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Abstract
Several GWAS reported Myocyte Enhancer Factor 2 C (MEF2C) gene associations with white matter microstructure and 
psychiatric disorders, and MEF2C involvement in pathways related to neuronal development suggests a common biological 
factor underlying these phenotypes. We aim to refine the MEF2C effects in the brain relying on an integrated analysis of 
white matter and psychiatric phenotypes in an extensively characterized sample. This study included 870 Brazilian adults 
(47% from an attention-deficit/hyperactivity disorder outpatient clinic) assessed through standardized psychiatric inter-
views, 139 of which underwent a magnetic resonance imaging scan. We evaluated variants in the MEF2C region using two 
approaches: 1) a gene-wide analysis, which uses the sum of polymorphism effects, and 2) SNP analyses, restricted to the 
independent variants within the gene. The outcomes included psychiatric phenotypes and fractional anisotropy for brain 
images. Results: The gene-wide analyses pointed to a nominal association between MEF2C and the Temporal Portion of the 
Superior Longitudinal Fasciculus (SLFTEMP). The SNP analysis identified four independent variants significantly associated 
with SLFTEMP and one (rs4218438) with Substance Use Disorder. Our findings showing specific associations of MEF2C 
variants with temporal−frontal circuitry components may help to elucidate how the MEF2C gene underlies a broad range 
of psychiatric phenotypes since these regions are relevant to executive and cognitive functions.

Keywords MEF2C · Fractional anisotropy · Neuroimaging · MRI · ADHD

Introduction

The white matter (WM) comprises the connective segment 
of the brain, relating cortical and subcortical regions (Le 
Bihan et al. 2001). Microstructural characteristics of WM 
can be inferred by Diffusion Tensor Imaging (DTI) data 
through water diffusivity properties in different neural tis-
sues (Basser 1995). One of the most common DTI measures 
is Fractional Anisotropy (FA), a global value regarding the 
water direction in WM fibers. FA varies from zero (fully 
isotropic) to one (fully anisotropic), allowing inferences on 
WM orientation and integrity (Mori et al. 2007). FA meas-
ures are altered in a series of psychiatric disorders, such as 
Generalized Anxiety Disorder (GAD) (Wang et al. 2016), 
Major Depression Disorder (MDD) (Barbu et al. 2019; Ber-
gamino et al. 2016), and Attention-Deficit/Hyperactivity 
Disorder (ADHD) (Mufford et al. 2017).
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WM has an average SNP heritability of 47.6% across all 
tracts (Zhao et al. 2021). The Myocyte Enhancer Factor 2C 
(MEF2C) gene, located in the 5q14.3 region, is among the 
GWAS hits reported for WM integrity (Zhao et al. 2021). 
MEF2C has also been associated through GWAS with several 
psychiatric and cognitive genetically correlated outcomes (P. 
H. Lee et al. 2019), including ADHD (Demontis et al. 2019a), 
Schizophrenia (SCZ) (Huo et al. 2019), MDD (Howard et al. 
2019), Educational Attainment (Okbay et al. 2016), and with 
substance use behaviors (i.e., drinks per week and being ever 
smoker) (Karlsson Linnér et al. 2019). Microdeletions and 
point mutations in the MEF2C gene region are suggested as 
the cause of a severe neurodevelopmental disorder (MEF2C 
haploinsufficiency syndrome) characterized by intellectual 
disability with hypotonia, stereotypic hand movements, and 
impaired language (Le Meur et al. 2010). The most frequent 
cerebral alterations in the affected patients involve WM 
measures and myelination delay (Rocha et al. 2016).

MEF2C is part of a gene family of enhancers, the MEF2s, 
and part of a large transcription factors family, the MADS-
BOX genes. MEF2s have a broad role in development and 
tissue differentiation, acting in muscular and neural crest 
cells, endothelium, chondrocytes, neurons, and lymphocyte 
development (Potthoff and Olson 2007). Moreover, MEF2C 
interacts with a wide variety of development-related pro-
teins, and 16% of these interactions are with proteins rel-
evant to neuronal development (Dong et al. 2017).

Altogether, these several independent above-mentioned 
GWAS pointing MEF2C associations with white matter 
microstructure and psychiatric features, together with its 
critical role in neurodevelopment, pose this gene as an impor-
tant player for neuroimaging genomics in psychiatry. The 
mounting GWAS results demand increasing efforts to refine 
phenotypes architecture considering fundamental genetic 
and neurobiological data (Sullivan and Geschwind 2019).
Therefore, this study aimed to narrow down the MEF2C 
association patterns in an integrated analysis of white matter 
and psychiatric phenotypes in an extensively characterized 
sample of subjects with ADHD and healthy controls.

Methods and materials

Sample

Out of the 870 (mean age: 31.3 years; males: 50.3%) adult vol-
unteers studied, 407 were recruited in the ADHD Outpatient 
Program, adult division (ProDAH-A) from Hospital de Clíni-
cas de Porto Alegre (HCPA), and 463 are healthy volunteers 
recruited in the same institution. The diagnosis of ADHD fol-
lowed DSM-IV criteria (American Psychiatric Association, 
1996) from 2001 to 2012 and DSM-5 criteria (APA 2013) 
from 2013 onwards. ADHD diagnosis was performed using 

the Portuguese version of the Kiddie Schedule for Affective 
Disorders and Schizophrenia (KSADS-E(Mercadante et al. 
1995); adapted for adults (Grevet et al. 2005). Other psychiat-
ric comorbidities were evaluated through the Structured Clini-
cal Interview for DSM-IV Axis I Disorders (SCID-I) (First 
et al. 1998), from 2001 to 2012, an adapted version of SCID 
from 2012 to 2015, and the SCID-5(First et al. 2015) from 
2015 onwards. The exclusion criteria were evidence of clini-
cally significant neurological disease (e.g., delirium, demen-
tia, epilepsy, head trauma) and intelligence quotient (IQ) ≤ 
70. The remaining sample comprised 463 subjects (mean 
age: 29.37 years; males: 47.9%) with negative screening for 
ADHD, assessed by the 6-item Adult ADHD Self-Rated Scale 
Screener (ASRS) (Kessler 2005). In addition, psychiatric dis-
orders were evaluated through the screening module of SCID-
IV (First et al. 1998) from 2001 to 2015 and SCID-5(First 
et al. 2015) after 2015, covering anxiety, mood, psychosis, 
substance use, and eating disorders. All participants signed 
an informed consent form and the protocol approved by the 
hospital ethical committee (IRB 0000921).

Genotyping

DNA was extracted from peripheral blood from all subjects 
using salting out method (Lahiri and Nurnberger 1991). 
The variants were genotyped through the Illumina Infinium 
PsychArray-24 v1.1. Pre-imputation quality control at indi-
vidual and SNP levels and principal component analyses for 
ancestry genetic outlier detection was performed through the 
Rapid Imputation and COmputational PIpeLIne (Ricopili). 
Phasing of genotype data and imputation were performed 
using SHAPEIT2 and IMPUTE2 algorithms, respectively, 
considering as reference the European ancestry panels of the 
1000 Genomes Project Phase 1 version 3 (v3) (April 2012) 
from the genome build hg19.

Magnetic Resonance Imaging (MRI) scan

As part of a longitudinal cohort evaluated at ProDAH-A 
(Guimarães-da-Silva et al. 2018; Karam et al. 2015, 2017), 
a subsample including subjects with (n = 85, mean age: 
34.3 years, males 43.5%) and without ADHD (n = 54, mean 
age: 29.3 years, males: 61.1%) was reassessed (Grevet et al. 
2005) and scanned in a 3 T Siemens Spectra MRI scanner 
with a 16-channel head coil. The diffusion-weighted imag-
ing acquisition protocol applied a single-shot echo planar 
imaging sequence (62 contiguous axial slices, TE = 110 ms, 
TR = 11000  ms, voxel size = 2 × 2x2mm, slice thick-
ness = 2.0 mm, FOV = 240 mm, one b0 image and 64 diffu-
sion-weighted images with gradient directions b = 1400 s/
mm2). An adapted protocol with reduced acquisition time 
(with differences in the number of diffusion-weighted 
images = 32, TE = 106 ms, voxel size = 2.4 × 2.4x2.4 mm, 
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and slice thickness = 2.4 mm) was applied for the restless 
or claustrophobic individuals (n = 10 cases and 15 controls).

The motion and eddy currents were preprocessed, and the 
correction was performed using FMRIB Software Library 
(FSL) tools (https:// fsl. fmrib. ox. ac. uk/ fsl/; Woolrich et al., 
2009), with posterior visual quality control. We generated a 
whole-brain FA map per each individual through drift. All 
their maps were registered, and skeleton created using tract-
based spatial statisticsIit (TBSS). Mean FA values within 
the TBSS skeleton were extracted for the whole brain and 
11 tracts (anterior thalamic radiation–ATR, corticospinal 
tract–CST, dorsal cingulate gyrus–CING, ventral cingulate 
gyrus–HIPPCING, forceps minor, forceps major, inferior 
fronto-occipital fasciculus–IFOF, inferior longitudinal fas-
ciculus–ILF, superior longitudinal fasciculus–SLF, uncinate 
fasciculus–UF, temporal part of SLF–SLFTEMP) extracted 
according to the John Hopkins University white matter trac-
tography atlas(Mori et al. 2007; Wakana et al. 2007) (https:// 
ident ifiers. org/ neuro vault. image: 1403).

Statistical analysis

Gene‑wide analysis

We extracted the MEF2C gene region plus a window of 10kb 
upstream and 10kb downstream (GRCh37 genomic posi-
tions 5:88,004,058 to 5:88,209,922), comprising 97 variants 
using the -make-set command in PLINK  v1.9(Chang et al. 
2015). We tested these variants for association with FA of 
the eleven WM tracts, plus the average whole brain in a 
gene-wide analysis using the --set-based command, under 
the additive model, with 10,000 permutations for the calcu-
lation of the empirical p-value (p<0.05), adjusted for sex, 
age, ten first principal components, head motion, and ADHD 
diagnosis. This analysis besides the association of the whole 
gene calculated as the mean of a single SNP statistic, it also 
retrieves the independent variants presenting the lowest 
p-values on the outcome. To verify if ADHD diagnosis or 
dimensional severity scores impacted the associations of FA 
measures of the whole brain and the eleven tracts mentioned 
above, we used linear regression models, adjusted for sex, 
age, and head motion in SPSS v18 (SPSS Inc.).

SNP analysis

Hereafter, we tested the effects of the independent variants 
associated with WM (retrieved in the gene-wide analysis) on 
psychiatric phenotypes previously associated with MEF2C 
(i.e. (BD (Ruderfer et al. 2014), GAD(A. Watanabe et al. 
2018), MDD (Howard et al. 2019) and SUD (Karlsson Lin-
nér et al. 2019) within the subjects with ADHD sample 
(n = 407), for which a reasonable sample size for comor-
bidities was present, using the additive genetic model within 

the –assoc command in PLINK 1.9 software(Chang et al. 
2015). This analysis was adjusted for sex, age, and the first 
ten principal components. Covariates were included accord-
ing to their association (p ≤ 0.2) with predictor and outcome 
(Maldonado and Greenland 1993), or its clinical relevance. 
False discovery rate (FDR) was applied to correct for mul-
tiple tests.

In silico analysis

We also evaluated the MEF2C independent variants through 
in silico analyses to explore possible regulatory functions. 
We used the following tools: GWASatlas (https:// atlas. 
ctglab. nl/) (K. Watanabe et al. 2019) to assess associations 
with neurological and psychiatric features, Variant Effect 
Prediction (VEP), to predict functional effects of the vari-
ants (Yates et al. 2016); HaploReg v4.1 (Ward and Kellis 
2012), to examine noncoding genome annotations of dis-
ease-associated loci by GWAS (https:// pubs. broad insti tute. 
org/ mamma ls/ haplo reg/ haplo reg. php)

RegulomeDB (Boyle et al. 2012), to evaluate the SNPs 
with known and predicted regulatory elements in the inter-
genic regions of the genome This in silico analysis also 
comprised the variants in high LD  (R2>0.8) with the three 
independent variants previously associated in the gene-
wide analyses, based on the LD matrix tool (Machiela and 
Chanock 2015) and the CEU reference panel (Gao et al. 
2012).

Results

Clinical and neuroimaging samples are characterized 
in Table 1. The workflow of the study is summarized in 
Fig. 1.

Considering that FA measures of the whole brain and 
the eleven white matter tracts evaluated were not associ-
ated with ADHD status or severity (Supplementary Tables 1 
and 2), we performed gene-wide analyses between MEF2C 
and the white matter tracts pooling the whole neuroimag-
ing sample (n=139), controlling for ADHD status. The 
results pointed to a nominal association between MEF2C 
and FA measures of the SLFTEMP (Table 2). In the SNP 
analysis, thirty-six variants were associated with this tract, 
four of which are independent: chr5:88083991, rs244756, 
rs4518438, and rs10075941 (Table 3). These associations 
are detailed in Supplementary Table 3. In the SNP analysis 
assessing ADHD comorbidities (n = 407), we found that 
SUD was associated with one of the tested polymorphisms 
(rs4518438) (Table 3).

The results of our in silico analysis are compiled in 
Table  4. We found 41 variants in strong LD with the 
independent variants associated with SLFTEMP (n =3), 

https://fsl.fmrib.ox.ac.uk/fsl/
https://identifiers.org/neurovault.image:1403
https://identifiers.org/neurovault.image:1403
https://atlas.ctglab.nl/)(K
https://atlas.ctglab.nl/)(K
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)
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excluding the chr5:88083991 deletion, because of missing 
data in the search platforms. After that, we selected only 
those variants with a RegulomeDB Score superior to 0.6 

(meaning a high probability to be a regulatory variant), 
totalizing 11 variants. All included variants are suggested 
to have a functional role in several tissues’ differentiation, 

Table 1  Sample characteristics

N is the number of subjects and % the percentage considering the whole sample
ªn is the mean years and % the standard deviation

Neuroimaging subsample Subjects with ADHD
(n = 85)

Healthy volunteers (n = 54) p

n % n %

Gender (male) 37 43.5 33 61.1 0.15
Age (years)a 46.6 9.7 38.2 8.9 0.09
Lifetime comorbidities
 Generalized anxiety disorder 63 74.1 7 13  < 0.01
 Bipolar disorder 31 36.5 –  < 0.01
 Major depressive disorder 37 43.5 22 40.7 0.7
 Substance use disorder 29 34.1 5 9.2  < 0.01

Total sample Subjects with ADHD (n = 407) Healthy volunteers (n = 463) p

n % N %

Gender (male) 216 53 222 47.9 0.1
Age (years)a 33.6 10.8 29.4 8.7  < 0.01
Comorbidities lifetime
 Generalized anxiety disorder 154 37.8 63 13.6  < 0.01
 Bipolar disorder 94 23.1 16 3.4  < 0.01
 Major depressive disorder 166 40.8 141 30.4  < 0.01
 Substance use disorder 98 24 22 4.7  < 0.01

Fig. 1  Analyses flow for 
MEF2C gene and outcome 
measures. The gene-wide 
analysis evaluated FA measures 
in the subsample of subjects 
with MRI data resulting in an 
association of 36 MEF2C vari-
ants with SLFTEMP, four of 
which are independent. These 
independent variants were fur-
ther explored in a SNP analysis 
including ADHD comorbidities 
evaluated in our sample of sub-
jects with ADHD, resulting in 
one association with substance 
use disorder (SUD). In addition, 
three of the four independ-
ent variants and 41 additional 
variants in high LD were further 
investigated regarding their 
regulatory potential in an in 
silico analysis
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development, and function, besides being associated with 
neuropsychiatric and cognitive domains by GWAS. The 
rs4518438, which was also associated with SUD, has chro-
matin enhancer marks in different brain tissues, including 
temporal and frontal regions, in addition to changing motifs 
of the Pou2f2 transcription factor.

Discussion

This is the first study to simultaneously address associa-
tions relating MEF2C, WM microstructure, and psychiatric 
phenotypes, and our findings are in line with the previous 
suggestions that MEF2C effects on psychiatric phenotypes 
might involve alterations in the WM microstructure. Our 
results are conspicuously supported by MEF2C genome-
wide associations with DTI measures (Zhao et al. 2021) as 
well as previous findings relating this gene to substance use 
behaviors (Karlsson Linnér et al. 2019). The MEF2C vari-
ants associated with SLFTEMP and SUD are also implicated 
in WM integrity in other related tracts by GWAS. Our in 
silico analysis predicted that most of these variants have 
a role in neuronal function and developmental pathways, 
by disrupting binding sites to important transcript factors 

Table 2  Gene-wide effects of MEF2C (total of 97 variants) on Atten-
tion-Deficit/Hyperactivity Disorder status and on Fractional Anisot-
ropy measures of the 11 White Matter tracts and the average measure 
of the whole brain

NSNP are the number of SNPs in the MEF2C gene region.  NSIG is 
the number of significantly associated SNPs with the outcome. 
P-emp stands for the P-empirical value after 10,000 permutations. 
P-FDR stands for the p association value after FDR correction FA 
analysis adjusted for: ADHD diagnosis, sex, age, head motion, and 
the ten first principal components. analysis adjusted for: sex, age, 
headmotion, average fractional anisotropy and the ten first principal 
components*Average FA was only adjusted for: sex, age, headmotion 
and the ten first principal components. Abbreviations: SFL: Superior 
Longitudinal Fasciculus

NSNP NSIG P-emp P-FDR

Inferior fronto-occipital fasciculus 97 − 1 1
Inferior longitudinal fasciculus 97 3 0.3163 0.4744
Superior longitudinal fasciculus 97 41 0.1444 0.3466
Uncinate fasciculus 97 24 0.0596 0.3466
Temporal portion of SLF 97 36 0.0271 0.32520
Anterior thalamic radiation 97 – 1 1
Corticospinal tract 97 – 1 1
Dorsal cingulate gyrus 97 30 0.1286 0.3466
Ventral cingulate gyrus 97 – 1 1
Forceps major 97 35 0.1739 0.3478
Forceps minor 97 16 0.2562 0.4392
Average fractional anisotropy* 97 19 0.0972 0.3466
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(TFs) involved in embryogenesis, cell development, and 
differentiation.

SLF is a bidirectional association fiber tract connect-
ing the parietal, occipital, and temporal lobes with fron-
tal cortices (Schmahmann et al. 2007). Its temporal por-
tion SLFTEMP is directly involved in processes related to 
human cognition, such as attention, language, memory, and 
emotions (Kamali et al. 2014), and therefore it is a relevant 
structure to executive and cognitive functions. Besides 
that, SLFTEMP partially overlaps with SFOF (superior 
fronto-occipital fasciculus), which has been associated 
with MEF2C variants through GWAS (Zhao et al. 2021). 
SLFTEMP has been implicated in psychiatric phenotypes 
also associated with MEF2C, such as MDD (van Velzen 
et al. 2020), SUD (Hampton et al. 2019), Bipolar Disorder 
(Ching et al. 2020), and SCZ (Kelly et al. 2018).

Among the four independent variants found associated 
with SLFTEMP in the gene-wide analysis, the rs4518438 
was also associated with risk for SUD. This SNP has pro-
moter and enhancer features in epigenetic marks present in 
brain tissues, some of which co-localized with SLFTEMP, 
supporting its role in this structure. This SNP has been also 
associated with intelligence (Savage et al. 2018), cognitive 
performance (Savage et al. 2018), and educational attain-
ment (J. J. Lee et al. 2018), and has eQTL data in thyroid 
tissue (Westra et al. 2013), suggesting a broad influence in 
neuroendocrine and neuropsychiatric domains.

The MEF2C gene has binding sites to different pro-
teins, DNA dimerization, and chromatin associated ele-
ments (Shalizi and Bonni 2005). The in silico analysis of 
the associated SNPs showed enriched TFs related to glial 
cells (GATA3), Wnt (TCF7), and MAPK (SRF) signaling 
pathways, and the same variants were also associated with 
FA measures of the SFOF and IFOF tracts by the previous 
GWAS (Zhao et al. 2021; 2019), which are closely related 
to SLFTEMP. The Wnt and MAPK signaling pathways are 
hypothesized to be related to ADHD (Ohki et al. 2020), 
and multimorbid psychiatric disorders (Boyle et al. 2012), 
respectively. Accordingly, Zhao et al. 2021 observed that 
FA measures are more related to glial cells than neurons. 
MEF2C effects in the microglia are demonstrated both by 
animal studies showing that the Mef2c protein is related to 
resilience in pro-inflammatory stimuli in microglia (Dec-
zkowska et  al. 2017) and by human studies associating 
MEF2C haploinsufficiency syndrome with deficits in white 
matter integrity and myelination (Rocha et al. 2016; Lesch 
2019). Taken together our in silico results and the literature, 
we suggest that the association between MEF2C variants, 
WM microstructure, and its possible effect in psychiatric 
disorders might be related to these molecular pathways.

The lack of difference between FA measures in subjects 
with and without ADHD reported here is in line with another 
recent DTI study with a larger sample of 654 subjects, being 

258 ADHD cases (Damatac et al. 2020). We also did not 
observe any alterations in FA measures concerning the 
ADHD dimensional scores. Previous meta-analysis pointed 
to inconsistent results relating DTI measures and ADHD 
(Sáenz et al. 2019), which is not unexpected considering the 
highly heterogeneous nature of this disorder.

Despite ADHD GWAS findings indicating the MEF2C 
region as a significant hit (Demontis et al. 2019; 2022), 
we did not find any association between MEF2C and the 
symptoms of ADHD or its diagnosis. These differences can 
be attributable to the highly heterogeneous presentation of 
the disorder, with underlying distinct functional deficits 
that converge in the diagnosis. A GWAS with a substantial 
representation of adult samples(Rovira et al. 2019), showed 
differences in the genetic findings of affected adults and chil-
dren, even with a high level of genetic correlation among 
both. Interestingly, in this same GWAS, MEF2C was not a 
significant hit. As MEF2C was a significant hit in GWAS of 
other psychiatric disorders presenting high genetic correla-
tion with ADHD, as MDD (Howard et al. 2019), and SCZ 
(Ripke et al. 2014), some specific association with ADHD 
could also be ascribed to a shared underlying trait among 
these disorders. The overall scenario, where our sample is 
composed of adult patients with high schooling levels and 
frequent comorbidity (Karam et al. 2015), could possibly 
explain the nominal (but not significant) association with 
MEF2C.

This study must be seen in light of some limitations. First, 
as usual in neuroimaging genetics studies, unfortunately, the 
sample size might be limiting the identification of additional 
associations. However, we adopted the gene-wide strategy 
to optimize statistical power, narrowing the analysis to few 
independent SNPs. Second, we analyzed complex and mul-
tifactorial features that are all deeply related to each other, 
hindering the establishment of causal effects. Finally, the 
brain parcellation used to identify the WM tracts varies 
across studies, hindering possible comparisons. Regarding 
strengths, our study bears the ability to provide an integrated 
analysis of several phenotypes previously related to MEF2C.

The overall pattern of our findings supports the view that 
MEF2C effects on psychiatric phenotypes could involve 
alterations in the WM microstructure. Further studies are 
needed to understand better how MEF2C, psychiatric dis-
orders, and white matter microstructure are interconnected.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00702- 023- 02626-5.
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