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Abstract of the Thesis

Analysis of Default

in Peer to Peer Lending

by

Arturo Ramirez

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Nicolas Christou, Co-chair

Professor Yingnian Wu, Co-chair

In the United States, stagnant interest rates, bank skepticism after the financial crisis and

the rise of crowd sourcing has led to the development of Peer to Peer lending as an alternative

to loans offered by banks and other traditional financial institutions. Typically, investing

in these loans involves manually building a portfolio one note at a time or automating the

procedure based on investor defined criteria. Investor returns are directly dependent on an

individual borrower’s repayment of the loan, so investing in a loan that defaults results in a

direct loss.

This thesis will focus on two different approaches to analyze default in this new lending

environment. First, we will explore loan default as a binary classification problem. We will

use initial borrower data to build a decision tree classifier and evaluate performance based on

binary classification metrics . We will then examine the construction of the classifier in an

effort to gain insight on the indicators of default and develop possible investment strategies.

Next, we will explore loan default as a survival analysis model. This will utilize payment

history data, along with the initial borrower data, to build a proportional hazards model

that evaluates time until default. This model will also be explored for potential insight on

investment strategy.
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CHAPTER 1

Introduction

Traditionally, if you wanted to get a loan, you had to submit an application at a bank or

similar financial institution. Peer to peer(P2P) lending is a rapidly growing industry that

provides an alternative to banks. With P2P lending, applicants submit an application to

the lending service. The lending service then decides if they will offer a loan and under

what terms and conditions, which includes loan length, amount, interest rate and payment

schedule. Individual investors can then pick which loans to invest in and how much money

they will invest. Once the full amount for a loan is raised, the applicant receives the funds.

Investors then receive monthly payments of principle plus interest based on the terms of the

loan.

The emergence of P2P lending in the United States can be attributed to the current

social, technological, and business environment. A recent Gallup poll [6] indicates 37%

positive, 33% negative (+4 net rating) in public overall opinion of banks. Public opinion

has rebounded since the height of the financial crisis, as between 2009 and 2012 opinions

averaged a -24 net rating. Despite this slight level off of slightly positive opinion, it still

remains quite far off the +29 net rating between 2001 and 2007. Public opinion on banks

has rebounded since the financial crisis, but skepticism remains. Interest rates are also at

historical lows [9], which gives the public less incentive to direct their capital through banks.

Technological and social conditions also contributed to the rise of P2P lending. The rise

of smart phones and ever increasing ability to stay connected through social interactions has

fostered an ideal environment for P2P lending to succeed. Ebay is the closest counterpart

we can point to. Ebay’s popularity as an internet based communal marketplace shows the

general public is already comfortable with the P2P dynamic. Though we are dealing with a
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different product being offered, loans, the framework is familiar.

In this thesis, we will use two different methods to analyze borrower default in this

emerging market. The first method will model loan default as a binary outcome. The C5.0

classification algorithm is used, because it is easily interpreted and flexible. Classification

and Regression Tree (CART) methods in general are user friendly, and C5.0 allows for both

tree and rule models. We also make use of the integrated features such winnowing, boosting,

and providing a cost matrix for weighting classification errors. This allows us to build models

that takes in initial data from the applicant and predict whether they will default on their

loan. We will compare the standard model with a model that weights errors using the

cost matrix. We will then use standard classification model evaluation metrics such as the

confusion matrix, accuracy and other error rates, Cohen’s kappa, and the ROC curve to

evaluate our models.

The Second method will use payment histories of the loans to create a Cox proportional

hazard model. The classification method described previously restricts us to the use of loans

that have reached an outcome, either pay off or default. The survival analysis approach

allows us to make use of current loans as well as loans that have reached an outcome. First

we will test the proportional hazards assumption in the input variables. We will then build a

proportional hazards model using univariate and multivariate techniques. The model will be

evaluated based on the likelihood ratio, Wald, and score chi-squared statistics. The output

of this model will allow us to predict a survival curve for an individual loan.
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CHAPTER 2

Data Selection

2.1 Lending Club

This thesis will analyze the US peer to peer lending environment by focusing on loans

originated by Lending Club, the industry leader in volume. We will restrict the analysis

to personal loans. Personal loans are offered for values ranging from $1000 to $35000 and

on either 36 month or 60 month terms. Lending Club uses in house minimum borrower

requirements and sets the terms for all loans offered. Loan data is restricted to loans issues

between 6/14/07 and 9/30/2015. All data used are publicly available at Lending Club’s

website [2].

2.2 Classification Data Set

The data set for classification contains borrower data that is available during the open

investment period of the loan. All variables used in the classification portion are either

collected directly by Lending Club during the open investment period or derived from this

information. For example, Lending Club collects a borrower’s FICO score range while this

thesis uses the median value.

A summary of the variables considered for use in constructing the classifier can be seen

in Table 3.1. These variables include a variety of income and credit data on the borrower, as

well as the terms and conditions of the loan. Current loans, or loans that have not reached

an outcome, are excluded.
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2.3 Survival Analysis Data Set

The data set used in the survival analysis portion contains the borrower data from classi-

fication data set, plus payment history throughout the lifetime of the loan. Borrowers are

required to make principle plus interest payments monthly. Early full repayment of the loan

is allowed. This data set includes payment timing, payment amounts, remaining principle

owed, and an indicator for loan status. The status indicator allows us to identify loans as

current or in default.

The language used when discussing loan status can be ambiguous, so for this analysis,

we will consider any loan that has been charged off as in default. Lending Club allows for

a delinquency period. In this analysis, loans within this delinquency period are considered

current. Also, if a loan becomes delinquent but goes on to be current, or subsequently, fully

paid, we will not mark that loan as having defaulted.

4



Table 2.1: Classification Variables

Variable Name Description

annual inc The borrower’s annual income

collections # of collections in 12 months excluding medical

cr time # of years since first credit line was opened

delinq 2yrs The number of 30+ days past-due incidences.

dti Debt to income ratio

emp length Employment length in years

fico start The borrower’s median FICO

grade LC assigned loan grade

home ownership The home ownership status.

initial list status The initial listing status of the loan.

inq last 6mths The # of creditor inquiries during the past 6 months.

installment The monthly payment owed by the borrower.

int rate Interest Rate on the loan

loan amnt The listed amount of the loan.

loan status Current status of the loan

mths delinq The # of months since the borrower’s last delinquency.

mths derog Months since most recent 90-day or worse rating

mths record The # of months since the last public record.

open acc The # of open credit lines in the borrower’s file.

policy code publicly available policy cod

pub rec # of derogatory public records

purpose Borrower provided loan request purpose.

revol bal Total credit revolving balance

revol util Revolving line utilization rate

term The # of payments on the loan

total acc The total # of credit lines in the borrower’s credit file

verification status The status of income verification.

5



CHAPTER 3

Models

3.1 C5.0 Algorithm

When analyzing default as a classification problem, the C5.0 algorithm is used to create a

boosted decision tree classifier. Developed by Ross Quinlan [10], C5.0 is the next iteration

of C4.5 which was popularized by the paper Top 10 Algorithm’s in Data Mining [11]. In our

case, we use C5.0 to construct a binary classifier, although it can also be used in multi-class

problems. The pseudo code for constructing a C5.0 classifier is as follows:

Algorithm 1 C5.0 Pseudo Code

1: Check for base case:

2: For each attribute A, calculate the normalized information gain ratio from splitting on

A

3: Select Abest, the attribute with the highest normalized information gain

4: Create a decision node that splits on Abest

5: Perform the same procedure on each subset obtained by splitting on Abest, and add these

nodes as children of the node created by splitting on Abest

Bases cases are :

• All sampled observations belong to the same class→ create a leaf node saying to choose

that class

• No features provide information gain→ create a decision node higher up using expected

value of the class
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• A previously unseen class is encountered → create a decision node higher up using

expected value of the class.

The formulation of the decision tree here depends on the use of information gain and

information gain ratio, which can be defined as follows: Let A be the set of attributes and

X be the set of training examples. Let val(x, a), where x ∈ X and a ∈ A, be the value of

specific observation x for attribute a. Let H be the entropy and values(a) denote the set of

all possible values of attribute a. Then the information gain ratio of attribute a is

IGR(X, a) = IG/IV

where the information gain, IG, is

IG(X, a) = H(X)−
∑

v∈values(a)

(
|x ∈ X|val(x, a) = v|

|X|
·H(x ∈ X|val(x, a) = v))

and the intrinsic value, IV is

IV (X, a) = −
∑

v∈values(a)

(
|x ∈ X|val(x, a) = v|

|X|
· log2(

|x ∈ X|val(x, a) = v|
|X|

)

Attributes in A can be either nominal or numeric, which determines how the normalized

information gain ratio is calculated. Nominal attributes are split by their possible values.

Numeric attributes are split by some threshold L, where training set X is sorted on the

values of a and L is selected as the value that maximizes information gain. Missing values

are excluded from information calculations.

The initial decision tree is constructed using the described algorithm and formulas. The

initial tree is then pruned using the upper limit of the binomial probability of observing E

events in N trials. Pruning is carried out from the terminal nodes to the root, where for each

sub tree, estimated errors of the branches are added and compared to the estimated error of

replacing the sub tree with a terminal node. If creating a terminal node does not increase
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the estimated error, the sub tree is pruned. This estimation method also checks to see if it

is beneficial to replace a sub tree with one of its branches. This process removes extraneous

attributes and then reconstructs the decision tree.

C5.0 also supports a variety of user defined functions that can help increase classification

performance. These options include

• AdaBoost [5] can be used to produce boosted trees.

• Winnowing [8] can be used to remove irrelevant attributes.

• The minimum number of cases needed to create a terminal node can be adjusted.

• Cross validation can be implemented.

• Weighting can be applied to both individual cases and specific types of errors.

• Rule sets can be constructed in place of decision trees.

3.2 Cox Proportional Hazard Model

When we incorporate loan payment history and examine loan default from the survival

analysis perspective, we construct a Cox proportional hazard model [3]. The model is used

to examine the expected length of time until the occurrence of an event. In this case, the

event is default.

In general, a survival model consists of two components, a baseline hazard function (de-

noted λ0(t) where t is any given time) and the effects parameters. The baseline hazard

function denotes the instantaneous rate of event occurrence, and the effects parameters de-

scribe how the hazard,or failure rate, changes with variations in the explanatory covariates.

When these covariates are multiplicatively related to the hazard, the proportional hazards

condition is satisfied within the event process. When the proportional hazards assumption

holds, the form of the baseline hazard function is not needed to estimate the effect param-

eters. This is the bases of the Cox proportional hazard model, which will be shown in the

following:
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Let Yi represent the observed time of an observation i. Let Ci be the censoring indicator

where Ci = 1 if the event occurred and Ci = 0 for a censored observation. Let X be the

matrix of covariates. Then the Cox proportional hazard model has a hazard function of the

form:

λ(t|X) = λ0(t) exp(Xβ′)

Let θj = exp(Xjβ
′) and X1 . . . Xn be the covariate vectors for the n observations. We

can then describe the partial likelihood and log partial likelihood as

L(β) =
∏

i:Ci=1

θi∑
j:Yj≥Yi

θj
, `(β) =

∑
i:Ci=1

(Xiβ
′ − log

∑
j:Yj≥Yi

θj)

Maximizing the log partial likelihood over β produces the model maximum likelihood

parameter estimates. The accompanying partial score function and Hessian matrix of the

partial log likelihood is

`′(β) =
∑

i:Ci=1

(Xi −
∑

j:Yj≥Yi
θjXj∑

j:Yj≥Yi
θj

)

`′′(β) = −
∑

i:Ci=1

(

∑
j:Yj≥Yi

θjXjX
′
j∑

j:Yj≥Yi
θj

)−
∑

j:Yj≥Yi
θjXj ×

∑
j:Yj≥Yi

θjX
′
j

(
∑

j:Yj≥Yi
θj)2

)

These two components can then be used to maximize the partial likelihood. We can then

evaluate the inverse of the Hessian matrix at the estimate of β to produce an approximate

variance covariance matrix for the estimate, as is standard when producing approximate

standard errors for the regression coefficients.

The case of tied times in Y must be addressed in order for this procedure to be applied.

In our case, we will use Efron’s method [4].
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CHAPTER 4

Analysis of Default

4.1 Default as Binary Classification

We will now build a binary classifier using the variables listed in table 2.1 as potential model

covariates. The first step in the model building procedure is to perform an initial data

exploration. The first step is to examine the sample size and proportion of events. When

constructing classifiers, we must always ensure the sample size is adequate and that no single

class has a minuscule occurrence rate, or else we may need to explore corrective methods for

modeling rare events. As figure 4.1 shows, we do not see any issues here. In the 36 month

loan group we have a default rate of 25.35% and in the 60 month loan group we have a

default rate of 60%, giving an overall rate of 31.85%.
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Figure 4.1: Default Count by Term Length
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We should then explore missing values in our data set. The C5.0 algorithm is capable

of handling missing values in that they are excluded from the information gain ratios used

to make the tree splits. But if we encounter substantial or systematic missingness, we could

explore imputation methods to replace them. In this case, we have 8,249 total missing values

across 205,023 total observations, with 96.1% complete cases. Missing data does not appear

to be an issue, so we will allow C5.0 to handle missing values in the standard method.

Now we should examine the loan standards that Lending Club imposes upon their loans.

As stated previously, Lending Club determines the terms and conditions of the loans that

they facilitate, individual investors have no influence other than deciding whether it will get

funded or not. Without any prior knowledge, it would seem that the loan grade would be the

most influential covariate we have at our disposal. Lending Club uses a proprietary model

to assign loan grades. Grades are ordinal, with A being the ”best”credit profile. We can see

the breakdown of loan grades in more detail in figure 4.2.

0

20000

40000

60000

A B C D E F G
grade

co
un

t

term

 36 months

 60 months

Figure 4.2: Loan Grade by Term Length
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Figure 4.3 examines the dollar values of loans offered. By Lending Club standards, we

see only personal loans with dollar values between $1,000 and $35,000. Lending Club also

offers business loans which have longer term options and higher dollar value options, but we

are restricting this analysis to personal loans. We can see that loan amounts are centered

around $10,000. We have a median value of $12,000, mean value of $13,390, with a first

quartile of $7,200 and third quartile of $18,000.
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Figure 4.3: Loan Dollar Values by Term Length

Lending Club sets interest rates by taking their minimum baseline rate and adding a

”risk and volatility” component. The baseline rate is stated to be 5.05%, with the additional

component added based on the assigned loan grade. This adjustment included valuation

for loan sub grades, which we are not including in our grade covariate. After taking in

to account the loan grade adjustment, the lowest possible interest rate is 5.32%, with a

maximum interest rate of 28.99%. Figure 4.4 shows that the interest rates correspond to

loan grades being centered around B and C and also shows the loan sub grade differentiation.
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Figure 4.4: Interest Rates by Term Length

The last remaining Lending Club identified criteria is minimum starting FICO score. This

threshold has been changed by lending club over the years as their policies have evolved.

This data set includes loan from the introductory stages of the website. Because this includes

legacy loans, the FICO score floor may not be consistent, but we should still see a clear floor

value.

We’ve examined all of the self described terms of loan offerings from Lending Club, and

they all appear to check out. We’re now ready to begin building a C5.0 model. We now

split the data between a training and testing set. The training set is used to develop the

model, and the testing set it used to evaluate the model fit. The split the data on a 80%

training, 20% testing split, using a form of random sampling that preserves the distribution

of class proportions (Default vs Paid.Off) in both samples. After training the models, all

performance metrics are relative to the training set.
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Figure 4.5: Starting FICO by Term Length

First we attempt to build a single decision tree, as a preliminary exploration of the

process. This yields a classifier that performs no better than than random assignment in the

test set, as evident in the 0.43 AUC . A single decision tree also has a large false negative,

or full repayment is predicted when default is the true outcome, of 19.7%. We attempt to

remedy this issue by constructing a boosted decision tree, which as described in 3.1, utilizes

AdaBoost to create a boosted tree classifier. By implementing boosting, we are able to

reduce false negative rate down to 9.4%. We also see a significant boost in AUC score, up

to 0.65, which can be seen in figure 4.6.

We are singling out the false negative rate in this early stage of model comparison because

it is logically related to the direct loss of investment. The reason being predicting a loan

will be fully repaid and subsequently investing in that loan based on this prediction, only to

have it fail, results in the loss of both initial investment and any forecasted profit off interest.
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Figure 4.6: Boosted Tree AUC

We must remember that funding a loan is a non secured investment. This means if we are

weighing model predictions false negatives are far more detrimental to investment strategy

than false positives. A false positive will simply result in a missed opportunity to make a

profit.

Because of this preference of one type of error over the other, we can explore the imple-

mentation of a weight matrix. Feeding our C5.0 classifier a weight matrix (error weighting,

not individual case weighting), along with tuning other parameters helps us arrive at our

final model. This final model also utilizes boosting, with the addition of penalizing false

negatives five times more than false positives, and changes the minimum cases needed to

create a terminal node from 2 to 6. A limitation of implementing a cost matrix is that we can

no longer predict class probabilities. This is because the class probabilities derived from the

class distribution in the terminal nodes may not be consistent with the final predicted class.

Therefore, we can not use AUC for model comparison between the boosted and weighted

classifiers (single tree is omitted because it is outperformed by the boosted tree in nearly all

evaluation metrics). We will instead use the confusion matrix (outlined in table 4.1), and

other metrics based on classification error rates, such as sensitivity, specificity, and others.

The full list can be seen in table 4.2.
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Table 4.1: Confusion Matrix Comparison

Observed Boost Tree Final Model

Default Fully.Paid Default Fully.Paid

Predicted Default 2.5% 3.3% 4.3% 5.5%

Fully.Paid 19.8% 74.4% 18.0% 72.2%

There is no discernible difference in accuracy between the two models, as the 95% con-

fidence intervals overlap. The trade off between sensitivity and specificity is expected, as

this is a byproduct of introducing weighted classification errors. This is the sacrifice made

in order to reduce false negatives. We also see that the final model shows an increase in

Cohen’s Kappa, which is generally thought of as a more robust measure of overall percent

agreement(converse of error rate). This is because Kappa accounts for agreement between

observed and predicted by chance. Therefore, if our only goal is to predict a loan that will

be fully repaid, we should use the class prediction from the final, weighted model. But,

from a practical standpoint, the boosted tree model results may be preferred if we choose to

evaluate class probabilities. If we take probability predictions to represent the level of confi-

dence of observing a loan that will be fully repaid, the boosted tree should guide investment

decisions, rather than the weighted model.

Table 4.2: Error Based Model Comparison

Boosted Tree Final Model

Accuracy Lower 0.766 0.761

Accuracy Upper 0.773 0.768

Kappa 0.096 0.150

Sensitivity 0.958 0.929

Specificity 0.113 0.191

Detection Rate 0.744 0.722

Detection Prevalence 0.942 0.902

Balanced Accuracy 0.535 0.560
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Up to this point, our model building process has focused exclusively on performance.

We’ve used AUC, sensitivity, specificity, and other standard model fit evaluation metrics to

guide us. But, perhaps we can also develop investment strategy based on the relationship

between the covariates and the outcome, rather than focusing exclusively on model predicted

outcome. To do this, we can examine the role our covariates play in predicting outcome. This

is one of the advantages of using the C5.0 algorithm; we can easily interpret the influence

of the covariates. The single tree, boosted tree, and final model all make significant use

of initial winnowing of covariates. The pruning that follows also helps single out the most

influential covariates. Table 4.3 provides an overview of how we whittle down the number

of attributes needed to make a prediction. In all three cases, more than half the covariates

are winnowed before any information gain calculations are made, and in each case not all

remaining covariates are used in the decision tree(s). We also notice that the final model

suffers a significant reduction in overall error. This is due to the weighting matrix allowing for

far more false positives. We should also note the relatively small number of trees created when

boosting is implemented. The C5.0 algorithm automatically halts boosting if no increase in

accuracy is detected.

Table 4.3: Tree Construction Overview

Single Tree Boosted Tree Final Model

# Trees 1 17 12

Attributes Winnowed 15 15 21

Attributes Used 9 11 5

Error % 22.2% 22.8% 34.0%

From here, we shift our focus to the attributes that survive winnowing and pruning and

are used in the models. The C5.0 algorithm measures predictor importance by determining

the percentage of training set samples that fall into all the terminal nodes after the split

on that predictor. This is how the attribute usage percentage is calculated. We will use

this attribute usage percentage as our predictor importance metric. Table 4.4 shows the

breakdown of variable usage between the single tree, boosted tree, and final model.
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Table 4.4: C5.0 Model Attribute Usage

Single Tree Boosted Tree Final Model

Attribute dti (100) loan amnt (100) term (100)

(Usage %) loan amnt (11.37) purpose (100) int rate (100)

delinq 2yrs (8.26) dti (100) inq last 6 (91.42)

home own (8.15) ann inc (100) mths last rec (77.47)

purpose (3.57) home own (99.98) mths last derog (44.61)

pub rec (1.3) delinq 2yrs (99.97)

mths last derog (1.22) coll 12 mths (99.92)

revol bal (0.34) pub rec (97.35)

ann inc (0.20) revol bal (91.82)

mths last derog (80.56)

mths last delinq (12.96)

We notice that with the boosted tree model, covariate influence follows what we would

have expected without any type of exploration, with loan amount, annual income, loan pur-

pose, and debt to income ratio dominating the usage percentages. The rest of the variables

are related to time since last negative credit event. This suggests that recent credit history

plays a pivotal role in default probability. Again, this is not unexpected. From this model

we see that current earnings and most recent credit history are the most important covari-

ates. But, the construction of the weighted final model starkly contrasts the boosted model.

Here we see trees consisting of only 5 covariates. These include a couple of the recent credit

history covariates seen in the boosted model, but the weighted model is dominated by loan

term length and interest rate. This could be due to the fact that Lending Club sets the

terms of the loans offered. Interest rate is a function of base rate plus volatility adjustment,

where the adjustment is based on loan grade. This loan grade is proprietary, and is likely

a function of many of the other covariates measured in the data set. So it would seem that

interest rate serves as the best summary of a wide swathe of covariates.

This also is not unexpected, as higher interest rates will be tied to riskier loans and thus
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a higher probability of default. Currently, this dimension reduction only serves as a way

to boost prediction accuracy. But, because of this reduction, we can imagine that model

training time can be significantly reduced. If a secondary market ever develops that trades

at the same frequency of tradition stocks, this training time reduction could prove to be

valuable.

4.2 Default as Survival Analysis

Using the data set that includes payment histories for each loan, we can approach loan

default from the view of a survival analysis problem rather than a classification problem. In

this sense, we are attempting to predict time until default.

This approach begins with examining the validity of the proportional hazards assumption,

which states that the covariates are multiplicatively related to the hazard. We can do this

by using the Kaplan Meier estimator to produce estimated default survival curves. In the

case of categorical covariates, we can also perform a log rank test to determine if there is

a difference between survival curves by category. Not only will this allow us to examine

the proportional hazards assumption and identify candidate covariates for the proportional

hazards model, but we can also gain an insight as to how these covariates are univariately

related to survival.

We can start out by estimating the survival curve for 36 month and 60 month term loans,

as shown in figure 4.7. From here we can see that survival rates for 60 month loans are lower

than that of 36 month loans. There does not appear to be any issues with the proportional

hazards assumption. We should note that we see a precipitous drop off in survival for the 36

month loans, but this takes place after the 36 month mark. This is due to collections efforts

on late or past due loans that extend beyond the 36 month mark, while the loan is still

classified under the 36 month category. Also, the log rank test indicates there is a significant

difference (α = .05) between the two survival curves.

Next, we examine the survival curve by loan grade in the same fashion, seen in figure

4.8. Here we see hazard by grade appears to be proportional as well. We do see slight
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Figure 4.7: Default Survival Curve by Term Length

overlap near the end of loan lifetimes in the F and G grades, suggesting there may not be

a difference in hazard rates among these two groups. But, because this cross over is only

slight and occurs near the end of the loan lifetime, we will ignore it. As expected, the risk

of default significantly increases both over time and as risk grade drops.

We then perform this univariate analysis on the remaining covariates and determine that

we are comfortable with the proportional hazards assumption. In our case, we can safely

move on to the model fitting procedure, but in the event of a violation, there are possible

remedies. First, we could stratify by categories of that variable and allow for a different

baseline hazard function for each stratum, while still using all data in parameter estimation.

Second, we could cut the time intervals and fit a different Cox model for each time interval.

Lastly, if we would still like to use a single model, the extended Cox model could be used.

In this case, we would include the covariate in violation as a time dependent covariate.
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Figure 4.8: Default Survival Curve by Grade

Here, we do not encounter any violations, so we’ll continue with the model building

procedure normally. The issues with step wise regression techniques are well documented [7],

so we will explore other options in variable selction. Because of the relatively large number of

candidate covariates, we can use lasso regression [1] to help in the variable selection process.

This shrinkage method reduces extraneous parameters’ estimates to zero, and functions

similar to the winnowing and pruning process used in the C5.0 algorithm. A summary of

the model fit produced by the lasso regression can be seen in table 4.5. We should note that

debt to income ratio is represented as a decimal value, and interest rate as the integer value

of percentage. Scaling will aid in interpretability, but we don’t see any relationships that are

out of the ordinary.

In the case of the Cox proportional hazard model, the exponential value of the coefficient
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Table 4.5: Lasso Cox Model Summary

Covariates coef exp(coef) se(coef) z Pr(>—z—)

term60 -0.180 0.835 0.013 <0.001 0.000

gradeB 0.305 1.357 0.029 10.635 0.000

gradeC 0.450 1.569 0.036 12.456 0.000

gradeD 0.532 1.703 0.045 11.802 0.000

gradeE 0.552 1.737 0.055 10.065 0.000

gradeF 0.582 1.789 0.065 8.920 0.000

gradeG 0.568 1.765 0.076 7.435 0.000

dti 0.011 1.012 0.001 16.330 0.000

InterestRate 8.575 5297 0.374 22.919 0.000

EmploymentLength1-4 years -0.092 0.912 0.018 <0.001 0.000

EmploymentLength10+ years -0.228 0.796 0.019 <0.001 0.000

EmploymentLength5-9 years -0.099 0.906 0.019 <0.001 0.000

Inquiries6M 0.096 1.101 0.004 26.687 0.000

can be used to examine the odds ratios of the covariates. Here, grade A and employment

length of less than 1 year are the reference categories. Examining the odds ratios is analog

to examining the role that each covariate plays in the decision tree method. It allows us to

see how each covariate influence odds of experiencing loan default. Becuase of the lack of

interaction effects, interpretation in straight forward. Typically, interaction effects can be

explored if there is underlying theory behind the inclusion, but here we have a large data

set and utlize lasso regression, which depends on cross validation. In less computationally

intensive environments, this may be worth persuing.

After fitting the model, we can examine model fit by evaluating the Schoenfield residu-

als. This metric is useful for assessing time trend or lack or proportionality in the selected

covariates. They are constructed based on plotting the residual versus event time. In large

samples and when the assumptions hold, they should sum to zero, have expected value of

zero, and be uncorrelated. In this visual check, we are looking for systematic deviation from
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the mean of zero. A sample of this plot figure 4.9.
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Figure 4.9: Schoenfield Residuals for DTI

Now that we have our final survival model, we can use it to predict survival curves. This

can be done on both existing loans and new loans that are offered, as long as we have the

values of the covariates in the model. It’s important to note that when estimating survival

curves for potential investments, one must consider the term length also. Evaluating a 36

month loan on the predicted 60 month survival rate could be detrimental to investment

strategy and result in a loss.
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CHAPTER 5

Concluding Remarks

5.1 Conclusion

This thesis has outlined two potential methods of evaluating default rates for loans in the

Peer to Peer Lending market. The first method being classification based on initial loan

application data. This process begins with initial data cleaning, missing value checks, and

exploratory statistics. Once prepped, the data set is split between training and testing sets.

The user then builds, evaluates, and compares models until a suitable classifier is constructed.

The user then deconstructs the classifier and attempts to gain insight as to the relationship

between covariates and the outcome.

The C5.0 algorithm is ideal for this situation because it is user friendly and flexible. A

user with no previous knowledge of statistics or machine learning can construct a classifier

with results that can be easily interpreted, in the form of either a decision tree or rule

set. But, it also offers more complex customization options for a user with more experience

constructing classifiers. The practical use of classifying loan default in this environment is

that the end user can use the model to make decisions on which loans to invest in. As such,

we can presume that individuals from a variety of backgrounds can take advantage of this

approach.

The second potential method outlined is approaching default as a survival analysis prob-

lem and predicting time until default. For this portion, we use the Cox proportional hazard

model, which can incorporate censored data. In our case, a censored observation is a current

loan, which the classification method can not use.

This procedure involves initial data cleaning and setup, followed by examination of the
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proportional hazards assumption in potential covariates. This is performed by examining

the Kaplan-Meier estimator, which provides a survival curve estimate. Potential covariates

are then transformed as needed, and a proportional hazards model is built using univariate

and multivariate regression techniques. Model fit is evaluated using hypothesis testing on

both the covariates and model fits, using the Wald and likelihood ratio tests, respectively.

After establishing a suitable model, estimated survival curves for existing loans can be used

to guide investment decisions. The model can also be used to estimate survival curves for

newly funded loans by running the parameter values of the new loan through the constructed

survival function.

The methods highlighted by this thesis provide potential investors with loan default

evaluation tools that can be used under different scenarios, depending on the available data.

The approaches are shown through the lens of Peer to Peer lending, and although issues

specific to this environment are discussed, the highlighted procedures can be generalized to

fit any class of similar problems.

5.2 Future Studies

This thesis focuses on methods for measuring default. This can serve as the foundation of an

extension into expected return on investment. It may be beneficial to incorporate expected

profits when constructing a model, and by extension, an investment strategy. This would

also include the evaluation of collections on loans before they are charged off. Accounting

for expected recovery amount could give a more accurate valuation of loans that do default.

In the same line, early repayment reduces profit since the remaining balance accrues less

interest, or none at all in the case of a fully repaid loan. The entire scope of expected profit

can be incorporated in to this kind of analysis, which would fall in line with more traditional

portfolio valuation techniques.

If one were to focus solely on classification error rates, we could explore the option of

ensemble learning. Here we used the C5.0 algorithm for flexibility and interpretability, but

there are a host of other classification techniques that can be utilized. When combined in
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an ensemble of learners, it’s possible we can obtain far more accurate predictions.

A limitation of this analysis is that it depends on whatever data that Lending Club has

made publicly available. The survival analysis approach could benefit from the inclusion of

a time varying component. It seems natural that changes in credit score and other potential

covariates would have an effect on survival rates. Additional survival analysis methods could

also be explored, as they could outperform the cox proportional hazard model.
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