented to the subjects in each condition.

A sign test is a nonparametric statistical test that is useful when the data can be

defined eis the difference between a pair of qualitative measurements. The sign test

simply determines whether two population distributions are identical; in this case,

the population distributions are the proportion of one answer to the other in each

cell.

In these data, there are some cells that have statistically insignificant results,

according to the sign test, which nevertheless seem better predicted by one theory

or the other. To confirm such trends in the data, a binomial probability distribution

model of the data was used to compare the predictions of each theory to the data.

This was done by taking the data in a cell and finding the probability that the

prediction made by a theory is matched by the data.

For Cell 1, the sign test of the data did not show a significant difference be

tween the null hypothesis that there is no effect of context and stimulus type and

the theories' predictions that there will be some difference. However, the raw data

and predictions of each theory seem to favor the conditional retention theory. Using

the binomial probability distribution model to compare the two theories to the data,

it was determined that the conditional retention theory's prediction for Cell 1 ap

proaches significance, while the active suppression theory's prediction for this cell

does not.

In Cells 2 and 3, the sign test found significant differences in the proportions of

subjects' responses to the stimuli. The predicted proportion for Cell 2 was the same

for both theories, so the results in this cell do not support one theory over another.

However, for Cell 3, the predicted proportion for conditional retention was almost
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exactly matched. The prediction made by active suppression was not supported at

all.

Case II: Conflicting bias at the early probe point

The other type of text reported in Table 4.1, called "conflicting bias surrounds,"

was designed so that the context which occurs before the ambiguous word is encoun

tered biases towards one meaning of the ambiguous word. During the meaning deci

sion process for the ambiguous word, the meaning that fits better with the previous

context will be chosen. The context which follows the ambiguous words for these

texts disagrees with the context that precedes the ambiguous words, so the meaning

that is contextually appropriate at the early probe point will be inappropriate at the

end of the text. Correspondingly, the probe word that is correct at the end of the

text in in "consistent bias" texts is incorrect at the end of "conflicting bias" texts,

and the probe word that is incorrect in the former case is correct in the latter.

Because the forced-choice task is presented before the contradiction is encoun

tered, the two theories' predictions of the subjects' choices are exactly the same as

those in Case I above, but the designations of "correct" and "incorrect" are reversed.

Thus, the predictions in Cell 4 are the reverse of Cell 1, the predictions of Cell 5 are

the same as those of Cell 3, and the predictions in Cell 6 are the same as in Cell 2.

In Cell 4, conditional retention and active suppression both predict a significant

effect of context type and target type. The null hypothesis predicts that no such ef

fect will obtain. The sign test performed did not yield results that make it possible

to reject the null hypothesis. However, a binomial probability model used for anal

ysis indicates that the probability of the conditional retention theory matching the

observed data because of effect rather than chance is far greater than for the active



consistent

bias

surrounds

(n=18)

Cell 7 Cell 8 Cell 9

correct incorrect correct unrelated incorrect unrelated

CR 100 0 100 0 50 50

AS 100 0 100 0 50 50

data 100 0 94 6 61 39

conflicting
bias

surrounds

(n=27)

Cell 10 Cell 11 Cell 12

correct incorrect correct unrelated incorrect unrelated

CR 100 0 100 0 100 0

AS 0 100 50 50 100 0

data 59 41 89 11 78 22
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Table 4.2: Predictions and results at late probe point during forced choice task.

suppression theory. In other words, although the sign test does not show a significant

effect, the conditional retention theory provides a far better match to the data than

does the active suppression theory.

In Cells 5 and 6, the sign test found a significant difference between the pro

portions of the subjects' responses to the different stimuli. Conditional retention

predicted this difference in Cell 5, but active suppression did not. In Cell 6, both

theories predicted this difference.

Case III: Consistent bias at the late probe point

The predictions for the subjects' responses at the end of the experimental texts,

and the subjects' responses at that point are shown in Table 4.2. In the case of the

"consistent bias surrounds" texts, the ambiguous word is encountered at the end of

the first sentence, but the forced-choice task is not presented until the end of the

second sentence, which reinforces the contextual bias of the first sentence.



85

One question that remains unanswered by the conditional retention theory is,

"For how long are unselected meanings retained?" As described in the following

chapter, ATLAST places a limit on the number of times that a retained inference

path, and the word sense contained within that path, can be re-evaluated. ATLAST

also suppresses all retained paths at the end of the text it is processing. However,

recent experimental data suggests that the duration of retention may be affected by

confirming or disconfirming evidence which follows the ambiguous word (Holbrook,

in preparation). The predictions for conditional retention in Table 4.2 reflects the

latter idea about retention duration. Thus, for "consistent bias surrounds" texts,

conditional retention predicts that retained meanings will be suppressed by the late

probe point because of the confirming evidence of the second sentence. Active sup

pression predicts that unselected meanings will be suppressed at the end of the first

sentence. Consequently, the conditional retention and active suppression theories pre

dict the same results for all three experimental conditions in the case of "consistent

bias surrounds" texts, as explained below.

Given a choice between the correct probe word and the incorrect probe word

(Cell 7), both theories predict that the subject will always choose the correct word.

The active suppression theory predicts this result because the unselected meaning

of the ambiguous word, which is related to the incorrect probe word, will have been

suppressed shortly after the ambiguity was encountered. The conditional retention

theory proposes a different course of events with the same result. The unselected

meaning is retained for a period of time during the reading of the second sentence.

The second sentence reaflBrms the subject's decision about the meaning of the am

biguous word and forces suppression of the retained meaning. Both theories predict

that the subject will select the correct word over the unrelated word (Cell 8). Given
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a choice between the incorrect word and the unrelated word (Cell 9), both theories

predict that there is an equal probability of choosing either word.

The data supported the predictions in Cells 7 and 8 that there would be sig

nificant differences in the subjects' responses. The data also seem to support the

prediction in Cell 9 that there would be no significant difference in this condition,

but the analysis of the data did not reject the possibility that a significant difference

does exist.

Case rV: Conflicting bias at the late probe point

In the case of "conflicting bias surrounds" texts with the forced-choice task

presented at the end of the text (Table 4.2), the differences between the two the

ories become apparent once more. Here, as in Case II above, the second sentence

contradicts the subject's meaning selection for the ambiguous word at the end of the

first sentence. In order to interpret the text correctly, the subject must revise his

or her original meaning selection for the ambiguous word. Unlike Case II, however,

the forced-choice task is presented after the subject has read the contradictory text.

This contradiction discourages suppression of the unselected but retained meanings,

which in turn allows the subject to revise the meaning selection. The effects of this

revision should be apparent in the data if the conditional retention theory is correct,

but the revision should not be reflected in the data if the active suppression theory

is correct.

When presented with a choice between the correct probe word and the incorrect

probe word (Cell 10), the conditional retention theory predicts that the subject will

choose the correct word at the late probe point. The active suppression theory, on

the other hand, predicts that the subject will choose the incorrect word, because
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this word is related to the only meaning of the ambiguous word that is available to

the subject at this point: the meaning that was appropriate at the end of the first

sentence but is now inappropriate.

Conditional retention predicts that the subject will choose the correct word over

an unrelated word (Cell 11). Active suppression, however, predicts that there will be

an equal probability of choosing either the correct word or the unrelated word. This

should occur, if the active suppression theory is correct, because the probe word that

is correct at the end of the second sentence is semantically related to the meaning of

the ambiguous word that was not selected at the end of the first sentence and has

now been suppressed. From an active suppression standpoint, a word that is related

to a suppressed meaning is no more likely to be chosen than a word which is not

related to the text.

Finally, both theories predict that the subject will select the incorrect probe

word over the unrelated word (Cell 12). The conditional retention theory makes

this prediction because the incorrect word is semantically related to the meaning of

the ambiguous word that was originally selected but is now retained. The active

suppression theory makes this prediction because the incorrect word is semantically

related to the ambiguous word meaning that was first selected and is still active, all

other meanings having been suppressed.

Although the raw data in Cell 10 lean toward the conditional retention theory,

the data are not sufficient to reject the hypothesis that there is no significant differ

ence between the choice of the correct and incorrect probe words. Using a binomial

probability model, neither theory provided a good fit with the data.
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Cells 11 and 12 provided a better fit with the existing theories. For Cell 11,

a significant difference between the word choices obtained. Conditional retention

predicted that there would be such a significant difference, but active suppression

predicted that there would be no significant difference. For Cell 12, a significant dif

ference between the word choices also obtained. This Wcis predicted by both theories.

Discussion of the results

The two theories predicted different results in six of the twelve different test

conditions shown in Tables 4.1 and 4.2: Cells 1, 3, 4, 5, 10, and 11. Analysis of the

data showed that the conditional retention theory predicted the results better than

the active suppression theory did in five of the six cells. The analysis of the data in

Cell 10 provided no support for either theory. It is not surprising, however, that this

was so, because the forced-choice t<isk in this condition should have been the most

difficult for the subjects. This was the only condition in which the forced-choice task

came after the contradictory text and both probe words were related to meanings of

the ambiguous word. Consequently, the processing load here would be greater than

in any other condition.

Overall, the weight of the evidence from this experiment clearly supports the

conditional retention theory. The evidence from another experiment, which is dis

cussed next, also lends support to conditional retention, although it suggests a mech

anism which differs from the one proposed in this dissertation.
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4.4.2 Burgess and Simpson

A different view of retention in language understanding is offered by Burgess

and Simpson (1988). They studied the contribution of each hemisphere of the brain

to lexical ambiguity resolution. While it is well accepted that the left hemisphere

has a major role in language processing, the role of the right hemisphere is unclear.

Burgess and Simpson found that the time course of activation of the meanings of an

ambiguous word differed profoundly between the two hemispheres.

Subjects in Burgess and Simpson's experiment were presented with lexical de

cision tasks using a divided visual field methodology. Subjects were visually primed

with an ambiguous word displayed on a computer terminal for 35 msec. The priming

word was masked for either 0 or 715 msec, after which the target word was displayed,

on the terminal. The target was visible for 185 msec, then was masked for 50 msec,

and then the screen went blank. The targets were related to the prime through the

dominant or subordinate meaning of the prime. The twist to this experiment is that

the target word was randomly presented either 2 degrees to the left or right of the

point where the prime appeared. The duration of the target word's appearance on

the screen is too briefto permit the eyes to move to the target, so a target presented

on the left side of the screen appears only in the left visual field and is projected to

the right hemisphere. Conversely, a target on the right side of the screen appears

only in the right visual field and is projected to the left hemisphere.

Burgess and Simpson found that the time course of activation for the different

meanings in the left hemisphere agreed with the results of another study in which

the targets were presented to both visual fields simultaneously (Simpson & Burgess,

1985): the dominant or more frequently used meaning was facilitated at both 35 and



90

750 msec, while the subordinate or less frequently used meaning showed less facili

tation at 35 msec and no facilitation at 750 msec. In fact, at 750 msec the subjects'

responses to related subordinate targets were slower than their responses to unre

lated trials, leading to the conclusion that the subordinate meaning was inhibited or

actively suppressed by that time. In the right hemisphere, on the other hand, facilita

tion for the dominant meaning decreased between 35 and 750 msec while facilitation

for the subordinate meaning increased significantly over that same time period.

These results, say Burgess and Simpson, suggest a mechanism in which the

left hemisphere calls upon the right hemisphere to access memory information when

necessary. But when would such a mechanism be needed? Burgess and Simpson spec

ulate that when an ambiguous word is embedded in a sentence but the choice of mean

ing is not constrained by the preceding context, it would be costly for the lajiguage

understander to allow the subordinate meaning become inactiveeither through decay

or suppression. For example, consider the following sentence (Burgess &: Simpson,

1988, p. 419):

The man stood by the bank for the better part of an hour before catching a
fish worth taking home.

The text following the ambiguous word "bank" supports the choice of the subordi

nate meaning (i.e., land at the edge of a body of water) instead of the dominant

meaning (i.e., a place where money is kept). If the subordinate meaning is inactive

when the word "fish" is read, that meaning must be reactivated for processing to

continue successfully. If, however, that meaning maintains activation in the right

hemisphere, the understander could access the correct meaning at the appropriate

time without incurring the cost of reactivating the meaning. In short. Burgess and

Simpson propose that "the role of the right hemisphere is to provide the less frequent
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meaning when needed by context after inhibitory processes in the left hemisphere

have caused activation for the subordinate meaning to decline" (p. 421).

ATLAST does not specifically account for potential processing differences be

tween hemispheres of the brain. Nevertheless, ATLAST's premise that retention of a

word meaning is distinct from its activation is certainly compatible with Burgess and

Simpson's theory that activation and retention are fundamentally the same process

carried out by different hemispheres. Their finding that the time course of activa

tion when materials are presented to the left hemisphere looks very much like the

time course obtained when materials are presented simultaneously to both hemi

spheres indicates that the right hemisphere's behavior is obscured by that of the left

hemisphere; this would explain why retention hcis gone undetected by lexical access

experiments in which the targets are presented to both visual fields simultaneously.

4.5 Conclusion

The theory of conditional retention offers an explanation for psycholinguistic

phenomena which most theories of lexical disambiguation fail to address: recovery

from erroneous lexical inferences. The one other theory which addresses this is

sue, that of Carpenter and Daneman (1981), relies on a retention-like mechanism

to recover from mistakes while using reprocessing and concedes a non-reprocessing

heuristic which also shares some features with conditional retention. As we have

seen, the experiments often cited in support of the active suppression theory, and

which sorhe might view as arguments against conditional retention, do not test for

conditional retention. Neither do the actual results of those experiments contradict

any assumptions of the conditional retention theory. Furthermore, the results of two
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other experiments lend support to the theory of conditional retention. These facts

lead to the conclusion that the theory of conditional retention is currently the best

available explanation of lexical ambiguity resolution and error recovery in human

language understanding.



Chapter 5

Lexical Inference Processing:

Implementation

5.1 Lexical disambiguation and recovery

This chapter describes at length the operation of ATLAST as it processes this

shortened version of Text 3:

Text 5: The embassy searched for bugs.
The secretaries had seen roaches.

Text 5 is similar to those used in the experiment to test the conditional retention

theory (Holbrook Eiselt, in preparation), which was described in the previous

chapter. The texts in this experiment were designed to establish a context that

strongly biases for one meaning of a target ambiguous word and then contradicts that

meaning, thus forcing the understander to supplant its original choice ofmeaning with

a new one. In the case of Text 5, the context invoked by the reading of "embassy"

forces the understander, ATLAST, to choose the "hidden microphones" meaning of

the word "bugs." After reading the word "roaches" at the end of the second sentence,

however, ATLAST recognizes that its initial choice of meaning is incorrect and that

"insects" is the correct interpretation of "bugs."

93
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Text 5 IS the subjGct of considGrs-blG discussion throughout this dissortsition

(it appears again in Chapter 7), as it provides a good illustration of ATLAST's

capabilities. It is not, however, the only text on which ATLAST has been tested.

Additional examples are shown at the end of this chapter and in Appendix A. As of

this writing, ATLAST has been tested successfully on more than sixty texts of one

to four sentences in length, based on six different scenarios. What follows is actual

run-time output generated by ATLAST during the processing of Text 5. For the sake

of brevity, much of the output has been deleted, leaving only the more interesting

parts. A diagram of the corresponding memory structure for Text 5 is shown in

Figure 5.1.

5.2 ATLAST is fooled

5.2.1 Metrics and parameters

ATLAST is designed to serve as a framework for testing theories of lexical

disambiguation and error recovery, not as a robust language processing system. As

such, ATLAST has a number of parameters that can be adjusted to manipulate its

processing behavior. ATLAST presents a summary of its parameter settings before

beginning work on the input text.

Input text is:

The embassy searched for bugs.
The secretaries had seen roaches.

Ordering of inference evaluation metrics in force:

MORE-ACTIVATION-METRIC

SHORTER-PATH-METRIC
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MORE-REINFORCEMENT-METRIC

MORE-SPECIFIC-METRIC

NO-DECISION-METRIC
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The inference evaluation metrics are used by ATLAST's filter to compare two

competing inference paths and select the better one, as described in Chapter 3. The

order in which the metrics are applied directly affects ATLAST's interpretation of

a given text; the ordering is determined by the user. The ordering of the first four

metrics listed above is the only ordering of those metrics that results in acceptable

interpretations for the texts on which ATLAST has been tested, but this is not

necessarily the one true ordering of evaluation metrics. As ATLAST is tested on

more examples, the need for additional metrics or changes to the existing ones will

most likely become apparent. As these new or revised metrics are added, different

orderings of the metrics may also be required.

The last metric in the list, the no-decision metric, is invoked only when the

previously applied metrics fail to select one of the competing paths. Therefore, the

no-decision metric, which selects neither competing path but retains them both for

later re-evaluation, is always the la^t metric in the ordering.

Maximum distance of marker-passing: 3
Distance to pass markers per cycle: 3

The two parameters above pertain to ATLAST's proposer. The first parameter

indicates that the spread of activation via marker-passing will be limited to a distance

of three nodes away from the point of origin. If this limit were decreased, ATLAST

would be unable to correctly interpret Text 5 because one of the inference paths

essential to understanding this text consists of six links. On the other hand, if this

limit were increased, ATLAST would still find the correct interpretation but at the

expense of doing a significantly greater amount of work.
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The second parameter indicates that markers will be parsed a distance of three

nodes away from the origin each time that the proposer is invoked (i.e., whenever

an open class word is processed). In other words, the values of the two parameters

taken together mean that all marker-passing for a given open class word will be done

before the next word is processed. While ATLAST works very well when the marker-

passing for an input word is performed over multiple cycles while other words are

being processed, eye-movement studies have resulted in the conclusion that all the

processing for an input word is completed before the next word is read (Carpenter Sz

Daneman, 1981), so ATLAST is working under that constraint.

Are rejected paths being retained?: t

Max. no. of unsuccessful evaluations: 5

Min. no. of shared nodes to force re-evaluation: 4

This set of parameters controls the retention process that gives ATLAST its

error correction ability. The first of these says that inference paths which are eval

uated, but not incorporated into ATLAST's interpretation, are to be retained. The

second parameter sets a limit on the retention of inference paths. In this case, a re

tained path may be re-evaluated no more than five consecutive times without being

activated. If the path is re-evaluated a sixth time with no success, it is suppressed.

The third parameter determines how retained paths will be chosen for re-

evaluation. When the proposer suggests a path to the filter for evaluation, the filter

examines the set of retained paths to find those paths that are sufficiently related to

the path suggested by the proposer. These related, retained paths then will also be

evaluated by the filter. For this example, a retained path must share a subpath of at

least four nodes with the path suggested by the proposer to qualify for re-evaluation.

(If either path has fewer nodes than the limit, the shorter path must be entirely

contained within the longer path for re-evaluation to occur.)
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Are function words being allocated processing cycles?: nil
Is inference processing forced to complete at periods?: t

The last two parameters control how the processing cycles of the proposer and

the filter are allocated. The value of the first parameter above means that marker-

passing and path evaluation are not performed when function, or closed class, words

are processed. The value of the second parameter means that all processing of a

sentence is forced to completion at the end of the sentence. In other words, any

"loose ends" are resolved as much as possible.

5.2.2 ATLAST begins work

After ATLAST displays the constraints under which it is working, it begins

processing the input text. ATLAST attaches a *START* symbol to the beginning of

a text. Processing this symbol initializes ATLAST.

Processing begins

Capsulizer:

Retrieving lexical entry: *START*
No nodes will be activated from lexical entry
Sending capsule: (start)

Filter:

Received capsule: (start)
Begin processing of eventO

ATLAST then reads the first word of the input. No nodes are activated, no

markers are passed, and there are no paths to evaluate. The capsulizer's intra-phrasal

syntactic analysis suggests that a noun phrase is coming.

Capsulizer:

Retrieving lexical entry: The
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No nodes will be activated from lexical entry
Begin sentence
Begin noun phrase

ATLAST now processes embassy, the first open class word. The corresponding

node in memory is activated and the proposer begins passing markers from there.

Because no other open class words have been processed, the proposer cannot find

any potential inference paths at this time.

Capsulizer:
Retrieving lexical entry: embassy

Proposer:

Initializing EMBASSY
Passing markerO from EMBASSY to GOVT-AGENCY as markerl
Passing markerl from GOVT-AGENCY to A-SECRETS as marker2
Passing markerl from GOVT-AGENCY to P-SECURITY as markers
Passing markerl from GOVT-AGENCY to GENERIC-EMPLOYER as marker4
Passing marker2 from A-SECRETS to FIND-SECRETS as markerS

markers too old to be passed further
Passing markers from P-SECURITY to FIND-SECURITY-HAZARD

as markers

markers too old to be passed further
Passing marker4 from GENERIC-EMPLOYER to P-HEALTH as marker/

marker/ too old to be passed further
Passing marker4 from GENERIC-EMPLOYER to SECRETARY as markers

markers too old to be passed further

5.2.3 Proposing possible inference paths

The next word, searched, is a verb. This tells the capsulizer that it has reached

the end of the noun phrase it was parsing. The capsulizer informs the filter that it has

parsed a noun phrase and that the head noun activated the node labeled EMBASSY.

The capuslizer now expects a verb phrase.
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The proposer passes markers outward from the node SEARCH and finds intersec

tions with the markers passed previously from EMBASSY. These intersections represent

paths to be evaluated by the filter.

Capsulizer:
Retrieving lexical entry: searched
Sending capsule: (nphrase (EMBASSY))
End noun phrase

Begin verb phrase

Proposer:

Initializing SEARCH
Passing markers from SEARCH to FIND-OBJECT as markerlO
Passing markerlO from FIND-GBJECT to OBJECT as markerll
Passing markerlO from FIND-OBJECT to SEE as markerl2
Passing markerlO from FIND-OBJECT to FIND-SECURITY-HAZARD

as markerlS

Proposing path from SEARCH to EMBASSY
Passing markerlO from FIND-OBJECT to FIND-HEALTH-HAZARD

as markerl4

Passing markerlO from FIND-OBJECT to FIND-SECRETS as markerlS
Proposing path from SEARCH to EMBASSY

Passing markerll from OBJECT to MICROPHONE as markerlS
markerlS too old to be passed further

Passing markerll from OBJECT to INSECT as markerlT
markerl? too old to be passed further

Passing markerll from OBJECT to SECRET as markerlS
markerlS too old to be passed further

Passing markerll from OBJECT to LAMP as markerlS

markerlS too old to be passed further
Passing markerll from OBJECT to WEAPON as marker20

marker20 too old to be passed further
Passing markerll from OBJECT to POSSESS-OBJECT as marker21

marker21 too old to be passed further
Passing markerlS from FIND-SECURITY-HAZARD to P-SECURITY

as maxker22

Proposing path from SEARCH to EMBASSY
marker22 too old to be passed further

Passing markerlS from FIND-SECURITY-HAZARD to MICROPHONE

as marker2S

marker2S too old to be passed further
Passing markerl4 from FIND-HEALTH-HAZARD to P-HEALTH as marker24

Proposing path from SEARCH to EMBASSY
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marker24 too old to be passed further
Passing markerl4 from FIND-HEALTH-HAZARD to INSECT as marker25

marker25 too old to be passed further

Passing markerlS from FIND-SECRETS to A-SECRETS as marker26
Proposing path from SEARCH to EMBASSY
marker26 too old to be passed further

Passing markerlS from FIND-SECRETS to SECRET as marker27
marker27 too old to be passed further

The proposer is a relatively boring process. From this point on, everything that

the proposer does will look just like what it has done so far, except that different nodes

and different markers will be involved, so the remainder of the proposer's output has

been omitted.

5.2.4 Evaluating proposed paths

The filter expects that the first noun phrase ATLAST encounters will probably

represent the actor in the sentence being processed, so the filter assigns the node

labeled EMBASSY to the actor role. The filter also evaluates the paths that werefound

by the proposer.

Filter:

Received capsule: (nphrase (EMBASSY))
Filling actor slot in eventO with EMBASSY

The first inference path that the filter evaluates is given the name pathO. Since

no other paths are currently active, pathO has no competitors. Thus, pathO is

ATLAST's first addition to the set of active paths.

New path discovered: pathO
Path from SEARCH to EMBASSY

SEARCH is a plan step of FIND-OBJECT
FIND-OBJECT has the instance FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
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P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Activating pathO

The next path, pathl, has the same endpoints as pathO. Therefore, it competes

with the active pathO as a possible explanation of the relationship between the nodes

EMBASSY and SEARCH. The filter compares the two paths but its metrics do not prefer

one over the other. The no-decision metric is invoked, leaving both paths de-activated

but retained. Again, there are no active paths. This is done with the expectation

that evaluating other paths during this cycle will alter the context provided by the

set of active paths such that a later comparison between pathO and pathl will result

in a decision.

New path discovered: pathl
Path from SEARCH to EMBASSY

SEARCH is a plaui step of FIND-OBJECT
FIND-OBJECT has the instance FIND-SECRETS

FIND-SECRETS is a plan of A-SECRETS
A-SECRETS is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

No-decision metric — pathO and pathl are retained
De-activating pathO
De-activating pathl

The filter now evaluates path2, which also joins SEARCH and EMBASSY. Although

pathO and pathl share the same endpoints as path2, they are not currently active

and therefore do not compete with path2. Path 2 is activated, but only briefly as

the proposer has rediscovered pathl. Now pathl is evaluated against path2, and the

filter finds that pathl is more specific than path2. That is, path2 requires that the

embassy be viewed abstractly as a generic employer for its explanation of the text

to be plausible while pathl requires no such abstraction. Pathl is now added to

ATLAST's active interpretation and path2 is de-activated and retained.
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New path discovered: path2
Path from SEARCH to EMBASSY

SEARCH is a plan step of FIND-OBJECT
FIND-OBJECT has the instance FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH

P-HEA'LTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER can be viewed as GOVT-AGENCY

GOVT-AGENCY has the instance EMBASSY

Activating path2

However, in the process of re-evaluating pathl, the filter is also reminded that

an earlier comparison between pathl and pathO resulted in a tie or split decision.

Attempting to verify that pathl should be active now, the filter compares it to pathO

and again finds that it cannot make a decision between the two.

Old path rediscovered: pathl
Also reconsidering (pathO) due to tie with pathl

More-specific metric — pathl more specific than path2
De-activating path2
Activating pathl

No-decision metric — pathl and pathO are retained
De-activating pathl
De-activating pathO

ATLAST then moves on to the next word, the preposition for, which has no

semantic representation in ATLAST's memory. As a result, no marker-pa.ssing is

initiated and no new paths are proposed. This function word does tell the capsulizer

that it is now processing a modifying phrase, so the capsulizer informs the filter that

it has seen a verb, and that the node labeled SEARCH was activated by that verb. The

filter then fills the action role with a pointer to that node.

Capsulizer:

Retrieving lexical entry: for
No nodes will be activated from lexical entry
Sending capsule: (vphrase (SEARCH))
Begin prepositional phrase
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Received capsule: (vphrase (SEARCH))
Filling action slot in eventO with SEARCH
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5.2.5 Encounter with an ambiguous word

Now, ATLAST reads the word bugs. The capsulizer recognizes two different

meanings for the word, so the proposer begins searching for possible inference paths

from the nodes representing both meanings.

Capsulizer:
Retrieving lexical entry: bugs
Ambiguous word senses noted: (INSECT MICROPHONE)

The filter then begins to evaluate the paths found by the proposer. The first

path, paths, has no competing path in ATLAST's interpretation so it is activated.

New path discovered: pathS
Path from INSECT to SEARCH

INSECT is sin instance of OBJECT

OBJECT is a role-filler of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Activating pathS

The next path evaluated, path4, competes with pathS. The filter's evaluation

metrics cannot determine which path offers the better explanation of the input, so

paths and path4 axe both de-activated and retained.

New path discovered: path4
Path from INSECT to SEARCH

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is am instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
No-decision metric — pathS and path4 are retained

De-activating pathS
De-activating path4
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The filter now evaluates two paths which connect MICROPHONE to SEARCH. There

is no active path competing with pathS so it is added to the interpretation. Path5 now

provides competition for the next path to be evaluated, path6. Again the comparison

ends in a split decision.

New path discovered: pathS
Path from MICROPHONE to SEARCH

MICROPHONE is an instance of OBJECT

OBJECT is a role-filler of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Activating pathS

New path discovered: path6
Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plain step SEARCH
No-decision metric — pathS and pathS are retained

De-activating pathS
De-activating path6

The filter finds no active path to compete with the next new path, path?,

and adds it to the interpretation of the text. The previously retained pathO shares

at least four nodes with path? so it is re-evaluated. Finding no active competing

path, the filter activates pathO. As before, the filter re-evaluates pathl because of its

previous tie with pathO and is still unable to choose one. PathO and pathl are again

de-activated and retained and path? is the only active path.

New path discovered: path?
Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Also reconsidering (pathO) due to shared nodes with path?
Also reconsidering (pathl) due to tie with pathO ^

Activating path?
Activating pathO
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No-decision metric — pathO aind pathl are retained
De-activating pathO
De-activating pathl

The next new path, pathS, connects the nodes INSECT and EMBASSY, but it

competes with path?, which connects MICROPHONE and EMBASSY, because the filter

knows that the differing endpoints were activated by the same word, although it

does not know what that word was. Thus, the filter regards path? and pathS as

different explanations for the same two words from the input text and evaluates them

accordingly. The filter determines that the relationship described by path? is more

specific than that described by pathS, so pathS is de-activated and retained. Also,

path2 is found to share the requisite number of nodes is path? and is re-evaluated.

Because it has no active competing paths, path2 is activated.

New path discovered: pathS

Path from INSECT to EMBASSY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER can be viewed as GOVT-AGENCY

GOVT-AGENCY has the instance EMBASSY

Also reconsidering (path2) due to shared nodes with pathS
More-specific metric — path? more specific than pathS

De-activating pathS
Activating path2

At this point, ATLAST's interpretation is inconsistent in that path? views the

embassy as a government agency with a goal of preserving its security but path2 sees

the embassy as an employer with a goal of preserving the health of its employees.

This inconsistency will be resolved as more retained paths are re-evaluated.

The filter evaluates path9, connecting INSECT to SEARCH, and, finding no active

competing path, proceeds to add it to the active interpretation. In evaluating path9,

the filter finds that path6 is sufficiently similar to path9 and re-evaluates that path.
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Path6 also competes with path9, and the filter determines that path6 is a better

choice than path9 because path6 is shorter than path9.

Path5 is re-evaluated because of its earlier tie with path6. Path6 shares more

nodes with the other active paths than does path5, so pathS is de-activated and

retained. In other words, the combination of path6, path?, and path2 provides a more

parsimonious interpretation of the text than path5, path?, and path2 (cf. Granger,

1980b). The active paths are now path2, pathO, and path?, but the interpretation is

still inconsistent because of the conflicting explanations of the embcissy and its goals

represented by paths 2 and 7.

New path discovered: path9
Path from INSECT to SEARCH

INSECT is an instance of OBJECT

OBJECT has the instance MICROPHONE

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Also reconsidering (pathS) due to shared nodes with path9
Also reconsidering (pathS) due to tie with path6

Activating path9
Shorter-path metric — path6 shorter than path9

De-activating path9
Activating path6

More-reinforcement metric — path6 has more shared nodes
than paths

De-activating pathS

5.2.6 An is-a intersection

Path9 is notable also because it contains what others have called an is-a inter

section (Charniak, 1983) or is-a plateau (Hendler, 1986). An is-a intersection exists

when two nodes are joined to a third node by is-a links, indicating that the first two

nodes represent different instantiations of the concept denoted by the third node.
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For example, an is-a intersection would occur in a network which represented that a

canary and a robin are two different instantiations of a bird. ATLAST's is-a links are

pairs of has-instance and instance-of links. The is-a intersection in path9 occurs at

the node OBJECT. Such intersections may be uninformative, especially if they occur

near the top of an is-a hierarchy where nodes may be linked to many other nodes.

Marker-passing systems which allow markers to travel in only one direction along

is-a links, such as DMAP (Riesbeck & Martin, 1986), are not bothered by paths with

is-a intersections because they never find them. Hirst's ABSITY (1988b) protects

itself from being swamped by an overabundance of these paths through the use of an

anti-promiscuity rule which prevents markers from propagating from nodes with more

than some small number of links; this allows is-a intersections to occur only in the

lower portions of an is-a hierarchy where they will be more specific and more infor

mative. Hendler (1986) recognizes that these intersections may be useful in language

understanding, but he says they serve no useful purpose in problem solving, and his

SCRAPS problem solving system rejects any path containing an is-a intersection. At

this time, ATLAST gives no special attention to paths with is-a intersections because

the evaluation metrics so far have eliminated such paths from the interpretation when

appropriate. Also, as will be demonstrated later in this chapter, a path with an is-a

intersection is sometimes the only path which makes any sense of the input.

5.2.7 Finding consistency

As the filter processes pathlS, it is reminded of the retained pathO because of its

similarity to pathl3. PathO is evaluated against its competing active path, path2, and

is found to provide a better explanation of the text than path2. Subsequently, pathl

is re-evaluated because of its earlier tie with pathO but is found to be less explanatory
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than pathO. The active interpretation is now pathO, path6, and path?, and is entirely

consistent in its representation: the embassy is a government agency with the inferred

goal of preserving security, and the action of searching for microphones is part of a

plan for achieving that goal.

New path discovered: pathl3
Path from INSECT to EMBASSY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the instance FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Also reconsidering (pathO) due to shared nodes with pathiS
Also reconsidering (pathi) due to tie with pathO

Shorter-path metric — path? shorter than pathl3
De-activating pathi3

More-reinforcement metric — pathO has more shared nodes
than path2

De-activating path2
Activating pathO

More-reinforcement metric — pathO has more shared nodes
than pathl
De-activating pathl

5.2.8 A retained path is suppressed

As processing continues, the filter evaluates several new paths and a few redis

covered paths. The evaluation of these new and rediscovered paths in turn results

in the re-evaluation of a number of related retained paths. These evaluations do

not cause any changes in ATLAST's interpretation. They do, however, allow the fil

ter reduce its overhead by suppressing or eliminating retained paths. When the filter

evaluates the rediscovered path20, it also re-evaluates the related pathl. Because this

is the sixth time that pathl has been re-evaluated, and because ATLAST's relevant
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parameter says that a retained path can "lose" a maximum of five evaluations, pathl

is suppressed. This means that ATLAST no longer ha.s any memory of this particular

path being discovered. If the proposer later finds the same sequence of nodes and

links in memory, it will be treated 85 an entirely new path. The benefit gained by

eliminating pathl is that ATLAST's workload is reduced: memory requirements are

reduced because ATLAST no longer keeps track of pathl, and processing require

ments are reduced because fewer retained paths means fewer possible re-evaluations

of retained paths. Of course, the trick is to eliminate cis many retained paths as

possible without eliminating too many. If the wrong path is eliminated, ATLAST

will be unable to recover from its inference error.

New path discovered: path20
Path from MICROPHONE to EMBASSY

MICROPHONE is an instance of OBJECT

OBJECT has the instance SECRET

SECRET is a role-filler of FIND-SECRETS

FIND-SECRETS is a plan of A-SECRETS
A-SECRETS is a goal of GOVT-AGENCY
GOVT-AGENCY has the instaince EMBASSY

Also reconsidering (pathlB pathlS pathl4 pathl pathl9 pathl2) due
to shared nodes with path20

Shorter-path metric — pathT shorter than path20
De-activating path20

Shorter-path metric — path7 shorter than pathlS
De-activating pathlS

Shorter-path metric — path? shorter than pathlS
De-activating pathlS

Shorter-path metric — path? shorter than pathl4
De-activating path14

More-reinforcement metric — pathO has more shared nodes
them pathl
De-activating pathl
Suppressing pathl

Shorter-path metric ~ path? shorter thain pathl9
De-activating pathl9

Shorter-path metric — pathS shorter than pathl2
De-activating pathl2
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5.2.9 Wrapping up the first sentence

The capsulizer reads the period that indicates the end of the first sentence, as

well as the prepositional phrase and the verb phrase that the capsulizer was parsing.

The capsule that tells the filter about the prepositional phrase also informs the filter

that the object of the preposition is ambiguous.

Capsulizer:

Retrieving lexical entry: *PERIOD»
No nodes will be activated from lexical entry
Sending capsule: (pphrase (INSECT MICROPHONE))
End prepositional phrase
End verb phrase
End sentence

Sending capsule: (term)

The filter assigns the ambiguous object of theprepositional phrase to the object

slot of the event being processed. The filter attempts to resolve the ambiguity by

examining the active paths to determine if one of the meanings can be eliminated.

In this case, no active paths include the INSECT node, so the corresponding meaning

for the ambiguous word bugs is removed from the object slot of the event frame.

Filter:

Received capsule: (pphrase (INSECT MICROPHONE))
Filling object slot in eventO with INSECT vs. MICROPHONE

Received capsule: (term)
End processing of eventO
Begin processing of event1

No active paths exist through INSECT
Removing INSECT from object slot in eventO

ATLAST has now completed processing of the first sentence of the text. The

interpretation for this sentence consists of two parts: three paths in ATLAST's mem

ory network, which result from the semanticanalysis and are displayed in Figure 5.2,



'embassy'

embassy

instance

goal

A-secrets

plan

find-

secrets

role

filler

secret

'secrets'

gov't-
agency

goal

P-security

plan

•ind-

security-
lazari

{ security-
instance V L J

XJiazard*

instance

role

filler

microphone

'microphones'

'searched'

viewed as

search

plan stepplan step

^instance

instance

find-

object
find-

object

role

filler

object

'seen'

see

plan stepplan step

instance

instance

'secretaries'

secretary

part

generic-

employer

goal

P-health

plan

find-

health-

Jiazard,

find-

health-

azard

role

filler

insect

'roaches'

112

Figure 5.2: Active memory network after processing the first sentence of Text 5.
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and the assignment of three of the nodes in those paths to thematic roles, which

is done through the syntactic analysis. This independence of semantic and syntac

tic processing gives ATLAST the ability to process text strings that appear to have

meaning but no structure, as well as sentences that have structure but no meaning.

TJiis capability will be demonstrated later in this chapter. In order to select the three

paths that make up the active interpretation, ATLAST has examined a total of 23

paths, of which 17 have been retained and 3 have been suppressed.

Active memory structure:

Paths: (pathO path6 path7)
Path from SEARCH to EMBASSY

SEARCH is a plan step of FIND-OBJECT
FIND-OBJECT has the instaince FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURin' is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Pointers to memory structure:

Event: event0

Actor: (EMBASSY)

Action: (SEARCH)

Object: (MICROPHONE)
Direction: nil
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5.3 Intermission

Despite the pages of output, what has happened so far is actually very simple.

Essentially, the competition between path? and pathS was decided by ATLAST's

preference for specific over abstract relationships. This decision established a context

in which other paths were evaluated, creating an expectation that the embassy's

search had more to do with espionage than more mundane, management-related

goals. Consequently, the word bugs was interpreted as hidden microphones instead

of insects.

With regard to what has been demonstrated so far, it is accurate to say that

ATLAST is quite similar to other recent NLU systems that employ spreading acti

vation. While the implementation differs greatly, the philosophy remains the same:

use spreading activation techniques to search a relational memory network for con

nections between the words from a text, and then select the connections that best

represent the intended meaning of the text. The resolution of ambiguity is simply a

by-product of the selection mechanism. However, the selection mechanism may be

misled and make incorrect choices. The ability to recover from these errors is what

distinguishes ATLAST from other spreading activation systems.

5.4 ATLAST recovers

5.4.1 Beginning the second sentence

The processing of the second sentence is very much like the processing of the

first sentence, at least until the end of the sentence. As before, the capsulizer begins
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by reading the first word, The, which is processed in exactly the same way as it was

previously. Because The is a function word, no marker-passing is initiated. ATLAST

interprets this word as carrying only syntactic information.^

Capsulizer:
Retrieving lexical entry: The
No nodes will be activated from lexical entry
Begin sentence
Begin noun phrase

The next word, secretaries, initiates marker-passing and several paths are

proposed. The filter, however, does not evaluate any of them because of the con

straints on what constitutes an acceptable path. Before the filter evaluates a pro

posed path, the path is examined to see if its endpoints represent words from two

different sentences which, as described previously in Chapter 3, ATLAST assumes

to represent two different events or states. If the endpoints represent words from a

single sentence, the filter evaluates the path. If the endpoints come from different

sentences, the path must contain a causal or intentional link, and its endpoints must

be nodes representing actions or states if the path is to be evaluated. This constraint

enforces the assumption that the primary semantic relationship between two events

or states is a causal or intentional relationship (cf. Schank & Abelson, 1977). The

paths found by the proposer at this point do not meet this constraint; for example, a

proposed path between SECRETARY and SEARCH is not evaluated because SECRETARY

is neither an action nor a state. Consequently, the filter is idle and there are no

changes to the interpretation.

Capsulizer:

Retrieving lexical entry: secretaries

^Actually, the word "the" does have semantic content. For example, "the" can denote a par
ticular person, thing, or group that was previously referred to in the text or, as in this case, it
can denote something which was not previously mentioned but is not unexpected in the current
context. ATLAST is not yet sophisticated enough to handle the semantic subtleties involved here,
so it ignores them.
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5.4.2 Connecting to the previous sentence

Now the capsulizer encounters the word had, which is is syntactically ambigu

ous. For example, it can be a verb indicating possession or it can be an auxiliary

verb used in conjunction with another verb. The former interpretation requires that

had be treated as an open class word triggering additional marker-passing, while the

latter interpretation requires only that it be regarded as a function word. This re

search concentrates on the resolution of semantic ambiguity, so ATLAST does not

know how to resolve syntactic ambiguity. For this example, ATLAST has been in

structed to treat had as a function word. Meanwhile, the filter assigns the node

labeled SECRETARY to the actor role in eventl.

Capsulizer:

Retrieving lexical entry: had
No nodes will be activated from lexical entry
Sending capsule: (nphrase (SECRETARY))
End noun phrase

Begin verb phrase

Filter:

Received capsule: (nphrase (SECRETARY))
Filling actor slot in eventl with SECRETARY

The capsulizer now processes the verb seen. Having previously determined

that had is an auxiliary verb, the capsulizer tells the filter that the sequence of events

intended by the text does not correspond to the order in which they have been stated

in the text. The capsulizer interprets the construct had followed by a verb as an

indicator that the event currently being processed actually occurred prior to the

event previously processed. The filter postpones changing the temporal order of the

chain of events until the processing of eventl is completed. The filter also activates

the one path, path23, that connects the two events via intentional links. In this
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case, the two events, SEE and SEARCH, are interpreted as components of a single plan,

FIND-OBJECT.

Capsulizer:
Retrieving lexical entry: seen

Sending reorder message; current frame is event 1

Filter:

New path discovered: path23

Path from SEE to SEARCH

SEE is a plan step of FIND-OBJECT

FIND-OBJECT has the plam step SEARCH
Activating path23

5.4.3 Continuing with the second sentence

The next two paths represent possible relationships between the words, see and

secretaries. The first one, path24, is activated because it is the only path so far

that connects these two words. Path24 is quickly de-activated in favor of path25,

however, as the latter path fits better with the other active paths.

New path discovered: path24
Path from SEE to SECRETARY

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the instauice FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER has the part SECRETARY

Also reconsidering (path2) due to shared nodes with path24
Activating path24

More-reinforcement metric — pathO has more shared nodes
them path2

De-activating path2

New path discovered; path25
Path from SEE to SECRETARY

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the instance FIND-SECURITY-HAZARD
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FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY can be viewed as GENERIC-EMPLOYER

GENERIC-EMPLOYER has the part SECRETARY
Also reconsidering (pathl7 pathlS path21) due to shared nodes

with path25
More-reinforcement metric — path25 has more shared nodes

than path24

De-activating path24
Activating path25

Shorter-path metric — path? shorter than pathl?
De-activating pathl?

Shorter-path metric — path? shorter than pathl3
De-activating pathl3

Shorter-path metric — path? shorter than path21
De-activating path21

By the time ATLAST has finished processing seen, a total of 27 paths have

been discovered and evaluated. ATLAST's active interpretation includes 5 paths and

is consistent in its assumption of the espionage theme. Of the remaining 22 paths,

19 are still retained and 3 have been suppressed.

Active memory structure:

Paths: (path25 path23 pathO path6 path?)
Path from SEE to SECRETARY

SEE is a plan step of FIND-QBJECT

FIND-OBJECT has the instance FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY can be viewed as GENERIC-EMPLOYER

GENERIC-EMPLOYER has the part SECRETARY
Path from SEE to SEARCH

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the plan step SEARCH

Path from SEARCH to EMBASSY

SEARCH is a plain step of FIND-OBJECT
FIND-OBJECT has the instance FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY



Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is am instsmce of FIND-OBJECT

FIND-OBJECT has the plam step SEARCH
Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

119

5.4.4 A contradiction forces a new interpretation

The last word of the second sentence, roaches, is a noun and indicates that

the capsulizer is no longer processing a verb phrase. The capsulizer so informs the

filter, and the filter assigns the node labeled SEE to the action role of the current

event frame.

Capsulizer:

Retrieving lexical entry: roaches
Sending capsule: (vphrase (SEE))
Begin noun phrase

Filter:

Received capsule: (vphrase (SEE))
Filling action slot in eventl with SEE

More importantly, the word roaches reveals that ATLAST's interpretation of

the text is incorrect; the embassy is looking for insects insteadofhidden microphones.

The marker-passing that is initiated by the proposer in response to this word results

in the re-evaluation of several retained paths. The first of these retained paths to

be re-evaluated, path3, joins INSECT to SEARCH. Path3 is compared to its active

competitor, pathfi, which joins MICROPHONE to SEARCH. Because the node INSECT has

now been activated by two words from the input text, bugs and roaches, and the

node MICROPHONE has been activated only by the word bugs, path3 is selected as
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the better path and path6 is de-activated and retained. The filter then re-evaluates

path4, which also joins the nodes INSECT and SEARCH, and is again unable to make

a decision between these two paths, so both paths are de-activated and retained.

Old path rediscovered: pathS
Also reconsidering (path4) due to tie with pathS

More-activation metric — pathS has more activation than path6
De-activating pathS
Activating pathS

No-decision metric — pathS and path4 are retained
De-activating pathS
De-activating path4

The filter evaluates two new paths that connect INSECT to SEE. The first of

these, path27, has no active competitor and is immediately activated. The next

path, path28, is evaluated against path27, but no decision is made. Both paths are

de-activated and retained.

New path discovered: path27
Path from INSECT to SEE

INSECT is an instance of OBJECT

OBJECT is a role-filler of FIND-OBJECT

FIND-OBJECT has the plan step SEE
Activating path27

New path discovered: path28
Path from INSECT to SEE

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEE
No-decision metric — path27 and path28 are retained

De-activating path27
De-activating path28

Path29, the first path connecting INSECT to SECRETARY, is discovered and is

added to the active interpretation. This new path is related to the retained pathS,

which is now re-evaluated against the active path7. The filter chooses to replace
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path? with paths, again because the latter has INSECT as one of its endpoints while

the former has MICROPHONE as its corresponding endpoint.

New path discovered: path29
Path from INSECT to SECRETARY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER has the part SECRETARY

Also reconsidering (path24 pathS) due to shared nodes with path29
Activating path29

More-reinforcement metric — path25 has more shared nodes
than path24

De-activating path24
More-activation metric — pathS has more activation than path/

De-activating path?
Activating pathS

The filter rediscovers path28, which earlier had been de-activated and retained

in the tie with path27. Because it has no currently active competing path, path28 is

activated. Path27 is again re-evaluated against path28, but the activation of path29

has changed the context enough so that path28 is favored over path27 in the compe

tition.

Old path rediscovered: path28
Also reconsidering (path27) due to tie with path28

Activating path28
More-reinforcement metric — path28 has more shared nodes

than path27
De-activating path27

Paths is discovered again and compared to path4 because of an earlier tie

between the two paths. This time, the context has changed sufficiently so that a

decision is made: path4 fits better with the existing context and is chosen over

paths, which is now suppressed.
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Old path rediscovered: pathS
Also reconsidering (path4) due to tie with path3

Activating path3
More-reinforcement metric — path4 has more shared nodes

than paths

De-activating path3
Suppressing path3
Activating path4

A few new paths are discovered and evaluated, and a number of retained paths

are re-evaluated, but there are no changes to the interpretation. This activity does

result in more retained paths being suppressed. The Icist new path to be discov

ered, path32, is not incorporated into ATLAST's interpretation. On the other hand,

path32's two related retained paths, path24 and path2, are re-evaluated and replace

their competing paths, path25 and pathO respectively because they support the in

terpretation of bugs as insects.

New path discovered: path32
Path from INSECT to SECRETARY

INSECT is an instance of OBJECT

OBJECT is a role-filler of FIND-OBJECT

FIND-OBJECT has the instance FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER has the part SECRETARY

Also reconsidering (path24 path2) due to shared nodes with path32
Shorter-path metric — path29 shorter than path32

De-activating path32
More-reinforcement metric — path24 has more shared nodes

than path25

De-activating path25
Activating path24

More-reinforcement metric — path2 has more shared nodes
them pathO
De-activating pathO
Activating path2

Again examining the active paths, the filter determines that its original as

signment of the MICROPHONE node to the object role in the previous event frame is
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incorrect because several of the active paths include the INSECT node but no active

paths include the MICROPHONE node. To correct its mistake, the filter now aissigns

INSECT to the object role.

No active paths exist through MICROPHONE
Removing MICROPHONE from object slot in eventO

Active paths exist through INSECT again
Adding INSECT to object slot in eventO

5.4.5 The light at the end of the tunnel

Finally, ATLAST finds the end of the text. The capsulizer tells the filter that

it has finished processing both the noun phrase, the verb phrase in which it was

embedded, and the sentence.

Capsulizer:

Retrieving lexical entry: *PERIOD*
No nodes will be activated from lexical entry
Sending capsule: (nphrase (INSECT))
End noun phrase

End verb phrase

End sentence

Sending capsule: (term)

The filter assigns the node INSECT to the object role in event 1, then reverses

the temporal order of eventO and event 1 as discussed previously.

Filter:

Received capsule: (nphrase (INSECT))
Filling object slot in eventl with INSECT

Received capsule: (term)
End processing of eventl

Reversing order of last two events
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ATLAST has now completed its processing of the text. It has found 33 different

inference paths and has settled on 7 of them as the best interpretation of the text.

These paths are displayed in Figure 5.3. Of the remaining 26 paths, only 16 are

retained when processing is completed. Because there is no more text to be processed,

all retained paths are suppressed.

Suppressing 16 retained paths

Processing completed

Active memory structure:

Paths: (path2 path24 path4 path28 pathS path29 path23)
Path from SEARCH to EMBASSY

SEARCH is a plan step of FIND-OBJECT
FIND-OBJECT has the instance FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER can be viewed as GOVT-AGENCY

GOVT-AGENCY has the instance EMBASSY

Path from SEE to SECRETARY

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the instance FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER has the part SECRETARY

Path from INSECT to SEARCH

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Path from INSECT to SEE

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEE
Path from INSECT to EMBASSY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH

P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER can be viewed as GOVT-AGENCY

GOVT-AGENCY has the instance EMBASSY
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Figure 5.3: Active memory network after processing both sentences of Text 5.



Path from INSECT to SECRETARY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER has the part SECRETARY

Path from SEE to SEARCH

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the plan step SEARCH

Pointers to memory structure:

Event: event 1

Actor: (SECRETARY)

Action: (SEE)

Object: (INSECT)
Direction: nil

Event: event0

Actor: (EMBASSY)

Action: (SEARCH)

Object: (INSECT)
Direction: nil
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5.5 Life without retention

Within the ATLAST framework, conditional retention of inferences is essential

to the understanding of misleading texts such as Text 5 without reprocessing. A

prediction which follows from this claim is that processing Text 5 without retention

should result in an incorrect interpretation. This section summarizes what happens

when ATLAST processes Text 5 without the ability to retain rejected inference paths.

Here ATLAST is run with the same parameter settings as those used above with

the exception that any path which is not activated upon evaluation is immediately

suppressed.
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When ATLAST processes the first part of the first sentence, The embassy

searched, the various paths between SEARCH and EMBASSY are discovered and eval

uated. These comparisons result in a series of split decisions as before, but this

time the paths are suppressed instead of retained. As ATLAST continues processing

the remainder of the first sentence, for bugs, it finds the paths joining EMBASSY to

INSECT and EMBASSY to MICROPHONE. ATLAST again favors the more specific inter

pretation based on espionage, but the appropriate path between SEARCH and EMBASSY

has not been retained nor is it rediscovered, so it cannot be re-evaluated and added

to the interpretation. ATLAST's active interpretation at the end of the first sentence

is given below. (The path names are different from those in the previous example

because ATLAST's retention ability is disabled. The filter gives a path a new name

if it has never seen the path before, and ATLAST now has no recollection of having

previously seen any paths other than the currently active paths.)

Active memory structure:

Paths: (pathl9 pathll)
Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instamce of FIND-OBJECT

FIND-OBJECT has the plain step SEARCH
Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Pointers to memory structure:

Event: event0

Actor: (EMBASSY)

Action: (SEARCH)

Object: (MICROPHONE)
Direction: nil
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Two additional paths are activated during the processing of The secretaries

had seen. One path joins SEE to SEARCH and the other joins SEE to SECRETARY. The

interpretation still follows the espionage theme.

Active memory structure:

Paths: (path43 path41 pathl9 pathll)
Path from SEE to SECRETARY

SEE is a plan step of FIND-OBJECT

FIND-OBJECT has the instance FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY can be viewed as GENERIC-EMPLOYER

GENERIC-EMPLOYER has the part SECRETARY
Path from SEE to SEARCH

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the plan step SEARCH

Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

When it reads the final word of the text, roaches, ATLAST activates a path

connecting INSECT to SECRETARY which infers the health-preservation goal of the

generic employer. The word roaches makes it clear that the previously inferred goal

of preserving security goal is wrong, but ATLAST cannot supplant the older inference

paths because the paths which should take their places have been suppressed. Also,

ATLAST is unable to activate the correct path between INSECT and SEE because the

evaluation of candidate paths resulted in split decisions and suppression of the paths.

The inconsistency now inherent in ATLAST's final interpretation is reflected in the

two different meanings bound to the object slot of eventO.
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Active memory structure:

Paths: (path48 path43 path4i pathl9 pathll)
Path from INSECT to SECRETARY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER has the part SECRETARY

Path from SEE to SECRETARY

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the instance FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY can be viewed as GENERIC-EMPLOYER

GENERIC-EMPLOYER has the part SECRETARY

Path from SEE to SEARCH

SEE is a plan step of FIND-OBJECT
FIND-OBJECT has the plem step SEARCH

Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plain step SEARCH
Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Pointers to memory structure:

Event: event1

Actor: (SECRETARY)
Action: (SEE)

Object: (INSECT)
Direction: nil

Event: event0

Actor: (EMBASSY)

Action: (SEARCH)

Object: (INSECT MICROPHONE)
Direction: nil
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In the example immediately above, ATLAST expends less effort and finds a

solution more quickly than was the case in the previous example, but is unable

to arrive at a correct or even a semantically consistent interpretation. The only

difference between the version of ATLAST used here and the earlier one which worked

correctly is that the earlier one retained previously rejected inference paths. However,

conditional retention is only part of the story. The other necessary component to

understanding and error recovery in ATLAST is the ability to re-evaluate possibly

relevant retained paths at the appropriate times, for without a mechanism for knowing

when and how to re-evaluate the retained paths, the retention feature alone provides

no benefit.

There are two ways in which the re-evaluation of a retained path can be ini

tiated. The first is through direct rediscovery of the retained path by the search

process. Because the passing of markers begins in different places at different times

during the processing oftext, the same inference path may be discovered (or more ap

propriately, rediscovered) more than once. If a rediscovered path is not currently part

of ATLAST's interpretation of the text (i.e., the path has been discovered earlier, re

jected by the evaluation metrics, but retained), that path is re-evaluated against the

competing path which is part of the interpretation. This rediscovery process initiates

reconsideration of some of the retained paths, but it is not dependent upon retention

because these paths would be reconsidered even if they had not been retained.

Some retained paths, though, will not be rediscovered, but the inferences made

from later text may change the interpretation in such a way that these paths now

should be included. ATLAST uses a method of "piggy-backing" the re-evaluation of

these paths onto the evaluation of paths which are directly discovered or rediscovered

by the search process. If a (re)discovered path is evaluated against a competing path
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in the current interpretation, any subpaths or superpaths of the (re)ciiscovered. path

are also evaluated against the current interpretation. In this way, ATLAST attempts

to limit re-evaluation to those paths that are currently relevant. Without the ability

to force re-evaluation of paths rejectedearly in processing but not rediscovered later,

ATLAST's final interpretation probably will be incorrect. Indirectly initiating the

re-evaluation of previously rejected inference paths is essential to ATLAST's error

recovery capability and is dependent upon inference retention.

5.6 The three steps to error recovery

Another way to view error recovery is as a three-step process (Norvig, 1983).

The three steps are (1) recognizing that an error has occurred, (2) locating the source

of theerror, and (3) correcting the error. From this perspective, ATLAST's approach

to error recovery can be summarized as follows:

• Recognizing that an error has occurred: Each inference path has only
two endpoints, and for any two given endpoints there will be at most one active
inference path between them. When a new path is discovered (or an old path
is rediscovered), the set of currently active paths is searched for a path which
shares thesame endpoints. Ifsuch a path exists, it is possible that the currently
active path was incorrectly included in the representation of the text.

• Locating the source of the error: This step is effectively subsumed by
the previous one. If competition between inference paths has been detected,
the competition will always be between a path which is currently part of the
representation and one which is not. If an error has in fact occurred, the source
of the error will be the currently active path.

Correcting the error: The competing paths are evaluated in the context of
the current interpretation of the text (minus the active path being evaluated).
The path which is more appropriate to the current interpretation is added to
the interpretation, while the less appropriate path is added to the set of retained
paths. If the interpretation changed as a result, then an error has beendetected,
located, and corrected.
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5.7 Functional independence in action

Chapter 2 argued for the functional independence of syntax and semantics,

based in part on observations that human understanders are able to determine the

syntactic correctness of semantically anomalous texts and are also able to assign

meaning to agrammatical strings of semantically related words (Chomsky, 1957;

Winograd, 1973). The principle of functional independence of syntax and seman

tics has been maintained during ATLAST's development; accordingly, ATLAST is

also able to process texts which are either syntacticallyor semantically deficient with

some degree of success. The following two examples demonstrate ATLAST's ability

to process ill-formed texts. ATLAST's inference retention capability has been re

stored and all other parameters axe set to the values given at the beginning of this

chapter.

5.7.1 Syntax without semantics

In the first example, ATLAST attempts to understand a sentence which is

syntactically valid but has little semantic value. The capsulizer parses the sentence

correctly, but the proposer finds no inference paths in memory until the last word of

the text is processed.

Input text is:

The lamp proposed to the microphones.

Processing begins

Capsulizer:

Retrieving lexical entry: *START*
No nodes will be activated from lexical entry
Sending capsule: (start)



Filter:

Received capsule: (start) '
Begin processing of eventO

Capsulizer:

Retrieving lexical entry: The
No nodes will be activated from lexical entry
Begin sentence
Begin noun phrase

Capsulizer:
Retrieving lexical entry: lamp

Capsulizer:
Retrieving lexical entry: proposed
Sending capsule: (nphrase (LAMP))
End noun phrase
Begin verb phrase

Filter:

Received capsule: (nphrase (LAMP))
Filling actor slot in eventO with LAMP

Active memory structure:

Paths: nil

Capsulizer:

Retrieving lexical entry: to
No nodes will be activated from lexical entry
Sending capsule: (vphrase (PROPOSE-MARRIAGE))
Begin prepositional phrase

Filter:

Received capsule: (vphrase (PROPOSE-MARRIAGE))
Filling action slot in eventO with PROPOSE-MARRIAGE

Capsulizer:

Retrieving lexical entry: the
No nodes will be activated from lexical entry

Capsulizer:
Retrieving lexical entry: microphones
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The only paths found by the proposer are four paths connecting MICROPHONE

and LAMP. The filter activates the shortest path which says simply that a microphone

and a lamp are both objects. This is the only semantic content that ATLAST can

find in the sentence.

Filter:

New path discovered: pathO
Path from MICROPHONE to LAMP

MICROPHONE is am instance of OBJECT

OBJECT has the instance LAMP

Activating pathO

New path discovered: pathl
Path from MICROPHONE to LAMP

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the role-filler OBJECT

OBJECT has the instance LAMP

Shorter-path metric — pathO shorter than pathl
De-activating pathl

New path discovered: path2
Path from MICROPHONE to LAMP

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the instance FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD has the role-filler INSECT

INSECT is an instance of OBJECT

OBJECT has the instance LAMP

Shorter-path metric — pathO shorter than path2
De-activating path2

New path discovered: path3

Path from MICROPHONE to LAMP

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the instance FIND-SECRETS

FIND-SECRETS has the role-filler SECRET

SECRET is an instance of OBJECT

OBJECT has the instance LAMP

Shorter-path metric — pathO shorter than path3
De-activating path3
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Meanwhile, ATLAST continues its syntactic processing with the capsulizer

breaking down the sentence into its constituents and the filter binding thematic roles

to nodes in the memory. Although ATLAST can find little semantic content, it is

able to parse thesentence and build a complete event frame, thus indicating syntactic

correctness.

Capsulizer:
Retrieving lexical entry: *PERIOD»
No nodes will be activated from lexical entry
Sending capsule: (pphrase-dir (MICROPHONE))
End prepositional phrase
End verb phrase
End sentence

Sending capsule: (term)

Filter:

Received capsule: (pphrase-dir (MICROPHONE))
Filling direction slot in eventO with MICROPHONE

Received capsule: (term)
End processing of eventO

Suppressing 3 retained paths

Processing completed

Active memory structure:

Paths: (pathO)
Path from MICROPHONE to LAMP

MICROPHONE is an instance of OBJECT

OBJECT has the instance LAMP

Pointers to memory structure:

Event: eventO

Actor: (LAMP)

Action: (PROPOSE-MARRIAGE)
Object: nil

Direction: (MICROPHONE)
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All paths found by ATLAST in this example, including the one in the final

interpretation, contain is-a intersections. As stated earlier, ATLAST's evaluation

metrics will usually prevent a path containing an is-a intersection from appearing in

the final interpretation. In this case, however, pathO represents the only explanation

that makes any, albeit little, sense to ATLAST. Under similar circumstances it would

not be surprising for a human reader to arrive at an interpretation similar to that

suggested by pathO.^ It would be surprising, however, for that same reader to arrive

at an interpretation along the lines of either pathl, path2, or pathS, which describe

more tenuous and convoluted relationships between a lamp and a microphone than

does pathO.

5.7.2 Semantics without syntax

The next example shows ATLAST working on a semantically-related set of

words which has no sense of syntactic correctness. The words are the open class

words of the first sentence of Text 5; hence ATLAST will find the same inference

paths it found in processing that same first sentence. This time, however, there are

no syntactic cues to tell ATLAST who did what. Because the text is incomplete,

ATLAST's syntactic analysis is lamentable but its semantic analysis is not impaired.

Input text is:

search embassy bugs.

Processing begins

Capsulizer:

Retrieving lexical entry: *START*

^It might be argued that a human reader would be more likely to come up with metaphorical
meanings for a lamp and a microphone, as in the nursery rhyme when the dish ran away with the
spoon. This is well beyond ATLAST's abilities.
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No nodes will be activated from lexical entry
Sending capsule: (start)

Filter:

Received capsule: (start)
Begin processing of eventO

The first word of the input string, search, is a verb, so the capsulizer assumes

the beginning of a verb phrase.

Capsulizer:

Retrieving lexical entry: search
Begin sentence
Begin verb phrase

The next word is a noun, so the capsulizer notifies the filter that SEARCH is

the action in the event frame it is building. The capsulizer then begins processing a

noun phrase embedded in a verb phrase. The proposer discovers three paths joining

EMBASSY and SEARCH and activates one of them.

Capsulizer:

Retrieving lexical entry: embassy
Sending capsule: (vphrase (SEARCH))
Begin noun phrase

Filter:

Received capsule: (vphrase (SEARCH))
Filling action slot in eventO with SEARCH

New path discovered: pathO
Path from EMBASSY to SEARCH

EMBASSY is an instance of GOVT-AGENCY

GOVT-AGENCY has the goal A-SECRETS
A-SECRETS has the plan FIND-SECRETS
FIND-SECRETS is an instance of FIND-OBJECT

FIND-OBJECT has the plain step SEARCH
Activating pathO

New path discovered: pathl
Path from EMBASSY to SEARCH
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EMBASSY is an instance of GOVT-AGENCY

GQVT-AGENCY has the goal P-SECURITY
P-SECURITY has the plan FIND-SECURITY-HAZARD
FIND-SECURITY-HAZARD is an instance of FIND-OBJECT
FIND-OBJECT has the plan step SEARCH

No-decision metric — pathO and pathl are retained
De-activating pathO
De-activating pathl

New path discovered: path2
Path from EMBASSY to SEARCH

EMBASSY is an instance of GOVT-AGENCY

GOVT-AGENCY can be viewed as GENERIC-EMPLOYER

GENERIC-EMPLOYER has the goal P-HEALTH
P-HEALTH has the plan FIND-HEALTH-HAZARD
FIND-HEALTH-HAZARD is am instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Activating path2

ATLAST reads the next word of the text, bugs, which the capsulizer treats as

part of the noun phrase it is processing. The processing of bugs generates 20 new

inference paths, but only a few of these will affect the final interpretation.

Capsulizer:

Retrieving lexical entry: bugs
Ambiguous word senses noted: (INSECT MICROPHONE)

Filter:

New path discovered: pathS
Path from MICROPHONE to SEARCH

MICROPHONE is an instance of OBJECT

OBJECT is a role-filler of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Activating pathS

New path discovered: path6
Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
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No-decision metric — pathB and path6 are retained
De-activating pathS
De-activating path6

New path discovered: path/

Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instaince EMBASSY

Also reconsidering (pathl) due to shared nodes with path/
Also reconsidering (pathO) due to tie with pathl

Activating path/
More-specific metric — pathl more specific than path2

De-activating path2
Activating pathl

No-decision metric — pathl and pathO are retained
De-activating pathl
De-activating pathO

New path discovered: pathS
Path from INSECT to EMBASSY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is a plan of P-HEALTH
P-HEALTH is a goal of GENERIC-EMPLOYER
GENERIC-EMPLOYER can be viewed as GOVT-AGENCY

GOVT-AGENCY has the instance EMBASSY

Also reconsidering (path2) due to shared nodes with pathS
More-specific metric — path/ more specific than pathS

De-activating pathS
Activating path2

New path discovered: path9
Path from INSECT to SEARCH

INSECT is an instance of OBJECT

OBJECT has the instance MICROPHONE

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Also reconsidering (path6) due to shared nodes with path9
Also reconsidering (pathS) due to tie with path6

Activating path9
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Shorter-path metric — path6 shorter than path9
De-activating path9
Activating path6

More-reinforcement metric — pathS has more shared nodes
than paths

De-activating pathS

At this point the final interpretation includes path2, pathG, and path? and is

semantically inconsistent. When the filter evaluates pathl3, it supplants path2 with

pathl and the interpretation becomes consistent in its assumption of the espionage

theme.

New path discovered: pathl3
Path from INSECT to EMBASSY

INSECT is a role-filler of FIND-HEALTH-HAZARD

FIND-HEALTH-HAZARD is an instance of FIND-OBJECT

FIND-GBJECT has the instance FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY
P-SECURITY is a goal of GGVT-AGENCY
GGVT-AGENCY has the instance EMBASSY

Also reconsidering (pathl) due to shared nodes with pathl3
Also reconsidering (pathO) due to tie with pathl

Shorter-path metric — path? shorter than pathl3
De-activating pathl3

More-reinforcement metric — pathl has more shared nodes
them path2
De-activating path2
Activating pathl

More-reinforcement metric — pathl has more shared nodes
than pathO
De-activating pathO

Reaching the end of the text string, the capsulizer notes the end of the noun

phrase, the verb phrase in which it is embedded, and the sentence. The capsulizer

assumes that the last noun in the noun phrase, bugs, is the head noun. The other

noun, embassy, is treated as a modifier.

Capsulizer:

Retrieving lexical entry: *PERIOD*
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No nodes will be activated from lexical entry
Sending capsule: (nphrase (INSECT MICROPHONE) (EMBASSY))
End noun phrase

End verb phrase

End sentence

Sending capsule: (term)

The filter receives the capsule indicating the noun phrase and fills the object

role of the event frame with pointers to the nodes activated by bugs. Unfortunately,

the filter hcis no idea what to do with modifiers, so the pointer to the node EMBASSY

is ignored. Even if it did know about modifiers, the filter would still not entertain the

possibility that EMBASSY might be a better actor than modifier. On a more positive

note, ATLAST does resolve the ambiguity between INSECT and MICROPHONE.

Filter:

Received capsule: (nphrase (INSECT MICROPHONE) (EMBASSY))
Filling object slot in eventO with INSECT vs. MICROPHONE

Received capsule: (term)
End processing of event0

No active paths exist through INSECT
Removing INSECT from object slot in eventO

Active memory structure:

Paths: (pathl path6 path?)
Path from EMBASSY to SEARCH

EMBASSY is an instance of GOVT-AGENCY

GOVT-AGENCY has the goal P-SECURITY
P-SECURITY has the plan FIND-SECURITY-HAZARD
FIND-SECURITY-HAZARD is Ein instance of FIND-OBJECT

FIND-OBJECT has the plan step SEARCH
Path from MICROPHONE to SEARCH

MICROPHONE is a role-filler of FIND-SECURITY-HAZARD

FIND-SECURITY-HAZARD is an instance of FIND-OBJECT

FIND-OBJECT has the plam step SEARCH
Path from MICROPHONE to EMBASSY

MICROPHONE is a role-filler of FIND-SECURlTY-HAZARD

FIND-SECURITY-HAZARD is a plan of P-SECURITY



P-SECURITY is a goal of GOVT-AGENCY
GOVT-AGENCY has the instance EMBASSY

Pointers to memory structure:

Event: event0

Actor: nil

Action: (SEARCH)

Object: (MICROPHONE)
Direction: nil

142

In summary, ATLAST has found the same active memory structure in this

example as it found after processing the first sentence of Text 5 at the beginning of

this chapter. Its syntactic processors have made the best analysis they could based on

what limited knowledge they have, but the important point is that neither the text's

agrammaticality nor ATLAST's weak syntactic processors prevented ATLAST from

finding semantic content in the text string. Similarly, the lack of semantic content

in the text used in the previous example did not prevent ATLAST from correctly

parsing that text. Very few computational models of language understanding are

able to demonstrate these human language processing characteristics.



Chapter 6

Pragmatic Inference Processing:

Theory

6.1 The problem of pragmatic inference

As defined by Seifert, Robertson, and Black (1982), pragmatic inferences are

connections between propositions conveyed bya text and world knowledge previously

stored in memory (see also Abelson & Reich, 1969).^ These inferences are plausible

but are not necessarily true. Applying this definition to the ATLAST framework,

a pragmatic inference is a decision about which inference path best represents an

implicit relationship between events or states explicitly given in a text.

At any point in the text where a pragmatic inference could be made, there is

usually more than one inference possible. However, in explaining the events in a

text, some inferences may serve better than others. For example, after reading the

following text.

^This definition is related to, but not necessarily the same as, the usage of the word pragmatics
in psycholinguistics. For many psycholinguists, the term pragmatics refers to the language user's
knowledge of the social rules underlying language use (Carroll, 1986). While the social rules are
part of a language user's world knowledge, manyclasses of inferences one can make using such rules
are beyond the scope of this dissertation.
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Text 6: John was poor but he owned a gun.
He went to the pawnshop.

the reader might infer that John intended to rob the pawnshop. On the other hand,

John might be intending to get money for his gun at the pawnshop. Either inter

pretation explains the explicit text events, although individual readers may ascribe

different degrees of plausibility to the two interpretations.^ As is the Ccise with lex

ical inference processing, the primary problem in pragmatic inference processing is

disambiguation: the evaluation of competing inferences and subsequent selection of

the one which best explains the events portrayed in the text.

In the example above, the pragmatic inferences that can be made do not hinge

on decisions about the meanings of the individual words that are contained in Text 6.

The words "poor," "gun," "pawnshop," and so on carry the same meaning in this

context regardless of which of the two interpretations is chosen. The ambiguity

arises because of the different plausible connections the reader can find between the

two sentences using his or her knowledge of how the world works. In terms of the

perspective described by Schank and Abelson (1977), Text 6 presents the reader with

states or conditions (lacking money and owning a gun) and an action (going to the

pawn shop). The reader then infers a corresponding goal (get money). There are a

number of plans that can be inferredfor achieving the goal; at least two are suggested

by the action of taking the gun to the pawnshop (steal money or sell gun). To resolve

the ambiguity, the reader must somehow evaluate the explanatory value of the two

plans and select the one that seems more plausible.^

^Wilensky (1978) uses a similar story: "John wanted money. He got a gun and walked into a
liquor store. He told the owner he wanted some money. The owner gave John the money and John
left." This story differs from Text 6 in that the only likely use for a gun in the liquor store scenario
is to use it to rob the liquor store. While it is undoubtedly possible that John might want to sell or
trade the gun at the liquor store, it is not very plausible.

more accurate and complex analysis of Text 6 is certainly possible, but this will suffice for
the purpose at hand.
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Let us say for the sake of argument that our hypothetical reader's inference

processing mechanism decides that the "steal money" plan is more plausible. The

possibility always exists that the reader's selection of the more plausible plan is

incorrect, and we might well wonder how that same inference processing mechanism

would resolve its decision with the presentation of explicit contradictory information

as in Text 7:

Text 7: John Wcis poor but he owned a gun.
He went to the pawnshop.
He sold the gun.

As it was with the theory of lexical inference processing, a theory of pragmatic in

ference processing should address not only how competing inferences are evaluated

and one is selected, but also how selected inferences later may be determined to be

incorrect and replaced with more appropriate ones.

That lexical and pragmatic inferences pose common problems suggests that the

problems may be answered by a common solution. One possible solution is the topic

of this chapter.

6.2 Unifying lexical and pragmatic processing

There is no widespread agreement on the relationship between word knowledge

and world knowledge. For example, participants at one recent workshop represented

both sides of the issue: some argued that lexical and pragmatic knowledge are the

same (Hobbs, 1987), or at least inextricably bound together (Wilks, 1987), while

others argued that the two types of knowledge are quite different and should be

treated as such (Israel, 1987; Kegl, 1987). The position taken here draws from both
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arguments. Knowledge about words and knowledge about the worldare inseparable in

that word meanings are pointers to relevant parts of the model's pragmatic knowledge,

and pragmatic knowledge in turn points to associated word meanings. However, the

fact that ATLAST's intra-phrasal syntactic processor makes decisions strictly on the

basis of the lexicalinformation presented to it (i.e., the syntactic categories associated

with the individual words and the order in which the words are presented) dictates

that knowledge about syntactic categories is stored with the lexical entries.'' Thus,

there is a syntactic component to ATLAST's lexical knowledge which is not included

in its pragmatic knowledge, thereby distinguishing one from the other, but that

difference does not imply that the semantic information in the lexical and pragmatic

knowledge levels should be treated differently. In fact, from a semantic processing

perspective, ATLAST treats the two levels as one.

Consider again the processing of Text 5:

Text 5: The embassy checked for bugs.
The secretaries had seen roaches.

In this example, competing paths start at one node (EMBASSY) but end at two

different nodes (INSECT and MICROPHONE) activated by one word. Early in the text,

the inferred goal of the embassy influenced the choice of one path and the associ

ated word meaning, but later text forced a change in word meaning and a shift in

the inferred goal of the embassy. In other words, calling up information about the

embassy at the lexical level also caused ATLAST to infer goals for the embassy at

the pragmatic level. The pragmatic knowledge then influenced ATLAST's choice of

meaning for the word bugs. Later, the word roaches revealed that ATLAST's initial

''An experiment by Tyler and Marslen-Wilson (1977) indicates that syntactic decisions also may
be influenced by the current semantic context. For reasons of simplicity, ATLAST does not model
this behavior, but there is nothing inherent in ATLAST's design which precludes this behavior from
being incorporated in the future. Remember that the assumption of functional dependence requires
only that syntax and semantics can work independently, not that they must.
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choice of word sense was wrong, and the system revised its inferred goals for the

embassy to find the most parsimonious interpretation of the story.

In the case of Text 6, on the other hand, we see no lexical ambiguity. What we

do notice is pragmatic ambiguity: is John going to sell his gun or use it to rob the

pawnshop? The competing inferences which represent the different interpretations

join the same word senses but follow different routes. Thus in one case our attention

is drawn to lexical ambiguity, in another case we focus on pragmatic ambiguity, but

in either case a decision is made by choosing from competing inferences. In other

words, the difference between lexical and pragmatic inferences is not so much in

the information in the corresponding paths: both types of paths may contain word

senses, related actions, plans, goals, and so on, thus no path canbe regarded as purely

lexical or purely pragmatic. The difference is in the structure of the ambiguity as

indicated by the endpoints. If different meanings of the same word are the endpoints

of two competing paths, the decision appears to be lexical; without competing word

senses at the endpoints, the decision appears to be pragmatic (see Figure 6.1). In

either case, deciding between individual paths is fundamentally the same, so a single

decision process can be used to make inferences at what are often considered to be

different levels of processing.

6.3 Retention of pragmatic inferences

Recall that according to the conditional retention theory, all meanings of an

ambiguous word are accessed when the word is processed. The individual meanings

are then evaluated in light of the existingcontext. If one meaning is more appropriate

to the context than the others and no text follows, the less appropriate meanings are
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sensela

wordl sense2 word2

senselb

wordl sensel sense2 word2

Figure 6.1: The generic structures of lexical ambiguities (above) and pragmatic am
biguities (below).
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actively suppressed. If no meaning is preferred by the existing context, or if one is

preferred but text follows the ambiguous word, the unchosen meanings are retained

until more text can be processed and a decision can be made.

Because ATLAST does not distinguish between paths representing lexical in

ferences and those that represent pragmatic inferences, the theory of conditional

retention also applies to pragmatic inferences. As a result ATLAST can recover,

without reprocessing the text, from erroneous pragmatic inference decisions (e.g..

Text 7) in the same way it recovers from erroneous lexical inference decisions (e.g..

Text 5). This leads to a uniform description of the inference decision and error re

covery process which does not distinguish between lexical and pragmatic knowledge:

• Potential inferences which explain the same input text are generated and eval
uated in parallel.

• If one inference explains the text better than the others do, and there are no
textual cues to indicate that a decision may be premature (e.g., there is still
more text to process), then the otherless-explanatory inferences aresuppressed.

• If no inference proves to be more explanatory than the others, all inferences are
retained until later text provides the information necessary to make a decision.

An example of the theory of conditional retention applied to pragmatic inference

processing is given in Appendix A, which contains output generated by ATLAST

during its processing of a simplified version of Text 7.

The extension of conditional retention theory to pragmatic inference processing

enhances ATLAST's appeal as a model of human language understanding because

it provides a single, simple mechanism for making inferences and correcting errors

at two seemingly different levels of processing. In addition, conditional retention of

pragmatic inferences permits a new and interesting perspective on what previously

has been called strategy-driven inference behavior.
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6.4 Strategy-driven inference decisions

An experiment by Granger and Holbrook (1983) revealed that certain texts

could induce different readers to arrive at different interpretations of the same story.

For example, experimental subjects were presented with the following text:

Text 8: Wilma began to cry.
Fred had just asked her to marry him.

When asked why Wilma cried, some subjects replied that Wilma was unhappy or

upset about Fred's marriage proposal, while others answered that Wilma was happy

about the proposal and was crying tears of joy. The texts which induced equally

plausible and nearly opposite interpretations were called reciprocally ambiguous texts.

Through a supplementary experiment. Granger and Holbrook eliminated the possi

bility that different groups of subjects were influenced by contradictory default ex

planations for the individual story events; in other words, it was not the case that one

group thought that a marriage proposal was a happy event and the other considered

it to be an unhappy event. When presented with the individual sentences in isolation,

subjects would uniformly conclude that Wilma was crying because she was sad or

that Fred's marriage proposal was a happy occasion.

Granger and Holbrook theorized that the difference in subjects' interpretations

of reciprocally ambiguous stories was due to the existence of different but consistent

strategies for systematically choosing between competing inference paths. They also

theorized the existence ofa variety ofdifferent strategies and described two strategies

in detail.

One proposed strategy was to make inference decisions as early as possible in

the reading and then cling to that interpretation as long as possible, fitting new
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story events into the original interpretation. These readers were called perseverers.

Another strategy was to postpone decisions until later in the processing of the text.

Any conflict in the interpretation would be decided in favor of the most recently

presented information. These readers were called recencies. Everyday texts tend to

be constructed so that any reader would arrive at the same interpretation, regardless

of the strategy that was applied, so differences in behavior would likely go unnoticed

unless one were specifically looking for such differences.

Individual differences in inference behavior have been addressed, if only briefly,

by other researchers. In several previous instances, differences in inference behavior

have been attributed to randomness (Hirst, 1988a), subjects' idiosyncracies (Schank,

Collins, Davis, Johnson, Lytinen, k Reiser, 1982), or careless reading (Rumelhart,

1981). Granger and Holbrook'sdata indicate that, at least in this case, the differences

are far more systematic and predictable than other investigators might suppose.

A computational model of the processes responsible for differences in inferential

behavior was developed soon thereafter (Granger, Eiselt, & Holbrook, 1983). This

model, called STRATEGIST, arrived at either of two interpretations of an input

text using the same component processes for making pragmatic inferences but dif

ferent rules for deciding when the processes were invoked (i.e., make the inference

now or make the inference later), resulting in different interpretations of the same

text. ATLAST followed STRATEGIST as an attempt to answer questions about

disambiguation and error recovery that STRATEGIST left unanswered, but those

unanswered questions appeaxed to have relatively little to do with the difference be

tween perseverers and recencies. As workon ATLAST progressed, however, it became

apparent that the newarchitecture could provide valuable insight into strategy-driven

inferencing.
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Within the ATLAST framework, strategy-driven inference behavior is still ex

plained as a difference between making inference decisions early in processing or

postponing them, but the different strategies are invoked only under very specific

circumstances. As described previously, ATLAST uses a set of evaluation metrics

to choose between two competing inference paths. In most cases, one of the metrics

will decide in favor of one path, but occasionally the metrics find no clear winner.

As might be expected, path competitions that end in a tie occur more frequently

in texts which have two equally plausible and nearly opposite interpretations (i.e.,

reciprocally ambiguous texts). The difference between perseverers and recencies is

how they resolve split decisions.

When a tie between competing paths occurs, both perseverers and recencies

will retain the competing paths without making a decision and continue processing

the input text. In the case of perseverers, those retained paths are immediately

available for re-evaluation should later text indicate that re-evaluation is appropriate.

Therefore, although a decision cannot immediately be made, the perseverer is always

ready to make that decision as soon as evidence becomes available which favors one

path over the other. (In the examples of Chapter 5, ATLAST uses the perseverer

strategy.) Recencies, however, will not re-evaluate those split decisions until much

later in the processing, ignoring information which possibly could enable an earlier

decision. In ATLAST, this is done by preventing re-evaluation on those paths and

retaining them until the end of the text, at which point they will be available for

re-evaluation. This postponement applies only to the inferences involved in the split

decision; all other evaluations result in one inference being activated and the other

being retained, as is the case with perseverers. Consequently, when processing texts

that generate no split decisions, perseverers and recencies will arrive at the same

interpretations. If the text is ambiguous but biased toward one interpretation, the
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differences in processing should not be obvious: the perseverer may resolve a tie

incorrectly early in the processing and then supplant as processing proceeds, while

the recency will delay the decision but make the correct one the first time. The final

interpretation is the same in either situation. Only rarely, when the equally-plausible

competing inferences are fundamental to understanding the text and the choices

result in substantially different interpretations, as in Text 8, will the differences be

conspicuous.

To aid in the interpretation of reciprocally ambiguous texts, ATLAST uses a

sixth and previously unmentioned inference evaluation metric called the preferred-link

metric. Given two competing inference paths and no winner after the application

of the activation, length, reinforcement, and specificity metrics, the preferred-link

metric selects the path which contains the greater number of preferred links. A

preferred linkis constructed in ATLAST's memory by adding the preferred designator

to any of ATLAST's link labels. Thus, has-result becomes has-preferred-result. The

preferred link is used to give ATLAST a default interpretation to use when all else

fails. For example, if ATLAST were presented with only the first sentence of Text 8,

"Wilma began to cry," the system would be unable to determine if Wilma is happy

or sad without some built-in predisposition toward one interpretation or the other.

Accordingly, a preferred link has been used in constructing ATLAST's memory so

that, in the absence of any other information, it will favor an inference path which

explains crying as a result of sadness over one which explains crying as a result of

happiness.

When modeling perseverer behavior, ATLAST adds the preferred-link metric

to its list of evaluation metrics before processing begins. The metric is then available

for use during the remainder of text processing. The availability of this metric at the
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beginning ofa text means that perseverers use default inferences early in text process

ing to establish a context for interpreting the remainder of the text. When modeling

recency behavior, conversely, ATLAST does not use the preferred-link metric until

the end of the text has been processed and the retained split decisions are ready to

be re-evaluated. The recency, therefore, first uses default inferences at the end of a

text to resolve the postponed split decisions from the more recently processed text,

and then uses that context to resolve postponed split decisions from earlier text.

In summary, the difference between the two different inference strategies is

nothing more than a difference in how the inference processor deals with ties or split

decisions. The perseverer can make use of default inferences early and tries to resolve

the ties immediately while the recency cannot use default inferences until the end of

the text and postpones the resolution of ties until that time. Any inference paths not

involved in split decisions are processed in the same way regardless of the inference

strategy in force. It is only this simple difference in processing split decisions that

results in the two entirely different interpretations of Text 8. Examples of ATLAST's

output while processing a simplified version of Text 8 using both the perseverer and

recency strategies are given in Appendix A.

ATLAST thus accounts for one aspect of strategy-driven inference behavior,

but what about other phenomena found by Granger and Holbrook that is related

to strategy-driven inferencing? For example. Granger and Holbrook found that if a

perseverer were presented with a story like Text 8 but with the events given in reverse

order, the perseverer would arrive at the interpretation usually attributed to recency

behavior. That is, if presented with the following text.

Text 9: Fred had just a^ked Wilma to marry him.
She began to cry.
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the perseverer would conclude that Wilma was crying tears of joy. Likewise, the

recency would conclude that Wilma was sad or upset. ATLAST behaves similarly

when the order of the story events is reversed. Granger and Holbrook also found that

when the individual story events were presented in isolation (i.e., only one of the two

sentences was presented), perseverers and recencies arrived at the same interpreta

tion. When ATLAST is presented with only one of the story events, it too arrives

at only one interpretation regardless of the inference strategy it is using. Finally,

Granger and Holbrook predicted that individual differences in strategy-driven infer

ence behavior would become visible only through the use of specially constructed

reciprocally ambiguous stories. Given texts that were not so constructed, recencies

and perseverers would arrive at the same interpretation. Again, ATLAST's two dif

ferent strategies find only one interpretation for stories which are not reciprocally

ambiguous, such as Text 5 and Text 7. Thus, ATLAST accounts for a wide variety

of phenomena related to strategy-driven inference processing.

Retention of inferences plays an essential role in strategy-driven inferencing.

Ignoring the issue of error recovery for the time being, the perseverer does not rely

on retention nearly as much as the recency, if at all. The inferences retained due to a

perseverer's split decision will be re-evaluated very quickly because of their similarity

to other inferences soon to be evaluated. If those inferences had not been retained,

they most likely would have been rediscovered by the inference proposer anyway.

The recency, on the other hand, requires the retention of those same inferences. As

processing of the text proceeds beyond the occurrence of the split decision and into

another sentence or two, the locus of activity within the memory changes, and the

likelihood of the tied inferences being generated again decreases considerably. If the

tied inferences are not retained for later re-evaluation, the recency has little chance

of incorporating either of the inferences into its interpretation of the input. In other
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words, without retention of competing inferences, there can be no postponement of

the inference decision, and without postponement there can be no recency behavior.

In ATLAST, the difference between perseverer and recency behavior is con

trolled by changing a parameter. Flip a switch and retained paths resulting from

split decisions cannot be re-evaluated until the end of the text; flip it back and

all retained paths can be re-evaluated on demand. Thus, all things remain con

stant between recency operation and perseverer operation except a change in rules or

strategies for dealing with split decisions. Another explanation, which may be more

plausible, is that the differences in behavior are caused by minor differences in the

underlying cognitive architecture. The behavior might then be more aptly described

as architecture-driven rather than strategy-driven.

One factor which could account for different interpretations of reciprocally am

biguous texts is a difference in the speed of the spread of activation through memory.

A simple prototype model has been built to demonstrate that a connectionist net

work can be forced to settle into two entirely different activation patterns, each one

corresponding to a unique interpretation of the same reciprocally ambiguous text,

by increasing or decreasing the individual computing units' sensitivity to activation

energy (Eiselt & Granger, 1987). Increasing sensitivity promoted the spread of acti

vation energy through the network and "decisions" were arrived at sooner, resulting

in the perseverer interpretation. Conversely, decreasing the sensitivity impeded the

spread of activation, decisions were delayed, and the network settled into the recency

interpretation.

Still another explanation is possible, one which greatly simplifies the assump

tions made in accounting for both error recovery and differences in interpreting text.

Assume that all readers share the same "strategy" for resolving split decisions: they
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retain the competing paths and do not re-evaluate them until the limit on duration of

retention is reached. At that time, the inference processor re-evaluates the retained

paths in light of whatever context has been built. The only difference between indi

vidual readers is in the duration of retention. Thus, readers with short spans will be

forced to resolve those ties early and exhibit perseverer behavior. Readers with longer

spans will not resolve the ties until much later in processing when more context has

been established and will exhibit recency behavior. We might reasonably expect that

readers do not fall nicely in to short-retention and long-retention groups; instead,

readers might represent a range of different retention spans, which would account

for the variety of inference strategies originally predicted by Granger and Holbrook

(1983). Again, differences in behavior emerge from variations in thearchitecture, not

from differences in rules.

The explanation just offered finds indirect support in experimental evidence

which suggests that reading comprehension is affected by the reader's working mem

ory capacity (Daneman k Carpenter, 1980; Just k Carpenter, 1980; Kintsch k van

Dijk, 1978), but these experiments do not directly address the differences between per

severer and recency behavior. Direct support for this explanation may soon be avail

able, however. A preliminary appraisal of experimental data obtained by Holbrook

(in preparation) indicates that human subjects exhibit different behaviors in resolv

ing lexical ambiguity. The differences appear to correspond to the relative speed with

which the subject makes a decision about an ambiguous word. This observation, yet

to be subjected to a thorough analysis of the data as of this writing, is compatible

with the explanation of error recovery and inference processing differences offered

above, and suggests the existence of perseverer and recency strategies at the lexical

processing level.
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6.5 Conclusion

The theory of pragmatic inference processing proposed in this chapter provides

a simple account of a variety of phenomena including lexical disambiguation, prag

matic disambiguation, detection and correction of errors during disambiguation at

both levels, and individual differences in strategy-driven inference behavior. The

theory has been extrapolated from experimental evidence pertaining to lexical infer

ence processing but it has not been tested at the pragmatic level, other than with the

construction of a working computer program. The latter is only a test of plausibility,

however, not of accuracy. Still, ATLAST is the only model which accounts for all

these different phenomena. Its versatility is demonstrated in Appendix A through

annotated examples of ATLAST's operation when faced with problems of pragmatic

ambiguity, recovery from an incorrect pragmatic inference, and a reciprocally am

biguous text.

The possibility that conditional retention accounts for differences in perseverer

and recency behavior, phenomena which at first glance seem to be entirely unre

lated, adds to the importance of the conditional retention theory. Just as important,

though, is the fact that this exploration of the implications of conditional retention

is greatly facilitated by the existence of the ATLAST model. This illustrates one of

the primary benefits of building computational models of psychological theories: the

model enables the researcher to explore extensions or variations of a theory before

designing and running hew experiments. Without the ATLAST framework it would

have been difficult, if at all possible, to investigate possible relationships between

conditional retention and pragmatic inference processing.



Chapter 7

ATLAST as Search

7.1 A different perspective

In the world of cognitive modeling, computer programs usually are presented as

formalizations of theories about human cognition and demonstrations of the plausi

bility of those theories. The programs are subsequently evaluated in terms of how well

they account for existing experimental data on human behavior and how well they

predict the results of future experiments. Until now, this dissertation has concen

trated on how ATLAST accounts for human behavior, but this chapter will examine

ATLAST's computational performance.

This shift in perspective is prompted by speculation that a marker-passing

search for inference paths will be swamped with unimportant paths as the relational

memory network becomes very large. For example, Charniak states:

The problem with marker passing is that it is not obvious if it can do
the job of finding important inferences in a very large and interconnected
database. Or to be more precise, can it find the important inferences
without finding so many unimportant ones that it becomes useless as an
attention focusing device? (Charniak, 1986, p. 588)

159
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This chapter examines the assumptions and constraints relevant to ATLAST's search

processes and finds that marker-passing can be efficient and should scale up well.

7.2 Searching for inference paths

Perhaps the single most important concept in artificial intelligence is that of

search. There are two different searches being performed as ATLAST processes text:

the proposer carries out a breadth-first intersection search for individual inference

paths in ATLAST's semantic memory, and the filter uses a hill-climbing technique to

search for the combination of proposed paths which best explains the input text. In

the former case, the structure of memory defines the search space for the proposer.

In turn, the paths found by the proposer serve to define a search space for the filter.

This section deals with the first of these two components.

7.2.1 A case study

In the example of Chapter 5, ATLAST interpreted the following text using the

semantic memory network shown in Figure 7.1 (a duplicate of Figure 5.1):

Text 5: The embassy checked for bugs.
The secretaries had seen roaches.

During the processing of Text 5, the proposer discovered 33 inference paths, each

one representing a different relationship between two selected nodes in memory. The

different paths and the nodes which they connect are shown in Table 7.1. Table 7.1

shows that there are three paths connecting SEARCH to EMBASSY, eight connecting
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Table 7.1: Inference paths discovered during the processing of Text 5.

either INSECT or MICROPHONE to SEARCH (remember that INSECT and MICROPHONE

were activated by the same word, bugs), and so on.

The number of paths found by the proposer is constrained by several variables.

First, the maximum distance that a marker may travel in memory places a limit on the

length of an acceptable path. In the example of Chapter 5, markers could be passed

at most three links away from their origin, so the proposer would find no paths longer

than twice this distance, six links.^ This constraint is implemented more elegantly

in other systems such as Anderson's ACT* (1983), Hendler's SCRAPS (1986), or

Charniak's Wimp (1986), which use a measure of energy instead of distance and

exhibit fan-out effects which ATLAST does not. Traversing a link in these systems

depletes a marker's energy, and a marker's energy is divided between links when

traversing them in paxallel. The marker is no longer passed when its energy level

drops below a certain point.

Proposed paths must also meet specific criteriaregarding the relationships they

represent. Paths which include a node more than once (i.e., cycles) are not proposed

^This discussion ignores links which effectively have no length as it will only complicate the
analysis.
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as these tend to be uninformative at best. Also considered to be uninformative

are those paths which start and end at competing word senses of the same word.

Additionally, while any two origin nodes activated during the processing of a single

event may be joined by any combination of links, two origin nodes activated during

the processing of different events may be joined only through a causal or intentional

relationship between the nodes, and only if the nodes represent either actions or states

of the two events. Thus, the proposer generally will find many more intra-event paths

than inter-event paths.

The most important constraint is the structure of the semantic memory itself.

In the example of Text 5, the semantic memory consists of 17 nodes interconnected

by only 21 (of apossible ^ j=136 )bi-directional links. Six of these nodes were
activated directly from the text and serve as the endpoints of the 33 paths found

by the proposer. A few nodes exhibit a relatively high degree of interconnectivity:

FIND-OBJECT is linked to six other nodes, OBJECT is linked to four other nodes, and

GOVT-AGENCY is also linked to four nodes. The remaining nodes are connected to only

one, two, or three other nodes, and the average interconnectivity or branching factor

for the network is approximately 2.5. Thus, some parts of the network are highly

interconnected and other parts are not; the regions of low interconnectivity act as

bottlenecks, constraining the spread of markers and limiting the numberof new paths

found. This is a reasonable and by no means unprecedented assumption about human

memory. Although no one is sure how human memory is organized, many models

of human memory reflect this assumption, with higher branching factors associated

with the organizing features of the particular model, such as goals and plans (Schank

& Abelson, 1977), verbs (Kintsch, 1974; Rumelhart & Norman, 1975), or nouns

(Kintsch, 1974; Quillian, 1968).
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The reader should not infer from this discussion that there is some commonly

accepted structural standard for models of human memory. Cognitive scientists build

different miniature memory models to illustrate solutions to different problems, and

the disparities between these models leave us with no baseline for comparison when

trying to determine what is gained by making specific assumptions about memory

organization. On the other hand, if we assume that all memory models are roughly

equivalent, we can selectone sample as representativeof the group and compare that

sample's optimal behavior to its worst-case behavior.

7.2.2 Some unavoidable mathematics

Using ATLAST's memory for Text 5 as the representative of human memory

models, we can examine how assumptions about maximum path length, acceptable

relationships between endpoints, and the organization of memory greatly constrain

the number of paths in the search space. The worst-case scenario will be the search

space generated by a network with the same number of nodes as the representative

sample: 17 nodes with each node linked to every other node (a branching factor of

16 at every node). Of course, it is not likely that in human memory every concept

would be linked to every other concept, if only because activating one node would

remind us of everything else we have stored in memory. Still, this type of network

provides a readily accessible baseline for comparison.

For a network ofn nodes in which every pair of nodes is joined by a single link

(i.e., a completely connected undirected graph on n vertices), the number of paths

(P) that join two arbitrary nodes and have length / or less is given by the following

equation:^

^The proof of this theorem is given in Appendix B.
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In a network of n nodes, the longest path possible without a cycle has length

n —1, so the longest path in our 17-node network contains 16 links. Using the formula

above to compute the number of paths of length 16 or less between any two nodes in

this network, we find that P is very large:

16 (n _ 2V

^ = E = 3,554,627,472,076^(17-i-lj!

Text 5 activated six nodes: EMBASSY, SEARCH, INSECT, MICROPHONE, SECRETARY, and

SEE. From these six nodes, ^̂ ôr 15 different combinations of nodes can be se
lected, so without any constraints the proposer would find 15 x 3,554,627,472,076

or 53,319,412,081,140 paths. This is the worst-case scenario.

By imposing a limit of six on the path length, the number of paths that can be

found by the proposer is dramatically reduced:

6 fl7 —2V
15 X P = 15 X = 13 X 396,076 = 5,941,140

In other words, by imposing the constraint on the path length, the number of paths

that could be found by the proposer has been reduced by seven orders of magnitude.

More important, however, is a general observation based on the formula for P above.

If there is no fixed limit on path length (/), P will grow exponentially as n increases.

On the other hand, if 1 is fixed as n increases, P grows only polynomially. Thus, the

limit on path length prevents the search problem from being as bad as it could be.
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Imposing constraints on the structure of the network so that there is no longer a

single link joining each pair ofnodes will also further reduce P. Unfortunately, there

is no simple way to determine how structural constraints, realized as the removal of

links from the network, will affect P. As links are removed, the number of paths that

exist between two nodes will depend on which nodes are chosen, and this greatly

complicates matters. All we can do at this point is to postulate sample networks and

examine their behavior. One such network already has been proposed, namely the

one depicted in Figure 7.1.

If the proposer is allowed to search through the network of Figure 7.1 with the

only constraint being a limit of six on the path length, the proposer will find only

54 paths between the same 15 pairs of endpoints used above—a decrease from the

5,941,140 paths found in a fully-connected network with the same number of nodes.

Finally, applying the constraints under which the proposer normally runs (i.e., causal

orintentional relations between events, no paths between competing word senses, etc.)

as in the example of Chapter 5, the proposer finds only 33 paths between nine pairs

of nodes—12 orders of magnitude smaller than the worst-case value for P given the

same number of nodes.

This is, of course, only one case; we could generate examples in which the

numbers are worse. As networks are scaled up, the problem associated with un

controlled spreading activation or marker-passing search becomes increasingly ugly.

Nevertheless, it appears that the proposer's search problem is manageable if rea

sonable assumptions are made about the organization of memory and the depth of

search.
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7.3 Searching for the best interpretation

With all constraints in effect, the proposer finds 33 paths between nine pairs of

nodes when processing Text 5. This does not mean that the search space generated

by the proposer consists of only 33 solutions, for the possible solutions which the

filter will consider are made up of combinations of paths. Given the aforementioned

restrictions on the proposer and on memory, there are at most 2^^ = 8,589,934,592

possible combinations of paths. This large number may be reduced by considering

the structure and meaning of memory to a mere 6912 possible interpretations, an

improvement of six orders of magnitude.^ This number is computed in the following

manner. Any open class word in the text may activate one or more nodes in the

semantic memory. The proposer finds paths joining the nodes activated by one word

to the nodes activated by another word. The discovered paths are different and

competing relationships between a pair of words, and the filter can choose only one of

these paths for inclusion in its representation. The set of paths joining two words are

interchangeable and therefore represent an equivalence class of paths. As ATLAST

processes more words from the text it establishes more equivalence classes. At any

given time during the processing, ATLAST's active interpretation may include at

most one representative from each of the equivalence classes established up to that

point. After reading all of Text 5, ATLAST has established seven such equivalence

classes; these classes are depicted in Table 7.1.

Recall that Table 7.1 shows three paths connecting EMBASSY to SEARCH, eight

connecting either INSECT or MICROPHONE to SEARCH, and so on. Since ATLAST's

final interpretation must include exactly one path from each of these classes, the

'Many of these interpretations will be nonsensical, but they are still theoretically possible.
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total number of interpretations possible is the product of the number of paths in

each of the classes. In the case of Text 5, the number of possible interpretations is:

3x8x12x1x3x4x2 = 6912

The filter's task then is to find the single best combination of paths which

explains the input text. Its search space is the set of all possible combinations con

taining exactly one path from each equivalence class. When the proposer discovers a

new path and passes it to the filter, it is in effect saying, "Compare the explanation

you have now to the explanation that you would have if it included this path and

choose the better one." The evaluation of a path represents an opportunity to move

one step through the search space: the filter either can stay with the current solution

or replace it with the one containing the path being evaluated.

7.3.1 The filter's search method

The filter's styleofsearchis best characterizedas a formof hill-climbing. The fil

ter's search for an interpretation is incremental, tied to the presentation of new words

from the input. With each additional word, the filter uses heuristics to determine

which of the interpretations proposed through the processing of the new word is best.

Hill-climbing suffers from a number of problems, the most serious being the tendency

to stop at a locally optimal solution. On the other hand, hill-climbing search has

the advantage of being computationally inexpensive when compared to other search

techniques. This combination of traits makes hill-climbing a useful search technique

when modeling human behavior, as human behavior is not necessarily optimal be

havior (Langley, Gennaxi, &: Iba, 1987).
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It has been suggested that ATLAST's method of finding a solution is also a

form of backtracking. While ATLAST may reconsider interpretations it has pre

viously rejected, it maintains no record of what has been considered in the past;

ATLAST knows only the current solution state and a set of other likely solutions,

some of which have been considered and others which have not. Backtracking, un

like ATLAST, relies on a history of previous choices (Charniak & McDermott, 1985;

Nilsson, 1980). ATLAST may return to a solution it has held at someearlier time, but

it will be through a series of opportunistic moves in the search space, not by directed

backtracking. Thus, the filter's search bears at most only a superficial resemblance

to backtracking.

7.3.2 The principle of locality

The expectation that the filter's hill-climbing search will arrive at the best

interpretation of a specific text without unduly taxing ATLAST's computational

resources is based on the fact that text tends to be focused. Although this focus

changes over time, the change is gradual. At any given time, the particular piece of

text being read has a much higher probability of relating to what was just read or

will soon be read than it does of relating to what was read long ago or will be read

far in the future. This assumption is reflected in the behavior of the retained paths:

those retained paths which are subsequently suppressed after some interval represent

interpretations which might have been plausible at some earlier time but have been

deemed implausible with the passage of time and more text. The active and retained

paths therefore represent a slowly-changing window of activity in memory.

The notion of a window of activity is known elsewhere in computer science.

Virtual memory operating systems can taJce advajitage of the tendency of a computer
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prograrn to favor a subset of its instructions at any time during execution; this

tendency is known as the principle of locality (Denning, 1970). The program is

divided into units called pages. Because of the principle of locality, only a small

subset of a program's pages need be in memory for the program to be executed.

This set of pages is called the working set. When an instruction from within the

working set refers to a page not in the working set, a page from the working set

must be removed and the new page added (assuming a limit on the number of pages

in the working set). If the program is well-constructed the working set will change

gradually. Conversely, if the program is poorly-constructed and does not adhere to

the principle of locality, the working set may change so rapidly that the operating

system spends far more time swapping pages than executing the program.

As with the management of retained paths, the management of an operating

system's working set requires a heuristic for deciding which of its members should be

removed (i.e., which is least likely to be referenced in the future) when the operating

system encounters a reference to something outside the working set. A heuristic for

removing a page from the working set may be based on the length of time since

the page was last referenced, for example, with the least recently used page being

removed first. For both the operating system and ATLAST, the heuristic may be

fallible. In the operating system, removing the wrong page means extra work must

be done to bring that page back into the working set when it is referenced again. In

ATLAST, suppressing the wrong path may lead to an incorrect interpretation oftext,

but a more comprehensive model (or a human reader) might be forced into conscious

problem solving or rereading of the text at this point.
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SfiARCH INSECI or INSECT or SEE SEE INSECT INSECT
to MICROPHONE MICROPHONE to to to to

EMBASSY to to SEARCH SECRETARY SEE SECRETARY
SEARCH EMBASSY

active paths

path2 path4 paths path23 path24 path28 path29
retained paths

pathO paths path? path25 path2? path32
paths pathl? path26 pathSO
pathl 1 pathlS paths1

path20
path21
path22

suppressed paths
pathl paths pathl3

paths pathl4
pathlO pathlS
pathl2 pathlS

pathlS

Table 7.2: Inference paths discovered during the processing of Text 5, grouped by
path status at completion of processing.

7.3.3 Controlling the filter's search

By the time the processing of a text is completed, the paths found by the

proposer can be grouped into three categories: the active paths, the retained paths,

and the suppressed or inactive paths. In the example of Text 5, there are 7 active

paths, 16 retained paths, and 10 suppressed paths; these are shown in Table 7.2.

The search space of solutions or interpretations can be categorized in a similar

fashion. There is only one active interpretation at any given time; this is the set

of active paths. The set of retained interpretations consists of all interpretations

which contain no suppressed paths and at least one retained path. The number of

paths in this category can be computed by calculating the number of interpretations

represented by all active and retained paths and subtracting one for the combination

of all active paths. For Text 5 this number is 2x4x7x1x3x4x2—1 = 1343. The set

of suppressed interpretations consists of any interpretation containing a suppressed

path. This value may be computed indirectly by subtracting the number of active
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and retained interpretations from the number of all possible interpretations; there

are 6912 —1344 = 5568 suppressed interpretations at the end of Text 5.

With these idea^ in mind we can now re-examine, from a performance perspec

tive, the significance of either retaining or suppressing a path in ATLAST. Recall

that a retained path is re-evaluated by the filter whenever it shares enough nodes

with another path being evaluated—-a path which has been newly discovered by the

proposer or an older path which has been rediscovered. On the other hand, sup

pressed paths are treated as if they had never been discovered; consequently, the

filter is never reminded of them. Because suppressed paths have little probability of

being re-evaluated, any interpretation containing a suppressed path similarly has lit

tle probability of being considered by the filter.^ By comparison, the interpretations

that can be constructed by exchanging a retained path for an active path, which is

another way of describing the set of retained interpretations, should have a much

higher probability of being considered. Thus, the active, retained, and suppressed

solutions can also be viewed respectively as the interpretation currently considered

to be correct, the interpretations likely to be worth considering in the future, and the

interpretations determined to be no longer useful.

I
Referring again to the example ofText 5, the filter suppresses 10 inference paths

by the end of processing, representing only 30% of the paths found by the proposer. J
Yet by suppressing only 30% of the paths, the filter has eliminated 80% of the possi

ble interpretations from consideration. Thus conditional retention provides a useful

heuristic technique for significantly reducing ATLAST's search space, assuming the

existence of an effective metric for determining which paths are retained and which

•^A suppressed path may later be discovered and evaluated during the processing of later text. M
This could happen, for example, ifthe words corresponding to the endpoints of the suppressed path ^
were repeated in the text. Thus while the suppression of a path substantially diminishes its chances
for re-evaluation, it does not completely rule out the possibility.

I

g

1

I

1
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are suppressed. Conditional retention enables ATLAST to arrive at an interpreta

tion more efficiently than systems which hold onto all possible explanations (e.g.,

Granger's ARTHUR, 1980a) while still maintaining the ability to change its inter

pretation in the face of contradictory information, unlike systems which retain no

alternate explanations (e.g.. Hirst's ABSITY, 1988b).

Conditional retention in ATLAST requires a method to determine which paths

are retained and which paths are suppressed—in other words, a useful heuristic for

pruning the search space. Imagine, as an extreme case, a heuristic which pruned too

much and suppressed some of the paths of the correct interpretation. Such a heuristic

would be useless. At the other extreme, a heuristic which pruned too little would

improve the chances of finding the correct interpretation at the expense of making

the filter perform many more evaluations.

Some potentially plausible heuristics may also cause problems. For example,

consider a heuristic which suppressed retained paths according to how long they had

been retained, with the oldest retained paths being suppressed first. If ATLAST had

been using this heuristic while processing Text 5, path2 would be among the first to

be suppressed. Consequently, when faced with the information that the embassy staff

really was looking for insects, ATLAST would be unable to fix its interpretation. This

heuristic was used in an early version of ATLAST until this problem was discovered.

The heuristic ATLAST currently uses is based on the number of consecutive times a

retained path is re-evaluated without being activated. In a crude way, this heuristic

takes into account both the duration of retention (i.e., the number of times the path

is re-evaluated) and its demonstrated plausibility as part of an active explanation

(i.e., the retained path that is subsequently activated and then retained again starts

with a clean slate).
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As ATLAST processes a text, the search space grows very large very quickly.

The principle of inference path retention provides a means of dividing the search

space into likely solutions and unlikely solutions; this helps guide the filter's search

through the rapidly expanding search space. It seems reasonable to predict that the

size of ATLAST's search space of active and retained interpretations could be held

roughly constant if, after some start-up period, retained paths were suppressed at

the same rate at which new paths were retained; in fact, an example of this behavior

is seen in Figure 7.2 in which the growth of ATLAST's search space of possible

interpretations during the processing of Text 5 is compared to the growth of its set of

retained interpretations. At first the growth of the number ofretainedinterpretations

parallels the growth of all possible interpretations but it then drops off dramatically.

The current pruning heuristic performs well on Text 5, but it fails to give any

advantage in the processing of some other texts. For example, ATLAST finds the

correct interpretation for Text 10 in Appendix A, but the filter does not suppress

any paths along the way. No solutions are pruned from the search space, so there

is no advantage over an approach which saves all possible solutions, at least in this

case. If the heuristic is modified so that it tolerates fewer re-evaluations of a retained

path before it suppresses the path, the filter will suppress some paths but they will

be the wrong ones and ATLAST will not recover from its original misinterpretation

of Text 10.

Obviously, the heuristic currently used for path suppression is not perfect. Of

several different heuristics tested, the one described above seems to be the best, but

its performance isfar from convincing. This is not, however, an argument against con

ditional retention. ATLAST's implementation has followed a minimalist approach,

beginning with a simple and stupid model, adding "intelligence" to it as needed but

I

I
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Figure 7.2: The growth of the space of possible interpretations during the processing
of Text 5.
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staying within the realm of psychological validity at the same time. The goal in

building ATLAST has always been to test the plausibility of ideas about inference

decisions and error recovery, not to construct a comprehensive language processing

system. Therefore, in the course of building ATLAST, many simplifying assump

tions have been made about the representation, the processes, and the interactions

between them. It is possible that the repercussions of these assumptions are being

felt here: the suppression heuristic could probably take advantage ofboth knowledge

and processes which do not exist in this model, suggesting not the invalidity of the

conditional retention theory but merely the need for more programming.

7.3.4 Resource consumption

The point of any heuristic search is to maximize the probability of achieving

some goal while at the same time attempting to minimize the consumption of one or

more resources. These resources are typically defined in terms of computational effort

and memory usage. In the filter's search for the best interpretation ofa text, compu

tational effort can be measured as the number of path evaluations performed, which

is the filter's most computationally-intensive task. Memory usage can be measured

as the number of retained inference paths.

In processing Text 5, ATLAST selects one interpretation fromthe 6912 interpre

tations that are possible. To accomplish this task, ATLAST does not evaluate every

interpretation individually; instead it is able to eliminate potentially large groups of

interpretations each time it decides not to activate a path. On the other hand, paths

are often evaluated more than once, because the decision to retain a path is only a

temporary rejection of a set of interpretations. The number of evaluations performed

is directly related to two variables: (1) the maximum duration of path retention and
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(2) the minimum degree of similarityrequired between two paths for the evaluation of

one to force the evaluation of the other. As implemented in ATLAST, these variables

are represented as two now familiar parameters: (1) the maximum number of con

secutive unsuccessful evaluations allowed for a retained path before it is suppressed

and (2) the minimum number of nodes shared between a path being evaluated and

another retained path. This relationship is depicted graphically in Figure 7.3. The

data points are generated by running ATLAST 147 times on Text 5, each time with

a different pair of parameter settings.

As the duration of path retention is increased, the number of retained paths

increases as well. A greater number of retained paths means a greater number of

paths subject to re-evaluation via shared nodes with other paths being evaluated.

This in turn results in an increase in the total number of path evaluations, which

appears as the surface's positive slope along the y-axis in Figure 7.3. On the other

hand, an increase in the number of shared nodes required to indirectly trigger re-

evaluation of a retained path makes it more difficult to establish sufficient similarity

between any two paths. This results in fewer path evaluations, and is reflected in the

negative slope of the surface along the x-axis in the figure.

Most of the cases shown in Figure 7.3 do not result in a correct interpretation.®

Of the 147 cases shown, only 40 resulted in a correct interpretation. These cases are

isolated in Figure 7.4. In this figure, the intersections above the "floor" indicate the

parameter settings giving a correct interpretation.

®A correct interpretation is the set ofall nodes in ATLAST's memory, and the links which join
them, that conveys the meaning intended by the author of the text. The correct interpretation
must account for all actors, actions, and objects that are explicitly represented in the text, as well
as those which can be easily inferred, but must not include other nodes. The correct interpretation
must not include contradictions or unresolved ambiguities, and it must be a single interconnected
subnetwork.
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Figure 7.3: Number of path evaluations performed during the processing of Text 5
as conditional retention parameters are varied: all interpretations.
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Figure 7.4: Number of path evaluations performed during the processing of Text 5
as conditional retention parameters are varied: correct interpretations only.
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One might be surprised by some of the parameter values that did not result in

a correct interpretation. For example, with the minimum number of shared nodes set

to three and the maximum number of unsuccessful evaluations set to twenty (point B

of Figure 7.4), ATLAST finds the correct interpretation of Text 5. Yet when the

minimum number of shared nodes is set to zero (point A), so that every retained

path is re-evaluated, ATLAST is unable to find the correct interpretation. How

could ATLAST fail in the latter case when it appears to be doing a more thorough

job of reconsidering retained paths? The problem is that decreasing the value of the

maximum number of unsuccessful evaluations will not only increase the number of

retained paths being re-evaluated on any given cycle, it will also increase the expected

frequency with which any given path will be re-evaluated. If those re-evaluations do

not result in that path being re-activated, it will be suppressed. At point B, a path

necessary for a correct interpretation was still among the retained paths when it was

needed. At point A, however, that same path was unavailable because it had been

re-evaluated unsuccessfully more than twenty times and was suppressed.

Ideally, ATLAST should arrive at a correct final interpretation using the least

number of evaluations possible. In Figure 7.4, that minimum occurs when both

the minimum number of shared nodes and the maximum number of unsuccessful

evaluations are five (point C). At the same time, however, we want to minimize the

number of paths retained by ATLAST during the processing. The number of retained

paths is also affected by changes to the two variables; the effects of such changes are

shown in Figure 7.5.

Figure 7.5 demonstrates that the number of retained paths not only increases

as the duration of path retention is increased, but it also grows as the number of

shared nodes is increased. Increasing the minimum degree of similarity required for
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Figure7.5:NumberofpathsretainedduringtheprocessingofText5asconditional
retentionparametersarevaried:allinterpretations.



182

re-evaluation results in fewer path evaluations. As evaluations occur less frequently,

the time between a retained path's re-evaluations will grow, and the path will be

retained for a longer time period, although the number of consecutive unsuccessful

re-evaluations required for suppression of that path will not have changed.

The total number of retained paths is plotted once more in Figure 7.6, but

with only the parameter settings which result in a correct interpretation. Again, the

desired minimum occurs at the same setting of the parameter for duration of path

retention, but at a slightly different value for the number ofshared nodes required to

trigger path re-evaluation: five and four (point D), respectively, in this case versus

five and five in the previous case (point C of Figure 7.4). Thus, there is no single

parameter setting which minimizes both the number of path evaluations and the

number of retained paths, but it is apparent that the best performance is achieved

when the duration of path retention is relatively small.® Both ATLAST's compu

tational and memory resources are taxed more heavily as the set of retained paths

grows. However, the duration of path retention must not be so short that paths are

suppressed almost as soon as they are retained, else ATLAST will not be able to

recover from erroneous inference decisions.

7.4 Conclusion

This chapter has viewed ATLAST as a search process whose goal is to find the

best interpretation of a text. In fact, ATLAST's search process actually has two

®Figure 7.6 also contains a plateau which indicates an upper bound on the number of retained
paths. This plateau is merely an artifact of the text, the memory network, and the limitson marker-
passing. Regardless of the values of the parameters for duration of path retention and number of
shared nodes, the proposer will find only 33 paths for evaluation. Seven of these paths make up
the correct interpretation, leaving at most 26 paths that can be retained. The plateau reflects the
parameter settings which result in the retention of all 26 paths.
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Figure 7.6: Number of paths retained during the processing of Text 5 as conditional
retention parameters are varied: correct interpretations only.
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components: the proposer's search for inference paths suggested by a text, and the

filter's search for a single interpretation of the text made up of a subset of those

inference paths.

The proposer uses marker-passing in a breadth-first intersection search for in

ference paths. There has been some speculation that a marker-passing search in a

very large memory network may inundate a path evaluator with a huge number of

unimportant paths (Charniak, 1986). This chapter has demonstrated that reason

able assumptions about the organization of memory and the distance that markers

may be passed greatly reduce the likelihood of a catastrophic overload of the path

evaluator. In other words, the efficiency of marker-pcissing search is governed not by

the size of the network but by the structure of the network and the constraints on

marker-passing.^

To find theset of paths which best explains a text, thefilter uses a hill-climbing

search. Hill-climbing can lead to a locally optimal solution, which in many cases is

undesirable. Human text understanding, however, seems to benefit if the text follows

a principle of locality. Common sense tells us that a passage in which transitions

between topics axe few and gradual is far more readable than one in which the tran

sitions are numerous and abrupt. Manuals of writing style remind us that, for the

sake of readability, a paragraph should have a single topic, and that the beginning

of the paragraph should signal the transition from one topic to another. Thus, a

search process that finds a locally optimal interpretation may not be adequate for

other tasks, but it may be exactly what is needed for text understanding.

Cohen and Kjeldsen (1987) have come to a similar conclusion in their work on an information
retrieval system using constrained spreading activation, as has Jones (in preparation) in his work
on a spreading activation approach to problem solving.
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In summary, ATLAST's component search techniques, marker-passing and hill-

_ climbing, may not be ideally suited to many problems. However, one can make

j ™ assumptions about the problem of text understanding which minimize the disadvan

tages of these two search techniques. These assumptions should hold regardless of

the size of the memory network. Thus, ATLAST's processing principles should work

efficiently in large networks as well as small ones.



Chapter 8

Conclusion

8.1 Summary

Conditional retention is a theory of how a human language understander recov

ers from an incorrect choice of word meaning. According to this theory, all meanings

of an ambiguous word are retrieved and the context-appropriate meaning is chosen.

The other meanings are not forgotten but are retained for a certain period of time.

If the choice of meaning is contradicted by later text, the retained meanings are re

considered and a new one is selected. The benefit of conditional retention is that it

enables the understander to recover from many inference errors without incurring the

cost of backtracking and reprocessing.

Conditional retention is compatible with theprevalent active suppression theory

oflexical access, and it answers questions which the active suppression theory cannot.

Retention of alternative word meanings after a choice haa been made is strongly

supported by two experiments (Burgess & Simpson, 1988; Holbrook &: Eiselt, in

preparation).

ATLAST is a computational model of language understanding which incorpo

rates a theory of recovery from erroneous lexical inference decisions based on the

186
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principles of conditional retention. In addition, the ATLAST framework, particu

larly the mechanism of conditional retention, has been shown to facilitate recovery

from erroneous pragmatic inference decisions, thus demonstrating that the proposed

mechanisms have both utility and generaility. Furthermore, ATLAST demonstrates

how individual differences in the conditional retention mechanism might explain in

dividual differences in pragmatic inference decisions.

Although this research offers explanations for a broad range of linguistic and

related phenomena, it by no means answers all questions about language understand

ing. Some of the more important questions raised by ATLAST are discussed in the

following sections.

8.2 Open questions

Work on ATLAST has emphasized processing issues over representation issues,

but representation issues are by no means unimportant. ATLAST uses a simple

relational memory for its representation of semantic knowledge, and its inference

evaluation process relies far more on the structure of memory (e.g., the number of

links in a path) than on the content of memory (e.g., the meaning of a path) in

arriving at an interpretation of a text.

This emphasis on the structure of memory over its content raises concerns

about ATLAST's dependence upon a particular representation scheme. For exam

ple, ATLAST's preference for shorter inference paths, regardless of the relationship

represented by those paths, is essential to finding the correct interpretation of a text.

Yet a careless insertion or deletion of a node and link while constructing ATLAST's
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memory network can have a significant effect on that interpretation. Does this ap

parent brittleness call into question ATLAST's credibility as a cognitive model? The

simple answer is that ATLAST is no more susceptible to accidents in the construction

of its memory than is a model using any other approach; it would be just eis easy to

misrepresent some important attribute in a model which relied more on memory con

tent than on structure. Therefore, ATLAST's reliance on a particular representation

scheme makes it no less credible than any other cognitive model.

The answer given above ignores a hidden but more important issue, however:

should the processing component of a language understander not be dependent upon

the representation component? Independence of this kind would certainly ease the

fears of those who might worry about memory construction accidents, and a language

processing system built under such a constraint would be extremely portable and able

to work with any vocabulary available. But these are software engineering issues, not

cognitive science issues. From the latter perspective, we must ask if it is reasonable

to expect that the human language processing component has not evolved to take

the best possible advantage of the implementation specifics of its representational

counterpart. In other words, will just any representation schemesuffice, either in the

human brain or in cognitive models? The answer to both questions is no, and this

answer is reflected in the work of many NLU researchers: the processing components

of some eaxlier language understanding models took great advantage of shorter path

effects that emerged from specific representation schemes (Quillian, 1969; Wilks,

1978), and in some more recent models the representation and processing components

are one and the same (Cottrell, 1985; Pollack, 1987).

How then is semantic knowledge represented in the human language under

stander? ATLAST might be able to shed some light on this question in the future.
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ATLAST currently processes simple examples using a semantic memory in which

lexical and pragmatic knowledge are uniformly represented, and in which the struc

ture of memory is as important to understanding as is the content of memory. More

complicated examples, however, will undoubtedly require a greater reliance on the

content of memory and the principles of its organization (e.g., scripts, themes, etc.).

H Robust relational memory schemes incorporating these and other factors could be
constructed and tested with ATLAST. The more plausible models ofhuman memory

would be those that allowed ATLAST to interpret texts of greater difficulty, main

tain adherence to the four constraints on understanding described in Chapter 2, and

explain additional linguistic phenomena. These studies might in turn lead to pre-

H dictions which could be tested through experiments with human subjects, eventually
leading to new insights into human memory.

I
Another open question has to do with the functional independence of syntac-

H tic and semantic processing. The texts that ATLAST can understand are, from a
syntactic viewpoint, uninteresting. ATLAST parses only simple sentences in subject-

H verb-object order; it cannot handle interrogatives, imperatives, negatives, or passives,
for example. These deficits could be corrected through the addition ofa great deal of

syntactic knowledge, but there is perhaps more to be learned from an investigation

H into the relationship between the syntactic and semantic processors. This dissertation
has taken the position that these processors can function independently in unusual

m circumstances, but this position dodges amost important question: to what extent
do the processors interact under more normal conditions? As it is currently imple-

I mented, ATLAST permits little interaction between syntax and semantics, but it has
been constructed specifically so as not to preclude a greater degree of interaction.

Thus, ATLAST can be used as a framework for studying various methods of interac-

J tion between the syntactic and semantic processors. The results of these studies can
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then be compared to human performance on the same tasks and possibly shed new

light on the issue of functional independence.

8.3 The eonnectionist connection

Another issue that might be viewed as an open question is that of the imple

mentation of ATLAST. ATLAST was built as a rule-based symbolic processing model

with marker-passing, despite the growing popularity of eonnectionist or parallel dis

tributed processing models. In fact, one anonymous reviewer of an earlier paper on

conditional retention offered the opinion that conditional retention "cries out" for a

eonnectionist explanation.

Undoubtedly, there would be some benefits to be gained by a eonnectionist

implementation of ATLAST. First, ATLAST would be better received by those who

believe that the only good model is a eonnectionist model. Second, ATLAST would

lose the brittleness that results from its sensitivity to the ordering of the inference

evaluation metrics. Because ATLAST's inference evaluation mechanism is a serial

process, it must be told in advance the order in which it should apply the metrics to

a competing pair of inference paths. A eonnectionist implementation, in which the

functional equivalents of ATLAST's evaluation metrics are built into the architecture,

would eliminate any dependence on an arbitrary ordering of rules. A third benefit

would be the reduction ofATLAST's computational overhead: there would no longer

be a need for the centralized tracking of retained paths.

Recall, though, from the discussion in Chapter 1, that the theory described in

this dissertation was intended to correspond to Marr's (1982) computational theory
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level, and that the ATLAST program was intended to correspond to Marr's repre

sentation and algorithm level. It was never the intent of this dissertation to address

issues at the implementation level. However, the benefits described above are to be

gained primarily at that same level.^ While these implementation level issues may

well be worth pursuing, connectionist implementations pose a unique set of prob

lems for the natural language researcher (Charniak, 1987). Time and effort spent on

solving those problems would only detract from work on the higher level issues that

ATLAST was intended to address. Consequently, a less problematic implementation

has been employed in ATLAST, and it has served well.

8.4 The end

Solving the mysteries of human language understanding inevitably requires an

answer to the question of how the language understander resolves ambiguity, for

human language is indisputably ambiguous. But ambiguity leads to choices between

possible explanations, and choice opens the door for mistakes. Unless we are willing

to believe that the human language understander makes the right choice the first

time and every time, any explanation of ambiguity resolution must be considered

incomplete if it does not also account for recovery from an incorrect decision.

Many models of natural language understanding have dealt with lexical ambi

guity resolution in some form, but ATLAST is one of the few to have addressed the

associated problem of error recovery. ATLAST's ability to recover from an erroneous

lexical decision stems from its ability to retain the word meanings not chosen for a

^The benefit ofgreater acceptance by the connectionist contingent is gained at what might best
be described as the political level, a level which Marr did not describe but is nevertheless useful in
understanding computational models of cognitive processes.



192

short period after it selects the apparently context-appropriate meaning of an ambigu

ous word. The short-term retention of possible lexical inferences permits ATLAST

to recover from incorrect decisions without backtracking and reprocessing text, and

without keeping a record of possible choices indefinitely.

The principle of conditional retention provides a solution to the problem of

error recovery which is compatible with current psycholinguistic theories of lexical

disambiguation. Furthermore, the existence of some form of retention in human lex

ical processing is supported by the results of experiments with human subjects. If

we assume a uniform representation for all semantic knowledge, the theory of condi

tional retention can be extended to offer an explanation of recovery from erroneous

pragmatic inference decisions as well.

The ATLAST model has served as a platform for refining the conditional reten

tion theory, demonstrating its plausibility, andexploring its implications. In addition,

ATLAST illustrates the importance that assumptions play in building models of cog

nitiveprocesses. The constraints one chooses to adopt or ignore in building a process

model directly influence that model's architecture, its behavior, and ultimately its

usefulness as a theory of human cognition. Early models of natural language under

standing tend to address related phenomena at a single level of the understanding

process. As the models begin to address a more diverse set of linguistic phenomena

and cut across the perceived levels of processing, common themes emerge. We see

memory organized in relational networks, spreading activation search mechanisms,

and different processing components running concurrently and, when necessary, in

dependently. Certainly this approach to modeling human language understanding

may eventually prove to be wrong, but for the time being it seems to provide bet

ter coverage of existing data than other approaches. The relative ease with which
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this framework can be expanded to account for recovery from erroneous inferences,

as demonstrated with ATLAST, further reinforces the belief that this framework

represents an important step in the right direction.
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Appendix A

Pragmatic Inference Processing:

Implementation

A.l Pragmatic disambiguation and recovery

This appendix describes the operation of ATLAST as it performs several tasks

in pragmatic inference processing. Using actual output generated by ATLAST dur

ing the processing of simplified versions of the sample stories from Chapter 6, this

appendix shows how ATLAST makes pragmatic inference decisions, how it recovers

from erroneous pragmatic inference decisions, and how it can model either of the two

inference processing strategies described previously.

ATLAST resolves pragmatic ambiguity and successfully corrects its mistakes

using the same inference evaluation and error recovery mechanism that it uses at the

lexical level. These abilities are demonstrated in the processing of a variant of Text 7:

Text 7: John was poor but he owned a gun.
He went to the pawnshop.
He sold the gun.

Because ATLAST does not know about pronouns and understands only the simplest

sentences, ATLAST is given this rough approximation:
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Text 10: John was poor.
John owned a gun.
John went to the pawnshop.
John sold the gun.

Because of the enormity of the output generated by ATLAST during the pro

cessing of Text 10, this example has been edited so that nothing generated by the

capsulizer or the proposer appears, and only the more important actions of the filter

are present. A diagramof the organization of the semanticmemory used by ATLAST

in understanding Text 10 is given in Figure A.l.

Input text is:

John was poor.
John owned a gun.
John went to the pawnshop.
John sold the gun.

Ordering of inference evaluation metrics in force:

MORE-ACTIVATION-METRIC

SHORTER-PATH-METRIC

MORE-REINFORCEMENT-METRIC

MORE-SPECIFIC-METRIC

NO-DECISION-METRIC

Maximum distance of marker-passing: 3

Distaince to pass markers per cycle: 3
Are rejected paths being retained?: t

To enable ATLAST to find the correct interpretation of Text 10, two of the

parameters have been changed from their values in the examples of Chapter 5. The

maximum number of consecutive unsuccessful evaluations that a retained path can

endure before it is suppressed has been increased to 17 as anything less results in

ATLAST arriving at an inconsistent interpretation. The minimum number of nodes

a retained path must share with a path under evaluation so that the retained path
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will be re-evaluated has been reduced to 2. Any greater value for this parameter also

will result in an inconsistent interpretation. The relationship between the parameter

settings and ATLAST's performance is discussed in greater depth in Chapter 7.

Max. no. of unsuccessful evaluations: 17

Min. no. of shared nodes to force re-evaluation: 2

Are function words being allocated processing cycles?: nil
Is inference processing forced to complete at periods?: t

A.1.1 The first sentence

ATLAST's processing of the first sentence is uneventful. It finds only one path

connecting John and poor.

New path discovered: pathO

Path from POOR-STATE to JOHNO

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Activating pathO

Active memory structure:

Paths: (pathO)
Path from POOR-STATE to JOHNO

POOR-STATE is am instamce of HUMAN-ECON-STATE

HUMAN-ECON-STATE is am attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Pointers to memory structure:

Event: event0

Actor: (JOHNO)

Action: (BE)

Object: (POOR-STATE)
Direction: nil
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A.1.2 The second sentence

ATLAST begins working on the second sentence and finds that John possesses

something. It then tries to find connections between this fact and the previously

processed text. The system infers that John has the goal of obtaining money and

that owning something is related to that goal. ATLAST has limited knowledge in

this area, however: it knows only that possessing an object of value is a precondition

to selling it (path2) and that possessing an object which can be used as a weapon is

a precondition to stealing something (pathl). ATLAST is unable to decide between

the two paths so both are retained.

New path discovered: pathl
Path from POSSESS to POOR-STATE

POSSESS has the instance POSSESS-WEAPON

POSSESS-WEAPON is a precondition of STEAL
STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Activating pathl

New path discovered: path2
Path from POSSESS to POOR-STATE

POSSESS has the instance POSSESS-OBJECT

POSSESS-OBJECT is a precondition of SELL
SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

No-decision metric — pathl and path2 are retained
De-activating pathl
De-activating path2

Continuing with the second sentence of Text 10, ATLAST reads that what John

owns is a gun. While a gun can be viewed as an object to be sold (path4), ATLAST

determines that a more specific use of a gun is as a weapon (path3). The evaluation

metrics select path3 over path4, and any retained paths that are sufficiently related

to either path3 or path4 are re-evaluated. The path that is consistent with the use of

the gun as a weapon (i.e., pathl, in which possession of a weapon is a precondition
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to stealing) is activated. ATLAST has determined that John is going to use his gun

to steal money.

New path discovered: path3
Path from GUN to POSSESS

GUN is am instamce of WEAPON

WEAPON is a role-filler of POSSESS-WEAPON

POSSESS-WEAPON is am instamce of POSSESS

Also reconsidering (pathl) due to shared nodes with pathS
Also reconsidering (path2) due to tie with pathl

Activating path3
Activating pathl

No-decision metric — pathl amd path2 are retained
De-activating pathl
De-activating path2

New path discovered: path4
Path from GUN to POSSESS

GUN is am instance of WEAPON

WEAPON cam be viewed as OBJECT

OBJECT is a role-filler of POSSESS-OBJECT

POSSESS-OBJECT is an instance of POSSESS

Also reconsidering (path2) due to shared nodes with path4
Also reconsidering (pathl) due to tie with path2

More-specific metric — path3 more specific than path4
De-activating path4
Activating path2

More-reinforcement metric — pathl has more shared nodes
tham path2

De-activating path2
Activating pathl

Active memory structure:

Paths: (pathl path3 pathO)
Path from POSSESS to POOR-STATE

POSSESS has the instamce POSSESS-WEAPON

POSSESS-WEAPON is a precondition of STEAL
STEAL is a plan of A-MONEY

A-MONEY is a result of POOR-STATE

Path from GUN to POSSESS

GUN is am instance of WEAPON

WEAPON is a role-filler of POSSESS-WEAPON



POSSESS-WEAPQN is an instance of POSSESS

Path from POOR-STATE to JOHNO

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Pointers to memory structure:
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Event: eventO

Actor: (JOHNO)

Action: (BE)

Object: (POOR-STATE) I
Direction: nil "

Event: event 1

Actor: (JOHNO)

Action: (POSSESS)

Object: (GUN) |
Direction: nil

I

I

I

I

I

I

A.1.3 The third sentence

I

I
ATLAST then begins work on the third sentence of the text. After reading ||

John went in the context of the previously processed text, ATLAST infers that John

is going to some yet undisclosed location to steal money. |
New path discovered: pathS

Path from GO to POOR-STATE

GO is a precondition of BE-AT-PLACE

BE-AT-PLACE has the instance BE-AT-BUYER _

BE-AT-BUYER is a precondition of SELL I
SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Also reconsidering (path2) due to shared nodes with pathS
Activating pathS

More-reinforcement metric — pathl has more shared nodes
than path2

De-activating path2

I

I

I

I

I

I



New path discovered: path6
Path from GO to POSSESS

GO is a precondition of BE-AT-PLACE

BE-AT-PLACE has the instance BE-AT-BUYER

BE-AT-BUYER is a precondition of SELL
SELL has the precondition POSSESS-OBJECT
POSSESS-OBJECT is an instance of POSSESS

Also reconsidering (path2 path4) due to shared nodes with path6
Activating path6

More-reinforcement metric — pathl has more shared nodes
thain path2

De-activating path2
More-reinforcement metric — pathS has more shared nodes

than path4
De-activating path4

New path discovered: path?
Path from GO to POOR-STATE

GO is a precondition of BE-AT-PLACE
BE-AT-PLACE has the instance BE-AT-VICTIM

BE-AT-VICTIM is a precondition of STEAL
STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Also reconsidering (path2) due to shared nodes with path?
More-reinforcement metric — path? has more shared nodes

than paths

De-activating pathS
Activating path?

More-reinforcement metric — pathl has more shared nodes
thain path2

De-activating path2

New path discovered: pathS
Path from GO to POSSESS

GO is a precondition of BE-AT-PLACE

BE-AT-PLACE has the instance BE-AT-VICTIM

BE-AT-VICTIM is a precondition of STEAL

STEAL has the precondition POSSESS-WEAPON

POSSESS-WEAPON is an instance of POSSESS

Also reconsidering (pathS) due to shared nodes with pathS
More-reinforcement metric — pathS has more shared nodes

than paths
De-activating pathS
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Activating pathS
More-reinforcement metric — path? has more shared nodes

than paths

De-activating pathS

Active memory structure:

Paths: (paths path? pathl pathS pathO)
Path from GO to POSSESS

GO is a precondition of BE-AT-PLACE

BE-AT-PLACE has the instance BE-AT-VICTIM

BE-AT-VICTIM is a precondition of STEAL
STEAL has the precondition POSSESS-WEAPON
POSSESS-WEAPON is an instance of POSSESS

Path from GO to POOR-STATE

GO is a precondition of BE-AT-PLACE
BE-AT-PLACE has the instance BE-AT-VICTIM

BE-AT-VICTIM is a precondition of STEAL
STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from POSSESS to POOR-STATE

POSSESS has the instance POSSESS-WEAPON

POSSESS-WEAPON is a precondition of STEAL
STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from GUN to POSSESS

GUN is an instance of WEAPON

WEAPON is a role-filler of POSSESS-WEAPON

POSSESS-WEAPON is sm instamce of POSSESS

Path from POOR-STATE to JOHNO

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instaince JOHNO

ATLAST completes processing on the remainder of the third sentence and finds

that John went to the pawnshop. The system infers that the pawnshop will be the

victim in John's plan of stealing money.

New path discovered: path9
Path from PAWNSHOP to GO

PAWNSHOP is em instance of BUSINESS

BUSINESS can be viewed as BUYER



BUYER is a role-filler of BE-AT-BUYER

BE-AT-BUYER is an instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO
Also reconsidering (pathS pathS) due to shared nodes with path9

Activating path9
More-reinforcement metric — path? has more shared nodes

than paths

De-activating pathS
More-reinforcement metric — pathS has more shared nodes

than paths

De-activating pathS

New path discovered: pathlO
Path from PAWNSHOP to GO

PAWNSHOP is an instance of BUSINESS

BUSINESS cein be viewed as VICTIM

VICTIM is a role-filler of BE-AT-VICTIM

BE-AT-VICTIM is an instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO
Also reconsidering (pathS pathS) due to shared nodes with pathlO

More-reinforcement metric — pathlO has more shared nodes
tham path9

De-activating path9
Activating pathlO

More-reinforcement metric — pathS has more shared nodes
than paths

De-activating pathS
More-reinforcement metric — path? has more shared nodes

than paths

De-activating pathS

Active memory structure:

Paths: (pathlO pathS path? pathl pathS pathO)
Path from PAWNSHOP to GO

PAWNSHOP is an instance of BUSINESS

BUSINESS can be viewed as VICTIM

VICTIM is a role-filler of BE-AT-VICTIM

BE-AT-VICTIM is am instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO
Path from GO to POSSESS

GO is a precondition of BE-AT-PLACE
BE-AT-PLACE has the instance BE-AT-VICTIM

213



BE-AT-VICTIM is a precondition of STEAL
STEAL has the precondition POSSESS-WEAPON

POSSESS-WEAPON is am instance of POSSESS

Path from GO to POOR-STATE

GO is a precondition of BE-AT-PLACE

BE-AT-PLACE has the instance BE-AT-VICTIM

BE-AT-VICTIM is a precondition of STEAL
STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from POSSESS to POOR-STATE

POSSESS has the instance POSSESS-WEAPON

POSSESS-WEAPON is a precondition of STEAL
STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from GUN to POSSESS

GUN is an instance of WEAPON

WEAPON is a role-filler of POSSESS-WEAPON

POSSESS-WEAPON is an instance of POSSESS

Path from POOR-STATE to JOHNO

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Pointers to memory structure:

Event: event0

Actor: (JOHNO)

Action: (BE)

Object: (POOR-STATE)
Direction: nil

Event: event1

Actor: (JOHNO)

Action: (POSSESS)

Object: (GUN)
Direction: nil

Event: event2

Actor: (JOHNO)

Action: (GO)

Object: nil

Direction: (PAWNSHOP)
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Using its limited knowledge of goals, plans, and preconditions, ATLAST has

made the inferences necessary to tie together the pragmatically ambiguous events and

states of the first three sentences of Text 10. Up to this point ATLAST has discovered

eleven paths, six of which now make up ATLAST's active interpretation while the

remaining five are retained. The active interpretation is shown in Figure A.2.

A.1.4 The final sentence

ATLAST now processes the final and contradictory sentence of Text 10. The

system had determined previously that John intended to use his gun to steal money

from the pawnshop. However, just the first two words of the final sentence, John

sold, inform ATLAST that it has made the wrong inferences. Initially, ATLAST

finds connections between selling and being poor (pathll), between selling and pos

sessing something (pathl2), and between selling and going somewhere (pathl3).

These paths are added to the active interpretation. The inferences are inconsistent

with the existing interpretation but are not suflScient to cause ATLAST to revise

other inferences.

New path discovered: pathll
Path from SELL to POOR-STATE

SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Also reconsidering (pathS path2) due to shared nodes with pathll
Activating pathll

More-reinforcement metric — path7 has more shared nodes
than paths

De-activating pathS
More-reinforcement metric — pathl has more shared nodes

thsui path2

De-activating path2

New path discovered: pathl2
Path from SELL to POSSESS
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SELL has the precondition POSSESS-OBJECT
PQSSESS-OBJECT is an instance of POSSESS

Also reconsidering (path2 pathS path4) due to shared nodes
with pathl2

Activating pathl2
More-reinforcement metric — pathl has more shared nodes

thain path2

De-activating path2
More-reinforcement metric — pathS has more shared nodes

than paths

De-activating pathS
More-reinforcement metric — pathS has more shared nodes

than path4

De-activating path4

New path discovered: pathlS
Path from SELL to GO

SELL has the precondition BE-AT-BUYER

BE-AT-BUYER is an instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO
Also reconsidering (pathS pathS path9) due to shared nodes

with pathlS
Activating pathlS

More-reinforcement metric — pathS has more shared.nodes
than paths

De-activating pathS
More-reinforcement metric — path7 has more shared nodes

than paths

De-activating pathS
More-reinforcement metric — pathlO has more shared nodes

than path9

De-activating path9

Now ATLAST adds pathl5 to its representation of the text, connecting John to

the selling plan. Once this occurs there are ten active paths in ATLAST's interpre

tation of the story: five paths supporting the stealing interpretation, four supporting

the selling interpretation, and one neutral path. While there are more paths favoring

stealing, the four paths representing the selling plan are relatively short paths. Any

yet-to-be-discovered paths which competewith these four paths and also incorporate
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the stealing plan will be longer than their competitors (and fairly uninformative be

cause they include is-a intersections), as in the case of pathlT below which competes

with and loses to pathl2. The longer paths will lose when evaluated against the

shorter paths and the four paths supporting the selling plan will remain active.

Onthe other hand, the five active paths which support the stealing plan compete

with five retained paths which support the selling plan. These retained paths are

approximately the same length as their competitors (give or take a viewed-as link,

which is disregarded in assessing path length) and will consistently win when re-

evaluated because of the reinforcement provided by the four short and effectively

immovable paths supporting the selling plan. An example ofthis occurs below during

the processing of pathlS in which the retained pathS is re-evaluated and supplants

path?. Thus, as new paths are evaluated and retained paths are thereby re-evaluated,

ATLAST will incrementally supplant its "steal money" interpretation with the "sell

possessions" interpretation.

New path discovered: pathlB
• Path from SELL to JOHNO

SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Also reconsidering (path2 pathS pathl4) due to shared nodes
with pathlS

Activating pathlS

More-reinforcement metric — pathl has more shared nodes
than path2
De-activating path2

More-reinforcement metric — path? has more shared nodes
than paths
De-activating pathS

Shorter-path metric — pathl2 shorter than pathl4
De-activating pathl4
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New path discovered: pathl7
Path from SELL to POSSESS

SELL has the precondition POSSESS-OBJECT

POSSESS-GBJECT has the role-filler OBJECT

OBJECT can be viewed as WEAPON

WEAPON is a role-filler of POSSESS-WEAPON

POSSESS-WEAPON is an instance of POSSESS

Also reconsidering (path6 pathl4 path2 path4) due to shared nodes
with pathl7
Shorter-path metric — pathl2 shorter than pathl7

De-activating pathl7

New path discovered: pathlS
Path from SELL to POOR-STATE

SELL has the precondition POSSESS-OBJECT

POSSESS-OBJECT is an instance of POSSESS

POSSESS has the instsnce POSSESS-WEAPON

POSSESS-WEAPON is a precondition of STEAL

STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Also reconsidering (path6 pathl4 path2 pathS pathl6 pathl7 path4)
due to shared nodes with pathlS

No-decision metric — pathl and path2 are retained
De-activating pathl
De-activating path2

More-reinforcement metric — pathS has more shared nodes
than path7

De-activating path7
Activating pathS

Old path rediscovered: pathl7
Also reconsidering (path4 path2 pathl pathl4 path6 pathlS) due to

shared nodes with pathl7
Shorter-path metric — pathl2 shorter than pathl7

De-activating pathl7
More-specific metric — pathS more specific than path4

De-activating path4
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Activating path2
More-reinforcement metric — path2 has more shared nodes

than pathl

De-activating pathl
Shorter-path metric — pathl2 shorter than pathl4

De-activating pathl4
More-reinforcement metric — pathS has more shared nodes

than paths
De-activating pathS
Activating pathS

Shorter-path metric — pathll shorter than pathlS
De-activating pathlS

New path discovered: pathl9
Path from SELL to POOR-STATE

SELL has the precondition BE-AT-BUYER
BE-AT-BUYER is an instance of BE-AT-PLACE

BE-AT-PLACE has the instance BE-AT-VICTIM

BE-AT-VICTIM is a precondition of STEAL
STEAL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Also reconsidering (pathlS pathS pathl4 pathl pathlS path? path9)
due to shared nodes with pathl9

More-reinforcement metric — path9 has more shared nodes
than pathlO

De-activating pathlO
Activating path9

Active memory structure:

Paths: (path9 pathS path2 pathS pathlS pathlS pathl2 pathll
paths pathO)

Path from PAWNSHOP to GO

PAWNSHOP is am instzuice of BUSINESS

BUSINESS can be viewed as BUYER

BUYER is a role-filler of BE-AT-BUYER

BE-AT-BUYER is an instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO
Path from GO to POSSESS

GO is a precondition of BE-AT-PLACE
BE-AT-PLACE has the instance BE-AT-BUYER
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BE-AT-BUYER is a precondition of SELL
SELL has the precondition POSSESS-OBJECT
POSSESS-OBJECT is an instance of POSSESS

Path from POSSESS to POOR-STATE

POSSESS has the instance POSSESS-OBJECT

POSSESS-OBJECT is a precondition of SELL

SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from GO to POOR-STATE

GO is a precondition of BE-AT-PLACE

BE-AT-PLACE has the instsince BE-AT-BUYER

BE-AT-BUYER is a precondition of SELL
SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from SELL to JOHNO

SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

POOR-STATE is an instsm.ce of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Path from SELL to GO

SELL has the precondition BE-AT-BUYER
BE-AT-BUYER is an instsmce of BE-ATrPLACE

BE-AT-PLACE has the precondition GO
Path from SELL to POSSESS

SELL has the precondition POSSESS-OBJECT

POSSESS-OBJECT is sm instance of POSSESS

Path from SELL to POOR-STATE

SELL is a plan of A-MONEY

A-MONEY is a result of POOR-STATE

Path from GUN to POSSESS

GUN is an instamce of WEAPON

WEAPON is a role-filler of POSSESS-WEAPON

POSSESS-WEAPON is an instance of POSSESS

Path from POOR-STATE to JOHNO

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instamce JOHNO

ATLAST's interpretation now consists of ten paths. With one exception, all

paths either support the "sell possession" interpretation or are neutral (i.e., pathO).

The exception is path3, which connects GUN to POSSESS and is the only active path
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containing the GUN node. As the remainder of the final sentence is read, ATLAST is

reminded of the retained path4 which also includes the GUN node and makes the final

correction. The system also adds a path connecting GUN and SELL.

Old path rediscovered: path4
Also reconsidering (pathl7 pathlS) due to shared nodes with path4

More-reinforcement metric — path4 has more shared nodes
than paths
De-activating pathS
Activating path4

New path discovered: path21
Path from GUN to SELL

GUN is am instamce of WEAPON

WEAPON cam be viewed as OBJECT

OBJECT is a role-filler of POSSESS-OBJECT

POSSESS-OBJECT is a precondition of SELL
Also reconsidering (pathlS pathlT pathS) due to shared nodes

with path21
Activating path21

ATLAST completes processing of Text 10 and issues its final interpretation:

Processing completed

Active memory structure:

Paths: (path21 path4 path9 pathS path2 pathS pathlS pathlS
path12 path11 pathO)

Path from GUN to SELL

GUN is am instance of WEAPON

WEAPON can be viewed as OBJECT

OBJECT is a role-filler of POSSESS-OBJECT

POSSESS-OBJECT is a precondition of SELL
Path from GUN to POSSESS

GUN is an instance of WEAPON

WEAPON can be viewed as OBJECT

OBJECT is a role-filler of POSSESS-OBJECT



POSSESS-OBJECT is aii instance of POSSESS

Path from PAWNSHOP to GO

PAWNSHOP is an instance of BUSINESS

BUSINESS can be viewed as BUYER

BUYER is a role-filler of BE-AT-BUYER

BE-AT-BUYER is an instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO
Path from GO to POSSESS

GO is a precondition of BE-AT-PLACE
BE-AT-PLACE has the instance BE-AT-BUYER

BE-AT-BUYER is a precondition of SELL
SELL has the precondition POSSESS-OBJECT
POSSESS-OBJECT is an instance of POSSESS

Path from POSSESS to POOR-STATE

POSSESS has the instance POSSESS-OBJECT

POSSESS-OBJECT is a precondition of SELL
SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from GO to POOR-STATE

GO is a precondition of BE-AT-PLACE

BE-AT-PLACE has the instance BE-AT-BUYER

BE-AT-BUYER is a precondition of SELL
SELL is a plan of A-MONEY

A-MONEY is a result of POOR-STATE

Path from SELL to JOHNO

SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

POOR-STATE is an instance of HUMAN-ECON-STATE

HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instaince JOHNO

Path from SELL to GO

SELL has the precondition BE-AT-BUYER
BE-AT-BUYER is an instance of BE-AT-PLACE

BE-AT-PLACE has the precondition GO
Path from SELL to POSSESS

SELL has the precondition POSSESS-OBJECT
POSSESS-OBJECT is an instance of POSSESS

Path from SELL to POOR-STATE

SELL is a plan of A-MONEY
A-MONEY is a result of POOR-STATE

Path from POOR-STATE to JOHNO

POOR-STATE is an instance of HUMAN-ECON-STATE
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HUMAN-ECON-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance JOHNO

Pointers to memory structure:

Event: event0

Actor: (JOHNO)

Action: (BE)

Object: (POOR-STATE)
Direction: nil

Event: event1

Actor: (JOHNO)

Action: (POSSESS)

Object: (GUN)
Direction: nil

Event: event2

Actor: (JOHNO)

Action: (GO)

Object: nil
Direction: (PAWNSHOP)

Event: events

Actor: (JOHNO)

Action: (SELL)

Object: (GUN)
Direction: nil
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ATLAST's final interpretation of Text 10 is, in part, a network of relationships

between concepts represented by the 11 paths listed above. This network is high

lighted in Figure A.3. In the process of deciding upon those 11 paths, ATLAST

discovered and ultimately rejected 13 others. This example has concentrated on the

path evaluation process. However, the collection of chosen paths alone does not

provide a complete understanding of the text. Thus, concurrent with the discovery

and selection of explanatory inference paths, ATLAST has constructed a sequence

of pointers into the network which provides a temporal ordering on the events and a

determination of thematic role assignments (i.e., who did what and when).
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money 'pawnshop' 'went' 'gun'

Figure A.3: Active paths in memory after processing all four sentences of Text 10.



226

In brief, ATLAST has resolved the pragmatic ambiguity presented by Text 10,

incorrectly at first, and then corrected its mistake. This is accomplished using the

same processes used in the lexical ambiguity example of Chapter 5. There are no

changes to the program other than the two parameter values mentioned at the be-,

ginning of this example.

A.2 Strategy-driven inference processing

In the example above, ATLAST's ability to process the text successfully stems

from twofundamental assumptions: (1) the inseparability and uniform representation

of lexical and pragmatic knowledge, and (2) the retention of rejected inferences. The

examples which follow will demonstrate how those same two assumptions enable

ATLAST to model the strategy-driven inference behavior described in Chapter 6.

The first of these examples will show ATLAST modeling perseverer behavior on a

simplified version of Text 8:

Text 8: Wilma began to cry.
Fred had just asked her to marry him.

The second example will show how ATLAST models recency behavior and arrives at

a different interpretation of the same text due only to a difference in how ATLAST

deals with unresolvable inference decisions. The semantic memory used in these two

examples is shown in Figure A.4.
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A.2.1 An example of perseverer behavior

As with the previous examples, the input text has been simplified for the next

two examples. The simplified text is:

Text 11: Wilma cried.

Fred had proposed to Wilma.

As ATLAST begins processing this example using the perseverer strategy, a

new inference evaluation metric, the preferred-link metric, is added to those used

in previous examples. The parameters controlling retention and re-evaluation again

have been tuned for better performance.

Input text is:

Wilma cried.

Fred had proposed to Wilma.

Inference strategy in effect: perseverer

Ordering of inference evaluation metrics in force:

MORE-ACTIVATION-METRIC

SHORTER-PATH-METRIC

MORE-REINFORCEMENT-METRIC

MORE-SPECIFIC-METRIC

PREFERRED-LINK-METRIC

NO-DECISION-METRIC

Maximum distance of marker-passing: 3

Distance to pass markers per cycle: 3
Are rejected paths being retained?: t
Max. no. of unsuccessful evaluations: 3

Min. no. of shared nodes to force re-evaluation: 4

Are function words being allocated processing cycles?: nil
Is inference processing forced to complete at periods?: t
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During the processing of the first sentence, ATLAST finds competing paths

joining the words Wilma and cried.

New path discovered: pathO

Path from CRY-TEARS to WILMAO

CRY-TEARS is a result of HAPPY-STATE

HAPPY-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO

Activating pathO

New path discovered: pathl

Path from CRY-TEARS to WILMAO

CRY-TEARS is a preferred result of SAD-STATE

SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO

Preferred-link metric — pathl has more pref links than pathO
De-activating pathO
Activating pathl

The first four inference evaluation metrics are unable to make a decision between

the competing paths. This would normally result in a split-decision to be resolved

later, but in this caseone of the paths, pathl, contains a preferred link. The preferred-

link metric determines therefore that pathl is a default inference and chooses it over

pathO. Because the preferred-link metric is always the last decision-making metric to

be invoked, ATLAST uses default inferences only as a last resort.

Active memory structure:

Paths: (pathl)
Path from CRY-TEARS to WILMAO

CRY-TEARS is a preferred result of SAD-STATE
SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO
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Pointers to memory structure:

Event: event0

Actor; (WILMAO)

Action: (CRY-TEARS)

Object: nil
Direction: nil

As ATLAST processes the second sentence, any inference decisions are biased

by the active context from the first sentence—that Wilma is crying because she is

sad. Thus, Fred's marriage proposal, which would normally be viewed as a happy

event, is interpreted as one causing despair.

New path discovered: path2
Path from PRGPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is a preferred instance of HAPPY-EVENT
HAPPY-EVENT has the result HAPPY-STATE

HAPPY-STATE has the result CRY-TEARS

Activating path2

New path discovered: pathS
Path from PRGPOSE-MARRIAGE to CRY-TEARS

PRGPOSE-MARRIAGE is an instance of SAD-EVENT
SAD-EVENT has the result SAD-STATE

SAD-STATE has the preferred result CRY-TEARS
More-reinforcement metric — pathS has more shared nodes

than path2

De-activating path2
Activating pathS

New path discovered: pathS
Path from PRGPOSE-MARRIAGE to FREDO

PRGPOSE-MARRIAGE is an instance of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instemce FREDO

Also reconsidering (path4) due to shared nodes with pathS
Activating pathS

Shorter-path metric — pathS shorter than path4
De-activating path4
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New path discovered: path?
Path from PROPOSE-MARRIAGE to FREDO

PROPOSE-MARRIAGE is a preferred instance of HAPPY-EVENT

HAPPY-EVENT has the result HAPPY-STATE

HAPPY-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO

More-reinforcement metric — pathS has more shared nodes
than path?
De-activating path?

Active memory structure;

Paths: (paths pathS pathl)
Path from PROPOSE-MARRIAGE to FREDO

PROPOSE-MARRIAGE is em instauice of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO

Path from PROPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is an instaoice of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE has the preferred result CRY-TEARS
Path from CRY-TEARS to WILMAO

CRY-TEARS is a preferred result of SAD-STATE
SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO

ATLAST reads the last two words of the text, to Wilma, and finds two more

paths that reinforce its existing interpretation.

New path discovered: pathS
Path from WILMAO to FREDO

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO

Activating pathS

New path discovered; path9
Path from WILMAO to PROPOSE-MARRIAGE

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the attribute HUMAN-MENT-STATE



HUMAN-MENT-STATE has the instance SAD-STATE

SAD-STATE is a result of SAD-EVENT

SAD-EVENT has the instance PROPOSE-MARRIAGE

Also reconsidering (path4) due to shared nodes with path9
Activating path9

Shorter-path metric — path3 shorter thzin path4
De-activating path4
Suppressing path4

New path discovered: pathlO

Path from WILMAO to PROPOSE-MARRIAGE

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the attribute HUMAN-MENT-STATE

HUMAN-MENT-STATE has the instance HAPPY-STATE

HAPPY-STATE is a result of HAPPY-EVENT

HAPPY-EVENT has the preferred instance PROPOSE-MARRIAGE
Also reconsidering (path7) due to shared nodes with pathlO

More-reinforcement metric — path9 has more shared nodes
than pathlO
De-activating pathlO

More-reinforcement metric — pathS has more shared nodes
than path7

De-activating path7
Suppressing path7

Active memory structure:

Paths: (path9 pathS pathS pathS pathl)
Path from WILMAO to PROPOSE-MARRIAGE

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the attribute HUMAN-MENT-STATE

HUMAN-MENT-STATE has the instance SAD-STATE

SAD-STATE is a result of SAD-EVENT

SAD-EVENT has the instance PROPOSE-MARRIAGE

Path from WILMAO to FREDO

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO

Path from PROPOSE-MARRIAGE to FREDO

PROPOSE-MARRIAGE is an instance of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO
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Path from PROPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is an instance of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE has the preferred result CRY-TEARS

Path from CRY-TEARS to WILMAO

CRY-TEARS is a preferred result of SAD-STATE
SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO

Processing completed

Pointers to memory structure:

Event: event1

Actor: (FREDO)

Action: (PROPOSE-MARRIAGE)

Object: nil
Direction: (WILMAO)

Event: event0

Actor: (WILMAO)

Action: (CRY-TEARS)
Object: nil

Direction: nil

This example of ATLAST's perseverer strategy provides another demonstration

of ATLAST's ability to resolve pragmatic ambiguities using the same processes that

were previously employed in a lexical disambiguation task. ATLAST's interpretation

of Text 11 is displayed in Figure A.5. If the reader senses something familiar about

the perseverer strategy, it is because the perseverer strategy was used in all previous

examples. The preferred-link metric was not used during the processing of Text 5 or

Text 10 so it wa5 omitted from the sample output. In this sense, the example just

presented is redundant in that it tells us nothing new about ATLAST. It is included

here as a basis for comparison to ATLAST's processing of the same text. Text 11,

using the recency strategy.
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Figure A,5: ATLAST's per5everer interpretation of Text 11.
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A.2.2 An example of recency behavior
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ATLAST's recency strategy for inference processing is different inonly two ways

from its perseverer strategy. One difference is that the occurrence of an unresolved

path competition results in both competing paths being locked out of the inference

evaluation process until ATLAST has read the entire text. These postponed decisions

are stored in a queue so that the most recently postponed decisions will be the first

to be re-evaluated at the end of the text. Thus, the recency strategy postpones the

resolution of split decisions, while the perseverer strategy resolves them as soon as

possible. In conjunction with the forced delay in deciding ties, the recency strategy

also does not invoke the tie-breaking rule, the preferred-link metric, until the end

of the text when the postponed split decisions are reprocessed. This is the second

difference between the the two strategies.

When told to use the recency strategy, ATLAST's inference processing changes

only in the two ways just stated, yet because of these two differences, ATLAST will

arrive at a different interpretation of Text 11 using the recency strategy than it did

when using the perseverer strategy. All other parameters are the same as they were

in the earlier perseverer example.

Input text is:

Wilma cried.

Fred had proposed to Wilma.

Inference strategy in effect: recency

Again ATLAST reads the sentence, Wilma cried. This time, however, the tie

between pathO and pathl is not immediately resolved. The two paths are retained

and prevented from being re-evaluated until the end of the text.
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New path discovered: pathO
Path from CRY-TEARS to WILMAO

CRY-TEARS is a result of HAPPY-STATE

HAPPY-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO

Activating pathO

New path discovered: pathl
Path from CRY-TEARS to WILMAO

CRY-TEARS is a preferred result of SAD-STATE
SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO

No-decision metric — pathO and pathl are retained
De-activating pathO
De-activating pathl

Old path rediscovered: pathO
Also reconsidering (pathl) due to tie with pathO

Evaluation of pathO postponed due to recency strategy
Evaluation of pathl postponed due to recency strategy

Active memory structure:

Paths: nil

Pointers to memory structure:

Event: event0

Actor: (WILMAO)

Action: (CRY-TEARS)

Object: nil
Direction: nil

Because no decision was made during the processing of the first sentence, there

is no active context to guide the understanding of the second sentence. As ATLAST

discovers competing pairs of paths in this network, it is unable to make any decisions

at all. ATLAST activates only pathS, which simply says that Fred and Wilma are

both human, by the end of the second sentence.
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New path discovered: path2
Path from PROPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is a preferred instance of HAPPY-EVENT

HAPPY-EVENT has the result HAPPY-STATE

HAPPY-STATE has the result CRY-TEARS

Activating path2

New path discovered: pathS
Path from PROPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is an instance of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE has the preferred result CRY-TEARS

No-decision metric — path2 and pathS are retained
De-activating path2
De-activating pathS

Old path rediscovered: pathS
Also reconsidering (path2) due to tie with pathS

Evaluation of pathS postponed due to recency strategy
Evaluation of path2 postponed due to recency strategy

New path discovered: path4
Path from PROPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is an instance of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE has the instance HAPPY-STATE

HAPPY-STATE has the result CRY-TEARS

Activating path4

New path discovered: pathS
Path from PROPOSE-MARRIAGE to FREDO

PROPOSE-MARRIAGE is an instance of SAD-EVENT

SAD-EVENT has the result SAD-STATE

SAD-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO

Activating pathS

New path discovered: path6
Path from PROPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is a preferred instance of HAPPY-EVENT
HAPPY-EVENT has the result HAPPY-STATE
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HAPPY-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE has the instance SAD-STATE

SAD-STATE has the preferred result CRY-TEARS
No-decision metric — path4 aind path6 are retained

De-activating path4
De-activating pathS

New path discovered: path?
Path from PROPOSE-MARRIAGE to FREDO

PROPDSE-MARRIAGE is a preferred instance of HAPPY-EVENT
HAPPY-EVENT has the result HAPPY-STATE

HAPPY-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO

Also reconsidering (pathS) due to shared nodes with path?
Also reconsidering (path4) due to tie with path6

No-decision metric — pathS and path? are retained
De-activating pathS
De-activating path?

Evaluation of path6 postponed due to recency strategy
Evaluation of path4 postponed due to recency strategy

New path discovered: pathS
Path from WILMAO to FREDO

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the instauice FREDO

Activating pathS

New path discovered: path9
Path from WILMAO to PROPOSE-MARRIAGE

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the attribute HUMAN-MENT-STATE

HUMAN-MENT-STATE has the instance SAD-STATE

SAD-STATE is a result of SAD-EVENT

SAD-EVENT has the instance PROPOSE-MARRIAGE

Also reconsidering (pathl path4 pathS) due to shared nodes
with path9

Also reconsidering (pathO) due to tie with pathl
Also reconsidering (path6) due to tie with path4
Also reconsidering (path?) due to tie with pathS

Activating path9
Evaluation of pathl postponed due to recency strategy
Evaluation of path4 postponed due to recency strategy
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Evaluation of pathS postponed due to recency strategy
Evaluation of pathO postponed due to recency strategy
Evaluation of path6 postponed due to recency strategy
Evaluation of path? postponed due to recency strategy

New path discovered: pathlO
Path from WILMAO to PROPOSE-MARRIAGE

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the attribute HUMAN-MENT-STATE

HUMAN-MENT-STATE has the instance HAPPY-STATE

HAPPY-STATE is a result of HAPPY-EVENT

HAPPY-EVENT has the preferred instance PROPOSE-MARRIAGE

Also reconsidering (pathO path6 path?) due to shared nodes
with pathlO

Also reconsidering (pathl) due to tie with pathO
Also reconsidering (path4) due to tie with path6
Also reconsidering (pathS) due to tie with path?

No-decision metric — path9 and pathlO are retained
De-activating path9
De-activating pathlO

Evaluation of pathO postponed due to recency strategy
Evaluation of pathS postponed due to recency strategy
Evaluation of path? postponed due to recency strategy
Evaluation of pathl postponed due to recency strategy
Evaluation of path4 postponed due to recency strategy
Evaluation of pathS postponed due to recency strategy

Active memory structure:

Paths: (paths)
Path from WILMAO to FREDO

WILMAO is am instamce of GENERIC-HUMAN

GENERIC-HUMAN has the instance FREDO
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Having reached the end of the text, ATLAST invokes the preferred-link metric

to aid in resolving the postponed decisions. The system then begins to re-evaluate

the postponed decisions beginning with the most recently postponed.

Revised ordering of inference evaluation metrics in force:

MORE-ACTIVATIDN-METRIC

SHORTER-PATH-METRIC
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MORE-REINFORCEMENT-METRIC

MORE-SPECIFIC-METRIC

PREFERRED-LINK-METRIC

NO-DECISION-METRIC

Now processing postponed evaluations

Postponed path being evaluated: pathlO
Also reconsidering: (path6 path? pathO)

Activating pathlO
Activating path6
Activating path7
Activating pathO

Postponed path being evaluated: path9
Also reconsidering: (path4 pathS pathl)
Preferred-link metric — pathlO has more pref links than path9

De-activating path9
More-reinforcement metric — path6 has more shared nodes

than path4

De-activating path4
More-reinforcement metric — path7 has more shared nodes

than paths

De-activating pathS
More-reinforcement metric — pathO has more shared nodes

than pathl

De-activating pathl

Postponed path being evaluated: pathS
Also reconsidering: (path4 path9)
More-reinforcement metric — path7 has more shared nodes

than paths

De-activating pathS
More-reinforcement metric — path6 has more shared nodes

thaui path4

De-activating path4
More-reinforcement metric — pathlO has more shared nodes

than path9

De-activating path9

Postponed path being evaluated: path4
Also reconsidering: (path9 pathS)



More-reinforcement metric — path6 has more shared nodes

than path4

De-activating path4
More-reinforcement metric — pathlO has more shared nodes

than path9

De-activating path9
More-reinforcement metric — path7 has more shared nodes

than paths
De-activating pathS

Postponed path being evaluated: path3
Shorter-path metric — path3 shorter than path6

De-activating pathS
Activating path3

Postponed path being evaluated: path2
More-reinforcement metric — path2 has more shared nodes

than path3

De-activating path3

Activating path2

Postponed path being evaluated: pathl
Also reconsidering: (path9)
More-reinforcement metric — pathO has more shared nodes

than pathl

De-activating pathl
More-reinforcement metric — pathlO has more shared nodes

than path9

De-activating path9
Suppressing path9
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In this example, every one of ATLAST's inference decisions has been initially

postponed and later re-evaluated. Because the first postponed decisions to be re-

evaluated were spawned from Fred's marriage proposal and the proposal is regarded

out of context as a happy event, ATLAST has explained Wilma's tears as tears of

joy. This explanation of Text 11, which is shown in Figure A.6, differs greatly from

that obtained by the perseverer strategy.
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Figure A.6: ATLAST's recency interpretation of Text 11.
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Processing completed

Active memory structure:

Paths: (path2 pathO path7 pathlO pathS)
Path from PROPOSE-MARRIAGE to CRY-TEARS

PROPOSE-MARRIAGE is a preferred instance of HAPPY-EVENT
HAPPY-EVENT has the result HAPPY-STATE

HAPPY-STATE has the result CRY-TEARS

Path from CRY-TEARS to WILMAO

CRY-TEARS is a result of HAPPY-STATE

HAPPY-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the instance WILMAO

Path from PROPOSE-MARRIAGE to FREDO

PROPOSE-MARRIAGE is a preferred instance of HAPPY-EVENT
HAPPY-EVENT has the result HAPPY-STATE

HAPPY-STATE is an instance of HUMAN-MENT-STATE

HUMAN-MENT-STATE is an attribute of GENERIC-HUMAN

GENERIC-HUMAN has the insteince FREDO

Path from WILMAO to PROPOSE-MARRIAGE

WILMAO is an instance of GENERIC-HUMAN

GENERIC-HUMAN has the attribute HUMAN-MENT-STATE

HUMAN-MENT-STATE has the instance HAPPY-STATE

HAPPY-STATE is a result of HAPPY-EVENT

HAPPY-EVENT has the preferred insteince PROPOSE-MARRIAGE
Path from WILMAO to FREDO

WILMAO is em instance of GENERIC-HUMAN

GENERIC-HUMAN has the insteoice FREDO

Pointers to memory structure:

Event: event1

Actor: (FREDO)

Action: (PROPOSE-MARRIAGE)
Object: nil

Direction: (WILMAO)

Event: event0

Actor: (WILMAO)

Action: (CRY-TEARS)

Object: nil

Direction: nil
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A.2.3 Comparing ATLAST's behavior to human behavior

Granger and Holbrook's (1983) original work on strategy-driven inference be

havior included a test of subjects' preferences to determine the default inferences

associated with individual story events. As reported in Chapter 6, Granger and

Holbrook found that, in the absence ofbiasing context, subjects consistently inferred

that crying was associated with being sad or upset while a marriage proposal was

associated with joy or happiness. ATLAST exhibits this same behavior: when pre

sented with either of the sentences of Text 11 in isolation, ATLAST will make the

default or preferred decision regardless of the inference strategy in effect. The only

difference is that, when using the perseverer strategy, the system will make the de

fault decision almost immediately, while it will wait until the end of the sentence

when using the recency strategy.

Granger and Holbrook also noted that differences in behaviorwere madeobvious

only through the use of specially constructed, reciprocally ambiguous stories. In

most other cases, they said, readers using different strategies will arrive at the same

interpretation of story events. This effect is modeled by ATLAST as well: ATLAST

will derive the same interpretation for Text 5 using either the perseverer or recency

strategy, and the same holds true for Text 10.

Finally, it was stated in Chapter 6 that retention of competing inferences was

at the heart of strategy-driven inference processing. More specifically, the recency

strategy depends on inference retention. If rejected paths are subsequently discarded

without any trace, the inference processor using the recency strategy will have no way

of tracking the postponed decisions. The competing paths involved in those decisions

will be indistinguishable from the rest ofinactive memory. This is what happens when

ATLAST is using the recency strategy on Text 11 but inference retention is disabled.
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ATLAST processes the text, postponing split decisions along the way, but when it

reaches the end of the text and attempts to reprocess those postponed decisions it

no longer knows which paths were involved. The resulting interpretation is little

I more than that Fred and Wilma are both human. On the other hand, ATLAST is
able to find the correct interpretation using the perseverer strategy with no inference

H retention because Text 11 does not mislead the system. If Text 11 did require error
recovery, ATLAST would be in trouble. Thus, while both strategies need conditional

• retention for error recovery, the recency strategy relies on conditional retention even

H for normal processing without errors.
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Appendix B

The Proof

We wish to show that for a network of n nodes in which every pair of nodes is

joined by a single bi-directional link, the number ofpaths (P) that join two arbitrary

nodes and have length less than or equal to I is given by the equation:

p_^ ~2)!

or, in a simpler form, that the number of paths that join two arbitrary nodes and

have length of exactly i is:

(n - 2)!
(n —i —1)!

Definition: A clique of size n is an undirected graph G with vertices V and

edges E such that the number of vertices in V is n and for all a and 6 in V such that

a ^ b there exists an edge (a, b) in E.

Definition: A simple path is a path which does not intersect itself.

Theorem: Given a clique of size n and two arbitrary vertices a and b m G with

b^ we wish to show that the number of distinct simple paths of length i, denoted

/,>, is given by:
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kn = (n - 2)(n - 3) ••• (n - i + l)(n - i) =
(n —^ —1)!
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Proof. By double induction.

Basis: Show that /i,2 = 1. This is trivial, since if a and b are two vertices in G,

there is exactly one path of length 1 between them, which is the edge (a, 6).

Inductive step 1: Assume the hypothesis is true for i < / and n < N. Show

that it is true for i = I + 1 and n = N.

From vertex a in V, we form paths of length I to some intermediate vertex c,

then add the edge from c to 6, thereby forming a path from a to 6 of length 7 + 1.

There a.ve N —2 intermediate vertices available, namely all vertices in V except a and

b. We must now determine the number of simple paths of length I from a to each

fixed c. These paths cannot go through b, since we would no longer have a simple

path when we added the edge from c to b. This means that the the clique to be

considered has size —1. The number of simple paths of length 7+1 from a to 6

then is the number of possible edges from bto some intermediate c multiplied by the

number of paths of length 7 from a to c:

h+i,N = {N -2) •

(TV-3)!
= {N-2) (iV-1-7-1)!

(TV-2)1
(AT-7-2)1

(^-2)!
(n-(»-!)-2)!

(" - 2)!
{n —i —1)1
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Inductive step 2\ Assume the hypothesis is true for z < / and n < N. Show

that it is true for i = I and n — N

From vertex a in F, we now form paths of length 7 —1 to some intermediate

vertex c and add the edge from c to 6, giving paths from a to 6 of length I. There

are 77 —1 intermediate vertices available, since there are + 1 vertices altogether.

The number of simple paths of length 7-1 from a to a fixed intermediate vertex c

is this time governed by a clique of size N as the paths again cannot go through h.

There are of these paths and A'' —1 edges from intermediate vertices to b, so

the number of simple paths of length 7 from a to 6 is given by:

h,N+i — {N —1) •

{N-2)\
= (N-l)

{N-iy.
(n —1 —1)!
(n —1 —i)!

{n —i —1)!

The proof is now complete. •
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