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ABSTRACT OF THE DISSERTATION

Non-invasive Optical Measurement of arterial blood flow speed

by

Alex Ce Zhang

Doctor of Philosophy in Electrical Engineering (Electronic Circuits & System)

University of California San Diego, 2020

Professor Yu-Hwa Lo, Chair

Non-invasive measurement of the arterial blood speed gives rise to important health

information such as cardio output and blood supplies to vital organs. The magnitude and change

in arterial blood speed are key indicators of the health conditions and development and progression

of diseases. We demonstrated a simple technique to directly measure the blood flow speed in main

arteries based on the diffused light model. The concept is demonstrated with a phantom that uses

intralipid hydrogel to model the biological tissue and an embedded glass tube with flowing human

blood to model the blood vessel. The correlation function of the measured photocurrent was used

to find the electrical field correlation function via the Siegert relation. We have shown that the

characteristic decorrelation rate (i.e. the inverse of the decoherent time) is linearly proportional to

xvi



the blood speed and independent of the tube diameter. This striking property can be explained by

an approximate analytic solution for the diffused light equation in the regime where the convective

flow is the dominating factor for decorrelation. As a result, we have demonstrated a non-invasive

method of measuring arterial blood speed without any prior knowledge or assumption about the

geometric or mechanic properties of the blood vessels.
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Chapter 1

Introduction

Oxygenated red blood cells in the blood flow deliver essential nutrients and oxygen to

organs and limbs to maintain their homeostatic conditions and proper functions. Oximeter detects

the oxygen saturation level of red blood cells by using wavelength dependent absorption for

oxygenated and deoxygenated blood [Wang et al., 2018]. Such measurements can be done with

wearable devices such as smart watches. On the other hand, there has been no convenient and

non-invasive method to measure the amount of blood supply or blood speed in major arteries.

Reduced blood supply is usually a sign of diseases and medical conditions. Dehydration,

thromboses formation, and other physiological and pathological conditions can cause short term

or long term changes in the blood speed at a given location of the artery [Stewart et al., 2019].

The information helps early diagnosis and monitoring of diseases with impaired blood flow

[Jayanthy et al., 2011, Poelma et al., 2012, Blumgart and Yens, 1927]. Therefore, it is desirable

to directly measure the travelling velocity of red blood cells at well-defined locations such as

the carotidal artery to the head, femoral artery to the lower limb, brachial artery to the upper

arm, spinal arteries to the spinal cord, renal arteries to the kidneys, hepatic artery to the liver, and

pulmonary artery to the lungs, etc. Since the arterial blood speed at the well-defined positions

provide direct and unambiguous information about blood supply to the sites of health concerns.

1



Doppler frequency shift of ultrasonic waves offers a non-invasive measurement of the

blood flow speed at the well-defined position. However, acoustic measurements require close

physical contacts of the ultrasound transducers with the tissue to allow efficient coupling of the

acoustic wave, and gel is needed to assure the quality and reliability of the contact. Furthermore,

the measured signal is highly dependent on the angle between the probe and the blood flow

direction. The most convenient and ergonomic direction is to have the transducer perpendicular

to the blood vessel. However, this arrangement will produce no Doppler shift signal, thus making

the measurement less convenient in a homecare or nursing home setting for self-administered

operation[Pietrangelo et al., 2018]. In this regard, an optical method is potentially more desirable

because a light wave can enter the tissue via free space coupling and once entering the tissue, as we

will discuss later, it travels diffusively. In addition, the optical hardware including semiconductor

light sources and detectors are more compact than acoustic transmitters and receivers.

People have used dynamic scattering of laser light by red blood cells to measure the speed

for blood vessels near the tissue surface [Kashima et al., 1992, Kashima et al., 1993]. Similar to

the Doppler effect of sound propagation, the frequency of the scattered light by moving particles

is also shifted. Although the operation principle seems to be straightforward, the physical model

of the “optical Doppler device” is based on a key assumption that the light is only scattered once

by a moving object (e.g. a traveling red blood cell) and the rest of the scatterings is produced by

quasi static objects such as skin and fat. This assumption may be reasonable for probing near

surface tissue blood flow, but not for major arteries where around 40% of the volume of the blood

vessel with a diameter of a few millimeters is occupied by traveling red blood cells. Under the

approximation of single light scattering by moving particles, the detected scattered light will

display a frequency shift proportional to the velocity of the particle and the amount of frequency

shift can be detected using the homodyne coherent detection technique. However, the above

technique cannot be applied to multiple scatterings by a large number of moving particles. In

such situations, the frequency spectrum of the light wave is broadened, making the interpretation
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of signal difficult. Because of this limit, the current technique of optical Doppler shift has been

limited to measuring the blood flow in microflow channels near the skin although the blood

supply by major arteries produces more valuable information for health and disease conditions.

In addition, the laser Doppler flowmetry can only measure relative speed. [Rajan et al., 2009].

To measure the blood flow speed in major arteries, we extend the technique of optical

scattering method by taking into account the effect of multiple scattering by red blood cells.

Instead of measuring the Doppler shift in the optical frequency, we measure the decorrelation

time of the reflected light. The key results of our work are (a) we have shown experimentally and

theoretically that one can measure the arterial blood flow velocity using a simple optical setup

comprised of a single semiconductor laser and a single detector, both coupled to a multi-mode

fiber bundle, and (b) we discovered that for main arteries where the diffused light model applies,

the decorrelation time is inversely proportional to the RBC speed and we can measure its value

without any prior knowledge about the anatomy and tissue mechanic properties of the artery.

Once entering the tissue, light has a very short scattering mean free path and the light

becomes diffusive. Modelling of light propagation in this regime has led to the development

of oximeter back in 70s [Ishimaru, 1978] and many researchers have utilized the diffused light

to construct images through highly diffusive biological media, such as reconstructed breast

cancer images [Wang and Wu, 2012]. The standard configuration for diffused light correlation

spectroscopy includes a point source and a point detector, and the measured correlation func-

tion depends on the relative position between the source and the detector[Durduran et al., 2010,

Vishwanath and Zanfardino, 2019, Zanfardino and Vishwanath, 2018]. The method of diffused

light correlation spectroscopy has been used in blood perfusion measurement [Boas et al., 2016],

including brain circulations [Durduran and Yodh, 2014, Torricelli et al., 2014]. The setup uses a

single-mode fiber coupled detector to allow single-mode transmission of two orthogonal light

polarizations [Rička, 1993]. The single spatial mode yields the best signal-to-noise ratio since
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it detects one speckle. However, this setup produces very low light intensity and requires a

single photon detector (e.g. a single-photon avalanche detector (SPAD) or a photomultiplier tube

(PMT)), making the setup quite sophisticated and subject to interference and stray light.

To make the system robust and easy to operate, in this paper we use multimode fiber and

a regular photodetector to detect temporal fluctuations of the light intensity. In the following

we first present our experimental setup and measurement results, and then describe the physical

model to show how the measured results can be used to find the red blood cell velocity. We

will show that in a simple and robust setup that is relatively insensitive to the optical alignment

between the fiber bundle and the tissue, where we can reliably measure the absolute value of the

traveling speed of red blood cells in a blood vessel that has a millimeter diameter embedded in a

layer of tissue. The results offer a promising solution for non-invasive measurement of the blood

supply into organs and limbs.

Chapter 1 is based on a reprint of Zhang, A.C., Lo, Y.H., 2020. Non-invasive optical

Measurement of arterial blood flow speed. Biomedical Optics Express (under peer review). The

dissertation author was the primary author of this material.
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Chapter 2

Experimental Setup

The experimental setup and measured results are first presented here, followed by the

theoretical analysis in the later sections.

Figure 2.1: Experimental Setup. The laser light illuminates the tissue phantom surface at a
45-degree angle and the scattered diffused light is collected through the reflection probe fiber
bundle which is coupled to a photoreceiver. The glass tube that emulates a blood vessel is
embedded in the tissue phantom 5mm below the surface.
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2.1 Tissue Phantom Fabrication

Wwe used intralipid as the scattering agent to reproduce keymimic the tissue by making

its optical properties of tissue to make the scattering coefficient µs and anisotropy factor g

similar to the the values of real tissue. Because of its similar optical properties to the bilipid

membrane of cells, intralipid is commonly used to simulate tissue scattering [Lai et al., 2014,

Pogue and Patterson, 2006, Flock et al., 1992]. In addition, the absorption coefficient of intralipid

is low and its refractive index is close to that of soft tissue[Ding et al., 2005]. The tissue phantom

is created using intralipid (Sigma-Aldrich 20%) in gelatin gel. One percent concentration of

intralipid was chosen to achieve a scattering coefficient of around 10cm−1 at 784 nm. The

phantom was initially prepared at 90◦C, and then poured into a mold where a glass tube was

pre-inserted at a depth of 5mm from the phantom surface (measured from the center of the

tube).The liquid phantom was immediately placed into a freezer at -18 ◦C for 30 minutes for

rapid solidification to prevent sedimentation of intralipid to achieve a uniform scattering property.

Then the sample was placed in a refrigerator at 6 ◦C for 30 minutes to further solidify. The

subsequent experiment was usually completed within 30 minutes after the phantom fabrication to

prevent evaporation induced dehydration of the phantom, which could reduce the surface height.

Glass tubes of three different inner diameters were used to mimic the arteries. Tygon tubing was

connected to both ends of the glass tube, with one end connected to a 10mL syringe mounted on a

syringe pump and the other end connected to a reservoir (See figure 2.1).

2.2 Blood Preparation

12 mL of human whole blood collected on the same day of the experiment was purchased

from the San Diego Blood Bank. EDTA was added to the blood sample to prevent coagulation.
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2.3 Optical and electronics setup

We used an off-the-shelf multi-core reflection fiber bundle probe (Model:RP21 from

Thorlabs) that consists of one center core surrounded by 6 peripheral cores to couple the input

and reflected light. The center core was used to deliver the laser light to the blood vessel and the

6 peripheral cores that are merged into a single output are coupled to the photodetector (see figure

2.1). The fiber bundle was mounted about 45 degrees relative to the surface of the tissue phantom

to prevent specular refection from the tissue surface. The fiber bundle was coarsely aligned to

the position of the glass tube in the tissue phantom. The laser used in the experiment was an

off-the-shelf fiber coupled laser diode at 785nm, biased slightly above its threshold current to

produce an output of 5 mW. The output of the detection fiber was coupled to a silicon APD with

an integrated transimpedance amplifier (Thorlabs APD410A) to achieve a transimpedance gain of

500 kV/A at 10MHz bandwidth. The APD multiplication gain was set to be the lowest (M ∼ 10).

The output signal from the APD photoreceiver entered a data acquisition board (Advantech PCI-E

1840) at a sampling rate of 20 Msps, yielding a Nyquist bandwidth of 10 MHz. The total data

acquisition time for the measurement was 25 seconds. We treated each 5ms duration as one

recording section, so 25 seconds of measurement produced 5,000 sections for analysis and noise

cancellation. In all the data presented next, we used the average data over 25 seconds for the

mean and over 1 second to determine the variations shown in error bars.

We tested blood flows with three tube inner diameters: 0.93mm, 1.14mm, and 1.68mm.

The tube diameters were measured by a digital microscope to assure high accuracy. For each tube

diameter, we flow the blood at different speeds.

2.4 Experimental Results

We have used the setup in figure 2.1 to measure the photocurrent correlation defined as
〈i(t)i(t+τ)〉
〈i(t)〉2 where i(t) is the photocurrent at time “t” and 〈〉 is the ensemble average. For a 25 second
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measurement that can be divided into 5,000 5ms sections, the ensemble average is the average

of these 5,000 sections. τ is the time delay between the instantaneous photocurrents, and is the

variable for the correlation function.

One important relation is to convert the photocurrent correlation into the normalized

electrical field correlation function g1 represented by equation (2.1):

g1(τ) =
〈E(t)E∗(t + τ)〉
〈E(t)E∗(t)〉

(2.1)

Using the Siegert Relation[Cummins and Swinney, 1970], we can obtain a relation between the

magnitude of g1(τ) and the photocurrent correlation as shown in equation (2.2):

〈i(t)i(t + τ)〉
〈i(t)〉2

= 1+
1
N
|g1(τ)|2 +

eδ(t)
〈i(t)〉

(2.2)

where i(t) is the measured photocurrent, N is the number of spatial modes coupled into the

detection fiber bundle and collected by the detector, δ(t) is a delta function, and e is the electron

charge. The last term in equation (2.2) represents the shot noise.

The magnitude of electrical field correlation g1 under different flow speeds of blood

is shown in semi-log plots in Figure 2.2 to 2.4, (a), where each figure shows measurements

performed with a different tube diameter. The x-axis of each plot is the logarithmic of τ in the

correlation function. From these plots we made two interesting observations: (a) At relatively

low blood flow speed, the curve shows a characteristic analogous to the “Fermi-Dirac distribution

function” if we treat “ln(τ) as “energy”; (b) at high blood speed, the curve behaves like a

superposition of two Fermi-Dirac distribution functions, one at lower “energy” and another at

higher “energy”. These characteristics become more apparent if we take the derivative of g1 with

ln(τ), showing that the “Fermi level”, ln(TF), occurs at the inflection point where the magnitude

of slope reaches the maximum.
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We will discuss the physics of such characteristics in the later section. By examining

the interesting features of the measured electrical field correlation g1, we can extract the “Fermi

energy, εF” or ln(TF). In the low blood speed regime where the|g1| plot shows two superimposed

Fermi-like functions, we chose the inflection point of the lower energy function (i.e. in the regime

of smaller ln(τ) values). We will elucidate the reasons for such a choice in the next section.

Essentially each of the two superimposed Fermi-like functions represents a corresponding regime

of light scattering mechanisms. Figure 2.2 to 2.4 (b) show the plot of 1/TF (which is equivalent

to e−εF ) versus the blood flow velocity with different tube diameters. Amazingly, we obtain a

simple linear relation between 1/TF and the blood speed. More interestingly, we have found that

the 1/TF versus speed curve is independent of the tube diameter. As shown in figure 2.5, the

three curves of 1/TFversus speed measured from different tube diameters completely overlap

and can be represented by one simple relation independent of the tube diameter. This result

suggests that our measurement setup can potentially measure the blood speed in different artery

sizes without having to know the exact dimension of the blood vessel diameter. This discovery is

very important in practical applications because it shows that from the g1(τ) curve, which can be

obtained from the correlation of the photocurrent, we can obtain the speed of the blood directly

for different arteries at a given position without any prior knowledge of the anatomy of the blood

vessel. The discovery of this important relation requires a sound physical foundation, to rule out

the possibility for being simply coincidental. The physical model and mathematical analysis will

be discussed next.

Chapter 2 is based on a reprint of Zhang, A.C., Lo, Y.H., 2020. Non-invasive optical

Measurement of arterial blood flow speed. Biomedical Optics Express (under peer review).The

dissertation author was the primary author of this material.
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Figure 2.2: (a) Measured E-field correlation function (g1) versus flow speed of whole blood for
a tube diameter of 1.68mm. (b) By taking the inverse of the correlation time at the first inflection
point in (a), the decorrelation rate (1/TF ) is plotted versus the flow speed. The scattered data
set with error bars represents the 95% confidence interval over 25 measurements, each for a
duration of 1 second. The dashed line is a linear fit of the measured data.
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Figure 2.3: (a) Measured E-field correlation function (g1) versus flow speed of whole blood for
a tube diameter of 1.14mm. (b) By taking the inverse of the correlation time at the first inflection
point in (a), the decorrelation rate (1/TF ) is plotted versus the flow speed. The scattered data
set with error bars represents the 95% confidence interval over 25 measurements, each for a
duration of 1 second. The dashed line is a linear fit of the measured data.
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Figure 2.4: (a) Measured E-field correlation function (g1) versus flow speed of whole blood for
a tube diameter of 0.93mm. (b) By taking the inverse of the correlation time at the first inflection
point in (a), the decorrelation rate (1/TF ) is plotted versus the flow speed. The scattered data
set with error bars represents the 95% confidence interval over 25 measurements, each for a
duration of 1 second. The dashed line is a linear fit of the measured data.
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Figure 2.5: Combined decorrelation rate (1/TF ) versus blood flow speed plot for different tube
ID. The scattered data set with the error bar represents the 95% confidence interval over 25
measurements, each for a duration of 1 second. The line plots are linear fits of the measured
data. The fact that plots for different tube ID collapse into one single line demonstrates the
existence of a simple relation between the decorrelation rate and the blood speed and the relation
is independent of the tube diameter.
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Chapter 3

Outline of Physical Models

3.1 Diffused Light Equation for Moving Scatters:

In order to understand the underlining physics of the relation between the inverse of

characteristic decorrelation time, 1/TF , and the flow speed of the blood, we describe the physical

model and mathematical formulation for our experiment in this section. We will outline the

key steps and, through approximations, produce an analytical relation between the blood speed

and the decorrelation time. The detailed numerical results for more general analyses without

approximations will be presented in a separate paper.

People usually take two approaches to model light propagation in a strongly scattered

biological medium. In one approach, we start with the wave equation and introduce the scattering

and absorption characteristics along the optical path. Despite its rigor in the mathematical

formulation, to make the result useful, approximations have to be made to make the problem

solvable. Twersky’s theory and Dyson’s equation fall into this category [Ishimaru, 1978]. In

another approach, we can formulate the problem in a transport equation that deals with photon

energy transport. These two methods eventually give rise to the same result. In this paper we take

the second approach because of its relative simplicity.
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The governing equation is a radiative transfer equation (RTE) in the following form:

dI(~r, ŝ)
ds

=−ρ σtI(~r, ŝ)+ρσs

∫
4π

p(ŝ, ŝ′)I(~r, ŝ′) dΩ
′+S(~r, ŝ) (3.1)

!"

"̂

"̂′

!Ω

!Ω′

!A

Figure 3.1: Illustration of the elementary scattering volume for equation (3.1), ds represents the
differential length, dA is the differential area, dΩ is the differential solid angle.

in which I is the light specific intensity with a unit Wm−2sr−1 ,ρ is the particle concen-

tration, σs is the scattering cross section, σt is the total scattering cross section which is the

summation of scattering cross section and absorption cross section. p(ŝ, ŝ′) is the normalized

differential scattering cross section which is sometimes called the phase function and it’s unitless,

and S(~r, ŝ) is the source intensity which has a unit of Wm−3sr−1. Figure 3.1 illustrates the

orientations and coordinates for an infinitesimal scattering volume. Equation (3.1) contains 5

coordinates: x,y,z,θ,φ where x,y,z define the position vector~r of the light intensity, and θ,φ

represent the beam’s propagation direction. The unit vectors ŝ’ and ŝ represent the direction of

the incident light and the propagation direction after scattering.

Solving equation (3.1) would produce the full solution for the light scattering problem for

any scatter concentration. However, equation (3.1) is very complicated to solve. Fortunately, in

most biological samples, the scatter density is so high that photons quickly lose the memory of

their path histories after multiple scatterings and it can be justified to assume the light intensity
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depends on its position (x,y,z) with a slight flux flow in the direction of propagation (θ,φ). This

would lead to a simplification of the problem, and the average intensity could be described by the

diffusion equation which is only dependent on the position (x,y,z). Mathematically, it means that

we can expand the light intensity in spherical harmonics by keeping the zero order and first order

term.

I(~r, ŝ)' 1
4π

U(~r)+
3

4π
~F(~r) · ŝ (3.2)

where the first term is the average intensity and the second term is the small photon flux in the

direction of propagation. Applying the diffusion approximation to the RTE, we can obtain a

steady state diffusion equation (3.3) to model light propagation in a diffusive medium when the

scatters are not moving. As light needs to be scattered multiple times to become diffusive, an

important requirement for the diffusion approximation is that the cross section for light scattering

is much stronger than the cross section for light absorption. A problem would arise when dealing

with light intensity close to the boundary since the light is highly directional at the boundary,

violating the diffusive condition. Different boundary conditions have been explored to resolve

this problem, including adoption of an extended boundary condition which uses Taylor expansion

to convert the Robin boundary condition into a Dirichlet type boundary condition to simplify the

solution for equation (3.3) [Haskell et al., 1994].

[D∇
2−µa]U(~r) =−S(~r) (3.3)

where D = 1/3µ′s is the photon diffusivity with a unit of meter and µ′s is the reduced scattering

coefficient. µa is the absorption coefficient with a unit m−1. S(~r) is the source (unit of Wm−3)

that depends only on the location but not on the propagation direction, different from S(~r, ŝ) in

equation (3.1).When the scatters exhibit motions, the scattered intensity would include time as
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a parameter. For statistical optics, it is natural to use field correlation function to capture this

dynamic process. Here, we are still talking about the steady state response of the system so that

the time dependence can be represented as a parameter in the differential equation.

We start with the case of single scattering event by a moving object. The normalized

single scattering function can be written as:

gs
1(τ) =

〈E(t)E∗(t + τ)〉
〈E(t)E∗(t)〉

= exp
(
− 1

6
q2〈∆r2

i (τ)〉
)

(3.4)

where gs
1 is the single scattering normalized correlation function, E is the scalar electrical field of

light, q is the photon momentum transfer by each scattering, 〈∆r2
i (τ)〉 is the RMS displacement of

the scatters in a duration of τ. The above equation describes the electrical field correlation function

due to single scattering. This single scattering function can be incorporated into the radiative

transfer equation, yielding the so-called correlation transfer equation which is the dynamic counter

part of the static radiative transfer equation [Boas and Yodh, 1997]:

dG1(~r, ŝ,τ)
ds

=−ρσtG1(~r, ŝ,τ) + ρσs

∫
4π

p(ŝ, ŝ′) gs
1(ŝ, ŝ

′,τ)G1(~r, ŝ,τ) dΩ
′+S(~r, ŝ) (3.5)

Similarly, the diffusion approximation can also be applied to obtain the correlation diffusion

equation which is again the counterpart of the static diffusion equation described previously.

Equation (3.5) is the correlation diffusion equation. The diffusion equation can then be solved

with appropriate boundary conditions to be compared with experimental results.

[D∇
2−µa−

1
3

µ′sk
2
0〈∆r2(τ)〉]G1(~r,τ) =−S(~r) (3.6)
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where n is the refactive index of scattering media, k0 is the wavevector in vacuum, µ′s is the reduced

scattering coefficient which is the scattering coefficient modified due to scattering anisotropy. For

isotropic scattering, the scattering coefficient would be the same reduced scattering coefficient.

3.2 Analytic Relation Between Decorrelation Time and RBC

Flow Speed

We assume a plane wave illumination at the surface. Despite the simplification, the

approximation can yield a satisfactory result in good agreement with the experiment. To simplify

the practical application, we adopted an experimental design where a single detector covers an

area defined by the numerical aperture of 6 hexagonally arranged multimode fiber surrounding

the light source (see figure 2.1). Assuming the blood vessel is cylindrically symmetric, we used

a 2D model as shown in figure 3.2. We can reduce equation (3.6) into the following diffusion

Tissue

!
"

#

Blood 
vessel

Figure 3.2: Geometry used for theoretical calculation. The circle represents the cross section of
blood vessel with parameters: Din, W1, k1, µin

a , µ
′in
s ; The area outside the circle represents the

static scattering media, i.e. tissue with parameters: Dout , W0, k0, µout
a , µ

′out
s . We adopt cylindrical

coordinates and define the center of the vessel as the origin.

equation,

[∇2 + k2]G1(~r,τ) =−
S(~r)
D

(3.7)

in which

k = jW (τ) (3.8)

18



Since the scattering parameters are different inside and outside the blood vessel, two sets of

parameters are used. The parameters inside the blood vessel are represented using subscript 1,

i.e. k1 = jW1(τ). The parameters outside the blood vessel are represented using subscript 0, i.e.

k0 = jW0(τ).

W1 =

√
1

Din
[µin

a +
1
3

µsk2
λ
〈∆r2(τ)〉] (3.9)

W0 =

√
µout

a
Dout

(3.10)

To solve equation (3.7), we need to first find the mean squared displacement 〈∆r2(τ)〉. The mean

square displacement for RBCs includes Brownian, shear induced diffusion and convective motion.

We can represent the position variation of RBCs over a given time interval as[Belau et al., 2017]:

〈∆r2(τ)〉= 6Dατ+V̄ 2
τ

2 (3.11)

where the first term in equation (3.11) is caused by Brownian and shear induced diffusions and the

second term by convection. For RBCs, the diffusion by Brownian motions is much smaller than

the shear induced diffusion [Wu et al., 1990]. The flow of RBCs inside arteries can be modeled

by a laminar flow and the diffusion coefficient can be represented as [Owen and Roberts, 2007]

Dα = αs

∣∣∣∣∂vRBC

∂r

∣∣∣∣= 4
3

αs
Vmax

a
(3.12)

αs is a parameter describing the interaction strength among blood cells due to shear and

its value has been measured experimentally [Goldsmith and Marlow, 1979, Funck et al., 2018,

Nanne et al., 2010, Higgins et al., 2009, Biasetti et al., 2014, Tang et al., 2018]. The radial de-

pendent shear rate is usually replaced by its average value due to the fact that multiple scattering
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will lead to an ensemble averaging across all radial locations . For tissue blood perfusion, the

slow flow speed and small blood vessel diameter make the diffusive motion the dominant effect

compared to the convective motion [Sakadžić et al., 2017]. The situation is reversed, however,

for main arteries and our phantom model where the vessel inner diameter is of millimeter size

and the blood flow speed is several centimeters per second[Gabe et al., 1969]. In such cases, the

convective motion becomes the dominant effect. Hence in our analysis, we have ignored the

diffusion contribution and included only the convective flow contribution in equation (3.11).

We can then write the general solution of the correlation function in equation (3.7) as

follows,

G1(~r,τ) = Gin
1 (~r,τ)+Gsc

1 (~r,τ) (3.13)

The first term is the inhomogeneous solution and the second term is the homogeneous solution

for equation (3.7) in the absence of the source. The diffusion equation under a given boundary

condition can be solved in polar coordinates and the method of separation of variables. For an

approximate analytic solution, we kept only the zeroth order term since all higher order terms are

insignificant compared with the zeroth order term. A continuity boundary condition is applied

at the cylinder interface between the blood vessel and the surrounding tissue. The air-tissue

surface is ignored for simplicity in the solution. After solving the differential equation with some

approximations based on the numerical value of actual tissue and blood cell scattering properties,

the normalized correlation function g1 can be written in the form of equation (3.14), inspired

from the Fermi-Dirac function in semiconductor physics (i.e. by performing the transformations:

ln(τ) = ε, ln(TF) = EF ,equation (3.14) is similar to the Fermi-Dirac function).

g1(r,a,θ,τ) =
1−g1(r,a,θ,∞)

1+ τ

TF

+g1(r,a,θ,∞) (3.14)
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1
TF
≈V nk0

√
µ′ins
3µin

a
(3.15)

where V is the flow velocity of blood, n is the refractive index of blood, k0 is the wavevector of

784 nm light in vacuum, µ
′in
s is the reduced scattering coefficient of blood (m−1), and µin

a is the

absorption coefficient of blood (m−1). If we define TF as the characteristic decorrelation time,

and 1/TF as the characteristic decorrelation rate, we obtain the key relation that the characteristic

decorrelation rate is only a function of flow speed and blood optical parameters, as shown in

equation (3.15). In equation (3.14), g1(r,a,θ,∞) is the asymptotic value of g1 when τ approaches

infinity, and its value is a function of detector position and blood vessel diameter. In the later

chapters, I would show detailed derivation and solve equation (3.7) numerically, we have validated

the approximations that led to the analytic solution for g1 in equation (3.14) and most importantly,

the linear relation between 1/TF and the blood flow velocity. We have also shown that the

decorrelation time for 2D and 3D analyses is nearly the same. The detailed mathematical

derivations as well as the numerical computations for the diffused light model will be described

in a separate publication.

From the approximated relation in equation (3.15), we find that the characteristic decor-

relation rate is proportional to the flow speed. The proportional constant has a square root

dependence on the ratio between the scattering coefficient and the absorption coefficient. This

is intuitive since scattering events cause dephasing, and light absorption would terminate the

scattering process.

Chapter 3 is based on a reprint of Zhang, A.C., Lo, Y.H., 2020. Non-invasive optical

Measurement of arterial blood flow speed. Biomedical Optics Express (under peer review).The

dissertation author was the primary author of this material.
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Chapter 4

Photon Transport in Static Random

Scattering Media

In following chapters, I will go through the details physics mentioned in the previous chap-

ter. In this chapter, the discussion will be focused on the light transport in a static random media.

In order to describe and quantify the behaviour of photon propagation in random media, people

usually take two approaches to model light propagation in a strongly scattered biological medium.

In one approach, we start with the wave equation and introduce the scattering and absorption

characteristics along the optical path. Despite its rigor in the mathematical formulation, to make

the result useful, approximations have to be made to make the problem solvable. Twersky’s

theory and Dyson’s equation fall into this category [Ishimaru, 1978]. In another approach, we

can formulate the problem in a transport equation that deals with photon energy transport. These

two methods eventually give rise to the same result. In this thesis, the second approach is taken

because of its relative simplicity.
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4.1 Derivation of Radiative transfer equation (RTE)

The following is based on a phenomenological approach that is based the transport of en-

ergy through media that contains particles [Ishimaru, 1978][Wang and Wu, 2012].This equation

is the fundamental equation that captures all the physical phenomena when the photon propagates

through a random media exhibiting the classical behavior of absorption and scattering. Typically,

a full transport equation would not have a analytical solution that provides physical insight except

at some cases where the transport equation can be simplified. One of the cases is when there are

few scatterers in the media, and if the scatters are also mainly absorbing, this would lead to the

famous Beer-Lambert law. However, this approximation would break down when the media is

scattering dominate and when the scattering particles have a high density. But luckly, at this end

of the extremety, the transport equation can be simplified using the diffusion approximation. In

most biological tissues, the photon transport can be characterized by the diffusion equation. In

order to provide a clear physical understanding of the problem, this chapter will outline the basic

idea behind the radiative transport equation and subsequently the diffusion approximation.

4.1.1 Definition of Physical Quantity

Figure 4.1: Directional vector, da represents the differential area, ŝ0 is the normal vector
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Specific Intensity I(~r, ŝ), Unit: Wm−2sr−1

Specific Intensity comes with the unit of Watt per area per unit solid angle, also known as

radiance or brightness[Wang and Wu, 2012].

The amount of power flowing through the differential area da, within a solid angle of dΩ at the

direction of unit vector ŝ0 as in fig 4.1 is:

dP = I(~r, ŝ)ŝ′ · ŝ da dΩ (4.1)

in which, ŝ′ · ŝ is the dot product of the two unit vectors, which is, ŝ′ · ŝ = cosθ as indicated in fig

4.1:

Average Intensity: U(~r), unit:W/m2

The average intensity is obtained by integrating the specific intensity over the entire 4π

solid angle.

U(~r) =
∫

4π

I(~r, ŝ) dΩ (4.2)

Energy flux: ~F(~r), unit: W/m2

~F(~r) =
∫

4π

I(~r, ŝ)ŝdΩ (4.3)

This could be considered as the vector counterpart of average intensity.

24



Scattering Cross Section of a single particle: σs, unit, m2

Consider a incident wave as a linearly polarized plane wave with electric field character-

ized as follows[Ishimaru, 1978]:

~Es′(~r) =~es′ exp(i~k ·~r) (4.4)

~ei is the unit vector in the direction of polarization of the incident plane wave,~s′ is the direction

of propagation of the incident plane wave. Note the amplitude of the incident wave is normalized

to one(V/m). The far field scattered electric field by a single particle is given by the following:

~Es(~r) = ~f (ŝ, ŝ′)
eikR

R
(4.5)

Under the far-field (Fraunhofer) approximation, the scattered field is approximated by a spherical

wave, provided R >> D2/λ.

~f (ŝ, ŝ′) is the amplitude, phase and polarization of the scattered wave in the far field in the

direction of ŝ when the particle is illuminated by a plane wave propagating in the direction ŝ′ with

unit amplitude and is the called the scattering amplitude.

Before we define the scattering cross section, let’s write the time averaged Poyting vector of the

incident wave and scattered wave respectively:

~Ss′ =
1
2
~Es′× ~H∗s′ =

|~Es′|2

2η0
ŝ′ (4.6)

~Ss =
1
2
~Es× ~H∗s =

|~Es|2

2η0
ŝ (4.7)

Poyting vector is the energy flux and has the unit of W/m2
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Now, let’s define the differential scattering cross section:

|~Ss| dA = |~Ss′| dσ (4.8)

in which, |Ss′| and |Ss| are just the magnitude of Poyting Vector of incident and scattered wave.

dA is the differential surface area of a sphere, dA = R2 dΩ.

Physically, for the above equation, it means that the amount of power that is scattered into a

surface area of dA is caused by the incident flux scatter with a cross section of area dσ.

dσ =
|~Ss| dA

|~Ss′|
=
|~Ss|R2 dΩ

|~Ss′|
(4.9)

Combing equation (4.6) to (4.9), it’s very easy to see:

dσ = |~f (ŝ, ŝ′)|2 dΩ (4.10)

Or:
dσ

dΩ
= |~f (ŝ, ŝ′)|2 (4.11)

And, dσ is called the differential cross section since it has a unit of m2.

So here is the physical meaning: dσ is the area that captures the amount of incoming flux that

would be scattered into a solid angle of dΩ. Since dΩ is unitless, sometimes people also call dσ

dΩ

the differential cross section or can be interpreted as differential cross section per unit solid angle.
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If we integrate the differential scattering cross section over 4π solid angle:

∫
4π

dσ

dΩ
dΩ =

∫
4π

|~f (ŝ, ŝ′)|2 dΩ
′ = σs (4.12)

σs is the total scattering cross section.

Usually, for convenience, since the scattering is angle dependent, we could define a “normalized”

differential scattering cross section, p(ŝ, ŝ′) or sometimes called ’phase function’, of which has its

origin in astronomy represents lunar phase and has nothing to do with the phase of an EM wave.

1 =
∫

4π

p(ŝ, ŝ′) dΩ
′ (4.13)

Or in other words:

σs = σs

∫
4π

p(ŝ, ŝ′) dΩ
′ =

∫
4π

|~f (ŝ, ŝ′)|2 dΩ
′ (4.14)

Scattering Anisotropy, unitless

g =
∫

4π

ŝ · ŝ′ p(ŝ, ŝ′) dΩ
′ (4.15)

Here is how it can be understood, it’s the mean cosine of the scattering angle. In other words, it is

the difference between forward scattering(ŝ · ŝ′ > 0) and backward scattering(ŝ · ŝ′ < 0). If g = 0,

it would mean the the forward scattering equals to the backward scattering and the scattering is

isotropic since in that case, p(ŝ, ŝ′) will be constant[Ishimaru, 1978].
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Figure 4.2: Cylindrical differential volume with a cross section area of dA with a normal
direction of ŝ and length of ds in the direction of ŝ [Ishimaru, 1978]

Total cross section of a single particle: σt

Now, similarly we include the effect of absorption, define the absorption cross section as

σa, so the total cross section of both scattering and absorption σa is defined as:

σt = σa + σs (4.16)

If part of the energy is absorbed by the particle, we know it won’t contribute to the scattering

profile.

4.1.2 Equation of Transfer

Consider a specific intensity that is incident on a cylindrical differential volume with a

cross section area of dA with a normal direction of ŝ and length of ds in the direction of ŝ as

shown in the figure below fig. 4.2.

Let’s consider the change of power (unit:W) inside the elementary volume(left), it would be equal
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to the total loss of power of every single particle either due to absorption or scattering(exited the

volume):

dP1 =−ρ ds dA dΩ(σa +σs) I =−ρ ds dA dΩ σt I (4.17)

The particle concentration inside the volume is ρ has a unit of number per unit volume. Equation

(4.17) physically means: the specific intensity at direction ŝ is reduced due to absorption and

scattering of the particles in the volume.

Now, let’s consider the contribution of incident specific intensity from other directions outside

the differential volume element. Assuming there is another incident intensity from direction ŝ′

scattered by a particle in the volume, we need to know the scattered intensity to the direction

ŝ as in fig 4.2. Still, consider the power differential, and recall equation (4.9) and (4.10), the

magnitude of Poynting vector(W/m2) and definition of scattering amplitude, rewrite them as

follows:

|~Ss|R2 = |~Ss′||~f (ŝ, ŝ′)|2 = I(~r, ŝ′)|~f (ŝ, ŝ′)|2dΩ
′ (4.18)

The above equation is the power scattered to direction ŝ due to one single particle from a incident

angle of dΩ′, if we account for all particles in the elementary volume and account for 4π incident

solid angle dΩ′ that scatters into a solid angle of dΩ (Please notice the distinction)

dP2 = ρ dA ds dΩ

∫
4π

|~f (ŝ, ŝ′)|2I(~r, ŝ′) dΩ
′ (4.19)

Using equation (4.14),

dP2 = σsρ dA ds
∫

4π

p(ŝ, ŝ′)I(~r, ŝ′) dΩ
′ (4.20)
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If there exists source S(~r, ŝ), Wm−3sr−1 in the volume:

dP3 = S(~r, ŝ) dA ds dΩ (4.21)

Sum up all the power, the total differential power would be[Wang and Wu, 2012, Ishimaru, 1978]:

dP = dP1 +dP2 +dP3 = dI(~r, ŝ) dA ds dΩ (4.22)

Plug in and we would have the equation of transfer, dA and dΩ exists on both side of the equation

and will be cancelled, another way to see this is that the specific intensity has a unit of Wm−2sr−1.

dI(~r, ŝ)
ds

=−ρ σtI(~r, ŝ)+ρσs

∫
4π

p(ŝ, ŝ′)I(~r, ŝ′) dΩ
′+S(~r, ŝ) (4.23)

The above equation is the time-independent radiative transfer equation(RTE), the first term on

the RHS represents power loss due to single scattering or absorption, the second term represents

external contribution and the last term is the ”generation term” representing the source.

4.2 Diffusion approximation

It is very difficult to solve the complete transfer equation. However,the equation could

become easier to handle under a few scenarios. One of the cases that we are interested is when the

particle density in the media become very large that the incident photon has almost completely lost

it’s memory of the propagation direction. We could resort to the approximation technique called

Diffusion approximation. There are a few different ways to get the diffusion approximation, the
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following is the easiest although lack of mathematical rigor. After the light went through a series

of scattering, the photon lost it’s original direction of propagation. So, at a certain point along

propagation direction, the light intensity distribution in the scattering media will be isotropic, i.e.

the light has equal probability of propagating forward and backward, or toward any direction.

However, that will mean that there will be no net power propagation which apparently contradicts

what we experience. So there should be slightly more power in the propagation direction. For the

intensity distribution, we could approximate the intensity by the following[Ishimaru, 1978]:

I(~r, ŝ)' 1
4π

U(~r)+ c~F(~r) · ŝ (4.24)

In order to see the approximation clearly, the major steps and results are presented in this

subsection first. The detailed derivation is placed in the following sections.

It can be found out that c = 3
4π

, so the specific intensity can be written as:

I(~r, ŝ)' 1
4π

U(~r)+
3

4π
~F(~r) · ŝ (4.25)

Step 1 is to plug the above equation (4.25) into the RTE (4.23) and the RTE would become:

∇ ·~F(~r) =−ρσaU(~r)+S(~r) (4.26)

Note the above source function S(~r) is only position dependent.

Then, Step 2 is to multiple the RTE (4.23) with ŝ and integrate over 4π solid angle yields the
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following, i.e. the vectorial RTE:

1
3

∇U(~r)+ρ[σa +σs(1−g)]~F(~r) = 0 (4.27)

We define the following parameter, scattering coefficient and scattering mean free path:

µs = ρσs =
1
ls

(4.28)

Reduced scattering coefficient which acounts for the anisotropy of the light scattering. If light

scatters in all directions, then reduced scattering coefficient and scattering coefficient will be the

same.

µ′s = ρσs(1−g) =
1
l′s

(4.29)

in which g is the mean cosine phase function defined previously.

Absorption coefficient and absorption mean free path:

µa = ρσa =
1
la

(4.30)

The extinction coefficient is:

µt = µs +µa =
1
lt

(4.31)

And finally, the transport coefficient and reduced transport mean free path:

µtr = µ′s +µa =
1
ltr

(4.32)
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Define photon diffusion coefficient is defined as[Graaff and Ten Bosch, 2000]:

D =
1

3u′tr
(4.33)

Rewrite equation (4.26) and (4.27) using the above definition:

∇ ·~F(~r) =−µaU(~r)+S(~r) (4.34)

∇U(~r)+
1
D
~F(~r) = 0 (4.35)

The light speed c in diffusivity is dropped for simplicity, so the diffusivity would have a unit of m

instead of m2/s.

With the above definition, combine equation (4.34) and (4.35), we will get the photon diffusion

equation:

[D∇
2−µa]U(~r) =−S(~r) (4.36)

The physical meaning of the diffusion approximation can be interpreted as follows: the time-

independent radiative transfer equation(RTE) has 5 variables(x,y,z,θ,φ),with the diffusion ap-

proximation, the light intensity distribution can be described by a diffusion equation which only

depends on the average intensity which is position dependent only.
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Chapter 5

Photon Transport in Dynamic Random

Scattering Media

In the previous chapter, I outlined how to describe the photon transport in a scattering

media when the scatterers’ relative position is constant. But to serve our purpose of finding the

blood flow speed, it is still far from sufficient. In his chapter, we shall see how we could transfer

the techniques used in the previous chapter to a scattering system where all or part of the scatterers

would change its location overtime. In our case, we will be dealing with the problem of moving

blood cells. To describe with such a system, typically we will be dealing with the autocorrelation

function. Typically, what we measure is photon current, and what we mathematically calculate is

the correlation function of the electrical field. The two is typically related by the Siegert relation

which will be described in detail here with mathematical rigor.

First, I will start from the electrical field correlation of the simplest case of single scattering by

moving particles[Berne and Pecora, 2000].

34



5.1 Single scattering

The scattered field detected by the detector is E(t),~ri is the position vector of i th particle

at time t, N denotes the N fields scattered by all the N particles.

E(t) =
N

∑
i=1

E0 exp[i~q ·~ri(t)] (5.1)

in which,~q is the momentum transfer of the scattering and can be illustrated as follows:

~q = k(ŝ− ŝ′) (5.2)

We define Gs
1(τ) as the un-normalized autocorrelation function,

Gs
1(τ) = 〈E(t)E∗(t + τ)〉 (5.3)

in which, 〈〉 represents the ensemble averaging.

Similarly, the normalized field autocorrelation function can be written as[Berne and Pecora, 2000],

gs
1(τ) =

Gs
1(τ)

Gs
1(0)

=
〈E(t)E∗(t + τ)〉
〈E(t)E∗(t)〉

=
〈∑N

i=1 E0 exp[i~q ·~ri(t)]∑N
j=1 E0 exp[−i~q ·~r j(t + τ)]〉

〈∑N
i=1 E0 exp[i~q ·~ri(t)]∑N

j=1 E0 exp[−i~q ·~r j(t)]〉

(5.4)

Gs
1(τ) = 〈

N

∑
i=1

N

∑
j=1
|E0|2 exp(i~q · [~ri(t)−~r j(t + τ)])〉 (5.5)
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Purely from physical argument, for any particle other than itself, the ensemble average of

the correlation function will be zero, i.e. the off diagonal terms will all be zero (Ladder

approximation)[Akkermans and Montambaux, 2007]. So the above equation can be simplified

by only retaining the i = j terms, i.e. the correlation of each particle itself. Also, the product of

the two series is reduced to only one series since there are only N particles not N2 particles.

Gs
1(τ) = 〈

N

∑
i=1
|E0|2 exp(i~q · [~ri(t)−~ri(t + τ)])〉 (5.6)

Furthermore, each particle is statistially identical, the above series can be further simplified

as:

Gs
1(τ) = N〈|E0|2 exp(i~q · [~ri(t)−~ri(t + τ)])〉 (5.7)

If the number of scatters in the scattering volume during the measurement time scale is assumed to

be constant, |E0| can be assumed to be a constant, although it would be follow poisson distribution

in a sufficiently long time scale. This way, the magnitude and phase can be decoupled as follows:

Gs
1(τ) = N〈|E0|2〉〈exp(i~q · [~ri(t)−~ri(t + τ)])〉 (5.8)

Then, the normalized field correlation can be written as:

gs
1(τ) = 〈exp(−iφ(τ))〉 (5.9)
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in which,(the sign flipped as well for next step)

φ(τ) =~q ·∆~ri(τ) =~q · [~ri(t + τ)−~ri(t)] (5.10)

In g1(τ), using the moment generating function to the second order:

gs
1(τ) = 〈exp(−iφ(τ))〉

= 1− i〈φ(τ)〉− 〈φ
2(τ)〉
2

+ ...

(5.11)

If φ(τ) is small and assumed to be zero mean Gaussian random variable, and using the property

of taylor series:

gs
1(τ) = 1− 〈φ

2(τ)〉
2

≈ exp
(
− 〈φ

2(τ)〉
2

)
(5.12)

Averaging over the scattering angle, the above equation can be written as:

gs
1(τ) = exp

(
− 〈|~q · [∆~ri(τ)]|2〉

2

)
gs

1(τ) = exp
(
− 1

6
q2〈∆r2

i (τ)〉
) (5.13)

5.1.1 Off diagonal term, Ladder Approximation

Mathematically, a more satisfying way of getting this result can be achieved by doing the

following steps[Akkermans and Montambaux, 2007]:
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Gs
1(τ) = 〈

N

∑
i=1

N

∑
j=1
|E0|2 exp(i~q · [~ri(t)−~r j(t + τ)])〉

= 〈
N

∑
i=1

E0 exp[i~q ·~ri(t)]
N

∑
j=1

E0 exp[−i~q ·~r j(t + τ)]〉

i 6= j
= 〈

N

∑
i=1

E0 exp[i~q ·~ri(t)]〉〈
N

∑
j=1

E0 exp[−i~q ·~r j(t + τ)]〉

= N|E0|2〈exp[i~q ·~ri(t)]〉〈exp[−i~q ·~r j(t + τ)]〉

(5.14)

To calculate the ensemble average, we can write it in integral form and using the density of states:

lim
V=∞

V 〈exp[−i~q ·~ri(t)]〉= lim
V=∞

∫
V

d3r exp[i~q ·~ri(t)] = δ(~q) (5.15)

which means, as long as there is momentum transfer, the off diagonal term will be zero.

5.2 Correlation transfer equation (CTE)

From the previous chapter, we have obtained the correlation function for single scattering

as in equation (5.13). This single scattering function can be incorporated into the radiative transfer

equation, yielding the so-called correlation transfer equation which is the dynamic counter part of

the static radiative transfer equation [Boas and Yodh, 1997]:

dG1(~r, ŝ,τ)
ds

=−ρσtG1(~r, ŝ,τ) + ρσs

∫
4π

p(ŝ, ŝ′) gs
1(ŝ, ŝ

′,τ)G1(~r, ŝ,τ) dΩ
′+S(~r, ŝ) (5.16)

Similarly, the diffusion approximation can also be applied to obtain the correlation diffusion

equation which is again the counterpart of the static diffusion equation described previously.
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Equation (5.16) is the correlation diffusion equation. The diffusion equation can then be solved

with appropriate boundary conditions to be compared with experimental results.

[D∇
2−µa−

1
3

µ′sk
2
0〈∆r2(τ)〉]G1(~r,τ) =−S(~r) (5.17)

where n is the refactive index of scattering media, k0 is the wavevector in vacuum, µ′s is the reduced

scattering coefficient which is the scattering coefficient modified due to scattering anisotropy. For

isotropic scattering, the scattering coefficient would be the same reduced scattering coefficient.

5.3 Intensity correlation

In the previous discussions, we have been talking about the field correlation. However,

what we measure through the photodetector is not electrical field directly, but photocurrent. In

order to relate the measurement to theoretical calculation, we will first introduce the Siegert

relation and then come up with the expression that relates the electrical field to photocurrent. This

is seemingly straightforward, however, it actually involves many non-trivial steps.

5.3.1 Isserlis’ Theorem / Wick’s Theorem

We first need to introduce the Isserlis’ Theorem/ Wick’s Theorem to relate the second

order correlation to the first order correlation[Isserlis, 1916].

If Xi is a zero mean Gaussian Random Variable, then, for the fourth order moment can be written

as:

〈X1X2X3X4〉= 〈X1X2〉〈X3X4〉+ 〈X1X3〉〈X2X4〉+ 〈X1X4〉〈X2X3〉 (5.18)

This is basically reflecting the fact that a Gaussian random variable can be fully characterized by
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it’s second order moment.

5.3.2 Siegert Relation

Recall:

E(t) =
N

∑
i=1

E0 exp[i~q ·~ri(t)] (5.19)

in which,~q is the momentum transfer of the scattering.

~q = k(ŝ− ŝ′) (5.20)

When N is big, using central limit theorem, E(t) will become Gaussian.

For a photodetector, the photocurrent is proportional to the optical power impinging on the device

which is proportional to |E(t)|2, if we use lower case i(t) representing the photocurrent, the

autocorrelation of the photocurrent will be proportional to the autocorrelation of the field squared.

〈i(t)i(t + τ)〉 ∝ 〈|E(t)|2|E(t + τ)|2〉 (5.21)

And we can define:

G2(τ) = 〈|E(t)|2|E(t + τ)|2〉 (5.22)

in which, G2 represents the second order correlation of the field.

And the normalized version can be written as follows and note that it needs to be normalized to
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its the individual intensity:

g2(τ) =
〈|E(t)|2|E(t + τ)|2〉
〈|E(t)|2〉2

(5.23)

recall the first order correlation we defined previously:

G1(τ) = 〈E(t)E∗(t + τ)〉 (5.24)

And the normalized version:

g1(τ) =
〈E(t)E∗(t + τ)〉
〈E(t)E∗(t)〉

(5.25)

With the above definition, we rewrite the G2 into the product of complex conjugate form and use

Wick’s theorem:

G2(τ) =〈|E(t)|2|E(t + τ)|2〉

=〈E(t)E∗(t)E(t + τ)E∗(t + τ)〉

=〈E(t)E∗(t)〉〈E(t + τ)E∗(t + τ)〉+ 〈E(t)E(t + τ)〉〈E∗(t)E∗(t + τ)〉

+ 〈E(t)E∗(t + τ)〉〈E∗(t)E(t + τ)〉

(5.26)

In the above equation, the first term has the meaning of intensity squared(differ by a impedance

constant):

〈E(t)E∗(t)〉〈E(t + τ)E∗(t + τ)〉= |G1(0)|2 (5.27)

The third term:

〈E(t)E∗(t + τ)〉〈E∗(t)E(t + τ)〉= |G1(τ)|2 (5.28)
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To calculate the second term, we write the first ensemble average in second term in the integral

form, similar to the previous derivation, we only consider the diagonal terms[Lang, 2004]:

〈E(t)E(t + τ)〉= N〈|E0|2〉〈exp(i~q · [~ri(t)+~ri(t + τ)])〉

= N〈|E0|2〉〈exp(i~q · [~r0 +~rτ])〉

= N〈|E0|2〉
∫

d3r0

∫
d3rτP(~r0)Pc(~rτ,τ|~r0,0)exp(i~q · [~r0 +~rτ])

= N〈|E0|2〉
∫

d3r0

∫
d3rτP(~r0)Pc(~r0−~rτ,τ)exp(i~q · [~r0 +~rτ])

=
1

8V

∫
d(~r0 +~rτ)exp(i~q · [~r0 +~rτ])

∫
d(~r0−~rτ)Pc(~r0−~rτ,τ)

∝ δ(~q)

(5.29)

In the above equation, P and Pc is the pdf and conditional pdf. And it involves a coordinate

transformation (~r0,~rτ) to (~r0−~rτ,~r0−~rτ) and 1
8 is the Jacobian[Lang, 2004].

Therefore, the second term in G2 is zero.

G2(τ) = |G1(0)|2 + |G1(τ)|2 (5.30)

And this is commonly known as the Siegert relation which relates the first order correlation to the

second order correlation[Berne and Pecora, 2000].

5.3.3 Photocurrent Correlation

Previously, we only look at one single detection point or effectively one coherent area. For

our detection system,assume there are N coherent areas or spatial modes that will be collected by

the detector. Again, we will use lower case i for detector current. The total detector current is i(t),
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and it’s a superposition of all the current of individual coherent areas[Berne and Pecora, 2000].

i(t) =
N

∑
k=1

ik(t) (5.31)

The current can be written in terms of the average current ia and the fluctuating part. 〈〉 denotes

the time average instead of ensemble average.

ik(t) = 〈ia〉+δik(t) (5.32)

Looking at the correlation function of current:

〈i(t)i(t + τ)〉=
〈 N

∑
k=1

N

∑
k′=1

[
〈ia〉+δik(t)

][
〈ia〉+δik′(t + τ)

]〉
+
〈
is(0)is(τ)

〉
= N2〈ia〉2 +N〈δi(t)δi(t + τ)〉+

〈
is(0)is(τ)

〉 (5.33)

〈i(t)i(t + τ)〉
〈i(t)〉2

=
〈i(t)i(t + τ)〉

N2〈i〉2
= 1+

1
N
〈δi(t)δi(t + τ)〉

〈ia〉2
+
〈is(0)is(τ)〉

N2〈ia〉2
(5.34)

For the above equation, the numerator of the second term is just the covariance of photocurrent at

time t and t + τ, and from Siegert relation:

〈δia(t)δia(t + τ)〉= G2(τ)−|G1(0)|2 = |G1(τ)|2 (5.35)

〈ia〉2 = |G1(0)|2 (5.36)
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The shotnoise correlation can be found out to be:

〈is(0)is(τ)〉= Ne〈ia〉δ(τ) (5.37)

Then, the normalized current correlation function can be found out to be[Berne and Pecora, 2000]:

〈i(t)i(t + τ)〉
〈i(t)〉2

= 1+
1
N
|g1(τ)|2 +

eδ(t)
〈i(t)〉

(5.38)

Equation (5.38) is the equation that we will use to connect the first order field correlation to

the second order photocurrent correlation. The number of spatial modes is typically unknown,

but since the electrical field correlation will normalize to one, N will simply be a normalization

constant.

5.4 Mean square displacement

We obtained expression for single scattering correlation function in 4.13, we still need to

deal with the mean square displacement in equation (4.13). For blood cells flowing in blood vessel,

the motion the blood cells experience can typicall be catagorized into two type: diffusive and con-

vective. For the diffusive motion, let’s look at the one dimensional case[Frenkel and Smit, 2001]:

〈∆x2(τ)〉= 1
N

N

∑
i=1
|xi(t + τ)− xi(t)|2 (5.39)

44



Without lose of generality, we can set t = 0:

〈∆x2(τ)〉= 1
N

N

∑
i=1
|xi(τ)− xi(0)|2 (5.40)

For a particle under diffusive motion can be represented by the particle diffusion equation of its

probability distribution function:

∂P(x,τ)
∂τ

= D
∂2

∂x2 P(x,τ) (5.41)

In the above equation P(x,τ) is the conditional probability of finding the particle at position x and

time delay τ given a starting location of x0.

Taking the spatial Fourier transform:

∂P(k,τ)
∂τ

=−Dk2P(k,τ) (5.42)

The above equation has the following solution:

P(k,τ) = P(k,τ = 0)e−Dk2τ (5.43)

The initial condition in real space domain can be written as:

P(x,τ = 0) = δ(x− x0) (5.44)
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in which x0 is the starting location.

Using the Fourier transform for the initial condition:

P(k,τ = 0) =
1√
2π

∫
∞

−∞

δ(x− x0)e−ikxdx =
e−ikx0

√
2π

(5.45)

Then:

P(k,τ) =
e−ikx0

√
2π

e−Dk2τ (5.46)

Taking the inverse Fourier transform:

P(x,τ) =
1

2π

∫
∞

∞

e−ikx0
e−Dk2τeikxdk

=
1

2π

∫
∞

∞

e−Dk2τ+ik(x−x0)dk

=
1

2π
e−Dτ( x−x0

2Dτ
)2 1√

Dτ

∫
∞

∞

e−[
√

Dτ(k− i(x−x0)
2Dτ

)]2d[
√

Dτ(k− i(x− x0)

2Dτ
)]

=
1

2π
e−Dτ(

(x−x0)
2Dτ

)2 1√
Dτ

√
π

=
1√

4πDτ
exp

[
− (x− x0)2

4Dτ

]
(5.47)

Obviously, this is the Gaussian distribution, the variance:

〈∆x2(τ)〉= σ
2 = 2Dτ (5.48)
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In 3 dimensional space, each dimension is statistically independent:

〈∆r2(τ)〉= 〈∆x2(τ)+∆y2(τ)+∆z2(τ)〉

= 〈∆x2(τ)〉+ 〈∆y2(τ)〉+ 〈∆z2(τ)〉

= 6Dτ

(5.49)

For convective motion:

∆r(τ) =V τ (5.50)

For simplicity, assuming there is no velocity fluctuation,

〈∆r2(τ)〉= 〈V 2〉τ2 = V̄ 2
τ

2 (5.51)

in which, V̄ is the average flow velocity.

So, the total mean square displacement can be written as[Boas et al., 2016]:

〈∆r2(τ)〉= 6Dατ+V̄ 2
τ

2 (5.52)

In the previous section, we came up with the expression of the mean square displacement,

however, in a system of mixed physical mechanisms, sometime, it would be important to identify

the dominant mechanism and simply the problem. The diffusion of red blood cells in the vessel

can be caused by either the Brownian motion or the shear force. Experimentally, we demonstrated

that the second term is the dominate term and will further discuss this matter in the discussion

chapter.
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Chapter 6

Analytical solution

In order to analytically solve the problem. I attempted to make the following assumption,

which physically may not be accuracy, but would capture the essential part of the physics.

Rewrite equation (5.17) in the standard form of Helmholtz equation:

[∇2 + k2]G1(~r,τ) =−
S(~r)
D

(6.1)

in which

k = jW (τ) (6.2)

Later on we will see that the imaginary number would change the regular bessel function to a

modified bessel function and it’s linear combinations. It’s solution will not exhibit oscilation

behaviour but will be an exponential function.

The total field would be a linear combination of the incident field and the scattered field, denoted

as Gi
1 and Gs

1. Let’s first look at the scattered field.

G1(~r,τ) = Gin
1 (~r,τ)+Gsc

1 (~r,τ) (6.3)
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Figure 6.1: This figure is an illustration of the geometry used for numerical calculation using a
plane illumination from the top surface. The coordinate system in this figure is polar coordinate,
the center r = 0 is located at the center of the blood vessel. The region inside the circle represents
the blood vessel, the area outside the circle represents the tissue which is semi-infinite.

6.1 Scattered field, Homogeneous solution

And the scattered field would follow the homogeneous form of equation (6.1):

[∇2 + k2]Gsc
1 (~r,τ) = 0 (6.4)

As illustrated in figure 6.1, we choose the x-axis as the cylinder direction and we assume the

cylinder length is infinite. And equation (6.4) becomes a 2d helmholtz equation, and can be

expressed in polar coordinates(y-z plane) utilizing the symmetry property of the cylinder.

The solution can be obtained using the separation of variable[Morse and Feshbach, 1954]:

Gsc
1 = ψ1(r)ψ2(θ) (6.5)
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And this r is the radial component under the new coordinate system which is a different from the

~r in the previous equations. The laplacian under polar coordinates can be written as:

∇
2Gsc

1 =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2Gsc
1

∂θ2 (6.6)

Substituting back into equation (6.4):

1
r

∂

∂r

{
r

∂

∂r
[ψ1(r)ψ2(θ)]

}
+

1
r2

∂2[ψ1(r)ψ2(θ)]

∂θ2 + k2
ψ1(r)ψ2(θ) = 0 (6.7)

After re-arranging the terms, the above equation can be written as:

r2

ψ1(r)
d2ψ1

dr2 +
r

ψ1(r)
dψ1

dr
+ k2r2 =− 1

ψ2(θ)

d2ψ2(θ)

dθ2 (6.8)

Use separation of variable for equation (6.8), the LHS is only a function of r and RHS is only a

function of θ. Define a constant m:

1
ψ2(θ)

d2ψ2(θ)

dθ2 =−m2 (6.9)

r2

ψ1(r)
d2ψ1

dr2 +
r

ψ1(r)
dψ1

dr
+ k2r2 = m2 (6.10)

The solution for equation (6.9) is:

ψ2(θ) = e jmθ (6.11)

Applying the periodical condition, i.e. ψ2(θ) = ψ2(θ+2π) . So m will has to be an integer.
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Equation (6.10) can be written as:

r2 d2ψ1(r)
dr2 + r

dψ1(r)
dr

+(k2r2−n2)ψ1(r) = 0 (6.12)

The solution to the above equation can be written in the form of Bessel functions:

ψ1(r) = AmJm(kr)+BmYm(kr) (6.13)

In which, Jm and Ym is the Bessel function of the first kind of order m and Bessel function of the

second kind of order m. And Am, Bm are constants depending on the boundary condition.

Equation (6.13) can also be written as the combination of Hankel functions:

ψ1(r) =CmH(1)
m (kr)+DmH(2)

m (kr) (6.14)

in which, the Hankel functions are a combination of Bessel functions:

H(1)
m (kr) = Jm(kr)+ jYm(kr) (6.15)

which is called the Hankel function of the first kind of order m.

H(2)
m (kr) = Jm(kr)− jYm(kr) (6.16)

which is called the Hankel function of the second kind of order m. And the constants have the

following relation: Am =Cm +Dm, Bm = j(Cm−Dm)
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Combine the solution and all the possible values of m, the scattered field can be written as:

Gsc
1 (r,θ,τ) =

m=+∞

∑
m=−∞

e jmθ[AmJm(kr)+BmYm(kr)] (6.17)

Or in the form of Hankel function:

Gsc
1 (r,θ,τ) =

m=+∞

∑
m=−∞

e jmθ[CmH(1)
m (kr)+DmH(2)

m (kr)] (6.18)

The above equation can be simplified due to a physical constraint of the scalar wave satisfy-

ing helmholtz equation proposed by German Physicist Sommerfeld. It basically means, the

scalar wave must radiates its energy to the infinity, not the other way, no energy may radi-

ate coming from infinity which can be mathematically expressed as the Sommerfeld Far field

condition[Sommerfeld, 1949]:

lim
r−→∞

√
r(

∂

∂r
− jk)Gsc

1 = 0 (6.19)

The asymptotic expression of the two Hankel functions when the argument (kr) goes to infinity

can be written as [Abramowitz et al., 1988]:

H(1)
m (kr) =

√
2

πkr
e j(kr− 1

2 mπ− π

4 ) (6.20)

H(2)
m (kr) =

√
2

πkr
e− j(kr− 1

2 mπ− π

4 ) (6.21)

Using Sommerfeld condition as in equation (6.19), with a simple derivative, we can easily find
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that the Hankel function of the second kind does not satisfy the Sommerfeld far field condition.

In other words, in equation (6.18), coefficient Dm has to be zero.

So, the scattered field can be simplified as:

Gsc
1 (r,θ,τ) =

m=+∞

∑
m=−∞

e jmθ[CmH(1)
m (kr)] (6.22)

Now, since the k inside and outside the cylinder is different: k1 which would represent the moving

scatters and k0 which is the static scatters outside the vessel. Let’s assume the vessel/cylinder

radius is a. So k = k0 when r > a and k = k1 when r < a.

6.2 Plane Wave illumination

Assume the cylinder is deep enough so that the source only exist outside of the cylinder.

Inside the cylinder, there only exists scattered field, outside of the cylinder, the total scalar field

is a linear combination of incident field and scattered field. For the incident field, there are two

choices, one is to choose a point source and the other is just to choose a simple plane wave. In my

opinion, either choice should lead to satisfactory and similar results for our problem. It is because,

our tube diameter is in the same order the transport mean free path, of which the scalar wave

can be considered as a plane wave and our interest is the normalized correlation function which

does not depend on the absolute intensity of the incident field. The quantity of interest is the

decorrelation rate,from the experiment result, we could know that the quantity of interest would

not depend on the choice of incident field. For here, let’s first go with plane wave as incident field.

The plane wave illumination is assuming an uniform illumination of plane wave on top of

the surface. As light scatters when the photon enters the medium, the source term would be the
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un-scattered photon.

We choose the direction of wave propagation as Z-axis. A plane wave can be written as the

following form [Colton and Kress, 2019] using the Jacobi–Anger expansion:

eikr cos(θ) =
m=+∞

∑
m=−∞

jmJm(kr)e jmθ (6.23)

S(~r) will be replaced by S0 exp[ jkt(d− z)] = S0 exp( jktd)exp(− jktr cos(θ)), in which kt = jµt ,

in which µt is the total scattering cross section, d is the depth of the vessel from the surface of

tissue where the plane wave incident from and S0 is the source intensity.

In order to find the inhomogeneous solution, let

Gin
1 (r,θ) = AS0 exp[ jkt(d− z)]

= AS0 exp(−µtd)exp(µtz)
(6.24)

And A is unknown, substitute the above equation into the following equation(diffusion equation):

[∇2 + k2]G1(~r,τ) =−
S(~r)
D

(6.25)

Since it’s the diffusion equation for the outside medium, the above equation can be written as:

[∇2− µout
a

Dout
]G1(~r,τ) =−

S(~r)
Dout

(6.26)
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A can be found out to be:

A =
1

µa−µ2
t Dout

(6.27)

The inhomogeneous solution can then be written as:

Gin
1 (r,θ) =

S0 exp(−µtd)
µa−µ2

t Dout
exp(µtz)

= Bexp(µtz)

= B
m=+∞

∑
m=−∞

jmJm(−ktr)e jmθ

(6.28)

The total solution can be written as:

G1,out(r,θ,τ) =
m=+∞

∑
m=−∞

B jmJm(−ktr)+CmH(1)
m (k0r)]e jmθ (6.29)

For the field inside the vessel/cylinder, we use equation 53 instead of the Hankel function.

Immediately, we can see that Bm = 0 as the Bessel function of second kind, Ym diverges when r

approaching 0. So the scattered wave inside the cylinder is:

G1,in(r,θ,τ) =
m=+∞

∑
m=−∞

e jmθAmJm(k1r) (6.30)

6.2.1 Boundary condition

The boundary condition requires the photon density or the correlation function to be

continuous at the cylinder boundary and also the flux to be continuous normal to the boundary
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and it can be expressed as follows[Boas et al., 1994, Bourlier et al., 2013]:

G1,in(a,θ,τ) = G1,out(a,θ,τ) (6.31)

And:

Din
∂G1,in(r,θ,τ)

∂r

∣∣∣∣∣
r=a

= Dout
∂G1,out(r,θ,τ)

∂r

∣∣∣∣∣
r=a

(6.32)

The above two boundary conditions can be written as:

m=+∞

∑
m=−∞

e jmθAmJm(k1a) =
m=+∞

∑
m=−∞

[B jmJm(−kta)+CmH(1)
m (k0a)]e jmθ (6.33)

And,

Dink1

m=+∞

∑
m=−∞

e jmθAmJ′m(k1a) = Dout

m=+∞

∑
m=−∞

[−Bkt jmJ′m(−kta)+ k0CmH ′(1)m (k0a)]e jmθ (6.34)

The above relation is valid for all m and θ, and thus, it can be reduced to:

AmJm(k1a) = B jmJm(−kta)+CmH(1)
m (k0a) (6.35)

Dink1AmJ′m(k1a) =−DoutBkt jmJ′m(−kta)+Doutk0CmH ′(1)m (k0a) (6.36)
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From the above two equations, Am and Cm can be solved as:

Am = B jm Doutk0Jm(−kta)H
′(1)
m (k0a)+DoutktJ′m(−kta)H

(1)
m (k0a)

Doutk0Jm(k1a)H ′(1)m (k0a)−Dink1J′m(k1a)H(1)
m (k0a)

(6.37)

Cm = B jm Dink1J′m(k1a)Jm(−kta)+DoutktJm(k1a)J′m(−kta)

Doutk0Jm(k1a)H ′(1)m (k0a)−Dink1J′m(k1a)H(1)
m (k0a)

(6.38)

For our interest, since the term of the incident field is not τ dependent, we can only look at the the

scattered field outside the cylinder:

Gs
1,out(r,θ,τ) =

m=+∞

∑
m=−∞

CmH(1)
m (k0r)e jmθ (6.39)

Substitute in Cm:

Gs
1,out(r,θ,τ) =

m=+∞

∑
m=−∞

B jm Dink1J′m(k1a)Jm(−kta)+DoutktJm(k1a)J′m(−kta)

Doutk0Jm(k1a)H ′(1)m (k0a)−Dink1J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)e jmθ

(6.40)

6.2.2 Solution Simplification

The above equation can be simplified using the following recurrence relation:

f−n(x) = (−1)n fn(x) (6.41)
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Rewrite equation (6.29):

Gs
1,out(r,θ,τ) =

m=+∞

∑
m=−∞

B jm Dink1J′m(k1a)Jm(−kta)+DoutktJm(k1a)J′m(−kta)

Doutk0Jm(k1a)H ′(1)m (k0a)−Dink1J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)e jmθ

= B
Dink1J′0(k1a)J0(−kta)+DoutktJ0(k1a)J′0(−kta)

Doutk0J0(k1a)H ′(1)0 (k0a)−Dink1J′0(k1a)H(1)
0 (k0a)

H(1)
0 (k0r)

+B
m=+∞

∑
m=1

jm Dink1J′m(k1a)Jm(−kta)+DoutktJm(k1a)J′m(−kta)

Doutk0Jm(k1a)H ′(1)m (k0a)−Dink1J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)

[e jmθ +(−1)me− jmθ]

(6.42)

The derivative can be replaced by the reccurence relation as follows:

f ′m(x) =
m
x

fm(x)− fm+1(x) (6.43)

In which, the function f could be Jm(x), H(1)
m (x)

In particular, when m = 0:

f ′0(x) =− f1(x) (6.44)
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equation (6.42) can then be written as:

Gs
1,out(r,θ,τ)

B
=

Dink1J′0(k1a)J0(−kta)+DoutktJ0(k1a)J′0(−kta)

Doutk0J0(k1a)H ′(1)0 (k0a)−Dink1J′0(k1a)H(1)
0 (k0a)

H(1)
0 (k0r)

+
m=+∞

∑
m=1

jm Dink1J′m(k1a)Jm(−kta)+DoutktJm(k1a)J′m(−kta)

Doutk0Jm(k1a)H ′(1)m (k0a)−Dink1J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)

[e jmθ +(−1)me− jmθ]

=
−Dink1J1(k1a)J0(−kta)−DoutktJ0(k1a)J1(−kta)

−Doutk0J0(k1a)H(1)
1 (k0a)+Dink1J1(k1a)H(1)

0 (k0a)
H(1)

0 (k0r)

+
m=+∞

∑
m=1

jm
Dink1[

m
k1aJm(k1a)− Jm+1(k1a)]Jm(k0a)+DoutktJm(k1a)[ m

−kta
Jm(−kta)− Jm+1(−kta)]

Doutk0Jm(k1a)[ m
k0aH(1)

m (k0a)−H(1)
m+1(k0a)]−Dink1[

m
k1aJm(k1a)− Jm+1(k1a)]H(1)

m (k0a)

H(1)
m (k0r)[e jmθ +(−1)me− jmθ]

(6.45)

From the above equation, we can see that only the zeroth order and even order will be non-zero.

Also, due to the small value of the argument, after computing the remaining even series, the 2nd

order will already be 5-6 order magnitude lower than the zeroth order. So In the remaining part,

we will only retain the zeroth order.

k0 and k1 are pure imaginary, and k0 = jW0, and k1 = jW1(τ), we will need the following modified

bessel function which would show no oscillations. Again, I changed the upper case K to W to

avoid confusion between modified bessel function of the second kind.

Jm( jx) = jmIm(x) (6.46)

and:

H(1)
m ( jx) =

2
π

j−m−1Km(x) (6.47)
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The zeroth order term can be then written as:

Dink1J′0(k1a)J0(−kta)+DoutktJ0(k1a)J′0(−kta)

Doutk0J0(k1a)H ′(1)0 (k0a)−Dink1J′0(k1a)H(1)
0 (k0a)

H(1)
0 (k0r)

=
−Dink1J1(k1a)J0(−kta)−DoutktJ0(k1a)J1(−kta)

−Doutk0J0(k1a)H(1)
1 (k0a)+Dink1J1(k1a)H(1)

0 (k0a)
H(1)

0 (k0r)

=
DinW1I1(W1a)I0(−µta)+DoutµtI0(W1a)I1(−µta)
−DoutW0I0(W1a)K1(W0a)−DinW1I1(W1a)K0(W0a)

K0(W0r)

(6.48)

So the scattered correlation function containing only the zeroth order will be:

Gs
1,out(r,θ,τ) = B

DinW1I1(W1a)I0(−µta)+DoutµtI0(W1a)I1(−µta)
−DoutW0I0(W1a)K1(W0a)−DinW1I1(W1a)K0(W0a)

K0(W0r) (6.49)

The total measured field will be:

G1,out(r,θ,τ) = Bexp(µtz)+B
DinW1I1(W1a)I0(−µta)+DoutµtI0(W1a)I1(−µta)
−DoutW0I0(W1a)K1(W0a)−DinW1I1(W1a)K0(W0a)

K0(W0r)

(6.50)

We can make one approximation to simplify the above equation, in the numerator, typically, the

first term will be order magnitude larger than the second term. Therefore, in order to understand
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the underlining physics better, we will drop the second term and the above equation becomes:

G1,out(r,θ,τ) = Bexp(µtz)+B
DinW1I1(W1a)I0(−µta)

−DoutW0I0(W1a)K1(W0a)−DinW1I1(W1a)K0(W0a)
K0(W0r)

= Bexp(µtz)+B
DinI0(−µta)

−Dout
W0I0(W1a)
W1I1(W1a)K1(W0a)−DinK0(W0a)

K0(W0r)

≈ Bexp(µtz)−B
DinI0(−µta)

Dout
1

W1a +DinK0(W0a)
K0(W0r)

=
S0

µa−µ2
t Dout

[
1− exp(−µtd)DinI0(−µta)

Dout
1

W1a +DinK0(W0a)
K0(W0r)

]
(6.51)

In which,

W1(τ) =

√
1

Din
[µin

a +
1
3

µ′sk
2
λ
〈∆r2(τ)〉] (6.52)

W0 =

√
µout

a
Dout

(6.53)

For motion caused by convective flow, the above equation could be rewritten as:

W1(τ) =

√
1

Din
[µin

a +
1
3

µ′sk
2
λ
V 2τ2] =

√
c+bτ2 (6.54)

Define the following τ independent function to simplify the equation

f1 = exp(−µtd)DinI0(−µta)K0(W0r) (6.55)

f2 = DinK0(W0a) (6.56)
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Then, the normalized correlation function can be written as:

g1(r,θ,τ) =
1− f1

Dout
W1(τ)a

+ f2

1− f1
Dout

W1(τ=0)a+ f2

(6.57)

The above equation can be written in the form of:

g1(r,a,θ,τ) =
1−g1(r,a,θ,∞)

1+ τ/T
+g1(r,a,θ,∞) (6.58)

It can be found out that:

g1(r,a,θ,∞) =

[
1− f1

f2

][
1− f1

Dout

a

√
µin
a

Din

+ f2

]−1

(6.59)

TF =
τ(a
√

c f2 +Dout)

a f2(
√

bτ2 + c−
√

c)

≈ (a
√

c f2 +Dout)

a f2
√

b

≈
√

c
b

=
1
V

√
3µin

a

µin
s k2

λ

(6.60)

1
TF
≈V kλ

√
µin

s
3µin

a
(6.61)

And kλ is the wave vector value at wavelength λ.
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Figure 6.2: Geometry for point source calculation, the point source is inside the media at a
depth of one transport mean free path.

6.3 Point Source Approximation

In the previous chapter, we analytically solved the Helmholtz equation with a incident

plane wave and obtained encouraging and intuitive results. In this chapter, we would like to

explore a different source profile typically used in diffuse correlation spectroscopy. If we shrink

the plane wave into a pencil beam, i.e. infinitely narrow laser beam. This laser beam can

then be approximated by a point source that is embedded in the scattering media at a depth

of one transport mean free path. As we previously discussed, the transport mean free path is

a length that the photon will lose its propagation direction and the propagation will become

isotropic[Haskell et al., 1994]. For this reason, a pencil beam with sufficient scattering can

equivalently be treated as a point source.

6.4 Point Source illumination

The illumination profile in the real experiment is neither a plane wave or a point source,

but in between. As seen from the previous chapter, an important result from the Fermi function

interpretation is that the measured decorrelation rate is independent of the source geometry,
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detector position and vessel diameter. In this chapter, we will prove that for point source

illumination, this is also the case. The quantity used in this chapter can be referred to figure 6.2

The green’s function of the 2D Helmholtz equation can be written as[Bourlier et al., 2013]:

g2D(~r,~rs) =
j
4

H(1)
0 (k‖~r−~rs‖)

=
j
4

H(1)
0

[
k
√

(y− y′)2 +(z− z′)2
]

=
j
4

H(1)
0 [krd(r,θ)]

(6.62)

And the L2-norm can be calculated as:

rd(r,θ) = ‖~r−~rs‖=
√

r2 + r2
s −2rrs cosθ (6.63)

Recall the scattered field solution can be written as:

Gs
1(r,θ,τ) =

m=+∞

∑
m=−∞

e jmθ[CmH(1)
m (kr)] (6.64)

The total correlation function outside the cylinder is:

G1,out(r,θ,τ) =
S0

Dout

j
4

H(1)
0 (k0rd)+

m=+∞

∑
m=−∞

e jmθ[CmH(1)
m (k0r)] (6.65)

The scattered wave inside the cylinder is the same as equation 61, written here as:

G1,in(r,θ,τ) =
m=+∞

∑
m=−∞

e jmθAmJm(k1r) (6.66)
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6.4.1 Boundary condition

The boundary condition can be written here as[Boas et al., 1994, Bourlier et al., 2013]:

G1,in(a,θ,τ) = G1,out(a,θ,τ) (6.67)

And:

Din
∂G1,in(r,θ,τ)

∂r

∣∣∣∣∣
r=a

= Dout
∂G1,out(r,θ,τ)

∂r

∣∣∣∣∣
r=a

(6.68)

For the first boundary condition:

m=+∞

∑
m=−∞

e jmθAmJm(k1a) =
S0

Dout

j
4

H(1)
0 (k0ras)+

m=+∞

∑
m=−∞

e jmθ[CmH(1)
m (k0a)] (6.69)

in which:

ras = rd(a,θ) (6.70)

For the second boundary condition,there are two ways to do this, noting the fact that rd is L2

norm of the difference vector of source and detector, technically, rd is a function of detection

point r and θ. The differential operator should operate on this source term.

The second boundary condition can be written as:

Dink1

m=+∞

∑
m=−∞

e jmθAmJ′m(k1a)

=−Dout
S0

Dout

jk0

4
H(1)

1 (k0‖~r−~rs‖)
‖~r−~rs‖

(~r−~rs) · n̂

∣∣∣∣∣
r=a

+Doutk0

m=+∞

∑
m=−∞

e jmθ[CmH
′(1)
m (k0a)]

(6.71)
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The surface normal unit vector n̂ will be r̂. And the L2-norm can be calculated as:

rd(r,θ) = ‖~r−~rs‖=
√

r2 + r2
s −2rrs cosθ (6.72)

Since the source is located Then the first term on the RHS can be written as:

−Dout
S0

Dout

jk0

4
H(1)

1 (k0‖~r−~rs‖)
‖~r−~rs‖

(~r−~rs) · n̂

∣∣∣∣∣
r=a

=−Dout
S0

Dout

jk0

4
H(1)

1 [k0ras]

ras
(a− rs cosθ)

= SS

(6.73)

For simplicity, equation (6.73) is defined as SS.

θs is defined as the angle between the detection position vector and the source position vector. If

the source is located on z-axis, then θs will be the same as θ, as illustrated in figure.... Then, the

boundary condition can be written as:

Dink1

m=+∞

∑
m=−∞

e jmθAmJ′m(k1a) = SS+Doutk0

m=+∞

∑
m=−∞

e jmθ[CmH
′(1)
m (k0a)] (6.74)

Again, this is true for all θ and m, the two boundary condition can be written as:

e jmθAmJm(k1a) =
S0

Dout

j
4

H(1)
0 (k0ras)+ e jmθCmH(1)

m (k0a) (6.75)

Dink1e jmθAmJ′m(k1a) = SS+Doutk0e jmθCmH
′(1)
m (k0a) (6.76)
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Cm and Am can be solved as:

Cm =
Jm(k1a)×SS− S0

Dout

j
4H(1)

0 (k0ras)Dink1J′m(k1a)

e jmθH(1)
m (k0a)Dink1J′m(k1a)− e jmθJm(k1a)Doutk0H

′(1)
m (k0a)

(6.77)

The total correlation function outside the cylinder is:

G1,out(r,θ,τ) =
S0

Dout

j
4

H(1)
0 (k0rd)

+
m=+∞

∑
m=−∞

Jm(k1a)×SS− S0
Dout

j
4H(1)

0 (k0ras)Dink1J′m(k1a)

H(1)
m (k0a)Dink1J′m(k1a)− Jm(k1a)Doutk0H

′(1)
m (k0a)

H(1)
m (k0r)

(6.78)

6.4.2 Solution Simplification

Using the recurrence relation:

f−n(x) = (−1)n fn(x) (6.79)

G1,out(r,θ,τ) =
S0

Dout

j
4

H(1)
0 (k0rd)

+
J0(k1a)×SS− S0

Dout

j
4H(1)

0 (k0ras)Dink1J′0(k1a)

H(1)
0 (k0a)Dink1J′0(k1a)− J0(k1a)Doutk0H

′(1)
0 (k0a)

H(1)
0 (k0r)

+
m=+∞

∑
m=2,4,6...

Jm(k1a)×SS− S0
Dout

j
4H(1)

0 (k0ras)Dink1J′m(k1a)

H(1)
m (k0a)Dink1J′m(k1a)− Jm(k1a)Doutk0H

′(1)
m (k0a)

H(1)
m (k0r)

(6.80)

Taking out the zeroth order term since all the higher order term is much smaller:

Again, with the following relation:

f ′0(x) =− f1(x) (6.81)
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G1,out(r,θ,τ)

=
S0

Dout

j
4

H(1)
0 (k0rd)+

J0(k1a)×SS− S0
Dout

j
4H(1)

0 (k0ras)Dink1J′0(k1a)

H(1)
0 (k0a)Dink1J′0(k1a)− J0(k1a)Doutk0H

′(1)
0 (k0a)

H(1)
0 (k0r)

=
S0

Dout

j
4

H(1)
0 (k0rd)

+
J0(k1a)×SS+ S0

Dout

j
4H(1)

0 (k0ras)Dink1J1(k1a)

−H(1)
0 (k0a)Dink1J1(k1a)+ J0(k1a)Doutk0H(1)

1 (k0a)
H(1)

0 (k0r)

(6.82)

k0 and k1 are pure imaginary, and k0 = jW0, and k1 = jW1(τ).

Jm( jx) = jmIm(x) (6.83)

and:

H(1)
m ( jx) =

2
π

j−m−1Km(x) (6.84)
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G1,out(r,θ,τ) =
S0

Dout

j
4

H(1)
0 (k0rd)+

J0(k1a)[−Dout
S0

Dout

jk0
4

H(1)
1 (k0ras)

ras
(a− rs cosθs)]+

S0
Dout

j
4H(1)

0 (k0ras)Dink1J1(k1a)

−H(1)
0 (k0a)Dink1J1(k1a)+ J0(k1a)Doutk0H(1)

1 (k0a)
H(1)

0 (k0r)

=
S0

Dout

j
4
[
2
π

j−1K0(W0rd)]+

I0(W0a)[−Dout
S0

Dout

−W0
4

2
π

j−2K1(W0ras)
ras

(a− rs cosθs)]+
S0

Dout

j
4 [

2
π

j−1K0(W0ras)]Din jW1[ jI1(W1a)]

−[ 2
π

j−1K0(W0a)]Din jW1 jI1(W1a)+ I0(W1a)Dout jW0[
2
π

j−2K1(W0a)]
2
π

j−1K0(W0r)

=
S0

2πDout
K0(W0rd)

+
I0(W0a)[−Dout

S0
2πDout

W0(a−rs cosθs)
ras

K1(W0ras)]− S0
2πDout

DinW1I1(W1a)K0(W0ras)

DinW1I1(W1a)K0(W0a)+DoutW0I0(W1a)K1(W0a)
K0(W0r)

=
S0

2πDout

[
K0(W0rd)

−
(a−rs cosθs)

ras
DoutW0I0(W0a)K1(W0ras)+DinW1I1(W1a)K0(W0ras)

DinW1I1(W1a)K0(W0a)+DoutW0I0(W1a)K1(W0a)
K0(W0r)

]
(6.85)

when the source and detector are both at z-axis:

a− rs cosθ = ras (6.86)

G1,out(r,θ,τ) =
S0

2πDout

[
K0(W0rd)

− DoutW0I0(W0a)K1(W0ras)+DinW1I1(W1a)K0(W0ras)

DinW1I1(W1a)K0(W0a)+DoutW0I0(W1a)K1(W0a)
K0(W0r)

] (6.87)

in order to simplify the solution using their respective asymptotic expression, when the argument

is small, the asymptotic relation can be written as follows (We will leave K0 modified bessel
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function as is since it won’t help to use the asymptotic form):

I0 ≈ 1 (6.88)

I1 ≈
x
2

(6.89)

K1 ≈
1
x

(6.90)

When the argument is large(τ = ∞), since this would only affect W1, the asymptotic expression

can be written as follows:

I0 ≈ I1 ≈
ex
√

2πx
(6.91)

In other words:
I0

I1
≈ 1 (6.92)

On the numerator, one approximation can be made, again, the first term is much smaller than the

second term. Plus the approximation of the bessel functions.
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G1,out(r,θ,τ)

=
S0

2πDout

[
K0(W0rd)−

DoutW0I0(W0a)K1(W0ras)+DinW1I1(W1a)K0(W0ras)

DinW1I1(W1a)K0(W0a)+DoutW0I0(W1a)K1(W0a)
K0(W0r)

]

≈ S0

2πDout

[
K0(W0rd)−

DinK0(W0ras)

DoutW0
I0(W1a)

W1I1(W1a)K1(W0a)+DinK0(W0a)
K0(W0r)

]

≈ S0

2πDout

[
K0(W0rd)−

DinK0(W0ras)

Dout
W0
W1

K1(W0a)+DinK0(W0a)
K0(W0r)

]

≈ S0

2πDout

[
K0(W0rd)−

DinK0(W0ras)

Dout
1

W1(τ)a
+DinK0(W0a)

K0(W0r)

]

=
S0K0(W0rd)

2πDout

[
1− DinK0(W0ras)

Dout
1

W1(τ)a
+DinK0(W0a)

K0(W0r)
K0(W0rd)

]

(6.93)

in which,

W1(τ) =

√
1

Din
[µin

a +
1
3

µ′sk
2
λ
〈∆r2(τ)〉] (6.94)

Similar to the definition in the plane wave case to isolate the τ dependent term and define the

following:

f1 = DinK0(W0ras)
K0(W0r)
K0(W0rd)

(6.95)

f2 = DinK0(W0a) (6.96)
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The normalized correlation function can be written as:

g1,out(r,θ,τ) =
G1,out(r,θ,τ)

G1,out(r,θ,τ = 0)

=

1− f1
Dout

W1(τ)a
+ f2

1− f1
Dout

W1(τ=0)a+ f2

(6.97)

The above equation can be written in the form of:

g1(r,a,θ,τ) =
1−g1(r,a,θ,∞)

1+ τ/T
+g1(r,a,θ,∞) (6.98)

It can be found out that:

g1(r,a,θ,∞) =

[
1− f1

f2

][
1− f1

Dout

a

√
µin
a

Din

+ f2

]−1

(6.99)

TF =
τ(a
√

c f2 +Dout)

a f2(
√

bτ2 + c−
√

c)

≈ (a
√

c f2 +Dout)

a f2
√

b

≈
√

c
b

=
1
V

√
3µin

a

µin
s k2

λ

(6.100)

1
TF
≈V kλ

√
µin

s
3µin

a
(6.101)

And kλ is the wave vector value at wavelength λ.
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The final few equations are exactly the same as the plane wave case, except for the difference in

f1. This is lead to the same expression for the characteristic time.

6.5 Conclusion

In conclusion, this chapter we analytically solved the Helmholtz equation for two different

source illumination profile. The results show that the decorrelation rate is not related to the

illumination profile. The effect of different illumination profile, detector location, vessel diameter

is all lumped into function f1 which is not what we are interested in.

Chapter 6 is based on a reprint of Zhang, A.C., Lo,Y.H.,2020. Theoretical Analysis of

non-invasive measurement of arterial blood flow speed. IEEE Journal of Selected Topics in

Quantum Electronics. The dissertation author was the primary author of this material.
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Chapter 7

Numerical Simulation: Finite Element

method (FEM)

In the previous chapters, we developed the theory of photon transport described by the

radiative transfer equation. For scattering dominant scattering media, the radiative equation can

be simplified using the diffusion approximation which describes the photon density distribution

using a diffusion equation. When the scatterers are dynamic, the radiative transfer equation can

be changed into the correlation transfer equation. and the diffusion equation can be changed

to incorporate the dynamic scattering part. We analytically solved a semi-infinite 2D problem

with a blood vessel buried inside the scattering media (tissue) as shown in figure 7.1 with plane

wave incident on the top surface. And we also analytically solved the same geometry but with an

embedded point source as illustrated in figure 7.2. The plane wave and the point source illustrate

the two extremes of the beam profile. In the analytical calculation, we have ignored the air-tissue

boundary to simplify the solution and only the blood-tissue boundary. Furthermore, we made

a series of the approximations to come up with the expression which contains clear physical

meaning. The result is then compared with the experimental results. For a 3D analytical solution,

it would be even more involved than it has already been for the case of 2D.
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Figure 7.1: illustration of the 2D geometry with plane wave illumination, region 1 represents
the blood vessel and region 0 represents the tissue

Alternatively, the diffusion equation can be solved numerically using the finite element method.

In the simulation, we could consider the external boundary condition and simulate in 3D without

making any additional approximations other the diffusion approximation itself. With finite

element method(FEM), we would be able to validate the accuracies of the our analytical solution.

However, the power of FEM method is usually diminished by it’s lack of clear physical insight

of the solution and cannot provide practical estimation of a measurement, in our case, the flow

speed.

In the following sections, the simulation will be done using Comsol Multiphysics.

7.1 2D Simulation

In this section, I will present the simulation in a 2 dimensional geometry. Different

from problem setup in the analytical approach, the blood vessel will be confined within a ”box”

geometry as shown in 7.3.

The module I use in the simulation is the mathematical module as we are solving the diffusion
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Figure 7.2: Illustration of the illumination profile using point source approximation, the point
source is located at one transport mean free path below the surface

equation.

7.1.1 Collimated Incident Beam

For a collimated incident beam, the trangular mesh used in the simulation is shown in

figure 7.4.

For the boundary condition of air-tissue interface, recall equation (??) which is rewritten here:

U(~r)−2D∇U(~r) · n̂ = 0 (7.1)

This is a robin type boundary condition, which contains the derivative and its value at the boundary.

As shown in figure 7.5, the 4 external boundary that is labeled as 1,2,3,4 are the boundaries using

the robin boundary condition. The internal boundary condition, 5,6,7,8 is automatically handled

by comsol using the continuity boundary condition. For the internal boundary condition, we have

previously discussed analytically, essentially, it requires the photon density and photon flux both

to be continuous at the interface.
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Figure 7.3: 2D Simulation Geometry, the center circle represents the blood vessel, and the area
outside represents the tissue
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Figure 7.4: 2D Trangular mesh for plane wave illumination and the mesh is chosen such that
there are sufficient resolution at the boundary
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Figure 7.5: Boundary condition for 2D structure. 1,2,3,4 represents the external boundary,
5,6,7,8 represents the internal boundary
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Figure 7.6: Two sets of Helmholtz equations are solved, region 1 represents the tissue, region 2
represents the blood vessel.

Two sets of Helmholtz equations are solved with different parameters in region 1(tissue) and

region 2(blood vessel) as shown in figure 7.6. Specifically, in region 1, the Helmholtz equation is

solved:

[∇2 + k2
1]G1(~r,τ) =−

S(~r)
D

(7.2)

in which

k1 = jW1(τ) (7.3)

W1(τ) =

√
1

Din
[µin

a +
1
3

µ′sk
2
λ
〈∆r2(τ)〉] (7.4)
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And in region 2, inside the vessel, the following Helmholtz equation is solved:

[∇2 + k2
2]G1(~r,τ) =−

S(~r)
D

(7.5)

in which

k2 = jW2(τ) (7.6)

W2 =

√
µout

a
Dout

(7.7)

As previously mentioned, as the speed of light is much faster than the movement of particles, all

the equation we solve is the steady state version of the transport equation and diffusion equation.

In the simulation, time delay τ is considered as a parameter to the equation. In order to see the

results at different time delay, many iterations of the equation need to be solved.

Figure 7.7 is showing the photon intensity distribution at τ = 0. The source is a collimated beam

with a gaussian profile impinging from the top surface, the FWHM is set to be 3.2mm.

With the simulation condition listed above, for a detection point in figure 7.8, we could plot the

electrical field correlation function in figure for different flow speed.

7.1.2 Point Source illumination

For a similar setup as the case of plane wave, with the difference in the trangular mesh

setup as can be seen from figure 7.10.

Similar to the detection point shown on figure 7.8, the electrical field autocorrelation can be

plotted in figure 7.11:
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Figure 7.7: Photon density color map at τ = 0. The source is a collimated beam with a gaussian
profile impinging from the top surface, the FWHM is set to be 3.2mm.

Figure 7.8: Location of the point detection, this applies to both the 2D and 3D simulation
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Figure 7.9: g1 plot, for a 2D geometry, with a collimated beam with gaussian profile impinging
the surface, the detection point is chosen 5mm away from the center of the top surface.

7.2 3D Simulation

7.2.1 Collimated incident beam

In additional to the 2D geometry, a more realistic 3D structure is also simulated. Figure

7.12 shows the geometry used in the Comsol simulation. And figure 7.13 shows the 3D trangular

mesh used under plane wave illumination. And figure 7.14 is the X-Y view of Photo density

distribution in the 3D geometry with a circular Gaussian beam illumination with FWHM of

3.2mm illuminating from the top surface. This is the initial state of photon distribution in the

medium (τ≈ 0).

And figure 7.15 is the Y-Z view of Photo density distribution in the 3D geometry with a circular

Gaussian beam illumination with FWHM of 3.2mm illuminating from the top surface(X-Y

surface). This is the initial state of photon distribution in the medium (τ≈ 0).

And the simulated electrical field correlation is shown in figure 7.16. And this is for a detection

point illustrated by 7.8 at plane of x = 0 as shown in figure 7.15.
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Figure 7.10: Trangular mesh setup for point source illumination and the mesh is chosen such
that there are sufficient resolution at the point source and the boundary
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Figure 7.11: g1 plot of 2D simulation with point source illumination for different flow speed.

7.2.2 Point Source illumination

Similar to the 2D simulation, using the point source approximation, an equivalent point

source is placed inside the medium with a depth of one transport mean free path. The 3D mesh

with inclusion of a point source is illustrated in figure 7.17. The photon density plots in X-Y view

can be illustrated in figure 7.18, the Y-Z view can be illustrated in figure 7.19. And the simulated

electrical field correlation is shown in figure 7.16. And this is for a detection point illustrated by

7.8 at plane of x = 0 as shown in figure 7.15.

Chapter 7 is based on a reprint of Zhang, A.C., Lo,Y.H.,2020. Theoretical Analysis of

non-invasive measurement of arterial blood flow speed. IEEE Journal of Selected Topics in

Quantum Electronics. The dissertation author was the primary author of this material.
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Figure 7.12: 3D geometry used for Comsol simulation, the glass tube embedded represents the
blood vessel.
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Figure 7.13: 3D trangular mesh usd under plane wave illumination and the mesh is chosen such
that there are sufficient resolution at the interface.
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Figure 7.14: X-Y view of Photo density distribution in the 3D geometry with a circular Gaussian
beam illumination with FWHM of 3.2mm illuminating from the top surface. This is the initial
state of photon distribution in the medium (τ≈ 0).
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Figure 7.15: Y-Z plane slices of field distribution using a Gaussian beam illumination with
FWHM of 3.2mm.

Figure 7.16: g1 plot for 3D simulation using collimated beam with a circular Gaussian beam
profile with a FWHM of 3.2mm.
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Figure 7.17: Compared to the mesh used in the plane illumination, the 3D mesh for point source
illumination is constructed so that sufficient precision is considered close to the point source.
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Figure 7.18: X-Y view of photon density distribution for point source illumination at τ = 0
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Figure 7.19: Y-Z view of photon density distribution for point source illumination at τ = 0

Figure 7.20: g1 plot for an equivalent point source illumination for different flow speed
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Chapter 8

Further Discussion

8.1 Dominant Force for the De-correlation Process

As we previous demonstrated, there are two type of forces as indicated in the following

equation:

〈∆r2(τ)〉= 6Dατ+V̄ 2
τ

2 (8.1)

In the previous discussions, we have concluded that in the range of flow rate, and size of the vessel

diameter, the second term will be dominant. This comes from the fact that the de-correlation rate

is proportional to the flow rate and is not a function of blood vessel diameter. In other words, if we

plot the de-correlation rate versus flow speed for all different diameter sizes, if the de-correlation

rate is also dependent on the vessel diameter, the curves would not be collapsed into one curve.

Experimentally, we could see from figure 8.1. The experimental data can be represented by the

expression derived previously:

1
TF
≈V kλ

√
µin

s
3µin

a
(8.2)
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Figure 8.1: The De-correlation rate Versus speed plot for different tube diameters, the theoretical
fitting is followed by equation 8.2. The 3 curves collapsed into one curve indicating the proposed
hypothesis.
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Figure 8.2: Experimentally measured de-correlation rate Versus flow speed in different vessel
diameters

To further illustrate this point, in figure8.2 ,the de-correlation rate versus flow speed is plotted to

be compared with figure 8.3, where the de-correlation rate versus shear rate is plotted.

Clearly, from the experiment, we can verify our hypothesis. The first term,i.e. the diffusion term

is usually dominate in slower flow and for smaller vessels.

8.2 Inflection point and it’s derivative

In the beginning of the thesis, we defined the inflection point as the characteristic time

as shown in figure 8.4. However, it looks like that the inflection point is actually not so obvious

from the plot. In this section, I will demonstrate a way to clearly find the inflection point.

For the g1 plot, if taking the derivative, we can clearly see the inflection point. In figure, we
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Figure 8.3: Experimentally measured de-correlation rate Versus shear rate in different vessel
diameters
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Figure 8.4: figure (a) g1 plot for tube diameter of 1.68mm, figure (b) is a linear fit of calculated
blood flow speed
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Figure 8.5: The calculated normalized field correlation and its derivative, only the fast dynamics,
i.e. the convective flow is included in the model.

demonstrate the theoretical field correlation curves g1 using the following equation (8.3) as

previously derived in chapter 6.

Gs
1,out(r,θ,τ) =

m=+∞

∑
m=−∞

B jm Dink1J′m(k1a)Jm(−kta)+DoutktJm(k1a)J′m(−kta)

Doutk0Jm(k1a)H ′(1)m (k0a)−Dink1J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)e jmθ

(8.3)

The calculated normalized field correlation and its derivative can be illustrated as in figure 8.5.

The experimentally measured normalized field correlation and its derivative can be illustrated as

in figure 8.6. Although the g1 curve looks different from the theoretical curve, but if we focus
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Figure 8.6: Comparison of the fast flow dynamics and slow flow dynamics. The fast dynamics
is the convection flow and flower dynamics is caused by the diffusion motion.

only on the fast dynamics, we could see that the correlation time is almost identical. For the

experiment, we also observed a slower dynamics which could be caused by the diffusive motion

of blood cells. In this speed range, the two modes of motion are separated in time. We could

simply focus on the fast flow dynamics.

Chapter 8 is based on a reprint of Zhang, A.C., Lo,Y.H.,2020. Theoretical Analysis of

non-invasive measurement of arterial blood flow speed. IEEE Journal of Selected Topics in

Quantum Electronics. The dissertation author was the primary author of this material.
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Chapter 9

Conclusion

In this work, we demonstrated a simple technique to directly measure the blood flow

speed in main arteries based on the diffused light model. The device uses a single fiber bundle, a

diode laser, and a photoreceiver. The concept is demonstrated with a phantom that uses intralipid

hydrogel to model the biological tissue and an embedded glass tube with flowing human blood

to model the blood vessel. The correlation function of the measured photocurrent was used to

find the electrical field correlation function via the Siegert Relation. Interestingly the measured

electric field correlation function g1(τ) and ln(TF) shows a relation similar to the Fermi-Dirac

function, allowing us to define the ln(τ), equivalent to the “Fermi energy” occurring at the first

inflection point of g1(τ). Surprisingly, the value 1/TF , which we call characteristic decorrelation

rate, is found to be linearly proportional to the blood speed and is independent of the diameter of

the tube diameter over the size and speed ranges for major arteries. This striking property can

be explained by an approximate analytic solution for the diffused light equation in the regime

where the convective flow would dominate the decorrelation. This discovery is highly significant

because, for the first time, we can use a simple device to directly measure the blood speed in major

arteries without any prior knowledge or assumption about the geometry or mechanical properties

of the blood vessels. A non-invasive method of measuring arterial blood speed produces important
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information about health conditions. Although the device and setup can be further optimized

(e.g. adding different light wavelengths) and the physical model can be expanded to acquire more

information from the measurements, the work has paved its way to a new promising modality for

measurements of blood supplies to vital organs.

Chapter 9 is based on a reprint of Zhang, A.C., Lo, Y.H., 2020. Non-invasive optical

Measurement of arterial blood flow speed. Biomedical Optics Express (under peer review). The

dissertation author was the primary author of this material.

101



Nomenclature

αs Diffusion Cross Section for Blood Cells 10−12 m2

β Coherence factor, related only to collection optics unitless

η impedance Ω

λ0 Wavelength of the incident CW coherent source 785nm

µ′tr Reduced transport coefficient m−1

µa Absorption coefficient m−1

µin
a Absorption coefficient inside the cylinder, blood 1/m

µout
a Absorption coefficient outside the cylinder, tissue 1/m

µs Scattering coefficient m−1

µ′s Reduced scattering coefficient m−1

Ψ(t) Wave function of the scalar field
√

W/m

ρ Number Density #/m3

σa Absorption cross section m2

σs Scattering cross section m2
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σt Total cross section, absorption + scattering m2

θ Angle of incident relative to z-axis rad

~r Position Vector referenced to the origin of the coordinate system m

~rs Position vector of the virtual point source referenced to the origin of the coordinate system

m

a Radius of the cylinder m

D′,D,Dγ Photon Diffusion Coefficient m

Db Diffusivity for Blood Cells m2/s

Din Photon diffusion coefficient for inside the cylinder,blood m

Dout Photon diffusion coefficient for outside the cylinder,tissue m

ds Elementary Volume m3

E(t) Complex amplitude of the electrical field V/m

g Mean cosine phase function/ scattering anisotropy unitless

G1 Unnormalized Wave function Correlation Wm−2

g1 Normalized Wave function/E-field correlation unitless

gs
1 Normalized Wave function correlation for single scattering unitless

Gs
1(~r,τ) Scattered correlation function Wm−2

g2(τ) Normalized intensity correlation unitless

I Specific Intensity Wm−2sr−1
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k(τ) ”Wave vector” of the correlation field, purely imaginary, representing de-correlation due

to absorption and particle motion 1/m

k0 ”Wave vector” of the correlation field outside the cylinder, tissue 1/m

k1 ”Wave vector” of the correlation field inside the cylinder, blood 1/m

l′tr Reduced transport mean free path m

ls Scattering mean free path m

n Refractive index of blood unitless

r radial distance from the center of polar coordinates, the center of the vessel m

rd Distance between the virtual point source and detection point m

S(~r) Source strength Wm−3

S(~r, ŝ) Source strength Wm−3Sr−1

U Average intensity Wm−2

Vmax Max Velocity of blood cell inside the vessel m/s

W (τ) Defined as: k(τ) = jW 1/m
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